Compare commits

..

1 Commits

Author SHA1 Message Date
Bruce MacDonald
c7c751647d model: support for mistral-small in the ollama runner
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
2025-03-14 16:56:39 -07:00
35 changed files with 893 additions and 929 deletions

View File

@@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],

View File

@@ -392,8 +392,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
### Cloud

View File

@@ -757,132 +757,3 @@ func TestCreateHandler(t *testing.T) {
})
}
}
func TestNewCreateRequest(t *testing.T) {
tests := []struct {
name string
from string
opts runOptions
expected *api.CreateRequest
}{
{
"basic test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "",
Prompt: "You are a fun AI agent",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
},
},
{
"parent model as filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "/some/file/like/etc/passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model as windows filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"options test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Options: map[string]any{
"temperature": 1.0,
},
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
Parameters: map[string]any{
"temperature": 1.0,
},
},
},
{
"messages test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
actual := NewCreateRequest(tt.from, tt.opts)
if !cmp.Equal(actual, tt.expected) {
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
}
})
}
}

View File

@@ -18,7 +18,6 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
)
type MultilineState int
@@ -460,16 +459,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
parentModel := opts.ParentModel
modelName := model.ParseName(parentModel)
if !modelName.IsValid() {
parentModel = ""
}
req := &api.CreateRequest{
Model: name,
From: cmp.Or(parentModel, opts.Model),
Name: name,
From: cmp.Or(opts.ParentModel, opts.Model),
}
if opts.System != "" {

View File

@@ -11,10 +11,9 @@ import (
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/types/bfloat16"
)
type safetensorMetadata struct {

1
go.mod
View File

@@ -16,6 +16,7 @@ require (
require (
github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/google/go-cmp v0.6.0

2
go.sum
View File

@@ -35,6 +35,8 @@ github.com/containerd/console v1.0.3 h1:lIr7SlA5PxZyMV30bDW0MGbiOPXwc63yRuCP0ARu
github.com/containerd/console v1.0.3/go.mod h1:7LqA/THxQ86k76b8c/EMSiaJ3h1eZkMkXar0TQ1gf3U=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 h1:cBzrdJPAFBsgCrDPnZxlp1dF2+k4r1kVpD7+1S1PVjY=
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1/go.mod h1:uw2gLcxEuYUlAd/EXyjc/v55nd3+47YAgWbSXVxPrNI=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=

View File

@@ -66,35 +66,6 @@ func TestIntegrationMllama(t *testing.T) {
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
}
func TestIntegrationSplitBatch(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{
Model: "gemma3:4b",
// Fill up a chunk of the batch so the image will partially spill over into the next one
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
Images: []api.ImageData{
image,
},
}
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
resp := "the ollam"
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6

View File

@@ -37,7 +37,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_MINICPM3, "minicpm3" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_GEMMA3, "gemma3" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -805,24 +804,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_GEMMA3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_STARCODER2,
{

View File

@@ -41,7 +41,6 @@ enum llm_arch {
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_GEMMA3,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,

View File

@@ -878,9 +878,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GEMMA3:
{
} break;
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2540,9 +2537,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_GEMMA3:
{
} break;
case LLM_ARCH_STARCODER2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4035,7 +4029,6 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
case LLM_ARCH_GEMMA3:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:

View File

@@ -737,15 +737,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.blk.") == std::string::npos;
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -1,113 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Patrick Devine <patrick@infrahq.com>
Date: Fri, 14 Mar 2025 16:33:23 -0700
Subject: [PATCH] gemma3 quantization
---
src/llama-arch.cpp | 19 +++++++++++++++++++
src/llama-arch.h | 1 +
src/llama-model.cpp | 7 +++++++
src/llama-quant.cpp | 9 +++++++++
4 files changed, 36 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index b6f20286..b443fcd3 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_MINICPM3, "minicpm3" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_GEMMA2, "gemma2" },
+ { LLM_ARCH_GEMMA3, "gemma3" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
+ {
+ LLM_ARCH_GEMMA3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
{
LLM_ARCH_STARCODER2,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index ec742224..aad92a5d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -41,6 +41,7 @@ enum llm_arch {
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
+ LLM_ARCH_GEMMA3,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index ab1a07d1..70183041 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_GEMMA3:
+ {
+ } break;
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
+ case LLM_ARCH_GEMMA3:
+ {
+ } break;
case LLM_ARCH_STARCODER2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
+ case LLM_ARCH_GEMMA3:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
index 6eb1da08..d2f3a510 100644
--- a/src/llama-quant.cpp
+++ b/src/llama-quant.cpp
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+ // don't quantize vision stuff
+ quantize &= name.find("v.blk.") == std::string::npos;
+
+ quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
+ quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
+ quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.position_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
+
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -402,7 +402,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd)
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
@@ -470,7 +470,7 @@ const ( // iota is reset to 0
ServerStatusError
)
func (s ServerStatus) String() string {
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "llm server ready"
@@ -485,9 +485,12 @@ func (s ServerStatus) String() string {
}
}
type ServerStatusResponse struct {
Status ServerStatus `json:"status"`
Progress float32 `json:"progress"`
type ServerStatusResp struct {
Status string `json:"status"`
SlotsIdle int `json:"slots_idle"`
SlotsProcessing int `json:"slots_processing"`
Error string `json:"error"`
Progress float32 `json:"progress"`
}
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
@@ -499,7 +502,7 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
}
if s.cmd.ProcessState.ExitCode() == -1 {
// Most likely a signal killed it, log some more details to try to help troubleshoot
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
}
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
@@ -524,19 +527,21 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
return ServerStatusError, fmt.Errorf("read health request: %w", err)
}
var ssr ServerStatusResponse
if err := json.Unmarshal(body, &ssr); err != nil {
var status ServerStatusResp
if err := json.Unmarshal(body, &status); err != nil {
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
}
switch ssr.Status {
case ServerStatusLoadingModel:
s.loadProgress = ssr.Progress
return ssr.Status, nil
case ServerStatusReady, ServerStatusNoSlotsAvailable:
return ssr.Status, nil
switch status.Status {
case "ok":
return ServerStatusReady, nil
case "no slot available":
return ServerStatusNoSlotsAvailable, nil
case "loading model":
s.loadProgress = status.Progress
return ServerStatusLoadingModel, nil
default:
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
return ServerStatusError, fmt.Errorf("server error: %+v", status)
}
}
@@ -611,7 +616,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
status, _ := s.getServerStatus(ctx)
if lastStatus != status && status != ServerStatusReady {
// Only log on status changes
slog.Info("waiting for server to become available", "status", status)
slog.Info("waiting for server to become available", "status", status.ToString())
}
switch status {
case ServerStatusReady:
@@ -625,7 +630,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
stallTimer = time.Now().Add(stallDuration)
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
slog.Debug("model load completed, waiting for server to become available", "status", status)
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
stallTimer = time.Now().Add(stallDuration)
fullyLoaded = true
}
@@ -666,26 +671,63 @@ type ImageData struct {
AspectRatioID int `json:"aspect_ratio_id"`
}
type completion struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
StoppedLimit bool `json:"stopped_limit"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
type CompletionRequest struct {
Prompt string
Format json.RawMessage
Images []ImageData
Options *api.Options
Grammar string // set before sending the request to the subprocess
}
type CompletionResponse struct {
Content string `json:"content"`
DoneReason string `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
EvalCount int `json:"eval_count"`
EvalDuration time.Duration `json:"eval_duration"`
Content string
DoneReason string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
request := map[string]any{
"prompt": req.Prompt,
"stream": true,
"n_predict": req.Options.NumPredict,
"n_keep": req.Options.NumKeep,
"main_gpu": req.Options.MainGPU,
"temperature": req.Options.Temperature,
"top_k": req.Options.TopK,
"top_p": req.Options.TopP,
"min_p": req.Options.MinP,
"typical_p": req.Options.TypicalP,
"repeat_last_n": req.Options.RepeatLastN,
"repeat_penalty": req.Options.RepeatPenalty,
"presence_penalty": req.Options.PresencePenalty,
"frequency_penalty": req.Options.FrequencyPenalty,
"mirostat": req.Options.Mirostat,
"mirostat_tau": req.Options.MirostatTau,
"mirostat_eta": req.Options.MirostatEta,
"seed": req.Options.Seed,
"stop": req.Options.Stop,
"image_data": req.Images,
"cache_prompt": true,
}
if len(req.Format) > 0 {
switch string(req.Format) {
case `null`, `""`:
@@ -693,7 +735,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
// these as "not set".
break
case `"json"`:
req.Grammar = grammarJSON
request["grammar"] = grammarJSON
default:
if req.Format[0] != '{' {
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
@@ -704,15 +746,10 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
req.Grammar = string(g)
request["grammar"] = string(g)
}
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
@@ -733,7 +770,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
if err != nil {
return err
} else if status != ServerStatusReady {
return fmt.Errorf("unexpected server status: %s", status)
return fmt.Errorf("unexpected server status: %s", status.ToString())
}
// Handling JSON marshaling with special characters unescaped.
@@ -741,7 +778,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(req); err != nil {
if err := enc.Encode(request); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
@@ -792,7 +829,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
evt = line
}
var c CompletionResponse
var c completion
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
}
@@ -816,8 +853,20 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
})
}
if c.Done {
fn(c)
if c.Stop {
doneReason := "stop"
if c.StoppedLimit {
doneReason = "length"
}
fn(CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: c.Timings.PromptN,
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
EvalCount: c.Timings.PredictedN,
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
})
return nil
}
}
@@ -865,7 +914,7 @@ func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, err
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %s", status)
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(EmbeddingRequest{Content: input})
@@ -1010,3 +1059,12 @@ func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
}
return 0
}
func parseDurationMs(ms float64) time.Duration {
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
if err != nil {
panic(err)
}
return dur
}

View File

@@ -312,19 +312,17 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := C.malloc(C.size_t(t.Size()))
if bts == nil {
return errors.New("failed to allocate tensor buffer")
}
defer C.free(bts)
buf := unsafe.Slice((*byte)(bts), t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
if err != nil || n != len(buf) {
return errors.New("read failed")
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
if n != len(bts) {
return errors.New("short read")
}
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
return nil
})
}
@@ -373,7 +371,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
true,
),
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],

View File

@@ -15,12 +15,6 @@ type Input struct {
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
// SameBatch forces the following number of tokens to be processed
// in a single batch, breaking and extending batches as needed.
// Useful for things like images that must be processed in one
// shot.
SameBatch int
}
// MultimodalIndex is a multimodal element (such as an image)

View File

@@ -60,7 +60,7 @@ type MultimodalProcessor interface {
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize([]input.Input) ([]input.Input, error)
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models

View File

@@ -2,9 +2,10 @@ package gemma3
import (
"bytes"
"encoding/binary"
"hash/fnv"
"image"
"math"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
@@ -111,23 +112,36 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return visionOutputs, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
type imageToken struct {
embedding ml.Tensor
index int
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var result []input.Input
fnvHash := fnv.New64a()
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
imageInputs := []input.Input{
{Token: 108}, // "\n\n"
{Token: 255999}, // "<start_of_image>""
}
result = append(result, imageInputs...)
// add image embeddings
inputMultimodal := inp.Multimodal.(ml.Tensor)
result = append(result,
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
for i := range inputMultimodal.Dim(1) {
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
fnvHash.Write([]byte{byte(i)})
// add image token placeholders
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
imageToken := imageToken{embedding: inputMultimodal, index: i}
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
}
result = append(result,
input.Input{Token: 256000}, // <end_of_image>

View File

@@ -171,20 +171,53 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func setImageEmbeddings(ctx ml.Context, hiddenState ml.Tensor, multimodal []input.MultimodalIndex) []int {
var embedding ml.Tensor
var src, dst, length int
var except []int
for _, image := range multimodal {
imageToken := image.Multimodal.(imageToken)
imageSrc := imageToken.index
imageDst := image.Index
if embedding == nil {
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
} else if embedding == imageToken.embedding && imageSrc+1 == src && imageDst+1 == dst {
src = imageSrc
dst = imageDst
length++
} else if embedding == imageToken.embedding && src+length == imageSrc && dst+length == imageDst {
length++
} else {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
}
except = append(except, imageDst)
}
if embedding != nil {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
}
return except
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
// set image embeddings
var except []int
for _, image := range opts.Multimodal {
visionOutputs := image.Multimodal.(ml.Tensor)
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
for i := range visionOutputs.Dim(1) {
except = append(except, image.Index+i)
}
}
except := setImageEmbeddings(ctx, hiddenState, opts.Multimodal)
for i, layer := range m.Layers {
// gemma alternates between the sliding window (local) and causal (global)

View File

@@ -13,9 +13,9 @@ import (
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32
hiddenSize, numHeads, numKVHeads, headDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type Model struct {
@@ -37,6 +37,8 @@ func New(c ml.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
// TODO: need to set this in the conversion for mistral:
// tokenizer.ggml.pretokenizer = [^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
@@ -53,6 +55,7 @@ func New(c ml.Config) (model.Model, error) {
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
@@ -75,24 +78,36 @@ type SelfAttention struct {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
// Get head dimension - use explicit value if available, otherwise calculate
headDim := opts.headDim
if headDim == 0 {
headDim = opts.hiddenSize / opts.numHeads
}
// Query projection and reshape
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
// Key projection and reshape
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
// Value projection and reshape
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
// Attention computation
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
// Reshape attention output for final projection
outputDim := headDim * opts.numHeads
kqv = kqv.Reshape(ctx, outputDim, batchSize)
// Apply output projection
return sa.Output.Forward(ctx, kqv)
}

View File

@@ -106,17 +106,17 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
inputs[i].Multimodal = images[0].Multimodal
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
@@ -138,10 +138,7 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(opts.Multimodal) > 0 {
images := opts.Multimodal[len(opts.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(images) > 0 {
crossAttentionStates = images[len(images)-1]
}
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
}
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))

View File

@@ -209,6 +209,326 @@ func TestLlama(t *testing.T) {
})
}
// tekken loads the Tekken tokenizer for testing
func tekken(t testing.TB) TextProcessor {
t.Helper()
// Load tokenizer config from mistral-small
tokenizerConfigPath := filepath.Join("testdata", "mistral-small", "tokenizer_config.json")
configFile, err := os.Open(tokenizerConfigPath)
if err != nil {
t.Fatal(err)
}
defer configFile.Close()
var config struct {
AddBosToken bool `json:"add_bos_token"`
AddEosToken bool `json:"add_eos_token"`
BosToken struct {
Content string `json:"content"`
} `json:"bos_token"`
EosToken struct {
Content string `json:"content"`
} `json:"eos_token"`
}
if err := json.NewDecoder(configFile).Decode(&config); err != nil {
t.Fatal(err)
}
// Load tokenizer.json which contains the vocabulary and other settings
tokenizerJsonPath := filepath.Join("testdata", "mistral-small", "tokenizer.json")
tokenizerFile, err := os.Open(tokenizerJsonPath)
if err != nil {
t.Fatal(err)
}
defer tokenizerFile.Close()
var tokenizerData struct {
Model struct {
Type string `json:"type"`
Vocab map[string]int32 `json:"vocab"`
Merges []string `json:"merges"`
} `json:"model"`
AddedTokens []struct {
Id int32 `json:"id"`
Content string `json:"content"`
Special bool `json:"special"`
} `json:"added_tokens"`
PreTokenizer struct {
Type string `json:"type"`
Pretokenizers []struct {
Type string `json:"type"`
Pattern struct {
String string `json:"String"`
} `json:"pattern"`
Behavior string `json:"behavior"`
} `json:"pretokenizers"`
} `json:"pre_tokenizer"`
}
if err := json.NewDecoder(tokenizerFile).Decode(&tokenizerData); err != nil {
t.Fatal(err)
}
// Extract the pattern from pre_tokenizer if available
var pattern string
if tokenizerData.PreTokenizer.Type == "Sequence" && len(tokenizerData.PreTokenizer.Pretokenizers) > 0 {
pattern = tokenizerData.PreTokenizer.Pretokenizers[0].Pattern.String
}
// Combine regular vocab and added tokens
vocab := tokenizerData.Model.Vocab
// Add special tokens from added_tokens
for _, token := range tokenizerData.AddedTokens {
vocab[token.Content] = token.Id
}
// Create vocabulary arrays
maxId := int32(-1)
for _, id := range vocab {
if id > maxId {
maxId = id
}
}
vocabSize := int(maxId + 1)
types := make([]uint32, vocabSize)
tokens := make([]string, vocabSize)
scores := make([]float32, vocabSize)
for token, id := range vocab {
tokens[id] = token
types[id] = TOKEN_TYPE_NORMAL
// Assign appropriate token types for special tokens
if token == "<s>" {
types[id] = TOKEN_TYPE_CONTROL
} else if token == "</s>" {
types[id] = TOKEN_TYPE_CONTROL
} else if token == "[INST]" || token == "[/INST]" {
types[id] = TOKEN_TYPE_CONTROL
}
}
// In Tekken, we don't need to load merges separately as they're part of the model
var merges []string
// Create vocabulary object
vocabObj := &Vocabulary{
Values: tokens,
Types: types,
Scores: scores,
Merges: merges,
BOS: vocab[config.BosToken.Content],
EOS: vocab[config.EosToken.Content],
AddBOS: config.AddBosToken,
AddEOS: config.AddEosToken,
}
// Use pattern from tokenizer.json if available
if pattern != "" {
// Ensure pattern has proper escaping for Go regexp
pattern = strings.ReplaceAll(pattern, "p{", "\\p{")
return NewBytePairEncoding(pattern, vocabObj)
}
// Fallback pattern if not found
return NewBytePairEncoding(
`\p{L}+|\p{N}+|[^\s\p{L}\p{N}]+|\s+`,
vocabObj,
)
}
func TestTekken(t *testing.T) {
// Skip if the test data isn't available
if _, err := os.Stat(filepath.Join("testdata", "mistral-small")); os.IsNotExist(err) {
t.Skip("Mistral-small test data not available")
}
tokenizer := tekken(t)
t.Run("whitespace_handling", func(t *testing.T) {
t.Parallel()
// The key difference from SentencePiece is that Tekken doesn't prepend whitespace
cases := []struct {
input string
expected string
}{
{" hello", " hello"},
{"hello ", "hello "},
{"hello world", "hello world"},
{" hello world ", " hello world "},
}
for _, tc := range cases {
ids, err := tokenizer.Encode(tc.input, false)
if err != nil {
t.Errorf("Failed to encode %q: %v", tc.input, err)
continue
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
continue
}
if decoded != tc.expected {
t.Errorf("Whitespace handling: got %q, want %q", decoded, tc.expected)
}
}
})
t.Run("chat_templates", func(t *testing.T) {
t.Parallel()
// Test the Tekken chat template format which doesn't have spaces after special tokens
templates := []struct {
input string
expectSpace bool // whether we expect a space after special tokens
}{
{"<s>[INST]user message[/INST]", false},
{"<s>[INST] user message[/INST]", true},
{"<s>[INST]user message [/INST]", true},
}
for _, tc := range templates {
ids, err := tokenizer.Encode(tc.input, false)
if err != nil {
t.Errorf("Failed to encode %q: %v", tc.input, err)
continue
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
continue
}
// Check if there's a space after special tokens
hasSpaceAfterINST := strings.Contains(decoded, "[INST] ")
if hasSpaceAfterINST != tc.expectSpace {
t.Errorf("Chat template space handling: got space=%v, want space=%v for %q",
hasSpaceAfterINST, tc.expectSpace, tc.input)
}
}
})
t.Run("special_tokens", func(t *testing.T) {
t.Parallel()
// Test how Tekken handles special tokens
cases := []struct {
input string
expected []string // We'll check if these tokens are in the decoded output
}{
{"<s>[INST]hello[/INST]", []string{"<s>", "[INST]", "hello", "[/INST]"}},
{"[INST]hello[/INST]</s>", []string{"[INST]", "hello", "[/INST]", "</s>"}},
{"<s>[INST]hello[/INST]</s>[INST]again[/INST]", []string{"<s>", "[INST]", "hello", "[/INST]", "</s>", "[INST]", "again", "[/INST]"}},
}
for _, tc := range cases {
ids, err := tokenizer.Encode(tc.input, false)
if err != nil {
t.Errorf("Failed to encode %q: %v", tc.input, err)
continue
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
continue
}
for _, expected := range tc.expected {
if !strings.Contains(decoded, expected) {
t.Errorf("Special token handling: %q missing in decoded output %q", expected, decoded)
}
}
}
})
t.Run("vocabulary_coverage", func(t *testing.T) {
t.Parallel()
// Tekken has a larger vocabulary, so test coverage of various token types
samples := []string{
"Hello world!",
"This is a test of the Tekken tokenizer.",
"It has a considerably larger vocabulary size.",
"Special characters: !@#$%^&*()",
"Numbers: 1234567890",
"Multiple languages: こんにちは 你好 안녕하세요",
"Code snippets: def function(): return True",
}
for _, sample := range samples {
ids, err := tokenizer.Encode(sample, false)
if err != nil {
t.Errorf("Failed to encode %q: %v", sample, err)
continue
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Errorf("Failed to decode tokens for %q: %v", sample, err)
continue
}
if decoded != sample {
t.Errorf("Vocabulary coverage: got %q, want %q", decoded, sample)
}
}
})
t.Run("splitting_behavior", func(t *testing.T) {
t.Parallel()
// Test the splitting behavior which might differ from SentencePiece
cases := map[string][]string{
"Hello World!": {"Hello", " World", "!"},
"user message": {"user", " message"},
"[INST]hello": {"[INST]", "hello"},
"hello[/INST]": {"hello", "[/INST]"},
}
for s, want := range cases {
got := slices.Collect(tokenizer.(*BytePairEncoding).split(s))
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("Splitting behavior no match (-want +got):\n%s", diff)
}
}
})
t.Run("full_chat_sequence", func(t *testing.T) {
t.Parallel()
// Test a complete chat sequence with Tekken's format
chatSequence := "<s>[INST]user message[/INST]assistant message</s>[INST]new user message[/INST]"
ids, err := tokenizer.Encode(chatSequence, false)
if err != nil {
t.Fatalf("Failed to encode chat sequence: %v", err)
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Fatalf("Failed to decode chat sequence tokens: %v", err)
}
// In Tekken, the whitespace shouldn't be added after special tokens
if strings.Contains(decoded, "[INST] ") {
t.Errorf("Tekken chat sequence has unexpected space after [INST]: %q", decoded)
}
if strings.Contains(decoded, "[/INST] ") {
t.Errorf("Tekken chat sequence has unexpected space after [/INST]: %q", decoded)
}
})
}
func BenchmarkBytePairEncoding(b *testing.B) {
tokenizer := llama(b)
bts, err := os.ReadFile(filepath.Join("testdata", "war-and-peace.txt"))

View File

@@ -24,7 +24,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/runner/common"
)
@@ -100,7 +99,7 @@ type NewSequenceParams struct {
embedding bool
}
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
@@ -164,7 +163,7 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input, error) {
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
var parts []string
var matches [][]string
@@ -230,7 +229,7 @@ type Server struct {
image *ImageContext
// status for external health reporting - loading, ready to serve, etc.
status llm.ServerStatus
status ServerStatus
// current progress on loading the model
progress float32
@@ -542,18 +541,75 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req llm.CompletionRequest
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
@@ -564,28 +620,26 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
// Extract options from the CompletionRequest
samplingParams := llama.SamplingParams{
TopK: req.Options.TopK,
TopP: req.Options.TopP,
MinP: req.Options.MinP,
TypicalP: req.Options.TypicalP,
Temp: req.Options.Temperature,
RepeatLastN: req.Options.RepeatLastN,
PenaltyRepeat: req.Options.RepeatPenalty,
PenaltyFreq: req.Options.FrequencyPenalty,
PenaltyPresent: req.Options.PresencePenalty,
Mirostat: req.Options.Mirostat,
MirostatTau: req.Options.MirostatTau,
MirostatEta: req.Options.MirostatEta,
Seed: uint32(req.Options.Seed),
Grammar: req.Grammar,
}
var samplingParams llama.SamplingParams
samplingParams.TopK = req.TopK
samplingParams.TopP = req.TopP
samplingParams.MinP = req.MinP
samplingParams.TypicalP = req.TypicalP
samplingParams.Temp = req.Temperature
samplingParams.RepeatLastN = req.RepeatLastN
samplingParams.PenaltyRepeat = req.RepeatPenalty
samplingParams.PenaltyFreq = req.FrequencyPenalty
samplingParams.PenaltyPresent = req.PresencePenalty
samplingParams.Mirostat = req.Mirostat
samplingParams.MirostatTau = req.MirostatTau
samplingParams.MirostatEta = req.MirostatEta
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.Options.NumPredict,
stop: req.Options.Stop,
numKeep: req.Options.NumKeep,
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: req.NumKeep,
samplingParams: &samplingParams,
embedding: false,
})
@@ -608,7 +662,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@@ -637,7 +691,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -648,17 +702,15 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numDecoded,
EvalDuration: time.Since(seq.startGenerationTime),
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numDecoded,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
@@ -669,8 +721,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
var req llm.EmbeddingRequest
var req EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
@@ -700,7 +761,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@@ -721,17 +782,41 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
embedding := <-seq.embedding
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
Embedding: embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
Status: s.status,
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -794,7 +879,7 @@ func (s *Server) loadModel(
panic(err)
}
s.status = llm.ServerStatusReady
s.status = ServerStatusReady
s.ready.Done()
}
@@ -852,7 +937,7 @@ func Execute(args []string) error {
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
seqsSem: semaphore.NewWeighted(int64(*parallel)),
status: llm.ServerStatusLoadingModel,
status: ServerStatusLoadingModel,
}
var tensorSplitFloats []float32

View File

@@ -89,7 +89,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -107,6 +107,10 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()

View File

@@ -297,131 +297,3 @@ func TestShiftDiscard(t *testing.T) {
})
}
}
func TestLoadCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
wantErr bool
expectedSlotId int
expectedPrompt int // expected length of remaining prompt
}{
{
name: "Basic cache hit - single user",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
},
{
name: "Basic cache hit - multi user",
cache: InputCache{
multiUserCache: true,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
},
{
name: "Exact match - leave one input",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Should leave 1 token for sampling
},
{
name: "No available slots",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: true,
expectedSlotId: -1,
expectedPrompt: -1,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
// Check error state
if (err != nil) != tt.wantErr {
t.Errorf("LoadCacheSlot() error = %v, wantErr %v", err, tt.wantErr)
return
}
if tt.wantErr {
return // Skip further checks if we expected an error
}
// Verify slot ID
if slot.Id != tt.expectedSlotId {
t.Errorf("LoadCacheSlot() slot ID = %v, expected %v", slot.Id, tt.expectedSlotId)
}
// Verify slot is now marked in use
if !slot.InUse {
t.Errorf("LoadCacheSlot() slot not marked InUse")
}
// Verify remaining prompt length
if len(remainingPrompt) != tt.expectedPrompt {
t.Errorf("LoadCacheSlot() remaining prompt length = %v, expected %v",
len(remainingPrompt), tt.expectedPrompt)
}
})
}
}

View File

@@ -24,7 +24,6 @@ import (
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
@@ -34,14 +33,10 @@ import (
_ "github.com/ollama/ollama/model/models"
)
type contextList struct {
list []ml.Context
}
type Sequence struct {
// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
// ctx for allocating tensors that last the lifetime of the sequence, such as
// multimodal embeddings
ctxs *contextList
ctx ml.Context
// batch index
iBatch int
@@ -99,12 +94,13 @@ type NewSequenceParams struct {
embedding bool
}
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
ctx := s.model.Backend().NewContext()
inputs, ctxs, err := s.inputs(prompt, images)
inputs, err := s.inputs(ctx, prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
@@ -115,9 +111,6 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
params.numKeep = int32(len(inputs))
}
// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
// otherwise we might truncate or split the batch against the model's wishes
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
@@ -133,7 +126,7 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
// TODO(jessegross): Ingest cached history for grammar
return &Sequence{
ctxs: ctxs,
ctx: ctx,
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
@@ -152,7 +145,7 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
var inputs []input.Input
var parts []string
var matches [][]string
@@ -167,19 +160,12 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *
parts = []string{prompt}
}
var contexts contextList
runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
for _, ctx := range ctxs {
ctx.Close()
}
}, contexts.list)
postTokenize := false
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, nil, err
return nil, err
}
for _, t := range tokens {
@@ -199,14 +185,12 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *
}
if imageIndex < 0 {
return nil, nil, fmt.Errorf("invalid image index: %d", n)
return nil, fmt.Errorf("invalid image index: %d", n)
}
ctx := s.model.Backend().NewContext()
contexts.list = append(contexts.list, ctx)
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
if err != nil {
return nil, nil, err
return nil, err
}
s.multimodalHash.Reset()
@@ -220,13 +204,13 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *
if visionModel && postTokenize {
var err error
inputs, err = multimodalProcessor.PostTokenize(inputs)
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
if err != nil {
return nil, nil, err
return nil, err
}
}
return inputs, &contexts, nil
return inputs, nil
}
type Server struct {
@@ -238,7 +222,7 @@ type Server struct {
model model.Model
// status for external health reporting - loading, ready to serve, etc.
status llm.ServerStatus
status ServerStatus
// current progress on loading the model
progress float32
@@ -321,6 +305,7 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
seq.ctx.Close()
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
@@ -366,33 +351,20 @@ func (s *Server) processBatch() error {
seq.cache.Inputs = []input.Input{}
}
batchSize := s.batchSize
for j, inp := range seq.inputs {
// If we are required to put following inputs into a single batch then extend the
// batch size. Since we are only extending the size the minimum amount possible, this
// will cause a break if we have pending inputs.
minBatch := 1 + inp.SameBatch
if minBatch > batchSize {
batchSize = minBatch
}
if len(seq.pendingInputs)+minBatch > batchSize {
break
}
// If the sum of our working set (already processed tokens, tokens we added to this
// batch, required following tokens) exceeds the context size, then trigger a shift
// now so we don't have to do one later when we can't break the batch.
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
if len(seq.pendingInputs) != 0 {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
} else {
break
}
}
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
if j >= s.batchSize {
break
}
options.Inputs = append(options.Inputs, inp.Token)
@@ -529,18 +501,75 @@ func (s *Server) processBatch() error {
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req llm.CompletionRequest
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
@@ -562,18 +591,18 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
sampler := sample.NewSampler(
req.Options.Temperature,
req.Options.TopK,
req.Options.TopP,
req.Options.MinP,
req.Options.Seed,
req.Temperature,
req.TopK,
req.TopP,
req.MinP,
req.Seed,
grammar,
)
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.Options.NumPredict,
stop: req.Options.Stop,
numKeep: int32(req.Options.NumKeep),
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: int32(req.NumKeep),
sampler: sampler,
embedding: false,
})
@@ -596,7 +625,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@@ -623,7 +652,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -634,17 +663,15 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numPredicted,
EvalDuration: time.Since(seq.startGenerationTime),
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numPredicted,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
@@ -655,10 +682,43 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
Status: s.status,
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
@@ -712,7 +772,7 @@ func (s *Server) loadModel(
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
s.status = llm.ServerStatusReady
s.status = ServerStatusReady
s.ready.Done()
}
@@ -764,7 +824,7 @@ func Execute(args []string) error {
server := &Server{
batchSize: *batchSize,
status: llm.ServerStatusLoadingModel,
status: ServerStatusLoadingModel,
}
// TODO(jessegross): Parameters that need to be implemented:

View File

@@ -87,9 +87,8 @@ func (s *Sampler) sample(tokens []token) (token, error) {
// topK also sorts the tokens in descending order of logits
tokens = topK(tokens, s.topK)
// scale and normalize the tokens in place
temperature(tokens, s.temperature)
softmax(tokens)
tokens = temperature(tokens, s.temperature)
tokens = softmax(tokens)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)

View File

@@ -26,16 +26,17 @@ func (h *tokenHeap) Pop() any {
}
// temperature applies scaling to the logits
func temperature(ts []token, temp float32) {
func temperature(ts []token, temp float32) []token {
// Ensure temperature clipping near 0 to avoid numerical instability
temp = max(temp, 1e-7)
for i := range ts {
ts[i].value = ts[i].value / temp
}
return ts
}
// softmax applies normalization to the logits
func softmax(ts []token) {
func softmax(ts []token) []token {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
@@ -55,6 +56,8 @@ func softmax(ts []token) {
for i := range ts {
ts[i].value /= sum
}
return ts
}
// topK limits the number of tokens considered to the k highest logits
@@ -96,7 +99,6 @@ func topK(ts []token, k int) []token {
}
// topP limits tokens to those with cumulative probability p
// requires ts to be sorted in descending order of probabilities
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
@@ -107,24 +109,37 @@ func topP(ts []token, p float32) []token {
for i, t := range ts {
sum += t.value
if sum > float32(p) {
return ts[:i+1]
ts = ts[:i+1]
return ts
}
}
return ts
}
// minP filters tokens with probabilities >= p * max_prob
// requires ts to be sorted in descending order of probabilities
// minP limits tokens to those with cumulative probability p
func minP(ts []token, p float32) []token {
maxProb := ts[0].value
if p == 1.0 {
return ts
}
threshold := maxProb * p
for i, t := range ts {
if t.value < threshold {
return ts[:i]
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}

View File

@@ -34,22 +34,17 @@ func compareLogits(t *testing.T, name string, want []float32, got []token) {
func TestTemperature(t *testing.T) {
input := []float32{1.0, 4.0, -2.0, 0.0}
tokens := toTokens(input)
temperature(tokens, 0.5)
got := temperature(toTokens(input), 0.5)
want := []float32{2.0, 8.0, -4.0, 0.0}
compareLogits(t, "temperature(0.5)", want, tokens)
compareLogits(t, "temperature(0.5)", want, got)
input = []float32{1.0, 4.0, -2.0, 0.0}
tokens = toTokens(input)
temperature(tokens, 1.0)
got = temperature(toTokens(input), 1.0)
want = []float32{1.0, 4.0, -2.0, 0.0}
compareLogits(t, "temperature(1)", want, tokens)
compareLogits(t, "temperature(1)", want, got)
input = []float32{1.0, 4.0, -2.0, 0.0}
tokens = toTokens(input)
temperature(tokens, 0.0)
got = temperature(toTokens(input), 0.0)
want = []float32{1e7, 4e7, -2e7, 0.0}
compareLogits(t, "temperature(0)", want, tokens)
compareLogits(t, "temperature(0)", want, got)
}
func TestSoftmax(t *testing.T) {
@@ -95,17 +90,16 @@ func TestSoftmax(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
tokens := toTokens(tt.input)
softmax(tokens)
got := softmax(toTokens(tt.input))
if tt.expected != nil {
compareLogits(t, tt.name, tt.expected, tokens)
compareLogits(t, tt.name, tt.expected, got)
return
}
// Check probabilities sum to 1
var sum float32
for _, token := range tokens {
for _, token := range got {
sum += token.value
if token.value < 0 || token.value > 1 {
t.Errorf("probability out of range [0,1]: got %f", token.value)
@@ -120,44 +114,38 @@ func TestSoftmax(t *testing.T) {
func TestTopK(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
tokens = topK(tokens, 5)
if len(tokens) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(tokens))
// Test k=5
got := topK(toTokens(input), 5)
if len(got) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
}
// Should keep highest 3 values in descending order
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
compareLogits(t, "topK(3)", want, tokens)
compareLogits(t, "topK(3)", want, got)
tokens = toTokens(input)
tokens = topK(tokens, 20)
if len(tokens) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(tokens))
got = topK(toTokens(input), 20)
if len(got) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
}
// Test k=-1
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
tokens = toTokens(input)
tokens = topK(tokens, -1)
if len(tokens) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
got = topK(toTokens(input), -1)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, tokens)
compareLogits(t, "topK(-1)", want, got)
// Test k=0
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
tokens = toTokens(input)
tokens = topK(tokens, 0)
if len(tokens) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
}
compareLogits(t, "topK(-1)", want, tokens)
input = []float32{-1e7, -2e7, -3e7, -4e7}
tokens = toTokens(input)
tokens = topK(tokens, 1)
if len(tokens) < 1 {
t.Error("topK should keep at least one token")
got = topK(toTokens(input), 0)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
}
func TestTopP(t *testing.T) {
@@ -165,25 +153,16 @@ func TestTopP(t *testing.T) {
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
softmax(tokens)
tokens = softmax(tokens)
tokens = topK(tokens, 20)
// Then apply topP
tokens = topP(tokens, 0.95)
got := topP(tokens, 0.95)
// Should keep tokens until cumsum > 0.95
if len(tokens) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", tokens)
}
// Test edge case - ensure at least one token remains
input = []float32{-1e6, -1e6, -1e6} // One dominant token
tokens = toTokens(input)
softmax(tokens)
tokens = topP(tokens, 0.0) // Very small p
if len(tokens) < 1 {
t.Error("topP should keep at least one token")
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
}
@@ -192,45 +171,14 @@ func TestMinP(t *testing.T) {
tokens := toTokens(input)
// First apply temperature and softmax
tokens = topK(tokens, 20)
softmax(tokens)
tokens = softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(tokens), len(tokens))
}
// Test with normal p value
tokens = toTokens(input) // Reset tokens
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.2)
// Then apply minP
got := minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(tokens) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", tokens)
}
// Test with zero p value
tokens = toTokens(input) // Reset tokens
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.0)
// Should keep only the highest probability token
if len(tokens) != len(input) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
input = []float32{1e-10, 1e-10, 1e-10}
tokens = toTokens(input)
softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) < 1 {
t.Error("minP should keep at least one token even with extreme probabilities")
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
}
}
@@ -283,7 +231,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
tokens = topK(tokensCopy, 10)
topK(tokensCopy, 10)
}
})
@@ -291,7 +239,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
tokens = topP(tokensCopy, 0.9)
topP(tokensCopy, 0.9)
}
})
@@ -299,7 +247,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
tokens = minP(tokensCopy, 0.2)
minP(tokensCopy, 0.2)
}
})
@@ -307,7 +255,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
tokens = topK(tokensCopy, 200000)
topK(tokensCopy, 200000)
}
})
}

View File

@@ -8,7 +8,7 @@ usage() {
exit 1
}
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export VERSION=${VERSION:-$(git describe --tags --dirty)}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${VERSION#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
export CGO_CPPFLAGS='-mmacosx-version-min=11.3'

View File

@@ -25,7 +25,6 @@ import (
"os"
"path/filepath"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
@@ -260,7 +259,6 @@ func DefaultRegistry() (*Registry, error) {
}
var rc Registry
rc.UserAgent = UserAgent()
rc.Key, err = ssh.ParseRawPrivateKey(keyPEM)
if err != nil {
return nil, err
@@ -276,16 +274,6 @@ func DefaultRegistry() (*Registry, error) {
return &rc, nil
}
func UserAgent() string {
buildinfo, _ := debug.ReadBuildInfo()
return fmt.Sprintf("ollama/%s (%s %s) Go/%s",
buildinfo.Main.Version,
runtime.GOARCH,
runtime.GOOS,
runtime.Version(),
)
}
func (r *Registry) maxStreams() int {
return cmp.Or(r.MaxStreams, runtime.GOMAXPROCS(0))
}

View File

@@ -26,6 +26,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
var system []api.Message
isMllama := checkMllamaModelFamily(m)
isGemma3 := checkGemma3ModelFamily(m)
var imageNumTokens int
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
@@ -40,7 +41,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n; i >= 0; i-- {
if isMllama && len(msgs[i].Images) > 1 {
if (isMllama || isGemma3) && len(msgs[i].Images) > 1 {
return "", nil, errTooManyImages
}
@@ -157,3 +158,12 @@ func checkMllamaModelFamily(m *Model) bool {
}
return false
}
func checkGemma3ModelFamily(m *Model) bool {
for _, arch := range m.Config.ModelFamilies {
if arch == "gemma3" {
return true
}
}
return false
}

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2021 Tristan Rice
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,57 +0,0 @@
// Vendored code from https://github.com/d4l3k/go-bfloat16
// unsafe pointer replaced by "math"
package bfloat16
import "math"
type BF16 uint16
func FromBytes(buf []byte) BF16 {
return BF16(uint16(buf[0]) + uint16(buf[1])<<8)
}
func ToBytes(b BF16) []byte {
return []byte{byte(b & 0xFF), byte(b >> 8)}
}
func Decode(buf []byte) []BF16 {
var out []BF16
for i := 0; i < len(buf); i += 2 {
out = append(out, FromBytes(buf[i:]))
}
return out
}
func Encode(f []BF16) []byte {
var out []byte
for _, a := range f {
out = append(out, ToBytes(a)...)
}
return out
}
func DecodeFloat32(buf []byte) []float32 {
var out []float32
for i := 0; i < len(buf); i += 2 {
out = append(out, ToFloat32(FromBytes(buf[i:])))
}
return out
}
func EncodeFloat32(f []float32) []byte {
var out []byte
for _, a := range f {
out = append(out, ToBytes(FromFloat32(a))...)
}
return out
}
func ToFloat32(b BF16) float32 {
u32 := uint32(b) << 16
return math.Float32frombits(u32)
}
func FromFloat32(f float32) BF16 {
u32 := math.Float32bits(f)
return BF16(u32 >> 16)
}

View File

@@ -1,53 +0,0 @@
package bfloat16
import (
"crypto/rand"
"reflect"
"testing"
)
func randomBytes(n int) []byte {
out := make([]byte, n)
if _, err := rand.Read(out); err != nil {
panic(err)
}
return out
}
func TestEncodeDecode(t *testing.T) {
b := randomBytes(1024)
bf16 := Decode(b)
out := Encode(bf16)
if !reflect.DeepEqual(b, out) {
t.Fatalf("%+v != %+v", b, out)
}
}
func TestEncodeDecodeFloat32(t *testing.T) {
b := randomBytes(1024)
bf16 := DecodeFloat32(b)
out := EncodeFloat32(bf16)
if !reflect.DeepEqual(b, out) {
t.Fatalf("%+v != %+v", b, out)
}
}
func TestBasicFloat32(t *testing.T) {
var in float32 = 1.0
out := ToFloat32(FromFloat32(in))
if !reflect.DeepEqual(in, out) {
t.Fatalf("%+v != %+v", in, out)
}
}
func TestComplexFloat32(t *testing.T) {
var in float32 = 123456789123456789.123456789
var want float32 = 123286039799267328.0
out := ToFloat32(FromFloat32(in))
if in == out {
t.Fatalf("no loss of precision")
}
if out != want {
t.Fatalf("%.16f != %.16f", want, out)
}
}