mirror of
https://github.com/ollama/ollama.git
synced 2026-01-01 03:58:03 -05:00
Compare commits
1 Commits
royh/strea
...
roy-embed-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2647a0e443 |
33
README.md
33
README.md
@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
|
||||
To run and chat with [Llama 3](https://ollama.com/library/llama3):
|
||||
|
||||
```
|
||||
ollama run llama3.1
|
||||
ollama run llama3
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -49,9 +49,8 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
|
||||
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
@@ -98,16 +97,16 @@ See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
### Customize a prompt
|
||||
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
|
||||
|
||||
```
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
Create a `Modelfile`:
|
||||
|
||||
```
|
||||
FROM llama3.1
|
||||
FROM llama3
|
||||
|
||||
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
@@ -142,7 +141,7 @@ ollama create mymodel -f ./Modelfile
|
||||
### Pull a model
|
||||
|
||||
```
|
||||
ollama pull llama3.1
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
> This command can also be used to update a local model. Only the diff will be pulled.
|
||||
@@ -150,13 +149,13 @@ ollama pull llama3.1
|
||||
### Remove a model
|
||||
|
||||
```
|
||||
ollama rm llama3.1
|
||||
ollama rm llama3
|
||||
```
|
||||
|
||||
### Copy a model
|
||||
|
||||
```
|
||||
ollama cp llama3.1 my-model
|
||||
ollama cp llama3 my-model
|
||||
```
|
||||
|
||||
### Multiline input
|
||||
@@ -180,14 +179,14 @@ The image features a yellow smiley face, which is likely the central focus of th
|
||||
### Pass the prompt as an argument
|
||||
|
||||
```
|
||||
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
|
||||
$ ollama run llama3 "Summarize this file: $(cat README.md)"
|
||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
```
|
||||
|
||||
### Show model information
|
||||
|
||||
```
|
||||
ollama show llama3.1
|
||||
ollama show llama3
|
||||
```
|
||||
|
||||
### List models on your computer
|
||||
@@ -215,7 +214,7 @@ Next, start the server:
|
||||
Finally, in a separate shell, run a model:
|
||||
|
||||
```
|
||||
./ollama run llama3.1
|
||||
./ollama run llama3
|
||||
```
|
||||
|
||||
## REST API
|
||||
@@ -226,7 +225,7 @@ Ollama has a REST API for running and managing models.
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3",
|
||||
"prompt":"Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
@@ -235,7 +234,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.1",
|
||||
"model": "llama3",
|
||||
"messages": [
|
||||
{ "role": "user", "content": "why is the sky blue?" }
|
||||
]
|
||||
@@ -390,7 +389,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
|
||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
|
||||
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
|
||||
|
||||
@@ -114,11 +114,6 @@ func (t Tools) String() string {
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
func (t Tool) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
// Message is a single message in a chat sequence. The message contains the
|
||||
// role ("system", "user", or "assistant"), the content and an optional list
|
||||
// of images.
|
||||
@@ -214,7 +209,6 @@ type Options struct {
|
||||
NumPredict int `json:"num_predict,omitempty"`
|
||||
TopK int `json:"top_k,omitempty"`
|
||||
TopP float32 `json:"top_p,omitempty"`
|
||||
MinP float32 `json:"min_p,omitempty"`
|
||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
||||
TypicalP float32 `json:"typical_p,omitempty"`
|
||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||
|
||||
@@ -138,7 +138,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
|
||||
|
||||
|
||||
;FinishedHeadingLabel=Run your first model
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
|
||||
;ClickFinish=%n
|
||||
|
||||
[Registry]
|
||||
|
||||
@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
|
||||
write-host ""
|
||||
write-host "Run your first model:"
|
||||
write-host ""
|
||||
write-host "`tollama run llama3.1"
|
||||
write-host "`tollama run llama3"
|
||||
write-host ""
|
||||
@@ -1341,7 +1341,6 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_NUM_PARALLEL"],
|
||||
envVars["OLLAMA_NOPRUNE"],
|
||||
envVars["OLLAMA_ORIGINS"],
|
||||
envVars["OLLAMA_SCHED_SPREAD"],
|
||||
envVars["OLLAMA_TMPDIR"],
|
||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
@@ -10,14 +9,13 @@ import (
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/spf13/cobra"
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
@@ -140,7 +138,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
|
||||
@@ -378,9 +375,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
req := &api.ShowRequest{
|
||||
Name: opts.Model,
|
||||
System: opts.System,
|
||||
Options: opts.Options,
|
||||
Name: opts.Model,
|
||||
System: opts.System,
|
||||
Options: opts.Options,
|
||||
}
|
||||
resp, err := client.Show(cmd.Context(), req)
|
||||
if err != nil {
|
||||
@@ -509,35 +506,31 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
|
||||
func buildModelfile(opts runOptions) string {
|
||||
var f parser.File
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
|
||||
|
||||
var mf strings.Builder
|
||||
model := opts.ParentModel
|
||||
if model == "" {
|
||||
model = opts.Model
|
||||
}
|
||||
fmt.Fprintf(&mf, "FROM %s\n", model)
|
||||
if opts.System != "" {
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
|
||||
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
|
||||
}
|
||||
|
||||
keys := maps.Keys(opts.Options)
|
||||
slices.Sort(keys)
|
||||
keys := make([]string, 0)
|
||||
for k := range opts.Options {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
for _, k := range keys {
|
||||
v := opts.Options[k]
|
||||
var cmds []parser.Command
|
||||
switch t := v.(type) {
|
||||
case []string:
|
||||
for _, s := range t {
|
||||
cmds = append(cmds, parser.Command{Name: k, Args: s})
|
||||
}
|
||||
default:
|
||||
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
|
||||
}
|
||||
|
||||
f.Commands = append(f.Commands, cmds...)
|
||||
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
|
||||
}
|
||||
fmt.Fprintln(&mf)
|
||||
|
||||
for _, msg := range opts.Messages {
|
||||
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
|
||||
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
|
||||
}
|
||||
|
||||
return f.String()
|
||||
return mf.String()
|
||||
}
|
||||
|
||||
func normalizeFilePath(fp string) string {
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"testing"
|
||||
"text/template"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
@@ -55,53 +57,58 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
|
||||
func TestModelfileBuilder(t *testing.T) {
|
||||
opts := runOptions{
|
||||
Model: "hork",
|
||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||
Model: "hork",
|
||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hey there hork!"},
|
||||
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
||||
},
|
||||
Options: map[string]any{
|
||||
"temperature": 0.9,
|
||||
"seed": 42,
|
||||
"penalize_newline": false,
|
||||
"stop": []string{"hi", "there"},
|
||||
},
|
||||
Options: map[string]interface{}{},
|
||||
}
|
||||
|
||||
t.Run("model", func(t *testing.T) {
|
||||
expect := `FROM hork
|
||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||
opts.Options["temperature"] = 0.9
|
||||
opts.Options["seed"] = 42
|
||||
opts.Options["penalize_newline"] = false
|
||||
opts.Options["stop"] = []string{"hi", "there"}
|
||||
|
||||
mf := buildModelfile(opts)
|
||||
expectedModelfile := `FROM {{.Model}}
|
||||
SYSTEM """{{.System}}"""
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop hi
|
||||
PARAMETER stop there
|
||||
PARAMETER stop [hi there]
|
||||
PARAMETER temperature 0.9
|
||||
MESSAGE user Hey there hork!
|
||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||
|
||||
MESSAGE user """Hey there hork!"""
|
||||
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
||||
`
|
||||
|
||||
actual := buildModelfile(opts)
|
||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
tmpl, err := template.New("").Parse(expectedModelfile)
|
||||
require.NoError(t, err)
|
||||
|
||||
t.Run("parent model", func(t *testing.T) {
|
||||
opts.ParentModel = "horseshark"
|
||||
expect := `FROM horseshark
|
||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
||||
var buf bytes.Buffer
|
||||
err = tmpl.Execute(&buf, opts)
|
||||
require.NoError(t, err)
|
||||
assert.Equal(t, buf.String(), mf)
|
||||
|
||||
opts.ParentModel = "horseshark"
|
||||
mf = buildModelfile(opts)
|
||||
expectedModelfile = `FROM {{.ParentModel}}
|
||||
SYSTEM """{{.System}}"""
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop hi
|
||||
PARAMETER stop there
|
||||
PARAMETER stop [hi there]
|
||||
PARAMETER temperature 0.9
|
||||
MESSAGE user Hey there hork!
|
||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
||||
|
||||
MESSAGE user """Hey there hork!"""
|
||||
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
||||
`
|
||||
actual := buildModelfile(opts)
|
||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
tmpl, err = template.New("").Parse(expectedModelfile)
|
||||
require.NoError(t, err)
|
||||
|
||||
var parentBuf bytes.Buffer
|
||||
err = tmpl.Execute(&parentBuf, opts)
|
||||
require.NoError(t, err)
|
||||
assert.Equal(t, parentBuf.String(), mf)
|
||||
}
|
||||
|
||||
@@ -336,7 +336,6 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_predict": 100,
|
||||
"top_k": 20,
|
||||
"top_p": 0.9,
|
||||
"min_p": 0.0,
|
||||
"tfs_z": 0.5,
|
||||
"typical_p": 0.7,
|
||||
"repeat_last_n": 33,
|
||||
@@ -587,7 +586,7 @@ Final response:
|
||||
|
||||
##### Request
|
||||
|
||||
Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64.
|
||||
Send a chat message with a conversation history.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
|
||||
@@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
|
||||
Now you can run a model:
|
||||
|
||||
```
|
||||
docker exec -it ollama ollama run llama3.1
|
||||
docker exec -it ollama ollama run llama3
|
||||
```
|
||||
|
||||
### Try different models
|
||||
|
||||
@@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
||||
|
||||
To preload a model using the CLI, use the command:
|
||||
```shell
|
||||
ollama run llama3.1 ""
|
||||
ollama run llama3 ""
|
||||
```
|
||||
|
||||
## How do I keep a model loaded in memory or make it unload immediately?
|
||||
@@ -272,8 +272,4 @@ The following server settings may be used to adjust how Ollama handles concurren
|
||||
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
|
||||
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
|
||||
|
||||
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
|
||||
|
||||
## How does Ollama load models on multiple GPUs?
|
||||
|
||||
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
||||
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
|
||||
@@ -141,7 +141,6 @@ PARAMETER <parameter> <parametervalue>
|
||||
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
|
||||
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
|
||||
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
|
||||
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
|
||||
|
||||
### TEMPLATE
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
|
||||
|
||||
const ollama = new Ollama({
|
||||
baseUrl: "http://localhost:11434",
|
||||
model: "llama3.1",
|
||||
model: "llama3",
|
||||
});
|
||||
|
||||
const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
console.log(answer);
|
||||
```
|
||||
|
||||
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
|
||||
|
||||
```bash
|
||||
npm install cheerio
|
||||
|
||||
@@ -23,8 +23,6 @@ Logs will often be helpful in diagnosing the problem (see
|
||||
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
|
||||
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
|
||||
|
||||
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
|
||||
|
||||
## API Access
|
||||
|
||||
Here's a quick example showing API access from `powershell`
|
||||
|
||||
@@ -10,7 +10,6 @@ import (
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
@@ -83,20 +82,6 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
|
||||
sort.Slice(matches, func(i, j int) bool {
|
||||
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
|
||||
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("parse err", "error", err, "match", matches[i])
|
||||
return false
|
||||
}
|
||||
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("parse err", "error", err, "match", matches[i])
|
||||
return false
|
||||
}
|
||||
return a < b
|
||||
})
|
||||
cpuCount := 0
|
||||
for _, match := range matches {
|
||||
slog.Debug("evaluating amdgpu node " + match)
|
||||
|
||||
13
llm/ext_server/server.cpp
vendored
13
llm/ext_server/server.cpp
vendored
@@ -41,7 +41,6 @@
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#include <errhandlingapi.h>
|
||||
#endif
|
||||
|
||||
#include <cstddef>
|
||||
@@ -2438,6 +2437,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
|
||||
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-base")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
}
|
||||
else if (arg == "-v" || arg == "--verbose")
|
||||
{
|
||||
server_verbose = true;
|
||||
@@ -2729,9 +2737,6 @@ int wmain(int argc, wchar_t **wargv) {
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
argv[i] = wchar_to_char(wargv[i]);
|
||||
}
|
||||
|
||||
// Adjust error mode to avoid error dialog after we start.
|
||||
SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
#else
|
||||
int main(int argc, char **argv) {
|
||||
#endif
|
||||
|
||||
Submodule llm/llama.cpp updated: 6eeaeba126...d94c6e0ccb
@@ -2,10 +2,7 @@ package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
//go:embed build/darwin/x86_64/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
|
||||
|
||||
@@ -2,10 +2,7 @@ package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
//go:embed build/darwin/arm64/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
|
||||
|
||||
@@ -1,11 +1,6 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
import "embed"
|
||||
|
||||
//go:embed build/linux/*/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}
|
||||
|
||||
@@ -1,20 +1,6 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"syscall"
|
||||
)
|
||||
import "embed"
|
||||
|
||||
// unused on windows
|
||||
var libEmbed embed.FS
|
||||
|
||||
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
|
||||
|
||||
var LlamaServerSysProcAttr = &syscall.SysProcAttr{
|
||||
// Wire up the default error handling logic If for some reason a DLL is
|
||||
// missing in the path this will pop up a GUI Dialog explaining the fault so
|
||||
// the user can either fix their PATH, or report a bug. Without this
|
||||
// setting, the process exits immediately with a generic exit status but no
|
||||
// way to (easily) figure out what the actual missing DLL was.
|
||||
CreationFlags: CREATE_DEFAULT_ERROR_MODE,
|
||||
}
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index a207451f..2ddf431d 100644
|
||||
index 8fe51971..7113ba64 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
|
||||
@@ -5433,16 +5433,7 @@ static void llm_load_vocab(
|
||||
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
vocab.tokenizer_add_space_prefix = false;
|
||||
vocab.tokenizer_clean_spaces = true;
|
||||
@@ -20,9 +20,9 @@ index a207451f..2ddf431d 100644
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
|
||||
tokenizer_pre == "codeshell") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
|
||||
@@ -5526,7 +5517,8 @@ static void llm_load_vocab(
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
|
||||
vocab.tokenizer_clean_spaces = false;
|
||||
} else {
|
||||
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
|
||||
@@ -2,7 +2,7 @@ diff --git a/common/common.cpp b/common/common.cpp
|
||||
index dbb724fb..c26fe6ee 100644
|
||||
--- a/common/common.cpp
|
||||
+++ b/common/common.cpp
|
||||
@@ -2087,14 +2087,27 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
@@ -2087,14 +2087,29 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
||||
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
||||
@@ -20,7 +20,9 @@ index dbb724fb..c26fe6ee 100644
|
||||
+ int err = llama_model_apply_lora_from_file(model,
|
||||
+ lora_adapter.c_str(),
|
||||
+ lora_scale,
|
||||
+ nullptr,
|
||||
+ ((i > 0) || params.lora_base.empty())
|
||||
+ ? NULL
|
||||
+ : params.lora_base.c_str(),
|
||||
+ params.n_threads);
|
||||
+ if (err != 0) {
|
||||
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
|
||||
@@ -346,7 +346,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
s.cmd.Env = os.Environ()
|
||||
s.cmd.Stdout = os.Stdout
|
||||
s.cmd.Stderr = s.status
|
||||
s.cmd.SysProcAttr = LlamaServerSysProcAttr
|
||||
|
||||
envWorkarounds := [][2]string{}
|
||||
for _, gpu := range gpus {
|
||||
@@ -727,7 +726,6 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
"temperature": req.Options.Temperature,
|
||||
"top_k": req.Options.TopK,
|
||||
"top_p": req.Options.TopP,
|
||||
"min_p": req.Options.MinP,
|
||||
"tfs_z": req.Options.TFSZ,
|
||||
"typical_p": req.Options.TypicalP,
|
||||
"repeat_last_n": req.Options.RepeatLastN,
|
||||
|
||||
@@ -19,7 +19,7 @@ export default function () {
|
||||
const [step, setStep] = useState<Step>(Step.WELCOME)
|
||||
const [commandCopied, setCommandCopied] = useState<boolean>(false)
|
||||
|
||||
const command = 'ollama run llama3.1'
|
||||
const command = 'ollama run llama3'
|
||||
|
||||
return (
|
||||
<div className='drag'>
|
||||
|
||||
@@ -192,9 +192,9 @@ func toolCallId() string {
|
||||
return "call_" + strings.ToLower(string(b))
|
||||
}
|
||||
|
||||
func parseToolCalls(respToolCalls []api.ToolCall) []ToolCall {
|
||||
toolCalls := make([]ToolCall, len(respToolCalls))
|
||||
for i, tc := range respToolCalls {
|
||||
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
toolCalls := make([]ToolCall, len(r.Message.ToolCalls))
|
||||
for i, tc := range r.Message.ToolCalls {
|
||||
toolCalls[i].ID = toolCallId()
|
||||
toolCalls[i].Type = "function"
|
||||
toolCalls[i].Function.Name = tc.Function.Name
|
||||
@@ -207,11 +207,6 @@ func parseToolCalls(respToolCalls []api.ToolCall) []ToolCall {
|
||||
|
||||
toolCalls[i].Function.Arguments = string(args)
|
||||
}
|
||||
return toolCalls
|
||||
}
|
||||
|
||||
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
toolCalls := parseToolCalls(r.Message.ToolCalls)
|
||||
|
||||
return ChatCompletion{
|
||||
Id: id,
|
||||
@@ -238,8 +233,6 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
}
|
||||
|
||||
func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
|
||||
toolCalls := parseToolCalls(r.Message.ToolCalls)
|
||||
|
||||
return ChatCompletionChunk{
|
||||
Id: id,
|
||||
Object: "chat.completion.chunk",
|
||||
@@ -248,7 +241,7 @@ func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
|
||||
SystemFingerprint: "fp_ollama",
|
||||
Choices: []ChunkChoice{{
|
||||
Index: 0,
|
||||
Delta: Message{Role: "assistant", Content: r.Message.Content, ToolCalls: toolCalls},
|
||||
Delta: Message{Role: "assistant", Content: r.Message.Content},
|
||||
FinishReason: func(reason string) *string {
|
||||
if len(reason) > 0 {
|
||||
return &reason
|
||||
|
||||
@@ -451,7 +451,6 @@ func TestParseFileParameters(t *testing.T) {
|
||||
"num_predict 1": {"num_predict", "1"},
|
||||
"top_k 1": {"top_k", "1"},
|
||||
"top_p 1.0": {"top_p", "1.0"},
|
||||
"min_p 0.05": {"min_p", "0.05"},
|
||||
"tfs_z 1.0": {"tfs_z", "1.0"},
|
||||
"typical_p 1.0": {"typical_p", "1.0"},
|
||||
"repeat_last_n 1": {"repeat_last_n", "1"},
|
||||
|
||||
@@ -198,29 +198,19 @@ if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
|
||||
exit 0
|
||||
fi
|
||||
|
||||
CUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA. Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/"
|
||||
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
|
||||
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
|
||||
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
|
||||
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
|
||||
install_cuda_driver_yum() {
|
||||
status 'Installing NVIDIA repository...'
|
||||
|
||||
case $PACKAGE_MANAGER in
|
||||
yum)
|
||||
$SUDO $PACKAGE_MANAGER -y install yum-utils
|
||||
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then
|
||||
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
|
||||
else
|
||||
error $CUDA_REPO_ERR_MSG
|
||||
fi
|
||||
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
|
||||
;;
|
||||
dnf)
|
||||
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then
|
||||
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
|
||||
else
|
||||
error $CUDA_REPO_ERR_MSG
|
||||
fi
|
||||
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
|
||||
;;
|
||||
esac
|
||||
|
||||
@@ -245,11 +235,7 @@ install_cuda_driver_yum() {
|
||||
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
|
||||
install_cuda_driver_apt() {
|
||||
status 'Installing NVIDIA repository...'
|
||||
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb" >/dev/null ; then
|
||||
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
|
||||
else
|
||||
error $CUDA_REPO_ERR_MSG
|
||||
fi
|
||||
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
|
||||
|
||||
case $1 in
|
||||
debian)
|
||||
|
||||
@@ -67,7 +67,7 @@ func getAuthorizationToken(ctx context.Context, challenge registryChallenge) (st
|
||||
|
||||
headers.Add("Authorization", signature)
|
||||
|
||||
response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, ®istryOptions{})
|
||||
response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, nil)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
@@ -44,19 +44,17 @@ type blobDownload struct {
|
||||
|
||||
context.CancelFunc
|
||||
|
||||
done chan struct{}
|
||||
done bool
|
||||
err error
|
||||
references atomic.Int32
|
||||
}
|
||||
|
||||
type blobDownloadPart struct {
|
||||
N int
|
||||
Offset int64
|
||||
Size int64
|
||||
Completed atomic.Int64
|
||||
|
||||
lastUpdatedMu sync.Mutex
|
||||
lastUpdated time.Time
|
||||
N int
|
||||
Offset int64
|
||||
Size int64
|
||||
Completed int64
|
||||
lastUpdated time.Time
|
||||
|
||||
*blobDownload `json:"-"`
|
||||
}
|
||||
@@ -74,7 +72,7 @@ func (p *blobDownloadPart) Name() string {
|
||||
}
|
||||
|
||||
func (p *blobDownloadPart) StartsAt() int64 {
|
||||
return p.Offset + p.Completed.Load()
|
||||
return p.Offset + p.Completed
|
||||
}
|
||||
|
||||
func (p *blobDownloadPart) StopsAt() int64 {
|
||||
@@ -84,9 +82,7 @@ func (p *blobDownloadPart) StopsAt() int64 {
|
||||
func (p *blobDownloadPart) Write(b []byte) (n int, err error) {
|
||||
n = len(b)
|
||||
p.blobDownload.Completed.Add(int64(n))
|
||||
p.lastUpdatedMu.Lock()
|
||||
p.lastUpdated = time.Now()
|
||||
p.lastUpdatedMu.Unlock()
|
||||
return n, nil
|
||||
}
|
||||
|
||||
@@ -96,8 +92,6 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
|
||||
return err
|
||||
}
|
||||
|
||||
b.done = make(chan struct{})
|
||||
|
||||
for _, partFilePath := range partFilePaths {
|
||||
part, err := b.readPart(partFilePath)
|
||||
if err != nil {
|
||||
@@ -105,7 +99,7 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
|
||||
}
|
||||
|
||||
b.Total += part.Size
|
||||
b.Completed.Add(part.Completed.Load())
|
||||
b.Completed.Add(part.Completed)
|
||||
b.Parts = append(b.Parts, part)
|
||||
}
|
||||
|
||||
@@ -145,7 +139,6 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
|
||||
}
|
||||
|
||||
func (b *blobDownload) Run(ctx context.Context, requestURL *url.URL, opts *registryOptions) {
|
||||
defer close(b.done)
|
||||
b.err = b.run(ctx, requestURL, opts)
|
||||
}
|
||||
|
||||
@@ -237,7 +230,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
|
||||
g.SetLimit(numDownloadParts)
|
||||
for i := range b.Parts {
|
||||
part := b.Parts[i]
|
||||
if part.Completed.Load() == part.Size {
|
||||
if part.Completed == part.Size {
|
||||
continue
|
||||
}
|
||||
|
||||
@@ -245,7 +238,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
|
||||
var err error
|
||||
for try := 0; try < maxRetries; try++ {
|
||||
w := io.NewOffsetWriter(file, part.StartsAt())
|
||||
err = b.downloadChunk(inner, directURL, w, part)
|
||||
err = b.downloadChunk(inner, directURL, w, part, opts)
|
||||
switch {
|
||||
case errors.Is(err, context.Canceled), errors.Is(err, syscall.ENOSPC):
|
||||
// return immediately if the context is canceled or the device is out of space
|
||||
@@ -286,31 +279,29 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
|
||||
return err
|
||||
}
|
||||
|
||||
b.done = true
|
||||
return nil
|
||||
}
|
||||
|
||||
func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart) error {
|
||||
func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart, opts *registryOptions) error {
|
||||
g, ctx := errgroup.WithContext(ctx)
|
||||
g.Go(func() error {
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodGet, requestURL.String(), nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1))
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
headers := make(http.Header)
|
||||
headers.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1))
|
||||
resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, headers, nil, opts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed.Load())
|
||||
n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed)
|
||||
if err != nil && !errors.Is(err, context.Canceled) && !errors.Is(err, io.ErrUnexpectedEOF) {
|
||||
// rollback progress
|
||||
b.Completed.Add(-n)
|
||||
return err
|
||||
}
|
||||
|
||||
part.Completed.Add(n)
|
||||
part.Completed += n
|
||||
if err := b.writePart(part.Name(), part); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -324,21 +315,15 @@ func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w
|
||||
for {
|
||||
select {
|
||||
case <-ticker.C:
|
||||
if part.Completed.Load() >= part.Size {
|
||||
if part.Completed >= part.Size {
|
||||
return nil
|
||||
}
|
||||
|
||||
part.lastUpdatedMu.Lock()
|
||||
lastUpdated := part.lastUpdated
|
||||
part.lastUpdatedMu.Unlock()
|
||||
|
||||
if !lastUpdated.IsZero() && time.Since(lastUpdated) > 5*time.Second {
|
||||
if !part.lastUpdated.IsZero() && time.Since(part.lastUpdated) > 5*time.Second {
|
||||
const msg = "%s part %d stalled; retrying. If this persists, press ctrl-c to exit, then 'ollama pull' to find a faster connection."
|
||||
slog.Info(fmt.Sprintf(msg, b.Digest[7:19], part.N))
|
||||
// reset last updated
|
||||
part.lastUpdatedMu.Lock()
|
||||
part.lastUpdated = time.Time{}
|
||||
part.lastUpdatedMu.Unlock()
|
||||
return errPartStalled
|
||||
}
|
||||
case <-ctx.Done():
|
||||
@@ -403,8 +388,6 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
|
||||
ticker := time.NewTicker(60 * time.Millisecond)
|
||||
for {
|
||||
select {
|
||||
case <-b.done:
|
||||
return b.err
|
||||
case <-ticker.C:
|
||||
fn(api.ProgressResponse{
|
||||
Status: fmt.Sprintf("pulling %s", b.Digest[7:19]),
|
||||
@@ -412,6 +395,10 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
|
||||
Total: b.Total,
|
||||
Completed: b.Completed.Load(),
|
||||
})
|
||||
|
||||
if b.done || b.err != nil {
|
||||
return b.err
|
||||
}
|
||||
case <-ctx.Done():
|
||||
return ctx.Err()
|
||||
}
|
||||
|
||||
@@ -1369,7 +1369,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
|
||||
}
|
||||
}()
|
||||
|
||||
if (req.Stream != nil && !*req.Stream) || ((req.Stream == nil || *req.Stream) && len(req.Tools) > 0) {
|
||||
if req.Stream != nil && !*req.Stream {
|
||||
var resp api.ChatResponse
|
||||
var sb strings.Builder
|
||||
for rr := range ch {
|
||||
@@ -1400,26 +1400,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
|
||||
}
|
||||
}
|
||||
|
||||
if (req.Stream == nil || *req.Stream) && len(resp.Message.ToolCalls) > 0 {
|
||||
toolCh := make(chan any)
|
||||
go func() {
|
||||
defer close(toolCh)
|
||||
toolCalls := resp.Message.ToolCalls
|
||||
for _, toolCall := range toolCalls {
|
||||
toolCh <- api.ChatResponse{
|
||||
Model: resp.Model,
|
||||
CreatedAt: resp.CreatedAt,
|
||||
Message: api.Message{Role: "assistant", ToolCalls: []api.ToolCall{toolCall}},
|
||||
}
|
||||
}
|
||||
resp.Message.ToolCalls = nil
|
||||
resp.DoneReason = "tool_calls"
|
||||
toolCh <- resp
|
||||
}()
|
||||
streamResponse(c, toolCh)
|
||||
return
|
||||
}
|
||||
|
||||
c.JSON(http.StatusOK, resp)
|
||||
return
|
||||
}
|
||||
|
||||
@@ -132,6 +132,8 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
|
||||
numParallel = 1
|
||||
slog.Warn("multimodal models don't support parallel requests yet")
|
||||
} else if strings.Contains(pending.model.Config.ModelFamily, "bert") {
|
||||
numParallel = runtime.NumCPU()
|
||||
}
|
||||
|
||||
for {
|
||||
|
||||
@@ -254,7 +254,7 @@ func (b *blobUpload) uploadPart(ctx context.Context, method string, requestURL *
|
||||
|
||||
// retry uploading to the redirect URL
|
||||
for try := range maxRetries {
|
||||
err = b.uploadPart(ctx, http.MethodPut, redirectURL, part, ®istryOptions{})
|
||||
err = b.uploadPart(ctx, http.MethodPut, redirectURL, part, nil)
|
||||
switch {
|
||||
case errors.Is(err, context.Canceled):
|
||||
return err
|
||||
|
||||
Reference in New Issue
Block a user