mirror of
https://github.com/ollama/ollama.git
synced 2026-01-22 06:20:00 -05:00
Compare commits
3 Commits
pdevine/im
...
jmorganca/
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5a67f93eae | ||
|
|
dc04f41eb7 | ||
|
|
9899f18e18 |
1
.github/workflows/release.yaml
vendored
1
.github/workflows/release.yaml
vendored
@@ -475,7 +475,6 @@ jobs:
|
||||
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
|
||||
mv sha256sum.txt dist/
|
||||
mv dist/linux-???64 .
|
||||
mv dist/linux-amd64-rocm .
|
||||
cat dist/sha256sum.txt
|
||||
- name: Create or update Release
|
||||
run: |
|
||||
|
||||
@@ -95,8 +95,8 @@ ARG AMDGPU_TARGETS
|
||||
ENV GOARCH amd64
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
|
||||
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
|
||||
RUN mkdir -p ../../dist/linux-amd64/lib/ollama && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64/lib/ollama && tar xf - )
|
||||
|
||||
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
|
||||
ARG CMAKE_VERSION
|
||||
|
||||
19
cmd/cmd.go
19
cmd/cmd.go
@@ -204,12 +204,6 @@ func tempZipFiles(path string) (string, error) {
|
||||
// safetensors files might be unresolved git lfs references; skip if they are
|
||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapters.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapter_model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||
@@ -229,14 +223,6 @@ func tempZipFiles(path string) (string, error) {
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
// bert models require a nested config.json
|
||||
// TODO(mxyng): merge this with the glob above
|
||||
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
|
||||
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
|
||||
// tokenizer.model might be a unresolved git lfs reference; error if it is
|
||||
@@ -266,11 +252,6 @@ func tempZipFiles(path string) (string, error) {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zfi.Name, err = filepath.Rel(path, file)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zf, err := zipfile.CreateHeader(zfi)
|
||||
if err != nil {
|
||||
return "", err
|
||||
|
||||
@@ -7,27 +7,16 @@ import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
type Parameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
Alpha uint32 `json:"lora_alpha"`
|
||||
LoraLayers uint32 `json:"lora_layers"`
|
||||
LoraParameters struct {
|
||||
Rank uint32 `json:"rank"`
|
||||
Alpha float32 `json:"alpha"`
|
||||
Scale float32 `json:"scale"`
|
||||
} `json:"lora_parameters"`
|
||||
}
|
||||
|
||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
func (Parameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
@@ -54,119 +43,40 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p AdapterParameters) KV() llm.KV {
|
||||
var alpha float32
|
||||
if p.LoraParameters.Alpha == 0 {
|
||||
alpha = float32(p.Alpha)
|
||||
} else {
|
||||
alpha = p.LoraParameters.Alpha
|
||||
}
|
||||
|
||||
kv := llm.KV{
|
||||
"adapter.lora.alpha": alpha,
|
||||
"adapter.type": "lora",
|
||||
"general.file_type": uint32(1),
|
||||
"general.type": "adapter",
|
||||
"general.version": "v0.2",
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (ModelParameters) specialTokenTypes() []string {
|
||||
func (Parameters) specialTokenTypes() []string {
|
||||
return []string{
|
||||
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
|
||||
}
|
||||
}
|
||||
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
type Converter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
// tensorName returns the LLM tensor name for a specific input name
|
||||
tensorName(string) string
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
parseMore(fs.FS) error
|
||||
}
|
||||
|
||||
type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(llm.KV) llm.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var p AdapterParameters
|
||||
if err := json.Unmarshal(bts, &p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
arch, ok := baseKV["general.architecture"]
|
||||
if !ok {
|
||||
return errors.New("architecture not set for the base model")
|
||||
}
|
||||
|
||||
var conv AdapterConverter
|
||||
switch arch {
|
||||
case "llama":
|
||||
conv = &llamaAdapter{}
|
||||
case "gemma2":
|
||||
conv = &gemma2Adapter{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
|
||||
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, conv); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||
// and files it finds in the input path.
|
||||
// Supported input model formats include safetensors.
|
||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
bts, err := fs.ReadFile(fsys, "config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var p ModelParameters
|
||||
var p Parameters
|
||||
if err := json.Unmarshal(bts, &p); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -175,20 +85,16 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return errors.New("unknown architecture")
|
||||
}
|
||||
|
||||
var conv ModelConverter
|
||||
var conv Converter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
conv = &llama{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
conv = &mixtral{}
|
||||
case "GemmaForCausalLM":
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
conv = &gemma{}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
conv = &phi3{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
@@ -197,12 +103,6 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if t, ok := conv.(moreParser); ok {
|
||||
if err := t.parseMore(fsys); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -219,7 +119,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
|
||||
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
|
||||
ts, err := parseTensors(fsys)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -1,174 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"io/fs"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type bertModel struct {
|
||||
ModelParameters
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayer uint32 `json:"n_layer"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NEmbd uint32 `json:"n_embd"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NInner uint32 `json:"n_inner"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NHead uint32 `json:"n_head"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
|
||||
PoolingType uint32
|
||||
}
|
||||
|
||||
var (
|
||||
_ ModelConverter = (*bertModel)(nil)
|
||||
_ moreParser = (*bertModel)(nil)
|
||||
)
|
||||
|
||||
func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
bts, err := fs.ReadFile(fsys, "modules.json")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var modules []struct {
|
||||
Type string `json:"type"`
|
||||
Path string `json:"path"`
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, &modules); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var pooling string
|
||||
for _, m := range modules {
|
||||
if m.Type == "sentence_transformers.models.Pooling" {
|
||||
pooling = m.Path
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if pooling != "" {
|
||||
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var pc struct {
|
||||
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
|
||||
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, &pc); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if pc.PoolingModeMeanTokens {
|
||||
p.PoolingType = 1
|
||||
} else if pc.PoolingModeCLSToken {
|
||||
p.PoolingType = 2
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
kv["bert.pooling_type"] = p.PoolingType
|
||||
|
||||
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
|
||||
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
||||
kv["bert.context_length"] = contextLength
|
||||
}
|
||||
|
||||
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
||||
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||
}
|
||||
|
||||
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
||||
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
||||
}
|
||||
|
||||
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
|
||||
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||
}
|
||||
|
||||
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
||||
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||
}
|
||||
|
||||
kv["tokenizer.ggml.model"] = "bert"
|
||||
kv["tokenizer.ggml.token_type_count"] = uint32(2)
|
||||
|
||||
// convert to phantom space tokens
|
||||
for i, e := range t.Tokens {
|
||||
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
|
||||
// noop
|
||||
} else if strings.HasPrefix(e, "##") {
|
||||
t.Tokens[i] = e[2:]
|
||||
} else {
|
||||
t.Tokens[i] = "\u2581" + e
|
||||
}
|
||||
}
|
||||
|
||||
kv["tokenizer.ggml.tokens"] = t.Tokens
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
"pooler.dense.weight",
|
||||
"pooler.dense.bias",
|
||||
}, t.Name()) {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (bertModel) Replacements() []string {
|
||||
return []string{
|
||||
"encoder.layer", "blk",
|
||||
"encoder.layers", "blk",
|
||||
"embeddings.word_embeddings", "token_embd",
|
||||
"embeddings.token_type_embeddings", "token_types",
|
||||
"embeddings.LayerNorm", "token_embd_norm",
|
||||
"embeddings.position_embeddings", "position_embd",
|
||||
"attention.self.query", "attn_q",
|
||||
"attention.self.key", "attn_k",
|
||||
"attention.self.value", "attn_v",
|
||||
"attention.output.dense", "attn_output",
|
||||
"attention.output.LayerNorm", "attn_output_norm",
|
||||
"intermediate.dense", "ffn_up",
|
||||
"output.dense", "ffn_down",
|
||||
"output.LayerNorm", "layer_output_norm",
|
||||
}
|
||||
}
|
||||
@@ -9,8 +9,8 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemmaModel struct {
|
||||
ModelParameters
|
||||
type gemma struct {
|
||||
Parameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
@@ -21,11 +21,12 @@ type gemmaModel struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*gemmaModel)(nil)
|
||||
var _ Converter = (*gemma)(nil)
|
||||
|
||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
func (p *gemma) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["general.name"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma.embedding_length"] = p.HiddenSize
|
||||
kv["gemma.block_count"] = p.HiddenLayers
|
||||
@@ -42,15 +43,16 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
@@ -60,8 +62,8 @@ func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Replacements() []string {
|
||||
return []string{
|
||||
func (p *gemma) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"model.layers", "blk",
|
||||
@@ -74,10 +76,11 @@ func (p *gemmaModel) Replacements() []string {
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
}
|
||||
"block_sparse_moe.gate", "ffn_inp",
|
||||
).Replace(n)
|
||||
}
|
||||
|
||||
func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
|
||||
ones := tensor.Ones(tensor.Float32, int(shape[0]))
|
||||
|
||||
|
||||
@@ -1,43 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemma2Model struct {
|
||||
gemmaModel
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
}
|
||||
|
||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma2"
|
||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma2.embedding_length"] = p.HiddenSize
|
||||
kv["gemma2.block_count"] = p.HiddenLayers
|
||||
kv["gemma2.feed_forward_length"] = p.IntermediateSize
|
||||
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma2.attention.key_length"] = p.HeadDim
|
||||
kv["gemma2.attention.value_length"] = p.HeadDim
|
||||
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
|
||||
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
|
||||
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
|
||||
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
|
||||
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
|
||||
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Model) Replacements() []string {
|
||||
return append(
|
||||
p.gemmaModel.Replacements(),
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
)
|
||||
}
|
||||
@@ -1,91 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemma2Adapter struct {
|
||||
AdapterParameters
|
||||
}
|
||||
|
||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||
|
||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "gemma2"
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||||
shape[0], shape[1] = shape[1], shape[0]
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Replacements() []string {
|
||||
return []string{
|
||||
"base_model.model.", "",
|
||||
"model.layers", "blk",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"lora_A.weight", "weight.lora_a",
|
||||
"lora_B.weight", "weight.lora_b",
|
||||
"lora_a", "weight.lora_a",
|
||||
"lora_b", "weight.lora_b",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := []int{int(shape[1]), int(shape[0])}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if err := n.T(1, 0); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -3,7 +3,6 @@ package convert
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
@@ -12,8 +11,8 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type llamaModel struct {
|
||||
ModelParameters
|
||||
type llama struct {
|
||||
Parameters
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayer uint32 `json:"n_layer"`
|
||||
@@ -28,14 +27,8 @@ type llamaModel struct {
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
||||
|
||||
factors ropeFactor
|
||||
Type string `json:"type"`
|
||||
Factor float32 `json:"factor"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
@@ -44,11 +37,12 @@ type llamaModel struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
var _ Converter = (*llama)(nil)
|
||||
|
||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
func (p *llama) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["general.name"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
|
||||
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
@@ -77,27 +71,6 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
if p.RopeScaling.Type == "linear" {
|
||||
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
|
||||
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
} else if p.RopeScaling.RopeType == "llama3" {
|
||||
dim := p.HiddenSize / p.NumAttentionHeads
|
||||
for i := uint32(0); i < dim; i += 2 {
|
||||
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
|
||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
||||
lambdaLow := float32(original) / factorLow
|
||||
lambdaHigh := float32(original) / factorHigh
|
||||
|
||||
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
|
||||
if lambda < float64(lambdaHigh) {
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
|
||||
} else if lambda > float64(lambdaLow) {
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
|
||||
} else {
|
||||
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if p.NumKeyValueHeads > 0 {
|
||||
@@ -120,26 +93,17 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
WriterTo: p.RopeScaling.factors,
|
||||
})
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "attn_q.weight") ||
|
||||
strings.HasSuffix(name, "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
@@ -149,8 +113,8 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llamaModel) Replacements() []string {
|
||||
return []string{
|
||||
func (p *llama) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
@@ -164,19 +128,21 @@ func (p *llamaModel) Replacements() []string {
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
}
|
||||
// mixtral
|
||||
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||
).Replace(n)
|
||||
}
|
||||
|
||||
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
if strings.HasSuffix(name, "q_proj.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
} else if strings.HasSuffix(name, "k_proj.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
|
||||
@@ -1,169 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type llamaAdapter struct {
|
||||
AdapterParameters
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
}
|
||||
|
||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||
|
||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
|
||||
|
||||
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||||
shape[0], shape[1] = shape[1], shape[0]
|
||||
t.SetRepacker(p.repackAndTranspose)
|
||||
} else {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Replacements() []string {
|
||||
return []string{
|
||||
"base_model.model.", "",
|
||||
"model.layers", "blk",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"lora_A.weight", "weight.lora_a",
|
||||
"lora_B.weight", "weight.lora_b",
|
||||
"lora_a", "weight.lora_a",
|
||||
"lora_b", "weight.lora_b",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := []int{int(shape[1]), int(shape[0])}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return data, nil
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := []int{int(shape[1]), int(shape[0])}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
}
|
||||
|
||||
if heads > 0 {
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if err := n.T(1, 0); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -9,14 +9,16 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type mixtralModel struct {
|
||||
llamaModel
|
||||
type mixtral struct {
|
||||
llama
|
||||
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.llamaModel.KV(t)
|
||||
var _ Converter = (*mixtral)(nil)
|
||||
|
||||
func (p *mixtral) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.llama.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
kv["llama.expert_count"] = p.NumLocalExperts
|
||||
@@ -29,7 +31,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@@ -67,14 +69,7 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
return append(out, p.llamaModel.Tensors(ts)...)
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Replacements() []string {
|
||||
return append(
|
||||
p.llamaModel.Replacements(),
|
||||
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||
)
|
||||
return append(out, p.llama.Tensors(ts)...)
|
||||
}
|
||||
|
||||
type experts []Tensor
|
||||
|
||||
@@ -11,8 +11,8 @@ import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type phi3Model struct {
|
||||
ModelParameters
|
||||
type phi3 struct {
|
||||
Parameters
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
@@ -35,11 +35,12 @@ type phi3Model struct {
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*phi3Model)(nil)
|
||||
var _ Converter = (*phi3)(nil)
|
||||
|
||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
func (p *phi3) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
kv["general.architecture"] = "phi3"
|
||||
kv["general.name"] = "phi3"
|
||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||
kv["phi3.feed_forward_length"] = p.IntermediateSize
|
||||
@@ -68,12 +69,13 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasPrefix(name, "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
@@ -90,7 +92,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
@@ -100,8 +102,8 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *phi3Model) Replacements() []string {
|
||||
return []string{
|
||||
func (p *phi3) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
@@ -112,7 +114,7 @@ func (p *phi3Model) Replacements() []string {
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
}
|
||||
).Replace(n)
|
||||
}
|
||||
|
||||
type ropeFactor []float32
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/sha256"
|
||||
"encoding/binary"
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
"flag"
|
||||
@@ -31,7 +29,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if err := ConvertModel(fsys, f); err != nil {
|
||||
if err := Convert(fsys, f); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -53,34 +51,6 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
actual[k] = fmt.Sprintf("%v", v)
|
||||
} else {
|
||||
bts, err := json.Marshal(s)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors.Items {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
|
||||
}
|
||||
|
||||
return actual
|
||||
}
|
||||
|
||||
func TestMain(m *testing.M) {
|
||||
var level slog.Level
|
||||
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
|
||||
@@ -92,14 +62,11 @@ func TestMain(m *testing.M) {
|
||||
func TestConvertFull(t *testing.T) {
|
||||
cases := []string{
|
||||
"Meta-Llama-3-8B-Instruct",
|
||||
"Meta-Llama-3.1-8B-Instruct",
|
||||
"Mistral-7B-Instruct-v0.2",
|
||||
"Mixtral-8x7B-Instruct-v0.1",
|
||||
"gemma-2b-it",
|
||||
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
|
||||
"Phi-3-mini-128k-instruct",
|
||||
"all-MiniLM-L6-v2",
|
||||
"gemma-2-9b-it",
|
||||
}
|
||||
|
||||
for i := range cases {
|
||||
@@ -115,7 +82,29 @@ func TestConvertFull(t *testing.T) {
|
||||
}
|
||||
|
||||
f, kv, tensors := convertFull(t, os.DirFS(p))
|
||||
actual := generateResultsJSON(t, f, kv, tensors)
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
actual[k] = fmt.Sprintf("%v", v)
|
||||
} else {
|
||||
bts, err := json.Marshal(s)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors.Items {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
|
||||
}
|
||||
|
||||
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
|
||||
if err != nil {
|
||||
@@ -139,209 +128,3 @@ func TestConvertFull(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestConvertAdapter(t *testing.T) {
|
||||
type AdapterCase struct {
|
||||
Name string
|
||||
BaseKV map[string]any
|
||||
Expected map[string]string
|
||||
}
|
||||
|
||||
cases := []AdapterCase{
|
||||
{
|
||||
Name: "discollama",
|
||||
BaseKV: map[string]any{
|
||||
"general.architecture": "llama",
|
||||
"llama.attention.head_count": uint32(32),
|
||||
"llama.attention.head_count_kv": uint32(8),
|
||||
},
|
||||
Expected: map[string]string{
|
||||
"general.architecture": "llama",
|
||||
"general.file_type": "1",
|
||||
"general.parameter_count": "106496",
|
||||
"general.type": "adapter",
|
||||
"general.version": "v0.2",
|
||||
"adapter.lora.alpha": "16",
|
||||
"adapter.type": "lora",
|
||||
"llama.attention.head_count": "32",
|
||||
"llama.attention.head_count_kv": "8",
|
||||
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
|
||||
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
t.Run(c.Name, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
tempDir := t.TempDir()
|
||||
generateLoraTestData(t, tempDir)
|
||||
|
||||
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
r, err := os.Open(f.Name())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if _, err := r.Seek(0, io.SeekStart); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
|
||||
|
||||
keys := maps.Keys(c.Expected)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
if v, ok := actual[k]; !ok {
|
||||
t.Errorf("missing %s", k)
|
||||
} else if v != c.Expected[k] {
|
||||
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func generateLoraTestData(t *testing.T, tempDir string) {
|
||||
type tensorData struct {
|
||||
Offsets []int `json:"data_offsets"`
|
||||
Type string `json:"dtype"`
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
offset := 4096 * 8 * 4
|
||||
|
||||
td := map[string]*tensorData{"__metadata__": nil}
|
||||
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
|
||||
Offsets: []int{0, offset},
|
||||
Type: "F32",
|
||||
Shape: []int{4096, 8},
|
||||
}
|
||||
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
|
||||
Offsets: []int{offset, offset * 2},
|
||||
Type: "F32",
|
||||
Shape: []int{8, 4096},
|
||||
}
|
||||
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
|
||||
Offsets: []int{offset * 2, offset * 3},
|
||||
Type: "F32",
|
||||
Shape: []int{4096, 8},
|
||||
}
|
||||
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
|
||||
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
|
||||
Type: "F32",
|
||||
Shape: []int{8, 1024},
|
||||
}
|
||||
|
||||
data, err := json.Marshal(td)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
|
||||
l := int64(len(data))
|
||||
err = binary.Write(&buf, binary.LittleEndian, l)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
_, err = buf.Write(data)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// write some data for the tensors
|
||||
|
||||
ones := make([]float32, 4096*8)
|
||||
for i := range ones {
|
||||
ones[i] = float32(1)
|
||||
}
|
||||
|
||||
for range 3 {
|
||||
err = binary.Write(&buf, binary.LittleEndian, ones)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
ones = make([]float32, 1024*8)
|
||||
for i := range ones {
|
||||
ones[i] = float32(1)
|
||||
}
|
||||
|
||||
err = binary.Write(&buf, binary.LittleEndian, ones)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer fdata.Close()
|
||||
|
||||
_, err = fdata.Write(buf.Bytes())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
configData := `
|
||||
{
|
||||
"adapter_path": "adapters-test",
|
||||
"batch_size": 8,
|
||||
"config": "config-tiny.json",
|
||||
"data": "../discollama-completion",
|
||||
"grad_checkpoint": null,
|
||||
"iters": 1000,
|
||||
"learning_rate": 1e-05,
|
||||
"lora_layers": 1,
|
||||
"lora_parameters": {
|
||||
"rank": 8,
|
||||
"alpha": 16,
|
||||
"dropout": 0.0,
|
||||
"scale": 2.0
|
||||
},
|
||||
"lr_schedule": null,
|
||||
"max_seq_length": 2048,
|
||||
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
|
||||
"resume_adapter_file": null,
|
||||
"save_every": 100,
|
||||
"seed": 0,
|
||||
"steps_per_eval": 200,
|
||||
"steps_per_report": 10,
|
||||
"test": false,
|
||||
"test_batches": 500,
|
||||
"train": true,
|
||||
"use_dora": false,
|
||||
"val_batches": 25
|
||||
}
|
||||
`
|
||||
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
_, err = f.WriteString(configData)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -35,9 +35,7 @@ const (
|
||||
)
|
||||
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||
t.name == "token_types.weight" {
|
||||
// these tensors are always F32
|
||||
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
|
||||
return 0
|
||||
}
|
||||
|
||||
@@ -57,15 +55,13 @@ func (t *tensorBase) SetRepacker(fn repacker) {
|
||||
|
||||
type repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
|
||||
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
func parseTensors(fsys fs.FS) ([]Tensor, error) {
|
||||
patterns := []struct {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
Func func(fs.FS, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
@@ -78,7 +74,7 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
}
|
||||
|
||||
if len(matches) > 0 {
|
||||
return pattern.Func(fsys, replacer, matches...)
|
||||
return pattern.Func(fsys, matches...)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/x448/float16"
|
||||
@@ -21,7 +20,7 @@ type safetensorMetadata struct {
|
||||
Offsets []int64 `json:"data_offsets"`
|
||||
}
|
||||
|
||||
func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
|
||||
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
for _, p := range ps {
|
||||
f, err := fsys.Open(p)
|
||||
@@ -57,7 +56,7 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
|
||||
offset: safetensorsPad(n, value.Offsets[0]),
|
||||
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
|
||||
tensorBase: &tensorBase{
|
||||
name: replacer.Replace(key),
|
||||
name: key,
|
||||
shape: value.Shape,
|
||||
},
|
||||
})
|
||||
|
||||
@@ -3,13 +3,12 @@ package convert
|
||||
import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/nlpodyssey/gopickle/types"
|
||||
)
|
||||
|
||||
func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
|
||||
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
for _, p := range ps {
|
||||
pt, err := pytorch.Load(p)
|
||||
@@ -28,7 +27,7 @@ func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor,
|
||||
ts = append(ts, torch{
|
||||
storage: t.(*pytorch.Tensor).Source,
|
||||
tensorBase: &tensorBase{
|
||||
name: replacer.Replace(k.(string)),
|
||||
name: k.(string),
|
||||
shape: shape,
|
||||
},
|
||||
})
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
{
|
||||
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
|
||||
}
|
||||
124
convert/testdata/all-MiniLM-L6-v2.json
vendored
124
convert/testdata/all-MiniLM-L6-v2.json
vendored
@@ -1,124 +0,0 @@
|
||||
{
|
||||
"general.architecture": "bert",
|
||||
"general.file_type": "1",
|
||||
"general.quantization_version": "2",
|
||||
"bert.attention.causal": "false",
|
||||
"bert.attention.head_count": "12",
|
||||
"bert.attention.layer_norm_epsilon": "1e-12",
|
||||
"bert.block_count": "6",
|
||||
"bert.context_length": "512",
|
||||
"bert.embedding_length": "384",
|
||||
"bert.feed_forward_length": "1536",
|
||||
"bert.pooling_type": "1",
|
||||
"tokenizer.ggml.model": "bert",
|
||||
"tokenizer.ggml.padding_token_id": "0",
|
||||
"tokenizer.ggml.unknown_token_id": "100",
|
||||
"tokenizer.ggml.cls_token_id": "101",
|
||||
"tokenizer.ggml.seperator_token_id": "102",
|
||||
"tokenizer.ggml.mask_token_id": "103",
|
||||
"tokenizer.ggml.token_type_count": "2",
|
||||
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
|
||||
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
|
||||
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
|
||||
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
|
||||
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
|
||||
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
|
||||
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
|
||||
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
|
||||
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
|
||||
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
|
||||
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
|
||||
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
|
||||
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
|
||||
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
|
||||
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
|
||||
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
|
||||
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
|
||||
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
|
||||
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
|
||||
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
|
||||
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
|
||||
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
|
||||
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
|
||||
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
|
||||
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
|
||||
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
|
||||
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
|
||||
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
|
||||
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
|
||||
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
|
||||
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
|
||||
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
|
||||
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
|
||||
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
|
||||
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
|
||||
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
|
||||
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
|
||||
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
|
||||
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
|
||||
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
|
||||
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
|
||||
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
|
||||
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
|
||||
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
|
||||
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
|
||||
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
|
||||
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
|
||||
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
|
||||
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
|
||||
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
|
||||
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
|
||||
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
|
||||
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
|
||||
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
|
||||
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
|
||||
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
|
||||
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
|
||||
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
|
||||
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
|
||||
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
|
||||
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
|
||||
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
|
||||
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
|
||||
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
|
||||
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
|
||||
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
|
||||
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
|
||||
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
|
||||
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
|
||||
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
|
||||
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
|
||||
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
|
||||
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
|
||||
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
|
||||
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
|
||||
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
|
||||
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
|
||||
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
|
||||
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
|
||||
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
|
||||
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
|
||||
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
|
||||
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
|
||||
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
|
||||
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
|
||||
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
|
||||
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
|
||||
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
|
||||
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
|
||||
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
|
||||
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
|
||||
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
|
||||
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
|
||||
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
|
||||
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
|
||||
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
|
||||
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
|
||||
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
|
||||
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
|
||||
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
|
||||
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
|
||||
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
|
||||
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
|
||||
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
|
||||
}
|
||||
6
convert/testdata/gemma-2-9b-it.json
vendored
6
convert/testdata/gemma-2-9b-it.json
vendored
@@ -1,6 +0,0 @@
|
||||
{
|
||||
"general.architecture": "gemma2",
|
||||
"gemma2.attention.sliding_window": "4096",
|
||||
"gemma2.attn_logit_softcapping": "50",
|
||||
"gemma2.final_logit_softcapping": "30"
|
||||
}
|
||||
@@ -1,6 +1,7 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"crypto/sha256"
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
@@ -10,8 +11,6 @@ import (
|
||||
"log/slog"
|
||||
"os"
|
||||
"slices"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -185,32 +184,32 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tokens := make(map[int]token, len(t.Model.Vocab))
|
||||
var tokens []token
|
||||
for k, v := range t.Model.Vocab {
|
||||
tokens[v] = token{
|
||||
tokens = append(tokens, token{
|
||||
ID: v,
|
||||
Content: k,
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
for _, token := range t.AddedTokens {
|
||||
token.UserDefined = true
|
||||
tokens[token.ID] = token
|
||||
for _, t := range t.AddedTokens {
|
||||
t.UserDefined = true
|
||||
tokens = append(tokens, t)
|
||||
}
|
||||
|
||||
keys := maps.Keys(tokens)
|
||||
slices.Sort(keys)
|
||||
slices.SortFunc(tokens, func(i, j token) int {
|
||||
return cmp.Compare(i.ID, j.ID)
|
||||
})
|
||||
|
||||
v := Vocabulary{Model: "gpt2"}
|
||||
for _, k := range keys {
|
||||
token := tokens[k]
|
||||
v.Tokens = append(v.Tokens, token.Content)
|
||||
v.Scores = append(v.Scores, float32(token.ID))
|
||||
for _, t := range tokens {
|
||||
v.Tokens = append(v.Tokens, t.Content)
|
||||
v.Scores = append(v.Scores, float32(t.ID))
|
||||
|
||||
switch {
|
||||
case token.Special:
|
||||
case t.Special:
|
||||
v.Types = append(v.Types, tokenTypeControl)
|
||||
case token.UserDefined:
|
||||
case t.UserDefined:
|
||||
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||
default:
|
||||
v.Types = append(v.Types, tokenTypeNormal)
|
||||
|
||||
@@ -15,11 +15,6 @@ import (
|
||||
)
|
||||
|
||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
bts, err := fs.ReadFile(fsys, "tokenizer.model")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -42,12 +37,7 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
if slices.Contains(ast, piece.GetPiece()) {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
}
|
||||
|
||||
v.Types = append(v.Types, tt)
|
||||
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -91,23 +81,3 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
f, err := fsys.Open("special_tokens_map.json")
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil, nil
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var m struct {
|
||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||
}
|
||||
|
||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.AdditionalSpecialTokens, nil
|
||||
}
|
||||
|
||||
@@ -111,10 +111,7 @@ On Windows, Ollama inherits your user and system environment variables.
|
||||
|
||||
## How do I use Ollama behind a proxy?
|
||||
|
||||
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
> [!NOTE]
|
||||
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
|
||||
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
||||
|
||||
### How do I use Ollama behind a proxy in Docker?
|
||||
|
||||
@@ -279,4 +276,4 @@ Note: Windows with Radeon GPUs currently default to 1 model maximum due to limit
|
||||
|
||||
## How does Ollama load models on multiple GPUs?
|
||||
|
||||
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
||||
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 141 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 80 KiB |
190
docs/import.md
190
docs/import.md
@@ -1,129 +1,44 @@
|
||||
# Importing a model
|
||||
# Import
|
||||
|
||||
## Table of Contents
|
||||
GGUF models and select Safetensors models can be imported directly into Ollama.
|
||||
|
||||
* [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
|
||||
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
|
||||
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
|
||||
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
|
||||
## Import GGUF
|
||||
|
||||
## Importing a fine tuned adapter from Safetensors weights
|
||||
|
||||
First, create a `Modelfile` with a `FROM` command pointing at the base model you used for fine tuning, and an `ADAPTER` command which points to the directory with your Safetensors adapter:
|
||||
|
||||
```dockerfile
|
||||
FROM <base model name>
|
||||
ADAPTER /path/to/safetensors/adapter/directory
|
||||
```
|
||||
|
||||
Make sure that you use the same base model in the `FROM` command as you used to create the adapter otherwise you will get erratic results. Most frameworks use different quantization methods, so it's best to use non-quantized (i.e. non-QLoRA) adapters. If your adapter is in the same directory as your `Modelfile`, use `ADAPTER .` to specify the adapter path.
|
||||
|
||||
Now run `ollama create` from the directory where the `Modelfile` was created:
|
||||
|
||||
```bash
|
||||
ollama create my-model
|
||||
```
|
||||
|
||||
Lastly, test the model:
|
||||
|
||||
```bash
|
||||
ollama run my-model
|
||||
```
|
||||
|
||||
Ollama supports importing adapters based on several different model architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
|
||||
* Gemma (including Gemma 1 and Gemma 2)
|
||||
|
||||
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
|
||||
|
||||
* Hugging Face [fine tuning framework] (https://huggingface.co/docs/transformers/en/training)
|
||||
* [Unsloth](https://github.com/unslothai/unsloth)
|
||||
* [MLX](https://github.com/ml-explore/mlx)
|
||||
|
||||
|
||||
## Importing a model from Safetensors weights
|
||||
|
||||
First, create a `Modelfile` with a `FROM` command which points to the directory containing your Safetensors weights:
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/safetensors/directory
|
||||
```
|
||||
|
||||
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
|
||||
|
||||
Now run the `ollama create` command from the directory where you created the `Modelfile`:
|
||||
|
||||
```shell
|
||||
ollama create my-model
|
||||
```
|
||||
|
||||
Lastly, test the model:
|
||||
|
||||
```shell
|
||||
ollama run my-model
|
||||
```
|
||||
|
||||
Ollama supports importing models for several different architectures including:
|
||||
|
||||
* Llama (including Llama 2, Llama 3, and Llama 3.1);
|
||||
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
|
||||
* Gemma (including Gemma 1 and Gemma 2); and
|
||||
* Phi3
|
||||
|
||||
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
|
||||
|
||||
|
||||
## Importing a GGUF based model or adapter
|
||||
|
||||
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
|
||||
|
||||
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
|
||||
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
|
||||
* downloading a model or adapter from a place such as HuggingFace
|
||||
|
||||
To import a GGUF model, create a `Modelfile` containg:
|
||||
A binary GGUF file can be imported directly into Ollama through a Modelfile.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/file.gguf
|
||||
```
|
||||
|
||||
For a GGUF adapter, create the `Modelfile` with:
|
||||
## Import Safetensors
|
||||
|
||||
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
|
||||
|
||||
- LlamaForCausalLM
|
||||
- MistralForCausalLM
|
||||
- MixtralForCausalLM
|
||||
- GemmaForCausalLM
|
||||
- Phi3ForCausalLM
|
||||
|
||||
```dockerfile
|
||||
FROM <model name>
|
||||
ADAPTER /path/to/file.gguf
|
||||
FROM /path/to/safetensors/directory
|
||||
```
|
||||
|
||||
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
|
||||
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
|
||||
|
||||
* a model from Ollama
|
||||
* a GGUF file
|
||||
* a Safetensors based model
|
||||
## Automatic Quantization
|
||||
|
||||
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
|
||||
> [!NOTE]
|
||||
> Automatic quantization requires v0.1.35 or higher.
|
||||
|
||||
```shell
|
||||
ollama create my-model
|
||||
```
|
||||
|
||||
## Quantizing a Model
|
||||
|
||||
Quantizing a model allows you to run models faster and with less memory consumption but at reduced accuracy. This allows you to run a model on more modest hardware.
|
||||
|
||||
Ollama can quantize FP16 and FP32 based models into different quantization levels using the `-q/--quantize` flag with the `ollama create` command.
|
||||
|
||||
First, create a Modelfile with the FP16 or FP32 based model you wish to quantize.
|
||||
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/f16/model
|
||||
```
|
||||
|
||||
Use `ollama create` to then create the quantized model.
|
||||
|
||||
```shell
|
||||
$ ollama create --quantize q4_K_M mymodel
|
||||
$ ollama create -q Q4_K_M mymodel
|
||||
transferring model data
|
||||
quantizing F16 model to Q4_K_M
|
||||
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
|
||||
@@ -134,53 +49,42 @@ success
|
||||
|
||||
### Supported Quantizations
|
||||
|
||||
- `q4_0`
|
||||
- `q4_1`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q8_0`
|
||||
- `Q4_0`
|
||||
- `Q4_1`
|
||||
- `Q5_0`
|
||||
- `Q5_1`
|
||||
- `Q8_0`
|
||||
|
||||
#### K-means Quantizations
|
||||
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
- `Q3_K_S`
|
||||
- `Q3_K_M`
|
||||
- `Q3_K_L`
|
||||
- `Q4_K_S`
|
||||
- `Q4_K_M`
|
||||
- `Q5_K_S`
|
||||
- `Q5_K_M`
|
||||
- `Q6_K`
|
||||
|
||||
## Template Detection
|
||||
|
||||
## Sharing your model on ollama.com
|
||||
> [!NOTE]
|
||||
> Template detection requires v0.1.42 or higher.
|
||||
|
||||
You can share any model you have created by pushing it to [ollama.com](https://ollama.com) so that other users can try it out.
|
||||
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
|
||||
|
||||
First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
|
||||
|
||||

|
||||
|
||||
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
|
||||
|
||||
Now that you have created an account and are signed-in, go to the [Ollama Keys Settings](https://ollama.com/settings/keys) page.
|
||||
|
||||
Follow the directions on the page to determine where your Ollama Public Key is located.
|
||||
|
||||

|
||||
|
||||
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
|
||||
|
||||
To push a model to [ollama.com](https://ollama.com), first make sure that it is named correctly with your username. You may have to use the `ollama cp` command to copy
|
||||
your model to give it the correct name. Once you're happy with your model's name, use the `ollama push` command to push it to [ollama.com](https://ollama.com).
|
||||
|
||||
```shell
|
||||
ollama cp mymodel myuser/mymodel
|
||||
ollama push myuser/mymodel
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/model
|
||||
```
|
||||
|
||||
Once your model has been pushed, other users can pull and run it by using the command:
|
||||
|
||||
```shell
|
||||
ollama run myuser/mymodel
|
||||
$ ollama create mymodel
|
||||
transferring model data
|
||||
using autodetected template gemma-instruct
|
||||
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
|
||||
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
|
||||
writing manifest
|
||||
success
|
||||
```
|
||||
|
||||
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.
|
||||
|
||||
@@ -264,8 +264,6 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.computeMajor = int(memInfo.major)
|
||||
gpuInfo.computeMinor = int(memInfo.minor)
|
||||
gpuInfo.MinimumMemory = cudaMinimumMemory
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
variant := cudaVariant(gpuInfo)
|
||||
if depPath != "" {
|
||||
gpuInfo.DependencyPath = depPath
|
||||
@@ -277,6 +275,8 @@ func GetGPUInfo() GpuInfoList {
|
||||
}
|
||||
}
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
gpuInfo.Variant = variant
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
|
||||
@@ -32,29 +32,4 @@ func TestCPUMemInfo(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestByLibrary(t *testing.T) {
|
||||
type testCase struct {
|
||||
input []GpuInfo
|
||||
expect int
|
||||
}
|
||||
|
||||
testCases := map[string]*testCase{
|
||||
"empty": {input: []GpuInfo{}, expect: 0},
|
||||
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
|
||||
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
|
||||
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
|
||||
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
|
||||
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
|
||||
}
|
||||
|
||||
for k, v := range testCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
resp := (GpuInfoList)(v.input).ByLibrary()
|
||||
if len(resp) != v.expect {
|
||||
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected
|
||||
|
||||
@@ -94,7 +94,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
libs = append(libs, requested)
|
||||
libs = append(libs, info.Library)
|
||||
resp = append(resp, []GpuInfo{info})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -70,8 +70,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
|
||||
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 6 {
|
||||
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
|
||||
if res.PromptEvalCount != 8 {
|
||||
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -102,8 +102,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 12 {
|
||||
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
|
||||
if res.PromptEvalCount != 16 {
|
||||
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
8
llm/ext_server/server.cpp
vendored
8
llm/ext_server/server.cpp
vendored
@@ -1429,13 +1429,7 @@ struct llama_server_context
|
||||
switch (task.type)
|
||||
{
|
||||
case TASK_TYPE_COMPLETION: {
|
||||
server_slot *slot = nullptr;
|
||||
if (task.embedding_mode) {
|
||||
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
|
||||
slot = slots[0].available() ? &slots[0] : nullptr;
|
||||
} else {
|
||||
slot = prefix_slot(task.data["prompt"]);
|
||||
}
|
||||
server_slot *slot = prefix_slot(task.data["prompt"]);
|
||||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
|
||||
@@ -252,7 +252,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
|
||||
fi
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DGGML_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
|
||||
@@ -260,8 +260,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
echo "Building custom ROCM GPU"
|
||||
fi
|
||||
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
|
||||
# ROCm dependencies are too large to fit into a unified bundle
|
||||
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
|
||||
ROCM_DIST_DIR="${DIST_BASE}/lib/ollama"
|
||||
# TODO figure out how to disable runpath (rpath)
|
||||
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
|
||||
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
|
||||
|
||||
@@ -355,7 +355,7 @@ function build_rocm() {
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DGGML_HIPBLAS=on",
|
||||
"-DGGML_CUDA_NO_PEER_COPY=on",
|
||||
"-DLLAMA_CUDA_NO_PEER_COPY=on",
|
||||
"-DHIP_PLATFORM=amd",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
|
||||
@@ -43,14 +43,6 @@ func (kv KV) Architecture() string {
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) Kind() string {
|
||||
if s, ok := kv["general.type"].(string); ok {
|
||||
return s
|
||||
}
|
||||
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return kv.u64("general.parameter_count")
|
||||
}
|
||||
|
||||
@@ -33,6 +33,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
assert.Len(t, tensors, inputLayerCount+1)
|
||||
err = WriteGGUF(f, KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.block_count": uint32(inputLayerCount),
|
||||
|
||||
60
llm/patches/08-pooling.diff
Normal file
60
llm/patches/08-pooling.diff
Normal file
@@ -0,0 +1,60 @@
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 721b8f4e..cfe7ac40 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -8420,14 +8420,14 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_mean() {
|
||||
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
|
||||
cb(lctx.inp_mean, "inp_mean", -1);
|
||||
ggml_set_input(lctx.inp_mean);
|
||||
return lctx.inp_mean;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_cls() {
|
||||
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
|
||||
cb(lctx.inp_cls, "inp_cls", -1);
|
||||
ggml_set_input(lctx.inp_cls);
|
||||
return lctx.inp_cls;
|
||||
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||||
|
||||
float * data = (float *) lctx.inp_mean->data;
|
||||
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
|
||||
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
|
||||
|
||||
std::vector<uint64_t> sum(n_tokens, 0);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
-
|
||||
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
|
||||
-
|
||||
sum[seq_id] += 1;
|
||||
}
|
||||
|
||||
- std::vector<float> div(n_tokens, 0.0f);
|
||||
- for (int i = 0; i < n_tokens; ++i) {
|
||||
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
|
||||
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
|
||||
const uint64_t s = sum[i];
|
||||
if (s > 0) {
|
||||
div[i] = 1.0f/float(s);
|
||||
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||||
|
||||
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||||
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||||
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
const llama_pos pos = batch.pos[i];
|
||||
-
|
||||
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
|
||||
-
|
||||
if (pos == 0) {
|
||||
data[seq_id] = i;
|
||||
}
|
||||
@@ -258,7 +258,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
params = append(params, "--mlock")
|
||||
}
|
||||
|
||||
if gpu.IsNUMA() && gpus[0].Library == "cpu" {
|
||||
if gpu.IsNUMA() {
|
||||
numaMode := "distribute"
|
||||
if runtime.GOOS == "linux" {
|
||||
if _, err := exec.LookPath("numactl"); err == nil {
|
||||
|
||||
@@ -449,6 +449,11 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
|
||||
|
||||
if r.MaxTokens != nil {
|
||||
options["num_predict"] = *r.MaxTokens
|
||||
|
||||
// Increase context size up to max_tokens
|
||||
if *r.MaxTokens > 2048 {
|
||||
options["num_ctx"] = *r.MaxTokens
|
||||
}
|
||||
}
|
||||
|
||||
if r.Temperature != nil {
|
||||
@@ -579,7 +584,7 @@ func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
|
||||
}
|
||||
|
||||
w.ResponseWriter.Header().Set("Content-Type", "application/json")
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(NewError(http.StatusInternalServerError, serr.Error()))
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(NewError(code, serr.Error()))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
@@ -1,52 +1,38 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"reflect"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
const (
|
||||
prefix = `data:image/jpeg;base64,`
|
||||
image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
|
||||
)
|
||||
|
||||
var False = false
|
||||
|
||||
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
|
||||
func capture(req any) gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
bodyBytes, _ := io.ReadAll(c.Request.Body)
|
||||
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
err := json.Unmarshal(bodyBytes, capturedRequest)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, "failed to unmarshal request")
|
||||
}
|
||||
body, _ := io.ReadAll(c.Request.Body)
|
||||
_ = json.Unmarshal(body, req)
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func TestChatMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
type test struct {
|
||||
name string
|
||||
body string
|
||||
req api.ChatRequest
|
||||
err ErrorResponse
|
||||
}
|
||||
|
||||
var capturedRequest *api.ChatRequest
|
||||
|
||||
testCases := []testCase{
|
||||
tests := []test{
|
||||
{
|
||||
name: "chat handler",
|
||||
body: `{
|
||||
@@ -67,7 +53,36 @@ func TestChatMiddleware(t *testing.T) {
|
||||
"temperature": 1.0,
|
||||
"top_p": 1.0,
|
||||
},
|
||||
Stream: &False,
|
||||
Stream: func() *bool { f := false; return &f }(),
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "chat handler with large context",
|
||||
body: `{
|
||||
"model": "test-model",
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello"}
|
||||
],
|
||||
"max_tokens": 16384
|
||||
}`,
|
||||
req: api.ChatRequest{
|
||||
Model: "test-model",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "Hello",
|
||||
},
|
||||
},
|
||||
Options: map[string]any{
|
||||
"temperature": 1.0,
|
||||
"top_p": 1.0,
|
||||
|
||||
// TODO (jmorganca): because we use a map[string]any for options
|
||||
// the values need to be floats for the test comparison to work.
|
||||
"num_predict": 16384.0,
|
||||
"num_ctx": 16384.0,
|
||||
},
|
||||
Stream: func() *bool { f := false; return &f }(),
|
||||
},
|
||||
},
|
||||
{
|
||||
@@ -85,7 +100,7 @@ func TestChatMiddleware(t *testing.T) {
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "` + prefix + image + `"
|
||||
"url": ""
|
||||
}
|
||||
}
|
||||
]
|
||||
@@ -103,7 +118,7 @@ func TestChatMiddleware(t *testing.T) {
|
||||
Role: "user",
|
||||
Images: []api.ImageData{
|
||||
func() []byte {
|
||||
img, _ := base64.StdEncoding.DecodeString(image)
|
||||
img, _ := base64.StdEncoding.DecodeString("ZGF0YQo=")
|
||||
return img
|
||||
}(),
|
||||
},
|
||||
@@ -113,7 +128,7 @@ func TestChatMiddleware(t *testing.T) {
|
||||
"temperature": 1.0,
|
||||
"top_p": 1.0,
|
||||
},
|
||||
Stream: &False,
|
||||
Stream: func() *bool { f := false; return &f }(),
|
||||
},
|
||||
},
|
||||
{
|
||||
@@ -151,7 +166,7 @@ func TestChatMiddleware(t *testing.T) {
|
||||
"temperature": 1.0,
|
||||
"top_p": 1.0,
|
||||
},
|
||||
Stream: &False,
|
||||
Stream: func() *bool { f := false; return &f }(),
|
||||
},
|
||||
},
|
||||
|
||||
@@ -172,52 +187,50 @@ func TestChatMiddleware(t *testing.T) {
|
||||
},
|
||||
}
|
||||
|
||||
endpoint := func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
router.Use(ChatMiddleware(), captureRequestMiddleware(&capturedRequest))
|
||||
router.Handle(http.MethodPost, "/api/chat", endpoint)
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
req, _ := http.NewRequest(http.MethodPost, "/api/chat", strings.NewReader(tc.body))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
for _, tt := range tests {
|
||||
var req api.ChatRequest
|
||||
|
||||
router := gin.New()
|
||||
router.Use(ChatMiddleware(), capture(&req))
|
||||
router.Handle(http.MethodPost, "/api/chat", func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
})
|
||||
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
r, _ := http.NewRequest(http.MethodPost, "/api/chat", strings.NewReader(tt.body))
|
||||
r.Header.Set("Content-Type", "application/json")
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
router.ServeHTTP(resp, r)
|
||||
|
||||
var errResp ErrorResponse
|
||||
var err ErrorResponse
|
||||
if resp.Code != http.StatusOK {
|
||||
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
|
||||
if err := json.Unmarshal(resp.Body.Bytes(), &err); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
|
||||
t.Fatal("requests did not match")
|
||||
|
||||
if diff := cmp.Diff(tt.req, req); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(tc.err, errResp) {
|
||||
t.Fatal("errors did not match")
|
||||
if diff := cmp.Diff(tt.err, err); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
capturedRequest = nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCompletionsMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
type test struct {
|
||||
name string
|
||||
body string
|
||||
req api.GenerateRequest
|
||||
err ErrorResponse
|
||||
}
|
||||
|
||||
var capturedRequest *api.GenerateRequest
|
||||
|
||||
testCases := []testCase{
|
||||
tests := []test{
|
||||
{
|
||||
name: "completions handler",
|
||||
body: `{
|
||||
@@ -238,7 +251,7 @@ func TestCompletionsMiddleware(t *testing.T) {
|
||||
"stop": []any{"\n", "stop"},
|
||||
},
|
||||
Suffix: "suffix",
|
||||
Stream: &False,
|
||||
Stream: func() *bool { f := false; return &f }(),
|
||||
},
|
||||
},
|
||||
{
|
||||
@@ -259,54 +272,51 @@ func TestCompletionsMiddleware(t *testing.T) {
|
||||
},
|
||||
}
|
||||
|
||||
endpoint := func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
router.Use(CompletionsMiddleware(), captureRequestMiddleware(&capturedRequest))
|
||||
router.Handle(http.MethodPost, "/api/generate", endpoint)
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var req api.GenerateRequest
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
router := gin.New()
|
||||
router.Use(CompletionsMiddleware(), capture(&req))
|
||||
router.Handle(http.MethodPost, "/api/generate", func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
})
|
||||
|
||||
r, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tt.body))
|
||||
r.Header.Set("Content-Type", "application/json")
|
||||
|
||||
res := httptest.NewRecorder()
|
||||
router.ServeHTTP(res, r)
|
||||
|
||||
var errResp ErrorResponse
|
||||
if resp.Code != http.StatusOK {
|
||||
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
|
||||
if res.Code != http.StatusOK {
|
||||
if err := json.Unmarshal(res.Body.Bytes(), &errResp); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
|
||||
t.Fatal("requests did not match")
|
||||
if !cmp.Equal(tt.req, req) {
|
||||
t.Fatalf("requests did not match:\n%s", cmp.Diff(tt.req, req))
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(tc.err, errResp) {
|
||||
t.Fatal("errors did not match")
|
||||
if !cmp.Equal(tt.err, errResp) {
|
||||
t.Fatalf("errors did not match:\n%s", cmp.Diff(tt.err, errResp))
|
||||
}
|
||||
|
||||
capturedRequest = nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestEmbeddingsMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
type test struct {
|
||||
name string
|
||||
body string
|
||||
req api.EmbedRequest
|
||||
err ErrorResponse
|
||||
}
|
||||
|
||||
var capturedRequest *api.EmbedRequest
|
||||
|
||||
testCases := []testCase{
|
||||
tests := []test{
|
||||
{
|
||||
name: "embed handler single input",
|
||||
body: `{
|
||||
@@ -348,17 +358,20 @@ func TestEmbeddingsMiddleware(t *testing.T) {
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
router.Use(EmbeddingsMiddleware(), captureRequestMiddleware(&capturedRequest))
|
||||
router.Handle(http.MethodPost, "/api/embed", endpoint)
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
req, _ := http.NewRequest(http.MethodPost, "/api/embed", strings.NewReader(tc.body))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
for _, tt := range tests {
|
||||
var req api.EmbedRequest
|
||||
|
||||
router := gin.New()
|
||||
router.Use(EmbeddingsMiddleware(), capture(&req))
|
||||
router.Handle(http.MethodPost, "/api/embed", endpoint)
|
||||
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
r, _ := http.NewRequest(http.MethodPost, "/api/embed", strings.NewReader(tt.body))
|
||||
r.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
router.ServeHTTP(resp, r)
|
||||
|
||||
var errResp ErrorResponse
|
||||
if resp.Code != http.StatusOK {
|
||||
@@ -366,31 +379,28 @@ func TestEmbeddingsMiddleware(t *testing.T) {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
if capturedRequest != nil && !reflect.DeepEqual(tc.req, *capturedRequest) {
|
||||
t.Fatal("requests did not match")
|
||||
if diff := cmp.Diff(tt.req, req); diff != "" {
|
||||
t.Errorf("request mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(tc.err, errResp) {
|
||||
t.Fatal("errors did not match")
|
||||
if diff := cmp.Diff(tt.err, errResp); diff != "" {
|
||||
t.Errorf("error mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
capturedRequest = nil
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestListMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
name string
|
||||
endpoint func(c *gin.Context)
|
||||
resp string
|
||||
type test struct {
|
||||
name string
|
||||
handler gin.HandlerFunc
|
||||
body string
|
||||
}
|
||||
|
||||
testCases := []testCase{
|
||||
tests := []test{
|
||||
{
|
||||
name: "list handler",
|
||||
endpoint: func(c *gin.Context) {
|
||||
handler: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ListResponse{
|
||||
Models: []api.ListModelResponse{
|
||||
{
|
||||
@@ -400,7 +410,7 @@ func TestListMiddleware(t *testing.T) {
|
||||
},
|
||||
})
|
||||
},
|
||||
resp: `{
|
||||
body: `{
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
@@ -414,10 +424,12 @@ func TestListMiddleware(t *testing.T) {
|
||||
},
|
||||
{
|
||||
name: "list handler empty output",
|
||||
endpoint: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ListResponse{})
|
||||
handler: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ListResponse{
|
||||
Models: []api.ListModelResponse{},
|
||||
})
|
||||
},
|
||||
resp: `{
|
||||
body: `{
|
||||
"object": "list",
|
||||
"data": null
|
||||
}`,
|
||||
@@ -426,17 +438,17 @@ func TestListMiddleware(t *testing.T) {
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
for _, tc := range testCases {
|
||||
for _, tt := range tests {
|
||||
router := gin.New()
|
||||
router.Use(ListMiddleware())
|
||||
router.Handle(http.MethodGet, "/api/tags", tc.endpoint)
|
||||
router.Handle(http.MethodGet, "/api/tags", tt.handler)
|
||||
req, _ := http.NewRequest(http.MethodGet, "/api/tags", nil)
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
var expected, actual map[string]any
|
||||
err := json.Unmarshal([]byte(tc.resp), &expected)
|
||||
err := json.Unmarshal([]byte(tt.body), &expected)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to unmarshal expected response: %v", err)
|
||||
}
|
||||
@@ -446,28 +458,28 @@ func TestListMiddleware(t *testing.T) {
|
||||
t.Fatalf("failed to unmarshal actual response: %v", err)
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(expected, actual) {
|
||||
t.Errorf("responses did not match\nExpected: %+v\nActual: %+v", expected, actual)
|
||||
if diff := cmp.Diff(expected, actual); diff != "" {
|
||||
t.Errorf("responses did not match (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestRetrieveMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
name string
|
||||
endpoint func(c *gin.Context)
|
||||
resp string
|
||||
type test struct {
|
||||
name string
|
||||
handler gin.HandlerFunc
|
||||
body string
|
||||
}
|
||||
|
||||
testCases := []testCase{
|
||||
tests := []test{
|
||||
{
|
||||
name: "retrieve handler",
|
||||
endpoint: func(c *gin.Context) {
|
||||
handler: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ShowResponse{
|
||||
ModifiedAt: time.Unix(int64(1686935002), 0).UTC(),
|
||||
})
|
||||
},
|
||||
resp: `{
|
||||
body: `{
|
||||
"id":"test-model",
|
||||
"object":"model",
|
||||
"created":1686935002,
|
||||
@@ -476,15 +488,15 @@ func TestRetrieveMiddleware(t *testing.T) {
|
||||
},
|
||||
{
|
||||
name: "retrieve handler error forwarding",
|
||||
endpoint: func(c *gin.Context) {
|
||||
handler: func(c *gin.Context) {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": "model not found"})
|
||||
},
|
||||
resp: `{
|
||||
body: `{
|
||||
"error": {
|
||||
"code": null,
|
||||
"message": "model not found",
|
||||
"param": null,
|
||||
"type": "api_error"
|
||||
"type": "invalid_request_error"
|
||||
}
|
||||
}`,
|
||||
},
|
||||
@@ -492,17 +504,17 @@ func TestRetrieveMiddleware(t *testing.T) {
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
for _, tc := range testCases {
|
||||
for _, tt := range tests {
|
||||
router := gin.New()
|
||||
router.Use(RetrieveMiddleware())
|
||||
router.Handle(http.MethodGet, "/api/show/:model", tc.endpoint)
|
||||
router.Handle(http.MethodGet, "/api/show/:model", tt.handler)
|
||||
req, _ := http.NewRequest(http.MethodGet, "/api/show/test-model", nil)
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
var expected, actual map[string]any
|
||||
err := json.Unmarshal([]byte(tc.resp), &expected)
|
||||
err := json.Unmarshal([]byte(tt.body), &expected)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to unmarshal expected response: %v", err)
|
||||
}
|
||||
@@ -512,8 +524,8 @@ func TestRetrieveMiddleware(t *testing.T) {
|
||||
t.Fatalf("failed to unmarshal actual response: %v", err)
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(expected, actual) {
|
||||
t.Errorf("responses did not match\nExpected: %+v\nActual: %+v", expected, actual)
|
||||
if diff := cmp.Diff(expected, actual); diff != "" {
|
||||
t.Errorf("responses did not match (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -24,14 +24,8 @@ for TARGETARCH in ${BUILD_ARCH}; do
|
||||
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
|
||||
rm -rf ./dist/linux-$TARGETARCH
|
||||
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH ./dist
|
||||
if echo ${TARGETARCH} | grep "amd64" > /dev/null; then
|
||||
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH-rocm ./dist
|
||||
fi
|
||||
docker rm builder-$TARGETARCH
|
||||
echo "Compressing final linux bundle..."
|
||||
rm -f ./dist/ollama-linux-$TARGETARCH.tgz
|
||||
(cd dist/linux-$TARGETARCH && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH.tgz )
|
||||
if [ -d dist/linux-$TARGETARCH-rocm ]; then
|
||||
(cd dist/linux-$TARGETARCH-rocm && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH-rocm.tgz )
|
||||
fi
|
||||
done
|
||||
|
||||
@@ -199,11 +199,6 @@ fi
|
||||
|
||||
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
|
||||
if [ $BUNDLE -ne 0 ]; then
|
||||
status "Downloading Linux ROCm ${ARCH} bundle"
|
||||
curl --fail --show-error --location --progress-bar \
|
||||
"https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \
|
||||
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
|
||||
|
||||
install_success
|
||||
status "AMD GPU ready."
|
||||
exit 0
|
||||
|
||||
@@ -369,14 +369,13 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
parameters := make(map[string]any)
|
||||
|
||||
var layers []Layer
|
||||
var baseLayers []*layerGGML
|
||||
for _, c := range modelfile.Commands {
|
||||
mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name)
|
||||
command := c.Name
|
||||
|
||||
switch command {
|
||||
switch c.Name {
|
||||
case "model", "adapter":
|
||||
if name := model.ParseName(c.Args); name.IsValid() && command == "model" {
|
||||
var baseLayers []*layerGGML
|
||||
if name := model.ParseName(c.Args); name.IsValid() {
|
||||
baseLayers, err = parseFromModel(ctx, name, fn)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -410,14 +409,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
}
|
||||
defer blob.Close()
|
||||
|
||||
baseLayers, err = parseFromFile(ctx, command, baseLayers, blob, digest, fn)
|
||||
baseLayers, err = parseFromFile(ctx, blob, digest, fn)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
} else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil {
|
||||
defer file.Close()
|
||||
|
||||
baseLayers, err = parseFromFile(ctx, command, baseLayers, file, "", fn)
|
||||
baseLayers, err = parseFromFile(ctx, file, "", fn)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -51,9 +51,6 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
|
||||
if err := os.Rename(temp.Name(), blob); err != nil {
|
||||
return Layer{}, err
|
||||
}
|
||||
if err := os.Chmod(blob, 0o644); err != nil {
|
||||
return Layer{}, err
|
||||
}
|
||||
}
|
||||
|
||||
return Layer{
|
||||
|
||||
@@ -81,7 +81,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
|
||||
return layers, nil
|
||||
}
|
||||
|
||||
func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
fi, err := f.Stat()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -108,38 +108,16 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
|
||||
defer t.Close()
|
||||
defer os.Remove(t.Name())
|
||||
|
||||
var layerType string
|
||||
|
||||
switch command {
|
||||
case "adapter":
|
||||
var baseModel *llm.GGML
|
||||
for _, l := range baseLayers {
|
||||
if l.GGML != nil {
|
||||
baseModel = l.GGML
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if baseModel == nil {
|
||||
return nil, fmt.Errorf("no base model specified for the adapter")
|
||||
}
|
||||
|
||||
if err := convert.ConvertAdapter(convert.NewZipReader(r, p, 32<<20), t, baseModel.KV()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layerType = "application/vnd.ollama.image.adapter"
|
||||
case "model":
|
||||
if err := convert.ConvertModel(convert.NewZipReader(r, p, 32<<20), t); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layerType = "application/vnd.ollama.image.model"
|
||||
fn(api.ProgressResponse{Status: "converting model"})
|
||||
if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if _, err := t.Seek(0, io.SeekStart); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
layer, err := NewLayer(t, layerType)
|
||||
layer, err := NewLayer(t, "application/vnd.ollama.image.model")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -161,7 +139,7 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
|
||||
return detectChatTemplate(layers)
|
||||
}
|
||||
|
||||
func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
sr := io.NewSectionReader(file, 0, 512)
|
||||
contentType, err := detectContentType(sr)
|
||||
if err != nil {
|
||||
@@ -172,7 +150,7 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
|
||||
case "gguf", "ggla":
|
||||
// noop
|
||||
case "application/zip":
|
||||
return parseFromZipFile(ctx, command, baseLayers, file, digest, fn)
|
||||
return parseFromZipFile(ctx, file, digest, fn)
|
||||
default:
|
||||
return nil, fmt.Errorf("unsupported content type: %s", contentType)
|
||||
}
|
||||
@@ -192,7 +170,7 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
|
||||
}
|
||||
|
||||
mediatype := "application/vnd.ollama.image.model"
|
||||
if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
|
||||
if ggml.Name() == "ggla" {
|
||||
mediatype = "application/vnd.ollama.image.adapter"
|
||||
} else if ggml.KV().Architecture() == "clip" {
|
||||
mediatype = "application/vnd.ollama.image.projector"
|
||||
|
||||
@@ -153,7 +153,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
|
||||
t.Fatalf("failed to seek to start: %v", err)
|
||||
}
|
||||
|
||||
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, "", func(api.ProgressResponse) {})
|
||||
layers, err := parseFromFile(context.Background(), file, "", func(api.ProgressResponse) {})
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse from file: %v", err)
|
||||
}
|
||||
@@ -166,7 +166,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
|
||||
t.Fatalf("failed to seek to start: %v", err)
|
||||
}
|
||||
|
||||
layers2, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, layers[0].Digest, func(api.ProgressResponse) {})
|
||||
layers2, err := parseFromFile(context.Background(), file, layers[0].Digest, func(api.ProgressResponse) {})
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse from file: %v", err)
|
||||
}
|
||||
@@ -206,7 +206,7 @@ func TestParseLayerFromCopy(t *testing.T) {
|
||||
t.Fatalf("failed to seek to start: %v", err)
|
||||
}
|
||||
|
||||
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file2, "", func(api.ProgressResponse) {})
|
||||
layers, err := parseFromFile(context.Background(), file2, "", func(api.ProgressResponse) {})
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse from file: %v", err)
|
||||
}
|
||||
|
||||
@@ -193,11 +193,6 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
break
|
||||
}
|
||||
|
||||
// Embedding models should always be loaded with parallel=1
|
||||
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
|
||||
numParallel = 1
|
||||
}
|
||||
|
||||
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
// simplifying assumption of defaultParallel when in CPU mode
|
||||
|
||||
@@ -117,6 +117,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
||||
|
||||
require.NoError(t, llm.WriteGGUF(f, llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.block_count": uint32(1),
|
||||
|
||||
Reference in New Issue
Block a user