mirror of
https://github.com/ollama/ollama.git
synced 2025-12-24 08:10:54 -05:00
Compare commits
116 Commits
progress-f
...
brucemacd/
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
12a8b00b34 | ||
|
|
d8a5d96b98 | ||
|
|
757668c42f | ||
|
|
96ec8afd09 | ||
|
|
e093db92c4 | ||
|
|
a1cda80bcb | ||
|
|
4614fafae0 | ||
|
|
4100ed7bdd | ||
|
|
f52b2615ef | ||
|
|
25f9b152f9 | ||
|
|
6da8b6a879 | ||
|
|
0daaaef8c9 | ||
|
|
98272fbd58 | ||
|
|
b27e8f3f10 | ||
|
|
45df786f09 | ||
|
|
daaf42e4a4 | ||
|
|
2dc60d4620 | ||
|
|
b5312f30e8 | ||
|
|
26c2e0bd35 | ||
|
|
bf920883d5 | ||
|
|
58b9ec1f6b | ||
|
|
7bae7fa5ce | ||
|
|
764e199d67 | ||
|
|
bfce55db3d | ||
|
|
bab6f34dc0 | ||
|
|
0682dae027 | ||
|
|
1f6986e919 | ||
|
|
4289c74359 | ||
|
|
a7e63b82be | ||
|
|
b70fc4d51e | ||
|
|
e2252d0fc6 | ||
|
|
cae5d4d4ea | ||
|
|
05a01fdecb | ||
|
|
8fe6f69f28 | ||
|
|
1fdb351c37 | ||
|
|
7a01ad7614 | ||
|
|
55ab9f371a | ||
|
|
fefbf8f74b | ||
|
|
b428ddd796 | ||
|
|
ba7d31240e | ||
|
|
d25efe3954 | ||
|
|
36dfb906bb | ||
|
|
a6f0f908b9 | ||
|
|
3b1ddb2b3a | ||
|
|
1579c4f06d | ||
|
|
3519dd1c6e | ||
|
|
e41c4cbea7 | ||
|
|
ee048b76d4 | ||
|
|
af68d60a58 | ||
|
|
21aa666a1e | ||
|
|
ee141cc821 | ||
|
|
55e5776c44 | ||
|
|
854a9195f3 | ||
|
|
96a97adf9b | ||
|
|
e75c6126e9 | ||
|
|
cda6f5c66c | ||
|
|
bebb6823c0 | ||
|
|
31e472baa4 | ||
|
|
657685e85d | ||
|
|
a14912858e | ||
|
|
eed11ded30 | ||
|
|
b42aba40ed | ||
|
|
25885e5335 | ||
|
|
98d44fa39d | ||
|
|
2099e2d267 | ||
|
|
0c1041ad85 | ||
|
|
c245b0406f | ||
|
|
8b194b7520 | ||
|
|
3e8b8a1933 | ||
|
|
41dc280491 | ||
|
|
53d2990d9b | ||
|
|
e185c08ad9 | ||
|
|
2412adf42b | ||
|
|
be2ac1ed93 | ||
|
|
dc13813a03 | ||
|
|
d6af13efed | ||
|
|
a59f665235 | ||
|
|
688925aca9 | ||
|
|
76e903cf9d | ||
|
|
a5272130c4 | ||
|
|
d7d7e99662 | ||
|
|
2db96c18e7 | ||
|
|
e12af460ed | ||
|
|
3ad4bc8afe | ||
|
|
0d694793f2 | ||
|
|
e91ae3d47d | ||
|
|
6ecd7f64ba | ||
|
|
888855675e | ||
|
|
b16367b4b2 | ||
|
|
a499390648 | ||
|
|
4df98f3eb5 | ||
|
|
348b3e0983 | ||
|
|
0b7e1676eb | ||
|
|
314573bfe8 | ||
|
|
4604b10306 | ||
|
|
8c13cfa4dd | ||
|
|
7cfd4aee4d | ||
|
|
68bac1e0a6 | ||
|
|
f53f4198c3 | ||
|
|
2192a28eed | ||
|
|
5d81c1a184 | ||
|
|
5c5535c064 | ||
|
|
e5bcc51ae1 | ||
|
|
bd6a7d5e64 | ||
|
|
14b5a9a150 | ||
|
|
ba9ec3d05e | ||
|
|
7c168b08c9 | ||
|
|
3d4cc7833c | ||
|
|
351a85d9ea | ||
|
|
bda4ef6c56 | ||
|
|
1e438b237c | ||
|
|
d721a02e7d | ||
|
|
778603a818 | ||
|
|
3c874df46e | ||
|
|
d2eb226c91 | ||
|
|
5f8c03189e |
12
.github/workflows/release.yaml
vendored
12
.github/workflows/release.yaml
vendored
@@ -111,13 +111,13 @@ jobs:
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'CUDA 12'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
|
||||
cuda-version: '12.4'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
|
||||
cuda-version: '12.8'
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'ROCm 6'
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||
rocm-version: '6.1'
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
rocm-version: '6.2'
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
env:
|
||||
@@ -160,6 +160,10 @@ jobs:
|
||||
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: matrix.preset == 'CPU'
|
||||
run: |
|
||||
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||
uses: actions/cache/save@v4
|
||||
with:
|
||||
|
||||
88
.github/workflows/test.yaml
vendored
88
.github/workflows/test.yaml
vendored
@@ -78,10 +78,10 @@ jobs:
|
||||
include:
|
||||
- preset: CPU
|
||||
- preset: CUDA
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
||||
- preset: ROCm
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010'
|
||||
runs-on: windows
|
||||
steps:
|
||||
@@ -102,7 +102,7 @@ jobs:
|
||||
$ErrorActionPreference = "Stop"
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||
@@ -140,6 +140,13 @@ jobs:
|
||||
env:
|
||||
CMAKE_GENERATOR: Ninja
|
||||
|
||||
go_mod_tidy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: check that 'go mod tidy' is clean
|
||||
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
|
||||
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -147,15 +154,82 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
CGO_ENABLED: '1'
|
||||
GOEXPERIMENT: 'synctest'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
- name: checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||
|
||||
- name: cache restore
|
||||
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||
with:
|
||||
# Note: unlike the other setups, this is only grabbing the mod download
|
||||
# cache, rather than the whole mod directory, as the download cache
|
||||
# contains zips that can be unpacked in parallel faster than they can be
|
||||
# fetched and extracted by tar
|
||||
path: |
|
||||
~/.cache/go-build
|
||||
~/go/pkg/mod/cache
|
||||
~\AppData\Local\go-build
|
||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||
# cached changes (e.g. path above changes).
|
||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||
restore-keys: |
|
||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
|
||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
|
||||
|
||||
- name: Setup Go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
# The caching strategy of setup-go is less than ideal, and wastes
|
||||
# time by not saving artifacts due to small failures like the linter
|
||||
# complaining, etc. This means subsequent have to rebuild their world
|
||||
# again until all checks pass. For instance, if you mispell a word,
|
||||
# you're punished until you fix it. This is more hostile than
|
||||
# helpful.
|
||||
cache: false
|
||||
|
||||
go-version-file: go.mod
|
||||
|
||||
# It is tempting to run this in a platform independent way, but the past
|
||||
# shows this codebase will see introductions of platform specific code
|
||||
# generation, and so we need to check this per platform to ensure we
|
||||
# don't abuse go generate on specific platforms.
|
||||
- name: check that 'go generate' is clean
|
||||
if: always()
|
||||
run: |
|
||||
go generate ./...
|
||||
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
|
||||
|
||||
- name: go test
|
||||
if: always()
|
||||
run: go test -count=1 -benchtime=1x ./...
|
||||
|
||||
# TODO(bmizerany): replace this heavy tool with just the
|
||||
# tools/checks/binaries we want and then make them all run in parallel
|
||||
# across jobs, not on a single tiny vm on Github Actions.
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
with:
|
||||
args: --timeout 10m0s -v
|
||||
- run: go test ./...
|
||||
|
||||
- name: cache save
|
||||
# Always save the cache, even if the job fails. The artifacts produced
|
||||
# during the building of test binaries are not all for naught. They can
|
||||
# be used to speed up subsequent runs.
|
||||
if: always()
|
||||
|
||||
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||
with:
|
||||
# Note: unlike the other setups, this is only grabbing the mod download
|
||||
# cache, rather than the whole mod directory, as the download cache
|
||||
# contains zips that can be unpacked in parallel faster than they can be
|
||||
# fetched and extracted by tar
|
||||
path: |
|
||||
~/.cache/go-build
|
||||
~/go/pkg/mod/cache
|
||||
~\AppData\Local\go-build
|
||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||
# cached changes (e.g. path above changes).
|
||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||
|
||||
patches:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -5,7 +5,6 @@
|
||||
.swp
|
||||
dist
|
||||
build
|
||||
ollama
|
||||
.cache
|
||||
*.exe
|
||||
.idea
|
||||
@@ -14,3 +13,4 @@ test_data
|
||||
__debug_bin*
|
||||
llama/build
|
||||
llama/vendor
|
||||
/ollama
|
||||
|
||||
@@ -6,8 +6,6 @@ linters:
|
||||
- bidichk
|
||||
- bodyclose
|
||||
- containedctx
|
||||
- contextcheck
|
||||
- errcheck
|
||||
- gocheckcompilerdirectives
|
||||
- gofmt
|
||||
- gofumpt
|
||||
@@ -23,10 +21,11 @@ linters:
|
||||
- staticcheck
|
||||
- tenv
|
||||
- unconvert
|
||||
- unused
|
||||
- usestdlibvars
|
||||
- wastedassign
|
||||
- whitespace
|
||||
disable:
|
||||
- usestdlibvars
|
||||
- errcheck
|
||||
linters-settings:
|
||||
staticcheck:
|
||||
checks:
|
||||
@@ -39,5 +38,4 @@ severity:
|
||||
- gofmt
|
||||
- goimports
|
||||
- intrange
|
||||
- usestdlibvars
|
||||
severity: info
|
||||
|
||||
@@ -23,6 +23,7 @@ set(GGML_SCHED_MAX_COPIES 4)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||
set(GGML_CUDA_GRAPHS ON)
|
||||
set(GGML_CUDA_FA ON)
|
||||
|
||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||
@@ -105,9 +106,11 @@ if(CMAKE_HIP_COMPILER)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||
|
||||
if (WIN32)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||
|
||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||
install(TARGETS ggml-hip
|
||||
RUNTIME_DEPENDENCIES
|
||||
|
||||
@@ -21,14 +21,14 @@
|
||||
"name": "CUDA 11",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;62;70;72;75;80;86"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120"
|
||||
}
|
||||
},
|
||||
{
|
||||
|
||||
@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
||||
|
||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||
|
||||
## Pull requests
|
||||
|
||||
### Ideal issues
|
||||
|
||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
|
||||
* Changes that add significant friction to the user experience
|
||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||
|
||||
### Best practices
|
||||
## Proposing a (non-trivial) change
|
||||
|
||||
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
||||
* Tests: please add test coverage to changes where possible.
|
||||
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
||||
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||
> documentation update. If you are unsure, please ask us on our [Discord
|
||||
> server](https://discord.gg/ollama).
|
||||
|
||||
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||
get feedback from the maintainers. This helps us understand the context of the
|
||||
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||
work or you from spending time on a change that we may not be able to accept.
|
||||
|
||||
Tips for proposals:
|
||||
|
||||
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||
* Explain why the change is important.
|
||||
* Explain how the change will be used.
|
||||
* Explain how the change will be tested.
|
||||
|
||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||
see if the change were accepted.
|
||||
|
||||
## Pull requests
|
||||
|
||||
**Commit messages**
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
file in the root directory may use the file name.
|
||||
|
||||
The short description should start with a lowercase letter and be a
|
||||
continuation of the sentence:
|
||||
|
||||
"This changes Ollama to..."
|
||||
|
||||
Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||
|
||||
Bad Examples:
|
||||
|
||||
feat: add more emoji
|
||||
fix: was not using famous web framework
|
||||
chore: generify code
|
||||
|
||||
**Tests**
|
||||
|
||||
Please include tests. Strive to test behavior, not implementation.
|
||||
|
||||
**New dependencies**
|
||||
|
||||
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||
please explain why it is necessary and what other ways you attempted that
|
||||
did not work without it.
|
||||
|
||||
## Need help?
|
||||
|
||||
|
||||
43
Dockerfile
43
Dockerfile
@@ -2,22 +2,24 @@
|
||||
|
||||
ARG FLAVOR=${TARGETARCH}
|
||||
|
||||
ARG ROCMVERSION=6.1.2
|
||||
ARG ROCMVERSION=6.3.3
|
||||
ARG JETPACK5VERSION=r35.4.1
|
||||
ARG JETPACK6VERSION=r36.2.0
|
||||
ARG JETPACK6VERSION=r36.4.0
|
||||
ARG CMAKEVERSION=3.31.2
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCMVERSION}-complete AS base-amd64
|
||||
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
|
||||
&& yum install -y yum-utils devtoolset-10-gcc devtoolset-10-gcc-c++ \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo \
|
||||
&& curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /usr/local/bin --strip-components 1
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:/opt/rh/devtoolset-11/root/usr/bin:$PATH
|
||||
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
||||
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
||||
RUN yum install -y yum-utils \
|
||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS base-arm64
|
||||
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
||||
# install epel-release for ccache
|
||||
RUN yum install -y yum-utils epel-release \
|
||||
&& yum install -y clang ccache \
|
||||
&& dnf install -y clang ccache \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
|
||||
ENV CC=clang CXX=clang++
|
||||
|
||||
@@ -29,9 +31,8 @@ COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
ENV LDFLAGS=-s
|
||||
|
||||
FROM base AS cpu
|
||||
# amd64 uses gcc which requires devtoolset-11 for AVX extensions while arm64 uses clang
|
||||
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
|
||||
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
|
||||
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CPU' \
|
||||
&& cmake --build --parallel --preset 'CPU' \
|
||||
@@ -39,7 +40,7 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
|
||||
FROM base AS cuda-11
|
||||
ARG CUDA11VERSION=11.3
|
||||
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 11' \
|
||||
@@ -47,8 +48,8 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS cuda-12
|
||||
ARG CUDA12VERSION=12.4
|
||||
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ARG CUDA12VERSION=12.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 12' \
|
||||
@@ -56,6 +57,7 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS rocm-6
|
||||
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'ROCm 6' \
|
||||
&& cmake --build --parallel --preset 'ROCm 6' \
|
||||
@@ -84,10 +86,11 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS build
|
||||
ARG GOVERSION=1.23.4
|
||||
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY go.mod go.sum .
|
||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
RUN go mod download
|
||||
COPY . .
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
@@ -104,7 +107,7 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
|
||||
|
||||
FROM --platform=linux/arm64 scratch AS rocm
|
||||
FROM scratch AS rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||
|
||||
FROM ${FLAVOR} AS archive
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
|
||||
FETCH_HEAD=d7cfe1ffe0f435d0048a6058d529daf76e072d9c
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
|
||||
21
README.md
21
README.md
@@ -1,5 +1,5 @@
|
||||
<div align="center">
|
||||
<a href="https://ollama.com" />
|
||||
<a href="https://ollama.com">
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</a>
|
||||
</div>
|
||||
@@ -54,6 +54,7 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
@@ -64,7 +65,7 @@ Here are some example models that can be downloaded:
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
@@ -75,7 +76,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -275,6 +276,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Web & Desktop
|
||||
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [Hollama](https://github.com/fmaclen/hollama)
|
||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||
@@ -382,6 +384,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
|
||||
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -425,6 +434,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
|
||||
### Database
|
||||
@@ -498,13 +508,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||
|
||||
### Mobile
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
@@ -550,6 +564,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
|
||||
### Supported backends
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
// repository].
|
||||
//
|
||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||
package api
|
||||
|
||||
import (
|
||||
@@ -132,7 +132,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
const maxBufferSize = 512 * format.KiloByte
|
||||
|
||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||
var buf *bytes.Buffer
|
||||
var buf io.Reader
|
||||
if data != nil {
|
||||
bts, err := json.Marshal(data)
|
||||
if err != nil {
|
||||
|
||||
@@ -1,6 +1,13 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"net/url"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
@@ -43,3 +50,206 @@ func TestClientFromEnvironment(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// testError represents an internal error type with status code and message
|
||||
// this is used since the error response from the server is not a standard error struct
|
||||
type testError struct {
|
||||
message string
|
||||
statusCode int
|
||||
}
|
||||
|
||||
func (e testError) Error() string {
|
||||
return e.message
|
||||
}
|
||||
|
||||
func TestClientStream(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
responses []any
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
responses: []any{
|
||||
testError{
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
},
|
||||
wantErr: "test error message",
|
||||
},
|
||||
{
|
||||
name: "error after successful chunks, ok response",
|
||||
responses: []any{
|
||||
ChatResponse{Message: Message{Content: "partial response 1"}},
|
||||
ChatResponse{Message: Message{Content: "partial response 2"}},
|
||||
testError{
|
||||
message: "mid-stream error",
|
||||
statusCode: http.StatusOK,
|
||||
},
|
||||
},
|
||||
wantErr: "mid-stream error",
|
||||
},
|
||||
{
|
||||
name: "successful stream completion",
|
||||
responses: []any{
|
||||
ChatResponse{Message: Message{Content: "chunk 1"}},
|
||||
ChatResponse{Message: Message{Content: "chunk 2"}},
|
||||
ChatResponse{
|
||||
Message: Message{Content: "final chunk"},
|
||||
Done: true,
|
||||
DoneReason: "stop",
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
flusher, ok := w.(http.Flusher)
|
||||
if !ok {
|
||||
t.Fatal("expected http.Flusher")
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/x-ndjson")
|
||||
|
||||
for _, resp := range tc.responses {
|
||||
if errResp, ok := resp.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
flusher.Flush()
|
||||
}
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var receivedChunks []ChatResponse
|
||||
err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
var resp ChatResponse
|
||||
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||
}
|
||||
receivedChunks = append(receivedChunks, resp)
|
||||
return nil
|
||||
})
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
t.Fatal("expected error but got nil")
|
||||
}
|
||||
if !strings.Contains(err.Error(), tc.wantErr) {
|
||||
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
|
||||
}
|
||||
return
|
||||
}
|
||||
if err != nil {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestClientDo(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
response any
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
response: testError{
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
wantErr: "test error message",
|
||||
},
|
||||
{
|
||||
name: "server error response",
|
||||
response: testError{
|
||||
message: "internal error",
|
||||
statusCode: http.StatusInternalServerError,
|
||||
},
|
||||
wantErr: "internal error",
|
||||
},
|
||||
{
|
||||
name: "successful response",
|
||||
response: struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}{
|
||||
ID: "msg_123",
|
||||
Success: true,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if errResp, ok := tc.response.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var resp struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}
|
||||
err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
t.Fatalf("got nil, want error %q", tc.wantErr)
|
||||
}
|
||||
if err.Error() != tc.wantErr {
|
||||
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("got error %q, want nil", err)
|
||||
}
|
||||
|
||||
if expectedResp, ok := tc.response.(struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}); ok {
|
||||
if resp.ID != expectedResp.ID {
|
||||
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
|
||||
}
|
||||
if resp.Success != expectedResp.Success {
|
||||
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
10
api/types.go
10
api/types.go
@@ -10,6 +10,8 @@ import (
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
@@ -359,9 +361,9 @@ type CopyRequest struct {
|
||||
// PullRequest is the request passed to [Client.Pull].
|
||||
type PullRequest struct {
|
||||
Model string `json:"model"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||
Username string `json:"username"` // Deprecated: ignored
|
||||
Password string `json:"password"` // Deprecated: ignored
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
@@ -609,7 +611,7 @@ func DefaultOptions() Options {
|
||||
|
||||
Runner: Runner{
|
||||
// options set when the model is loaded
|
||||
NumCtx: 2048,
|
||||
NumCtx: int(envconfig.ContextLength()),
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumThread: 0, // let the runtime decide
|
||||
|
||||
17
cmd/cmd.go
17
cmd/cmd.go
@@ -34,7 +34,6 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/runner"
|
||||
@@ -256,6 +255,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||
}
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -338,10 +338,16 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO(jessegross): We should either find another way to know if this is
|
||||
// a vision model or remove the logic. Also consider that other modalities will
|
||||
// need different behavior anyways.
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
|
||||
if len(info.ProjectorInfo) != 0 {
|
||||
opts.MultiModal = true
|
||||
}
|
||||
for k := range info.ModelInfo {
|
||||
if strings.Contains(k, ".vision.") {
|
||||
opts.MultiModal = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@@ -1274,7 +1280,6 @@ func NewCLI() *cobra.Command {
|
||||
|
||||
runnerCmd := &cobra.Command{
|
||||
Use: "runner",
|
||||
Short: llama.PrintSystemInfo(),
|
||||
Hidden: true,
|
||||
RunE: func(cmd *cobra.Command, args []string) error {
|
||||
return runner.Execute(os.Args[1:])
|
||||
|
||||
@@ -10,6 +10,7 @@ import (
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/spf13/cobra"
|
||||
@@ -490,6 +491,96 @@ func TestPushHandler(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestListHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
args []string
|
||||
serverResponse []api.ListModelResponse
|
||||
expectedError string
|
||||
expectedOutput string
|
||||
}{
|
||||
{
|
||||
name: "list all models",
|
||||
args: []string{},
|
||||
serverResponse: []api.ListModelResponse{
|
||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
|
||||
},
|
||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
|
||||
"model2 sha256:def45 2.0 KB 2 days ago \n",
|
||||
},
|
||||
{
|
||||
name: "filter models by prefix",
|
||||
args: []string{"model1"},
|
||||
serverResponse: []api.ListModelResponse{
|
||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
},
|
||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
|
||||
},
|
||||
{
|
||||
name: "server error",
|
||||
args: []string{},
|
||||
expectedError: "server error",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
|
||||
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
|
||||
http.Error(w, "not found", http.StatusNotFound)
|
||||
return
|
||||
}
|
||||
|
||||
if tt.expectedError != "" {
|
||||
http.Error(w, tt.expectedError, http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
response := api.ListResponse{Models: tt.serverResponse}
|
||||
if err := json.NewEncoder(w).Encode(response); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}))
|
||||
defer mockServer.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Capture stdout
|
||||
oldStdout := os.Stdout
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stdout = w
|
||||
|
||||
err := ListHandler(cmd, tt.args)
|
||||
|
||||
// Restore stdout and get output
|
||||
w.Close()
|
||||
os.Stdout = oldStdout
|
||||
output, _ := io.ReadAll(r)
|
||||
|
||||
if tt.expectedError == "" {
|
||||
if err != nil {
|
||||
t.Errorf("expected no error, got %v", err)
|
||||
}
|
||||
if got := string(output); got != tt.expectedOutput {
|
||||
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
|
||||
}
|
||||
} else {
|
||||
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
|
||||
@@ -57,7 +57,8 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
|
||||
}
|
||||
}
|
||||
|
||||
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
|
||||
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
return "v11"
|
||||
}
|
||||
return "v12"
|
||||
|
||||
@@ -41,20 +41,11 @@ Install prerequisites:
|
||||
- [CMake](https://cmake.org/download/)
|
||||
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
|
||||
- (Optional) AMD GPU support
|
||||
- [ROCm](https://rocm.github.io/install.html)
|
||||
- [ROCm](https://rocm.docs.amd.com/en/latest/)
|
||||
- [Ninja](https://github.com/ninja-build/ninja/releases)
|
||||
- (Optional) NVIDIA GPU support
|
||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure prerequisites are in `PATH` before running CMake.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> ROCm is not compatible with Visual Studio CMake generators. Use `-GNinja` when configuring the project.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> CUDA is only compatible with Visual Studio CMake generators.
|
||||
|
||||
Then, configure and build the project:
|
||||
|
||||
```shell
|
||||
@@ -62,6 +53,14 @@ cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Building for ROCm requires additional flags:
|
||||
> ```
|
||||
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
|
||||
> cmake --build build --config Release
|
||||
> ```
|
||||
|
||||
|
||||
Lastly, run Ollama:
|
||||
|
||||
```shell
|
||||
@@ -70,7 +69,7 @@ go run . serve
|
||||
|
||||
## Windows (ARM)
|
||||
|
||||
Windows ARM does not support additional acceleration libraries at this time.
|
||||
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
|
||||
|
||||
## Linux
|
||||
|
||||
@@ -119,6 +118,35 @@ To run tests, use `go test`:
|
||||
go test ./...
|
||||
```
|
||||
|
||||
> NOTE: In rare cirumstances, you may nedd to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
> test failures resulting from your change(s), if any, locally, but CI will
|
||||
> break.
|
||||
>
|
||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||
> failures before pushing.
|
||||
>
|
||||
> To enable the "synctest" package for testing, run the following command:
|
||||
>
|
||||
> ```shell
|
||||
> GOEXPERIMENT=synctest go test ./...
|
||||
> ```
|
||||
>
|
||||
> If you wish to enable synctest for all go commands, you can set the
|
||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||
>
|
||||
> ```shell
|
||||
> go env -w GOEXPERIMENT=synctest
|
||||
> ```
|
||||
>
|
||||
> Which will enable the "synctest" package for all go commands without needing
|
||||
> to set it for all shell sessions.
|
||||
>
|
||||
> The synctest package is not required for production builds.
|
||||
|
||||
## Library detection
|
||||
|
||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||
@@ -128,4 +156,4 @@ Ollama looks for acceleration libraries in the following paths relative to the `
|
||||
* `.` (macOS)
|
||||
* `build/lib/ollama` (for development)
|
||||
|
||||
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
||||
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
||||
|
||||
@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
|
||||
@@ -73,6 +73,10 @@ curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
|
||||
## Linux docker
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
## NVIDIA GPU Discovery
|
||||
|
||||
When Ollama starts up, it takes inventory of the GPUs present in the system to determine compatibility and how much VRAM is available. Sometimes this discovery can fail to find your GPUs. In general, running the latest driver will yield the best results.
|
||||
@@ -100,8 +104,6 @@ On linux, AMD GPU access typically requires `video` and/or `render` group member
|
||||
|
||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
|
||||
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
|
||||
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
|
||||
|
||||
@@ -81,9 +81,11 @@ help you keep up to date.
|
||||
|
||||
If you'd like to install or integrate Ollama as a service, a standalone
|
||||
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
||||
and GPU library dependencies for Nvidia and AMD. This allows for embedding
|
||||
Ollama in existing applications, or running it as a system service via `ollama
|
||||
serve` with tools such as [NSSM](https://nssm.cc/).
|
||||
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
|
||||
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
|
||||
same directory. This allows for embedding Ollama in existing applications, or
|
||||
running it as a system service via `ollama serve` with tools such as
|
||||
[NSSM](https://nssm.cc/).
|
||||
|
||||
> [!NOTE]
|
||||
> If you are upgrading from a prior version, you should remove the old directories first.
|
||||
|
||||
@@ -53,8 +53,8 @@ func Host() *url.URL {
|
||||
}
|
||||
}
|
||||
|
||||
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
|
||||
func Origins() (origins []string) {
|
||||
// AllowedOrigins returns a list of allowed origins. AllowedOrigins can be configured via the OLLAMA_ORIGINS environment variable.
|
||||
func AllowedOrigins() (origins []string) {
|
||||
if s := Var("OLLAMA_ORIGINS"); s != "" {
|
||||
origins = strings.Split(s, ",")
|
||||
}
|
||||
@@ -73,6 +73,7 @@ func Origins() (origins []string) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
)
|
||||
|
||||
return origins
|
||||
@@ -167,6 +168,8 @@ var (
|
||||
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
|
||||
// Enable the new Ollama engine
|
||||
NewEngine = Bool("OLLAMA_NEW_ENGINE")
|
||||
// ContextLength sets the default context length
|
||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 2048)
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
@@ -249,9 +252,10 @@ func AsMap() map[string]EnvVar {
|
||||
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
|
||||
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
|
||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 2048)"},
|
||||
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
|
||||
|
||||
// Informational
|
||||
|
||||
@@ -69,6 +69,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://10.0.0.1", []string{
|
||||
"http://10.0.0.1",
|
||||
@@ -88,6 +89,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||
"http://172.16.0.1",
|
||||
@@ -108,6 +110,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://totally.safe,http://definitely.legit", []string{
|
||||
"http://totally.safe",
|
||||
@@ -128,13 +131,14 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.value, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_ORIGINS", tt.value)
|
||||
|
||||
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
|
||||
if diff := cmp.Diff(AllowedOrigins(), tt.expect); diff != "" {
|
||||
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
|
||||
}
|
||||
})
|
||||
@@ -272,3 +276,19 @@ func TestVar(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestContextLength(t *testing.T) {
|
||||
cases := map[string]uint{
|
||||
"": 2048,
|
||||
"4096": 4096,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_CONTEXT_LENGTH", k)
|
||||
if i := ContextLength(); i != v {
|
||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -100,6 +100,10 @@ func (kv KV) Float(key string, defaultValue ...float32) float32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
}
|
||||
|
||||
func (kv KV) Bool(key string, defaultValue ...bool) bool {
|
||||
return keyValue(kv, key, append(defaultValue, false)...)
|
||||
}
|
||||
|
||||
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]string, r.size)
|
||||
@@ -120,7 +124,7 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
||||
return s
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
|
||||
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
||||
key = kv.Architecture() + "." + key
|
||||
}
|
||||
@@ -207,11 +211,26 @@ func (t Tensor) block() (n int) {
|
||||
|
||||
func (t Tensor) blockSize() uint64 {
|
||||
switch t.Kind {
|
||||
case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
|
||||
case
|
||||
0, // F32
|
||||
1, // F16
|
||||
24, // I8
|
||||
25, // I16
|
||||
26, // I32
|
||||
27, // I64
|
||||
28, // F64
|
||||
30: // BF16
|
||||
return 1
|
||||
case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
|
||||
case
|
||||
2, // Q4_0
|
||||
3, // Q4_1
|
||||
6, // Q5_0
|
||||
7, // Q5_1
|
||||
8, // Q8_0
|
||||
9, // Q8_1
|
||||
20: // IQ4_NL
|
||||
return 32
|
||||
default: // All others
|
||||
default:
|
||||
return 256
|
||||
}
|
||||
}
|
||||
@@ -235,7 +254,7 @@ func (t Tensor) typeSize() uint64 {
|
||||
case 8: // Q8_0
|
||||
return 2 + blockSize
|
||||
case 9: // Q8_1
|
||||
return 4 + 4 + blockSize
|
||||
return 2 + 2 + blockSize
|
||||
case 10: // Q2_K
|
||||
return blockSize/16 + blockSize/4 + 2 + 2
|
||||
case 11: // Q3_K
|
||||
@@ -247,7 +266,7 @@ func (t Tensor) typeSize() uint64 {
|
||||
case 14: // Q6_K
|
||||
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
||||
case 15: // Q8_K
|
||||
return 2 + blockSize + 2*blockSize/16
|
||||
return 4 + blockSize + 2*blockSize/16
|
||||
case 16: // IQ2_XXS
|
||||
return 2 + 2*blockSize/8
|
||||
case 17: // IQ2_XS
|
||||
@@ -276,6 +295,8 @@ func (t Tensor) typeSize() uint64 {
|
||||
return 8
|
||||
case 29: // IQ1_M
|
||||
return blockSize/8 + blockSize/16 + blockSize/32
|
||||
case 30: // BF16
|
||||
return 2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
@@ -544,6 +565,43 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
return
|
||||
}
|
||||
|
||||
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
switch llm.KV().Architecture() {
|
||||
case "mllama":
|
||||
for _, layer := range llm.Tensors().GroupLayers()["v"] {
|
||||
weights += layer.Size()
|
||||
}
|
||||
|
||||
kv := func(n string) uint64 {
|
||||
if v, ok := llm.KV()["mllama.vision."+n].(uint32); ok {
|
||||
return uint64(v)
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
imageSize := kv("image_size")
|
||||
|
||||
maxNumTiles := kv("max_num_tiles")
|
||||
embeddingLength := kv("embedding_length")
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*kv("num_channels")*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
}
|
||||
return weights, graphSize
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
||||
|
||||
@@ -3,6 +3,7 @@ package ggml
|
||||
import (
|
||||
"maps"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
@@ -157,3 +158,55 @@ func TestTensorLayers(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// ref: https://github.com/ggml-org/llama.cpp/blob/a82c9e7c23ef6db48cebfa194dc9cebbc4ac3552/ggml/src/ggml.c#L572
|
||||
func TestTensorTypes(t *testing.T) {
|
||||
cases := []struct {
|
||||
kind uint32
|
||||
blockSize uint64
|
||||
typeSize uint64
|
||||
}{
|
||||
{0, 1, 4},
|
||||
{1, 1, 2},
|
||||
{2, 32, 18},
|
||||
{3, 32, 20},
|
||||
{6, 32, 22},
|
||||
{7, 32, 24},
|
||||
{8, 32, 34},
|
||||
{9, 32, 36},
|
||||
{10, 256, 84},
|
||||
{11, 256, 110},
|
||||
{12, 256, 144},
|
||||
{13, 256, 176},
|
||||
{14, 256, 210},
|
||||
{15, 256, 292},
|
||||
{16, 256, 66},
|
||||
{17, 256, 74},
|
||||
{18, 256, 98},
|
||||
{19, 256, 50},
|
||||
{20, 32, 18},
|
||||
{21, 256, 110},
|
||||
{22, 256, 82},
|
||||
{23, 256, 136},
|
||||
{24, 1, 1},
|
||||
{25, 1, 2},
|
||||
{26, 1, 4},
|
||||
{27, 1, 8},
|
||||
{28, 1, 8},
|
||||
{29, 256, 56},
|
||||
{30, 1, 2},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(strconv.Itoa(int(tt.kind)), func(t *testing.T) {
|
||||
tensor := Tensor{Kind: tt.kind}
|
||||
if tensor.blockSize() != tt.blockSize {
|
||||
t.Errorf("unexpected block size: got=%d want=%d", tensor.blockSize(), tt.blockSize)
|
||||
}
|
||||
|
||||
if tensor.typeSize() != tt.typeSize {
|
||||
t.Errorf("unexpected type size: got=%d want=%d", tensor.typeSize(), tt.typeSize)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
19
go.mod
19
go.mod
@@ -1,6 +1,6 @@
|
||||
module github.com/ollama/ollama
|
||||
|
||||
go 1.23.4
|
||||
go 1.24.0
|
||||
|
||||
require (
|
||||
github.com/containerd/console v1.0.3
|
||||
@@ -11,7 +11,7 @@ require (
|
||||
github.com/spf13/cobra v1.7.0
|
||||
github.com/stretchr/testify v1.9.0
|
||||
github.com/x448/float16 v0.8.4
|
||||
golang.org/x/sync v0.10.0
|
||||
golang.org/x/sync v0.11.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -24,7 +24,7 @@ require (
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.22.0
|
||||
gonum.org/v1/gonum v0.15.0
|
||||
golang.org/x/tools v0.30.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -44,6 +44,7 @@ require (
|
||||
github.com/xtgo/set v1.0.0 // indirect
|
||||
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
|
||||
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
|
||||
gonum.org/v1/gonum v0.15.0 // indirect
|
||||
gorgonia.org/vecf32 v0.9.0 // indirect
|
||||
gorgonia.org/vecf64 v0.9.0 // indirect
|
||||
)
|
||||
@@ -69,12 +70,12 @@ require (
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
|
||||
github.com/ugorji/go/codec v1.2.12 // indirect
|
||||
golang.org/x/arch v0.8.0 // indirect
|
||||
golang.org/x/crypto v0.31.0
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
|
||||
golang.org/x/net v0.25.0 // indirect
|
||||
golang.org/x/sys v0.28.0
|
||||
golang.org/x/term v0.27.0
|
||||
golang.org/x/text v0.21.0
|
||||
golang.org/x/crypto v0.33.0
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
|
||||
golang.org/x/net v0.35.0 // indirect
|
||||
golang.org/x/sys v0.30.0
|
||||
golang.org/x/term v0.29.0
|
||||
golang.org/x/text v0.22.0
|
||||
google.golang.org/protobuf v1.34.1
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
||||
30
go.sum
30
go.sum
@@ -214,16 +214,16 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
|
||||
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.31.0 h1:ihbySMvVjLAeSH1IbfcRTkD/iNscyz8rGzjF/E5hV6U=
|
||||
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
|
||||
golang.org/x/crypto v0.33.0 h1:IOBPskki6Lysi0lo9qQvbxiQ+FvsCC/YWOecCHAixus=
|
||||
golang.org/x/crypto v0.33.0/go.mod h1:bVdXmD7IV/4GdElGPozy6U7lWdRXA4qyRVGJV57uQ5M=
|
||||
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa h1:FRnLl4eNAQl8hwxVVC17teOw8kdjVDVAiFMtgUdTSRQ=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa/go.mod h1:zk2irFbV9DP96SEBUUAy67IdHUaZuSnrz1n472HUCLE=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa h1:t2QcU6V556bFjYgu4L6C+6VrCPyJZ+eyRsABUPs1mz4=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa/go.mod h1:BHOTPb3L19zxehTsLoJXVaTktb06DFgmdW6Wb9s8jqk=
|
||||
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
|
||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
||||
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
|
||||
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
||||
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
|
||||
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
|
||||
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
|
||||
golang.org/x/net v0.35.0 h1:T5GQRQb2y08kTAByq9L4/bz8cipCdA8FbRTXewonqY8=
|
||||
golang.org/x/net v0.35.0/go.mod h1:EglIi67kWsHKlRzzVMUD93VMSWGFOMSZgxFjparz1Qk=
|
||||
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
|
||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
|
||||
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
|
||||
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
|
||||
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sync v0.11.0 h1:GGz8+XQP4FvTTrjZPzNKTMFtSXH80RAzG+5ghFPgK9w=
|
||||
golang.org/x/sync v0.11.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
|
||||
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.28.0 h1:Fksou7UEQUWlKvIdsqzJmUmCX3cZuD2+P3XyyzwMhlA=
|
||||
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/sys v0.30.0 h1:QjkSwP/36a20jFYWkSue1YwXzLmsV5Gfq7Eiy72C1uc=
|
||||
golang.org/x/sys v0.30.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.27.0 h1:WP60Sv1nlK1T6SupCHbXzSaN0b9wUmsPoRS9b61A23Q=
|
||||
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
|
||||
golang.org/x/term v0.29.0 h1:L6pJp37ocefwRRtYPKSWOWzOtWSxVajvz2ldH/xi3iU=
|
||||
golang.org/x/term v0.29.0/go.mod h1:6bl4lRlvVuDgSf3179VpIxBF0o10JUpXWOnI7nErv7s=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
|
||||
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
|
||||
golang.org/x/text v0.22.0 h1:bofq7m3/HAFvbF51jz3Q9wLg3jkvSPuiZu/pD1XwgtM=
|
||||
golang.org/x/text v0.22.0/go.mod h1:YRoo4H8PVmsu+E3Ou7cqLVH8oXWIHVoX0jqUWALQhfY=
|
||||
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
@@ -309,6 +309,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
|
||||
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
|
||||
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
|
||||
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
|
||||
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
|
||||
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
|
||||
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"errors"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -29,6 +30,17 @@ type Cache interface {
|
||||
// cache implementation used.
|
||||
Put(ctx ml.Context, key, value ml.Tensor)
|
||||
|
||||
// SetConfig controls optimizations (mostly backend-specific) that may transform
|
||||
// the output of the cache to work better with specific kernels. If not called,
|
||||
// the backend settings will be used. This works well when calling Attention.
|
||||
//
|
||||
// The config can be overridden by models, especially if they require vanilla
|
||||
// output when implementing their own version of attention. To do this, pass
|
||||
// an empty ml.CacheConfig.
|
||||
//
|
||||
// Most models will not need to use this.
|
||||
SetConfig(ml.CacheConfig)
|
||||
|
||||
// ** cache management **
|
||||
|
||||
// Init sets up runtime parameters
|
||||
@@ -40,7 +52,7 @@ type Cache interface {
|
||||
// StartForward is called before the start of the model's forward pass.
|
||||
// For each token in the coming batch, there must be a corresponding
|
||||
// entry in positions and seqs.
|
||||
StartForward(ctx ml.Context, positions []int32, seqs []int) error
|
||||
StartForward(ctx ml.Context, opts input.Options) error
|
||||
|
||||
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
|
||||
CopyPrefix(srcSeq, dstSeq int, len int32)
|
||||
|
||||
@@ -8,6 +8,7 @@ import (
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
|
||||
@@ -20,8 +21,12 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
|
||||
type Causal struct {
|
||||
DType ml.DType
|
||||
Capacity int32
|
||||
causal bool
|
||||
windowSize int32
|
||||
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
@@ -39,6 +44,12 @@ type Causal struct {
|
||||
// locations in the cache that are needed for this batch
|
||||
curCellRange cellRange
|
||||
|
||||
// curSequences is the sequences corresponding to this pass's entries in the cache
|
||||
curSequences []int
|
||||
|
||||
// curPositions is the positions corresponding to this pass's entries in the cache
|
||||
curPositions []int32
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// for each possible location in the cache, stores the position and set of sequences
|
||||
@@ -52,8 +63,8 @@ type Causal struct {
|
||||
|
||||
shiftFn shiftFn
|
||||
backend ml.Backend
|
||||
cacheCtx ml.Context
|
||||
keys, values []ml.Tensor
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
type cacheCell struct {
|
||||
@@ -67,28 +78,73 @@ type cellRange struct {
|
||||
}
|
||||
|
||||
func NewCausalCache(shift shiftFn) *Causal {
|
||||
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
|
||||
return &Causal{
|
||||
causal: true,
|
||||
windowSize: math.MaxInt32,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
|
||||
return &Causal{windowSize: windowSize, shiftFn: shift}
|
||||
return &Causal{
|
||||
causal: true,
|
||||
windowSize: windowSize,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if c.config.CachePadding == 0 {
|
||||
c.config.CachePadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskBatchPadding == 0 {
|
||||
c.config.MaskBatchPadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskDType == ml.DTypeOther {
|
||||
c.config.MaskDType = ml.DTypeF32
|
||||
}
|
||||
|
||||
c.DType = dtype
|
||||
c.Capacity = capacity
|
||||
c.cells = make([]cacheCell, capacity)
|
||||
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
|
||||
c.cells = make([]cacheCell, c.Capacity)
|
||||
c.cellRanges = make(map[int]cellRange)
|
||||
c.backend = backend
|
||||
c.cacheCtx = backend.NewContext()
|
||||
}
|
||||
|
||||
func (c *Causal) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *Causal) Close() {
|
||||
c.cacheCtx.Close()
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
c.curBatchSize = len(positions)
|
||||
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
|
||||
c.curBatchSize = len(opts.Positions)
|
||||
c.curSequences = opts.Sequences
|
||||
c.curPositions = opts.Positions
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
@@ -101,8 +157,8 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range positions {
|
||||
seq := seqs[i]
|
||||
for i, pos := range opts.Positions {
|
||||
seq := opts.Sequences[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
@@ -127,7 +183,7 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
|
||||
c.curMask, err = c.buildMask(ctx, positions, seqs)
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
|
||||
return err
|
||||
}
|
||||
@@ -157,36 +213,90 @@ func (c *Causal) findStartLoc() (int, error) {
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
|
||||
}
|
||||
|
||||
func roundDown(length, pad int) int {
|
||||
return (length / pad) * pad
|
||||
}
|
||||
|
||||
func roundUp(length, pad int) int {
|
||||
return ((length + pad - 1) / pad) * pad
|
||||
}
|
||||
|
||||
// Builds a mask of history x batch indicating whether for each token in the batch the
|
||||
// token in the history should apply. This is based on both the sequence and causality (the
|
||||
// position of the history is not ahead of the token in the batch).
|
||||
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
|
||||
// TODO(jessegross): This does not do padding, which is required for flash attention
|
||||
len := c.curCellRange.max - c.curCellRange.min + 1
|
||||
mask := make([]float32, c.curBatchSize*len)
|
||||
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
|
||||
// Align and pad the two dimensions as required by the backend
|
||||
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
|
||||
|
||||
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
|
||||
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
|
||||
|
||||
length := c.curCellRange.max - c.curCellRange.min + 1
|
||||
mask := make([]float32, batchSize*length)
|
||||
|
||||
for i := range c.curBatchSize {
|
||||
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
|
||||
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
|
||||
c.cells[j].pos < positions[i]-c.windowSize {
|
||||
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
|
||||
(c.causal && c.cells[j].pos > c.curPositions[i]) ||
|
||||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
|
||||
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
|
||||
// Mask out any padding tokens we added. For padding that we added to the cache history, this
|
||||
// has already been masked out because the sequence doesn't match.
|
||||
for i := c.curBatchSize * length; i < len(mask); i++ {
|
||||
mask[i] = float32(math.Inf(-1))
|
||||
}
|
||||
|
||||
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if c.config.MaskDType != ml.DTypeF32 {
|
||||
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
|
||||
ctx.Forward(maskTensor.Copy(ctx, out))
|
||||
maskTensor = out
|
||||
}
|
||||
|
||||
return maskTensor, nil
|
||||
}
|
||||
|
||||
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
|
||||
for _, obj := range objs {
|
||||
if obj == nil {
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
|
||||
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
ctx.Forward(srcView.Copy(ctx, dstView))
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
|
||||
|
||||
value := c.values[i]
|
||||
var vSrcView, vDstView ml.Tensor
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
kSrcView.Copy(ctx, kDstView),
|
||||
vSrcView.Copy(ctx, vDstView),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -219,7 +329,7 @@ func (c *Causal) defrag() {
|
||||
layers++
|
||||
}
|
||||
|
||||
maxMoves := ctx.MaxTensors() / (6 * layers)
|
||||
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
|
||||
moves := 0
|
||||
|
||||
var pendingSrc, pendingDst, pendingLen int
|
||||
@@ -238,8 +348,7 @@ func (c *Causal) defrag() {
|
||||
pendingLen++
|
||||
break
|
||||
} else {
|
||||
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
|
||||
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
}
|
||||
@@ -263,8 +372,7 @@ func (c *Causal) defrag() {
|
||||
}
|
||||
|
||||
if pendingLen > 0 {
|
||||
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
|
||||
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
|
||||
@@ -293,45 +401,106 @@ func (c *Causal) defrag() {
|
||||
}
|
||||
|
||||
func (c *Causal) SetLayer(layer int) {
|
||||
if layer >= len(c.keys) {
|
||||
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
|
||||
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
|
||||
}
|
||||
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
// SetCausal enables or disables causal mask generation for subsequent calls to Get.
|
||||
// This state carries over to future forward passes. The default value is true.
|
||||
//
|
||||
// ctx may be set to nil if this is called from outside of a forward pass, for
|
||||
// example, when initializing the cache.
|
||||
func (c *Causal) SetCausal(ctx ml.Context, causal bool) {
|
||||
if c.causal != causal {
|
||||
c.causal = causal
|
||||
|
||||
if ctx != nil {
|
||||
var err error
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
if err != nil {
|
||||
// This error should never occur because we have previously built a mask with the same shape
|
||||
panic(fmt.Errorf("SetCausal: %w", err))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
key := c.keys[c.curLayer]
|
||||
value := c.values[c.curLayer]
|
||||
|
||||
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
|
||||
key.Dim(0), key.Stride(1),
|
||||
key.Dim(1), key.Stride(2),
|
||||
c.curMask.Dim(0),
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
cachedSize := c.curMask.Dim(0)
|
||||
|
||||
key = key.View(ctx, rowSize*c.curCellRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
|
||||
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
|
||||
value.Dim(0), value.Stride(1),
|
||||
value.Dim(1), value.Stride(2),
|
||||
c.curMask.Dim(0),
|
||||
)
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
value = value.View(ctx, elemSize*c.curCellRange.min,
|
||||
cachedSize, value.Stride(1),
|
||||
vHeadDim, value.Stride(2),
|
||||
numKVHeads,
|
||||
)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
value = value.View(ctx, rowSize*c.curCellRange.min,
|
||||
vHeadDim, value.Stride(1),
|
||||
numKVHeads, value.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
}
|
||||
|
||||
return key, value, c.curMask
|
||||
}
|
||||
|
||||
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
if c.curBatchSize != key.Dim(2) {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
|
||||
kHeadDim := key.Dim(0)
|
||||
vHeadDim := value.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
batchSize := key.Dim(2)
|
||||
|
||||
if c.curBatchSize != batchSize {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
|
||||
}
|
||||
|
||||
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
|
||||
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
|
||||
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
if c.config.PermutedV {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
|
||||
} else {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
|
||||
}
|
||||
}
|
||||
|
||||
rowSize := c.keys[c.curLayer].Stride(2)
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
|
||||
|
||||
if c.config.PermutedV {
|
||||
elemSize := c.values[c.curLayer].Stride(0)
|
||||
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
|
||||
} else {
|
||||
rowSize := c.values[c.curLayer].Stride(2)
|
||||
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
@@ -377,7 +546,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
}
|
||||
}
|
||||
|
||||
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
|
||||
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -387,9 +556,13 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
continue
|
||||
}
|
||||
|
||||
key = key.View(ctx, key.Stride(2)*seqRange.min,
|
||||
key.Dim(0), key.Stride(1),
|
||||
key.Dim(1), key.Stride(2),
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
key = key.View(ctx, rowSize*seqRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
size,
|
||||
)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type testCase struct {
|
||||
@@ -269,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, test.pos, test.seqs)
|
||||
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
@@ -280,9 +281,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
|
||||
out, _, mask := cache.Get(context)
|
||||
|
||||
context.Forward(out)
|
||||
context.Forward(mask)
|
||||
context.Compute(out, mask)
|
||||
context.Forward(out, mask).Compute(out, mask)
|
||||
|
||||
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
|
||||
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
|
||||
@@ -305,13 +304,17 @@ func (b *testBackend) NewContext() ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) NewContextSize(int) ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) SystemInfo() string {
|
||||
return "not implemented"
|
||||
}
|
||||
|
||||
type testContext struct{}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
total := 0
|
||||
|
||||
if len(shape) > 0 {
|
||||
@@ -324,8 +327,12 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
|
||||
}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return c.Empty(dtype, shape...)
|
||||
}
|
||||
|
||||
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
|
||||
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
|
||||
|
||||
copy(t.data, s)
|
||||
|
||||
@@ -344,11 +351,15 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *testContext) Forward(ml.Tensor) {}
|
||||
func (c *testContext) Input() ml.Context { return c }
|
||||
func (c *testContext) Output() ml.Context { return c }
|
||||
func (c *testContext) Layer(int) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Compute(...ml.Tensor) {}
|
||||
|
||||
func (c *testContext) MaxTensors() int {
|
||||
func (c *testContext) MaxGraphNodes() int {
|
||||
return 10
|
||||
}
|
||||
|
||||
@@ -393,7 +404,7 @@ func (t *testTensor) Floats() []float32 {
|
||||
}
|
||||
|
||||
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
|
||||
for i := range out.data {
|
||||
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
|
||||
@@ -470,7 +481,7 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
|
||||
context := &testContext{}
|
||||
|
||||
view := context.Zeros(t.dtype, s...).(*testTensor)
|
||||
view := context.Empty(t.dtype, s...).(*testTensor)
|
||||
view.data = t.data[offset : offset+len(view.data)]
|
||||
|
||||
return view
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Encoder cache stores K and V tensors that are position independent
|
||||
@@ -11,6 +14,9 @@ import (
|
||||
//
|
||||
// Not currently safe for multiple sequences
|
||||
type EncoderCache struct {
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
@@ -30,36 +36,59 @@ type EncoderCache struct {
|
||||
encoderPos int32
|
||||
|
||||
// ** cache data storage **
|
||||
|
||||
cacheCtx ml.Context
|
||||
keys, values []ml.Tensor
|
||||
backend ml.Backend
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
func NewEncoderCache() *EncoderCache {
|
||||
return &EncoderCache{}
|
||||
return &EncoderCache{
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
c.cacheCtx = backend.NewContext()
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
|
||||
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
|
||||
}
|
||||
|
||||
c.backend = backend
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Close() {
|
||||
c.cacheCtx.Close()
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
// The image is always in the first position
|
||||
c.curPos = positions[0]
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
|
||||
// We work with the most recent image
|
||||
if len(opts.Multimodal) > 0 {
|
||||
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetLayer(layer int) {
|
||||
if layer >= len(c.keys) {
|
||||
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
|
||||
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
|
||||
}
|
||||
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
@@ -75,13 +104,26 @@ func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
|
||||
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
|
||||
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
|
||||
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
|
||||
if c.config.PermutedV {
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
}
|
||||
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
key.Copy(ctx, c.keys[c.curLayer]),
|
||||
value.Copy(ctx, c.values[c.curLayer]),
|
||||
)
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Wrapper cache is a container for multiple types of caches,
|
||||
@@ -28,20 +29,26 @@ func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
|
||||
for _, cache := range c.caches {
|
||||
cache.SetConfig(config)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Close() {
|
||||
for _, cache := range c.caches {
|
||||
cache.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
|
||||
for i, cache := range c.caches {
|
||||
err := cache.StartForward(ctx, positions, seqs)
|
||||
err := cache.StartForward(ctx, opts)
|
||||
if err != nil {
|
||||
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
|
||||
for j := i - 1; j >= 0; j-- {
|
||||
for k := range positions {
|
||||
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
|
||||
for k := range opts.Positions {
|
||||
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
|
||||
}
|
||||
}
|
||||
return err
|
||||
|
||||
2
llama/build-info.cpp
generated
vendored
2
llama/build-info.cpp
generated
vendored
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = 0;
|
||||
char const *LLAMA_COMMIT = "46e3556e01b824e52395fb050b29804b6cff2a7c";
|
||||
char const *LLAMA_COMMIT = "d7cfe1ffe0f435d0048a6058d529daf76e072d9c";
|
||||
char const *LLAMA_COMPILER = "";
|
||||
char const *LLAMA_BUILD_TARGET = "";
|
||||
|
||||
353
llama/llama.cpp/common/common.cpp
vendored
353
llama/llama.cpp/common/common.cpp
vendored
@@ -2,6 +2,9 @@
|
||||
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
||||
#endif
|
||||
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
@@ -70,6 +73,22 @@
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -464,6 +483,48 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
for (size_t i = 0; i < values.size(); ++i) {
|
||||
if (i > 0) {
|
||||
result << separator;
|
||||
}
|
||||
result << values[i];
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> parts;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
parts.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
parts.push_back(str.substr(start));
|
||||
|
||||
return parts;
|
||||
}
|
||||
|
||||
std::string string_repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string string_from(bool value) {
|
||||
return value ? "true" : "false";
|
||||
}
|
||||
@@ -846,7 +907,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
|
||||
} else {
|
||||
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
||||
if (model == NULL) {
|
||||
@@ -854,26 +915,28 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (params.reranking) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_token_bos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have a BOS token, reranking will not work\n", __func__);
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, reranking will not work\n", __func__);
|
||||
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_token_sep(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have a SEP token, reranking will not work\n", __func__);
|
||||
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_free_model(model);
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
@@ -881,10 +944,10 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
llama_free_model(model);
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@@ -895,25 +958,26 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
if (!params.control_vectors.empty()) {
|
||||
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_model_n_layer(model);
|
||||
|
||||
const auto cvec = common_control_vector_load(params.control_vectors);
|
||||
if (cvec.n_embd == -1) {
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
|
||||
int err = llama_control_vector_apply(lctx,
|
||||
cvec.data.data(),
|
||||
cvec.data.size(),
|
||||
cvec.n_embd,
|
||||
params.control_vector_layer_start,
|
||||
params.control_vector_layer_end);
|
||||
int err = llama_apply_adapter_cvec(
|
||||
lctx,
|
||||
cvec.data.data(),
|
||||
cvec.data.size(),
|
||||
cvec.n_embd,
|
||||
params.control_vector_layer_start,
|
||||
params.control_vector_layer_end);
|
||||
if (err) {
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
@@ -921,12 +985,12 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_lora_adapter_ptr lora;
|
||||
lora.reset(llama_lora_adapter_init(model, la.path.c_str()));
|
||||
llama_adapter_lora_ptr lora;
|
||||
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
|
||||
if (lora == nullptr) {
|
||||
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@@ -935,17 +999,17 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
}
|
||||
|
||||
if (!params.lora_init_without_apply) {
|
||||
common_lora_adapters_apply(lctx, params.lora_adapters);
|
||||
common_set_adapter_lora(lctx, params.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sampling.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
params.sampling.ignore_eos = false;
|
||||
}
|
||||
|
||||
if (params.sampling.ignore_eos) {
|
||||
for (llama_token i = 0; i < llama_n_vocab(model); i++) {
|
||||
if (llama_token_is_eog(model, i)) {
|
||||
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
|
||||
if (llama_vocab_is_eog(vocab, i)) {
|
||||
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
|
||||
params.sampling.logit_bias.push_back({i, -INFINITY});
|
||||
}
|
||||
@@ -966,8 +1030,9 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
|
||||
|
||||
std::vector<llama_token> tmp;
|
||||
llama_token bos = llama_token_bos(model);
|
||||
llama_token eos = llama_token_eos(model);
|
||||
llama_token bos = llama_vocab_bos(vocab);
|
||||
llama_token eos = llama_vocab_eos(vocab);
|
||||
|
||||
// some models (e.g. T5) don't have a BOS token
|
||||
if (bos != LLAMA_TOKEN_NULL) {
|
||||
tmp.push_back(bos);
|
||||
@@ -982,7 +1047,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (llama_model_has_encoder(model)) {
|
||||
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
|
||||
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
||||
if (decoder_start_token_id == -1) {
|
||||
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
|
||||
decoder_start_token_id = bos;
|
||||
}
|
||||
tmp.clear();
|
||||
@@ -1002,11 +1067,11 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora) {
|
||||
llama_lora_adapter_clear(ctx);
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
|
||||
llama_clear_adapter_lora(ctx);
|
||||
for (auto & la : lora) {
|
||||
if (la.scale != 0.0f) {
|
||||
llama_lora_adapter_set(ctx, la.ptr, la.scale);
|
||||
llama_set_adapter_lora(ctx, la.ptr, la.scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1020,7 +1085,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
mparams.rpc_servers = params.rpc_servers.c_str();
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
@@ -1123,7 +1187,8 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
|
||||
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
// Initialize libcurl
|
||||
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
@@ -1137,11 +1202,9 @@ static bool common_download_file(const std::string & url, const std::string & pa
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer ";
|
||||
auth_header += hf_token.c_str();
|
||||
struct curl_slist *http_headers = NULL;
|
||||
http_headers = curl_slist_append(http_headers, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
@@ -1411,7 +1474,7 @@ struct llama_model * common_load_model_from_url(
|
||||
}
|
||||
}
|
||||
|
||||
return llama_load_model_from_file(local_path.c_str(), params);
|
||||
return llama_model_load_from_file(local_path.c_str(), params);
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
@@ -1437,6 +1500,80 @@ struct llama_model * common_load_model_from_hf(
|
||||
return common_load_model_from_url(model_url, local_path, hf_token, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
json model_info;
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
model_info = json::parse(res_str);
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (!model_info.contains("ggufFile")) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
json & gguf_file = model_info.at("ggufFile");
|
||||
if (!gguf_file.contains("rfilename")) {
|
||||
throw std::runtime_error("error: ggufFile does not have rfilename");
|
||||
}
|
||||
|
||||
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
@@ -1458,6 +1595,11 @@ struct llama_model * common_load_model_from_hf(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return std::make_pair("", "");
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
@@ -1556,21 +1698,23 @@ std::vector<llama_token> common_tokenize(
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
return common_tokenize(vocab, text, add_special, parse_special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + 2 * add_special;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
@@ -1579,12 +1723,18 @@ std::vector<llama_token> common_tokenize(
|
||||
}
|
||||
|
||||
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
return common_token_to_piece(vocab, token, special);
|
||||
}
|
||||
|
||||
std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
|
||||
std::string piece;
|
||||
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
||||
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
||||
if (n_chars < 0) {
|
||||
piece.resize(-n_chars);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
||||
GGML_ASSERT(check == -n_chars);
|
||||
}
|
||||
else {
|
||||
@@ -1594,13 +1744,19 @@ std::string common_token_to_piece(const struct llama_context * ctx, llama_token
|
||||
return piece;
|
||||
}
|
||||
|
||||
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
return common_detokenize(vocab, tokens, special);
|
||||
}
|
||||
|
||||
std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string text;
|
||||
text.resize(std::max(text.capacity(), tokens.size()));
|
||||
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
if (n_chars < 0) {
|
||||
text.resize(-n_chars);
|
||||
n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
|
||||
}
|
||||
|
||||
@@ -1610,103 +1766,6 @@ std::string common_detokenize(llama_context * ctx, const std::vector<llama_token
|
||||
return text;
|
||||
}
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model) {
|
||||
static const char * template_key = "tokenizer.chat_template";
|
||||
// call with NULL buffer to get the total size of the string
|
||||
int32_t res = llama_model_meta_val_str(model, template_key, NULL, 0);
|
||||
if (res > 0) {
|
||||
std::vector<char> model_template(res + 1, 0);
|
||||
llama_model_meta_val_str(model, template_key, model_template.data(), model_template.size());
|
||||
return std::string(model_template.data(), model_template.size() - 1);
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass) {
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
std::vector<llama_chat_message> chat;
|
||||
for (auto & msg : msgs) {
|
||||
chat.push_back({msg.role.c_str(), msg.content.c_str()});
|
||||
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
|
||||
}
|
||||
|
||||
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
|
||||
std::vector<char> buf(alloc_size);
|
||||
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
|
||||
// error: chat template is not supported
|
||||
if (res < 0) {
|
||||
if (ptr_tmpl != nullptr) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
} else {
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
fallback = true;
|
||||
}
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(
|
||||
fallback ? nullptr : model,
|
||||
fallback ? "chatml" : ptr_tmpl,
|
||||
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
}
|
||||
|
||||
std::string formatted_chat(buf.data(), res);
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
ss << "\n";
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl) {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant"},
|
||||
{"user", "Hello"},
|
||||
{"assistant", "Hi there"},
|
||||
{"user", "How are you?"},
|
||||
};
|
||||
return common_chat_apply_template(model, tmpl, msgs, true);
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
128
llama/llama.cpp/common/common.h
vendored
128
llama/llama.cpp/common/common.h
vendored
@@ -4,6 +4,7 @@
|
||||
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
@@ -24,11 +25,11 @@
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct common_lora_adapter_info {
|
||||
struct common_adapter_lora_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
|
||||
struct llama_lora_adapter * ptr;
|
||||
struct llama_adapter_lora * ptr;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
@@ -103,6 +104,17 @@ enum dimre_method {
|
||||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
enum common_conversation_mode {
|
||||
COMMON_CONVERSATION_MODE_DISABLED = 0,
|
||||
COMMON_CONVERSATION_MODE_ENABLED = 1,
|
||||
COMMON_CONVERSATION_MODE_AUTO = 2,
|
||||
};
|
||||
|
||||
struct common_grammar_trigger {
|
||||
std::string word;
|
||||
bool at_start;
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
@@ -128,6 +140,7 @@ struct common_params_sampling {
|
||||
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
||||
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float top_n_sigma = -1.00f;// -1.0 = disabled
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool ignore_eos = false;
|
||||
@@ -148,7 +161,11 @@ struct common_params_sampling {
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
|
||||
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
|
||||
std::set<llama_token> preserved_tokens;
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
|
||||
@@ -161,15 +178,19 @@ struct common_params_speculative {
|
||||
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
@@ -178,6 +199,13 @@ struct common_params_vocoder {
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
|
||||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
@@ -240,14 +268,13 @@ struct common_params {
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
@@ -271,11 +298,11 @@ struct common_params {
|
||||
bool kl_divergence = false; // compute KL divergence
|
||||
|
||||
bool usage = false; // print usage
|
||||
bool completion = false; // print source-able completion script
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool special = false; // enable special token output
|
||||
bool interactive = false; // interactive mode
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
@@ -301,6 +328,8 @@ struct common_params {
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
@@ -322,7 +351,9 @@ struct common_params {
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
@@ -401,13 +432,13 @@ bool set_process_priority(enum ggml_sched_priority prio);
|
||||
//
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# if defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# else
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
# endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
|
||||
@@ -416,6 +447,10 @@ std::string string_format(const char * fmt, ...);
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string string_get_sortable_timestamp();
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
|
||||
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
|
||||
std::string string_repeat(const std::string & str, size_t n);
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
template<class T>
|
||||
@@ -454,6 +489,11 @@ static bool string_starts_with(const std::string & str,
|
||||
return str.rfind(prefix, 0) == 0;
|
||||
}
|
||||
|
||||
static bool string_ends_with(const std::string & str,
|
||||
const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
}
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
@@ -481,7 +521,7 @@ struct common_init_result {
|
||||
llama_model_ptr model;
|
||||
llama_context_ptr context;
|
||||
|
||||
std::vector<llama_lora_adapter_ptr> lora;
|
||||
std::vector<llama_adapter_lora_ptr> lora;
|
||||
};
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
@@ -495,6 +535,7 @@ struct llama_model * common_load_model_from_url(
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
@@ -502,8 +543,12 @@ struct llama_model * common_load_model_from_hf(
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & hf_token);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_info> & lora);
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
@@ -541,7 +586,7 @@ std::vector<llama_token> common_tokenize(
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
@@ -553,48 +598,23 @@ std::string common_token_to_piece(
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
std::string common_token_to_piece(
|
||||
const struct llama_vocab * vocab,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string common_detokenize(
|
||||
llama_context * ctx,
|
||||
const struct llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Get the built-in chat template for the model. Return empty string if not present.
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model);
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
std::string common_detokenize(
|
||||
const struct llama_vocab * vocab,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
|
||||
112
llama/llama.cpp/common/json-schema-to-grammar.cpp
vendored
112
llama/llama.cpp/common/json-schema-to-grammar.cpp
vendored
@@ -1,4 +1,6 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
@@ -11,11 +13,6 @@
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
template <typename Iterator>
|
||||
static std::string join(Iterator begin, Iterator end, const std::string & separator);
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n);
|
||||
|
||||
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
|
||||
auto has_max = max_items != std::numeric_limits<int>::max();
|
||||
|
||||
@@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
if (sub_len > 0) {
|
||||
auto from_sub = from.substr(i + 1);
|
||||
auto to_sub = to.substr(i + 1);
|
||||
auto sub_zeros = repeat("0", sub_len);
|
||||
auto sub_nines = repeat("9", sub_len);
|
||||
auto sub_zeros = string_repeat("0", sub_len);
|
||||
auto sub_nines = string_repeat("9", sub_len);
|
||||
|
||||
auto to_reached = false;
|
||||
out << "(";
|
||||
@@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
auto max_digits = max_s.length();
|
||||
|
||||
for (auto digits = min_digits; digits < max_digits; digits++) {
|
||||
uniform_range(min_s, repeat("9", digits));
|
||||
min_s = "1" + repeat("0", digits);
|
||||
uniform_range(min_s, string_repeat("9", digits));
|
||||
min_s = "1" + string_repeat("0", digits);
|
||||
out << " | ";
|
||||
}
|
||||
uniform_range(min_s, max_s);
|
||||
@@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
|
||||
|
||||
template <typename Iterator>
|
||||
std::string join(Iterator begin, Iterator end, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
if (begin != end) {
|
||||
result << *begin;
|
||||
for (Iterator it = begin + 1; it != end; ++it) {
|
||||
result << separator << *it;
|
||||
}
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
tokens.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
tokens.push_back(str.substr(start));
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
|
||||
std::smatch match;
|
||||
std::string result;
|
||||
@@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
|
||||
|
||||
class SchemaConverter {
|
||||
private:
|
||||
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
std::unordered_map<std::string, std::string> _rules;
|
||||
@@ -418,7 +373,7 @@ private:
|
||||
for (size_t i = 0; i < alt_schemas.size(); i++) {
|
||||
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
|
||||
}
|
||||
return join(rules.begin(), rules.end(), " | ");
|
||||
return string_join(rules, " | ");
|
||||
}
|
||||
|
||||
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
|
||||
@@ -481,7 +436,7 @@ private:
|
||||
for (const auto & item : ret) {
|
||||
results.push_back(to_rule(item));
|
||||
}
|
||||
return std::make_pair(join(results.begin(), results.end(), " "), false);
|
||||
return std::make_pair(string_join(results, " "), false);
|
||||
};
|
||||
|
||||
while (i < length) {
|
||||
@@ -539,7 +494,7 @@ private:
|
||||
}
|
||||
curly_brackets += '}';
|
||||
i++;
|
||||
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
int min_times = 0;
|
||||
int max_times = std::numeric_limits<int>::max();
|
||||
try {
|
||||
@@ -809,10 +764,11 @@ private:
|
||||
public:
|
||||
SchemaConverter(
|
||||
const std::function<json(const std::string &)> & fetch_json,
|
||||
bool dotall)
|
||||
bool dotall,
|
||||
bool compact_spaces)
|
||||
: _fetch_json(fetch_json), _dotall(dotall)
|
||||
{
|
||||
_rules["space"] = SPACE_RULE;
|
||||
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
|
||||
}
|
||||
|
||||
void resolve_refs(json & schema, const std::string & url) {
|
||||
@@ -854,7 +810,7 @@ public:
|
||||
return;
|
||||
}
|
||||
std::string pointer = ref.substr(ref.find('#') + 1);
|
||||
std::vector<std::string> tokens = split(pointer, "/");
|
||||
std::vector<std::string> tokens = string_split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
@@ -905,7 +861,7 @@ public:
|
||||
for (const auto & v : schema["enum"]) {
|
||||
enum_values.push_back(_generate_constant_rule(v));
|
||||
}
|
||||
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
|
||||
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
|
||||
} else if ((schema_type.is_null() || schema_type == "object")
|
||||
&& (schema.contains("properties") ||
|
||||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
|
||||
@@ -1019,10 +975,10 @@ public:
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1035,11 +991,35 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
std::string json_schema_to_grammar(const json & schema) {
|
||||
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
|
||||
auto copy = schema;
|
||||
converter.resolve_refs(copy, "input");
|
||||
converter.visit(copy, "");
|
||||
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
if (!force_gbnf) {
|
||||
return "%llguidance {}\nstart: %json " + schema.dump();
|
||||
}
|
||||
#else
|
||||
(void)force_gbnf;
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
return build_grammar([&](const common_grammar_builder & callbacks) {
|
||||
auto copy = schema;
|
||||
callbacks.resolve_refs(copy);
|
||||
callbacks.add_schema("", copy);
|
||||
});
|
||||
}
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
|
||||
common_grammar_builder builder {
|
||||
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
|
||||
return converter._add_rule(name, rule);
|
||||
},
|
||||
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
|
||||
return converter.visit(schema, name == "root" ? "" : name);
|
||||
},
|
||||
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
|
||||
converter.resolve_refs(schema, "");
|
||||
}
|
||||
};
|
||||
cb(builder);
|
||||
converter.check_errors();
|
||||
return converter.format_grammar();
|
||||
}
|
||||
|
||||
16
llama/llama.cpp/common/json-schema-to-grammar.h
vendored
16
llama/llama.cpp/common/json-schema-to-grammar.h
vendored
@@ -5,4 +5,18 @@
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
|
||||
bool force_gbnf = false);
|
||||
|
||||
struct common_grammar_builder {
|
||||
std::function<std::string(const std::string &, const std::string &)> add_rule;
|
||||
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
|
||||
std::function<void(nlohmann::ordered_json &)> resolve_refs;
|
||||
};
|
||||
|
||||
struct common_grammar_options {
|
||||
bool dotall = false;
|
||||
bool compact_spaces = false;
|
||||
};
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});
|
||||
|
||||
12
llama/llama.cpp/common/log.cpp
vendored
12
llama/llama.cpp/common/log.cpp
vendored
@@ -1,5 +1,6 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
@@ -14,16 +15,6 @@ void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
#define LOG_COL_BOLD "\033[1m"
|
||||
#define LOG_COL_RED "\033[31m"
|
||||
#define LOG_COL_GREEN "\033[32m"
|
||||
#define LOG_COL_YELLOW "\033[33m"
|
||||
#define LOG_COL_BLUE "\033[34m"
|
||||
#define LOG_COL_MAGENTA "\033[35m"
|
||||
#define LOG_COL_CYAN "\033[36m"
|
||||
#define LOG_COL_WHITE "\033[37m"
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
@@ -206,6 +197,7 @@ public:
|
||||
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
|
||||
}
|
||||
#endif
|
||||
va_end(args_copy);
|
||||
}
|
||||
|
||||
entry.level = level;
|
||||
|
||||
13
llama/llama.cpp/common/log.h
vendored
13
llama/llama.cpp/common/log.h
vendored
@@ -2,9 +2,20 @@
|
||||
|
||||
#include "ggml.h" // for ggml_log_level
|
||||
|
||||
#define LOG_CLR_TO_EOL "\033[K\r"
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
#define LOG_COL_BOLD "\033[1m"
|
||||
#define LOG_COL_RED "\033[31m"
|
||||
#define LOG_COL_GREEN "\033[32m"
|
||||
#define LOG_COL_YELLOW "\033[33m"
|
||||
#define LOG_COL_BLUE "\033[34m"
|
||||
#define LOG_COL_MAGENTA "\033[35m"
|
||||
#define LOG_COL_CYAN "\033[36m"
|
||||
#define LOG_COL_WHITE "\033[37m"
|
||||
|
||||
#ifndef __GNUC__
|
||||
# define LOG_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
#elif defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
|
||||
120
llama/llama.cpp/common/sampling.cpp
vendored
120
llama/llama.cpp/common/sampling.cpp
vendored
@@ -113,7 +113,10 @@ struct common_sampler {
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
cur.resize(n_vocab);
|
||||
|
||||
@@ -131,24 +134,47 @@ std::string common_params_sampling::print() const {
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
|
||||
#else
|
||||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<const char *> trigger_words;
|
||||
trigger_words.reserve(params.grammar_trigger_words.size());
|
||||
for (const auto & str : params.grammar_trigger_words) {
|
||||
trigger_words.push_back(str.word.c_str());
|
||||
}
|
||||
|
||||
grmr = params.grammar_lazy
|
||||
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
|
||||
trigger_words.data(), trigger_words.size(),
|
||||
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
|
||||
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
|
||||
}
|
||||
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .grmr = */ grmr,
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
||||
/* .cur = */ {},
|
||||
@@ -157,56 +183,62 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
|
||||
llama_sampler_chain_add(result->chain,
|
||||
llama_sampler_init_logit_bias(
|
||||
llama_n_vocab(model),
|
||||
llama_vocab_n_tokens(vocab),
|
||||
params.logit_bias.size(),
|
||||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
|
||||
3
llama/llama.cpp/common/sampling.h
vendored
3
llama/llama.cpp/common/sampling.h
vendored
@@ -102,3 +102,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||
|
||||
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
|
||||
const char * grammar_kind, const char * grammar_data);
|
||||
|
||||
273
llama/llama.cpp/examples/llava/clip.cpp
vendored
273
llama/llama.cpp/examples/llava/clip.cpp
vendored
@@ -7,6 +7,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
@@ -39,6 +40,7 @@
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <cinttypes>
|
||||
@@ -114,6 +116,7 @@ static std::string format(const char * fmt, ...) {
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
@@ -131,6 +134,7 @@ static std::string format(const char * fmt, ...) {
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
@@ -172,6 +176,15 @@ static std::string format(const char * fmt, ...) {
|
||||
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||
|
||||
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
|
||||
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
|
||||
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
|
||||
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
|
||||
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
|
||||
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
|
||||
#define TN_GLM_BOI_W "adapter.boi"
|
||||
#define TN_GLM_EOI_W "adapter.eoi"
|
||||
|
||||
|
||||
enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
@@ -179,6 +192,7 @@ enum projector_type {
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_GLM_EDGE,
|
||||
PROJECTOR_TYPE_MERGER,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
@@ -188,6 +202,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
|
||||
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
|
||||
};
|
||||
|
||||
@@ -275,7 +290,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = gguf_get_arr_data(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
@@ -444,8 +459,9 @@ struct clip_hparams {
|
||||
|
||||
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
|
||||
|
||||
int32_t image_grid_pinpoints[32];
|
||||
std::vector<int32_t> image_grid_pinpoints;
|
||||
int32_t image_crop_resolution;
|
||||
std::unordered_set<int32_t> vision_feature_layer;
|
||||
};
|
||||
|
||||
struct clip_layer {
|
||||
@@ -512,6 +528,12 @@ struct clip_vision_model {
|
||||
struct ggml_tensor * mm_4_w = NULL;
|
||||
struct ggml_tensor * mm_4_b = NULL;
|
||||
|
||||
//GLMV-Edge projection
|
||||
struct ggml_tensor * mm_model_adapter_conv_w;
|
||||
struct ggml_tensor * mm_model_adapter_conv_b;
|
||||
struct ggml_tensor * boi_w;
|
||||
struct ggml_tensor * eoi_w;
|
||||
|
||||
// MobileVLM projection
|
||||
struct ggml_tensor * mm_model_mlp_1_w;
|
||||
struct ggml_tensor * mm_model_mlp_1_b;
|
||||
@@ -572,12 +594,14 @@ struct clip_ctx {
|
||||
bool has_vision_encoder = false;
|
||||
bool has_llava_projector = false;
|
||||
bool has_minicpmv_projector = false;
|
||||
bool has_glm_projector = false;
|
||||
bool has_qwen2vl_merger = false;
|
||||
int minicpmv_version = 2;
|
||||
|
||||
struct clip_vision_model vision_model;
|
||||
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
||||
|
||||
int32_t max_feature_layer;
|
||||
float image_mean[3];
|
||||
float image_std[3];
|
||||
bool use_gelu = false;
|
||||
@@ -644,13 +668,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
int n_layer = hparams.n_layer;
|
||||
const float eps = hparams.eps;
|
||||
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
||||
|
||||
const int batch_size = imgs->size;
|
||||
|
||||
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
|
||||
if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
}
|
||||
|
||||
@@ -730,6 +753,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
|
||||
}
|
||||
ggml_set_name(pos_embed, "pos_embed");
|
||||
ggml_set_input(pos_embed);
|
||||
}
|
||||
@@ -742,14 +768,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
|
||||
}
|
||||
|
||||
std::vector<struct ggml_tensor *> embedding_stack;
|
||||
const auto & vision_feature_layer = hparams.vision_feature_layer;
|
||||
|
||||
// loop over layers
|
||||
if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
|
||||
// TODO: figure out why we doing thing in this way ???
|
||||
n_layer += 1;
|
||||
}
|
||||
for (int il = 0; il < n_layer - 1; il++) {
|
||||
for (int il = 0; il < ctx->max_feature_layer; il++) {
|
||||
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
||||
|
||||
// If this is an embedding feature layer, save the output.
|
||||
// NOTE: 0 index here refers to the input to the encoder.
|
||||
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
|
||||
embedding_stack.push_back(embeddings);
|
||||
}
|
||||
|
||||
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
|
||||
|
||||
// layernorm1
|
||||
@@ -837,7 +868,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
cur = ggml_add(ctx0, embeddings, cur);
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
@@ -848,6 +878,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
|
||||
}
|
||||
|
||||
// final layer is a vision feature layer
|
||||
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
|
||||
embedding_stack.push_back(embeddings);
|
||||
}
|
||||
|
||||
// If feature layers are explicitly set, stack them (if we have multiple)
|
||||
if (!embedding_stack.empty()) {
|
||||
embeddings = embedding_stack[0];
|
||||
for (size_t i = 1; i < embedding_stack.size(); i++) {
|
||||
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
|
||||
}
|
||||
}
|
||||
|
||||
// llava projector
|
||||
if (ctx->has_llava_projector) {
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||
@@ -1065,6 +1108,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
n_head = hidden_size/d_head;
|
||||
num_query = 64;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
hidden_size = 3584;
|
||||
n_head = hidden_size/d_head;
|
||||
num_query = 64;
|
||||
}
|
||||
|
||||
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||
@@ -1099,7 +1147,33 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
// glm projector
|
||||
else if (ctx->has_glm_projector) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
||||
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
|
||||
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
|
||||
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
|
||||
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
|
||||
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
|
||||
//GLU
|
||||
{
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
|
||||
embeddings = ggml_gelu_inplace(ctx0, embeddings);
|
||||
struct ggml_tensor * x = embeddings;
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
|
||||
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
|
||||
embeddings = ggml_silu_inplace(ctx0, embeddings);
|
||||
embeddings = ggml_mul(ctx0, embeddings,x);
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("fatel error");
|
||||
}
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
|
||||
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||
@@ -1268,6 +1342,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
|
||||
}
|
||||
|
||||
idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
|
||||
if (idx != -1) {
|
||||
new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
|
||||
}
|
||||
|
||||
idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
|
||||
if (idx != -1) {
|
||||
new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
|
||||
@@ -1292,6 +1371,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
|
||||
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
@@ -1402,14 +1482,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
|
||||
int n = gguf_get_arr_n(ctx, idx);
|
||||
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
|
||||
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
|
||||
hparams.image_grid_pinpoints[i] = pinpoints[i];
|
||||
for (int i = 0; i < n; ++i) {
|
||||
hparams.image_grid_pinpoints.push_back(pinpoints[i]);
|
||||
}
|
||||
if (n < 32)
|
||||
hparams.image_grid_pinpoints[n] = 0;
|
||||
} catch (std::runtime_error & /*e*/) {
|
||||
hparams.image_grid_pinpoints[0]=0;
|
||||
}
|
||||
} catch (std::runtime_error & /*e*/) { }
|
||||
|
||||
// Load the vision feature layer indices if they are explicitly provided;
|
||||
// if multiple vision feature layers are present, the values will be concatenated
|
||||
// to form the final visual features.
|
||||
// NOTE: gguf conversions should standardize the values of the vision feature layer to
|
||||
// be non-negative, since we use -1 to mark values as unset here.
|
||||
try {
|
||||
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
|
||||
int n = gguf_get_arr_n(ctx, idx);
|
||||
|
||||
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
|
||||
|
||||
for (int i = 0; i < n; ++i) {
|
||||
hparams.vision_feature_layer.insert(vision_feature_layer[i]);
|
||||
}
|
||||
} catch (std::runtime_error & /*e*/) { }
|
||||
|
||||
try {
|
||||
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
|
||||
@@ -1435,6 +1527,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->image_std[i] = std_data[i];
|
||||
}
|
||||
|
||||
// Calculate the deepest feature layer based on hparams and projector type
|
||||
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
|
||||
|
||||
if (verbosity >= 2) {
|
||||
LOG_INF("\n%s: vision model hparams\n", __func__);
|
||||
LOG_INF("image_size %d\n", hparams.image_size);
|
||||
@@ -1448,8 +1543,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
LOG_INF("v_image_grid_pinpoints: ");
|
||||
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
|
||||
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
|
||||
for (const auto & pp : hparams.image_grid_pinpoints) {
|
||||
LOG_INF("%d ", pp);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_INF("v_vision_feature_layer: ");
|
||||
for (const auto & feature_layer: hparams.vision_feature_layer) {
|
||||
LOG_INF("%d ", feature_layer);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
@@ -1584,6 +1684,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
|
||||
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
||||
vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
|
||||
vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
|
||||
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
|
||||
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
|
||||
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
|
||||
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
|
||||
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
|
||||
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
|
||||
vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
|
||||
vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
|
||||
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
|
||||
@@ -1676,11 +1788,11 @@ void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
|
||||
}
|
||||
}
|
||||
|
||||
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
|
||||
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img) {
|
||||
img->nx = nx;
|
||||
img->ny = ny;
|
||||
img->buf.resize(3 * nx * ny);
|
||||
memcpy(img->buf.data(), data, img->buf.size());
|
||||
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
|
||||
}
|
||||
|
||||
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
||||
@@ -1690,7 +1802,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
||||
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
clip_build_img_from_pixels(data, nx, ny, img);
|
||||
stbi_image_free(data);
|
||||
return true;
|
||||
}
|
||||
@@ -1702,7 +1814,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
|
||||
LOG_ERR("%s: failed to decode image bytes\n", __func__);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
clip_build_img_from_pixels(data, nx, ny, img);
|
||||
stbi_image_free(data);
|
||||
return true;
|
||||
}
|
||||
@@ -2058,6 +2170,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
|
||||
images[images.size()-1].push_back(patch);
|
||||
}
|
||||
}
|
||||
clip_image_u8_free(refine_image);
|
||||
}
|
||||
return images;
|
||||
}
|
||||
@@ -2096,6 +2209,13 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
clip_image_f32_free(res);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||
if (imgs[i][j] != nullptr) {
|
||||
clip_image_u8_free(imgs[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else if (ctx->has_qwen2vl_merger) {
|
||||
@@ -2116,6 +2236,20 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ctx->has_glm_projector) {
|
||||
res_imgs->size = 1;
|
||||
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||
clip_image_u8 resized_image;
|
||||
int32_t sz=ctx->vision_model.hparams.image_size;
|
||||
bicubic_resize(*img, resized_image,sz,sz);
|
||||
clip_image_f32 * res = clip_image_f32_init();
|
||||
//clip_image_save_to_bmp(resized_image, "resized.bmp");
|
||||
normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
|
||||
res_imgs->data[0] = *res;
|
||||
clip_image_f32_free(res);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool pad_to_square = true;
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_ERR("This gguf file seems to have no vision encoder\n");
|
||||
@@ -2160,10 +2294,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (params.image_grid_pinpoints[0] != 0) {
|
||||
if (!params.image_grid_pinpoints.empty()) {
|
||||
// "spatial_unpad" with "anyres" processing for llava-1.6
|
||||
std::vector<std::pair<int, int>> possible_resolutions;
|
||||
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
||||
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
|
||||
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
|
||||
}
|
||||
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
|
||||
@@ -2301,7 +2435,8 @@ void clip_free(clip_ctx * ctx) {
|
||||
}
|
||||
|
||||
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
|
||||
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
|
||||
int extra_tokens = ctx->has_glm_projector ? 2 : 0;
|
||||
return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
|
||||
}
|
||||
|
||||
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
|
||||
@@ -2328,7 +2463,14 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
|
||||
}
|
||||
|
||||
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.image_grid_pinpoints;
|
||||
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
|
||||
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.image_grid_pinpoints.size();
|
||||
}
|
||||
|
||||
int clip_n_patches(const struct clip_ctx * ctx) {
|
||||
@@ -2343,7 +2485,7 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
|
||||
|
||||
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
||||
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
||||
n_patches /= 4;
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
@@ -2352,6 +2494,9 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
n_patches = 64;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
n_patches = 64;
|
||||
}
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
int patch_size = params.patch_size * 2;
|
||||
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
|
||||
@@ -2473,6 +2618,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
}
|
||||
if (ctx->has_glm_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
ggml_tensor * boi = ctx->vision_model.boi_w;
|
||||
ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
|
||||
vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
|
||||
}
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
|
||||
@@ -2531,8 +2682,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
int bucket_coords_h[70];
|
||||
int bucket_coords_w[70];
|
||||
int bucket_coords_h[1024];
|
||||
int bucket_coords_w[1024];
|
||||
for (int i = 0; i < pos_h; i++){
|
||||
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
|
||||
}
|
||||
@@ -2560,6 +2711,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
embed_dim = 3584;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
embed_dim = 3584;
|
||||
}
|
||||
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
||||
|
||||
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
|
||||
@@ -2622,11 +2776,15 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
|
||||
{
|
||||
if (!ctx->has_glm_projector) {
|
||||
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
|
||||
// The patches vector is used to get rows to index into the embeds with;
|
||||
// we should skip dim 0 only if we have CLS to avoid going out of bounds
|
||||
// when retrieving the rows.
|
||||
int patch_offset = ctx->has_class_embedding ? 1 : 0;
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
patches_data[i] = i + 1;
|
||||
patches_data[i] = i + patch_offset;
|
||||
}
|
||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||
free(patches_data);
|
||||
@@ -2646,14 +2804,19 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
// copy the embeddings to the location passed by the user
|
||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||
|
||||
if (ctx->has_glm_projector) {
|
||||
//eoi
|
||||
ggml_tensor * eoi = ctx->vision_model.eoi_w;
|
||||
int offset = ggml_nelements(embeddings);
|
||||
ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
|
||||
ggml_type type = GGML_TYPE_Q4_1;
|
||||
|
||||
assert(itype < GGML_TYPE_COUNT);
|
||||
type = static_cast<ggml_type>(itype);
|
||||
ggml_type type = static_cast<ggml_type>(itype);
|
||||
|
||||
auto * ctx_clip = clip_model_load(fname_inp, 2);
|
||||
|
||||
@@ -2706,8 +2869,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
}
|
||||
}
|
||||
|
||||
// quantize only 2D tensors
|
||||
quantize &= (ggml_n_dims(cur) == 2);
|
||||
// quantize only 2D tensors and bigger than block size
|
||||
quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
|
||||
|
||||
if (quantize) {
|
||||
new_type = type;
|
||||
@@ -2752,7 +2915,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
total_size_org += orig_size;
|
||||
total_size_new += new_size;
|
||||
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
|
||||
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
|
||||
GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
|
||||
gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
|
||||
fout.write((const char *)new_data, new_size);
|
||||
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
|
||||
for (size_t j = 0; j < pad; ++j) {
|
||||
@@ -2802,6 +2966,12 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
return 3584;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
return 3584;
|
||||
}
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
|
||||
return ctx->vision_model.mm_model_mlp_3_w->ne[1];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
return ctx->vision_model.mm_1_b->ne[0];
|
||||
@@ -2818,10 +2988,35 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool clip_is_glm(const struct clip_ctx * ctx) {
|
||||
return ctx->has_glm_projector;
|
||||
}
|
||||
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
|
||||
return ctx->has_qwen2vl_merger;
|
||||
}
|
||||
|
||||
// Determine the number of encoder layers to iterate over
|
||||
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
|
||||
// Get the index of the second to last layer; this is the
|
||||
// default for models that have a llava projector
|
||||
const auto & hparams = ctx->vision_model.hparams;
|
||||
int n_layer = hparams.n_layer - 1;
|
||||
int deepest_feature_layer = -1;
|
||||
|
||||
// Handle other projectors; incrementing here indicates that we
|
||||
// should use the last encoder layer for the vision features.
|
||||
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
|
||||
n_layer += 1;
|
||||
}
|
||||
|
||||
// If we set explicit vision feature layers, only go up to the deepest one
|
||||
for (const auto & feature_layer : hparams.vision_feature_layer) {
|
||||
if (feature_layer > deepest_feature_layer) {
|
||||
deepest_feature_layer = feature_layer;
|
||||
}
|
||||
}
|
||||
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
|
||||
}
|
||||
|
||||
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
|
||||
clip_image_f32 clip_img;
|
||||
|
||||
8
llama/llama.cpp/examples/llava/clip.h
vendored
8
llama/llama.cpp/examples/llava/clip.h
vendored
@@ -55,6 +55,7 @@ CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
@@ -73,6 +74,9 @@ CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
/** build image from pixels decoded by other libraries instead of stb_image.h for better performance. The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes */
|
||||
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
@@ -89,10 +93,14 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
40
llama/llama.cpp/examples/llava/llava.cpp
vendored
40
llama/llama.cpp/examples/llava/llava.cpp
vendored
@@ -216,7 +216,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
return true;
|
||||
}
|
||||
|
||||
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||
int width = image->nx;
|
||||
int height = image->ny;
|
||||
int num_patches = (height / patch_size) * (width / patch_size);
|
||||
@@ -277,13 +277,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
}
|
||||
else {
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
|
||||
if (has_minicpmv_projector == 2) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
}
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
}
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
}
|
||||
|
||||
if (!encoded) {
|
||||
@@ -313,6 +307,23 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
load_image_size->height = img->ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
delete[] img_res_v.data;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
}
|
||||
else if (clip_is_glm(ctx_clip)){
|
||||
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||
load_image_size->width = img_res_v.data[0].nx;
|
||||
load_image_size->height = img_res_v.data[0].ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
|
||||
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
|
||||
*n_img_pos = (pos * pos + 2);
|
||||
if (!encoded){
|
||||
LOG_ERR("Unable to encode image \n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
@@ -342,9 +353,10 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
|
||||
|
||||
std::vector<std::pair<int, int>> grid_pinpoints;
|
||||
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
|
||||
for (size_t i = 0; i < num_gridpoints; i += 2) {
|
||||
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
||||
}
|
||||
|
||||
@@ -384,7 +396,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
|
||||
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
|
||||
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
if (n_image_embd != n_llama_embd) {
|
||||
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
@@ -394,10 +406,14 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
}
|
||||
|
||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
int num_max_patches = 6;
|
||||
// Granite vision uses up to 10 patches + base patch
|
||||
int num_max_patches = 11;
|
||||
if (clip_is_minicpmv(ctx_clip)) {
|
||||
num_max_patches = 10;
|
||||
}
|
||||
if (clip_is_glm(ctx_clip)) {
|
||||
num_max_patches = 1;
|
||||
}
|
||||
float * image_embd;
|
||||
if (clip_is_qwen2vl(ctx_clip)) {
|
||||
// qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
|
||||
@@ -457,7 +473,7 @@ struct llava_embd_batch {
|
||||
};
|
||||
|
||||
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
|
||||
int n_eval = image_embed->n_image_pos - i;
|
||||
|
||||
8
llama/llama.cpp/include/llama-cpp.h
vendored
8
llama/llama.cpp/include/llama-cpp.h
vendored
@@ -9,7 +9,7 @@
|
||||
#include "llama.h"
|
||||
|
||||
struct llama_model_deleter {
|
||||
void operator()(llama_model * model) { llama_free_model(model); }
|
||||
void operator()(llama_model * model) { llama_model_free(model); }
|
||||
};
|
||||
|
||||
struct llama_context_deleter {
|
||||
@@ -20,11 +20,11 @@ struct llama_sampler_deleter {
|
||||
void operator()(llama_sampler * sampler) { llama_sampler_free(sampler); }
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_deleter {
|
||||
void operator()(llama_lora_adapter * lora_adapter) { llama_lora_adapter_free(lora_adapter); }
|
||||
struct llama_adapter_lora_deleter {
|
||||
void operator()(llama_adapter_lora * adapter) { llama_adapter_lora_free(adapter); }
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr;
|
||||
typedef std::unique_ptr<llama_context, llama_context_deleter> llama_context_ptr;
|
||||
typedef std::unique_ptr<llama_sampler, llama_sampler_deleter> llama_sampler_ptr;
|
||||
typedef std::unique_ptr<llama_lora_adapter, llama_lora_adapter_deleter> llama_lora_adapter_ptr;
|
||||
typedef std::unique_ptr<llama_adapter_lora, llama_adapter_lora_deleter> llama_adapter_lora_ptr;
|
||||
|
||||
237
llama/llama.cpp/include/llama.h
vendored
237
llama/llama.cpp/include/llama.h
vendored
@@ -34,7 +34,6 @@
|
||||
|
||||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||
|
||||
// TODO: use everywhere in the implementation
|
||||
#define LLAMA_TOKEN_NULL -1
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
@@ -57,7 +56,7 @@ extern "C" {
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
// struct llama_vocab; // TODO: add in the future
|
||||
struct llama_vocab;
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
struct llama_sampler;
|
||||
@@ -106,6 +105,7 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
|
||||
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
@@ -214,7 +214,7 @@ extern "C" {
|
||||
LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
|
||||
};
|
||||
|
||||
// TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
|
||||
// TODO: simplify (https://github.com/ggml-org/llama.cpp/pull/9294#pullrequestreview-2286561979)
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
@@ -290,9 +290,6 @@ extern "C" {
|
||||
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||||
const float * tensor_split;
|
||||
|
||||
// comma separated list of RPC servers to use for offloading
|
||||
const char * rpc_servers;
|
||||
|
||||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||
// If the provided progress_callback returns true, model loading continues.
|
||||
// If it returns false, model loading is immediately aborted.
|
||||
@@ -312,7 +309,7 @@ extern "C" {
|
||||
};
|
||||
|
||||
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
|
||||
// https://github.com/ggerganov/llama.cpp/pull/7544
|
||||
// https://github.com/ggml-org/llama.cpp/pull/7544
|
||||
struct llama_context_params {
|
||||
uint32_t n_ctx; // text context, 0 = from model
|
||||
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
|
||||
@@ -325,7 +322,7 @@ extern "C" {
|
||||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||||
enum llama_attention_type attention_type; // attention type to use for embeddings
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||||
float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
|
||||
@@ -388,11 +385,10 @@ extern "C" {
|
||||
} llama_chat_message;
|
||||
|
||||
// lora adapter
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter;
|
||||
struct llama_adapter_lora;
|
||||
|
||||
// Helpers for getting default parameters
|
||||
// TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
|
||||
// TODO: update API to start accepting pointers to params structs (https://github.com/ggml-org/llama.cpp/discussions/9172)
|
||||
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||
LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
|
||||
@@ -403,31 +399,53 @@ extern "C" {
|
||||
// Call once at the start of the program
|
||||
LLAMA_API void llama_backend_init(void);
|
||||
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free(void);
|
||||
|
||||
//optional:
|
||||
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
|
||||
|
||||
// Optional: an auto threadpool gets created in ggml if not passed explicitly
|
||||
LLAMA_API void llama_attach_threadpool(
|
||||
struct llama_context * ctx,
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch);
|
||||
struct llama_context * ctx,
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch);
|
||||
|
||||
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
|
||||
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free(void);
|
||||
DEPRECATED(LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_model_params params),
|
||||
"use llama_model_load_from_file instead");
|
||||
|
||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
// Load the model from a file
|
||||
// If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
|
||||
// If the split file name does not follow this pattern, use llama_model_load_from_splits
|
||||
LLAMA_API struct llama_model * llama_model_load_from_file(
|
||||
const char * path_model,
|
||||
struct llama_model_params params);
|
||||
|
||||
// TODO: rename to llama_model_free
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
// Load the model from multiple splits (support custom naming scheme)
|
||||
// The paths must be in the correct order
|
||||
LLAMA_API struct llama_model * llama_model_load_from_splits(
|
||||
const char ** paths,
|
||||
size_t n_paths,
|
||||
struct llama_model_params params);
|
||||
|
||||
// TODO: rename to llama_init_from_model
|
||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
|
||||
"use llama_model_free instead");
|
||||
|
||||
LLAMA_API void llama_model_free(struct llama_model * model);
|
||||
|
||||
LLAMA_API struct llama_context * llama_init_from_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
DEPRECATED(LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params),
|
||||
"use llama_init_from_model instead");
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
@@ -449,20 +467,31 @@ extern "C" {
|
||||
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_head (const struct llama_model * model);
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model), "use llama_model_n_ctx_train instead");
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_embd (const struct llama_model * model), "use llama_model_n_embd instead");
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_layer (const struct llama_model * model), "use llama_model_n_layer instead");
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_head (const struct llama_model * model), "use llama_model_n_head instead");
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
|
||||
|
||||
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
|
||||
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
|
||||
|
||||
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
|
||||
|
||||
// Get the model's RoPE frequency scaling factor
|
||||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||
LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab);
|
||||
|
||||
LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
|
||||
|
||||
// Functions to access the model's GGUF metadata scalar values
|
||||
// - The functions return the length of the string on success, or -1 on failure
|
||||
@@ -488,6 +517,10 @@ extern "C" {
|
||||
// Returns the total size of all the tensors in the model in bytes
|
||||
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||||
|
||||
// Get the default chat template. Returns nullptr if not available
|
||||
// If name is NULL, returns the default chat template
|
||||
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
|
||||
|
||||
// Returns the total number of parameters in the model
|
||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||
|
||||
@@ -515,34 +548,31 @@ extern "C" {
|
||||
//
|
||||
|
||||
// Load a LoRA adapter from file
|
||||
// TODO: rename to llama_adapter_lora_init
|
||||
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
|
||||
LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
|
||||
struct llama_model * model,
|
||||
const char * path_lora);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
|
||||
|
||||
// The following functions operate on a llama_context, hence the naming: llama_verb_...
|
||||
|
||||
// Add a loaded LoRA adapter to given context
|
||||
// This will not modify model's weight
|
||||
// TODO: rename to llama_set_adapter_lora
|
||||
LLAMA_API int32_t llama_lora_adapter_set(
|
||||
LLAMA_API int32_t llama_set_adapter_lora(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter,
|
||||
struct llama_adapter_lora * adapter,
|
||||
float scale);
|
||||
|
||||
// Remove a specific LoRA adapter from given context
|
||||
// Return -1 if the adapter is not present in the context
|
||||
// TODO: rename to llama_rm_adapter_lora
|
||||
LLAMA_API int32_t llama_lora_adapter_remove(
|
||||
LLAMA_API int32_t llama_rm_adapter_lora(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter);
|
||||
struct llama_adapter_lora * adapter);
|
||||
|
||||
// Remove all LoRA adapters from given context
|
||||
// TODO: rename to llama_clear_adapter_lora
|
||||
LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
// TODO: rename to llama_adapter_lora_free
|
||||
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
|
||||
LLAMA_API void llama_clear_adapter_lora(struct llama_context * ctx);
|
||||
|
||||
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
||||
// the currently loaded vector.
|
||||
@@ -550,9 +580,8 @@ extern "C" {
|
||||
// to an n_embd x n_layers buffer starting from layer 1.
|
||||
// il_start and il_end are the layer range the vector should apply to (both inclusive)
|
||||
// See llama_control_vector_load in common to load a control vector.
|
||||
// TODO: rename to llama_adapter_cvec_apply
|
||||
LLAMA_API int32_t llama_control_vector_apply(
|
||||
struct llama_context * lctx,
|
||||
LLAMA_API int32_t llama_apply_adapter_cvec(
|
||||
struct llama_context * ctx,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
@@ -908,41 +937,60 @@ extern "C" {
|
||||
// Vocab
|
||||
//
|
||||
|
||||
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
|
||||
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
// Identify if Token Id is a control token or a render-able token
|
||||
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
|
||||
LLAMA_API bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
|
||||
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
|
||||
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
|
||||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||||
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
|
||||
LLAMA_API llama_token llama_vocab_bos(const struct llama_vocab * vocab); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_vocab_eos(const struct llama_vocab * vocab); // end-of-sentence
|
||||
LLAMA_API llama_token llama_vocab_eot(const struct llama_vocab * vocab); // end-of-turn
|
||||
LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
|
||||
LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
|
||||
LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
|
||||
|
||||
LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
|
||||
LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
|
||||
LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
|
||||
LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
|
||||
|
||||
// infill tokens
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
|
||||
LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
|
||||
LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
|
||||
|
||||
LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
|
||||
LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
|
||||
DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_text instead");
|
||||
DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
|
||||
DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
|
||||
DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");
|
||||
DEPRECATED(LLAMA_API bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_control instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_bos(const struct llama_vocab * vocab), "use llama_vocab_bos instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_eos(const struct llama_vocab * vocab), "use llama_vocab_eos instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_eot(const struct llama_vocab * vocab), "use llama_vocab_eot instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_cls(const struct llama_vocab * vocab), "use llama_vocab_cls instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_sep(const struct llama_vocab * vocab), "use llama_vocab_sep instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_nl (const struct llama_vocab * vocab), "use llama_vocab_nl instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_pad(const struct llama_vocab * vocab), "use llama_vocab_pad instead");
|
||||
DEPRECATED(LLAMA_API bool llama_add_bos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_bos instead");
|
||||
DEPRECATED(LLAMA_API bool llama_add_eos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_eos instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_pre(const struct llama_vocab * vocab), "use llama_vocab_fim_pre instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_suf(const struct llama_vocab * vocab), "use llama_vocab_fim_suf instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_mid(const struct llama_vocab * vocab), "use llama_vocab_fim_mid instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_pad(const struct llama_vocab * vocab), "use llama_vocab_fim_pad instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_rep(const struct llama_vocab * vocab), "use llama_vocab_fim_rep instead");
|
||||
DEPRECATED(LLAMA_API llama_token llama_token_fim_sep(const struct llama_vocab * vocab), "use llama_vocab_fim_sep instead");
|
||||
|
||||
// CLS is equivalent to BOS
|
||||
DEPRECATED(LLAMA_API llama_token llama_vocab_cls(const struct llama_vocab * vocab), // classification
|
||||
"use llama_vocab_bos instead");
|
||||
|
||||
//
|
||||
// Tokenization
|
||||
@@ -958,7 +1006,7 @@ extern "C" {
|
||||
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
|
||||
/// as plaintext. Does not insert a leading space.
|
||||
LLAMA_API int32_t llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
@@ -972,7 +1020,7 @@ extern "C" {
|
||||
// User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
|
||||
// @param special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_token_to_piece(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length,
|
||||
@@ -986,7 +1034,7 @@ extern "C" {
|
||||
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
|
||||
/// @param unparse_special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_detokenize(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
char * text,
|
||||
@@ -1000,7 +1048,7 @@ extern "C" {
|
||||
|
||||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||||
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
|
||||
/// @param chat Pointer to a list of multiple llama_chat_message
|
||||
/// @param n_msg Number of llama_chat_message in this chat
|
||||
@@ -1009,7 +1057,6 @@ extern "C" {
|
||||
/// @param length The size of the allocated buffer
|
||||
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
|
||||
LLAMA_API int32_t llama_chat_apply_template(
|
||||
const struct llama_model * model,
|
||||
const char * tmpl,
|
||||
const struct llama_chat_message * chat,
|
||||
size_t n_msg,
|
||||
@@ -1057,7 +1104,6 @@ extern "C" {
|
||||
// llama_sampler_free(smpl);
|
||||
//
|
||||
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
|
||||
// TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
|
||||
//
|
||||
|
||||
typedef void * llama_sampler_context_t;
|
||||
@@ -1076,11 +1122,12 @@ extern "C" {
|
||||
};
|
||||
|
||||
struct llama_sampler {
|
||||
struct llama_sampler_i * iface;
|
||||
llama_sampler_context_t ctx;
|
||||
const struct llama_sampler_i * iface;
|
||||
llama_sampler_context_t ctx;
|
||||
};
|
||||
|
||||
// mirror of llama_sampler_i:
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
|
||||
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
|
||||
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
|
||||
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
|
||||
@@ -1110,7 +1157,7 @@ extern "C" {
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
|
||||
DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
|
||||
"will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
|
||||
"will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
|
||||
@@ -1118,7 +1165,7 @@ extern "C" {
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
|
||||
|
||||
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
||||
/// @details Minimum P sampling as described in https://github.com/ggml-org/llama.cpp/pull/3841
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
@@ -1133,6 +1180,9 @@ extern "C" {
|
||||
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
|
||||
|
||||
/// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_top_n_sigma(float n);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
@@ -1157,10 +1207,22 @@ extern "C" {
|
||||
float eta);
|
||||
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root);
|
||||
|
||||
/// @details Lazy grammar sampler, introduced in https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
/// @param trigger_words A list of words that will trigger the grammar sampler. This may be updated to a loose regex syntax (w/ ^) in a near future.
|
||||
/// @param trigger_tokens A list of tokens that will trigger the grammar sampler.
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_grammar_lazy(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens);
|
||||
|
||||
/// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
|
||||
int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
@@ -1169,8 +1231,9 @@ extern "C" {
|
||||
float penalty_present); // 0.0 = disabled
|
||||
|
||||
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
|
||||
const struct llama_model * model,
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_dry(
|
||||
const struct llama_vocab * vocab,
|
||||
int32_t n_ctx_train,
|
||||
float dry_multiplier,
|
||||
float dry_base,
|
||||
int32_t dry_allowed_length,
|
||||
@@ -1204,7 +1267,7 @@ extern "C" {
|
||||
// 3. discard non-EOG tokens with low prob
|
||||
// 4. if no tokens are left -> pick EOT
|
||||
//
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab);
|
||||
|
||||
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
|
||||
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
|
||||
|
||||
101
llama/llama.cpp/src/llama-adapter.cpp
vendored
101
llama/llama.cpp/src/llama-adapter.cpp
vendored
@@ -1,5 +1,7 @@
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-mmap.h"
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -9,7 +11,7 @@
|
||||
|
||||
// vec
|
||||
|
||||
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
||||
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
@@ -17,7 +19,7 @@ struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
||||
return tensors[il];
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
@@ -26,12 +28,12 @@ struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, s
|
||||
return cur;
|
||||
}
|
||||
|
||||
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
||||
bool llama_adapter_cvec::init(const llama_model & model) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
GGML_ASSERT(cvec.tensors.empty());
|
||||
GGML_ASSERT(cvec.ctxs.empty());
|
||||
GGML_ASSERT(cvec.bufs.empty());
|
||||
GGML_ASSERT(tensors.empty());
|
||||
GGML_ASSERT(ctxs.empty());
|
||||
GGML_ASSERT(bufs.empty());
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
@@ -50,7 +52,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
cvec.ctxs.emplace_back(ctx);
|
||||
ctxs.emplace_back(ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
@@ -59,21 +61,21 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
||||
};
|
||||
|
||||
// make tensors
|
||||
cvec.tensors.reserve(hparams.n_layer);
|
||||
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
tensors.reserve(hparams.n_layer);
|
||||
tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
|
||||
ggml_backend_buffer_type_t buft = model.select_buft(il);
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
|
||||
cvec.tensors.push_back(tensor);
|
||||
tensors.push_back(tensor);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
cvec.bufs.reserve(ctx_map.size());
|
||||
bufs.reserve(ctx_map.size());
|
||||
for (auto it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
@@ -83,14 +85,13 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
cvec.bufs.emplace_back(buf);
|
||||
bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
int32_t llama_adapter_cvec::apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
@@ -101,8 +102,8 @@ int32_t llama_control_vector_apply(
|
||||
|
||||
if (data == nullptr) {
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
cvec.layer_start = -1;
|
||||
cvec.layer_end = -1;
|
||||
layer_start = -1;
|
||||
layer_end = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -111,21 +112,21 @@ int32_t llama_control_vector_apply(
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (cvec.tensors.empty()) {
|
||||
if (!llama_control_vector_init(cvec, model)) {
|
||||
if (tensors.empty()) {
|
||||
if (!init(model)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
cvec.layer_start = il_start;
|
||||
cvec.layer_end = il_end;
|
||||
layer_start = il_start;
|
||||
layer_end = il_end;
|
||||
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
assert(cvec.tensors[il] != nullptr);
|
||||
assert(tensors[il] != nullptr);
|
||||
|
||||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||
if (off + n_embd <= len) {
|
||||
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||||
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il]));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -134,7 +135,7 @@ int32_t llama_control_vector_apply(
|
||||
|
||||
// lora
|
||||
|
||||
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
||||
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
|
||||
const std::string name(w->name);
|
||||
|
||||
const auto pos = ab_map.find(name);
|
||||
@@ -145,11 +146,7 @@ llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
||||
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
@@ -221,7 +218,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
};
|
||||
|
||||
// bundle lora_a and lora_b into pairs
|
||||
std::map<std::string, llama_lora_weight> ab_map;
|
||||
std::map<std::string, llama_adapter_lora_weight> ab_map;
|
||||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
};
|
||||
@@ -231,17 +228,21 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
if (str_endswith(name, ".lora_a")) {
|
||||
replace_all(name, ".lora_a", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(cur, nullptr);
|
||||
ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
|
||||
} else {
|
||||
ab_map[name].a = cur;
|
||||
}
|
||||
} else if (str_endswith(name, ".lora_b")) {
|
||||
replace_all(name, ".lora_b", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(nullptr, cur);
|
||||
ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
} else if (str_endswith(name, "_norm.weight")) {
|
||||
// TODO: add support for norm vector
|
||||
// for now, we don't really care because most adapters still work fine without it
|
||||
continue;
|
||||
} else {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||||
}
|
||||
@@ -250,25 +251,33 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_lora_weight & w = it.second;
|
||||
llama_adapter_lora_weight & w = it.second;
|
||||
bool is_token_embd = str_endswith(name, "token_embd.weight");
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||||
}
|
||||
|
||||
// device buft and device ctx
|
||||
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
|
||||
const auto * model_tensor = model.get_tensor(name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
|
||||
}
|
||||
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
// validate tensor shape
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
if (is_token_embd) {
|
||||
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
|
||||
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
|
||||
}
|
||||
} else {
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
}
|
||||
}
|
||||
|
||||
// save tensor to adapter
|
||||
@@ -276,7 +285,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
||||
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
@@ -318,11 +327,11 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
|
||||
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_lora_adapter * adapter = new llama_lora_adapter();
|
||||
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_adapter_lora * adapter = new llama_adapter_lora();
|
||||
|
||||
try {
|
||||
llama_lora_adapter_init_impl(*model, path_lora, *adapter);
|
||||
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
|
||||
return adapter;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
@@ -332,3 +341,7 @@ struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model,
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
64
llama/llama.cpp/src/llama-adapter.h
vendored
64
llama/llama.cpp/src/llama-adapter.h
vendored
@@ -1,66 +1,74 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-hparams.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// TODO: pimpl
|
||||
|
||||
//
|
||||
// llama_adapter_cvec
|
||||
//
|
||||
|
||||
// TODO: rename to llama_adapter_cvec
|
||||
struct llama_control_vector {
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
struct llama_adapter_cvec {
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
|
||||
int32_t apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
private:
|
||||
bool init(const llama_model & model);
|
||||
|
||||
int32_t layer_start = -1;
|
||||
int32_t layer_end = -1;
|
||||
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
};
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
//
|
||||
// llama_adapter_lora
|
||||
//
|
||||
|
||||
// TODO: rename to llama_adapter_lora_weight
|
||||
struct llama_lora_weight {
|
||||
struct llama_adapter_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
|
||||
llama_lora_weight() = default;
|
||||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
// get actual scale based on rank and alpha
|
||||
float get_scale(float alpha, float adapter_scale) const {
|
||||
const float rank = (float) b->ne[0];
|
||||
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
|
||||
return scale;
|
||||
}
|
||||
|
||||
llama_adapter_lora_weight() = default;
|
||||
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter {
|
||||
struct llama_adapter_lora {
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
|
||||
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
float alpha;
|
||||
|
||||
llama_lora_adapter() = default;
|
||||
~llama_lora_adapter() = default;
|
||||
llama_adapter_lora() = default;
|
||||
~llama_adapter_lora() = default;
|
||||
|
||||
llama_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
};
|
||||
|
||||
134
llama/llama.cpp/src/llama-arch.cpp
vendored
134
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -28,6 +28,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_QWEN2VL, "qwen2vl" },
|
||||
{ LLM_ARCH_PHI2, "phi2" },
|
||||
{ LLM_ARCH_PHI3, "phi3" },
|
||||
{ LLM_ARCH_PHIMOE, "phimoe" },
|
||||
{ LLM_ARCH_PLAMO, "plamo" },
|
||||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||||
{ LLM_ARCH_ORION, "orion" },
|
||||
@@ -57,6 +58,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||||
{ LLM_ARCH_EXAONE, "exaone" },
|
||||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||||
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
|
||||
{ LLM_ARCH_GRANITE, "granite" },
|
||||
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
@@ -107,25 +109,26 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
|
||||
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
|
||||
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
|
||||
{ LLM_KV_TOKEN_SHIFT_COUNT, "%s.token_shift_count" },
|
||||
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||||
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||||
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||||
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||||
{ LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
|
||||
{ LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
|
||||
{ LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||||
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||||
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||||
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||||
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||||
{ LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
|
||||
{ LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
|
||||
{ LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||||
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
|
||||
@@ -179,6 +182,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
|
||||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||||
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" },
|
||||
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, "tokenizer.chat_template.%s" },
|
||||
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
|
||||
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
|
||||
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
|
||||
@@ -622,6 +627,27 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PHIMOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
|
||||
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PLAMO,
|
||||
{
|
||||
@@ -1036,6 +1062,9 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
@@ -1182,6 +1211,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" },
|
||||
{ LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" },
|
||||
{ LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" },
|
||||
{ LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" },
|
||||
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
|
||||
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
|
||||
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
|
||||
@@ -1199,6 +1229,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_RWKV6QWEN2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" },
|
||||
{ LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" },
|
||||
{ LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" },
|
||||
{ LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" },
|
||||
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
|
||||
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
|
||||
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
|
||||
{ LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" },
|
||||
{ LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" },
|
||||
{ LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" },
|
||||
{ LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" },
|
||||
{ LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" },
|
||||
{ LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GRANITE,
|
||||
{
|
||||
@@ -1253,6 +1309,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_SOLAR,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
{
|
||||
@@ -1278,24 +1352,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_SOLAR,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -1399,6 +1455,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_TIME_MIX_LERP_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
{LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
{LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
{LLM_TENSOR_TIME_MIX_LERP_FUSED, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
{LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
{LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV6}},
|
||||
{LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
@@ -1455,10 +1512,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
};
|
||||
|
||||
LLM_KV::LLM_KV(llm_arch arch) : arch(arch) {}
|
||||
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}
|
||||
|
||||
std::string LLM_KV::operator()(llm_kv kv) const {
|
||||
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
|
||||
return suffix ? ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch), suffix)
|
||||
: ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
|
||||
}
|
||||
|
||||
std::string LLM_TN_IMPL::str() const {
|
||||
|
||||
9
llama/llama.cpp/src/llama-arch.h
vendored
9
llama/llama.cpp/src/llama-arch.h
vendored
@@ -32,6 +32,7 @@ enum llm_arch {
|
||||
LLM_ARCH_QWEN2VL,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PHI3,
|
||||
LLM_ARCH_PHIMOE,
|
||||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
@@ -61,6 +62,7 @@ enum llm_arch {
|
||||
LLM_ARCH_NEMOTRON,
|
||||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_RWKV6,
|
||||
LLM_ARCH_RWKV6QWEN2,
|
||||
LLM_ARCH_GRANITE,
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
LLM_ARCH_CHAMELEON,
|
||||
@@ -111,6 +113,7 @@ enum llm_kv {
|
||||
LLM_KV_TIME_DECAY_EXTRA_DIM,
|
||||
LLM_KV_RESIDUAL_SCALE,
|
||||
LLM_KV_EMBEDDING_SCALE,
|
||||
LLM_KV_TOKEN_SHIFT_COUNT,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
@@ -177,6 +180,8 @@ enum llm_kv {
|
||||
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
|
||||
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
|
||||
LLM_KV_TOKENIZER_FIM_PRE_ID,
|
||||
LLM_KV_TOKENIZER_FIM_SUF_ID,
|
||||
LLM_KV_TOKENIZER_FIM_MID_ID,
|
||||
@@ -256,6 +261,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_TIME_MIX_LERP_V,
|
||||
LLM_TENSOR_TIME_MIX_LERP_R,
|
||||
LLM_TENSOR_TIME_MIX_LERP_G,
|
||||
LLM_TENSOR_TIME_MIX_LERP_FUSED,
|
||||
LLM_TENSOR_TIME_MIX_FIRST,
|
||||
LLM_TENSOR_TIME_MIX_DECAY,
|
||||
LLM_TENSOR_TIME_MIX_DECAY_W1,
|
||||
@@ -343,9 +349,10 @@ enum llm_tensor_layer {
|
||||
};
|
||||
|
||||
struct LLM_KV {
|
||||
LLM_KV(llm_arch arch);
|
||||
LLM_KV(llm_arch arch, const char * suffix = nullptr);
|
||||
|
||||
llm_arch arch;
|
||||
const char * suffix;
|
||||
|
||||
std::string operator()(llm_kv kv) const;
|
||||
};
|
||||
|
||||
26
llama/llama.cpp/src/llama-chat.cpp
vendored
26
llama/llama.cpp/src/llama-chat.cpp
vendored
@@ -35,6 +35,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
|
||||
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
||||
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||
@@ -50,6 +51,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
|
||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||
@@ -73,7 +75,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl_contains("<|im_start|>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATML;
|
||||
return tmpl_contains("<|im_sep|>")
|
||||
? LLM_CHAT_TEMPLATE_PHI_4
|
||||
: LLM_CHAT_TEMPLATE_CHATML;
|
||||
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||
@@ -112,7 +116,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
|
||||
return LLM_CHAT_TEMPLATE_FALCON_3;
|
||||
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
|
||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||
@@ -149,7 +153,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
|
||||
} else if (tmpl_contains(LU8("'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'"))) {
|
||||
} else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
|
||||
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
@@ -269,6 +273,14 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_4) {
|
||||
// chatml template
|
||||
for (auto message : chat) {
|
||||
ss << "<|im_start|>" << message->role << "<|im_sep|>" << message->content << "<|im_end|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant<|im_sep|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
|
||||
// Falcon 3
|
||||
for (auto message : chat) {
|
||||
@@ -429,6 +441,14 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
for (auto message : chat) {
|
||||
|
||||
2
llama/llama.cpp/src/llama-chat.h
vendored
2
llama/llama.cpp/src/llama-chat.h
vendored
@@ -15,6 +15,7 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||
LLM_CHAT_TEMPLATE_PHI_3,
|
||||
LLM_CHAT_TEMPLATE_PHI_4,
|
||||
LLM_CHAT_TEMPLATE_FALCON_3,
|
||||
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||
LLM_CHAT_TEMPLATE_MONARCH,
|
||||
@@ -30,6 +31,7 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||
LLM_CHAT_TEMPLATE_GLMEDGE,
|
||||
LLM_CHAT_TEMPLATE_MINICPM,
|
||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||
|
||||
5
llama/llama.cpp/src/llama-context.cpp
vendored
5
llama/llama.cpp/src/llama-context.cpp
vendored
@@ -1,5 +1,8 @@
|
||||
#include "llama-context.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
@@ -513,7 +516,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
|
||||
auto * buft = ggml_backend_cpu_buffer_type();
|
||||
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
|
||||
auto * output_dev = lctx.model.dev_output.dev;
|
||||
auto * output_dev = lctx.model.dev_output();
|
||||
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
|
||||
if (output_dev_host_buft) {
|
||||
buft = output_dev_host_buft;
|
||||
|
||||
10
llama/llama.cpp/src/llama-context.h
vendored
10
llama/llama.cpp/src/llama-context.h
vendored
@@ -22,12 +22,12 @@ struct llama_context {
|
||||
|
||||
const struct llama_model & model;
|
||||
|
||||
struct llama_cparams cparams;
|
||||
struct llama_sbatch sbatch; // TODO: revisit if needed
|
||||
struct llama_kv_cache kv_self;
|
||||
struct llama_control_vector cvec;
|
||||
struct llama_cparams cparams;
|
||||
struct llama_sbatch sbatch; // TODO: revisit if needed
|
||||
struct llama_kv_cache kv_self;
|
||||
struct llama_adapter_cvec cvec;
|
||||
|
||||
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
|
||||
std::unordered_map<struct llama_adapter_lora *, float> lora;
|
||||
|
||||
std::vector<ggml_backend_ptr> backends;
|
||||
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
||||
|
||||
454
llama/llama.cpp/src/llama-grammar.cpp
vendored
454
llama/llama.cpp/src/llama-grammar.cpp
vendored
@@ -345,194 +345,194 @@ const char * llama_grammar_parser::parse_sequence(
|
||||
size_t last_sym_start = rule.size();
|
||||
const char * pos = src;
|
||||
|
||||
auto handle_repetitions = [&](int min_times, int max_times) {
|
||||
auto handle_repetitions = [&](int min_times, int max_times) {
|
||||
|
||||
if (last_sym_start == rule.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
|
||||
}
|
||||
if (last_sym_start == rule.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// the following rewrite rules:
|
||||
// S{m,n} --> S S S (m times) S'(n-m)
|
||||
// S'(x) ::= S S'(x-1) |
|
||||
// (... n-m definitions of these S' rules ...)
|
||||
// S'(1) ::= S |
|
||||
// S{m,} --> S S S (m times) S'
|
||||
// S' ::= S S' |
|
||||
// S* --> S{0,}
|
||||
// --> S' ::= S S' |
|
||||
// S+ --> S{1,}
|
||||
// --> S S'
|
||||
// S' ::= S S' |
|
||||
// S? --> S{0,1}
|
||||
// --> S'
|
||||
// S' ::= S |
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// the following rewrite rules:
|
||||
// S{m,n} --> S S S (m times) S'(n-m)
|
||||
// S'(x) ::= S S'(x-1) |
|
||||
// (... n-m definitions of these S' rules ...)
|
||||
// S'(1) ::= S |
|
||||
// S{m,} --> S S S (m times) S'
|
||||
// S' ::= S S' |
|
||||
// S* --> S{0,}
|
||||
// --> S' ::= S S' |
|
||||
// S+ --> S{1,}
|
||||
// --> S S'
|
||||
// S' ::= S S' |
|
||||
// S? --> S{0,1}
|
||||
// --> S'
|
||||
// S' ::= S |
|
||||
|
||||
llama_grammar_rule prev_rule(rule.begin() + last_sym_start, rule.end());
|
||||
if (min_times == 0) {
|
||||
rule.resize(last_sym_start);
|
||||
} else {
|
||||
// Repeat the previous elements (min_times - 1) times
|
||||
for (int i = 1; i < min_times; i++) {
|
||||
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t last_rec_rule_id = 0;
|
||||
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
|
||||
|
||||
llama_grammar_rule rec_rule(prev_rule);
|
||||
for (int i = 0; i < n_opt; i++) {
|
||||
rec_rule.resize(prev_rule.size());
|
||||
uint32_t rec_rule_id = generate_symbol_id( rule_name);
|
||||
if (i > 0 || max_times < 0) {
|
||||
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
|
||||
}
|
||||
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule( rec_rule_id, rec_rule);
|
||||
last_rec_rule_id = rec_rule_id;
|
||||
}
|
||||
if (n_opt > 0) {
|
||||
rule.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
|
||||
}
|
||||
};
|
||||
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = rule.size();
|
||||
while (*pos != '"') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
rule.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = LLAMA_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = rule.size();
|
||||
while (*pos != ']') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < rule.size()
|
||||
? LLAMA_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
rule.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
if (!pos[1]) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
rule.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = rule.size();
|
||||
rule.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(rule_name);
|
||||
pos = parse_alternates(pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = rule.size();
|
||||
// output reference to synthesized rule
|
||||
rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '.') { // any char
|
||||
last_sym_start = rule.size();
|
||||
rule.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, -1);
|
||||
} else if (*pos == '+') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(1, -1);
|
||||
} else if (*pos == '?') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, 1);
|
||||
} else if (*pos == '{') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (!is_digit_char(*pos)) {
|
||||
throw std::runtime_error(std::string("expecting an int at ") + pos);
|
||||
}
|
||||
const char * int_end = parse_int(pos);
|
||||
int min_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
|
||||
int max_times = -1;
|
||||
|
||||
if (*pos == '}') {
|
||||
max_times = min_times;
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == ',') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (is_digit_char(*pos)) {
|
||||
const char * int_end = parse_int(pos);
|
||||
max_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
}
|
||||
|
||||
if (*pos != '}') {
|
||||
throw std::runtime_error(std::string("expecting '}' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
throw std::runtime_error(std::string("expecting ',' at ") + pos);
|
||||
}
|
||||
handle_repetitions(min_times, max_times);
|
||||
} else {
|
||||
break;
|
||||
llama_grammar_rule prev_rule(rule.begin() + last_sym_start, rule.end());
|
||||
if (min_times == 0) {
|
||||
rule.resize(last_sym_start);
|
||||
} else {
|
||||
// Repeat the previous elements (min_times - 1) times
|
||||
for (int i = 1; i < min_times; i++) {
|
||||
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
|
||||
uint32_t last_rec_rule_id = 0;
|
||||
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
|
||||
|
||||
llama_grammar_rule rec_rule(prev_rule);
|
||||
for (int i = 0; i < n_opt; i++) {
|
||||
rec_rule.resize(prev_rule.size());
|
||||
uint32_t rec_rule_id = generate_symbol_id( rule_name);
|
||||
if (i > 0 || max_times < 0) {
|
||||
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
|
||||
}
|
||||
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule( rec_rule_id, rec_rule);
|
||||
last_rec_rule_id = rec_rule_id;
|
||||
}
|
||||
if (n_opt > 0) {
|
||||
rule.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
|
||||
}
|
||||
};
|
||||
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = rule.size();
|
||||
while (*pos != '"') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
rule.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = LLAMA_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = rule.size();
|
||||
while (*pos != ']') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < rule.size()
|
||||
? LLAMA_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
rule.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
if (!pos[1]) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
rule.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = rule.size();
|
||||
rule.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(rule_name);
|
||||
pos = parse_alternates(pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = rule.size();
|
||||
// output reference to synthesized rule
|
||||
rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '.') { // any char
|
||||
last_sym_start = rule.size();
|
||||
rule.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, -1);
|
||||
} else if (*pos == '+') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(1, -1);
|
||||
} else if (*pos == '?') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, 1);
|
||||
} else if (*pos == '{') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (!is_digit_char(*pos)) {
|
||||
throw std::runtime_error(std::string("expecting an int at ") + pos);
|
||||
}
|
||||
const char * int_end = parse_int(pos);
|
||||
int min_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
|
||||
int max_times = -1;
|
||||
|
||||
if (*pos == '}') {
|
||||
max_times = min_times;
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == ',') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (is_digit_char(*pos)) {
|
||||
const char * int_end = parse_int(pos);
|
||||
max_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
}
|
||||
|
||||
if (*pos != '}') {
|
||||
throw std::runtime_error(std::string("expecting '}' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
throw std::runtime_error(std::string("expecting ',' at ") + pos);
|
||||
}
|
||||
handle_repetitions(min_times, max_times);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * llama_grammar_parser::parse_rule(const char * src) {
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
}
|
||||
|
||||
bool llama_grammar_parser::parse(const char * src) {
|
||||
try {
|
||||
@@ -560,7 +560,7 @@ bool llama_grammar_parser::parse(const char * src) {
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n\n%s\n", __func__, err.what(), src);
|
||||
rules.clear();
|
||||
return false;
|
||||
}
|
||||
@@ -960,10 +960,28 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
// Important: vec_rules has to be moved here, not copied, because stacks contains
|
||||
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
|
||||
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
||||
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
|
||||
return new llama_grammar {
|
||||
vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy =*/ false,
|
||||
/* .awaiting_trigger = */ false,
|
||||
/* .trigger_buffer = */ "",
|
||||
/* .trigger_tokens = */ {},
|
||||
/* .trigger_words = */ {},
|
||||
};
|
||||
}
|
||||
|
||||
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) {
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens) {
|
||||
llama_grammar_parser parser;
|
||||
|
||||
// if there is a grammar, parse it
|
||||
@@ -1035,10 +1053,31 @@ struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab,
|
||||
}
|
||||
} while (true);
|
||||
|
||||
std::vector<llama_token> vec_trigger_tokens;
|
||||
std::vector<std::string> vec_trigger_words;
|
||||
for (size_t i = 0; i < num_trigger_tokens; i++) {
|
||||
GGML_ASSERT(trigger_tokens != nullptr);
|
||||
vec_trigger_tokens.push_back(trigger_tokens[i]);
|
||||
}
|
||||
for (size_t i = 0; i < num_trigger_words; i++) {
|
||||
GGML_ASSERT(trigger_words != nullptr);
|
||||
vec_trigger_words.push_back(trigger_words[i]);
|
||||
}
|
||||
|
||||
// Important: vec_rules has to be moved here, not copied, because stacks contains
|
||||
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
|
||||
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
||||
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
|
||||
return new llama_grammar {
|
||||
vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy = */ lazy,
|
||||
/* .awaiting_trigger = */ lazy,
|
||||
/* .trigger_buffer = */ "",
|
||||
std::move(vec_trigger_tokens),
|
||||
std::move(vec_trigger_words),
|
||||
};
|
||||
}
|
||||
|
||||
void llama_grammar_free_impl(struct llama_grammar * grammar) {
|
||||
@@ -1055,6 +1094,11 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
grammar.rules,
|
||||
grammar.stacks,
|
||||
grammar.partial_utf8,
|
||||
grammar.lazy,
|
||||
grammar.awaiting_trigger,
|
||||
grammar.trigger_buffer,
|
||||
grammar.trigger_tokens,
|
||||
grammar.trigger_words,
|
||||
};
|
||||
|
||||
// redirect elements in stacks to point to new rules
|
||||
@@ -1076,6 +1120,10 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
|
||||
GGML_ASSERT(grammar.vocab != nullptr);
|
||||
|
||||
if (grammar.awaiting_trigger) {
|
||||
return;
|
||||
}
|
||||
|
||||
bool allow_eog = false;
|
||||
for (const auto & stack : grammar.stacks) {
|
||||
if (stack.empty()) {
|
||||
@@ -1092,9 +1140,9 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
const llama_token id = cur_p->data[i].id;
|
||||
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id);
|
||||
const std::string & piece = grammar.vocab->token_to_piece(id);
|
||||
|
||||
if (llama_token_is_eog_impl(*grammar.vocab, id)) {
|
||||
if (grammar.vocab->is_eog(id)) {
|
||||
if (!allow_eog) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
@@ -1115,7 +1163,35 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
|
||||
GGML_ASSERT(grammar.vocab != nullptr);
|
||||
|
||||
if (llama_token_is_eog_impl(*grammar.vocab, token)) {
|
||||
const auto & piece = grammar.vocab->token_to_piece(token);
|
||||
|
||||
if (grammar.awaiting_trigger) {
|
||||
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
|
||||
grammar.awaiting_trigger = false;
|
||||
grammar.trigger_buffer.clear();
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
|
||||
return;
|
||||
} else {
|
||||
// TODO: consider a smarter incremental substring search algorithm (store last position to search from).
|
||||
grammar.trigger_buffer += piece;
|
||||
for (const auto & word : grammar.trigger_words) {
|
||||
auto pos = grammar.trigger_buffer.find(word);
|
||||
if (pos != std::string::npos) {
|
||||
grammar.awaiting_trigger = false;
|
||||
auto constrained_str = grammar.trigger_buffer.substr(pos);
|
||||
grammar.trigger_buffer.clear();
|
||||
llama_grammar_accept_str(grammar, constrained_str);
|
||||
LLAMA_LOG_DEBUG("Grammar triggered on word `%s`", word.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`)\n", token, piece.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (grammar.vocab->is_eog(token)) {
|
||||
for (const auto & stack : grammar.stacks) {
|
||||
if (stack.empty()) {
|
||||
return;
|
||||
@@ -1124,8 +1200,10 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token);
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
}
|
||||
|
||||
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
|
||||
const auto & code_points = decoded.first;
|
||||
@@ -1135,5 +1213,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
}
|
||||
|
||||
grammar.partial_utf8 = decoded.second;
|
||||
GGML_ASSERT(!grammar.stacks.empty());
|
||||
if (grammar.stacks.empty()) {
|
||||
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
|
||||
}
|
||||
}
|
||||
|
||||
23
llama/llama.cpp/src/llama-grammar.h
vendored
23
llama/llama.cpp/src/llama-grammar.h
vendored
@@ -114,6 +114,15 @@ struct llama_grammar {
|
||||
|
||||
// buffer for partially generated UTF-8 sequence from accepted tokens
|
||||
llama_partial_utf8 partial_utf8;
|
||||
|
||||
// lazy grammars wait for trigger words or tokens before constraining the sampling.
|
||||
// we still have trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
|
||||
// (useful e.g. for tool_choice=required)
|
||||
bool lazy = false;
|
||||
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
|
||||
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
|
||||
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
|
||||
std::vector<std::string> trigger_words;
|
||||
};
|
||||
|
||||
//
|
||||
@@ -127,7 +136,15 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
size_t n_rules,
|
||||
size_t start_rule_index);
|
||||
|
||||
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root);
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens);
|
||||
|
||||
void llama_grammar_free_impl(struct llama_grammar * grammar);
|
||||
|
||||
@@ -141,3 +158,7 @@ void llama_grammar_apply_impl(
|
||||
void llama_grammar_accept_impl(
|
||||
struct llama_grammar & grammar,
|
||||
llama_token token);
|
||||
|
||||
void llama_grammar_accept_str(
|
||||
struct llama_grammar & grammar,
|
||||
const std::string & piece);
|
||||
|
||||
4
llama/llama.cpp/src/llama-hparams.cpp
vendored
4
llama/llama.cpp/src/llama-hparams.cpp
vendored
@@ -54,7 +54,7 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
||||
uint32_t llama_hparams::n_embd_k_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// for RWKV models
|
||||
return 2 * n_embd;
|
||||
return token_shift_count * n_embd;
|
||||
}
|
||||
|
||||
// TODO: maybe support other convolution strides than 1
|
||||
@@ -82,4 +82,4 @@ bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
|
||||
|
||||
bool llama_hparams::cross_attention_layers(uint32_t il) const {
|
||||
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
}
|
||||
}
|
||||
6
llama/llama.cpp/src/llama-hparams.h
vendored
6
llama/llama.cpp/src/llama-hparams.h
vendored
@@ -30,7 +30,6 @@ struct llama_hparams {
|
||||
bool use_par_res;
|
||||
bool swin_norm;
|
||||
|
||||
uint32_t n_vocab = 0;
|
||||
uint32_t n_ctx_train; // context size the model was trained on
|
||||
uint32_t n_embd;
|
||||
uint32_t n_embd_features = 0;
|
||||
@@ -41,8 +40,8 @@ struct llama_hparams {
|
||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_vocab_type = 0; // for BERT-style token types
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
uint32_t n_vocab = 0;
|
||||
|
||||
// for WavTokenizer
|
||||
struct llama_hparams_posnet posnet;
|
||||
@@ -79,6 +78,7 @@ struct llama_hparams {
|
||||
uint32_t time_mix_extra_dim = 0;
|
||||
uint32_t time_decay_extra_dim = 0;
|
||||
uint32_t wkv_head_size = 0;
|
||||
uint32_t token_shift_count = 2;
|
||||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
@@ -141,7 +141,7 @@ struct llama_hparams {
|
||||
// Block skip connection
|
||||
bool n_bskcn(uint32_t n, uint32_t il) const;
|
||||
|
||||
// cross attention layers
|
||||
// cross attention layers
|
||||
bool cross_attention_layers(uint32_t il) const;
|
||||
};
|
||||
|
||||
|
||||
3
llama/llama.cpp/src/llama-impl.cpp
vendored
3
llama/llama.cpp/src/llama-impl.cpp
vendored
@@ -1,5 +1,6 @@
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include "gguf.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cinttypes>
|
||||
@@ -138,7 +139,7 @@ std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = gguf_get_arr_data(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
|
||||
12
llama/llama.cpp/src/llama-impl.h
vendored
12
llama/llama.cpp/src/llama-impl.h
vendored
@@ -6,13 +6,13 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# if defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# else
|
||||
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
# endif
|
||||
#else
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
# define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
//
|
||||
|
||||
80
llama/llama.cpp/src/llama-kv-cache.cpp
vendored
80
llama/llama.cpp/src/llama-kv-cache.cpp
vendored
@@ -72,39 +72,6 @@ bool llama_kv_cache_init(
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
// for cross attention layers
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const llama_model::buft_list_t * buft_list;
|
||||
if (offload) {
|
||||
buft_list = model.dev_layer.at(i).buft_list;
|
||||
} else {
|
||||
buft_list = &model.cpu_buft_list;
|
||||
}
|
||||
ggml_backend_buffer_type_t buft = select_buft(*buft_list,
|
||||
[&](ggml_context * ctx) {
|
||||
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
|
||||
return k;
|
||||
}
|
||||
ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
||||
return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type);
|
||||
});
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
cache.v_l.push_back(v);
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
@@ -112,7 +79,7 @@ bool llama_kv_cache_init(
|
||||
|
||||
ggml_backend_buffer_type_t buft;
|
||||
if (offload) {
|
||||
auto * dev = model.dev_layer.at(i).dev;
|
||||
auto * dev = model.dev_layer(i);
|
||||
buft = ggml_backend_dev_buffer_type(dev);
|
||||
} else {
|
||||
buft = ggml_backend_cpu_buffer_type();
|
||||
@@ -124,8 +91,17 @@ bool llama_kv_cache_init(
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
ggml_tensor * k, *v;
|
||||
|
||||
// for cross attention layers
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
} else {
|
||||
k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
}
|
||||
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
@@ -152,10 +128,10 @@ bool llama_kv_cache_init(
|
||||
|
||||
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
struct llama_kv_cache & cache,
|
||||
const struct llama_ubatch & batch) {
|
||||
const uint32_t n_tokens = batch.n_tokens;
|
||||
const uint32_t n_seqs = batch.n_seqs;
|
||||
const uint32_t n_seq_tokens = batch.n_seq_tokens;
|
||||
const struct llama_ubatch & ubatch) {
|
||||
const uint32_t n_tokens = ubatch.n_tokens;
|
||||
const uint32_t n_seqs = ubatch.n_seqs;
|
||||
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
if (cache.recurrent) {
|
||||
// For recurrent state architectures (like Mamba or RWKV),
|
||||
@@ -163,16 +139,16 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
// A slot should be always be contiguous.
|
||||
|
||||
// can only process batches with an equal number of new tokens in each sequence
|
||||
GGML_ASSERT(batch.equal_seqs);
|
||||
GGML_ASSERT(ubatch.equal_seqs);
|
||||
|
||||
int32_t min = cache.size - 1;
|
||||
int32_t max = 0;
|
||||
|
||||
// everything should fit if all seq_ids are smaller than the max
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const uint32_t n_seq_id = batch.n_seq_id[s];
|
||||
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
||||
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
||||
|
||||
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
||||
// too big seq_id
|
||||
@@ -231,7 +207,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
|
||||
// find usable cell range
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
||||
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
||||
bool has_cell = false;
|
||||
if (seq_meta.tail >= 0) {
|
||||
@@ -270,7 +246,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
// gather and re-order
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
int32_t dst_id = s + min;
|
||||
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
|
||||
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
|
||||
if (dst_id != src_id) {
|
||||
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
||||
llama_kv_cell & src_cell = cache.cells[src_id];
|
||||
@@ -291,7 +267,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
|
||||
// update the pos of the used seqs
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||||
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||||
int32_t cell_id = s + min;
|
||||
llama_kv_cell & cell = cache.cells[cell_id];
|
||||
|
||||
@@ -299,12 +275,12 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
// What should happen when the pos backtracks or skips a value?
|
||||
// Clearing the state mid-batch would require special-casing which isn't done.
|
||||
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
||||
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
|
||||
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
||||
}
|
||||
cell.pos = last_pos;
|
||||
cell.seq_id.clear();
|
||||
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||||
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
||||
cell.seq_id.insert(seq_id);
|
||||
cache.cells[seq_id].tail = cell_id;
|
||||
}
|
||||
@@ -358,10 +334,10 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
for (uint32_t s = 0; s < n_seqs; s++) {
|
||||
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
||||
uint32_t k = s*n_seq_tokens + i;
|
||||
cache.cells[cache.head + k].pos = batch.pos[k];
|
||||
cache.cells[cache.head + k].pos = ubatch.pos[k];
|
||||
|
||||
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
|
||||
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
|
||||
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
|
||||
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
2
llama/llama.cpp/src/llama-kv-cache.h
vendored
2
llama/llama.cpp/src/llama-kv-cache.h
vendored
@@ -37,7 +37,7 @@ struct llama_kv_cache {
|
||||
bool can_shift = false;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_internal also uses it, so it
|
||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
|
||||
13
llama/llama.cpp/src/llama-mmap.cpp
vendored
13
llama/llama.cpp/src/llama-mmap.cpp
vendored
@@ -7,6 +7,7 @@
|
||||
#include <cstring>
|
||||
#include <climits>
|
||||
#include <stdexcept>
|
||||
#include <cerrno>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
@@ -35,7 +36,7 @@
|
||||
|
||||
// TODO: consider moving to llama-impl.h if needed in more places
|
||||
#if defined(_WIN32)
|
||||
std::string llama_format_win_err(DWORD err) {
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
@@ -241,12 +242,16 @@ llama_file::~llama_file() = default;
|
||||
size_t llama_file::tell() const { return pimpl->tell(); }
|
||||
size_t llama_file::size() const { return pimpl->size; }
|
||||
|
||||
int llama_file::fileno() const {
|
||||
int llama_file::file_id() const {
|
||||
#ifdef _WIN32
|
||||
return _fileno(pimpl->fp);
|
||||
#else
|
||||
#if defined(fileno)
|
||||
return fileno(pimpl->fp);
|
||||
#else
|
||||
return ::fileno(pimpl->fp);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
|
||||
@@ -265,7 +270,7 @@ struct llama_mmap::impl {
|
||||
|
||||
impl(struct llama_file * file, size_t prefetch, bool numa) {
|
||||
size = file->size();
|
||||
int fd = file->fileno();
|
||||
int fd = file->file_id();
|
||||
int flags = MAP_SHARED;
|
||||
if (numa) { prefetch = 0; }
|
||||
#ifdef __linux__
|
||||
@@ -357,7 +362,7 @@ struct llama_mmap::impl {
|
||||
|
||||
size = file->size();
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(file->fileno());
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(file->file_id());
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
|
||||
|
||||
3
llama/llama.cpp/src/llama-mmap.h
vendored
3
llama/llama.cpp/src/llama-mmap.h
vendored
@@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
@@ -18,7 +19,7 @@ struct llama_file {
|
||||
size_t tell() const;
|
||||
size_t size() const;
|
||||
|
||||
int fileno() const;
|
||||
int file_id() const; // fileno overload
|
||||
|
||||
void seek(size_t offset, int whence) const;
|
||||
|
||||
|
||||
146
llama/llama.cpp/src/llama-model-loader.cpp
vendored
146
llama/llama.cpp/src/llama-model-loader.cpp
vendored
@@ -7,6 +7,10 @@
|
||||
#include <cstring>
|
||||
#include <future>
|
||||
|
||||
static const size_t kiB = 1024;
|
||||
static const size_t MiB = 1024*kiB;
|
||||
static const size_t GiB = 1024*MiB;
|
||||
|
||||
const char * llama_file_version_name(llama_fver version) {
|
||||
switch (version) {
|
||||
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
|
||||
@@ -17,8 +21,78 @@ const char * llama_file_version_name(llama_fver version) {
|
||||
return "unknown";
|
||||
}
|
||||
|
||||
static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
if (ftype & LLAMA_FTYPE_GUESSED) {
|
||||
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
|
||||
}
|
||||
|
||||
switch (ftype) {
|
||||
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
||||
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
|
||||
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
}
|
||||
|
||||
// return a list of splits for a given path
|
||||
// for example, given "<name>-00002-of-00004.gguf", returns list of all 4 splits
|
||||
static std::vector<std::string> llama_get_list_splits(const std::string & path, const int idx, const int n_split) {
|
||||
std::vector<std::string> paths;
|
||||
std::string split_prefix;
|
||||
std::vector<char> buf(llama_path_max(), 0);
|
||||
|
||||
{
|
||||
int ret = llama_split_prefix(buf.data(), buf.size(), path.c_str(), idx, n_split);
|
||||
if (!ret) {
|
||||
throw std::runtime_error(format("invalid split file name: %s", path.c_str()));
|
||||
}
|
||||
split_prefix = std::string(buf.data(), ret);
|
||||
}
|
||||
|
||||
if (split_prefix.empty()) {
|
||||
throw std::runtime_error(format("invalid split file: %s", path.c_str()));
|
||||
}
|
||||
|
||||
for (int idx = 0; idx < n_split; ++idx) {
|
||||
int ret = llama_split_path(buf.data(), buf.size(), split_prefix.c_str(), idx, n_split);
|
||||
paths.push_back(std::string(buf.data(), ret));
|
||||
}
|
||||
|
||||
return paths;
|
||||
}
|
||||
|
||||
namespace GGUFMeta {
|
||||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
|
||||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
|
||||
struct GKV_Base_Type {
|
||||
static constexpr gguf_type gt = gt_;
|
||||
|
||||
@@ -60,10 +134,11 @@ namespace GGUFMeta {
|
||||
public:
|
||||
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
|
||||
static ArrayInfo getter(const gguf_context *ctx, const int k) {
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
|
||||
return ArrayInfo {
|
||||
gguf_get_arr_type(ctx, k),
|
||||
arr_type,
|
||||
size_t(gguf_get_arr_n(ctx, k)),
|
||||
gguf_get_arr_data(ctx, k),
|
||||
arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
|
||||
};
|
||||
}
|
||||
};
|
||||
@@ -368,7 +443,12 @@ namespace GGUFMeta {
|
||||
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
||||
template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
||||
|
||||
llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
|
||||
llama_model_loader::llama_model_loader(
|
||||
const std::string & fname,
|
||||
std::vector<std::string> & splits,
|
||||
bool use_mmap,
|
||||
bool check_tensors,
|
||||
const struct llama_model_kv_override * param_overrides_p) {
|
||||
int trace = 0;
|
||||
if (getenv("LLAMA_TRACE")) {
|
||||
trace = atoi(getenv("LLAMA_TRACE"));
|
||||
@@ -380,6 +460,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
|
||||
}
|
||||
}
|
||||
|
||||
// Load the main GGUF
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
@@ -415,35 +496,54 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
|
||||
|
||||
// Load additional GGML contexts
|
||||
if (n_split > 1) {
|
||||
// make sure the main file is loaded first
|
||||
uint16_t idx = 0;
|
||||
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
|
||||
const std::string kv_split_no = llm_kv(LLM_KV_SPLIT_NO);
|
||||
get_key(kv_split_no, idx);
|
||||
if (idx != 0) {
|
||||
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
|
||||
throw std::runtime_error(format("illegal split file idx: %d (file: %s), model must be loaded with the first split", idx, fname.c_str()));
|
||||
}
|
||||
|
||||
std::vector<char> split_prefix(llama_path_max(), 0);
|
||||
if (!llama_split_prefix(split_prefix.data(), split_prefix.size(), fname.c_str(), idx, n_split)) {
|
||||
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
|
||||
// generate list of splits if needed
|
||||
if (splits.empty()) {
|
||||
splits = llama_get_list_splits(fname, idx, n_split);
|
||||
}
|
||||
|
||||
// in case user give a custom list of splits, check if it matches the expected number
|
||||
if (n_split != (uint16_t)splits.size()) {
|
||||
throw std::runtime_error(format("invalid split count, given: %zu splits, but expected %d", splits.size(), n_split));
|
||||
}
|
||||
|
||||
if (trace > 0) {
|
||||
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
|
||||
}
|
||||
|
||||
std::vector<char> split_path(llama_path_max(), 0);
|
||||
// load other splits
|
||||
for (idx = 1; idx < n_split; idx++) {
|
||||
llama_split_path(split_path.data(), split_path.size(), split_prefix.data(), idx, n_split);
|
||||
const char * fname_split = splits[idx].c_str();
|
||||
|
||||
struct gguf_init_params split_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx,
|
||||
};
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path.data(), split_params) };
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) };
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path.data()));
|
||||
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split));
|
||||
}
|
||||
|
||||
files.emplace_back(new llama_file(split_path.data(), "rb"));
|
||||
// check idx
|
||||
{
|
||||
const int kid = gguf_find_key(ctx_gguf.get(), kv_split_no.c_str());
|
||||
if (kid < 0) {
|
||||
throw std::runtime_error(format("missing key %s in GGUF split %s", kv_split_no.c_str(), fname_split));
|
||||
}
|
||||
int idx_gguf = gguf_get_val_u16(ctx_gguf.get(), kid);
|
||||
if (idx_gguf != idx) {
|
||||
throw std::runtime_error(format("invalid split file idx: %d (file: %s), expected %d", idx_gguf, fname_split, idx));
|
||||
}
|
||||
}
|
||||
|
||||
files.emplace_back(new llama_file(fname_split, "rb"));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
// Save tensors data offset info of the shard.
|
||||
@@ -556,7 +656,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
|
||||
const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
|
||||
const std::string type_name =
|
||||
type == GGUF_TYPE_ARRAY
|
||||
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
|
||||
? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
|
||||
: gguf_type_name(type);
|
||||
|
||||
std::string value = gguf_kv_to_str(meta.get(), i);
|
||||
@@ -722,7 +822,7 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
|
||||
for (const auto & file : files) {
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
|
||||
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
|
||||
mmaps_used.emplace_back(mapping->size(), 0);
|
||||
if (mlock_mmaps) {
|
||||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||||
@@ -1011,3 +1111,17 @@ bool llama_model_loader::load_all_data(
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string llama_model_loader::ftype_name() const {
|
||||
return llama_model_ftype_name(ftype);
|
||||
}
|
||||
|
||||
void llama_model_loader::print_info() const {
|
||||
LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver));
|
||||
LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str());
|
||||
if (n_bytes < GiB) {
|
||||
LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements);
|
||||
} else {
|
||||
LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements);
|
||||
}
|
||||
}
|
||||
|
||||
11
llama/llama.cpp/src/llama-model-loader.h
vendored
11
llama/llama.cpp/src/llama-model-loader.h
vendored
@@ -90,7 +90,12 @@ struct llama_model_loader {
|
||||
size_t size_data = 0;
|
||||
std::vector<std::pair<size_t, size_t>> mmaps_used;
|
||||
|
||||
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p);
|
||||
llama_model_loader(
|
||||
const std::string & fname,
|
||||
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
|
||||
bool use_mmap,
|
||||
bool check_tensors,
|
||||
const struct llama_model_kv_override * param_overrides_p);
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||||
@@ -155,4 +160,8 @@ struct llama_model_loader {
|
||||
llama_mlocks * lmlocks,
|
||||
llama_progress_callback progress_callback,
|
||||
void * progress_callback_user_data);
|
||||
|
||||
std::string ftype_name() const;
|
||||
|
||||
void print_info() const;
|
||||
};
|
||||
|
||||
4291
llama/llama.cpp/src/llama-model.cpp
vendored
4291
llama/llama.cpp/src/llama-model.cpp
vendored
File diff suppressed because it is too large
Load Diff
298
llama/llama.cpp/src/llama-model.h
vendored
298
llama/llama.cpp/src/llama-model.h
vendored
@@ -4,81 +4,83 @@
|
||||
#include "llama-arch.h"
|
||||
#include "llama-hparams.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
struct llama_model_loader;
|
||||
|
||||
// available models
|
||||
// TODO: this enum does not follow the enum naming convention
|
||||
enum llm_type {
|
||||
MODEL_UNKNOWN,
|
||||
MODEL_14M,
|
||||
MODEL_17M,
|
||||
MODEL_22M,
|
||||
MODEL_33M,
|
||||
MODEL_60M,
|
||||
MODEL_70M,
|
||||
MODEL_80M,
|
||||
MODEL_109M,
|
||||
MODEL_137M,
|
||||
MODEL_160M,
|
||||
MODEL_220M,
|
||||
MODEL_250M,
|
||||
MODEL_270M,
|
||||
MODEL_335M,
|
||||
MODEL_410M,
|
||||
MODEL_450M,
|
||||
MODEL_770M,
|
||||
MODEL_780M,
|
||||
MODEL_0_5B,
|
||||
MODEL_1B,
|
||||
MODEL_1_3B,
|
||||
MODEL_1_4B,
|
||||
MODEL_1_5B,
|
||||
MODEL_1_6B,
|
||||
MODEL_2B,
|
||||
MODEL_2_8B,
|
||||
MODEL_3B,
|
||||
MODEL_4B,
|
||||
MODEL_6B,
|
||||
MODEL_6_9B,
|
||||
MODEL_7B,
|
||||
MODEL_8B,
|
||||
MODEL_9B,
|
||||
MODEL_11B,
|
||||
MODEL_12B,
|
||||
MODEL_13B,
|
||||
MODEL_14B,
|
||||
MODEL_15B,
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
MODEL_22B,
|
||||
MODEL_30B,
|
||||
MODEL_32B,
|
||||
MODEL_34B,
|
||||
MODEL_35B,
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
MODEL_90B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_671B,
|
||||
MODEL_SMALL,
|
||||
MODEL_MEDIUM,
|
||||
MODEL_LARGE,
|
||||
MODEL_XL,
|
||||
MODEL_A1_7B,
|
||||
MODEL_A2_7B,
|
||||
MODEL_8x7B,
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
MODEL_10B_128x3_66B,
|
||||
MODEL_57B_A14B,
|
||||
MODEL_27B,
|
||||
LLM_TYPE_UNKNOWN,
|
||||
LLM_TYPE_14M,
|
||||
LLM_TYPE_17M,
|
||||
LLM_TYPE_22M,
|
||||
LLM_TYPE_33M,
|
||||
LLM_TYPE_60M,
|
||||
LLM_TYPE_70M,
|
||||
LLM_TYPE_80M,
|
||||
LLM_TYPE_109M,
|
||||
LLM_TYPE_137M,
|
||||
LLM_TYPE_160M,
|
||||
LLM_TYPE_220M,
|
||||
LLM_TYPE_250M,
|
||||
LLM_TYPE_270M,
|
||||
LLM_TYPE_335M,
|
||||
LLM_TYPE_410M,
|
||||
LLM_TYPE_450M,
|
||||
LLM_TYPE_770M,
|
||||
LLM_TYPE_780M,
|
||||
LLM_TYPE_0_5B,
|
||||
LLM_TYPE_1B,
|
||||
LLM_TYPE_1_3B,
|
||||
LLM_TYPE_1_4B,
|
||||
LLM_TYPE_1_5B,
|
||||
LLM_TYPE_1_6B,
|
||||
LLM_TYPE_2B,
|
||||
LLM_TYPE_2_8B,
|
||||
LLM_TYPE_3B,
|
||||
LLM_TYPE_4B,
|
||||
LLM_TYPE_6B,
|
||||
LLM_TYPE_6_9B,
|
||||
LLM_TYPE_7B,
|
||||
LLM_TYPE_8B,
|
||||
LLM_TYPE_9B,
|
||||
LLM_TYPE_11B,
|
||||
LLM_TYPE_12B,
|
||||
LLM_TYPE_13B,
|
||||
LLM_TYPE_14B,
|
||||
LLM_TYPE_15B,
|
||||
LLM_TYPE_16B,
|
||||
LLM_TYPE_20B,
|
||||
LLM_TYPE_22B,
|
||||
LLM_TYPE_30B,
|
||||
LLM_TYPE_32B,
|
||||
LLM_TYPE_34B,
|
||||
LLM_TYPE_35B,
|
||||
LLM_TYPE_40B,
|
||||
LLM_TYPE_65B,
|
||||
LLM_TYPE_70B,
|
||||
LLM_TYPE_90B,
|
||||
LLM_TYPE_236B,
|
||||
LLM_TYPE_314B,
|
||||
LLM_TYPE_671B,
|
||||
LLM_TYPE_SMALL,
|
||||
LLM_TYPE_MEDIUM,
|
||||
LLM_TYPE_LARGE,
|
||||
LLM_TYPE_XL,
|
||||
LLM_TYPE_A1_7B,
|
||||
LLM_TYPE_A2_7B,
|
||||
LLM_TYPE_8x7B,
|
||||
LLM_TYPE_8x22B,
|
||||
LLM_TYPE_16x12B,
|
||||
LLM_TYPE_16x3_8B,
|
||||
LLM_TYPE_10B_128x3_66B,
|
||||
LLM_TYPE_57B_A14B,
|
||||
LLM_TYPE_27B,
|
||||
};
|
||||
|
||||
struct llama_layer_posnet {
|
||||
@@ -243,15 +245,19 @@ struct llama_layer {
|
||||
struct ggml_tensor * time_mix_lerp_v = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_r = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_g = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_fused = nullptr;
|
||||
|
||||
struct ggml_tensor * time_mix_first = nullptr;
|
||||
struct ggml_tensor * time_mix_decay = nullptr;
|
||||
struct ggml_tensor * time_mix_decay_w1 = nullptr;
|
||||
struct ggml_tensor * time_mix_decay_w2 = nullptr;
|
||||
struct ggml_tensor * time_mix_key = nullptr;
|
||||
struct ggml_tensor * time_mix_value = nullptr;
|
||||
struct ggml_tensor * time_mix_receptance = nullptr;
|
||||
struct ggml_tensor * time_mix_gate = nullptr;
|
||||
struct ggml_tensor * time_mix_first = nullptr;
|
||||
struct ggml_tensor * time_mix_decay = nullptr;
|
||||
struct ggml_tensor * time_mix_decay_w1 = nullptr;
|
||||
struct ggml_tensor * time_mix_decay_w2 = nullptr;
|
||||
struct ggml_tensor * time_mix_key = nullptr;
|
||||
struct ggml_tensor * time_mix_key_b = nullptr;
|
||||
struct ggml_tensor * time_mix_value = nullptr;
|
||||
struct ggml_tensor * time_mix_value_b = nullptr;
|
||||
struct ggml_tensor * time_mix_receptance = nullptr;
|
||||
struct ggml_tensor * time_mix_receptance_b = nullptr;
|
||||
struct ggml_tensor * time_mix_gate = nullptr;
|
||||
|
||||
struct ggml_tensor * time_mix_ln = nullptr;
|
||||
struct ggml_tensor * time_mix_ln_b = nullptr;
|
||||
@@ -280,7 +286,7 @@ struct llama_layer {
|
||||
|
||||
struct ggml_tensor * bskcn_tv = nullptr;
|
||||
|
||||
// cross attention
|
||||
// cross attention
|
||||
struct ggml_tensor * cross_attn_k_norm = nullptr;
|
||||
struct ggml_tensor * cross_attn_k_proj = nullptr;
|
||||
struct ggml_tensor * cross_attn_o_proj = nullptr;
|
||||
@@ -296,11 +302,9 @@ struct llama_layer {
|
||||
};
|
||||
|
||||
struct llama_model {
|
||||
llm_type type = MODEL_UNKNOWN;
|
||||
llm_type type = LLM_TYPE_UNKNOWN;
|
||||
llm_arch arch = LLM_ARCH_UNKNOWN;
|
||||
|
||||
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
||||
|
||||
std::string name = "n/a";
|
||||
|
||||
llama_hparams hparams = {};
|
||||
@@ -329,117 +333,53 @@ struct llama_model {
|
||||
|
||||
std::vector<llama_layer> layers;
|
||||
|
||||
llama_model_params params;
|
||||
|
||||
// gguf metadata
|
||||
std::unordered_map<std::string, std::string> gguf_kv;
|
||||
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
int n_gpu_layers;
|
||||
|
||||
std::vector<std::string> rpc_servers;
|
||||
|
||||
// list of devices used in this model
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
|
||||
// lists of buffer types used for each layer
|
||||
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
|
||||
buft_list_t cpu_buft_list;
|
||||
std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
|
||||
|
||||
struct layer_dev {
|
||||
ggml_backend_dev_t dev;
|
||||
buft_list_t * buft_list;
|
||||
};
|
||||
|
||||
layer_dev dev_input = {};
|
||||
layer_dev dev_output = {};
|
||||
std::vector<layer_dev> dev_layer;
|
||||
|
||||
// contexts where the model tensors metadata is stored
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
|
||||
// the model memory buffers for the tensor data
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
// model memory mapped files
|
||||
llama_mmaps mappings;
|
||||
|
||||
// objects representing data potentially being locked in memory
|
||||
llama_mlocks mlock_bufs;
|
||||
llama_mlocks mlock_mmaps;
|
||||
|
||||
// for quantize-stats only
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
// total number of parameters in the model
|
||||
uint64_t n_elements = 0;
|
||||
explicit llama_model(const struct llama_model_params & params);
|
||||
~llama_model();
|
||||
|
||||
// total size of all the tensors in the model in bytes
|
||||
size_t n_bytes = 0;
|
||||
void load_stats (llama_model_loader & ml);
|
||||
void load_arch (llama_model_loader & ml);
|
||||
void load_hparams(llama_model_loader & ml);
|
||||
void load_vocab (llama_model_loader & ml);
|
||||
bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
|
||||
|
||||
std::string arch_name() const;
|
||||
std::string type_name() const;
|
||||
|
||||
std::string desc() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t max_nodes() const;
|
||||
size_t n_devices() const;
|
||||
|
||||
// total number of parameters in the model
|
||||
uint64_t n_elements() const;
|
||||
|
||||
void print_info() const;
|
||||
|
||||
ggml_backend_dev_t dev_layer(int il) const;
|
||||
ggml_backend_dev_t dev_output() const;
|
||||
|
||||
ggml_backend_buffer_type_t select_buft(int il) const;
|
||||
|
||||
const struct ggml_tensor * get_tensor(const char * name) const;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
||||
const char * llm_type_name(llm_type type);
|
||||
|
||||
std::string llama_model_arch_name (const llama_model & model);
|
||||
std::string llama_model_type_name (const llama_model & model);
|
||||
std::string llama_model_ftype_name(const llama_model & model);
|
||||
|
||||
template<typename F>
|
||||
bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
|
||||
ggml_init_params params = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead()*8,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
ggml_context_ptr ctx { ggml_init(params) };
|
||||
if (!ctx) {
|
||||
throw std::runtime_error("failed to create ggml context");
|
||||
}
|
||||
|
||||
ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
|
||||
ggml_tensor * op_tensor = fn(ctx.get());
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (op_tensor->src[i] != nullptr) {
|
||||
op_tensor->src[i]->buffer = buf.get();
|
||||
}
|
||||
}
|
||||
|
||||
bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
|
||||
|
||||
return op_supported;
|
||||
}
|
||||
|
||||
template<typename F>
|
||||
ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
|
||||
for (const auto & cur : buft_list) {
|
||||
ggml_backend_dev_t cur_dev = cur.first;
|
||||
ggml_backend_buffer_type_t cur_buft = cur.second;
|
||||
if (buft_supported(cur_buft, cur_dev, fn)) {
|
||||
return cur_buft;
|
||||
}
|
||||
}
|
||||
|
||||
throw std::runtime_error("no suitable buffer type found");
|
||||
}
|
||||
|
||||
// used by llama_adapter_cvec
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
|
||||
// used by llama_adapter_lora
|
||||
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
|
||||
|
||||
size_t llama_model_max_nodes(const llama_model & model);
|
||||
|
||||
struct llama_model_loader;
|
||||
|
||||
// TODO: become llama_model methods
|
||||
void llm_load_stats (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_arch (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_hparams (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_vocab (llama_model_loader & ml, llama_model & model);
|
||||
void llm_load_print_meta(llama_model_loader & ml, llama_model & model);
|
||||
|
||||
71
llama/llama.cpp/src/llama-quant.cpp
vendored
71
llama/llama.cpp/src/llama-quant.cpp
vendored
@@ -7,14 +7,12 @@
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <cinttypes>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
|
||||
// TODO: replace with ggml API call
|
||||
#define QK_K 256
|
||||
|
||||
static void zeros(std::ofstream & file, size_t n) {
|
||||
char zero = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
@@ -22,7 +20,7 @@ static void zeros(std::ofstream & file, size_t n) {
|
||||
}
|
||||
}
|
||||
|
||||
struct quantize_state_internal {
|
||||
struct quantize_state_impl {
|
||||
const llama_model & model;
|
||||
const llama_model_quantize_params * params;
|
||||
|
||||
@@ -43,13 +41,13 @@ struct quantize_state_internal {
|
||||
// used to figure out if a model shares tok_embd with the output weight
|
||||
bool has_output = false;
|
||||
|
||||
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
|
||||
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
|
||||
: model(model)
|
||||
, params(params)
|
||||
{}
|
||||
};
|
||||
|
||||
static void llama_tensor_dequantize_internal(
|
||||
static void llama_tensor_dequantize_impl(
|
||||
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||||
const size_t nelements, const int nthread
|
||||
) {
|
||||
@@ -121,7 +119,7 @@ static void llama_tensor_dequantize_internal(
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
@@ -154,8 +152,10 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->output_tensor_type;
|
||||
} else {
|
||||
int nx = tensor->ne[0];
|
||||
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||||
const int64_t nx = tensor->ne[0];
|
||||
const int64_t qk_k = ggml_blck_size(new_type);
|
||||
|
||||
if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||||
@@ -235,7 +235,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
if (qs.model.type == MODEL_70B) {
|
||||
if (qs.model.type == LLM_TYPE_70B) {
|
||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
@@ -367,20 +367,19 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
||||
//}
|
||||
bool convert_incompatible_tensor = false;
|
||||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
|
||||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
|
||||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
|
||||
new_type == GGML_TYPE_IQ1_M) {
|
||||
int nx = tensor->ne[0];
|
||||
int ny = tensor->ne[1];
|
||||
if (nx % QK_K != 0) {
|
||||
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
|
||||
{
|
||||
const int64_t nx = tensor->ne[0];
|
||||
const int64_t ny = tensor->ne[1];
|
||||
const int64_t qk_k = ggml_blck_size(new_type);
|
||||
|
||||
if (nx % qk_k != 0) {
|
||||
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
|
||||
convert_incompatible_tensor = true;
|
||||
} else {
|
||||
++qs.n_k_quantized;
|
||||
}
|
||||
}
|
||||
|
||||
if (convert_incompatible_tensor) {
|
||||
switch (new_type) {
|
||||
case GGML_TYPE_TQ1_0:
|
||||
@@ -410,7 +409,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||
return new_type;
|
||||
}
|
||||
|
||||
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
if (nthread < 2) {
|
||||
// single-thread
|
||||
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
|
||||
@@ -464,7 +463,7 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
|
||||
return new_size;
|
||||
}
|
||||
|
||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
ggml_type default_type;
|
||||
llama_ftype ftype = params->ftype;
|
||||
|
||||
@@ -526,18 +525,21 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
||||
kv_overrides = v->data();
|
||||
}
|
||||
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
|
||||
|
||||
std::vector<std::string> splits = {};
|
||||
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides);
|
||||
ml.init_mappings(false); // no prefetching
|
||||
|
||||
llama_model model;
|
||||
llm_load_arch (ml, model);
|
||||
llm_load_hparams(ml, model);
|
||||
llm_load_stats (ml, model);
|
||||
llama_model model(llama_model_default_params());
|
||||
|
||||
struct quantize_state_internal qs(model, params);
|
||||
model.load_arch (ml);
|
||||
model.load_hparams(ml);
|
||||
model.load_stats (ml);
|
||||
|
||||
struct quantize_state_impl qs(model, params);
|
||||
|
||||
if (params->only_copy) {
|
||||
ftype = model.ftype;
|
||||
ftype = ml.ftype;
|
||||
}
|
||||
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
|
||||
if (params->imatrix) {
|
||||
@@ -621,7 +623,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
|
||||
|
||||
// sanity checks
|
||||
// sanity checks for models that have attention layers
|
||||
if (qs.n_attention_wv != 0)
|
||||
{
|
||||
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
|
||||
// attention layers have a non-zero number of kv heads
|
||||
@@ -761,6 +764,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
|
||||
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
|
||||
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
|
||||
quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
|
||||
|
||||
// do not quantize relative position bias (T5)
|
||||
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
||||
@@ -839,7 +843,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
||||
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
||||
} else {
|
||||
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
||||
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
|
||||
f32_data = (float *) f32_conv_buf.data();
|
||||
}
|
||||
|
||||
@@ -868,7 +872,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
|
||||
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
|
||||
|
||||
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
||||
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
||||
}
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
}
|
||||
@@ -877,7 +881,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
// update the gguf meta data as we go
|
||||
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
|
||||
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size);
|
||||
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
|
||||
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *) new_data, new_size);
|
||||
@@ -921,7 +926,7 @@ uint32_t llama_model_quantize(
|
||||
const char * fname_out,
|
||||
const llama_model_quantize_params * params) {
|
||||
try {
|
||||
llama_model_quantize_internal(fname_inp, fname_out, params);
|
||||
llama_model_quantize_impl(fname_inp, fname_out, params);
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
||||
return 1;
|
||||
|
||||
299
llama/llama.cpp/src/llama-sampling.cpp
vendored
299
llama/llama.cpp/src/llama-sampling.cpp
vendored
@@ -257,7 +257,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
||||
for (int i = 0; i < (int)cur_p->size; ++i) {
|
||||
const float val = cur_p->data[i].logit;
|
||||
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
||||
ib = std::max(0, std::min(nbuckets-1, ib));
|
||||
ib = std::max(0, std::min(nbuckets - 1, ib));
|
||||
bucket_idx[i] = ib;
|
||||
++histo[ib];
|
||||
}
|
||||
@@ -280,13 +280,13 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
||||
for (int i = 0; i < (int)cur_p->size; ++i) {
|
||||
int j = bucket_idx[i];
|
||||
if (j >= ib) {
|
||||
*bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
|
||||
*bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
|
||||
}
|
||||
}
|
||||
|
||||
ptr = tmp_tokens.data();
|
||||
int ndone = 0;
|
||||
for (int j = nbuckets-1; j > ib; --j) {
|
||||
for (int j = nbuckets - 1; j > ib; --j) {
|
||||
std::sort(ptr, ptr + histo[j], comp);
|
||||
ptr += histo[j];
|
||||
ndone += histo[j];
|
||||
@@ -316,6 +316,13 @@ static uint32_t get_rng_seed(uint32_t seed) {
|
||||
|
||||
// llama_sampler API
|
||||
|
||||
struct llama_sampler * llama_sampler_init(const struct llama_sampler_i * iface, llama_sampler_context_t ctx) {
|
||||
return new llama_sampler {
|
||||
/* .iface = */ iface,
|
||||
/* .ctx = */ ctx,
|
||||
};
|
||||
}
|
||||
|
||||
const char * llama_sampler_name(const struct llama_sampler * smpl) {
|
||||
if (!smpl->iface) {
|
||||
return "(null)";
|
||||
@@ -347,10 +354,10 @@ struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
|
||||
}
|
||||
|
||||
if (smpl->ctx == nullptr) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ smpl->iface,
|
||||
/* .ctx = */ nullptr,
|
||||
};
|
||||
/* .ctx = */ nullptr
|
||||
);
|
||||
}
|
||||
|
||||
GGML_ABORT("the sampler does not support cloning");
|
||||
@@ -371,7 +378,10 @@ void llama_sampler_free(struct llama_sampler * smpl) {
|
||||
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
// TODO: do not allocate each time
|
||||
std::vector<llama_token_data> cur;
|
||||
@@ -469,15 +479,15 @@ static struct llama_sampler_i llama_sampler_chain_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_chain_i,
|
||||
/* .ctx = */ new llama_sampler_chain {
|
||||
/* .params = */ params,
|
||||
/* .samplers = */ {},
|
||||
/* .t_sample_us = */ 0,
|
||||
/* .n_sample = */ 0,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
|
||||
@@ -543,10 +553,10 @@ static struct llama_sampler_i llama_sampler_greedy_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_greedy() {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_greedy_i,
|
||||
/* .ctx = */ nullptr,
|
||||
};
|
||||
/* .ctx = */ nullptr
|
||||
);
|
||||
}
|
||||
|
||||
// dist
|
||||
@@ -605,14 +615,14 @@ static struct llama_sampler_i llama_sampler_dist_i = {
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
|
||||
auto seed_cur = get_rng_seed(seed);
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_dist_i,
|
||||
/* .ctx = */ new llama_sampler_dist {
|
||||
/* .seed = */ seed,
|
||||
/* .seed_cur = */ seed_cur,
|
||||
/* .rng = */ std::mt19937(seed_cur),
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// softmax
|
||||
@@ -635,10 +645,10 @@ static struct llama_sampler_i llama_sampler_softmax_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_softmax() {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_softmax_i,
|
||||
/* .ctx = */ nullptr,
|
||||
};
|
||||
/* .ctx = */ nullptr
|
||||
);
|
||||
}
|
||||
|
||||
// top-k
|
||||
@@ -675,12 +685,12 @@ static struct llama_sampler_i llama_sampler_top_k_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_top_k_i,
|
||||
/* .ctx = */ new llama_sampler_top_k {
|
||||
/* .k = */ k,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// top-p
|
||||
@@ -741,13 +751,13 @@ static struct llama_sampler_i llama_sampler_top_p_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_top_p_i,
|
||||
/* .ctx = */ new llama_sampler_top_p {
|
||||
/* .p = */ p,
|
||||
/* .min_keep = */ min_keep,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// min-p
|
||||
@@ -837,13 +847,13 @@ static struct llama_sampler_i llama_sampler_min_p_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_min_p_i,
|
||||
/* .ctx = */ new llama_sampler_min_p {
|
||||
/* .p = */ p,
|
||||
/* .min_keep = */ min_keep,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// typical
|
||||
@@ -936,13 +946,13 @@ static struct llama_sampler_i llama_sampler_typical_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_typical_i,
|
||||
/* .ctx = */ new llama_sampler_typical {
|
||||
/* .p = */ p,
|
||||
/* .min_keep = */ min_keep,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// temp
|
||||
@@ -980,12 +990,12 @@ static struct llama_sampler_i llama_sampler_temp_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_temp(float temp) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_temp_i,
|
||||
/* .ctx = */ new llama_sampler_temp {
|
||||
/*.temp = */ temp,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// temp-ext
|
||||
@@ -1090,14 +1100,14 @@ static struct llama_sampler_i llama_sampler_temp_ext_i = {
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_temp_ext_i,
|
||||
/* .ctx = */ new llama_sampler_temp_ext {
|
||||
/* .temp = */ temp,
|
||||
/* .delta = */ delta,
|
||||
/* .exponent = */ exponent,
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// xtc
|
||||
@@ -1182,7 +1192,7 @@ static struct llama_sampler_i llama_sampler_xtc_i = {
|
||||
|
||||
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
|
||||
auto seed_cur = get_rng_seed(seed);
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_xtc_i,
|
||||
/* .ctx = */ new llama_sampler_xtc {
|
||||
/* .probability = */ p,
|
||||
@@ -1191,8 +1201,8 @@ struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep,
|
||||
/* .seed = */ seed,
|
||||
/* .seed_cur = */ seed_cur,
|
||||
/* .rng = */ std::mt19937(seed_cur),
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// mirostat
|
||||
@@ -1289,7 +1299,7 @@ static struct llama_sampler_i llama_sampler_mirostat_i = {
|
||||
|
||||
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
|
||||
auto seed_cur = get_rng_seed(seed);
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_mirostat_i,
|
||||
/* .ctx = */ new llama_sampler_mirostat {
|
||||
/* .n_vocab = */ n_vocab,
|
||||
@@ -1300,8 +1310,8 @@ struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t see
|
||||
/* .m = */ m,
|
||||
/* .mu = */ 2.0f*tau,
|
||||
/* .rng = */ std::mt19937(seed_cur),
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// mirostat v2
|
||||
@@ -1388,7 +1398,7 @@ static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
|
||||
|
||||
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
|
||||
auto seed_cur = get_rng_seed(seed);
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_mirostat_v2_i,
|
||||
/* .ctx = */ new llama_sampler_mirostat_v2 {
|
||||
/* .seed = */ seed,
|
||||
@@ -1397,8 +1407,8 @@ struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau,
|
||||
/* .eta = */ eta,
|
||||
/* .mu = */ 2.0f*tau,
|
||||
/* .rng = */ std::mt19937(seed_cur),
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// grammar
|
||||
@@ -1430,13 +1440,30 @@ static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token
|
||||
}
|
||||
}
|
||||
|
||||
// Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle.
|
||||
static struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens);
|
||||
|
||||
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
|
||||
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
|
||||
if (!ctx->grammar) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());
|
||||
std::vector<const char *> trigger_words;
|
||||
for (auto & word : ctx->grammar->trigger_words) {
|
||||
trigger_words.push_back(word.c_str());
|
||||
}
|
||||
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(),
|
||||
ctx->grammar->lazy, trigger_words.data(), trigger_words.size(),
|
||||
ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
|
||||
|
||||
llama_grammar_free_impl(ctx->grammar);
|
||||
ctx->grammar = grammar_new;
|
||||
@@ -1445,7 +1472,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
|
||||
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
|
||||
|
||||
auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
|
||||
auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0);
|
||||
|
||||
// copy the state
|
||||
{
|
||||
@@ -1481,29 +1508,55 @@ static struct llama_sampler_i llama_sampler_grammar_i = {
|
||||
/* .free = */ llama_sampler_grammar_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
|
||||
static struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens) {
|
||||
auto * ctx = new llama_sampler_grammar;
|
||||
|
||||
if (grammar_str != nullptr && grammar_str[0] != '\0') {
|
||||
*ctx = {
|
||||
/* .vocab = */ &vocab,
|
||||
/* .vocab = */ vocab,
|
||||
/* .grammar_str = */ grammar_str,
|
||||
/* .grammar_root = */ grammar_root,
|
||||
/* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
|
||||
/* .grammar = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens),
|
||||
};
|
||||
} else {
|
||||
*ctx = {
|
||||
/* .vocab = */ &vocab,
|
||||
/* .vocab = */ vocab,
|
||||
/* .grammar_str = */ {},
|
||||
/* .grammar_root = */ {},
|
||||
/* .grammar = */ nullptr,
|
||||
};
|
||||
}
|
||||
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_grammar_i,
|
||||
/* .ctx = */ ctx,
|
||||
};
|
||||
/* .ctx = */ ctx
|
||||
);
|
||||
}
|
||||
|
||||
struct llama_sampler * llama_sampler_init_grammar(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root) {
|
||||
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0);
|
||||
}
|
||||
|
||||
struct llama_sampler * llama_sampler_init_grammar_lazy(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens) {
|
||||
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens);
|
||||
}
|
||||
|
||||
// penalties
|
||||
@@ -1632,7 +1685,7 @@ struct llama_sampler * llama_sampler_init_penalties(
|
||||
float penalty_present) {
|
||||
penalty_last_n = std::max(penalty_last_n, 0);
|
||||
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_penalties_i,
|
||||
/* .ctx = */ new llama_sampler_penalties {
|
||||
/* .penalty_last_n = */ penalty_last_n,
|
||||
@@ -1641,8 +1694,75 @@ struct llama_sampler * llama_sampler_init_penalties(
|
||||
/* .penalty_present = */ penalty_present,
|
||||
/* .prev = */ ring_buffer<llama_token>(penalty_last_n),
|
||||
/* .token_count = */ {},
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// top-n-sigma
|
||||
|
||||
struct llama_sampler_top_n_sigma {
|
||||
const float n;
|
||||
};
|
||||
|
||||
static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
|
||||
return "top-n-sigma";
|
||||
}
|
||||
|
||||
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
|
||||
|
||||
// find max logit and calculate mean
|
||||
float max = cur_p->data[0].logit;
|
||||
float logits_sum = 0;
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (cur_p->data[i].logit > max) {
|
||||
max = cur_p->data[i].logit;
|
||||
}
|
||||
logits_sum += cur_p->data[i].logit;
|
||||
}
|
||||
float mean = logits_sum/cur_p->size;
|
||||
|
||||
// calculate standard deviation
|
||||
float acc = 0;
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
acc += pow(cur_p->data[i].logit - mean, 2);
|
||||
}
|
||||
float std = sqrt(acc/cur_p->size);
|
||||
|
||||
//apply mask
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (cur_p->data[i].logit < max - (ctx->n * std)) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
}
|
||||
llama_sampler_softmax_impl(cur_p);
|
||||
}
|
||||
|
||||
static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx;
|
||||
return llama_sampler_init_top_n_sigma(ctx->n);
|
||||
}
|
||||
|
||||
static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) {
|
||||
delete (llama_sampler_top_n_sigma *) smpl->ctx;
|
||||
}
|
||||
|
||||
static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
|
||||
/* .name = */ llama_sampler_top_n_sigma_name,
|
||||
/* .accept = */ nullptr,
|
||||
/* .apply = */ llama_sampler_top_n_sigma_apply,
|
||||
/* .reset = */ nullptr,
|
||||
/* .clone = */ llama_sampler_top_n_sigma_clone,
|
||||
/* .free = */ llama_sampler_top_n_sigma_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_top_n_sigma_i,
|
||||
/* .ctx = */ new llama_sampler_top_n_sigma {
|
||||
/* .n = */ n,
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// DRY
|
||||
@@ -1663,8 +1783,8 @@ struct llama_sampler_dry {
|
||||
|
||||
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
|
||||
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
|
||||
for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) {
|
||||
std::string word = llama_detokenize(vocab, {token_id}, true);
|
||||
for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
|
||||
std::string word = vocab.detokenize({token_id}, true);
|
||||
if (word.find(str) != std::string::npos) {
|
||||
token_sequences.emplace(token_id, std::vector<llama_token>());
|
||||
} else {
|
||||
@@ -1681,7 +1801,7 @@ static void get_overlapping_token_sequences(const llama_vocab & vocab, const std
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false);
|
||||
std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
|
||||
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
|
||||
tokenization.resize(max_tail_len);
|
||||
}
|
||||
@@ -1832,7 +1952,7 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat
|
||||
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
|
||||
if (n > 0) {
|
||||
lt = k;
|
||||
rt = k+n-1;
|
||||
rt = k + n - 1;
|
||||
}
|
||||
} else {
|
||||
// If k is inside the current Z-box, consider two cases.
|
||||
@@ -1937,7 +2057,7 @@ static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler
|
||||
llama_vocab dummy_vocab;
|
||||
|
||||
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
|
||||
auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
|
||||
auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
|
||||
|
||||
// Copy the state, including the processed breakers
|
||||
{
|
||||
@@ -1964,7 +2084,7 @@ static struct llama_sampler_i llama_sampler_dry_i = {
|
||||
/* .free = */ llama_sampler_dry_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
|
||||
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
|
||||
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
|
||||
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
|
||||
const int MAX_CHAR_LEN = 40;
|
||||
@@ -1991,11 +2111,11 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
|
||||
sequence_break.resize(MAX_CHAR_LEN);
|
||||
}
|
||||
|
||||
get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
|
||||
get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
|
||||
}
|
||||
}
|
||||
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_dry_i,
|
||||
/* .ctx = */ new llama_sampler_dry {
|
||||
/* .total_context_size = */ context_size,
|
||||
@@ -2007,14 +2127,14 @@ struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vo
|
||||
/* .dry_repeat_count = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
|
||||
/* .dry_max_token_repeat = */ {},
|
||||
/* .last_tokens = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// wrapper for test-sampling.cpp
|
||||
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
|
||||
llama_vocab dummy_vocab;
|
||||
auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
|
||||
auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
|
||||
auto * ctx = (llama_sampler_dry *) result->ctx;
|
||||
|
||||
// Process the token-based sequence breakers
|
||||
@@ -2109,14 +2229,14 @@ struct llama_sampler * llama_sampler_init_logit_bias(
|
||||
int32_t n_vocab,
|
||||
int32_t n_logit_bias,
|
||||
const llama_logit_bias * logit_bias) {
|
||||
return new llama_sampler {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_logit_bias_i,
|
||||
/* .ctx = */ new llama_sampler_logit_bias {
|
||||
/* .n_vocab = */ n_vocab,
|
||||
/* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
|
||||
/* .to_search = */ {},
|
||||
},
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// infill
|
||||
@@ -2153,7 +2273,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
float p_eog_sum = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
|
||||
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
|
||||
p_eog_sum += cur_p->data[i].p;
|
||||
} else {
|
||||
p_txt_sum += cur_p->data[i].p;
|
||||
@@ -2175,7 +2295,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
float p_sum = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
|
||||
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
|
||||
p_sum += cur_p->data[i].p;
|
||||
|
||||
cur_p->data[cur_p->size++] = cur_p->data[i];
|
||||
@@ -2203,17 +2323,17 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
continue;
|
||||
}
|
||||
|
||||
int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
if (len0 < 0) {
|
||||
ctx->buf0.resize(len0);
|
||||
len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
|
||||
assert(len0 > 0);
|
||||
}
|
||||
|
||||
int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
if (len1 < 0) {
|
||||
ctx->buf1.resize(len1);
|
||||
len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
|
||||
assert(len1 > 0);
|
||||
}
|
||||
|
||||
@@ -2248,7 +2368,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
|
||||
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
|
||||
|
||||
if (cur_p->data[i].p < thold && !is_eog) {
|
||||
continue;
|
||||
@@ -2269,7 +2389,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
|
||||
if (n_non_eog == 0) {
|
||||
cur_p->size = 1;
|
||||
cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
|
||||
cur_p->data[0].id = ctx->vocab->token_eot();
|
||||
cur_p->data[0].logit = 1.0f;
|
||||
|
||||
return;
|
||||
@@ -2291,7 +2411,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
|
||||
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
|
||||
|
||||
if (cur_p->data[i].p < thold && !is_eog) {
|
||||
continue;
|
||||
@@ -2314,7 +2434,7 @@ static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_
|
||||
|
||||
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
|
||||
return llama_sampler_init_infill_impl(*ctx->vocab);
|
||||
return llama_sampler_init_infill(ctx->vocab);
|
||||
}
|
||||
|
||||
static void llama_sampler_infill_free(struct llama_sampler * smpl) {
|
||||
@@ -2330,16 +2450,15 @@ static struct llama_sampler_i llama_sampler_infill_i = {
|
||||
/* .free = */ llama_sampler_infill_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill_impl(
|
||||
const struct llama_vocab & vocab) {
|
||||
return new llama_sampler {
|
||||
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_infill_i,
|
||||
/* .ctx = */ new llama_sampler_infill {
|
||||
/* .vocab = */ &vocab,
|
||||
/* .buf0 = */ std::vector<char>(512),
|
||||
/* .buf1 = */ std::vector<char>(512),
|
||||
},
|
||||
};
|
||||
/* .vocab = */ vocab,
|
||||
/* .buf0 = */ std::vector<char>(512),
|
||||
/* .buf1 = */ std::vector<char>(512),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// utils
|
||||
|
||||
22
llama/llama.cpp/src/llama-sampling.h
vendored
22
llama/llama.cpp/src/llama-sampling.h
vendored
@@ -2,7 +2,9 @@
|
||||
|
||||
// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ?
|
||||
|
||||
#include "llama-grammar.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct llama_vocab;
|
||||
struct llama_grammar;
|
||||
@@ -21,24 +23,6 @@ struct llama_sampler_chain {
|
||||
mutable int32_t n_sample;
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill_impl(
|
||||
const struct llama_vocab & vocab);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
int32_t context_size,
|
||||
float dry_multiplier,
|
||||
float dry_base,
|
||||
int32_t dry_allowed_length,
|
||||
int32_t dry_penalty_last_n,
|
||||
const char ** seq_breakers,
|
||||
size_t num_breakers);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_testing(
|
||||
int32_t context_size,
|
||||
float dry_multiplier,
|
||||
|
||||
2373
llama/llama.cpp/src/llama-vocab.cpp
vendored
2373
llama/llama.cpp/src/llama-vocab.cpp
vendored
File diff suppressed because it is too large
Load Diff
273
llama/llama.cpp/src/llama-vocab.h
vendored
273
llama/llama.cpp/src/llama-vocab.h
vendored
@@ -4,179 +4,122 @@
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <memory>
|
||||
|
||||
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
||||
switch (type) {
|
||||
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
|
||||
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
||||
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
||||
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
|
||||
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
|
||||
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
|
||||
default: return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
struct llm_tokenizer;
|
||||
struct LLM_KV;
|
||||
struct llama_model_loader;
|
||||
|
||||
struct llama_vocab {
|
||||
using id = llama_token;
|
||||
using token = std::string;
|
||||
using tattr = llama_token_attr;
|
||||
|
||||
struct token_data {
|
||||
token text;
|
||||
float score;
|
||||
tattr attr;
|
||||
std::string text;
|
||||
float score;
|
||||
llama_token_attr attr;
|
||||
};
|
||||
|
||||
uint32_t n_vocab = 0; // TODO: not great because has to keep in sync with hparams.n_vocab
|
||||
|
||||
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
||||
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
||||
int max_token_len = 0; // used for optimizing longest token search
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_data> id_to_token;
|
||||
|
||||
std::vector<id> cache_special_tokens;
|
||||
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
|
||||
|
||||
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
||||
|
||||
// default LLaMA special tokens
|
||||
// TODO: should we set all of these to LLAMA_TOKEN_NULL?
|
||||
id special_bos_id = 1;
|
||||
id special_eos_id = 2;
|
||||
id special_eot_id = LLAMA_TOKEN_NULL;
|
||||
id special_eom_id = LLAMA_TOKEN_NULL;
|
||||
id special_unk_id = 0;
|
||||
id special_sep_id = LLAMA_TOKEN_NULL;
|
||||
id special_pad_id = LLAMA_TOKEN_NULL;
|
||||
id special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930
|
||||
id special_mask_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
id linefeed_id = 13;
|
||||
|
||||
// fim tokens
|
||||
id special_fim_pre_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_suf_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_mid_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_pad_id = LLAMA_TOKEN_NULL;
|
||||
id special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
|
||||
id special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
|
||||
|
||||
// set of all tokens that cause "end of generation"
|
||||
std::set<id> special_eog_ids;
|
||||
|
||||
// tokenizer flags
|
||||
bool tokenizer_add_space_prefix = false;
|
||||
bool tokenizer_add_bos = false;
|
||||
bool tokenizer_add_eos = false;
|
||||
bool tokenizer_ignore_merges = false;
|
||||
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
|
||||
bool tokenizer_remove_extra_whitespaces = false;
|
||||
bool tokenizer_escape_whitespaces = true;
|
||||
bool tokenizer_treat_whitespace_as_suffix = false;
|
||||
|
||||
std::vector<char> precompiled_charsmap;
|
||||
|
||||
llm_tokenizer * tokenizer = nullptr;
|
||||
|
||||
llama_vocab() = default;
|
||||
llama_vocab();
|
||||
~llama_vocab();
|
||||
|
||||
void load(llama_model_loader & ml, const LLM_KV & kv);
|
||||
|
||||
enum llama_vocab_type get_type() const;
|
||||
enum llama_vocab_pre_type get_pre_type() const;
|
||||
|
||||
uint32_t n_tokens() const;
|
||||
uint32_t n_token_types() const;
|
||||
|
||||
std::string type_name() const;
|
||||
|
||||
bool is_normal (llama_token id) const;
|
||||
bool is_unknown (llama_token id) const;
|
||||
bool is_control (llama_token id) const;
|
||||
bool is_byte (llama_token id) const;
|
||||
bool is_user_defined(llama_token id) const;
|
||||
bool is_unused (llama_token id) const;
|
||||
bool is_eog (llama_token id) const;
|
||||
|
||||
uint8_t token_to_byte(llama_token id) const;
|
||||
llama_token byte_to_token(uint8_t ch) const;
|
||||
|
||||
llama_token text_to_token(const std::string & text) const;
|
||||
|
||||
const token_data & get_token_data(llama_token id) const;
|
||||
|
||||
const char * token_get_text (llama_token id) const;
|
||||
float token_get_score(llama_token id) const;
|
||||
llama_token_attr token_get_attr (llama_token id) const;
|
||||
|
||||
llama_token token_bos() const;
|
||||
llama_token token_eos() const;
|
||||
llama_token token_eot() const;
|
||||
llama_token token_eom() const;
|
||||
llama_token token_unk() const;
|
||||
llama_token token_sep() const;
|
||||
llama_token token_nl () const;
|
||||
llama_token token_pad() const;
|
||||
|
||||
llama_token token_prefix() const;
|
||||
llama_token token_middle() const;
|
||||
llama_token token_suffix() const;
|
||||
|
||||
llama_token token_fim_pre() const;
|
||||
llama_token token_fim_suf() const;
|
||||
llama_token token_fim_mid() const;
|
||||
llama_token token_fim_pad() const;
|
||||
llama_token token_fim_rep() const;
|
||||
llama_token token_fim_sep() const;
|
||||
|
||||
bool get_add_space_prefix () const;
|
||||
bool get_add_bos () const;
|
||||
bool get_add_eos () const;
|
||||
bool get_ignore_merges () const;
|
||||
bool get_clean_spaces () const;
|
||||
bool get_remove_extra_whitespaces () const;
|
||||
bool get_escape_whitespaces () const;
|
||||
bool get_treat_whitespace_as_suffix() const;
|
||||
|
||||
int max_token_len() const;
|
||||
|
||||
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
|
||||
|
||||
void init_tokenizer();
|
||||
int32_t tokenize(
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens_max,
|
||||
bool add_special,
|
||||
bool parse_special) const;
|
||||
|
||||
std::vector<llama_token> tokenize(
|
||||
const std::string & raw_text,
|
||||
bool add_special,
|
||||
bool parse_special = false) const;
|
||||
|
||||
// does not write null-terminator to buf
|
||||
int32_t token_to_piece(
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length,
|
||||
int32_t lstrip,
|
||||
bool special) const;
|
||||
|
||||
// use cached data
|
||||
const std::string & token_to_piece(llama_token token) const;
|
||||
|
||||
int32_t detokenize(
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
char * text,
|
||||
int32_t text_len_max,
|
||||
bool remove_special,
|
||||
bool unparse_special) const;
|
||||
|
||||
std::string detokenize(
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special) const;
|
||||
|
||||
void print_info() const;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
||||
//
|
||||
// internal API
|
||||
//
|
||||
|
||||
// TODO: rename to llama_tokenize_impl
|
||||
// TODO: This should probably be in llama.h
|
||||
std::vector<llama_vocab::id> llama_tokenize_internal(
|
||||
const llama_vocab & vocab,
|
||||
std::string raw_text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
// TODO: move the API below as member functions of llama_vocab
|
||||
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
|
||||
|
||||
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
|
||||
|
||||
llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_eot_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_eom_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
|
||||
llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
|
||||
|
||||
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
|
||||
|
||||
llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab);
|
||||
llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab);
|
||||
|
||||
bool llama_add_bos_token_impl(const struct llama_vocab & vocab);
|
||||
bool llama_add_eos_token_impl(const struct llama_vocab & vocab);
|
||||
|
||||
int32_t llama_tokenize_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens_max,
|
||||
bool add_special,
|
||||
bool parse_special);
|
||||
|
||||
// does not write null-terminator to buf
|
||||
int32_t llama_token_to_piece_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length,
|
||||
int32_t lstrip,
|
||||
bool special);
|
||||
|
||||
// check if token0 is contained as a prefix in token1
|
||||
bool llama_token_is_prefix_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
llama_token token0,
|
||||
llama_token token1);
|
||||
|
||||
int32_t llama_detokenize_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
char * text,
|
||||
int32_t text_len_max,
|
||||
bool remove_special,
|
||||
bool unparse_special);
|
||||
|
||||
std::string llama_detokenize(
|
||||
const struct llama_vocab & vocab,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special);
|
||||
|
||||
3697
llama/llama.cpp/src/llama.cpp
vendored
3697
llama/llama.cpp/src/llama.cpp
vendored
File diff suppressed because it is too large
Load Diff
16
llama/llama.cpp/src/unicode.cpp
vendored
16
llama/llama.cpp/src/unicode.cpp
vendored
@@ -12,18 +12,17 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <codecvt>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <locale>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <locale>
|
||||
#include <codecvt>
|
||||
|
||||
size_t unicode_len_utf8(char src) {
|
||||
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
@@ -641,7 +640,14 @@ std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
|
||||
result.reserve(utf8.size());
|
||||
size_t offset = 0;
|
||||
while (offset < utf8.size()) {
|
||||
result.push_back(unicode_cpt_from_utf8(utf8, offset));
|
||||
try {
|
||||
result.push_back(unicode_cpt_from_utf8(utf8, offset));
|
||||
}
|
||||
catch (const std::invalid_argument & /*ex*/) {
|
||||
// Silently ignore invalid UTF-8 input to avoid leaking the exception beyond llama_tokenize
|
||||
++offset;
|
||||
result.emplace_back(0xFFFD); // replacement character
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@@ -724,7 +730,7 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
||||
const auto cpts = unicode_cpts_from_utf8(text);
|
||||
|
||||
// generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/6920#issuecomment-2081479935
|
||||
std::string text_collapsed;
|
||||
if (need_collapse) {
|
||||
// collapse all unicode categories
|
||||
|
||||
161
llama/llama.go
161
llama/llama.go
@@ -14,83 +14,52 @@ package llama
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "mllama.h"
|
||||
#include "sampling_ext.h"
|
||||
|
||||
extern bool llamaProgressCallback(float progress, void *user_data);
|
||||
extern void llamaLog(int level, char* text, void* user_data);
|
||||
|
||||
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
|
||||
COMPILER inline get_compiler() {
|
||||
#if defined(__clang__)
|
||||
return COMP_CLANG;
|
||||
#elif defined(__GNUC__)
|
||||
return COMP_GCC;
|
||||
#else
|
||||
return UNKNOWN_COMPILER;
|
||||
#endif
|
||||
}
|
||||
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"context"
|
||||
_ "embed"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"runtime"
|
||||
"runtime/cgo"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
"unsafe"
|
||||
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/common"
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/src"
|
||||
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
)
|
||||
|
||||
func init() {
|
||||
C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
|
||||
}
|
||||
|
||||
//export llamaLog
|
||||
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
|
||||
// slog levels zeros INFO and are multiples of 4
|
||||
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
}
|
||||
|
||||
func BackendInit() {
|
||||
ggml.OnceLoad()
|
||||
C.llama_backend_init()
|
||||
}
|
||||
|
||||
func PrintSystemInfo() string {
|
||||
var compiler string
|
||||
switch C.get_compiler() {
|
||||
case C.COMP_UNKNOWN:
|
||||
compiler = "cgo(unknown_compiler)"
|
||||
case C.COMP_GCC:
|
||||
compiler = "cgo(gcc)"
|
||||
case C.COMP_CLANG:
|
||||
compiler = "cgo(clang)"
|
||||
}
|
||||
return C.GoString(C.llama_print_system_info()) + compiler
|
||||
}
|
||||
|
||||
var logLevel atomic.Int32
|
||||
|
||||
func init() {
|
||||
logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
|
||||
C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
|
||||
}
|
||||
|
||||
func EnableDebug() {
|
||||
logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
|
||||
}
|
||||
|
||||
//export llamaLog
|
||||
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
|
||||
if level < logLevel.Load() {
|
||||
return
|
||||
}
|
||||
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
|
||||
func GetModelArch(modelPath string) (string, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
@@ -268,7 +237,7 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
|
||||
}
|
||||
|
||||
m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
|
||||
m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
|
||||
if m.c == nil {
|
||||
return nil, fmt.Errorf("unable to load model: %s", modelPath)
|
||||
}
|
||||
@@ -276,13 +245,27 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func LoadVocabFromFile(path string) (*Vocab, error) {
|
||||
mp := C.CString(path)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
v := Vocab{c: C.llama_load_vocab_from_file(mp)}
|
||||
if v.c == nil {
|
||||
return nil, fmt.Errorf("unable to load vocab: %s", path)
|
||||
}
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func FreeVocab(vocab *Vocab) {
|
||||
C.llama_free_vocab(vocab.c)
|
||||
}
|
||||
|
||||
func FreeModel(model *Model) {
|
||||
C.llama_free_model(model.c)
|
||||
C.llama_model_free(model.c)
|
||||
}
|
||||
|
||||
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
c := Context{
|
||||
c: C.llama_new_context_with_model(model.c, params.c),
|
||||
c: C.llama_init_from_model(model.c, params.c),
|
||||
numThreads: int(params.c.n_threads),
|
||||
}
|
||||
if c.c == nil {
|
||||
@@ -293,29 +276,29 @@ func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
}
|
||||
|
||||
func (m *Model) NumVocab() int {
|
||||
return int(C.llama_n_vocab(m.c))
|
||||
return int(C.llama_vocab_n_tokens(m.Vocab()))
|
||||
}
|
||||
|
||||
func (m *Model) TokenIsEog(token int) bool {
|
||||
return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
|
||||
return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
|
||||
}
|
||||
|
||||
func (m *Model) AddBOSToken() bool {
|
||||
return bool(C.llama_add_bos_token(m.c))
|
||||
return bool(C.llama_vocab_get_add_bos(m.Vocab()))
|
||||
}
|
||||
|
||||
func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
|
||||
cLoraPath := C.CString(loraPath)
|
||||
defer C.free(unsafe.Pointer(cLoraPath))
|
||||
|
||||
loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
|
||||
loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
|
||||
if loraAdapter == nil {
|
||||
return errors.New("unable to load lora")
|
||||
}
|
||||
|
||||
err := -1
|
||||
if loraAdapter != nil {
|
||||
err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
|
||||
err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
|
||||
}
|
||||
if err != 0 {
|
||||
return errors.New("error applying lora from file")
|
||||
@@ -324,6 +307,14 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
|
||||
return nil
|
||||
}
|
||||
|
||||
type Vocab struct {
|
||||
c *C.struct_llama_vocab
|
||||
}
|
||||
|
||||
func (m *Model) Vocab() *C.struct_llama_vocab {
|
||||
return C.llama_model_get_vocab(m.c)
|
||||
}
|
||||
|
||||
type Batch struct {
|
||||
c C.struct_llama_batch
|
||||
batchSize int
|
||||
@@ -414,7 +405,7 @@ func (m *Model) TokenToPiece(token int) string {
|
||||
tokenLen := 12
|
||||
buf := make([]byte, tokenLen)
|
||||
tokenLen = int(C.llama_token_to_piece(
|
||||
m.c,
|
||||
m.Vocab(),
|
||||
C.int32_t(token),
|
||||
(*C.char)(unsafe.Pointer(&buf[0])),
|
||||
C.int32_t(tokenLen),
|
||||
@@ -426,7 +417,7 @@ func (m *Model) TokenToPiece(token int) string {
|
||||
|
||||
buf = make([]byte, tokenLen)
|
||||
C.llama_token_to_piece(
|
||||
m.c,
|
||||
m.Vocab(),
|
||||
C.int32_t(token),
|
||||
(*C.char)(unsafe.Pointer(&buf[0])),
|
||||
C.int32_t(tokenLen),
|
||||
@@ -444,7 +435,7 @@ func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int
|
||||
defer C.free(unsafe.Pointer(cText))
|
||||
|
||||
result := C.llama_tokenize(
|
||||
m.c,
|
||||
m.Vocab(),
|
||||
cText,
|
||||
C.int32_t(len(text)),
|
||||
&cTokens[0],
|
||||
@@ -458,7 +449,7 @@ func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int
|
||||
maxTokens = int(-result)
|
||||
cTokens = make([]C.llama_token, maxTokens)
|
||||
result = C.llama_tokenize(
|
||||
m.c,
|
||||
m.Vocab(),
|
||||
cText,
|
||||
C.int32_t(len(text)),
|
||||
&cTokens[0],
|
||||
@@ -480,7 +471,7 @@ func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int
|
||||
}
|
||||
|
||||
func (m *Model) NEmbd() int {
|
||||
return int(C.llama_n_embd(m.c))
|
||||
return int(C.llama_model_n_embd(m.c))
|
||||
}
|
||||
|
||||
func Quantize(infile, outfile string, ftype uint32) error {
|
||||
@@ -696,3 +687,53 @@ func SchemaToGrammar(schema []byte) []byte {
|
||||
}
|
||||
return buf[:n]
|
||||
}
|
||||
|
||||
type Sampler struct {
|
||||
c *C.struct_llama_sampler
|
||||
}
|
||||
|
||||
func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
|
||||
cGrammar := C.CString(grammar)
|
||||
cRoot := C.CString("root")
|
||||
defer C.free(unsafe.Pointer(cGrammar))
|
||||
defer C.free(unsafe.Pointer(cRoot))
|
||||
|
||||
sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
|
||||
|
||||
return sampler
|
||||
}
|
||||
|
||||
func (s *Sampler) Accept(token int32) {
|
||||
C.llama_sampler_accept(s.c, C.llama_token(token))
|
||||
}
|
||||
|
||||
type TokenData struct {
|
||||
Id int32
|
||||
Logit float32
|
||||
}
|
||||
|
||||
func (s *Sampler) Apply(tokens []TokenData) {
|
||||
tds := make([]C.struct_llama_token_data, len(tokens))
|
||||
for i, token := range tokens {
|
||||
tds[i] = C.struct_llama_token_data{
|
||||
id: C.int32_t(token.Id),
|
||||
logit: C.float(token.Logit),
|
||||
p: C.float(0.0),
|
||||
}
|
||||
}
|
||||
tda := &C.llama_token_data_array{
|
||||
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
|
||||
size: C.size_t(len(tokens)),
|
||||
selected: C.int64_t(-1),
|
||||
sorted: C.bool(false),
|
||||
}
|
||||
|
||||
var pinner runtime.Pinner
|
||||
pinner.Pin(&tds[0])
|
||||
defer pinner.Unpin()
|
||||
|
||||
C.llama_sampler_apply(s.c, tda)
|
||||
for i := range tokens {
|
||||
tokens[i].Logit = float32(tds[i].logit)
|
||||
}
|
||||
}
|
||||
|
||||
1
llama/mllama.cpp
vendored
1
llama/mllama.cpp
vendored
@@ -5,6 +5,7 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
|
||||
@@ -10,7 +10,7 @@ Subject: [PATCH] cuda
|
||||
3 files changed, 2 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index e2d6c405..a12172dc 100644
|
||||
index dba7be33..1ca40b2c 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -106,7 +106,6 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
@@ -22,10 +22,10 @@ index e2d6c405..a12172dc 100644
|
||||
|
||||
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 0b06be72..be29e979 100644
|
||||
index ebb2ccae..b094929b 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -424,6 +424,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
@@ -529,6 +529,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
@@ -34,10 +34,10 @@ index 0b06be72..be29e979 100644
|
||||
|
||||
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index a85502ee..cd8ef741 100644
|
||||
index c550142a..fd9a4e77 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -4187,6 +4187,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
@@ -4350,6 +4350,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
}
|
||||
|
||||
free(ctx);
|
||||
|
||||
@@ -4,17 +4,17 @@ Date: Mon, 16 Sep 2024 15:53:13 -0700
|
||||
Subject: [PATCH] pretokenizer
|
||||
|
||||
---
|
||||
src/llama-model.cpp | 14 +++-----------
|
||||
src/llama-vocab.cpp | 14 +++-----------
|
||||
1 file changed, 3 insertions(+), 11 deletions(-)
|
||||
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 405e0528..00b80c52 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -1249,16 +1249,7 @@ void llm_load_vocab(llama_model_loader & ml, llama_model & model) {
|
||||
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
vocab.tokenizer_add_space_prefix = false;
|
||||
vocab.tokenizer_clean_spaces = true;
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index ad9ffe66..a4eee9b8 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1468,16 +1468,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
if (type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
add_space_prefix = false;
|
||||
clean_spaces = true;
|
||||
- if (tokenizer_pre.empty()) {
|
||||
- LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
|
||||
- LLAMA_LOG_WARN("%s: \n", __func__);
|
||||
@@ -23,19 +23,19 @@ index 405e0528..00b80c52 100644
|
||||
- LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
|
||||
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
|
||||
- LLAMA_LOG_WARN("%s: \n", __func__);
|
||||
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
- pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
- } else if (tokenizer_pre == "default") {
|
||||
+ if (tokenizer_pre == "default") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
@@ -1373,7 +1364,8 @@ void llm_load_vocab(llama_model_loader & ml, llama_model & model) {
|
||||
@@ -1593,7 +1584,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
tokenizer_pre == "megrez") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
} else {
|
||||
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
}
|
||||
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (type == LLAMA_VOCAB_TYPE_SPM) {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
||||
@@ -9,10 +9,10 @@ Subject: [PATCH] embeddings
|
||||
2 files changed, 5 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
|
||||
index 38a55fb2..b9c4a5bf 100644
|
||||
index 671d2a81..47e79ed4 100644
|
||||
--- a/src/llama-context.cpp
|
||||
+++ b/src/llama-context.cpp
|
||||
@@ -475,7 +475,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
@@ -479,7 +479,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
@@ -22,10 +22,10 @@ index 38a55fb2..b9c4a5bf 100644
|
||||
|
||||
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index ea78ea48..4eb3f6b9 100644
|
||||
index 607f2786..ac85bfed 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -10876,7 +10876,6 @@ static int llama_decode_internal(
|
||||
@@ -8652,7 +8652,6 @@ static int llama_decode_impl(
|
||||
res = nullptr;
|
||||
embd = nullptr;
|
||||
} else if (cparams.embeddings) {
|
||||
@@ -33,7 +33,7 @@ index ea78ea48..4eb3f6b9 100644
|
||||
embd = nullptr;
|
||||
for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
||||
if (strcmp(ggml_graph_node(gf, i)->name, "result_embd_pooled") == 0) {
|
||||
@@ -10884,12 +10883,15 @@ static int llama_decode_internal(
|
||||
@@ -8660,12 +8659,15 @@ static int llama_decode_impl(
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] clip-unicode
|
||||
1 file changed, 39 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
||||
index 3cd0d2fa..b3c1829f 100644
|
||||
index 76d4a785..205af1eb 100644
|
||||
--- a/examples/llava/clip.cpp
|
||||
+++ b/examples/llava/clip.cpp
|
||||
@@ -56,6 +56,19 @@
|
||||
@@ -58,6 +58,19 @@
|
||||
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
||||
#endif // defined(LLAVA_LOG_OFF)
|
||||
|
||||
@@ -31,7 +31,7 @@ index 3cd0d2fa..b3c1829f 100644
|
||||
//#define CLIP_DEBUG_FUNCTIONS
|
||||
|
||||
// RGB uint8 image
|
||||
@@ -1322,8 +1335,29 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
@@ -1402,8 +1415,29 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
@@ -62,7 +62,7 @@ index 3cd0d2fa..b3c1829f 100644
|
||||
if (!fin) {
|
||||
LOG_ERR("cannot open model file for loading tensors\n");
|
||||
clip_free(new_clip);
|
||||
@@ -1363,7 +1397,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
@@ -1443,7 +1477,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,21 +11,21 @@ tensor to store the scalar. the scalar is implemented a 1-dimensional
|
||||
tensor with 2 elements dervied from the model's bskcn_tv configuration.
|
||||
in general, the values are (bskcn_tv, 1 - bskcn_tv)
|
||||
---
|
||||
src/llama-arch.cpp | 53 +++++++----
|
||||
src/llama-arch.cpp | 21 +++++
|
||||
src/llama-arch.h | 3 +
|
||||
src/llama-hparams.cpp | 8 ++
|
||||
src/llama-hparams.h | 5 +
|
||||
src/llama-hparams.h | 5 ++
|
||||
src/llama-model-loader.cpp | 1 +
|
||||
src/llama-model.cpp | 16 ++++
|
||||
src/llama-model.cpp | 44 +++++++++++
|
||||
src/llama-model.h | 3 +
|
||||
src/llama.cpp | 185 +++++++++++++++++++++++++++++++++++++
|
||||
8 files changed, 258 insertions(+), 16 deletions(-)
|
||||
src/llama.cpp | 152 ++++++++++++++++++++++++++++++++++++-
|
||||
8 files changed, 236 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index 007d79f8..5b376c5e 100644
|
||||
index 97a1e7e5..a1e0ebcc 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -59,6 +59,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
@@ -61,6 +61,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_GRANITE, "granite" },
|
||||
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
@@ -33,48 +33,16 @@ index 007d79f8..5b376c5e 100644
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
@@ -106,22 +107,23 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
|
||||
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
|
||||
|
||||
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||||
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||||
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||||
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||||
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||||
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||||
- { LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
|
||||
- { LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
|
||||
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||||
- { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||
- { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||
- { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
- { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
- { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||||
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||||
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||||
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||||
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||||
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||||
+ { LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" },
|
||||
+ { LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" },
|
||||
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||||
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
+ { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
@@ -125,6 +126,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
|
||||
@@ -1240,6 +1242,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
|
||||
@@ -1271,6 +1273,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
@@ -96,9 +64,9 @@ index 007d79f8..5b376c5e 100644
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
{
|
||||
@@ -1372,6 +1392,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
@@ -1429,6 +1449,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
// this tensor is loaded for T5, but never used
|
||||
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
||||
@@ -107,10 +75,10 @@ index 007d79f8..5b376c5e 100644
|
||||
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index 45e458bb..eac7055b 100644
|
||||
index 122fdceb..77919578 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -63,6 +63,7 @@ enum llm_arch {
|
||||
@@ -65,6 +65,7 @@ enum llm_arch {
|
||||
LLM_ARCH_GRANITE,
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
LLM_ARCH_CHAMELEON,
|
||||
@@ -118,7 +86,7 @@ index 45e458bb..eac7055b 100644
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
@@ -126,6 +127,7 @@ enum llm_kv {
|
||||
@@ -129,6 +130,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
@@ -126,7 +94,7 @@ index 45e458bb..eac7055b 100644
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_DIMENSION_SECTIONS,
|
||||
@@ -305,6 +307,7 @@ enum llm_tensor {
|
||||
@@ -311,6 +313,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
@@ -135,7 +103,7 @@ index 45e458bb..eac7055b 100644
|
||||
LLM_TENSOR_CONVNEXT_DW,
|
||||
LLM_TENSOR_CONVNEXT_NORM,
|
||||
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
|
||||
index c4053469..450738da 100644
|
||||
index ea87b295..f3955de9 100644
|
||||
--- a/src/llama-hparams.cpp
|
||||
+++ b/src/llama-hparams.cpp
|
||||
@@ -69,3 +69,11 @@ uint32_t llama_hparams::n_embd_v_s() const {
|
||||
@@ -152,10 +120,10 @@ index c4053469..450738da 100644
|
||||
+}
|
||||
\ No newline at end of file
|
||||
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
|
||||
index a29f20ec..fd898e27 100644
|
||||
index 1fe45410..1bdcdfd5 100644
|
||||
--- a/src/llama-hparams.h
|
||||
+++ b/src/llama-hparams.h
|
||||
@@ -52,6 +52,8 @@ struct llama_hparams {
|
||||
@@ -50,6 +50,8 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
@@ -164,7 +132,7 @@ index a29f20ec..fd898e27 100644
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
@@ -134,6 +136,9 @@ struct llama_hparams {
|
||||
@@ -133,6 +135,9 @@ struct llama_hparams {
|
||||
|
||||
// dimension of the recurrent state embeddings
|
||||
uint32_t n_embd_v_s() const;
|
||||
@@ -175,23 +143,23 @@ index a29f20ec..fd898e27 100644
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
|
||||
index 7743b465..422524a8 100644
|
||||
index 05d58ad9..1252aca1 100644
|
||||
--- a/src/llama-model-loader.cpp
|
||||
+++ b/src/llama-model-loader.cpp
|
||||
@@ -364,6 +364,7 @@ namespace GGUFMeta {
|
||||
@@ -439,6 +439,7 @@ namespace GGUFMeta {
|
||||
// TODO: this is not very clever - figure out something better
|
||||
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
|
||||
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
||||
+ template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
||||
|
||||
llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
|
||||
int trace = 0;
|
||||
llama_model_loader::llama_model_loader(
|
||||
const std::string & fname,
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 00b80c52..306c557d 100644
|
||||
index 36a0a009..ad1315c6 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -1091,6 +1091,21 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
@@ -1238,6 +1238,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
@@ -200,52 +168,19 @@ index 00b80c52..306c557d 100644
|
||||
+ for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
|
||||
+ auto & bskcn = hparams.n_bskcn_arr[i];
|
||||
+ bskcn.fill(0);
|
||||
+ auto kv = LLM_KV(model.arch);
|
||||
+ auto kv = LLM_KV(arch);
|
||||
+ ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
|
||||
+ }
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 64: model.type = e_model::MODEL_22B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ case 64: type = LLM_TYPE_22B; break;
|
||||
+ default: type = LLM_TYPE_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -2065,6 +2080,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index ce038932..c1b9c0a1 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -54,6 +54,7 @@ enum llm_type {
|
||||
MODEL_15B,
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
+ MODEL_22B,
|
||||
MODEL_30B,
|
||||
MODEL_32B,
|
||||
MODEL_34B,
|
||||
@@ -275,6 +276,8 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_up_scale = nullptr;
|
||||
struct ggml_tensor * ffn_down_scale = nullptr;
|
||||
|
||||
+ struct ggml_tensor * bskcn_tv = nullptr;
|
||||
+
|
||||
struct llama_layer_posnet posnet;
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 4eb3f6b9..7dec50ae 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -2206,6 +2206,35 @@ static bool llm_load_tensors(
|
||||
@@ -3316,6 +3331,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
@@ -256,16 +191,16 @@ index 4eb3f6b9..7dec50ae 100644
|
||||
+ } break;
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
+ {
|
||||
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
+
|
||||
+ // output
|
||||
+ {
|
||||
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+ }
|
||||
+
|
||||
+ for (int i = 0; i < n_layer; ++i) {
|
||||
+ auto & layer = model.layers[i];
|
||||
+ auto & layer = layers[i];
|
||||
+
|
||||
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
+
|
||||
@@ -277,16 +212,53 @@ index 4eb3f6b9..7dec50ae 100644
|
||||
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
+
|
||||
+ layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
+
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
@@ -10226,6 +10255,158 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
@@ -3900,6 +3943,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
+ ggml_cgraph * build_solar() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index a7c30444..1afb0024 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -55,6 +55,7 @@ enum llm_type {
|
||||
LLM_TYPE_15B,
|
||||
LLM_TYPE_16B,
|
||||
LLM_TYPE_20B,
|
||||
+ LLM_TYPE_22B,
|
||||
LLM_TYPE_30B,
|
||||
LLM_TYPE_32B,
|
||||
LLM_TYPE_34B,
|
||||
@@ -281,6 +282,8 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_up_scale = nullptr;
|
||||
struct ggml_tensor * ffn_down_scale = nullptr;
|
||||
|
||||
+ struct ggml_tensor * bskcn_tv = nullptr;
|
||||
+
|
||||
struct llama_layer_posnet posnet;
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index ac85bfed..6d320ea4 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -7953,9 +7953,155 @@ struct llm_build_context {
|
||||
cb(img_logits, "img_logits", -1);
|
||||
cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
|
||||
cb(cur, "result_output", -1);
|
||||
-
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
+ ggml_cgraph * build_solar() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
+
|
||||
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
+ int32_t n_tokens = this->n_tokens;
|
||||
@@ -333,7 +305,7 @@ index 4eb3f6b9..7dec50ae 100644
|
||||
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
||||
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
||||
+ }
|
||||
+
|
||||
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
@@ -422,25 +394,18 @@ index 4eb3f6b9..7dec50ae 100644
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
+ // lm_head
|
||||
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
struct ggml_cgraph * build_wavtokenizer_dec() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
return gf;
|
||||
}
|
||||
|
||||
@@ -10660,6 +10841,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
@@ -8398,6 +8544,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_chameleon();
|
||||
} break;
|
||||
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] conditional-fattn
|
||||
1 file changed, 2 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index be29e979..aaa79ea4 100644
|
||||
index b094929b..36165840 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -2159,9 +2159,11 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
@@ -2282,9 +2282,11 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_ARGSORT:
|
||||
ggml_cuda_op_argsort(ctx, dst);
|
||||
break;
|
||||
|
||||
@@ -15,27 +15,27 @@ remaining is to implement the cross attention mask
|
||||
examples/llava/llava.cpp | 5 +-
|
||||
ggml/src/ggml-backend-reg.cpp | 6 +-
|
||||
include/llama.h | 6 +
|
||||
src/llama-arch.cpp | 44 +++++
|
||||
src/llama-arch.cpp | 44 ++++++
|
||||
src/llama-arch.h | 10 ++
|
||||
src/llama-batch.cpp | 3 +
|
||||
src/llama-context.cpp | 19 ++-
|
||||
src/llama-context.cpp | 28 ++--
|
||||
src/llama-context.h | 2 +
|
||||
src/llama-cparams.h | 1 +
|
||||
src/llama-hparams.cpp | 8 +-
|
||||
src/llama-hparams.h | 4 +
|
||||
src/llama-kv-cache.cpp | 33 ++++
|
||||
src/llama-hparams.cpp | 6 +
|
||||
src/llama-hparams.h | 5 +
|
||||
src/llama-kv-cache.cpp | 13 +-
|
||||
src/llama-model-loader.cpp | 2 +
|
||||
src/llama-model.cpp | 59 ++-----
|
||||
src/llama-model.h | 51 ++++++
|
||||
src/llama-model.cpp | 65 ++++++++-
|
||||
src/llama-model.h | 12 ++
|
||||
src/llama-quant.cpp | 4 +-
|
||||
src/llama.cpp | 307 +++++++++++++++++++++++++++++++++-
|
||||
17 files changed, 508 insertions(+), 56 deletions(-)
|
||||
src/llama.cpp | 262 +++++++++++++++++++++++++++++++++-
|
||||
17 files changed, 452 insertions(+), 22 deletions(-)
|
||||
|
||||
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
|
||||
index 16f30c56..0f0f3f62 100644
|
||||
index 518aad3f..f0e484a1 100644
|
||||
--- a/examples/llava/llava.cpp
|
||||
+++ b/examples/llava/llava.cpp
|
||||
@@ -429,7 +429,7 @@ struct llava_embd_batch {
|
||||
@@ -445,7 +445,7 @@ struct llava_embd_batch {
|
||||
std::vector<llama_seq_id *> seq_ids;
|
||||
std::vector<int8_t> logits;
|
||||
llama_batch batch;
|
||||
@@ -44,7 +44,7 @@ index 16f30c56..0f0f3f62 100644
|
||||
pos .resize(n_tokens);
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_ids .resize(n_tokens + 1);
|
||||
@@ -441,6 +441,7 @@ struct llava_embd_batch {
|
||||
@@ -457,6 +457,7 @@ struct llava_embd_batch {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ embd,
|
||||
@@ -52,7 +52,7 @@ index 16f30c56..0f0f3f62 100644
|
||||
/*pos =*/ pos.data(),
|
||||
/*n_seq_id =*/ n_seq_id.data(),
|
||||
/*seq_id =*/ seq_ids.data(),
|
||||
@@ -464,7 +465,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
@@ -480,7 +481,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
n_eval = n_batch;
|
||||
}
|
||||
float * embd = image_embed->embed+i*n_embd;
|
||||
@@ -62,7 +62,7 @@ index 16f30c56..0f0f3f62 100644
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 7ddd178b..899d16f2 100644
|
||||
index 955ed505..95036ef8 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -171,9 +171,9 @@ struct ggml_backend_registry {
|
||||
@@ -79,10 +79,10 @@ index 7ddd178b..899d16f2 100644
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index a0d5ba5d..9f411960 100644
|
||||
index 47919602..cc948005 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -250,6 +250,7 @@ extern "C" {
|
||||
@@ -249,6 +249,7 @@ extern "C" {
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
@@ -90,7 +90,7 @@ index a0d5ba5d..9f411960 100644
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
@@ -347,6 +348,7 @@ extern "C" {
|
||||
@@ -343,6 +344,7 @@ extern "C" {
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
||||
bool no_perf; // whether to measure performance timings
|
||||
@@ -98,9 +98,9 @@ index a0d5ba5d..9f411960 100644
|
||||
|
||||
// Abort callback
|
||||
// if it returns true, execution of llama_decode() will be aborted
|
||||
@@ -426,6 +428,10 @@ extern "C" {
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
@@ -443,6 +445,10 @@ extern "C" {
|
||||
struct llama_context_params params),
|
||||
"use llama_init_from_model instead");
|
||||
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
@@ -110,7 +110,7 @@ index a0d5ba5d..9f411960 100644
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index 5b376c5e..b35aeb31 100644
|
||||
index a1e0ebcc..b6f20286 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -6,6 +6,7 @@
|
||||
@@ -121,15 +121,15 @@ index 5b376c5e..b35aeb31 100644
|
||||
{ LLM_ARCH_DECI, "deci" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
{ LLM_ARCH_GROK, "grok" },
|
||||
@@ -124,6 +125,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
@@ -127,6 +128,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
|
||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
|
||||
@@ -220,6 +222,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
@@ -225,6 +227,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
@@ -170,7 +170,7 @@ index 5b376c5e..b35aeb31 100644
|
||||
{
|
||||
LLM_ARCH_DECI,
|
||||
{
|
||||
@@ -1393,6 +1429,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
@@ -1450,6 +1486,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
// this tensor is loaded for T5, but never used
|
||||
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
||||
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
@@ -186,7 +186,7 @@ index 5b376c5e..b35aeb31 100644
|
||||
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index eac7055b..e8235ae0 100644
|
||||
index 77919578..ec742224 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -10,6 +10,7 @@
|
||||
@@ -197,7 +197,7 @@ index eac7055b..e8235ae0 100644
|
||||
LLM_ARCH_DECI,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
@@ -128,6 +129,7 @@ enum llm_kv {
|
||||
@@ -131,6 +132,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
@@ -205,7 +205,7 @@ index eac7055b..e8235ae0 100644
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_DIMENSION_SECTIONS,
|
||||
@@ -308,6 +310,14 @@ enum llm_tensor {
|
||||
@@ -314,6 +316,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
@@ -249,10 +249,10 @@ index 01d5ca57..8682b0e6 100644
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
|
||||
index b9c4a5bf..9d0e7ca3 100644
|
||||
index 47e79ed4..7b22fe13 100644
|
||||
--- a/src/llama-context.cpp
|
||||
+++ b/src/llama-context.cpp
|
||||
@@ -71,10 +71,19 @@ void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
|
||||
@@ -74,10 +74,19 @@ void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
|
||||
}
|
||||
|
||||
if (ubatch.embd) {
|
||||
@@ -275,7 +275,30 @@ index b9c4a5bf..9d0e7ca3 100644
|
||||
}
|
||||
|
||||
if (ubatch.pos && lctx.inp_pos) {
|
||||
@@ -653,6 +662,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
@@ -470,12 +479,11 @@ void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
|
||||
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
const auto & cparams = lctx.cparams;
|
||||
const auto & hparams = lctx.model.hparams;
|
||||
- const auto & vocab = lctx.model.vocab;
|
||||
|
||||
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
|
||||
|
||||
const auto n_batch = cparams.n_batch;
|
||||
- const auto n_vocab = vocab.n_tokens();
|
||||
+ const auto n_vocab = hparams.n_vocab;
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
@@ -542,7 +550,7 @@ size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
|
||||
void llama_output_reorder(struct llama_context & ctx) {
|
||||
std::vector<size_t> & out_ids = ctx.sbatch.out_ids;
|
||||
if (!out_ids.empty()) {
|
||||
- const uint32_t n_vocab = ctx.model.vocab.n_tokens();
|
||||
+ const uint32_t n_vocab = ctx.model.hparams.n_vocab;
|
||||
const uint32_t n_embd = ctx.model.hparams.n_embd;
|
||||
|
||||
const int32_t n_outputs = ctx.n_outputs;
|
||||
@@ -657,6 +665,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
||||
@@ -286,8 +309,26 @@ index b9c4a5bf..9d0e7ca3 100644
|
||||
void llama_synchronize(struct llama_context * ctx) {
|
||||
ggml_backend_sched_synchronize(ctx->sched.get());
|
||||
|
||||
@@ -726,7 +738,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
|
||||
}
|
||||
|
||||
- return ctx->logits + j*ctx->model.vocab.n_tokens();
|
||||
+ return ctx->logits + j*ctx->model.hparams.n_vocab;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
|
||||
#ifndef NDEBUG
|
||||
@@ -886,7 +898,7 @@ struct llama_data_write {
|
||||
}
|
||||
|
||||
void write_logits(const struct llama_context * ctx) {
|
||||
- const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.vocab.n_tokens());
|
||||
+ const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);
|
||||
|
||||
write(&logits_size, sizeof(logits_size));
|
||||
|
||||
diff --git a/src/llama-context.h b/src/llama-context.h
|
||||
index 0d163c47..4980a60e 100644
|
||||
index a9268b29..cf12c9d7 100644
|
||||
--- a/src/llama-context.h
|
||||
+++ b/src/llama-context.h
|
||||
@@ -107,6 +107,8 @@ struct llama_context {
|
||||
@@ -312,7 +353,7 @@ index 252012f3..9681e5a0 100644
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
|
||||
index 450738da..42f8a58f 100644
|
||||
index f3955de9..0b841028 100644
|
||||
--- a/src/llama-hparams.cpp
|
||||
+++ b/src/llama-hparams.cpp
|
||||
@@ -2,6 +2,8 @@
|
||||
@@ -328,18 +369,25 @@ index 450738da..42f8a58f 100644
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
-}
|
||||
\ No newline at end of file
|
||||
+}
|
||||
+
|
||||
+bool llama_hparams::cross_attention_layers(uint32_t il) const {
|
||||
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
+}
|
||||
}
|
||||
\ No newline at end of file
|
||||
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
|
||||
index fd898e27..f826cd9a 100644
|
||||
index 1bdcdfd5..05383046 100644
|
||||
--- a/src/llama-hparams.h
|
||||
+++ b/src/llama-hparams.h
|
||||
@@ -53,6 +53,7 @@ struct llama_hparams {
|
||||
@@ -41,6 +41,7 @@ struct llama_hparams {
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
+ uint32_t n_vocab = 0;
|
||||
|
||||
// for WavTokenizer
|
||||
struct llama_hparams_posnet posnet;
|
||||
@@ -51,6 +52,7 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
|
||||
@@ -347,65 +395,45 @@ index fd898e27..f826cd9a 100644
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
@@ -139,6 +140,9 @@ struct llama_hparams {
|
||||
@@ -138,6 +140,9 @@ struct llama_hparams {
|
||||
|
||||
// Block skip connection
|
||||
bool n_bskcn(uint32_t n, uint32_t il) const;
|
||||
+
|
||||
+ // cross attention layers
|
||||
+ // cross attention layers
|
||||
+ bool cross_attention_layers(uint32_t il) const;
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
|
||||
index 53379253..cf814dbe 100644
|
||||
index feffdf0d..b541c5a3 100644
|
||||
--- a/src/llama-kv-cache.cpp
|
||||
+++ b/src/llama-kv-cache.cpp
|
||||
@@ -72,6 +72,39 @@ bool llama_kv_cache_init(
|
||||
cache.v_l.reserve(n_layer);
|
||||
@@ -91,8 +91,17 @@ bool llama_kv_cache_init(
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
+ ggml_tensor * k, *v;
|
||||
+
|
||||
+ // for cross attention layers
|
||||
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
+ const llama_model::buft_list_t * buft_list;
|
||||
+ if (offload) {
|
||||
+ buft_list = model.dev_layer.at(i).buft_list;
|
||||
+ } else {
|
||||
+ buft_list = &model.cpu_buft_list;
|
||||
+ }
|
||||
+ ggml_backend_buffer_type_t buft = select_buft(*buft_list,
|
||||
+ [&](ggml_context * ctx) {
|
||||
+ ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
+ if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
|
||||
+ return k;
|
||||
+ }
|
||||
+ ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
||||
+ return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type);
|
||||
+ });
|
||||
+ ggml_context * ctx = ctx_for_buft(buft);
|
||||
+
|
||||
+ if (!ctx) {
|
||||
+ LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
|
||||
+ return false;
|
||||
+ }
|
||||
+ ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_format_name(k, "cache_k_l%d", i);
|
||||
+ ggml_format_name(v, "cache_v_l%d", i);
|
||||
+ cache.k_l.push_back(k);
|
||||
+ cache.v_l.push_back(v);
|
||||
+ continue;
|
||||
+ k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
+ v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
+ } else {
|
||||
+ k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
+ v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
+ }
|
||||
+
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
|
||||
index 422524a8..b12d6566 100644
|
||||
index 1252aca1..45d08721 100644
|
||||
--- a/src/llama-model-loader.cpp
|
||||
+++ b/src/llama-model-loader.cpp
|
||||
@@ -240,6 +240,8 @@ namespace GGUFMeta {
|
||||
@@ -315,6 +315,8 @@ namespace GGUFMeta {
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -415,80 +443,47 @@ index 422524a8..b12d6566 100644
|
||||
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
|
||||
const int kid = gguf_find_key(meta.get(), key.c_str());
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 306c557d..4f9bbf90 100644
|
||||
index ad1315c6..21819080 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -146,46 +146,6 @@ std::string llama_model_ftype_name(const llama_model & model) {
|
||||
return llama_model_ftype_name(model.ftype);
|
||||
}
|
||||
@@ -401,6 +401,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
|
||||
-template<typename F>
|
||||
-static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
|
||||
- ggml_init_params params = {
|
||||
- /*.mem_size =*/ ggml_tensor_overhead()*8,
|
||||
- /*.mem_buffer =*/ NULL,
|
||||
- /*.no_alloc =*/ true,
|
||||
- };
|
||||
-
|
||||
- ggml_context_ptr ctx { ggml_init(params) };
|
||||
- if (!ctx) {
|
||||
- throw std::runtime_error(format("failed to create ggml context"));
|
||||
- }
|
||||
-
|
||||
- ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
|
||||
- ggml_tensor * op_tensor = fn(ctx.get());
|
||||
- for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
- if (op_tensor->src[i] != nullptr) {
|
||||
- assert(op_tensor->src[i]->buffer == nullptr);
|
||||
- op_tensor->src[i]->buffer = buf.get();
|
||||
- }
|
||||
- }
|
||||
-
|
||||
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
|
||||
-
|
||||
- return op_supported;
|
||||
-}
|
||||
-
|
||||
-template<typename F>
|
||||
-static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
|
||||
- for (const auto & cur : buft_list) {
|
||||
- ggml_backend_dev_t cur_dev = cur.first;
|
||||
- ggml_backend_buffer_type_t cur_buft = cur.second;
|
||||
- if (buft_supported(cur_buft, cur_dev, fn)) {
|
||||
- return cur_buft;
|
||||
- }
|
||||
- }
|
||||
-
|
||||
- throw std::runtime_error(format("no suitable buffer type found"));
|
||||
-}
|
||||
-
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il) {
|
||||
return select_buft(
|
||||
*model.dev_layer.at(il).buft_list,
|
||||
@@ -312,9 +272,11 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
|
||||
// get general kv
|
||||
ml.get_key(LLM_KV_GENERAL_NAME, name, false);
|
||||
+ ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false);
|
||||
|
||||
// everything past this point is not vocab-related
|
||||
if (hparams.vocab_only) {
|
||||
@@ -412,6 +413,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
||||
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
||||
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
||||
+ ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false);
|
||||
|
||||
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
|
||||
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
|
||||
@@ -435,9 +437,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||||
+ std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
||||
|
||||
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
|
||||
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
|
||||
+ ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
|
||||
+ ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
|
||||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
|
||||
+ ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
@@ -363,7 +325,7 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
|
||||
@@ -486,7 +490,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
|
||||
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
|
||||
- if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
|
||||
+ if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@@ -405,6 +367,16 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
|
||||
@@ -530,6 +534,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@@ -497,145 +492,44 @@ index 306c557d..4f9bbf90 100644
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 40: model.type = e_model::MODEL_11B; break;
|
||||
+ case 100: model.type = e_model::MODEL_90B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ case 40: type = LLM_TYPE_11B; break;
|
||||
+ case 100: type = LLM_TYPE_90B; break;
|
||||
+ default: type = LLM_TYPE_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -2062,6 +2034,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index c1b9c0a1..5b23e2ba 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -9,6 +9,7 @@
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <vector>
|
||||
+#include <stdexcept>
|
||||
|
||||
// available models
|
||||
// TODO: this enum does not follow the enum naming convention
|
||||
@@ -62,6 +63,7 @@ enum llm_type {
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
+ MODEL_90B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_671B,
|
||||
@@ -278,6 +280,16 @@ struct llama_layer {
|
||||
|
||||
struct ggml_tensor * bskcn_tv = nullptr;
|
||||
|
||||
+ // cross attention
|
||||
+ struct ggml_tensor * cross_attn_k_norm = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_k_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_o_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_q_norm = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_q_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_v_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_attn_gate = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_mlp_gate = nullptr;
|
||||
+
|
||||
struct llama_layer_posnet posnet;
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
@@ -376,6 +388,45 @@ std::string llama_model_arch_name (const llama_model & model);
|
||||
std::string llama_model_type_name (const llama_model & model);
|
||||
std::string llama_model_ftype_name(const llama_model & model);
|
||||
|
||||
+template<typename F>
|
||||
+bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
|
||||
+ ggml_init_params params = {
|
||||
+ /*.mem_size =*/ ggml_tensor_overhead()*8,
|
||||
+ /*.mem_buffer =*/ NULL,
|
||||
+ /*.no_alloc =*/ true,
|
||||
+ };
|
||||
+
|
||||
+ ggml_context_ptr ctx { ggml_init(params) };
|
||||
+ if (!ctx) {
|
||||
+ throw std::runtime_error("failed to create ggml context");
|
||||
+ }
|
||||
+
|
||||
+ ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
|
||||
+ ggml_tensor * op_tensor = fn(ctx.get());
|
||||
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
+ if (op_tensor->src[i] != nullptr) {
|
||||
+ op_tensor->src[i]->buffer = buf.get();
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
|
||||
+
|
||||
+ return op_supported;
|
||||
+}
|
||||
+
|
||||
+template<typename F>
|
||||
+ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
|
||||
+ for (const auto & cur : buft_list) {
|
||||
+ ggml_backend_dev_t cur_dev = cur.first;
|
||||
+ ggml_backend_buffer_type_t cur_buft = cur.second;
|
||||
+ if (buft_supported(cur_buft, cur_dev, fn)) {
|
||||
+ return cur_buft;
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ throw std::runtime_error("no suitable buffer type found");
|
||||
+}
|
||||
+
|
||||
// used by llama_adapter_cvec
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
|
||||
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
|
||||
index 42974f8f..27def6fd 100644
|
||||
--- a/src/llama-quant.cpp
|
||||
+++ b/src/llama-quant.cpp
|
||||
@@ -629,7 +629,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
+ if (qs.n_attention_wv != n_attn_layer) {
|
||||
+ LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
+ }
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 7dec50ae..bac66c24 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -563,6 +563,52 @@ static bool llm_load_tensors(
|
||||
@@ -1398,7 +1412,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||||
const int64_t n_ff = hparams.n_ff();
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
- const int64_t n_vocab = vocab.n_tokens();
|
||||
+ const int64_t n_vocab = hparams.n_vocab;
|
||||
const int64_t n_token_types = vocab.n_token_types();
|
||||
const int64_t n_rot = hparams.n_rot;
|
||||
const int64_t n_expert = hparams.n_expert;
|
||||
@@ -1581,6 +1595,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
}
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
+ {
|
||||
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
|
||||
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
|
||||
+
|
||||
+ // output
|
||||
+ {
|
||||
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
+
|
||||
+ // if output is NULL, init from the input tok embed
|
||||
+ if (model.output == NULL) {
|
||||
+ model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
+ if (output == NULL) {
|
||||
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ for (int i = 0; i < n_layer; ++i) {
|
||||
+ auto & layer = model.layers[i];
|
||||
+ auto & layer = layers[i];
|
||||
+
|
||||
+ if (hparams.cross_attention_layers(i)) {
|
||||
+ layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
|
||||
@@ -667,17 +561,72 @@ index 7dec50ae..bac66c24 100644
|
||||
+ } break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -2514,7 +2560,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -3925,6 +3985,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
|
||||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||||
- throw std::runtime_error("vocab size mismatch");
|
||||
+ LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
+ case LLM_ARCH_MLLAMA:
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index 1afb0024..7cf57587 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -9,6 +9,7 @@
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
+#include <stdexcept>
|
||||
|
||||
struct llama_model_loader;
|
||||
|
||||
@@ -63,6 +64,7 @@ enum llm_type {
|
||||
LLM_TYPE_40B,
|
||||
LLM_TYPE_65B,
|
||||
LLM_TYPE_70B,
|
||||
+ LLM_TYPE_90B,
|
||||
LLM_TYPE_236B,
|
||||
LLM_TYPE_314B,
|
||||
LLM_TYPE_671B,
|
||||
@@ -284,6 +286,16 @@ struct llama_layer {
|
||||
|
||||
struct ggml_tensor * bskcn_tv = nullptr;
|
||||
|
||||
+ // cross attention
|
||||
+ struct ggml_tensor * cross_attn_k_norm = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_k_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_o_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_q_norm = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_q_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_v_proj = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_attn_gate = nullptr;
|
||||
+ struct ggml_tensor * cross_attn_mlp_gate = nullptr;
|
||||
+
|
||||
struct llama_layer_posnet posnet;
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
|
||||
index fb798265..6eb1da08 100644
|
||||
--- a/src/llama-quant.cpp
|
||||
+++ b/src/llama-quant.cpp
|
||||
@@ -632,7 +632,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
+ if (qs.n_attention_wv != n_attn_layer) {
|
||||
+ LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
||||
+ }
|
||||
}
|
||||
|
||||
if (params.vocab_only) {
|
||||
@@ -2598,6 +2644,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
size_t total_size_org = 0;
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 6d320ea4..8f7902df 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -154,6 +154,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
@@ -699,7 +648,7 @@ index 7dec50ae..bac66c24 100644
|
||||
static void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
@@ -3593,6 +3654,7 @@ struct llm_build_context {
|
||||
@@ -1157,6 +1172,7 @@ struct llm_build_context {
|
||||
lctx.inp_pos_bucket = nullptr;
|
||||
lctx.inp_embd_enc = nullptr;
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
@@ -707,12 +656,12 @@ index 7dec50ae..bac66c24 100644
|
||||
}
|
||||
|
||||
void free() {
|
||||
@@ -4074,6 +4136,240 @@ struct llm_build_context {
|
||||
@@ -1639,6 +1655,240 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
+ struct ggml_cgraph * build_mllama() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
+ struct ggml_cgraph * build_mllama() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
+
|
||||
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
+ int32_t n_tokens = this->n_tokens;
|
||||
@@ -946,9 +895,9 @@ index 7dec50ae..bac66c24 100644
|
||||
+ }
|
||||
+
|
||||
struct ggml_cgraph * build_deci() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
@@ -10646,6 +10942,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
@@ -8344,6 +8594,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
@@ -959,16 +908,33 @@ index 7dec50ae..bac66c24 100644
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
result = llm.build_deci();
|
||||
@@ -10971,7 +11271,7 @@ static int llama_decode_internal(
|
||||
@@ -8634,7 +8888,7 @@ static int llama_prepare_sbatch(
|
||||
n_outputs = 1;
|
||||
}
|
||||
|
||||
- lctx.sbatch.from_batch(batch, n_embd,
|
||||
+ lctx.sbatch.from_batch(batch, batch.n_embd,
|
||||
/* simple_split */ !kv_self.recurrent,
|
||||
/* simple_split */ !lctx.kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
@@ -11282,7 +11582,7 @@ static int llama_encode_internal(
|
||||
@@ -8749,7 +9003,6 @@ static int llama_decode_impl(
|
||||
const llama_batch & batch = batch_allocr.batch;
|
||||
|
||||
const auto & model = lctx.model;
|
||||
- const auto & vocab = model.vocab;
|
||||
const auto & hparams = model.hparams;
|
||||
const auto & cparams = lctx.cparams;
|
||||
|
||||
@@ -8760,7 +9013,7 @@ static int llama_decode_impl(
|
||||
llama_kv_slot_restorer kv_slot_restorer(kv_self);
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
- const int64_t n_vocab = vocab.n_tokens();
|
||||
+ const int64_t n_vocab = hparams.n_vocab;
|
||||
|
||||
uint32_t n_outputs = 0;
|
||||
uint32_t n_outputs_prev = 0;
|
||||
@@ -9025,7 +9278,7 @@ static int llama_encode_impl(
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
@@ -977,7 +943,7 @@ index 7dec50ae..bac66c24 100644
|
||||
|
||||
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
||||
|
||||
@@ -11775,6 +12075,7 @@ struct llama_context_params llama_context_default_params() {
|
||||
@@ -9511,6 +9764,7 @@ struct llama_context_params llama_context_default_params() {
|
||||
/*.offload_kqv =*/ true,
|
||||
/*.flash_attn =*/ false,
|
||||
/*.no_perf =*/ true,
|
||||
|
||||
@@ -15,10 +15,10 @@ Subject: [PATCH] add unpad operator
|
||||
8 files changed, 220 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
|
||||
index c714fc8c..1bc50fca 100644
|
||||
index dd0c6a96..8d269a9c 100644
|
||||
--- a/ggml/include/ggml.h
|
||||
+++ b/ggml/include/ggml.h
|
||||
@@ -499,6 +499,7 @@ extern "C" {
|
||||
@@ -487,6 +487,7 @@ extern "C" {
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_PAD_REFLECT_1D,
|
||||
@@ -26,7 +26,7 @@ index c714fc8c..1bc50fca 100644
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@@ -1735,6 +1736,15 @@ extern "C" {
|
||||
@@ -1743,6 +1744,15 @@ extern "C" {
|
||||
int p0,
|
||||
int p1);
|
||||
|
||||
@@ -43,10 +43,10 @@ index c714fc8c..1bc50fca 100644
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index b7fefb9d..b307d554 100644
|
||||
index 72325349..2f606d82 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -10588,6 +10588,59 @@ static void ggml_compute_forward_pad_reflect_1d(
|
||||
@@ -10844,6 +10844,59 @@ static void ggml_compute_forward_pad_reflect_1d(
|
||||
}
|
||||
}
|
||||
|
||||
@@ -106,7 +106,7 @@ index b7fefb9d..b307d554 100644
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
static void ggml_compute_forward_arange_f32(
|
||||
@@ -12690,6 +12743,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
@@ -13137,6 +13190,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad_reflect_1d(params, tensor);
|
||||
} break;
|
||||
@@ -117,7 +117,7 @@ index b7fefb9d..b307d554 100644
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@@ -13033,6 +13090,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
@@ -13484,6 +13541,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
@@ -126,10 +126,10 @@ index b7fefb9d..b307d554 100644
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index aaa79ea4..9286f866 100644
|
||||
index 36165840..1adf08fa 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -2082,6 +2082,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
@@ -2198,6 +2198,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
@@ -139,8 +139,8 @@ index aaa79ea4..9286f866 100644
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@@ -3010,6 +3013,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_GROUP_NORM:
|
||||
@@ -3197,6 +3200,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
+ case GGML_OP_UNPAD:
|
||||
@@ -148,7 +148,7 @@ index aaa79ea4..9286f866 100644
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
|
||||
index aba539e8..39fd4b16 100644
|
||||
index aba539e8..b4b87409 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cu
|
||||
+++ b/ggml/src/ggml-cuda/pad.cu
|
||||
@@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -201,6 +201,7 @@ index aba539e8..39fd4b16 100644
|
||||
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
+}
|
||||
\ No newline at end of file
|
||||
diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
|
||||
index 8fd386b0..e2ededc3 100644
|
||||
--- a/ggml/src/ggml-cuda/pad.cuh
|
||||
@@ -211,10 +212,10 @@ index 8fd386b0..e2ededc3 100644
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index cd8ef741..318addec 100644
|
||||
index fd9a4e77..e4c093f9 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -311,6 +311,7 @@ enum ggml_metal_kernel_type {
|
||||
@@ -331,6 +331,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
|
||||
@@ -222,7 +223,7 @@ index cd8ef741..318addec 100644
|
||||
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@@ -910,6 +911,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
@@ -946,6 +947,7 @@ @implementation GGMLMetalClass
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
|
||||
@@ -230,7 +231,7 @@ index cd8ef741..318addec 100644
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@@ -1145,6 +1147,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
@@ -1254,6 +1256,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
@@ -238,7 +239,7 @@ index cd8ef741..318addec 100644
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
@@ -3348,6 +3351,36 @@ static void ggml_metal_encode_node(
|
||||
@@ -3469,6 +3472,36 @@ static void ggml_metal_encode_node(
|
||||
|
||||
const int nth = MIN(1024, ne0);
|
||||
|
||||
@@ -276,10 +277,10 @@ index cd8ef741..318addec 100644
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index 8ba43904..204c93e6 100644
|
||||
index d092a169..f38909d0 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -2944,6 +2944,51 @@ kernel void kernel_pad_reflect_1d_f32(
|
||||
@@ -2953,6 +2953,51 @@ kernel void kernel_pad_reflect_1d_f32(
|
||||
}
|
||||
}
|
||||
|
||||
@@ -332,10 +333,10 @@ index 8ba43904..204c93e6 100644
|
||||
device char * dst,
|
||||
constant int64_t & ne0,
|
||||
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
|
||||
index 2bbe5f48..7ffcd907 100644
|
||||
index 7fc06724..635aa299 100644
|
||||
--- a/ggml/src/ggml.c
|
||||
+++ b/ggml/src/ggml.c
|
||||
@@ -954,6 +954,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
@@ -962,6 +962,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"UPSCALE",
|
||||
"PAD",
|
||||
"PAD_REFLECT_1D",
|
||||
@@ -343,16 +344,16 @@ index 2bbe5f48..7ffcd907 100644
|
||||
"ARANGE",
|
||||
"TIMESTEP_EMBEDDING",
|
||||
"ARGSORT",
|
||||
@@ -987,7 +988,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
@@ -996,7 +997,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
+static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
-static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
+static_assert(GGML_OP_COUNT == 84, "GGML_OP_COUNT != 84");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@@ -1050,6 +1051,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
@@ -1059,6 +1060,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"upscale(x)",
|
||||
"pad(x)",
|
||||
"pad_reflect_1d(x)",
|
||||
@@ -360,16 +361,16 @@ index 2bbe5f48..7ffcd907 100644
|
||||
"arange(start, stop, step)",
|
||||
"timestep_embedding(timesteps, dim, max_period)",
|
||||
"argsort(x)",
|
||||
@@ -1083,7 +1085,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
@@ -1093,7 +1095,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
-static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
+static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
-static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
+static_assert(GGML_OP_COUNT == 84, "GGML_OP_COUNT != 84");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@@ -4214,6 +4216,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
@@ -4225,6 +4227,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
@@ -11,10 +11,10 @@ the characters
|
||||
2 files changed, 23 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 3fcfcaa3..8f44705a 100644
|
||||
index a4eee9b8..1ca827eb 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -375,7 +375,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
@@ -295,7 +295,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
@@ -24,7 +24,7 @@ index 3fcfcaa3..8f44705a 100644
|
||||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
diff --git a/src/unicode.cpp b/src/unicode.cpp
|
||||
index 7aca6544..6155da80 100644
|
||||
index e63bb4ab..9dd53b9a 100644
|
||||
--- a/src/unicode.cpp
|
||||
+++ b/src/unicode.cpp
|
||||
@@ -2,6 +2,11 @@
|
||||
@@ -39,7 +39,7 @@ index 7aca6544..6155da80 100644
|
||||
#include "unicode.h"
|
||||
#include "unicode-data.h"
|
||||
|
||||
@@ -201,6 +206,22 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
||||
@@ -200,6 +205,22 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
||||
}
|
||||
|
||||
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
@@ -62,7 +62,7 @@ index 7aca6544..6155da80 100644
|
||||
#if defined(__clang__)
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
@@ -214,6 +235,7 @@ static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
@@ -213,6 +234,7 @@ static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
#endif
|
||||
|
||||
return conv.from_bytes(s);
|
||||
|
||||
@@ -8,11 +8,11 @@ Subject: [PATCH] Maintain ordering for rules for grammar
|
||||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp
|
||||
index dadc18c8..2a8dbd22 100644
|
||||
index 3ebcc3d9..30c28808 100644
|
||||
--- a/common/json-schema-to-grammar.cpp
|
||||
+++ b/common/json-schema-to-grammar.cpp
|
||||
@@ -391,7 +391,7 @@ class SchemaConverter {
|
||||
private:
|
||||
@@ -346,7 +346,7 @@ private:
|
||||
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
- std::map<std::string, std::string> _rules;
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Sat, 14 Dec 2024 12:54:00 -0800
|
||||
Subject: [PATCH] fix missing arg in static assert on windows
|
||||
|
||||
---
|
||||
ggml/src/ggml-cuda/concat.cu | 2 +-
|
||||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/concat.cu b/ggml/src/ggml-cuda/concat.cu
|
||||
index 2f42b8a9..5eb9f08d 100644
|
||||
--- a/ggml/src/ggml-cuda/concat.cu
|
||||
+++ b/ggml/src/ggml-cuda/concat.cu
|
||||
@@ -124,7 +124,7 @@ static __global__ void __launch_bounds__(CUDA_CONCAT_BLOCK_SIZE)
|
||||
uint64_t nb1,
|
||||
uint64_t nb2,
|
||||
uint64_t nb3){
|
||||
- static_assert(dim >= 0 && dim <= 3);
|
||||
+ static_assert(dim >= 0 && dim <= 3, "dim must be between 0 and 3");
|
||||
|
||||
const int64_t i3 = blockIdx.z;
|
||||
const int64_t i2 = blockIdx.y;
|
||||
@@ -19,10 +19,10 @@ multiple batches of processing until everything is complete.
|
||||
1 file changed, 46 insertions(+), 53 deletions(-)
|
||||
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index bac66c24..c95da45d 100644
|
||||
index 8f7902df..01854fce 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -3536,6 +3536,13 @@ static struct ggml_tensor * llm_build_rwkv6_channel_mix(
|
||||
@@ -1054,6 +1054,13 @@ static struct ggml_tensor * llm_build_rwkv6_channel_mix(
|
||||
return ggml_mul(ctx, r, llm_build_lora_mm(lctx, ctx, layer->channel_mix_value, k));
|
||||
}
|
||||
|
||||
@@ -36,13 +36,13 @@ index bac66c24..c95da45d 100644
|
||||
struct llm_build_context {
|
||||
const llama_model & model;
|
||||
llama_context & lctx;
|
||||
@@ -3712,35 +3719,23 @@ struct llm_build_context {
|
||||
@@ -1230,35 +1237,23 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
- struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
|
||||
+ struct ggml_cgraph * build_defrag(const std::vector<struct llama_kv_defrag_move> & moves) {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
- for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
- const uint32_t id = ids[i];
|
||||
@@ -78,7 +78,7 @@ index bac66c24..c95da45d 100644
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
@@ -3748,31 +3743,29 @@ struct llm_build_context {
|
||||
@@ -1266,31 +1261,29 @@ struct llm_build_context {
|
||||
if (flash_attn) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||||
@@ -118,7 +118,7 @@ index bac66c24..c95da45d 100644
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
@@ -10856,7 +10849,7 @@ struct llm_build_context {
|
||||
@@ -8508,7 +8501,7 @@ struct llm_build_context {
|
||||
}
|
||||
};
|
||||
|
||||
@@ -127,7 +127,7 @@ index bac66c24..c95da45d 100644
|
||||
llama_ubatch dummy = {};
|
||||
dummy.equal_seqs = true;
|
||||
|
||||
@@ -10866,7 +10859,7 @@ static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const
|
||||
@@ -8518,7 +8511,7 @@ static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const
|
||||
|
||||
llm.init();
|
||||
|
||||
@@ -136,21 +136,21 @@ index bac66c24..c95da45d 100644
|
||||
|
||||
llm.free();
|
||||
|
||||
@@ -11329,7 +11322,12 @@ static int llama_decode_internal(
|
||||
kv_self.head = 0;
|
||||
}
|
||||
@@ -8956,7 +8949,12 @@ static int llama_prepare_ubatch(
|
||||
kv_self.head = 0;
|
||||
}
|
||||
|
||||
- const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
+ auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
+ if (!slot) {
|
||||
+ llama_kv_cache_defrag(kv_self);
|
||||
+ llama_kv_cache_update(&lctx);
|
||||
+ slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
+ }
|
||||
if (!slot) {
|
||||
return 1;
|
||||
}
|
||||
@@ -11735,8 +11733,8 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
- const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
+ auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
+ if (!slot) {
|
||||
+ llama_kv_cache_defrag(kv_self);
|
||||
+ llama_kv_cache_update(&lctx);
|
||||
+ slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
+ }
|
||||
if (!slot) {
|
||||
return 1;
|
||||
}
|
||||
@@ -9431,8 +9429,8 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
|
||||
|
||||
//const int64_t t_start = ggml_time_us();
|
||||
|
||||
@@ -161,7 +161,7 @@ index bac66c24..c95da45d 100644
|
||||
|
||||
// each move requires 6*n_layer tensors (see build_defrag)
|
||||
// - source view, destination view, copy operation
|
||||
@@ -11800,19 +11798,11 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
@@ -9496,19 +9494,11 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
|
||||
// are we moving a continuous block of memory?
|
||||
bool cont = false;
|
||||
|
||||
@@ -181,7 +181,7 @@ index bac66c24..c95da45d 100644
|
||||
cont = false;
|
||||
continue;
|
||||
}
|
||||
@@ -11828,8 +11818,10 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
@@ -9524,8 +9514,10 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
|
||||
kv_self.head = n_used;
|
||||
|
||||
if (!cont) {
|
||||
@@ -193,7 +193,7 @@ index bac66c24..c95da45d 100644
|
||||
}
|
||||
|
||||
nf++;
|
||||
@@ -11839,22 +11831,16 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
@@ -9535,22 +9527,16 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
|
||||
}
|
||||
}
|
||||
|
||||
@@ -218,7 +218,7 @@ index bac66c24..c95da45d 100644
|
||||
|
||||
#if 0
|
||||
// CPU defrag
|
||||
@@ -11929,11 +11915,18 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
@@ -9625,11 +9611,18 @@ static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
|
||||
#else
|
||||
// ggml_graph defrag
|
||||
|
||||
@@ -8,12 +8,12 @@ Subject: [PATCH] use dynamic backend loading for clip
|
||||
1 file changed, 27 insertions(+), 47 deletions(-)
|
||||
|
||||
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
||||
index b3c1829f..86b91d5c 100644
|
||||
index 205af1eb..560021c7 100644
|
||||
--- a/examples/llava/clip.cpp
|
||||
+++ b/examples/llava/clip.cpp
|
||||
@@ -8,25 +8,25 @@
|
||||
#include "ggml-alloc.h"
|
||||
@@ -9,25 +9,25 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "gguf.h"
|
||||
|
||||
-//#ifdef GGML_USE_CUDA
|
||||
-//#include "ggml-cuda.h"
|
||||
@@ -56,7 +56,7 @@ index b3c1829f..86b91d5c 100644
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
@@ -1309,35 +1309,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ Subject: [PATCH] sort devices by score
|
||||
1 file changed, 13 insertions(+), 8 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 899d16f2..135f7df0 100644
|
||||
index 95036ef8..98d5e14d 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -150,7 +150,7 @@ struct ggml_backend_reg_entry {
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] add phony target ggml-cpu for all cpu variants
|
||||
1 file changed, 2 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index 84101c32..72b488dd 100644
|
||||
index 0002ac18..0a8d1092 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
@@ -297,6 +297,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
endforeach()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
@@ -19,7 +19,7 @@ index 84101c32..72b488dd 100644
|
||||
endfunction()
|
||||
|
||||
ggml_add_backend(CPU)
|
||||
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
@@ -305,6 +306,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
endif()
|
||||
@@ -0,0 +1,369 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Sun, 16 Feb 2025 20:00:22 -0500
|
||||
Subject: [PATCH] use std::filesystem::path instead of wstring
|
||||
|
||||
---
|
||||
ggml/src/ggml-backend-reg.cpp | 199 +++++++++++++++-------------------
|
||||
1 file changed, 88 insertions(+), 111 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 98d5e14d..799af5f3 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -66,26 +66,6 @@
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
-// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
-#if defined(__clang__)
|
||||
-# pragma clang diagnostic push
|
||||
-# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
-#endif
|
||||
-
|
||||
-static std::wstring utf8_to_utf16(const std::string & str) {
|
||||
- std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||
- return converter.from_bytes(str);
|
||||
-}
|
||||
-
|
||||
-static std::string utf16_to_utf8(const std::wstring & str) {
|
||||
- std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||
- return converter.to_bytes(str);
|
||||
-}
|
||||
-
|
||||
-#if defined(__clang__)
|
||||
-# pragma clang diagnostic pop
|
||||
-#endif
|
||||
-
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
@@ -96,7 +76,7 @@ struct dl_handle_deleter {
|
||||
}
|
||||
};
|
||||
|
||||
-static dl_handle * dl_load_library(const std::wstring & path) {
|
||||
+static dl_handle * dl_load_library(const std::filesystem::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
@@ -129,8 +109,8 @@ struct dl_handle_deleter {
|
||||
}
|
||||
};
|
||||
|
||||
-static void * dl_load_library(const std::wstring & path) {
|
||||
- dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
+static void * dl_load_library(const std::filesystem::path & path) {
|
||||
+ dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
|
||||
return handle;
|
||||
}
|
||||
@@ -141,6 +121,25 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
|
||||
#endif
|
||||
|
||||
+static std::string path_to_string(const std::filesystem::path & path)
|
||||
+{
|
||||
+#ifdef _WIN32
|
||||
+ const std::wstring wstr = path.wstring();
|
||||
+ const int size_needed = WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), -1, nullptr, 0, nullptr, nullptr);
|
||||
+ if (size_needed <= 0) {
|
||||
+ return std::string();
|
||||
+ }
|
||||
+
|
||||
+ // size_needed includes the null terminator
|
||||
+ std::string str(size_needed - 1, '\0');
|
||||
+ WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), -1, str.data(), size_needed, nullptr, nullptr);
|
||||
+ return str;
|
||||
+#else
|
||||
+ return path.string();
|
||||
+#endif
|
||||
+}
|
||||
+
|
||||
+
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
struct ggml_backend_reg_entry {
|
||||
@@ -222,11 +221,11 @@ struct ggml_backend_registry {
|
||||
);
|
||||
}
|
||||
|
||||
- ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
|
||||
+ ggml_backend_reg_t load_backend(const std::filesystem::path & path, bool silent) {
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
if (!silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -234,7 +233,7 @@ struct ggml_backend_registry {
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn && score_fn() == 0) {
|
||||
if (!silent) {
|
||||
- GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
|
||||
+ GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path_to_string(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -242,7 +241,7 @@ struct ggml_backend_registry {
|
||||
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
|
||||
if (!backend_init_fn) {
|
||||
if (!silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
|
||||
+ GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path_to_string(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -251,16 +250,16 @@ struct ggml_backend_registry {
|
||||
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
|
||||
if (!silent) {
|
||||
if (!reg) {
|
||||
- GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
|
||||
+ GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path_to_string(path).c_str());
|
||||
} else {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
|
||||
- __func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
|
||||
+ __func__, path_to_string(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
- GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
|
||||
+ GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_to_string(path).c_str());
|
||||
|
||||
register_backend(reg, score_fn ? score_fn() : -1, std::move(handle));
|
||||
|
||||
@@ -396,14 +395,14 @@ ggml_backend_t ggml_backend_init_best(void) {
|
||||
|
||||
// Dynamic loading
|
||||
ggml_backend_reg_t ggml_backend_load(const char * path) {
|
||||
- return get_reg().load_backend(utf8_to_utf16(path), false);
|
||||
+ return get_reg().load_backend(path, false);
|
||||
}
|
||||
|
||||
void ggml_backend_unload(ggml_backend_reg_t reg) {
|
||||
get_reg().unload_backend(reg, true);
|
||||
}
|
||||
|
||||
-static std::wstring get_executable_path() {
|
||||
+static std::filesystem::path get_executable_path() {
|
||||
#if defined(__APPLE__)
|
||||
// get executable path
|
||||
std::vector<char> path;
|
||||
@@ -415,15 +414,9 @@ static std::wstring get_executable_path() {
|
||||
}
|
||||
path.resize(size);
|
||||
}
|
||||
- std::string base_path(path.data(), size);
|
||||
- // remove executable name
|
||||
- auto last_slash = base_path.find_last_of('/');
|
||||
- if (last_slash != std::string::npos) {
|
||||
- base_path = base_path.substr(0, last_slash);
|
||||
- }
|
||||
- return utf8_to_utf16(base_path + "/");
|
||||
+
|
||||
+ return std::filesystem::path(path.data()).parent_path();
|
||||
#elif defined(__linux__) || defined(__FreeBSD__)
|
||||
- std::string base_path = ".";
|
||||
std::vector<char> path(1024);
|
||||
while (true) {
|
||||
// get executable path
|
||||
@@ -436,76 +429,55 @@ static std::wstring get_executable_path() {
|
||||
break;
|
||||
}
|
||||
if (len < (ssize_t) path.size()) {
|
||||
- base_path = std::string(path.data(), len);
|
||||
- // remove executable name
|
||||
- auto last_slash = base_path.find_last_of('/');
|
||||
- if (last_slash != std::string::npos) {
|
||||
- base_path = base_path.substr(0, last_slash);
|
||||
- }
|
||||
- break;
|
||||
+ return std::filesystem::path(path.data()).parent_path();
|
||||
}
|
||||
path.resize(path.size() * 2);
|
||||
}
|
||||
-
|
||||
- return utf8_to_utf16(base_path + "/");
|
||||
#elif defined(_WIN32)
|
||||
std::vector<wchar_t> path(MAX_PATH);
|
||||
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
|
||||
if (len == 0) {
|
||||
return {};
|
||||
}
|
||||
- std::wstring base_path(path.data(), len);
|
||||
- // remove executable name
|
||||
- auto last_slash = base_path.find_last_of('\\');
|
||||
- if (last_slash != std::string::npos) {
|
||||
- base_path = base_path.substr(0, last_slash);
|
||||
- }
|
||||
- return base_path + L"\\";
|
||||
-#else
|
||||
- return {};
|
||||
-#endif
|
||||
-}
|
||||
|
||||
-static std::wstring backend_filename_prefix() {
|
||||
-#ifdef _WIN32
|
||||
- return L"ggml-";
|
||||
-#else
|
||||
- return L"libggml-";
|
||||
+ return std::filesystem::path(path.data()).parent_path();
|
||||
#endif
|
||||
+ return {};
|
||||
}
|
||||
|
||||
-static std::wstring backend_filename_suffix() {
|
||||
+static std::string backend_filename_prefix() {
|
||||
#ifdef _WIN32
|
||||
- return L".dll";
|
||||
+ return "ggml-";
|
||||
#else
|
||||
- return L".so";
|
||||
+ return "libggml-";
|
||||
#endif
|
||||
}
|
||||
|
||||
-static std::wstring path_separator() {
|
||||
+static std::string backend_filename_suffix() {
|
||||
#ifdef _WIN32
|
||||
- return L"\\";
|
||||
+ return ".dll";
|
||||
#else
|
||||
- return L"/";
|
||||
+ return ".so";
|
||||
#endif
|
||||
}
|
||||
|
||||
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
|
||||
// TODO: search system paths
|
||||
- std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
|
||||
- std::vector<std::wstring> search_paths;
|
||||
+ namespace fs = std::filesystem;
|
||||
+ std::string file_prefix = backend_filename_prefix() + name + "-";
|
||||
+ std::vector<fs::path> search_paths;
|
||||
+
|
||||
if (user_search_path == nullptr) {
|
||||
- search_paths.push_back(L"." + path_separator());
|
||||
+ search_paths.push_back(fs::current_path());
|
||||
search_paths.push_back(get_executable_path());
|
||||
} else {
|
||||
- search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
|
||||
+ search_paths.push_back(fs::u8path(user_search_path));
|
||||
}
|
||||
|
||||
int best_score = 0;
|
||||
- std::wstring best_path;
|
||||
+ fs::path best_path;
|
||||
|
||||
- namespace fs = std::filesystem;
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
continue;
|
||||
@@ -513,29 +485,26 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
+ std::string filename = entry.path().filename().string();
|
||||
+ std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
- if (!handle && !silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
+ if (!handle) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
+ continue;
|
||||
}
|
||||
- if (handle) {
|
||||
- auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
- if (score_fn) {
|
||||
- int s = score_fn();
|
||||
-#ifndef NDEBUG
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
-#endif
|
||||
- if (s > best_score) {
|
||||
- best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
- }
|
||||
- } else {
|
||||
- if (!silent) {
|
||||
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
- }
|
||||
+
|
||||
+ auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
+ if (!score_fn) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ int s = score_fn();
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
+ if (s > best_score) {
|
||||
+ best_score = s;
|
||||
+ best_path = entry.path();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -545,7 +514,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
if (best_score == 0) {
|
||||
// try to load the base backend
|
||||
for (const auto & search_path : search_paths) {
|
||||
- std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
|
||||
+ fs::path path = fs::path(search_path) / (backend_filename_prefix() + name + backend_filename_suffix());
|
||||
if (fs::exists(path)) {
|
||||
return get_reg().load_backend(path, silent);
|
||||
}
|
||||
@@ -560,6 +529,14 @@ void ggml_backend_load_all() {
|
||||
ggml_backend_load_all_from_path(nullptr);
|
||||
}
|
||||
|
||||
+static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
+ try {
|
||||
+ ggml_backend_load_best(name, silent, user_search_path);
|
||||
+ } catch (const std::exception & e) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
@@ -567,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
- ggml_backend_load_best("blas", silent, dir_path);
|
||||
- ggml_backend_load_best("cann", silent, dir_path);
|
||||
- ggml_backend_load_best("cuda", silent, dir_path);
|
||||
- ggml_backend_load_best("hip", silent, dir_path);
|
||||
- ggml_backend_load_best("kompute", silent, dir_path);
|
||||
- ggml_backend_load_best("metal", silent, dir_path);
|
||||
- ggml_backend_load_best("rpc", silent, dir_path);
|
||||
- ggml_backend_load_best("sycl", silent, dir_path);
|
||||
- ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
- ggml_backend_load_best("opencl", silent, dir_path);
|
||||
- ggml_backend_load_best("musa", silent, dir_path);
|
||||
- ggml_backend_load_best("cpu", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("blas", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cann", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cuda", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("hip", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("kompute", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("metal", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("rpc", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("sycl", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("vulkan", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("opencl", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("musa", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
|
||||
if (backend_path) {
|
||||
24
llama/patches/0016-remove-amx.patch
Normal file
24
llama/patches/0016-remove-amx.patch
Normal file
@@ -0,0 +1,24 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Tue, 18 Feb 2025 14:47:21 -0800
|
||||
Subject: [PATCH] remove amx
|
||||
|
||||
---
|
||||
ggml/src/CMakeLists.txt | 4 ----
|
||||
1 file changed, 4 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index 0a8d1092..4564df91 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -312,10 +312,6 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
|
||||
- if (NOT MSVC)
|
||||
- # MSVC doesn't support AMX
|
||||
- ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
- endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
endif()
|
||||
@@ -1,55 +0,0 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Sun, 9 Feb 2025 17:22:15 -0800
|
||||
Subject: [PATCH] remove sgemm global variables
|
||||
|
||||
removes the 'iq4nlt' global variable in sgemm.cpp that causes
|
||||
a runtime crash when calling dlopen on ggml-cpu libraries as
|
||||
its initialization depends on AVX instructions the host machine
|
||||
may not have
|
||||
---
|
||||
ggml/src/ggml-cpu/llamafile/sgemm.cpp | 17 +++++++++--------
|
||||
1 file changed, 9 insertions(+), 8 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
|
||||
index 8fce576c..3f260ce5 100644
|
||||
--- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp
|
||||
+++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
|
||||
@@ -279,14 +279,6 @@ template <> inline __m256bh load(const float *p) {
|
||||
}
|
||||
#endif
|
||||
|
||||
-////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
-// CONSTANTS
|
||||
-
|
||||
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
-static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
-static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
|
||||
-#endif
|
||||
-
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FLOATING POINT MATRIX MULTIPLICATION
|
||||
|
||||
@@ -613,6 +605,14 @@ class tinyBLAS_Q0_AVX {
|
||||
TC *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
+ const int8_t kvalues_iq4nl[16] = {
|
||||
+ -127, -104, -83, -65,
|
||||
+ -49, -35, -22, -10,
|
||||
+ 1, 13, 25, 38,
|
||||
+ 53, 69, 89, 113
|
||||
+ };
|
||||
+
|
||||
+ iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
@@ -1037,6 +1037,7 @@ class tinyBLAS_Q0_AVX {
|
||||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
+ __m128i iq4nlt;
|
||||
};
|
||||
#endif // __AVX__
|
||||
|
||||
36
llama/patches/0017-fix-clip-compiler-error.patch
Normal file
36
llama/patches/0017-fix-clip-compiler-error.patch
Normal file
@@ -0,0 +1,36 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Tue, 25 Feb 2025 19:14:51 -0800
|
||||
Subject: [PATCH] fix-clip-compiler-error
|
||||
|
||||
---
|
||||
examples/llava/clip.cpp | 2 +-
|
||||
examples/llava/clip.h | 2 +-
|
||||
2 files changed, 2 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
||||
index 560021c7..54265beb 100644
|
||||
--- a/examples/llava/clip.cpp
|
||||
+++ b/examples/llava/clip.cpp
|
||||
@@ -1788,7 +1788,7 @@ void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
|
||||
}
|
||||
}
|
||||
|
||||
-void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
|
||||
+void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img) {
|
||||
img->nx = nx;
|
||||
img->ny = ny;
|
||||
img->buf.resize(3 * nx * ny);
|
||||
diff --git a/examples/llava/clip.h b/examples/llava/clip.h
|
||||
index ce6f6194..f9f80d7d 100644
|
||||
--- a/examples/llava/clip.h
|
||||
+++ b/examples/llava/clip.h
|
||||
@@ -75,7 +75,7 @@ CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
/** build image from pixels decoded by other libraries instead of stb_image.h for better performance. The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes */
|
||||
-CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img);
|
||||
+CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
@@ -1,69 +0,0 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Tue, 11 Feb 2025 14:06:36 -0800
|
||||
Subject: [PATCH] try/catch backend load
|
||||
|
||||
---
|
||||
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
|
||||
1 file changed, 23 insertions(+), 22 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 135f7df0..84b21dd8 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
- if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
- if (!handle && !silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
- if (handle) {
|
||||
+ try {
|
||||
+ if (entry.is_regular_file()) {
|
||||
+ std::wstring filename = entry.path().filename().wstring();
|
||||
+ std::wstring ext = entry.path().extension().wstring();
|
||||
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
+ if (!handle) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
- if (score_fn) {
|
||||
- int s = score_fn();
|
||||
-#ifndef NDEBUG
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
-#endif
|
||||
- if (s > best_score) {
|
||||
- best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
- }
|
||||
- } else {
|
||||
- if (!silent) {
|
||||
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
+ if (!score_fn) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ int s = score_fn();
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
+ if (s > best_score) {
|
||||
+ best_score = s;
|
||||
+ best_path = entry.path().wstring();
|
||||
}
|
||||
}
|
||||
}
|
||||
+ } catch (const std::exception & e) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
80
llama/patches/0018-add-phi4-support.patch
Normal file
80
llama/patches/0018-add-phi4-support.patch
Normal file
@@ -0,0 +1,80 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 27 Feb 2025 15:12:26 -0800
|
||||
Subject: [PATCH] add phi4 support
|
||||
|
||||
---
|
||||
include/llama.h | 1 +
|
||||
src/llama-model.cpp | 10 +++++++---
|
||||
src/llama-vocab.cpp | 11 +++++++++++
|
||||
3 files changed, 19 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index cc948005..16774711 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -105,6 +105,7 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
|
||||
+ LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 21819080..ab1a07d1 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -2283,7 +2283,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
|
||||
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
+ // if output is NULL, init from the input tok embed
|
||||
+ if (output == NULL) {
|
||||
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
+ }
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
@@ -2298,8 +2302,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
|
||||
|
||||
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHIMOE:
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 1ca827eb..c7ff28be 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
+ case LLAMA_VOCAB_PRE_TYPE_GPT4O:
|
||||
+ // original regex from tokenizer.json
|
||||
+ // [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
|
||||
+ regex_exprs = {
|
||||
+ "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
+ };
|
||||
+ break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
regex_exprs = {
|
||||
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
} else if (
|
||||
tokenizer_pre == "megrez") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
+ } else if (
|
||||
+ tokenizer_pre == "gpt-4o") {
|
||||
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
|
||||
+ clean_spaces = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
64
llama/patches/0019-fix-string-arr-kv-loading.patch
Normal file
64
llama/patches/0019-fix-string-arr-kv-loading.patch
Normal file
@@ -0,0 +1,64 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Wed, 5 Mar 2025 17:41:07 -0800
|
||||
Subject: [PATCH] fix string arr kv loading
|
||||
|
||||
---
|
||||
ggml/include/gguf.h | 1 +
|
||||
ggml/src/gguf.cpp | 7 +++++--
|
||||
src/llama-vocab.cpp | 2 +-
|
||||
3 files changed, 7 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
|
||||
index 79ee2020..3efb22f0 100644
|
||||
--- a/ggml/include/gguf.h
|
||||
+++ b/ggml/include/gguf.h
|
||||
@@ -114,6 +114,7 @@ extern "C" {
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
+ GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
|
||||
index ab13669c..f75b923f 100644
|
||||
--- a/ggml/src/gguf.cpp
|
||||
+++ b/ggml/src/gguf.cpp
|
||||
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
+size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
|
||||
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
+ return ctx->kv[key_id].data.size();
|
||||
+}
|
||||
+
|
||||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||||
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||||
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index c7ff28be..7a185443 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
- size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
||||
+ size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
|
||||
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
||||
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
||||
#ifdef IS_BIG_ENDIAN
|
||||
22
llama/sampling_ext.cpp
vendored
22
llama/sampling_ext.cpp
vendored
@@ -2,6 +2,9 @@
|
||||
#include "sampling.h"
|
||||
#include "sampling_ext.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "llama-model.h"
|
||||
#include "llama-model-loader.h"
|
||||
|
||||
struct common_sampler *common_sampler_cinit(const struct llama_model *model, struct common_sampler_cparams *params) {
|
||||
try {
|
||||
@@ -64,3 +67,22 @@ int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len)
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_vocab * llama_load_vocab_from_file(const char * fname) {
|
||||
llama_vocab * vocab = new llama_vocab();
|
||||
try {
|
||||
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
std::vector<std::string> splits = {};
|
||||
llama_model_loader ml(std::string(fname), splits, false, false, nullptr);
|
||||
vocab->load(ml, kv);
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return vocab;
|
||||
}
|
||||
|
||||
void llama_free_vocab(struct llama_vocab * vocab) {
|
||||
delete vocab;
|
||||
}
|
||||
|
||||
3
llama/sampling_ext.h
vendored
3
llama/sampling_ext.h
vendored
@@ -35,6 +35,9 @@ extern "C"
|
||||
|
||||
int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len);
|
||||
|
||||
struct llama_vocab * llama_load_vocab_from_file(const char * fname);
|
||||
void llama_free_vocab(struct llama_vocab * vocab);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user