Compare commits

..

30 Commits

Author SHA1 Message Date
Jeffrey Morgan
5d66578356 Update README.md
Better example for multi-modal input
2024-07-30 18:08:34 -07:00
jmorganca
afa8d6e9d5 patch gemma support 2024-07-30 18:07:29 -07:00
royjhan
1b44d873e7 Add Metrics to api\embed response (#5709)
* add prompt tokens to embed response

* rm slog

* metrics

* types

* prompt n

* clean up

* reset submodule

* update tests

* test name

* list metrics
2024-07-30 13:12:21 -07:00
Daniel Hiltgen
cef2c6054d Merge pull request #5859 from dhiltgen/homogeneous_gpus
Prevent partial loading on mixed GPU brands
2024-07-30 11:06:42 -07:00
Daniel Hiltgen
345420998e Prevent partial loading on mixed GPU brands
In mult-brand GPU setups, if we couldn't fully load the model we
would fall through the scheduler and mistakenly try to load across
a mix of brands.  This makes sure we find the set of GPU(s) that
best fit for the partial load.
2024-07-30 11:00:55 -07:00
Kim Hallberg
0be8baad2b Update and Fix example models (#6065)
* Update example models

* Remove unused README.md
2024-07-29 23:56:37 -07:00
Daniel Hiltgen
1a83581a8e Merge pull request #5895 from dhiltgen/sched_faq
Better explain multi-gpu behavior
2024-07-29 14:25:41 -07:00
Daniel Hiltgen
37926eb991 Merge pull request #5927 from dhiltgen/high_cpu_count
Ensure amd gpu nodes are numerically sorted
2024-07-29 14:24:57 -07:00
Daniel Hiltgen
3d4634fdff Merge pull request #5934 from dhiltgen/missing_cuda_repo
Report better error on cuda unsupported os/arch
2024-07-29 14:24:20 -07:00
royjhan
365431d406 return tool calls finish reason for openai (#5995)
* hot fix

* backend stream support

* clean up

* finish reason

* move to openai
2024-07-29 13:56:57 -07:00
Daniel Hiltgen
161e12cecf Merge pull request #5932 from dhiltgen/win_font
Explain font problems on windows 10
2024-07-29 13:40:24 -07:00
Jeffrey Morgan
46e6327e0f api: add stringifier for Tool (#5891) 2024-07-29 13:35:16 -07:00
Jeffrey Morgan
68ee42f995 update llama.cpp submodule to 6eeaeba1 (#6039) 2024-07-29 13:20:26 -07:00
Ikko Eltociear Ashimine
f26aef9a8b docs: update README.md (#6059)
HuggingFace -> Hugging Face
2024-07-29 10:53:30 -07:00
Michael Yang
38d9036b59 Merge pull request #5992 from ollama/mxyng/save
fix: model save
2024-07-29 09:53:19 -07:00
Veit Heller
6f26e9322f Fix typo in image docs (#6041) 2024-07-29 08:50:53 -07:00
Jeffrey Morgan
0e4d653687 upate to llama3.1 elsewhere in repo (#6032) 2024-07-28 19:56:02 -07:00
Michael
2c01610616 update readme to llama3.1 (#5933) 2024-07-28 14:21:38 -07:00
Tibor Schmidt
f3d7a481b7 feat: add support for min_p (resolve #1142) (#1825) 2024-07-27 14:37:40 -07:00
Jeffrey Morgan
f2a96c7d77 llm: keep patch for llama 3 rope factors (#5987) 2024-07-26 15:20:52 -07:00
Daniel Hiltgen
e8a66680d1 Merge pull request #5705 from dhiltgen/win_errormode
Enable windows error dialog for subprocess
2024-07-26 14:49:34 -07:00
Michael Yang
079b2c3b03 Merge pull request #5999 from ollama/mxyng/fix-push
fix nil deref in auth.go
2024-07-26 14:28:34 -07:00
Blake Mizerany
750c1c55f7 server: fix race conditions during download (#5994)
This fixes various data races scattered throughout the download/pull
client where the client was accessing the download state concurrently.

This commit is mostly a hot-fix and will be replaced by a new client one
day soon.

Also, remove the unnecessary opts argument from downloadChunk.
2024-07-26 14:24:24 -07:00
Michael Yang
a622c47bd3 fix nil deref in auth.go 2024-07-26 14:14:48 -07:00
Michael Yang
3d9de805b7 fix: model save
stop parameter is saved as a slice which is incompatible with modelfile
parsing
2024-07-26 13:23:06 -07:00
Daniel Hiltgen
ce3c93b08f Report better error on cuda unsupported os/arch
If we detect an NVIDIA GPU, but nvidia doesn't support the os/arch,
this will report a better error for the user and point them to docs
to self-install the drivers if possible.
2024-07-24 17:09:20 -07:00
Daniel Hiltgen
6c2129d5d0 Explain font problems on windows 10 2024-07-24 15:22:00 -07:00
Daniel Hiltgen
7c2a157ca4 Ensure amd gpu nodes are numerically sorted
For systems that enumerate over 10 CPUs the default lexicographical
sort order interleaves CPUs and GPUs.
2024-07-24 13:43:26 -07:00
Daniel Hiltgen
830fdd2715 Better explain multi-gpu behavior 2024-07-23 15:16:38 -07:00
Daniel Hiltgen
e12fff8810 Enable windows error dialog for subprocess startup
Make sure if something goes wrong spawning the process, the user gets
enough info to be able to try to self correct, or at least file a bug
with details so we can fix it.  Once the process starts, we immediately
change back to the recommended setting to prevent the blocking dialog.
This ensures if the model fails to load (OOM, unsupported model type,
etc.) the process will exit quickly and we can scan the stdout/stderr
of the subprocess for the reason to report via API.
2024-07-22 14:07:27 -07:00
54 changed files with 375 additions and 181 deletions

View File

@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3](https://ollama.com/library/llama3):
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
```
ollama run llama3
ollama run llama3.1
```
## Model library
@@ -49,8 +49,9 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
@@ -97,16 +98,16 @@ See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
```
ollama pull llama3
ollama pull llama3.1
```
Create a `Modelfile`:
```
FROM llama3
FROM llama3.1
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -141,7 +142,7 @@ ollama create mymodel -f ./Modelfile
### Pull a model
```
ollama pull llama3
ollama pull llama3.1
```
> This command can also be used to update a local model. Only the diff will be pulled.
@@ -149,13 +150,13 @@ ollama pull llama3
### Remove a model
```
ollama rm llama3
ollama rm llama3.1
```
### Copy a model
```
ollama cp llama3 my-model
ollama cp llama3.1 my-model
```
### Multiline input
@@ -172,21 +173,21 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
### Multimodal models
```
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass the prompt as an argument
```
$ ollama run llama3 "Summarize this file: $(cat README.md)"
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```
ollama show llama3
ollama show llama3.1
```
### List models on your computer
@@ -214,7 +215,7 @@ Next, start the server:
Finally, in a separate shell, run a model:
```
./ollama run llama3
./ollama run llama3.1
```
## REST API
@@ -225,7 +226,7 @@ Ollama has a REST API for running and managing models.
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt":"Why is the sky blue?"
}'
```
@@ -234,7 +235,7 @@ curl http://localhost:11434/api/generate -d '{
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
@@ -389,7 +390,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)

View File

@@ -114,6 +114,11 @@ func (t Tools) String() string {
return string(bts)
}
func (t Tool) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
// Message is a single message in a chat sequence. The message contains the
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
@@ -209,6 +214,7 @@ type Options struct {
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
MinP float32 `json:"min_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
@@ -261,6 +267,10 @@ type EmbedRequest struct {
type EmbedResponse struct {
Model string `json:"model"`
Embeddings [][]float32 `json:"embeddings"`
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
}
// EmbeddingRequest is the request passed to [Client.Embeddings].

View File

@@ -138,7 +138,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
;FinishedHeadingLabel=Run your first model
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
;ClickFinish=%n
[Registry]

View File

@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
write-host ""
write-host "Run your first model:"
write-host ""
write-host "`tollama run llama3"
write-host "`tollama run llama3.1"
write-host ""

View File

@@ -1341,6 +1341,7 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NUM_PARALLEL"],
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"],

View File

@@ -1,6 +1,7 @@
package cmd
import (
"cmp"
"errors"
"fmt"
"io"
@@ -9,13 +10,14 @@ import (
"path/filepath"
"regexp"
"slices"
"sort"
"strings"
"github.com/spf13/cobra"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
@@ -138,6 +140,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
@@ -375,9 +378,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
req := &api.ShowRequest{
Name: opts.Model,
System: opts.System,
Options: opts.Options,
Name: opts.Model,
System: opts.System,
Options: opts.Options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
@@ -506,31 +509,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func buildModelfile(opts runOptions) string {
var mf strings.Builder
model := opts.ParentModel
if model == "" {
model = opts.Model
}
fmt.Fprintf(&mf, "FROM %s\n", model)
var f parser.File
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
if opts.System != "" {
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)
}
sort.Strings(keys)
keys := maps.Keys(opts.Options)
slices.Sort(keys)
for _, k := range keys {
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
v := opts.Options[k]
var cmds []parser.Command
switch t := v.(type) {
case []string:
for _, s := range t {
cmds = append(cmds, parser.Command{Name: k, Args: s})
}
default:
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
}
f.Commands = append(f.Commands, cmds...)
}
fmt.Fprintln(&mf)
for _, msg := range opts.Messages {
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
}
return mf.String()
return f.String()
}
func normalizeFilePath(fp string) string {

View File

@@ -1,12 +1,10 @@
package cmd
import (
"bytes"
"testing"
"text/template"
"github.com/google/go-cmp/cmp"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
)
@@ -57,58 +55,53 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
func TestModelfileBuilder(t *testing.T) {
opts := runOptions{
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
},
Options: map[string]interface{}{},
Options: map[string]any{
"temperature": 0.9,
"seed": 42,
"penalize_newline": false,
"stop": []string{"hi", "there"},
},
}
opts.Options["temperature"] = 0.9
opts.Options["seed"] = 42
opts.Options["penalize_newline"] = false
opts.Options["stop"] = []string{"hi", "there"}
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
t.Run("model", func(t *testing.T) {
expect := `FROM hork
SYSTEM You are part horse and part shark, but all hork. Do horklike things
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER stop hi
PARAMETER stop there
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark.
`
tmpl, err := template.New("").Parse(expectedModelfile)
require.NoError(t, err)
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
var buf bytes.Buffer
err = tmpl.Execute(&buf, opts)
require.NoError(t, err)
assert.Equal(t, buf.String(), mf)
opts.ParentModel = "horseshark"
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
t.Run("parent model", func(t *testing.T) {
opts.ParentModel = "horseshark"
expect := `FROM horseshark
SYSTEM You are part horse and part shark, but all hork. Do horklike things
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
PARAMETER stop hi
PARAMETER stop there
PARAMETER temperature 0.9
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark.
`
tmpl, err = template.New("").Parse(expectedModelfile)
require.NoError(t, err)
var parentBuf bytes.Buffer
err = tmpl.Execute(&parentBuf, opts)
require.NoError(t, err)
assert.Equal(t, parentBuf.String(), mf)
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
}

View File

@@ -336,6 +336,7 @@ curl http://localhost:11434/api/generate -d '{
"num_predict": 100,
"top_k": 20,
"top_p": 0.9,
"min_p": 0.0,
"tfs_z": 0.5,
"typical_p": 0.7,
"repeat_last_n": 33,
@@ -586,7 +587,7 @@ Final response:
##### Request
Send a chat message with a conversation history.
Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64.
```shell
curl http://localhost:11434/api/chat -d '{

View File

@@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```
docker exec -it ollama ollama run llama3
docker exec -it ollama ollama run llama3.1
```
### Try different models

View File

@@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
To preload a model using the CLI, use the command:
```shell
ollama run llama3 ""
ollama run llama3.1 ""
```
## How do I keep a model loaded in memory or make it unload immediately?
@@ -272,4 +272,8 @@ The following server settings may be used to adjust how Ollama handles concurren
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.

View File

@@ -141,6 +141,7 @@ PARAMETER <parameter> <parametervalue>
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
### TEMPLATE

View File

@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3",
model: "llama3.1",
});
const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio

View File

@@ -23,6 +23,8 @@ Logs will often be helpful in diagnosing the problem (see
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
## API Access
Here's a quick example showing API access from `powershell`

View File

@@ -35,7 +35,7 @@ func main() {
ctx := context.Background()
req := &api.ChatRequest{
Model: "llama3",
Model: "llama3.1",
Messages: messages,
}

View File

@@ -16,7 +16,7 @@ func main() {
// By default, GenerateRequest is streaming.
req := &api.GenerateRequest{
Model: "gemma",
Model: "gemma2",
Prompt: "how many planets are there?",
}

View File

@@ -15,7 +15,7 @@ func main() {
}
req := &api.GenerateRequest{
Model: "gemma",
Model: "gemma2",
Prompt: "how many planets are there?",
// set streaming to false

View File

View File

@@ -4,6 +4,14 @@ This example provides an interface for asking questions to a PDF document.
## Setup
1. Ensure you have the `llama3.1` model installed:
```
ollama pull llama3.1
```
2. Install the Python Requirements.
```
pip install -r requirements.txt
```

View File

@@ -51,7 +51,7 @@ while True:
template=template,
)
llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),

View File

@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
## Running the Example
1. Ensure you have the `llama2` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama2
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -5,8 +5,8 @@ from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama3")
llm = Ollama(model="llama3.1")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.invoke(docs)
result = chain.invoke(docs)
print(result)

View File

@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama3
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
llm = Ollama(model="llama3")
llm = Ollama(model="llama3.1")
res = llm.predict(input)
print (res)

View File

@@ -1,4 +1,4 @@
FROM llama3
FROM llama3.1
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.

View File

@@ -2,12 +2,12 @@
# Example character: Mario
This example shows how to create a basic character using Llama3 as the base model.
This example shows how to create a basic character using Llama3.1 as the base model.
To run this example:
1. Download the Modelfile
2. `ollama pull llama3` to get the base model used in the model file.
2. `ollama pull llama3.1` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like:
```
FROM llama3
FROM llama3.1
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.

View File

@@ -4,7 +4,7 @@ imageName = input("Enter the name of the image: ")
client = docker.from_env()
s = requests.Session()
output=""
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
with s.post('http://localhost:11434/api/generate', json={'model': 'mattw/dockerit', 'prompt': inputDescription}, stream=True) as r:
for line in r.iter_lines():
if line:
j = json.loads(line)

View File

@@ -2,7 +2,7 @@ import requests
import json
import random
model = "llama3"
model = "llama3.1"
template = {
"firstName": "",
"lastName": "",

View File

@@ -12,7 +12,7 @@ countries = [
"France",
]
country = random.choice(countries)
model = "llama3"
model = "llama3.1"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."

View File

@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama3
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -2,7 +2,7 @@ import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3" # TODO: update this for whatever model you wish to use
model = "llama3.1" # TODO: update this for whatever model you wish to use
def chat(messages):

View File

@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama3.1` model installed:
```bash
ollama pull llama3
ollama pull llama3.1
```
2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
import * as readline from "readline";
const model = "llama3";
const model = "llama3.1";
type Message = {
role: "assistant" | "user" | "system";
content: string;

View File

@@ -10,6 +10,7 @@ import (
"path/filepath"
"regexp"
"slices"
"sort"
"strconv"
"strings"
@@ -82,6 +83,20 @@ func AMDGetGPUInfo() []RocmGPUInfo {
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
cpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)

View File

@@ -69,6 +69,10 @@ func TestAllMiniLMEmbed(t *testing.T) {
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
}
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
func TestAllMiniLMBatchEmbed(t *testing.T) {
@@ -97,6 +101,10 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) || !floatsEqual32(res.Embeddings[1][0], -0.009802706) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
}
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}
func TestAllMiniLMEmbedTruncate(t *testing.T) {

View File

@@ -41,6 +41,7 @@
#if defined(_WIN32)
#include <windows.h>
#include <errhandlingapi.h>
#endif
#include <cstddef>
@@ -1220,6 +1221,7 @@ struct llama_server_context
res.result_json = json
{
{"embedding", std::vector<float>(embd, embd + n_embd)},
{"timings", slot.get_formated_timings()},
};
}
}
@@ -2437,15 +2439,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
}
else if (arg == "--lora-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_base = argv[i];
}
else if (arg == "-v" || arg == "--verbose")
{
server_verbose = true;
@@ -2737,6 +2730,9 @@ int wmain(int argc, wchar_t **wargv) {
for (int i = 0; i < argc; ++i) {
argv[i] = wchar_to_char(wargv[i]);
}
// Adjust error mode to avoid error dialog after we start.
SetErrorMode(SEM_FAILCRITICALERRORS);
#else
int main(int argc, char **argv) {
#endif
@@ -3208,11 +3204,15 @@ int main(int argc, char **argv) {
responses = result.result_json.value("results", std::vector<json>{result.result_json});
json embeddings = json::array();
int prompt_n = 0;
for (auto & elem : responses) {
embeddings.push_back(elem.at("embedding"));
prompt_n += elem.at("timings").at("prompt_n").get<int>();
}
// send the result
json embedding_res = json{{"embedding", embeddings}};
json embedding_res = json{{"embedding", embeddings}, {"prompt_n", prompt_n}};
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
}
});

View File

@@ -2,7 +2,10 @@ package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/x86_64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -2,7 +2,10 @@ package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/arm64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,6 +1,11 @@
package llm
import "embed"
import (
"embed"
"syscall"
)
//go:embed build/linux/*/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,6 +1,20 @@
package llm
import "embed"
import (
"embed"
"syscall"
)
// unused on windows
var libEmbed embed.FS
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
var LlamaServerSysProcAttr = &syscall.SysProcAttr{
// Wire up the default error handling logic If for some reason a DLL is
// missing in the path this will pop up a GUI Dialog explaining the fault so
// the user can either fix their PATH, or report a bug. Without this
// setting, the process exits immediately with a generic exit status but no
// way to (easily) figure out what the actual missing DLL was.
CreationFlags: CREATE_DEFAULT_ERROR_MODE,
}

View File

@@ -1,8 +1,8 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 8fe51971..7113ba64 100644
index a207451f..2ddf431d 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5433,16 +5433,7 @@ static void llm_load_vocab(
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
@@ -20,9 +20,9 @@ index 8fe51971..7113ba64 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -5526,7 +5517,8 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
vocab.tokenizer_clean_spaces = false;
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
tokenizer_pre == "codeshell") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);

View File

@@ -2,7 +2,7 @@ diff --git a/common/common.cpp b/common/common.cpp
index dbb724fb..c26fe6ee 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2087,14 +2087,29 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
@@ -2087,14 +2087,27 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
@@ -20,9 +20,7 @@ index dbb724fb..c26fe6ee 100644
+ int err = llama_model_apply_lora_from_file(model,
+ lora_adapter.c_str(),
+ lora_scale,
+ ((i > 0) || params.lora_base.empty())
+ ? NULL
+ : params.lora_base.c_str(),
+ nullptr,
+ params.n_threads);
+ if (err != 0) {
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);

View File

@@ -0,0 +1,20 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..fba6b175 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -4969,6 +4969,7 @@ static void llm_load_hparams(
hparams.attn_soft_cap = true;
switch (hparams.n_layer) {
+ case 26: model.type = e_model::MODEL_2B; break;
case 42: model.type = e_model::MODEL_9B; break;
case 46: model.type = e_model::MODEL_27B; break;
default: model.type = e_model::MODEL_UNKNOWN;
@@ -11736,6 +11737,7 @@ struct llm_build_context {
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
switch (model.type) {
+ case e_model::MODEL_2B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
default: GGML_ABORT("fatal error");

View File

@@ -33,7 +33,7 @@ type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embed(ctx context.Context, input []string) ([][]float32, error)
Embed(ctx context.Context, input []string) (*EmbedResponse, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
@@ -346,6 +346,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
@@ -726,6 +727,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
"temperature": req.Options.Temperature,
"top_k": req.Options.TopK,
"top_p": req.Options.TopP,
"min_p": req.Options.MinP,
"tfs_z": req.Options.TFSZ,
"typical_p": req.Options.TypicalP,
"repeat_last_n": req.Options.RepeatLastN,
@@ -877,10 +879,11 @@ type EmbedRequest struct {
}
type EmbedResponse struct {
Embedding [][]float32 `json:"embedding"`
Embedding [][]float32 `json:"embedding"`
PromptEvalCount int `json:"prompt_n"`
}
func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, error) {
func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
return nil, err
@@ -922,12 +925,12 @@ func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, err
return nil, fmt.Errorf("%s", body)
}
var embedding EmbedResponse
if err := json.Unmarshal(body, &embedding); err != nil {
var e EmbedResponse
if err := json.Unmarshal(body, &e); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return embedding.Embedding, nil
return &e, nil
}
type TokenizeRequest struct {

View File

@@ -19,7 +19,7 @@ export default function () {
const [step, setStep] = useState<Step>(Step.WELCOME)
const [commandCopied, setCommandCopied] = useState<boolean>(false)
const command = 'ollama run llama3'
const command = 'ollama run llama3.1'
return (
<div className='drag'>

View File

@@ -218,6 +218,9 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
Index: 0,
Message: Message{Role: r.Message.Role, Content: r.Message.Content, ToolCalls: toolCalls},
FinishReason: func(reason string) *string {
if len(toolCalls) > 0 {
reason = "tool_calls"
}
if len(reason) > 0 {
return &reason
}

View File

@@ -451,6 +451,7 @@ func TestParseFileParameters(t *testing.T) {
"num_predict 1": {"num_predict", "1"},
"top_k 1": {"top_k", "1"},
"top_p 1.0": {"top_p", "1.0"},
"min_p 0.05": {"min_p", "0.05"},
"tfs_z 1.0": {"tfs_z", "1.0"},
"typical_p 1.0": {"typical_p", "1.0"},
"repeat_last_n 1": {"repeat_last_n", "1"},

View File

@@ -198,19 +198,29 @@ if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
exit 0
fi
CUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA. Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/"
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
install_cuda_driver_yum() {
status 'Installing NVIDIA repository...'
case $PACKAGE_MANAGER in
yum)
$SUDO $PACKAGE_MANAGER -y install yum-utils
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
else
error $CUDA_REPO_ERR_MSG
fi
;;
dnf)
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
else
error $CUDA_REPO_ERR_MSG
fi
;;
esac
@@ -235,7 +245,11 @@ install_cuda_driver_yum() {
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
install_cuda_driver_apt() {
status 'Installing NVIDIA repository...'
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb" >/dev/null ; then
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
else
error $CUDA_REPO_ERR_MSG
fi
case $1 in
debian)

View File

@@ -67,7 +67,7 @@ func getAuthorizationToken(ctx context.Context, challenge registryChallenge) (st
headers.Add("Authorization", signature)
response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, nil)
response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, &registryOptions{})
if err != nil {
return "", err
}

View File

@@ -44,17 +44,19 @@ type blobDownload struct {
context.CancelFunc
done bool
done chan struct{}
err error
references atomic.Int32
}
type blobDownloadPart struct {
N int
Offset int64
Size int64
Completed int64
lastUpdated time.Time
N int
Offset int64
Size int64
Completed atomic.Int64
lastUpdatedMu sync.Mutex
lastUpdated time.Time
*blobDownload `json:"-"`
}
@@ -72,7 +74,7 @@ func (p *blobDownloadPart) Name() string {
}
func (p *blobDownloadPart) StartsAt() int64 {
return p.Offset + p.Completed
return p.Offset + p.Completed.Load()
}
func (p *blobDownloadPart) StopsAt() int64 {
@@ -82,7 +84,9 @@ func (p *blobDownloadPart) StopsAt() int64 {
func (p *blobDownloadPart) Write(b []byte) (n int, err error) {
n = len(b)
p.blobDownload.Completed.Add(int64(n))
p.lastUpdatedMu.Lock()
p.lastUpdated = time.Now()
p.lastUpdatedMu.Unlock()
return n, nil
}
@@ -92,6 +96,8 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
return err
}
b.done = make(chan struct{})
for _, partFilePath := range partFilePaths {
part, err := b.readPart(partFilePath)
if err != nil {
@@ -99,7 +105,7 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
}
b.Total += part.Size
b.Completed.Add(part.Completed)
b.Completed.Add(part.Completed.Load())
b.Parts = append(b.Parts, part)
}
@@ -139,6 +145,7 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
}
func (b *blobDownload) Run(ctx context.Context, requestURL *url.URL, opts *registryOptions) {
defer close(b.done)
b.err = b.run(ctx, requestURL, opts)
}
@@ -230,7 +237,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
g.SetLimit(numDownloadParts)
for i := range b.Parts {
part := b.Parts[i]
if part.Completed == part.Size {
if part.Completed.Load() == part.Size {
continue
}
@@ -238,7 +245,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
var err error
for try := 0; try < maxRetries; try++ {
w := io.NewOffsetWriter(file, part.StartsAt())
err = b.downloadChunk(inner, directURL, w, part, opts)
err = b.downloadChunk(inner, directURL, w, part)
switch {
case errors.Is(err, context.Canceled), errors.Is(err, syscall.ENOSPC):
// return immediately if the context is canceled or the device is out of space
@@ -279,29 +286,31 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
return err
}
b.done = true
return nil
}
func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart, opts *registryOptions) error {
func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart) error {
g, ctx := errgroup.WithContext(ctx)
g.Go(func() error {
headers := make(http.Header)
headers.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1))
resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, headers, nil, opts)
req, err := http.NewRequestWithContext(ctx, http.MethodGet, requestURL.String(), nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1))
resp, err := http.DefaultClient.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed)
n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed.Load())
if err != nil && !errors.Is(err, context.Canceled) && !errors.Is(err, io.ErrUnexpectedEOF) {
// rollback progress
b.Completed.Add(-n)
return err
}
part.Completed += n
part.Completed.Add(n)
if err := b.writePart(part.Name(), part); err != nil {
return err
}
@@ -315,15 +324,21 @@ func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w
for {
select {
case <-ticker.C:
if part.Completed >= part.Size {
if part.Completed.Load() >= part.Size {
return nil
}
if !part.lastUpdated.IsZero() && time.Since(part.lastUpdated) > 5*time.Second {
part.lastUpdatedMu.Lock()
lastUpdated := part.lastUpdated
part.lastUpdatedMu.Unlock()
if !lastUpdated.IsZero() && time.Since(lastUpdated) > 5*time.Second {
const msg = "%s part %d stalled; retrying. If this persists, press ctrl-c to exit, then 'ollama pull' to find a faster connection."
slog.Info(fmt.Sprintf(msg, b.Digest[7:19], part.N))
// reset last updated
part.lastUpdatedMu.Lock()
part.lastUpdated = time.Time{}
part.lastUpdatedMu.Unlock()
return errPartStalled
}
case <-ctx.Done():
@@ -388,6 +403,8 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
ticker := time.NewTicker(60 * time.Millisecond)
for {
select {
case <-b.done:
return b.err
case <-ticker.C:
fn(api.ProgressResponse{
Status: fmt.Sprintf("pulling %s", b.Digest[7:19]),
@@ -395,10 +412,6 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
Total: b.Total,
Completed: b.Completed.Load(),
})
if b.done || b.err != nil {
return b.err
}
case <-ctx.Done():
return ctx.Err()
}

View File

@@ -284,6 +284,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
func (s *Server) EmbedHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.EmbedRequest
err := c.ShouldBindJSON(&req)
switch {
@@ -332,6 +333,8 @@ func (s *Server) EmbedHandler(c *gin.Context) {
return
}
checkpointLoaded := time.Now()
kvData, err := getKVData(m.ModelPath, false)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
@@ -370,13 +373,16 @@ func (s *Server) EmbedHandler(c *gin.Context) {
return
}
for i, e := range embeddings {
embeddings[i] = normalize(e)
for i, e := range embeddings.Embedding {
embeddings.Embedding[i] = normalize(e)
}
resp := api.EmbedResponse{
Model: req.Model,
Embeddings: embeddings,
Model: req.Model,
Embeddings: embeddings.Embedding,
TotalDuration: time.Since(checkpointStart),
LoadDuration: checkpointLoaded.Sub(checkpointStart),
PromptEvalCount: embeddings.PromptEvalCount,
}
c.JSON(http.StatusOK, resp)
}
@@ -428,9 +434,9 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return
}
embedding := make([]float64, len(embeddings[0]))
embedding := make([]float64, len(embeddings.Embedding[0]))
for i, v := range embeddings[0] {
for i, v := range embeddings.Embedding[0] {
embedding[i] = float64(v)
}

View File

@@ -132,8 +132,6 @@ func (s *Scheduler) processPending(ctx context.Context) {
if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
numParallel = 1
slog.Warn("multimodal models don't support parallel requests yet")
} else if strings.Contains(pending.model.Config.ModelFamily, "bert") {
numParallel = runtime.NumCPU()
}
for {
@@ -214,9 +212,12 @@ func (s *Scheduler) processPending(ctx context.Context) {
} else if loadedCount == 0 {
// No models loaded. Load the model but prefer the best fit.
slog.Debug("loading first model", "model", pending.model.ModelPath)
g := pickBestFitGPUs(pending, ggml, gpus, &numParallel)
g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
if g != nil {
gpus = g
} else {
// Only allow partial loads when this is the first model
gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
}
s.loadFn(pending, ggml, gpus, numParallel)
break
@@ -233,7 +234,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
// Update free memory from currently loaded models
s.updateFreeSpace(availGpus)
fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel)
fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
if fitGpus != nil {
slog.Debug("new model fits with existing models, loading")
s.loadFn(pending, ggml, fitGpus, numParallel)
@@ -670,11 +671,12 @@ func (a ByDuration) Less(i, j int) bool {
// func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
// pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits
// pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
// The list of GPUs returned will always be the same brand (library)
// If the model can not be fit fully within the available GPU(s) nil is returned
// If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
// opts.NumCtx accordingly
func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
var estimatedVRAM uint64
var numParallelToTry []int
@@ -725,6 +727,25 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numP
return nil
}
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
*numParallel = 1
byLibrary := gpus.ByLibrary()
if len(byLibrary) <= 1 {
return gpus
}
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
}
}
return byLibrary[bestFit]
}
// findRunnerToUnload finds a runner to unload to make room for a new model
func (s *Scheduler) findRunnerToUnload() *runnerRef {
s.loadedMu.Lock()

View File

@@ -666,11 +666,50 @@ func TestAlreadyCanceled(t *testing.T) {
require.Empty(t, scenario1a.req.successCh)
}
func TestHomogeneousGPUs(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer done()
s := InitScheduler(ctx)
s.getGpuFn = func() gpu.GpuInfoList {
// Set memory values to require the model to be spread
gpus := []gpu.GpuInfo{
{Library: "cuda"},
{Library: "rocm"},
}
gpus[0].TotalMemory = 1 * format.GibiByte
gpus[0].FreeMemory = 256 * format.MebiByte
gpus[1].TotalMemory = 1 * format.GibiByte
gpus[1].FreeMemory = 256 * format.MebiByte
return gpus
}
s.getCpuFn = getCpuFn
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
require.Len(t, gpus, 1)
return a.newServer(gpus, model, ggml, adapters, projectors, opts, numParallel)
}
slog.Info("a")
s.pendingReqCh <- a.req
require.Len(t, s.pendingReqCh, 1)
s.Run(ctx)
select {
case resp := <-a.req.successCh:
require.Equal(t, resp.llama, a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, a.req.errCh)
case err := <-a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
}
type mockLlm struct {
pingResp error
waitResp error
completionResp error
embedResp [][]float32
embedResp *llm.EmbedResponse
embedRespErr error
tokenizeResp []int
tokenizeRespErr error
@@ -688,7 +727,7 @@ func (s *mockLlm) WaitUntilRunning(ctx context.Context) error { return s.waitRes
func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
return s.completionResp
}
func (s *mockLlm) Embed(ctx context.Context, input []string) ([][]float32, error) {
func (s *mockLlm) Embed(ctx context.Context, input []string) (*llm.EmbedResponse, error) {
return s.embedResp, s.embedRespErr
}
func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) {

View File

@@ -254,7 +254,7 @@ func (b *blobUpload) uploadPart(ctx context.Context, method string, requestURL *
// retry uploading to the redirect URL
for try := range maxRetries {
err = b.uploadPart(ctx, http.MethodPut, redirectURL, part, nil)
err = b.uploadPart(ctx, http.MethodPut, redirectURL, part, &registryOptions{})
switch {
case errors.Is(err, context.Canceled):
return err