Compare commits

..

3 Commits

Author SHA1 Message Date
jmorganca
5a67f93eae fix tests 2024-08-25 12:45:51 -07:00
jmorganca
dc04f41eb7 fix linter issues 2024-08-25 12:41:37 -07:00
jmorganca
9899f18e18 openai: increase context window when max_tokens is provided 2024-08-25 12:31:47 -07:00
46 changed files with 398 additions and 1518 deletions

View File

@@ -475,7 +475,6 @@ jobs:
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
mv dist/linux-???64 .
mv dist/linux-amd64-rocm .
cat dist/sha256sum.txt
- name: Create or update Release
run: |

View File

@@ -95,8 +95,8 @@ ARG AMDGPU_TARGETS
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
RUN mkdir -p ../../dist/linux-amd64/lib/ollama && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64/lib/ollama && tar xf - )
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
ARG CMAKE_VERSION

View File

@@ -204,12 +204,6 @@ func tempZipFiles(path string) (string, error) {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
@@ -229,14 +223,6 @@ func tempZipFiles(path string) (string, error) {
}
files = append(files, js...)
// bert models require a nested config.json
// TODO(mxyng): merge this with the glob above
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
if err != nil {
return "", err
}
files = append(files, js...)
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
@@ -266,11 +252,6 @@ func tempZipFiles(path string) (string, error) {
return "", err
}
zfi.Name, err = filepath.Rel(path, file)
if err != nil {
return "", err
}
zf, err := zipfile.CreateHeader(zfi)
if err != nil {
return "", err

View File

@@ -7,27 +7,16 @@ import (
"io"
"io/fs"
"log/slog"
"strings"
"github.com/ollama/ollama/llm"
)
type ModelParameters struct {
type Parameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
}
type AdapterParameters struct {
Alpha uint32 `json:"lora_alpha"`
LoraLayers uint32 `json:"lora_layers"`
LoraParameters struct {
Rank uint32 `json:"rank"`
Alpha float32 `json:"alpha"`
Scale float32 `json:"scale"`
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
func (Parameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
@@ -54,119 +43,40 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
return kv
}
func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
} else {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
"general.type": "adapter",
"general.version": "v0.2",
}
return kv
}
func (ModelParameters) specialTokenTypes() []string {
func (Parameters) specialTokenTypes() []string {
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
}
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
type Converter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
parseMore(fs.FS) error
}
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
}
var p AdapterParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
arch, ok := baseKV["general.architecture"]
if !ok {
return errors.New("architecture not set for the base model")
}
var conv AdapterConverter
switch arch {
case "llama":
conv = &llamaAdapter{}
case "gemma2":
conv = &gemma2Adapter{}
default:
return errors.New("unsupported architecture")
}
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
}
var p ModelParameters
var p Parameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
@@ -175,20 +85,16 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return errors.New("unknown architecture")
}
var conv ModelConverter
var conv Converter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llamaModel{}
conv = &llama{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
conv = &mixtral{}
case "GemmaForCausalLM":
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
conv = &gemma{}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "BertModel":
conv = &bertModel{}
conv = &phi3{}
default:
return errors.New("unsupported architecture")
}
@@ -197,12 +103,6 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
if t, ok := conv.(moreParser); ok {
if err := t.parseMore(fsys); err != nil {
return err
}
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil {
return err
@@ -219,7 +119,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
ts, err := parseTensors(fsys)
if err != nil {
return err
}

View File

@@ -1,174 +0,0 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
PoolingType uint32
}
var (
_ ModelConverter = (*bertModel)(nil)
_ moreParser = (*bertModel)(nil)
)
func (p *bertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
break
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["bert.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
// noop
} else if strings.HasPrefix(e, "##") {
t.Tokens[i] = e[2:]
} else {
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (bertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"embeddings.position_embeddings", "position_embd",
"attention.self.query", "attn_q",
"attention.self.key", "attn_k",
"attention.self.value", "attn_v",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

View File

@@ -9,8 +9,8 @@ import (
"github.com/ollama/ollama/llm"
)
type gemmaModel struct {
ModelParameters
type gemma struct {
Parameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
@@ -21,11 +21,12 @@ type gemmaModel struct {
HeadDim uint32 `json:"head_dim"`
}
var _ ModelConverter = (*gemmaModel)(nil)
var _ Converter = (*gemma)(nil)
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
@@ -42,15 +43,16 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@@ -60,8 +62,8 @@ func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *gemmaModel) Replacements() []string {
return []string{
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
@@ -74,10 +76,11 @@ func (p *gemmaModel) Replacements() []string {
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
}
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))

View File

@@ -1,43 +0,0 @@
package convert
import (
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
gemmaModel
SlidingWindow uint32 `json:"sliding_window"`
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
kv["gemma2.embedding_length"] = p.HiddenSize
kv["gemma2.block_count"] = p.HiddenLayers
kv["gemma2.feed_forward_length"] = p.IntermediateSize
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma2.attention.key_length"] = p.HeadDim
kv["gemma2.attention.value_length"] = p.HeadDim
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma2Model) Replacements() []string {
return append(
p.gemmaModel.Replacements(),
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
)
}

View File

@@ -1,91 +0,0 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
AdapterParameters
}
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma2Adapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -3,7 +3,6 @@ package convert
import (
"cmp"
"fmt"
"math"
"strings"
"github.com/pdevine/tensor"
@@ -12,8 +11,8 @@ import (
"github.com/ollama/ollama/llm"
)
type llamaModel struct {
ModelParameters
type llama struct {
Parameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
@@ -28,14 +27,8 @@ type llamaModel struct {
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
factors ropeFactor
Type string `json:"type"`
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
@@ -44,11 +37,12 @@ type llamaModel struct {
HeadDim uint32 `json:"head_dim"`
}
var _ ModelConverter = (*llamaModel)(nil)
var _ Converter = (*llama)(nil)
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@@ -77,27 +71,6 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
} else if p.RopeScaling.RopeType == "llama3" {
dim := p.HiddenSize / p.NumAttentionHeads
for i := uint32(0); i < dim; i += 2 {
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
if lambda < float64(lambdaHigh) {
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
} else if lambda > float64(lambdaLow) {
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
} else {
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
}
}
}
if p.NumKeyValueHeads > 0 {
@@ -120,26 +93,17 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
WriterTo: p.RopeScaling.factors,
})
}
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@@ -149,8 +113,8 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *llamaModel) Replacements() []string {
return []string{
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
@@ -164,19 +128,21 @@ func (p *llamaModel) Replacements() []string {
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
}
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight") {
if strings.HasSuffix(name, "q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") {
} else if strings.HasSuffix(name, "k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@@ -1,169 +0,0 @@
package convert
import (
"cmp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
AdapterParameters
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
}
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repackAndTranspose)
} else {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
}
return out
}
func (p *llamaAdapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return data, nil
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
}
if heads > 0 {
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
}
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -9,14 +9,16 @@ import (
"github.com/ollama/ollama/llm"
)
type mixtralModel struct {
llamaModel
type mixtral struct {
llama
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
@@ -29,7 +31,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@@ -67,14 +69,7 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
})
}
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"block_sparse_moe.gate", "ffn_gate_inp",
)
return append(out, p.llama.Tensors(ts)...)
}
type experts []Tensor

View File

@@ -11,8 +11,8 @@ import (
"github.com/ollama/ollama/llm"
)
type phi3Model struct {
ModelParameters
type phi3 struct {
Parameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"`
@@ -35,11 +35,12 @@ type phi3Model struct {
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*phi3Model)(nil)
var _ Converter = (*phi3)(nil)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
func (p *phi3) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "phi3"
kv["general.name"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize
@@ -68,12 +69,13 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
name := p.tensorName(t.Name())
if strings.HasPrefix(name, "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
@@ -90,7 +92,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
}
out = append(out, llm.Tensor{
Name: t.Name(),
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@@ -100,8 +102,8 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *phi3Model) Replacements() []string {
return []string{
func (p *phi3) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
@@ -112,7 +114,7 @@ func (p *phi3Model) Replacements() []string {
"mlp.down_proj", "ffn_down",
"mlp.gate_up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
}
).Replace(n)
}
type ropeFactor []float32

View File

@@ -1,9 +1,7 @@
package convert
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"encoding/json"
"flag"
@@ -31,7 +29,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
}
defer f.Close()
if err := ConvertModel(fsys, f); err != nil {
if err := Convert(fsys, f); err != nil {
t.Fatal(err)
}
@@ -53,34 +51,6 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
return actual
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
@@ -92,14 +62,11 @@ func TestMain(m *testing.M) {
func TestConvertFull(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
}
for i := range cases {
@@ -115,7 +82,29 @@ func TestConvertFull(t *testing.T) {
}
f, kv, tensors := convertFull(t, os.DirFS(p))
actual := generateResultsJSON(t, f, kv, tensors)
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil {
@@ -139,209 +128,3 @@ func TestConvertFull(t *testing.T) {
})
}
}
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
Expected map[string]string
}
cases := []AdapterCase{
{
Name: "discollama",
BaseKV: map[string]any{
"general.architecture": "llama",
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
},
Expected: map[string]string{
"general.architecture": "llama",
"general.file_type": "1",
"general.parameter_count": "106496",
"general.type": "adapter",
"general.version": "v0.2",
"adapter.lora.alpha": "16",
"adapter.type": "lora",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
},
},
}
for _, c := range cases {
t.Run(c.Name, func(t *testing.T) {
t.Parallel()
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
generateLoraTestData(t, tempDir)
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
t.Fatal(err)
}
r, err := os.Open(f.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
}
})
}
}
func generateLoraTestData(t *testing.T, tempDir string) {
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
offset := 4096 * 8 * 4
td := map[string]*tensorData{"__metadata__": nil}
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{8, 4096},
}
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
Offsets: []int{offset * 2, offset * 3},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
Type: "F32",
Shape: []int{8, 1024},
}
data, err := json.Marshal(td)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
// write some data for the tensors
ones := make([]float32, 4096*8)
for i := range ones {
ones[i] = float32(1)
}
for range 3 {
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
}
ones = make([]float32, 1024*8)
for i := range ones {
ones[i] = float32(1)
}
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"adapter_path": "adapters-test",
"batch_size": 8,
"config": "config-tiny.json",
"data": "../discollama-completion",
"grad_checkpoint": null,
"iters": 1000,
"learning_rate": 1e-05,
"lora_layers": 1,
"lora_parameters": {
"rank": 8,
"alpha": 16,
"dropout": 0.0,
"scale": 2.0
},
"lr_schedule": null,
"max_seq_length": 2048,
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
"resume_adapter_file": null,
"save_every": 100,
"seed": 0,
"steps_per_eval": 200,
"steps_per_report": 10,
"test": false,
"test_batches": 500,
"train": true,
"use_dora": false,
"val_batches": 25
}
`
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
}

View File

@@ -35,9 +35,7 @@ const (
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" {
// these tensors are always F32
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
return 0
}
@@ -57,15 +55,13 @@ func (t *tensorBase) SetRepacker(fn repacker) {
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
func parseTensors(fsys fs.FS) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
Func func(fs.FS, ...string) ([]Tensor, error)
}{
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},
@@ -78,7 +74,7 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
}
if len(matches) > 0 {
return pattern.Func(fsys, replacer, matches...)
return pattern.Func(fsys, matches...)
}
}

View File

@@ -8,7 +8,6 @@ import (
"io"
"io/fs"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
@@ -21,7 +20,7 @@ type safetensorMetadata struct {
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := fsys.Open(p)
@@ -57,7 +56,7 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: replacer.Replace(key),
name: key,
shape: value.Shape,
},
})

View File

@@ -3,13 +3,12 @@ package convert
import (
"io"
"io/fs"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
@@ -28,7 +27,7 @@ func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor,
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: replacer.Replace(k.(string)),
name: k.(string),
shape: shape,
},
})

View File

@@ -1,3 +0,0 @@
{
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
}

View File

@@ -1,124 +0,0 @@
{
"general.architecture": "bert",
"general.file_type": "1",
"general.quantization_version": "2",
"bert.attention.causal": "false",
"bert.attention.head_count": "12",
"bert.attention.layer_norm_epsilon": "1e-12",
"bert.block_count": "6",
"bert.context_length": "512",
"bert.embedding_length": "384",
"bert.feed_forward_length": "1536",
"bert.pooling_type": "1",
"tokenizer.ggml.model": "bert",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "100",
"tokenizer.ggml.cls_token_id": "101",
"tokenizer.ggml.seperator_token_id": "102",
"tokenizer.ggml.mask_token_id": "103",
"tokenizer.ggml.token_type_count": "2",
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
}

View File

@@ -1,6 +0,0 @@
{
"general.architecture": "gemma2",
"gemma2.attention.sliding_window": "4096",
"gemma2.attn_logit_softcapping": "50",
"gemma2.final_logit_softcapping": "30"
}

View File

@@ -1,6 +1,7 @@
package convert
import (
"cmp"
"crypto/sha256"
"encoding/hex"
"encoding/json"
@@ -10,8 +11,6 @@ import (
"log/slog"
"os"
"slices"
"golang.org/x/exp/maps"
)
const (
@@ -185,32 +184,32 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
return nil, err
}
tokens := make(map[int]token, len(t.Model.Vocab))
var tokens []token
for k, v := range t.Model.Vocab {
tokens[v] = token{
tokens = append(tokens, token{
ID: v,
Content: k,
}
})
}
for _, token := range t.AddedTokens {
token.UserDefined = true
tokens[token.ID] = token
for _, t := range t.AddedTokens {
t.UserDefined = true
tokens = append(tokens, t)
}
keys := maps.Keys(tokens)
slices.Sort(keys)
slices.SortFunc(tokens, func(i, j token) int {
return cmp.Compare(i.ID, j.ID)
})
v := Vocabulary{Model: "gpt2"}
for _, k := range keys {
token := tokens[k]
v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
switch {
case token.Special:
case t.Special:
v.Types = append(v.Types, tokenTypeControl)
case token.UserDefined:
case t.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)

View File

@@ -15,11 +15,6 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
}
bts, err := fs.ReadFile(fsys, "tokenizer.model")
if err != nil {
return nil, err
@@ -42,12 +37,7 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
v.Types = append(v.Types, tt)
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
}
}
@@ -91,23 +81,3 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
}

View File

@@ -111,10 +111,7 @@ On Windows, Ollama inherits your user and system environment variables.
## How do I use Ollama behind a proxy?
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
> [!NOTE]
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
### How do I use Ollama behind a proxy in Docker?
@@ -279,4 +276,4 @@ Note: Windows with Radeon GPUs currently default to 1 model maximum due to limit
## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 141 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

View File

@@ -1,129 +1,44 @@
# Importing a model
# Import
## Table of Contents
GGUF models and select Safetensors models can be imported directly into Ollama.
* [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
## Import GGUF
## Importing a fine tuned adapter from Safetensors weights
First, create a `Modelfile` with a `FROM` command pointing at the base model you used for fine tuning, and an `ADAPTER` command which points to the directory with your Safetensors adapter:
```dockerfile
FROM <base model name>
ADAPTER /path/to/safetensors/adapter/directory
```
Make sure that you use the same base model in the `FROM` command as you used to create the adapter otherwise you will get erratic results. Most frameworks use different quantization methods, so it's best to use non-quantized (i.e. non-QLoRA) adapters. If your adapter is in the same directory as your `Modelfile`, use `ADAPTER .` to specify the adapter path.
Now run `ollama create` from the directory where the `Modelfile` was created:
```bash
ollama create my-model
```
Lastly, test the model:
```bash
ollama run my-model
```
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
* Hugging Face [fine tuning framework] (https://huggingface.co/docs/transformers/en/training)
* [Unsloth](https://github.com/unslothai/unsloth)
* [MLX](https://github.com/ml-explore/mlx)
## Importing a model from Safetensors weights
First, create a `Modelfile` with a `FROM` command which points to the directory containing your Safetensors weights:
```dockerfile
FROM /path/to/safetensors/directory
```
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
Now run the `ollama create` command from the directory where you created the `Modelfile`:
```shell
ollama create my-model
```
Lastly, test the model:
```shell
ollama run my-model
```
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containg:
A binary GGUF file can be imported directly into Ollama through a Modelfile.
```dockerfile
FROM /path/to/file.gguf
```
For a GGUF adapter, create the `Modelfile` with:
## Import Safetensors
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
- LlamaForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- GemmaForCausalLM
- Phi3ForCausalLM
```dockerfile
FROM <model name>
ADAPTER /path/to/file.gguf
FROM /path/to/safetensors/directory
```
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
* a model from Ollama
* a GGUF file
* a Safetensors based model
## Automatic Quantization
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
> [!NOTE]
> Automatic quantization requires v0.1.35 or higher.
```shell
ollama create my-model
```
## Quantizing a Model
Quantizing a model allows you to run models faster and with less memory consumption but at reduced accuracy. This allows you to run a model on more modest hardware.
Ollama can quantize FP16 and FP32 based models into different quantization levels using the `-q/--quantize` flag with the `ollama create` command.
First, create a Modelfile with the FP16 or FP32 based model you wish to quantize.
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
```dockerfile
FROM /path/to/my/gemma/f16/model
```
Use `ollama create` to then create the quantized model.
```shell
$ ollama create --quantize q4_K_M mymodel
$ ollama create -q Q4_K_M mymodel
transferring model data
quantizing F16 model to Q4_K_M
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
@@ -134,53 +49,42 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
- `Q4_0`
- `Q4_1`
- `Q5_0`
- `Q5_1`
- `Q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
- `Q3_K_S`
- `Q3_K_M`
- `Q3_K_L`
- `Q4_K_S`
- `Q4_K_M`
- `Q5_K_S`
- `Q5_K_M`
- `Q6_K`
## Template Detection
## Sharing your model on ollama.com
> [!NOTE]
> Template detection requires v0.1.42 or higher.
You can share any model you have created by pushing it to [ollama.com](https://ollama.com) so that other users can try it out.
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
![Sign-Up](images/signup.png)
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
Now that you have created an account and are signed-in, go to the [Ollama Keys Settings](https://ollama.com/settings/keys) page.
Follow the directions on the page to determine where your Ollama Public Key is located.
![Ollama Key](images/ollama-keys.png)
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
To push a model to [ollama.com](https://ollama.com), first make sure that it is named correctly with your username. You may have to use the `ollama cp` command to copy
your model to give it the correct name. Once you're happy with your model's name, use the `ollama push` command to push it to [ollama.com](https://ollama.com).
```shell
ollama cp mymodel myuser/mymodel
ollama push myuser/mymodel
```dockerfile
FROM /path/to/my/gemma/model
```
Once your model has been pushed, other users can pull and run it by using the command:
```shell
ollama run myuser/mymodel
$ ollama create mymodel
transferring model data
using autodetected template gemma-instruct
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
writing manifest
success
```
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.

View File

@@ -264,8 +264,6 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
@@ -277,6 +275,8 @@ func GetGPUInfo() GpuInfoList {
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
gpuInfo.Variant = variant
// query the management library as well so we can record any skew between the two

View File

@@ -32,29 +32,4 @@ func TestCPUMemInfo(t *testing.T) {
}
}
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

View File

@@ -94,7 +94,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
}
}
if !found {
libs = append(libs, requested)
libs = append(libs, info.Library)
resp = append(resp, []GpuInfo{info})
}
}

View File

@@ -70,8 +70,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
}
if res.PromptEvalCount != 6 {
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -102,8 +102,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
}
if res.PromptEvalCount != 12 {
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}

View File

@@ -1429,13 +1429,7 @@ struct llama_server_context
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
server_slot *slot = nullptr;
if (task.embedding_mode) {
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
slot = slots[0].available() ? &slots[0] : nullptr;
} else {
slot = prefix_slot(task.data["prompt"]);
}
server_slot *slot = prefix_slot(task.data["prompt"]);
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later

View File

@@ -252,7 +252,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DGGML_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
@@ -260,8 +260,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
echo "Building custom ROCM GPU"
fi
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
# ROCm dependencies are too large to fit into a unified bundle
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
ROCM_DIST_DIR="${DIST_BASE}/lib/ollama"
# TODO figure out how to disable runpath (rpath)
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"

View File

@@ -355,7 +355,7 @@ function build_rocm() {
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on",
"-DGGML_CUDA_NO_PEER_COPY=on",
"-DLLAMA_CUDA_NO_PEER_COPY=on",
"-DHIP_PLATFORM=amd",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",

View File

@@ -43,14 +43,6 @@ func (kv KV) Architecture() string {
return "unknown"
}
func (kv KV) Kind() string {
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count")
}

View File

@@ -33,6 +33,7 @@ func TestEstimateGPULayers(t *testing.T) {
assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount),

View File

@@ -0,0 +1,60 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 721b8f4e..cfe7ac40 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8420,14 +8420,14 @@ struct llm_build_context {
}
struct ggml_tensor * build_inp_mean() {
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
cb(lctx.inp_mean, "inp_mean", -1);
ggml_set_input(lctx.inp_mean);
return lctx.inp_mean;
}
struct ggml_tensor * build_inp_cls() {
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
cb(lctx.inp_cls, "inp_cls", -1);
ggml_set_input(lctx.inp_cls);
return lctx.inp_cls;
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
float * data = (float *) lctx.inp_mean->data;
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
-
sum[seq_id] += 1;
}
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
const llama_pos pos = batch.pos[i];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
-
if (pos == 0) {
data[seq_id] = i;
}

View File

@@ -258,7 +258,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--mlock")
}
if gpu.IsNUMA() && gpus[0].Library == "cpu" {
if gpu.IsNUMA() {
numaMode := "distribute"
if runtime.GOOS == "linux" {
if _, err := exec.LookPath("numactl"); err == nil {

View File

@@ -449,6 +449,11 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
if r.MaxTokens != nil {
options["num_predict"] = *r.MaxTokens
// Increase context size up to max_tokens
if *r.MaxTokens > 2048 {
options["num_ctx"] = *r.MaxTokens
}
}
if r.Temperature != nil {
@@ -579,7 +584,7 @@ func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
}
w.ResponseWriter.Header().Set("Content-Type", "application/json")
err = json.NewEncoder(w.ResponseWriter).Encode(NewError(http.StatusInternalServerError, serr.Error()))
err = json.NewEncoder(w.ResponseWriter).Encode(NewError(code, serr.Error()))
if err != nil {
return 0, err
}

View File

@@ -1,52 +1,38 @@
package openai
import (
"bytes"
"encoding/base64"
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"reflect"
"strings"
"testing"
"time"
"github.com/gin-gonic/gin"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
const (
prefix = `data:image/jpeg;base64,`
image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
)
var False = false
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
func capture(req any) gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
err := json.Unmarshal(bodyBytes, capturedRequest)
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, "failed to unmarshal request")
}
body, _ := io.ReadAll(c.Request.Body)
_ = json.Unmarshal(body, req)
c.Next()
}
}
func TestChatMiddleware(t *testing.T) {
type testCase struct {
type test struct {
name string
body string
req api.ChatRequest
err ErrorResponse
}
var capturedRequest *api.ChatRequest
testCases := []testCase{
tests := []test{
{
name: "chat handler",
body: `{
@@ -67,7 +53,36 @@ func TestChatMiddleware(t *testing.T) {
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
Stream: func() *bool { f := false; return &f }(),
},
},
{
name: "chat handler with large context",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "Hello"}
],
"max_tokens": 16384
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "Hello",
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
// TODO (jmorganca): because we use a map[string]any for options
// the values need to be floats for the test comparison to work.
"num_predict": 16384.0,
"num_ctx": 16384.0,
},
Stream: func() *bool { f := false; return &f }(),
},
},
{
@@ -85,7 +100,7 @@ func TestChatMiddleware(t *testing.T) {
{
"type": "image_url",
"image_url": {
"url": "` + prefix + image + `"
"url": ""
}
}
]
@@ -103,7 +118,7 @@ func TestChatMiddleware(t *testing.T) {
Role: "user",
Images: []api.ImageData{
func() []byte {
img, _ := base64.StdEncoding.DecodeString(image)
img, _ := base64.StdEncoding.DecodeString("ZGF0YQo=")
return img
}(),
},
@@ -113,7 +128,7 @@ func TestChatMiddleware(t *testing.T) {
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
Stream: func() *bool { f := false; return &f }(),
},
},
{
@@ -151,7 +166,7 @@ func TestChatMiddleware(t *testing.T) {
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
Stream: func() *bool { f := false; return &f }(),
},
},
@@ -172,52 +187,50 @@ func TestChatMiddleware(t *testing.T) {
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ChatMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/chat", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/chat", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
for _, tt := range tests {
var req api.ChatRequest
router := gin.New()
router.Use(ChatMiddleware(), capture(&req))
router.Handle(http.MethodPost, "/api/chat", func(c *gin.Context) {
c.Status(http.StatusOK)
})
t.Run(tt.name, func(t *testing.T) {
r, _ := http.NewRequest(http.MethodPost, "/api/chat", strings.NewReader(tt.body))
r.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
router.ServeHTTP(resp, r)
var errResp ErrorResponse
var err ErrorResponse
if resp.Code != http.StatusOK {
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
if err := json.Unmarshal(resp.Body.Bytes(), &err); err != nil {
t.Fatal(err)
}
}
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
t.Fatal("requests did not match")
if diff := cmp.Diff(tt.req, req); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
if diff := cmp.Diff(tt.err, err); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
capturedRequest = nil
})
}
}
func TestCompletionsMiddleware(t *testing.T) {
type testCase struct {
type test struct {
name string
body string
req api.GenerateRequest
err ErrorResponse
}
var capturedRequest *api.GenerateRequest
testCases := []testCase{
tests := []test{
{
name: "completions handler",
body: `{
@@ -238,7 +251,7 @@ func TestCompletionsMiddleware(t *testing.T) {
"stop": []any{"\n", "stop"},
},
Suffix: "suffix",
Stream: &False,
Stream: func() *bool { f := false; return &f }(),
},
},
{
@@ -259,54 +272,51 @@ func TestCompletionsMiddleware(t *testing.T) {
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(CompletionsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var req api.GenerateRequest
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
router := gin.New()
router.Use(CompletionsMiddleware(), capture(&req))
router.Handle(http.MethodPost, "/api/generate", func(c *gin.Context) {
c.Status(http.StatusOK)
})
r, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tt.body))
r.Header.Set("Content-Type", "application/json")
res := httptest.NewRecorder()
router.ServeHTTP(res, r)
var errResp ErrorResponse
if resp.Code != http.StatusOK {
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
if res.Code != http.StatusOK {
if err := json.Unmarshal(res.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
}
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
t.Fatal("requests did not match")
if !cmp.Equal(tt.req, req) {
t.Fatalf("requests did not match:\n%s", cmp.Diff(tt.req, req))
}
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
if !cmp.Equal(tt.err, errResp) {
t.Fatalf("errors did not match:\n%s", cmp.Diff(tt.err, errResp))
}
capturedRequest = nil
})
}
}
func TestEmbeddingsMiddleware(t *testing.T) {
type testCase struct {
type test struct {
name string
body string
req api.EmbedRequest
err ErrorResponse
}
var capturedRequest *api.EmbedRequest
testCases := []testCase{
tests := []test{
{
name: "embed handler single input",
body: `{
@@ -348,17 +358,20 @@ func TestEmbeddingsMiddleware(t *testing.T) {
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(EmbeddingsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/embed", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/embed", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
for _, tt := range tests {
var req api.EmbedRequest
router := gin.New()
router.Use(EmbeddingsMiddleware(), capture(&req))
router.Handle(http.MethodPost, "/api/embed", endpoint)
t.Run(tt.name, func(t *testing.T) {
r, _ := http.NewRequest(http.MethodPost, "/api/embed", strings.NewReader(tt.body))
r.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
router.ServeHTTP(resp, r)
var errResp ErrorResponse
if resp.Code != http.StatusOK {
@@ -366,31 +379,28 @@ func TestEmbeddingsMiddleware(t *testing.T) {
t.Fatal(err)
}
}
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
t.Fatal("requests did not match")
if diff := cmp.Diff(tt.req, req); diff != "" {
t.Errorf("request mismatch (-want +got):\n%s", diff)
}
if !reflect.DeepEqual(tc.err, errResp) {
t.Fatal("errors did not match")
if diff := cmp.Diff(tt.err, errResp); diff != "" {
t.Errorf("error mismatch (-want +got):\n%s", diff)
}
capturedRequest = nil
})
}
}
func TestListMiddleware(t *testing.T) {
type testCase struct {
name string
endpoint func(c *gin.Context)
resp string
type test struct {
name string
handler gin.HandlerFunc
body string
}
testCases := []testCase{
tests := []test{
{
name: "list handler",
endpoint: func(c *gin.Context) {
handler: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ListResponse{
Models: []api.ListModelResponse{
{
@@ -400,7 +410,7 @@ func TestListMiddleware(t *testing.T) {
},
})
},
resp: `{
body: `{
"object": "list",
"data": [
{
@@ -414,10 +424,12 @@ func TestListMiddleware(t *testing.T) {
},
{
name: "list handler empty output",
endpoint: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ListResponse{})
handler: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ListResponse{
Models: []api.ListModelResponse{},
})
},
resp: `{
body: `{
"object": "list",
"data": null
}`,
@@ -426,17 +438,17 @@ func TestListMiddleware(t *testing.T) {
gin.SetMode(gin.TestMode)
for _, tc := range testCases {
for _, tt := range tests {
router := gin.New()
router.Use(ListMiddleware())
router.Handle(http.MethodGet, "/api/tags", tc.endpoint)
router.Handle(http.MethodGet, "/api/tags", tt.handler)
req, _ := http.NewRequest(http.MethodGet, "/api/tags", nil)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
var expected, actual map[string]any
err := json.Unmarshal([]byte(tc.resp), &expected)
err := json.Unmarshal([]byte(tt.body), &expected)
if err != nil {
t.Fatalf("failed to unmarshal expected response: %v", err)
}
@@ -446,28 +458,28 @@ func TestListMiddleware(t *testing.T) {
t.Fatalf("failed to unmarshal actual response: %v", err)
}
if !reflect.DeepEqual(expected, actual) {
t.Errorf("responses did not match\nExpected: %+v\nActual: %+v", expected, actual)
if diff := cmp.Diff(expected, actual); diff != "" {
t.Errorf("responses did not match (-want +got):\n%s", diff)
}
}
}
func TestRetrieveMiddleware(t *testing.T) {
type testCase struct {
name string
endpoint func(c *gin.Context)
resp string
type test struct {
name string
handler gin.HandlerFunc
body string
}
testCases := []testCase{
tests := []test{
{
name: "retrieve handler",
endpoint: func(c *gin.Context) {
handler: func(c *gin.Context) {
c.JSON(http.StatusOK, api.ShowResponse{
ModifiedAt: time.Unix(int64(1686935002), 0).UTC(),
})
},
resp: `{
body: `{
"id":"test-model",
"object":"model",
"created":1686935002,
@@ -476,15 +488,15 @@ func TestRetrieveMiddleware(t *testing.T) {
},
{
name: "retrieve handler error forwarding",
endpoint: func(c *gin.Context) {
handler: func(c *gin.Context) {
c.JSON(http.StatusBadRequest, gin.H{"error": "model not found"})
},
resp: `{
body: `{
"error": {
"code": null,
"message": "model not found",
"param": null,
"type": "api_error"
"type": "invalid_request_error"
}
}`,
},
@@ -492,17 +504,17 @@ func TestRetrieveMiddleware(t *testing.T) {
gin.SetMode(gin.TestMode)
for _, tc := range testCases {
for _, tt := range tests {
router := gin.New()
router.Use(RetrieveMiddleware())
router.Handle(http.MethodGet, "/api/show/:model", tc.endpoint)
router.Handle(http.MethodGet, "/api/show/:model", tt.handler)
req, _ := http.NewRequest(http.MethodGet, "/api/show/test-model", nil)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
var expected, actual map[string]any
err := json.Unmarshal([]byte(tc.resp), &expected)
err := json.Unmarshal([]byte(tt.body), &expected)
if err != nil {
t.Fatalf("failed to unmarshal expected response: %v", err)
}
@@ -512,8 +524,8 @@ func TestRetrieveMiddleware(t *testing.T) {
t.Fatalf("failed to unmarshal actual response: %v", err)
}
if !reflect.DeepEqual(expected, actual) {
t.Errorf("responses did not match\nExpected: %+v\nActual: %+v", expected, actual)
if diff := cmp.Diff(expected, actual); diff != "" {
t.Errorf("responses did not match (-want +got):\n%s", diff)
}
}
}

View File

@@ -24,14 +24,8 @@ for TARGETARCH in ${BUILD_ARCH}; do
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
rm -rf ./dist/linux-$TARGETARCH
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH ./dist
if echo ${TARGETARCH} | grep "amd64" > /dev/null; then
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH-rocm ./dist
fi
docker rm builder-$TARGETARCH
echo "Compressing final linux bundle..."
rm -f ./dist/ollama-linux-$TARGETARCH.tgz
(cd dist/linux-$TARGETARCH && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH.tgz )
if [ -d dist/linux-$TARGETARCH-rocm ]; then
(cd dist/linux-$TARGETARCH-rocm && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH-rocm.tgz )
fi
done

View File

@@ -199,11 +199,6 @@ fi
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
if [ $BUNDLE -ne 0 ]; then
status "Downloading Linux ROCm ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
install_success
status "AMD GPU ready."
exit 0

View File

@@ -369,14 +369,13 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
parameters := make(map[string]any)
var layers []Layer
var baseLayers []*layerGGML
for _, c := range modelfile.Commands {
mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name)
command := c.Name
switch command {
switch c.Name {
case "model", "adapter":
if name := model.ParseName(c.Args); name.IsValid() && command == "model" {
var baseLayers []*layerGGML
if name := model.ParseName(c.Args); name.IsValid() {
baseLayers, err = parseFromModel(ctx, name, fn)
if err != nil {
return err
@@ -410,14 +409,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
}
defer blob.Close()
baseLayers, err = parseFromFile(ctx, command, baseLayers, blob, digest, fn)
baseLayers, err = parseFromFile(ctx, blob, digest, fn)
if err != nil {
return err
}
} else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil {
defer file.Close()
baseLayers, err = parseFromFile(ctx, command, baseLayers, file, "", fn)
baseLayers, err = parseFromFile(ctx, file, "", fn)
if err != nil {
return err
}

View File

@@ -51,9 +51,6 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
if err := os.Rename(temp.Name(), blob); err != nil {
return Layer{}, err
}
if err := os.Chmod(blob, 0o644); err != nil {
return Layer{}, err
}
}
return Layer{

View File

@@ -81,7 +81,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil
}
func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
fi, err := f.Stat()
if err != nil {
return nil, err
@@ -108,38 +108,16 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
defer t.Close()
defer os.Remove(t.Name())
var layerType string
switch command {
case "adapter":
var baseModel *llm.GGML
for _, l := range baseLayers {
if l.GGML != nil {
baseModel = l.GGML
break
}
}
if baseModel == nil {
return nil, fmt.Errorf("no base model specified for the adapter")
}
if err := convert.ConvertAdapter(convert.NewZipReader(r, p, 32<<20), t, baseModel.KV()); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.adapter"
case "model":
if err := convert.ConvertModel(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.model"
fn(api.ProgressResponse{Status: "converting model"})
if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err
}
if _, err := t.Seek(0, io.SeekStart); err != nil {
return nil, err
}
layer, err := NewLayer(t, layerType)
layer, err := NewLayer(t, "application/vnd.ollama.image.model")
if err != nil {
return nil, err
}
@@ -161,7 +139,7 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
return detectChatTemplate(layers)
}
func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
sr := io.NewSectionReader(file, 0, 512)
contentType, err := detectContentType(sr)
if err != nil {
@@ -172,7 +150,7 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
case "gguf", "ggla":
// noop
case "application/zip":
return parseFromZipFile(ctx, command, baseLayers, file, digest, fn)
return parseFromZipFile(ctx, file, digest, fn)
default:
return nil, fmt.Errorf("unsupported content type: %s", contentType)
}
@@ -192,7 +170,7 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
}
mediatype := "application/vnd.ollama.image.model"
if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
if ggml.Name() == "ggla" {
mediatype = "application/vnd.ollama.image.adapter"
} else if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector"

View File

@@ -153,7 +153,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err)
}
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, "", func(api.ProgressResponse) {})
layers, err := parseFromFile(context.Background(), file, "", func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
@@ -166,7 +166,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err)
}
layers2, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, layers[0].Digest, func(api.ProgressResponse) {})
layers2, err := parseFromFile(context.Background(), file, layers[0].Digest, func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
@@ -206,7 +206,7 @@ func TestParseLayerFromCopy(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err)
}
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file2, "", func(api.ProgressResponse) {})
layers, err := parseFromFile(context.Background(), file2, "", func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}

View File

@@ -193,11 +193,6 @@ func (s *Scheduler) processPending(ctx context.Context) {
break
}
// Embedding models should always be loaded with parallel=1
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
numParallel = 1
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode

View File

@@ -117,6 +117,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
require.NoError(t, llm.WriteGGUF(f, llm.KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(1),