mirror of
https://github.com/ollama/ollama.git
synced 2026-01-22 22:40:07 -05:00
Compare commits
2 Commits
pdevine/ne
...
v0.3.11
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
504a410f02 | ||
|
|
d05da29912 |
402
llm/patches/0008-solar-pro.patch
Normal file
402
llm/patches/0008-solar-pro.patch
Normal file
@@ -0,0 +1,402 @@
|
||||
From 8313ce5f43f11f3d84f352f97f3802792e90e18c Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Mon, 16 Sep 2024 15:53:16 -0700
|
||||
Subject: [PATCH] add solar-pro support
|
||||
|
||||
solar-pro introduces block skip connections where blocks are connected
|
||||
to other, non-sequential blocks with a scale multiple
|
||||
|
||||
this change adds 4 new keys to store the skip connections and one new
|
||||
tensor to store the scalar. the scalar is implemented a 1-dimensional
|
||||
tensor with 2 elements dervied from the model's bskcn_tv configuration.
|
||||
in general, the values are (bskcn_tv, 1 - bskcn_tv)
|
||||
---
|
||||
src/llama.cpp | 267 +++++++++++++++++++++++++++++++++++++++++++++++---
|
||||
1 file changed, 254 insertions(+), 13 deletions(-)
|
||||
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index f79bd782..b7771f53 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -213,6 +213,7 @@ enum llm_arch {
|
||||
LLM_ARCH_NEMOTRON,
|
||||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_RWKV6,
|
||||
+ LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -261,6 +262,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||||
{ LLM_ARCH_EXAONE, "exaone" },
|
||||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||||
+ { LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -314,6 +316,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_KV_LORA_RANK,
|
||||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
@@ -405,19 +408,20 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
|
||||
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
|
||||
|
||||
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||||
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||||
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||||
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||||
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||||
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||||
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||||
- { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||
- { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||
- { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
- { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||||
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||||
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||||
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||||
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||||
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||||
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||||
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||||
@@ -589,6 +593,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ENC_FFN_DOWN,
|
||||
LLM_TENSOR_ENC_FFN_UP,
|
||||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||||
+ LLM_TENSOR_BSKCN_TV,
|
||||
};
|
||||
|
||||
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
||||
@@ -1408,6 +1413,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_SOLAR,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_OUTPUT, "output" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -2237,6 +2260,7 @@ enum e_model {
|
||||
MODEL_15B,
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
+ MODEL_22B,
|
||||
MODEL_30B,
|
||||
MODEL_34B,
|
||||
MODEL_35B,
|
||||
@@ -2284,6 +2308,8 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
||||
+
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
@@ -2349,6 +2375,7 @@ struct llama_hparams {
|
||||
if (this->n_head_arr != other.n_head_arr) return true;
|
||||
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||||
if (this->n_ff_arr != other.n_ff_arr) return true;
|
||||
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
||||
|
||||
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
||||
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
||||
@@ -2455,6 +2482,14 @@ struct llama_hparams {
|
||||
return ssm_d_state * ssm_d_inner;
|
||||
}
|
||||
}
|
||||
+
|
||||
+ bool n_bskcn(uint32_t n, uint32_t il = 0) const {
|
||||
+ if (il < n_layer) {
|
||||
+ return n_bskcn_arr[n][il] > 0;
|
||||
+ }
|
||||
+
|
||||
+ GGML_ABORT("fatal error");
|
||||
+ }
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
@@ -2635,6 +2670,8 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_gate_scale;
|
||||
struct ggml_tensor * ffn_up_scale;
|
||||
struct ggml_tensor * ffn_down_scale;
|
||||
+
|
||||
+ struct ggml_tensor * bskcn_tv;
|
||||
};
|
||||
|
||||
// very similar to llama_batch,
|
||||
@@ -5937,6 +5974,21 @@ static void llm_load_hparams(
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
+ {
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ for (int i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
|
||||
+ auto & bskcn = hparams.n_bskcn_arr.at(i);
|
||||
+ bskcn.fill(0);
|
||||
+ ml.get_key_or_arr(::format(LLM_KV_NAMES.at(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION), LLM_ARCH_NAMES.at(ml.llm_kv.arch), i), bskcn, hparams.n_layer, false);
|
||||
+ }
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 64: model.type = e_model::MODEL_22B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ }
|
||||
+ }
|
||||
default: (void)0;
|
||||
}
|
||||
|
||||
@@ -8420,6 +8472,38 @@ static bool llm_load_tensors(
|
||||
}
|
||||
|
||||
} break;
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
+ {
|
||||
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
+
|
||||
+ // output
|
||||
+ {
|
||||
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+ }
|
||||
+
|
||||
+ for (int i = 0; i < n_layer; ++i) {
|
||||
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
+
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.bskcn_tv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_BSKCN_TV, "weight"), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
+
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ }
|
||||
+ } break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@@ -15173,6 +15257,158 @@ struct llm_build_context {
|
||||
|
||||
return gf;
|
||||
}
|
||||
+
|
||||
+ ggml_cgraph * build_solar() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
+
|
||||
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
+ int32_t n_tokens = this->n_tokens;
|
||||
+
|
||||
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
+
|
||||
+ struct ggml_tensor * cur;
|
||||
+ struct ggml_tensor * inpL;
|
||||
+
|
||||
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
+
|
||||
+ // inp_pos - contains the positions
|
||||
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
+
|
||||
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
+
|
||||
+ struct ggml_tensor * bskcn_1;
|
||||
+ struct ggml_tensor * bskcn_2;
|
||||
+
|
||||
+ for (int il = 0; il < n_layer; ++il) {
|
||||
+ struct ggml_tensor * inpSA = inpL;
|
||||
+
|
||||
+ if (hparams.n_bskcn(0, il)) {
|
||||
+ bskcn_1 = inpSA;
|
||||
+ }
|
||||
+
|
||||
+ if (hparams.n_bskcn(1, il)) {
|
||||
+ bskcn_2 = inpSA;
|
||||
+ }
|
||||
+
|
||||
+ if (hparams.n_bskcn(2, il)) {
|
||||
+ inpSA = ggml_add(
|
||||
+ ctx0,
|
||||
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
||||
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
||||
+ }
|
||||
+
|
||||
+ if (hparams.n_bskcn(3, il)) {
|
||||
+ inpSA = ggml_add(
|
||||
+ ctx0,
|
||||
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
||||
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
||||
+ }
|
||||
+
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ // self-attention
|
||||
+ {
|
||||
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
+
|
||||
+ // compute Q and K and RoPE them
|
||||
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+ if (model.layers[il].bq) {
|
||||
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+ if (model.layers[il].bk) {
|
||||
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+ if (model.layers[il].bv) {
|
||||
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+ }
|
||||
+
|
||||
+ Qcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow
|
||||
+ );
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Kcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow
|
||||
+ );
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
+ model.layers[il].wo, model.layers[il].bo,
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
+ }
|
||||
+
|
||||
+ if (il == n_layer - 1) {
|
||||
+ // skip computing output for unused tokens
|
||||
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
+ n_tokens = n_outputs;
|
||||
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
+ cb(ffn_inp, "ffn_inp", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+
|
||||
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
+ // lm_head
|
||||
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
};
|
||||
|
||||
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
||||
@@ -15423,6 +15659,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_rwkv6();
|
||||
} break;
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
+ {
|
||||
+ result = llm.build_solar();
|
||||
+ } break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
@@ -18503,6 +18743,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_ARCTIC:
|
||||
case LLM_ARCH_DEEPSEEK2:
|
||||
case LLM_ARCH_CHATGLM:
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
--
|
||||
2.46.0
|
||||
|
||||
@@ -272,6 +272,30 @@ func detectContentType(r io.Reader) (string, error) {
|
||||
return "unknown", nil
|
||||
}
|
||||
|
||||
func parseObjects(s string) []map[string]any {
|
||||
var objs []map[string]any
|
||||
for offset := 0; offset < len(s); {
|
||||
var obj map[string]any
|
||||
decoder := json.NewDecoder(strings.NewReader(s[offset:]))
|
||||
if err := decoder.Decode(&obj); errors.Is(err, io.EOF) || errors.Is(err, io.ErrUnexpectedEOF) {
|
||||
break
|
||||
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
|
||||
// skip over any syntax errors
|
||||
offset += int(syntax.Offset)
|
||||
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
|
||||
// skip over any unmarshalable types
|
||||
offset += int(unmarshalType.Offset)
|
||||
} else if err != nil {
|
||||
return nil
|
||||
} else {
|
||||
offset += int(decoder.InputOffset())
|
||||
objs = append(objs, obj)
|
||||
}
|
||||
}
|
||||
|
||||
return objs
|
||||
}
|
||||
|
||||
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
|
||||
// mxyng: this only really works if the input contains tool calls in some JSON format
|
||||
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
|
||||
@@ -304,16 +328,14 @@ func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
var kv map[string]any
|
||||
// execute the subtree with placeholders to identify the keys
|
||||
// trim any commands that might exist in the template
|
||||
if err := json.Unmarshal(bytes.TrimSuffix(b.Bytes(), []byte(",")), &kv); err != nil {
|
||||
templateObjects := parseObjects(b.String())
|
||||
if len(templateObjects) == 0 {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// find the keys that correspond to the name and arguments fields
|
||||
var name, arguments string
|
||||
for k, v := range kv {
|
||||
for k, v := range templateObjects[0] {
|
||||
switch v.(type) {
|
||||
case string:
|
||||
name = k
|
||||
@@ -326,43 +348,32 @@ func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
var objs []map[string]any
|
||||
for offset := 0; offset < len(s); {
|
||||
var obj map[string]any
|
||||
decoder := json.NewDecoder(strings.NewReader(s[offset:]))
|
||||
if err := decoder.Decode(&obj); errors.Is(err, io.EOF) || errors.Is(err, io.ErrUnexpectedEOF) {
|
||||
break
|
||||
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
|
||||
// skip over any syntax errors
|
||||
offset += int(syntax.Offset)
|
||||
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
|
||||
// skip over any unmarshalable types
|
||||
offset += int(unmarshalType.Offset)
|
||||
} else if err != nil {
|
||||
slog.Error("parseToolCalls", "error", err)
|
||||
return nil, false
|
||||
} else {
|
||||
offset += int(decoder.InputOffset())
|
||||
responseObjects := parseObjects(s)
|
||||
if len(responseObjects) == 0 {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// collect all nested objects
|
||||
var collect func(any) []map[string]any
|
||||
collect = func(obj any) (all []map[string]any) {
|
||||
switch o := obj.(type) {
|
||||
case map[string]any:
|
||||
all = append(all, o)
|
||||
for _, v := range o {
|
||||
all = append(all, collect(v)...)
|
||||
}
|
||||
case []any:
|
||||
for _, v := range o {
|
||||
all = append(all, collect(v)...)
|
||||
}
|
||||
}
|
||||
|
||||
return all
|
||||
// collect all nested objects
|
||||
var collect func(any) []map[string]any
|
||||
collect = func(obj any) (all []map[string]any) {
|
||||
switch o := obj.(type) {
|
||||
case map[string]any:
|
||||
all = append(all, o)
|
||||
for _, v := range o {
|
||||
all = append(all, collect(v)...)
|
||||
}
|
||||
case []any:
|
||||
for _, v := range o {
|
||||
all = append(all, collect(v)...)
|
||||
}
|
||||
objs = append(objs, collect(obj)...)
|
||||
}
|
||||
|
||||
return all
|
||||
}
|
||||
|
||||
var objs []map[string]any
|
||||
for _, p := range responseObjects {
|
||||
objs = append(objs, collect(p)...)
|
||||
}
|
||||
|
||||
var toolCalls []api.ToolCall
|
||||
|
||||
@@ -69,6 +69,7 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`,
|
||||
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
|
||||
</tool_call>`, true},
|
||||
{"xlam", `{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true},
|
||||
{"nemotron", `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]} </toolcall>`, true},
|
||||
}
|
||||
|
||||
var tools []api.Tool
|
||||
@@ -217,3 +218,45 @@ func TestParseLayerFromCopy(t *testing.T) {
|
||||
t.Fatalf("got %d != want 5", len(layers))
|
||||
}
|
||||
}
|
||||
|
||||
func TestParseObjects(t *testing.T) {
|
||||
tests := []struct {
|
||||
input string
|
||||
want []map[string]any
|
||||
}{
|
||||
{
|
||||
input: `[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`,
|
||||
want: []map[string]any{
|
||||
{"name": "get_current_weather", "arguments": map[string]any{"format": "fahrenheit", "location": "San Francisco, CA"}},
|
||||
{"name": "get_current_weather", "arguments": map[string]any{"format": "celsius", "location": "Toronto, Canada"}},
|
||||
},
|
||||
},
|
||||
{
|
||||
input: `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}} </toolcall>`,
|
||||
want: []map[string]any{
|
||||
{"name": "get_current_weather", "arguments": map[string]any{"format": "fahrenheit", "location": "San Francisco, CA"}},
|
||||
},
|
||||
},
|
||||
{
|
||||
input: `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}} </toolcall> <toolcall>{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, ON"}} </toolcall>`,
|
||||
want: []map[string]any{
|
||||
{"name": "get_current_weather", "arguments": map[string]any{"format": "fahrenheit", "location": "San Francisco, CA"}},
|
||||
{"name": "get_current_weather", "arguments": map[string]any{"format": "celsius", "location": "Toronto, ON"}},
|
||||
},
|
||||
},
|
||||
{
|
||||
input: `{"name": "get_current_weather", "arguments": `,
|
||||
want: nil,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range tests {
|
||||
t.Run(tc.input, func(t *testing.T) {
|
||||
got := parseObjects(tc.input)
|
||||
|
||||
if diff := cmp.Diff(got, tc.want); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
33
server/testdata/tools/nemotron.gotmpl
vendored
Normal file
33
server/testdata/tools/nemotron.gotmpl
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
{{- if (or .Tools .System) }}<extra_id_0>System
|
||||
{{ if .System }}{{ .System }}
|
||||
|
||||
|
||||
{{ end }}
|
||||
{{- if .Tools }}
|
||||
{{- range .Tools }}<tool> {{ . }} </tool>{{ end }}
|
||||
|
||||
|
||||
{{ end }}
|
||||
{{- end }}
|
||||
{{- range $i, $m := .Messages }}
|
||||
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
|
||||
{{- if eq .Role "user" }}<extra_id_1>User
|
||||
{{ .Content }}
|
||||
{{- if $last }}
|
||||
<extra_id_1>Assistant
|
||||
{{- end }}
|
||||
{{ else if eq .Role "tool" }}<extra_id_1>Tool
|
||||
{{ .Content }}
|
||||
{{- if $last }}
|
||||
<extra_id_1>Assistant
|
||||
{{- end }}
|
||||
{{ else if eq .Role "assistant" }}<extra_id_1>Assistant
|
||||
{{- if .ToolCalls }}
|
||||
{{ range .ToolCalls }}<toolcall> {"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}} </toolcall> {{ end }}
|
||||
{{ else }}
|
||||
{{ .Content }}
|
||||
{{- if not $last }}
|
||||
{{ end }}
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
18
server/testdata/tools/nemotron.out
vendored
Normal file
18
server/testdata/tools/nemotron.out
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
<extra_id_0>System
|
||||
You are a knowledgable assistant. You can answer questions and perform tasks.
|
||||
|
||||
|
||||
<tool> {"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}} </tool>
|
||||
|
||||
|
||||
<extra_id_1>User
|
||||
What's the weather like today in Paris?
|
||||
<extra_id_1>Assistant
|
||||
<toolcall> {"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}} </toolcall>
|
||||
<extra_id_1>Tool
|
||||
22
|
||||
<extra_id_1>Assistant
|
||||
The current temperature in Paris, France is 22 degrees Celsius.
|
||||
<extra_id_1>User
|
||||
What's the weather like today in San Francisco and Toronto?
|
||||
<extra_id_1>Assistant
|
||||
Reference in New Issue
Block a user