Compare commits

...

64 Commits

Author SHA1 Message Date
Jeffrey Morgan
1d78d96fc6 remove .First 2023-11-15 18:07:13 -05:00
Michael Yang
686f85d6ca Merge pull request #1132 from jmorganca/mxyng/human-bytes
replace go-humanize with format.HumanBytes
2023-11-15 09:46:21 -08:00
bnodnarb
85951d25ef Created tutorial for running Ollama on NVIDIA Jetson devices (#1098) 2023-11-15 12:32:37 -05:00
Michael Yang
01ea6002c4 replace go-humanize with format.HumanBytes 2023-11-14 14:57:41 -08:00
Jeffrey Morgan
423862042a treat ollama run model < file as entire prompt, not prompt-per-line (#1126)
Previously, `ollama run` treated a non-terminal stdin (such as `ollama run model < file`) as containing one prompt per line. To run inference on a multi-line prompt, the only non-API workaround was to run `ollama run` interactively and wrap the prompt in `"""..."""`.

Now, `ollama run` treats a non-terminal stdin as containing a single prompt. For example, if `myprompt.txt` is a multi-line file, then `ollama run model < myprompt.txt` would treat `myprompt.txt`'s entire contents as the prompt.

Co-authored-by: Quinn Slack <quinn@slack.org>
2023-11-14 16:42:21 -05:00
Bruce MacDonald
df18486c35 Move /generate format to optional parameters (#1127)
This field is optional and should be under the `Advanced parameters` header
2023-11-14 16:12:30 -05:00
Jeffrey Morgan
4e612a2e92 use stdout fd for terminal size (#1125) 2023-11-14 16:09:09 -05:00
Jeffrey Morgan
6e0f686afa --format json should work in interactive mode 2023-11-14 10:22:03 -05:00
Jeffrey Morgan
c1844bbee2 add json mode to cli (#1095) 2023-11-13 21:54:02 -05:00
Huy Le
cb745965ce adding ollama.nvim for visibility (#1115) 2023-11-13 17:00:17 -05:00
Enrico Ros
8d29b6a2b6 New big-AGI integration (#1078)
* New big-AGI integration

Ollama works great in big-AGI, and this document explains how to link the two projects.

* Update README.md
2023-11-13 16:59:00 -05:00
Ilya Breitburg
724aa64bee Add Dart library to README.md (#1106) 2023-11-13 14:50:42 -05:00
Michael Yang
d91c103e74 Merge pull request #1055 from dansreis/946-fix-incorrect-base-model-name
Fixed incorrect base model name
2023-11-13 08:42:55 -08:00
Kevin Hermawan
98ec7d81e3 Add OllamaKit to the community integrations (#1085) 2023-11-11 14:41:42 -08:00
Daniel Reis
7c438f2c53 Replaced method 2023-11-10 20:22:03 +00:00
Daniel Reis
6e46338d44 Reverting previous changes 2023-11-10 20:21:35 +00:00
Jeffrey Morgan
cdddd3df65 add format to example python client 2023-11-10 10:22:21 -08:00
Daniel Hiltgen
afa61bdf45 Merge pull request #1075 from jmorganca/dhiltgen/unexpected-eof
Resume chunk download on UnexpectedEOF errors
2023-11-10 08:48:27 -08:00
Daniel Hiltgen
cc54a416c6 Resume chunk download on UnexpectedEOF errors
If the chunk download is interrupted, resume from where we left off
2023-11-10 08:29:42 -08:00
Matt Williams
c819d7f68a Merge pull request #955 from jmorganca/mattw/example-bash-compare
docs: add examples using bash to compare models
2023-11-10 08:59:32 -06:00
Jeffrey Morgan
5cba29b9d6 JSON mode: add `"format" as an api parameter (#1051)
* add `"format": "json"` as an API parameter
---------
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2023-11-09 16:44:02 -08:00
Daniel Reis
d17730356a Removed inline parse model path 2023-11-09 22:44:26 +00:00
Daniel Reis
32d79a6eea Using 'GetShortTagname' method instead 2023-11-09 22:40:37 +00:00
Bruce MacDonald
5b39503bcd document specifying multiple stop params (#1061) 2023-11-09 13:16:26 -08:00
Bruce MacDonald
1ae84bc2a2 skip gpu if less than 2GB VRAM are available (#1059) 2023-11-09 13:16:16 -08:00
Bruce MacDonald
db8bf336fc Update README.md 2023-11-09 12:53:24 -08:00
Nick Anderson
d77e094a90 Added gptel to list of integrations (#1062) 2023-11-09 12:52:36 -08:00
Matt Williams
dd3dc47ddb Merge pull request #992 from aashish2057/aashish2057/langchainjs_doc_update 2023-11-09 05:08:31 -08:00
Michael Yang
c5e1bbabda instead of static number of parameters for each model family, get the real number from the tensors (#1022)
* parse tensor info

* refactor decoder

* return actual parameter count

* explicit rounding

* s/Human/HumanNumber/
2023-11-08 17:55:46 -08:00
Bruce MacDonald
a49d6acc1e add a complete /generate options example (#1035) 2023-11-08 16:44:36 -08:00
Moritz Poldrack
6e9bcdb9b3 progressbar: make start and end seamless (#1042) 2023-11-08 16:42:40 -08:00
Matt Williams
13086363bd Update as per bmacd
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-11-08 18:09:05 -06:00
Bruce MacDonald
ec2a31e9b3 support raw generation requests (#952)
- add the optional `raw` generate request parameter to bypass prompt formatting and response context
-add raw request to docs
2023-11-08 14:05:02 -08:00
Amith Koujalgi
ec84c02d54 Add Ollama4j Java library to the list of community libraries (#1044) 2023-11-08 11:04:32 -08:00
Kevin Hermawan
2a88b66bc9 Add Ollamac to community integrations (#1043) 2023-11-08 11:01:09 -08:00
Jeffrey Morgan
2d0faea96c clean up README.md 2023-11-08 00:03:29 -08:00
Jeffrey Morgan
637142181a clean up README.md 2023-11-07 23:52:31 -08:00
Matt Williams
bcbff421c9 Merge pull request #1023 from jmorganca/mattw/wherearemodelsfaq 2023-11-07 17:59:54 -08:00
thealhu
1359d6cf3b Fix sudo variable in install.sh (#1034)
It was forgotten to replace sudo at one place with the variable for sudo.
2023-11-07 09:59:57 -08:00
Omar Magdy
6e2d0224d9 Added logseq ollama plugin (#1029) 2023-11-07 09:58:13 -08:00
Ikko Eltociear Ashimine
921406f721 Update client.py (#1026)
recieve -> receive
2023-11-07 09:55:47 -08:00
Michael Yang
c7047d7353 Merge pull request #959 from jmorganca/mxyng/example-k8s 2023-11-07 10:43:21 -06:00
Matt Williams
1d155caba3 docs: clarify where the models are stored in the faq
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-11-06 14:38:49 -08:00
Michael Yang
866324b9a5 Merge pull request #943 from tjbck/patch-1
doc: categorised community integrations + added ollama-webui
2023-11-06 11:35:39 -08:00
Michael Yang
145e060855 Apply suggestions from code review
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2023-11-06 11:32:23 -08:00
Michael Yang
146072113d Merge pull request #993 from jmorganca/mxyng/cleanup
cleanup upload and download errors
2023-11-06 11:32:12 -08:00
Timothy Jaeryang Baek
33d31d1b56 Merge branch 'main' into patch-1 2023-11-06 14:27:02 -05:00
Dr. David A. Kunz
274c6cbf4c Added gen.nvim to community integrations (#996) 2023-11-06 10:51:41 -08:00
Elton Renda
7ebbd89bbf add hass-ollama-conversation (#999) 2023-11-06 10:50:35 -08:00
Lars Grammel
9079b1bb6d Add ModelFusion community integration (#1020) 2023-11-06 10:46:16 -08:00
Timothy Jaeryang Baek
6febde7200 Merge branch 'main' into patch-1 2023-11-04 19:12:18 -05:00
pepperoni21
325cfcd9ff Added ollama-rs to community integrations (#995)
Co-authored-by: pepperoni21 <pepperoni2100@gmail.com>
2023-11-04 14:51:29 -07:00
Jeffrey Morgan
639d0fd070 Update README.md 2023-11-04 12:24:24 -07:00
Michael Yang
434a6f9d46 return last error 2023-11-03 16:49:51 -07:00
aashish2057
b13586cc72 update langchainjs doc 2023-11-03 18:45:19 -05:00
Michael Yang
84725ec7e3 refactor part reset 2023-11-03 09:20:32 -07:00
Michael Yang
dccac8c8fa k8s example 2023-11-01 14:52:58 -07:00
Michael
f31961637f Update README.md 2023-11-01 12:20:55 -04:00
Matt Williams
80362fedce better readme
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-10-31 12:40:46 -07:00
Matt Williams
5757925060 add a gif
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-10-31 11:52:01 -07:00
Michael
4512301756 Update README.md 2023-10-31 13:25:36 -04:00
Matt Williams
2236a93efc docs: add examples using bash to compare models
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-10-31 09:12:39 -07:00
Timothy Jaeryang Baek
96da0792e6 doc: OllamaSharp for .NET moved to libraries 2023-10-28 16:18:38 -05:00
Timothy Jaeryang Baek
95d24262fc doc: categorised community integrations + added web-ui 2023-10-28 16:02:13 -05:00
32 changed files with 754 additions and 204 deletions

View File

@@ -29,8 +29,7 @@ curl https://ollama.ai/install.sh | sh
### Docker
The official [Ollama Docker image `ollama/ollama`](https://hub.docker.com/r/ollama/ollama)
is available on Docker Hub.
The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub.
## Quickstart
@@ -160,7 +159,7 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
### Pass in prompt as arguments
```
$ ollama run llama2 "summarize this file:" "$(cat README.md)"
$ ollama run llama2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
@@ -217,21 +216,44 @@ See the [API documentation](./docs/api.md) for all endpoints.
## Community Integrations
### Web & Desktop
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Web UI](https://github.com/ollama-webui/ollama-webui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-agi/blob/main/docs/config-ollama.md)
### Terminal
- [oterm](https://github.com/ggozad/oterm)
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
- [Emacs client](https://github.com/zweifisch/ollama)
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
- [gptel Emacs client](https://github.com/karthink/gptel)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
### Extensions & Plugins
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama)
- [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel)
- [Continue](https://github.com/continuedev/continue)
- [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama)
- [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq)
- [Dagger Chatbot](https://github.com/samalba/dagger-chatbot)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Dumbar](https://github.com/JerrySievert/Dumbar)
- [Emacs client](https://github.com/zweifisch/ollama)
- [oterm](https://github.com/ggozad/oterm)
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)

View File

@@ -7,7 +7,7 @@ BASE_URL = os.environ.get('OLLAMA_HOST', 'http://localhost:11434')
# Generate a response for a given prompt with a provided model. This is a streaming endpoint, so will be a series of responses.
# The final response object will include statistics and additional data from the request. Use the callback function to override
# the default handler.
def generate(model_name, prompt, system=None, template=None, context=None, options=None, callback=None):
def generate(model_name, prompt, system=None, template=None, format="", context=None, options=None, callback=None):
try:
url = f"{BASE_URL}/api/generate"
payload = {
@@ -16,7 +16,8 @@ def generate(model_name, prompt, system=None, template=None, context=None, optio
"system": system,
"template": template,
"context": context,
"options": options
"options": options,
"format": format,
}
# Remove keys with None values

View File

@@ -37,10 +37,56 @@ type GenerateRequest struct {
Template string `json:"template"`
Context []int `json:"context,omitempty"`
Stream *bool `json:"stream,omitempty"`
Raw bool `json:"raw,omitempty"`
Format string `json:"format"`
Options map[string]interface{} `json:"options"`
}
// Options specfied in GenerateRequest, if you add a new option here add it to the API docs also
type Options struct {
Runner
// Predict options used at runtime
NumKeep int `json:"num_keep,omitempty"`
Seed int `json:"seed,omitempty"`
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
PenalizeNewline bool `json:"penalize_newline,omitempty"`
Stop []string `json:"stop,omitempty"`
}
// Runner options which must be set when the model is loaded into memory
type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
type EmbeddingRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
@@ -161,49 +207,6 @@ func (r *GenerateResponse) Summary() {
}
}
// Runner options which must be set when the model is loaded into memory
type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
EmbeddingOnly bool `json:"embedding_only,omitempty"`
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
type Options struct {
Runner
// Predict options used at runtime
NumKeep int `json:"num_keep,omitempty"`
Seed int `json:"seed,omitempty"`
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
PenalizeNewline bool `json:"penalize_newline,omitempty"`
Stop []string `json:"stop,omitempty"`
}
var ErrInvalidOpts = fmt.Errorf("invalid options")
func (opts *Options) FromMap(m map[string]interface{}) error {

View File

@@ -1,7 +1,6 @@
package cmd
import (
"bufio"
"context"
"crypto/ed25519"
"crypto/rand"
@@ -21,7 +20,6 @@ import (
"syscall"
"time"
"github.com/dustin/go-humanize"
"github.com/olekukonko/tablewriter"
"github.com/spf13/cobra"
"golang.org/x/crypto/ssh"
@@ -174,7 +172,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
for _, m := range models.Models {
if len(args) == 0 || strings.HasPrefix(m.Name, args[0]) {
data = append(data, []string{m.Name, m.Digest[:12], humanize.Bytes(uint64(m.Size)), format.HumanTime(m.ModifiedAt, "Never")})
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
}
}
@@ -350,34 +348,49 @@ func pull(model string, insecure bool) error {
}
func RunGenerate(cmd *cobra.Command, args []string) error {
if len(args) > 1 {
// join all args into a single prompt
wordWrap := false
if term.IsTerminal(int(os.Stdout.Fd())) {
wordWrap = true
}
format, err := cmd.Flags().GetString("format")
if err != nil {
return err
}
nowrap, err := cmd.Flags().GetBool("nowordwrap")
prompts := args[1:]
// prepend stdin to the prompt if provided
if !term.IsTerminal(int(os.Stdin.Fd())) {
in, err := io.ReadAll(os.Stdin)
if err != nil {
return err
}
if nowrap {
wordWrap = false
}
return generate(cmd, args[0], strings.Join(args[1:], " "), wordWrap)
prompts = append([]string{string(in)}, prompts...)
}
if readline.IsTerminal(int(os.Stdin.Fd())) {
return generateInteractive(cmd, args[0])
// output is being piped
if !term.IsTerminal(int(os.Stdout.Fd())) {
return generate(cmd, args[0], strings.Join(prompts, " "), false, format)
}
return generateBatch(cmd, args[0])
wordWrap := os.Getenv("TERM") == "xterm-256color"
nowrap, err := cmd.Flags().GetBool("nowordwrap")
if err != nil {
return err
}
if nowrap {
wordWrap = false
}
// prompts are provided via stdin or args so don't enter interactive mode
if len(prompts) > 0 {
return generate(cmd, args[0], strings.Join(prompts, " "), wordWrap, format)
}
return generateInteractive(cmd, args[0], wordWrap, format)
}
type generateContextKey string
func generate(cmd *cobra.Command, model, prompt string, wordWrap bool) error {
func generate(cmd *cobra.Command, model, prompt string, wordWrap bool, format string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
@@ -393,7 +406,7 @@ func generate(cmd *cobra.Command, model, prompt string, wordWrap bool) error {
generateContext = []int{}
}
termWidth, _, err := term.GetSize(int(0))
termWidth, _, err := term.GetSize(int(os.Stdout.Fd()))
if err != nil {
wordWrap = false
}
@@ -414,7 +427,7 @@ func generate(cmd *cobra.Command, model, prompt string, wordWrap bool) error {
var currentLineLength int
var wordBuffer string
request := api.GenerateRequest{Model: model, Prompt: prompt, Context: generateContext}
request := api.GenerateRequest{Model: model, Prompt: prompt, Context: generateContext, Format: format}
fn := func(response api.GenerateResponse) error {
if !spinner.IsFinished() {
spinner.Finish()
@@ -485,9 +498,9 @@ func generate(cmd *cobra.Command, model, prompt string, wordWrap bool) error {
return nil
}
func generateInteractive(cmd *cobra.Command, model string) error {
func generateInteractive(cmd *cobra.Command, model string, wordWrap bool, format string) error {
// load the model
if err := generate(cmd, model, "", false); err != nil {
if err := generate(cmd, model, "", false, ""); err != nil {
return err
}
@@ -508,6 +521,8 @@ func generateInteractive(cmd *cobra.Command, model string) error {
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
fmt.Fprintln(os.Stderr, " /set nowordwrap Disable wordwrap")
fmt.Fprintln(os.Stderr, " /set format json Enable JSON mode")
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, "")
@@ -535,21 +550,6 @@ func generateInteractive(cmd *cobra.Command, model string) error {
return err
}
var wordWrap bool
termType := os.Getenv("TERM")
if termType == "xterm-256color" {
wordWrap = true
}
// override wrapping if the user turned it off
nowrap, err := cmd.Flags().GetBool("nowordwrap")
if err != nil {
return err
}
if nowrap {
wordWrap = false
}
fmt.Print(readline.StartBracketedPaste)
defer fmt.Printf(readline.EndBracketedPaste)
@@ -613,6 +613,16 @@ func generateInteractive(cmd *cobra.Command, model string) error {
case "quiet":
cmd.Flags().Set("verbose", "false")
fmt.Println("Set 'quiet' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
} else {
format = args[2]
fmt.Printf("Set format to '%s' mode.\n", args[2])
}
case "noformat":
format = ""
fmt.Println("Disabled format.")
default:
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
}
@@ -686,26 +696,13 @@ func generateInteractive(cmd *cobra.Command, model string) error {
}
if len(line) > 0 && line[0] != '/' {
if err := generate(cmd, model, line, wordWrap); err != nil {
if err := generate(cmd, model, line, wordWrap, format); err != nil {
return err
}
}
}
}
func generateBatch(cmd *cobra.Command, model string) error {
scanner := bufio.NewScanner(os.Stdin)
for scanner.Scan() {
prompt := scanner.Text()
fmt.Printf(">>> %s\n", prompt)
if err := generate(cmd, model, prompt, false); err != nil {
return err
}
}
return nil
}
func RunServer(cmd *cobra.Command, _ []string) error {
host, port, err := net.SplitHostPort(os.Getenv("OLLAMA_HOST"))
if err != nil {
@@ -883,6 +880,7 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("verbose", false, "Show timings for response")
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
serveCmd := &cobra.Command{
Use: "serve",

View File

@@ -41,11 +41,17 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional):
- `format`: the format to return a response in. Currently the only accepted value is `json`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `system`: system prompt to (overrides what is defined in the `Modelfile`)
- `template`: the full prompt or prompt template (overrides what is defined in the `Modelfile`)
- `context`: the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `raw`: if `true` no formatting will be applied to the prompt and no context will be returned. You may choose to use the `raw` parameter if you are specifying a full templated prompt in your request to the API, and are managing history yourself.
### JSON mode
Enable JSON mode by setting the `format` parameter to `json` and specifying the model should use JSON in the `prompt`. This will structure the response as valid JSON. See the JSON mode [example](#request-json-mode) below.
### Examples
@@ -53,7 +59,7 @@ Advanced parameters (optional):
```shell
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2:7b",
"model": "llama2",
"prompt": "Why is the sky blue?"
}'
```
@@ -64,7 +70,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama2:7b",
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
@@ -88,7 +94,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
```json
{
"model": "llama2:7b",
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"context": [1, 2, 3],
@@ -104,7 +110,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
}
```
#### Request
#### Request (No streaming)
```shell
curl -X POST http://localhost:11434/api/generate -d '{
@@ -136,6 +142,150 @@ If `stream` is set to `false`, the response will be a single JSON object:
}
```
#### Request (Raw mode)
In some cases you may wish to bypass the templating system and provide a full prompt. In this case, you can use the `raw` parameter to disable formatting and context.
```shell
curl -X POST http://localhost:11434/api/generate -d '{
"model": "mistral",
"prompt": "[INST] why is the sky blue? [/INST]",
"raw": true,
"stream": false
}'
```
#### Response
```json
{
"model": "mistral",
"created_at": "2023-11-03T15:36:02.583064Z",
"response": " The sky appears blue because of a phenomenon called Rayleigh scattering.",
"done": true,
"total_duration": 14648695333,
"load_duration": 3302671417,
"prompt_eval_count": 14,
"prompt_eval_duration": 286243000,
"eval_count": 129,
"eval_duration": 10931424000
}
```
#### Request (JSON mode)
```shell
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
}'
```
#### Response
```json
{
"model": "llama2",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
"total_duration": 4661289125,
"load_duration": 1714434500,
"prompt_eval_count": 36,
"prompt_eval_duration": 264132000,
"eval_count": 75,
"eval_duration": 2112149000
}
```
The value of `response` will be a string containing JSON similar to:
```json
{
"morning": {
"color": "blue"
},
"noon": {
"color": "blue-gray"
},
"afternoon": {
"color": "warm gray"
},
"evening": {
"color": "orange"
}
}
```
#### Request (With options)
If you want to set custom options for the model at runtime rather than in the Modelfile, you can do so with the `options` parameter. This example sets every available option, but you can set any of them individually and omit the ones you do not want to override.
```shell
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2:7b",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
"num_keep": 5,
"seed": 42,
"num_predict": 100,
"top_k": 20,
"top_p": 0.9,
"tfs_z": 0.5,
"typical_p": 0.7,
"repeat_last_n": 33,
"temperature": 0.8,
"repeat_penalty": 1.2,
"presence_penalty": 1.5,
"frequency_penalty": 1.0,
"mirostat": 1,
"mirostat_tau": 0.8,
"mirostat_eta": 0.6,
"penalize_newline": true,
"stop": ["\n", "user:"],
"numa": false,
"num_ctx": 4,
"num_batch": 2,
"num_gqa": 1,
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"f16_kv": true,
"logits_all": false,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
"embedding_only": false,
"rope_frequency_base": 1.1,
"rope_frequency_scale": 0.8,
"num_thread": 8
}
}'
```
#### Response
```json
{
"model": "llama2:7b",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"context": [1, 2, 3],
"done": true,
"total_duration": 5589157167,
"load_duration": 3013701500,
"sample_count": 114,
"sample_duration": 81442000,
"prompt_eval_count": 46,
"prompt_eval_duration": 1160282000,
"eval_count": 13,
"eval_duration": 1325948000
}
```
## Create a Model
```shell
@@ -235,9 +385,9 @@ curl http://localhost:11434/api/show -d '{
```json
{
"license": "<contents of license block>",
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llama2:latest\n\nFROM /Users/username/.ollama/models/blobs/sha256:8daa9615cce30c259a9555b1cc250d461d1bc69980a274b44d7eda0be78076d8\nTEMPLATE \"\"\"[INST] {{ if and .First .System }}<<SYS>>{{ .System }}<</SYS>>\n\n{{ end }}{{ .Prompt }} [/INST] \"\"\"\nSYSTEM \"\"\"\"\"\"\nPARAMETER stop [INST]\nPARAMETER stop [/INST]\nPARAMETER stop <<SYS>>\nPARAMETER stop <</SYS>>\n",
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llama2:latest\n\nFROM /Users/username/.ollama/models/blobs/sha256:8daa9615cce30c259a9555b1cc250d461d1bc69980a274b44d7eda0be78076d8\nTEMPLATE \"\"\"[INST] <<SYS>>{{ .System }}<</SYS>>\n\n{{ .Prompt }} [/INST] \"\"\"\nSYSTEM \"\"\"\"\"\"\nPARAMETER stop [INST]\nPARAMETER stop [/INST]\nPARAMETER stop <<SYS>>\nPARAMETER stop <</SYS>>\n",
"parameters": "stop [INST]\nstop [/INST]\nstop <<SYS>>\nstop <</SYS>>",
"template": "[INST] {{ if and .First .System }}<<SYS>>{{ .System }}<</SYS>>\n\n{{ end }}{{ .Prompt }} [/INST] "
"template": "[INST] <<SYS>>{{ .System }}<</SYS>>\n\n{{ .Prompt }} [/INST] "
}
```

View File

@@ -74,6 +74,25 @@ systemctl restart ollama
- macOS: Raw model data is stored under `~/.ollama/models`.
- Linux: Raw model data is stored under `/usr/share/ollama/.ollama/models`
Below the models directory you will find a structure similar to the following:
```shell
.
├── blobs
└── manifests
└── registry.ollama.ai
├── f0rodo
├── library
├── mattw
└── saikatkumardey
```
There is a `manifests/registry.ollama.ai/namespace` path. In example above, the user has downloaded models from the official `library`, `f0rodo`, `mattw`, and `saikatkumardey` namespaces. Within each of those directories, you will find directories for each of the models downloaded. And in there you will find a file name representing each tag. Each tag file is the manifest for the model.
The manifest lists all the layers used in this model. You will see a `media type` for each layer, along with a digest. That digest corresponds with a file in the `models/blobs directory`.
### How can I change where Ollama stores models?
To modify where models are stored, you can use the `OLLAMA_MODELS` environment variable. Note that on Linux this means defining `OLLAMA_MODELS` in a drop-in `/etc/systemd/system/ollama.service.d` service file, reloading systemd, and restarting the ollama service.

View File

@@ -112,8 +112,8 @@ PARAMETER <parameter> <parametervalue>
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. | string | stop "AI assistant:" |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
@@ -129,14 +129,11 @@ PARAMETER <parameter> <parametervalue>
| --------------- | ------------------------------------------------------------------------------------------------------------ |
| `{{ .System }}` | The system prompt used to specify custom behavior, this must also be set in the Modelfile as an instruction. |
| `{{ .Prompt }}` | The incoming prompt, this is not specified in the model file and will be set based on input. |
| `{{ .First }}` | A boolean value used to render specific template information for the first generation of a session. |
```modelfile
TEMPLATE """
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
{{ .Prompt }}

View File

@@ -4,5 +4,6 @@ Here is a list of ways you can use Ollama with other tools to build interesting
- [Using LangChain with Ollama in JavaScript](./tutorials/langchainjs.md)
- [Using LangChain with Ollama in Python](./tutorials/langchainpy.md)
- [Running Ollama on NVIDIA Jetson Devices](./tutorials/nvidia-jetson.md)
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.
Also be sure to check out the [examples](../examples) directory for more ways to use Ollama.

View File

@@ -23,13 +23,17 @@ const answer = await ollama.call(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's build that part of the app.
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio
```
```javascript
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
const loader = new CheerioWebBaseLoader("https://en.wikipedia.org/wiki/2023_Hawaii_wildfires");
const data = loader.load();
const data = await loader.load();
```
That will load the document. Although this page is smaller than the Odyssey, it is certainly bigger than the context size for most LLMs. So we are going to need to split into smaller pieces, and then select just the pieces relevant to our question. This is a great use for a vector datastore. In this example, we will use the **MemoryVectorStore** that is part of **LangChain**. But there is one more thing we need to get the content into the datastore. We have to run an embeddings process that converts the tokens in the text into a series of vectors. And for that, we are going to use **Tensorflow**. There is a lot of stuff going on in this one. First, install the **Tensorflow** components that we need.

View File

@@ -0,0 +1,38 @@
# Running Ollama on NVIDIA Jetson Devices
With some minor configuration, Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/). The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack).
NVIDIA Jetson devices are Linux-based embedded AI computers that are purpose-built for AI applications.
Jetsons have an integrated GPU that is wired directly to the memory controller of the machine. For this reason, the `nvidia-smi` command is unrecognized, and Ollama proceeds to operate in "CPU only"
mode. This can be verified by using a monitoring tool like jtop.
In order to address this, we simply pass the path to the Jetson's pre-installed CUDA libraries into `ollama serve` (while in a tmux session). We then hardcode the num_gpu parameters into a cloned
version of our target model.
Prerequisites:
- curl
- tmux
Here are the steps:
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.ai/install.sh | sh`
- Stop the Ollama service: `sudo systemctl stop ollama`
- Start Ollama serve in a tmux session called ollama_jetson and reference the CUDA libraries path: `tmux has-session -t ollama_jetson 2>/dev/null || tmux new-session -d -s ollama_jetson
'LD_LIBRARY_PATH=/usr/local/cuda/lib64 ollama serve'`
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
- Create a new Modelfile specifically for enabling GPU support on the Jetson: `touch ModelfileMistralJetson`
- In the ModelfileMistralJetson file, specify the FROM model and the num_gpu PARAMETER as shown below:
```
FROM mistral
PARAMETER num_gpu 999
```
- Create a new model from your Modelfile: `ollama create mistral-jetson -f ./ModelfileMistralJetson`
- Run the new model: `ollama run mistral-jetson`
If you run a monitoring tool like jtop you should now see that Ollama is using the Jetson's integrated GPU.
And that's it!

View File

@@ -0,0 +1,10 @@
# Bash Shell examples
When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
`ollama run llama2 < sourcequestions.txt`
This concept is used in the following example.
## Compare Models
`comparemodels.sh` is a script that runs all the questions in `sourcequestions.txt` using any 4 models you choose that you have already pulled from the Ollama library or have created locally.

View File

@@ -0,0 +1,64 @@
#! /usr/bin/env bash
# Compare multiple models by running them with the same questions
NUMBEROFCHOICES=4
SELECTIONS=()
declare -a SUMS=()
# Get the list of models
CHOICES=$(ollama list | awk '{print $1}')
# Select which models to run as a comparison
echo "Select $NUMBEROFCHOICES models to compare:"
select ITEM in $CHOICES; do
if [[ -n $ITEM ]]; then
echo "You have selected $ITEM"
SELECTIONS+=("$ITEM")
((COUNT++))
if [[ $COUNT -eq $NUMBEROFCHOICES ]]; then
break
fi
else
echo "Invalid selection"
fi
done
# Loop through each of the selected models
for ITEM in "${SELECTIONS[@]}"; do
echo "--------------------------------------------------------------"
echo "Loading the model $ITEM into memory"
ollama run "$ITEM" ""
echo "--------------------------------------------------------------"
echo "Running the questions through the model $ITEM"
COMMAND_OUTPUT=$(ollama run "$ITEM" --verbose < sourcequestions.txt 2>&1| tee /dev/stderr)
# eval duration is sometimes listed in seconds and sometimes in milliseconds.
# Add up the values for each model
SUM=$(echo "$COMMAND_OUTPUT" | awk '
/eval duration:/ {
value = $3
if (index(value, "ms") > 0) {
gsub("ms", "", value)
value /= 1000
} else {
gsub("s", "", value)
}
sum += value
}
END { print sum }')
SUMS+=("All questions for $ITEM completed in $SUM seconds")
done
echo ""
echo "--------------------------------------------------------------"
echo -e "Sums of eval durations for each run:"
for val in "${SUMS[@]}"; do
echo "$val"
done
echo "--------------------------------------------------------------"
echo "Comparison complete. Now you can decide"
echo "which model is best."
echo "--------------------------------------------------------------"

View File

@@ -0,0 +1,7 @@
Why is the sky blue
What is a black hole
Explain the big bang theory like I am 5?
What is the quickest way to win a game of Monopoly with 3 others?
Why does a vacuum bottle keep my coffee hot and my milkshake cold?
What is the difference between a meteor, a meteorite, and a meteoroid?
Create an array with 5 items and print to the console. Do this in Python, C#, Typescript, and Rust.

View File

@@ -0,0 +1,36 @@
# Deploy Ollama to Kubernetes
## Prerequisites
- Ollama: https://ollama.ai/download
- Kubernetes cluster. This example will use Google Kubernetes Engine.
## Steps
1. Create the Ollama namespace, daemon set, and service
```bash
kubectl apply -f cpu.yaml
```
1. Port forward the Ollama service to connect and use it locally
```bash
kubectl -n ollama port-forward service/ollama 11434:80
```
1. Pull and run a model, for example `orca-mini:3b`
```bash
ollama run orca-mini:3b
```
## (Optional) Hardware Acceleration
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin). Follow the link for more details.
Once configured, create a GPU enabled Ollama deployment.
```bash
kubectl apply -f gpu.yaml
```

View File

@@ -0,0 +1,42 @@
---
apiVersion: v1
kind: Namespace
metadata:
name: ollama
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ollama
namespace: ollama
spec:
selector:
matchLabels:
name: ollama
template:
metadata:
labels:
name: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
ports:
- name: http
containerPort: 11434
protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
name: ollama
namespace: ollama
spec:
type: ClusterIP
selector:
name: ollama
ports:
- port: 80
name: http
targetPort: http
protocol: TCP

View File

@@ -0,0 +1,56 @@
---
apiVersion: v1
kind: Namespace
metadata:
name: ollama
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ollama
namespace: ollama
spec:
strategy:
type: Recreate
selector:
matchLabels:
name: ollama
template:
metadata:
labels:
name: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
env:
- name: PATH
value: /usr/local/nvidia/bin:/usr/local/nvidia/lib64:/usr/bin:/usr/sbin:/bin:/sbin
- name: LD_LIBRARY_PATH
value: /usr/local/nvidia/lib64
ports:
- name: http
containerPort: 11434
protocol: TCP
resources:
limits:
nvidia.com/gpu: 1
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
---
apiVersion: v1
kind: Service
metadata:
name: ollama
namespace: ollama
spec:
type: ClusterIP
selector:
name: ollama
ports:
- port: 80
name: http
targetPort: http
protocol: TCP

View File

@@ -3,10 +3,8 @@
FROM orca
TEMPLATE """
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
I hate it when my phone dies
### Response:

View File

@@ -3,10 +3,8 @@
This is a simple sentiments analyzer using the Orca model. When you pull Orca from the registry, it has a Template already defined that looks like this:
```Modelfile
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
{{ .Prompt }}

View File

@@ -17,7 +17,7 @@ def generate(prompt, context):
for line in r.iter_lines():
body = json.loads(line)
response_part = body.get('response', '')
# the response streams one token at a time, print that as we recieve it
# the response streams one token at a time, print that as we receive it
print(response_part, end='', flush=True)
if 'error' in body:
@@ -35,4 +35,4 @@ def main():
print()
if __name__ == "__main__":
main()
main()

View File

@@ -12,11 +12,11 @@ const (
func HumanBytes(b int64) string {
switch {
case b > GigaByte:
return fmt.Sprintf("%d GB", b/GigaByte)
return fmt.Sprintf("%.1f GB", float64(b)/GigaByte)
case b > MegaByte:
return fmt.Sprintf("%d MB", b/MegaByte)
return fmt.Sprintf("%.1f MB", float64(b)/MegaByte)
case b > KiloByte:
return fmt.Sprintf("%d KB", b/KiloByte)
return fmt.Sprintf("%.1f KB", float64(b)/KiloByte)
default:
return fmt.Sprintf("%d B", b)
}

25
format/format.go Normal file
View File

@@ -0,0 +1,25 @@
package format
import (
"fmt"
"math"
)
const (
Thousand = 1000
Million = Thousand * 1000
Billion = Million * 1000
)
func HumanNumber(b uint64) string {
switch {
case b > Billion:
return fmt.Sprintf("%.0fB", math.Round(float64(b)/Billion))
case b > Million:
return fmt.Sprintf("%.0fM", math.Round(float64(b)/Million))
case b > Thousand:
return fmt.Sprintf("%.0fK", math.Round(float64(b)/Thousand))
default:
return fmt.Sprintf("%d", b)
}
}

1
go.mod
View File

@@ -3,7 +3,6 @@ module github.com/jmorganca/ollama
go 1.20
require (
github.com/dustin/go-humanize v1.0.1
github.com/emirpasic/gods v1.18.1
github.com/gin-gonic/gin v1.9.1
github.com/mattn/go-runewidth v0.0.14

2
go.sum
View File

@@ -9,8 +9,6 @@ github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ3
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/dustin/go-humanize v1.0.1 h1:GzkhY7T5VNhEkwH0PVJgjz+fX1rhBrR7pRT3mDkpeCY=
github.com/dustin/go-humanize v1.0.1/go.mod h1:Mu1zIs6XwVuF/gI1OepvI0qD18qycQx+mFykh5fBlto=
github.com/emirpasic/gods v1.18.1 h1:FXtiHYKDGKCW2KzwZKx0iC0PQmdlorYgdFG9jPXJ1Bc=
github.com/emirpasic/gods v1.18.1/go.mod h1:8tpGGwCnJ5H4r6BWwaV6OrWmMoPhUl5jm/FMNAnJvWQ=
github.com/gabriel-vasile/mimetype v1.4.2 h1:w5qFW6JKBz9Y393Y4q372O9A7cUSequkh1Q7OhCmWKU=

View File

@@ -5,6 +5,8 @@ import (
"encoding/binary"
"fmt"
"io"
"github.com/jmorganca/ollama/format"
)
type containerGGUF struct {
@@ -21,6 +23,8 @@ type containerGGUF struct {
NumTensor uint64
NumKV uint64
}
parameters uint64
}
func (c *containerGGUF) Name() string {
@@ -75,6 +79,14 @@ func newGGUFModel(container *containerGGUF) *ggufModel {
}
}
func (llm *ggufModel) NumTensor() uint64 {
if llm.Version == 1 {
return uint64(llm.V1.NumTensor)
}
return llm.V2.NumTensor
}
func (llm *ggufModel) NumKV() uint64 {
if llm.Version == 1 {
return uint64(llm.V1.NumKV)
@@ -93,6 +105,10 @@ func (llm *ggufModel) ModelFamily() string {
}
func (llm *ggufModel) ModelType() string {
if llm.parameters > 0 {
return format.HumanNumber(llm.parameters)
}
switch llm.ModelFamily() {
case "llama":
if blocks, ok := llm.kv["llama.block_count"].(uint32); ok {
@@ -127,13 +143,9 @@ func (llm *ggufModel) FileType() string {
}
func (llm *ggufModel) Decode(r io.Reader) error {
read := llm.readString
if llm.Version == 1 {
read = llm.readStringV1
}
// decode key-values
for i := 0; uint64(i) < llm.NumKV(); i++ {
k, err := read(r)
k, err := llm.readString(r)
if err != nil {
return err
}
@@ -165,24 +177,14 @@ func (llm *ggufModel) Decode(r io.Reader) error {
case ggufTypeBool:
v = llm.readBool(r)
case ggufTypeString:
fn := llm.readString
if llm.Version == 1 {
fn = llm.readStringV1
}
s, err := fn(r)
s, err := llm.readString(r)
if err != nil {
return err
}
v = s
case ggufTypeArray:
fn := llm.readArray
if llm.Version == 1 {
fn = llm.readArrayV1
}
a, err := fn(r)
a, err := llm.readArray(r)
if err != nil {
return err
}
@@ -195,6 +197,25 @@ func (llm *ggufModel) Decode(r io.Reader) error {
llm.kv[k] = v
}
// decode tensors
for i := 0; uint64(i) < llm.NumTensor(); i++ {
if _, err := llm.readString(r); err != nil {
return err
}
dimensions := llm.readU32(r)
var elements uint64 = 1
for i := 0; uint32(i) < dimensions; i++ {
elements *= llm.readU64(r)
}
llm.readU32(r) // type
llm.readU64(r) // offset
llm.parameters += elements
}
return nil
}
@@ -290,6 +311,10 @@ func (llm ggufModel) readStringV1(r io.Reader) (string, error) {
}
func (llm ggufModel) readString(r io.Reader) (string, error) {
if llm.Version == 1 {
return llm.readStringV1(r)
}
var nameLength uint64
binary.Read(r, llm.bo, &nameLength)
@@ -339,6 +364,10 @@ func (llm *ggufModel) readArrayV1(r io.Reader) (arr []any, err error) {
}
func (llm *ggufModel) readArray(r io.Reader) (arr []any, err error) {
if llm.Version == 1 {
return llm.readArrayV1(r)
}
atype := llm.readU32(r)
n := llm.readU64(r)

View File

@@ -27,6 +27,34 @@ import (
"github.com/jmorganca/ollama/format"
)
const jsonGrammar = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
//go:embed llama.cpp/*/build/*/bin/*
var llamaCppEmbed embed.FS
@@ -196,7 +224,10 @@ type llama struct {
Running
}
var errNoGPU = errors.New("nvidia-smi command failed")
var (
errNvidiaSMI = errors.New("nvidia-smi command failed")
errAvailableVRAM = errors.New("not enough VRAM available, falling back to CPU only")
)
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
func CheckVRAM() (int64, error) {
@@ -205,7 +236,7 @@ func CheckVRAM() (int64, error) {
cmd.Stdout = &stdout
err := cmd.Run()
if err != nil {
return 0, errNoGPU
return 0, errNvidiaSMI
}
var freeMiB int64
@@ -226,8 +257,8 @@ func CheckVRAM() (int64, error) {
freeBytes := freeMiB * 1024 * 1024
if freeBytes < 2*format.GigaByte {
log.Printf("less than 2 GB VRAM available, falling back to CPU only")
freeMiB = 0
log.Printf("less than 2 GB VRAM available")
return 0, errAvailableVRAM
}
return freeBytes, nil
@@ -240,7 +271,7 @@ func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
if runtime.GOOS == "linux" {
freeBytes, err := CheckVRAM()
if err != nil {
if err.Error() != "nvidia-smi command failed" {
if !errors.Is(err, errNvidiaSMI) {
log.Print(err.Error())
}
// nvidia driver not installed or no nvidia GPU found
@@ -494,7 +525,7 @@ type prediction struct {
const maxBufferSize = 512 * format.KiloByte
func (llm *llama) Predict(ctx context.Context, prevContext []int, prompt string, fn func(api.GenerateResponse)) error {
func (llm *llama) Predict(ctx context.Context, prevContext []int, prompt string, format string, fn func(api.GenerateResponse)) error {
prevConvo, err := llm.Decode(ctx, prevContext)
if err != nil {
return err
@@ -529,6 +560,10 @@ func (llm *llama) Predict(ctx context.Context, prevContext []int, prompt string,
"stop": llm.Stop,
}
if format == "json" {
request["grammar"] = jsonGrammar
}
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)

View File

@@ -14,7 +14,7 @@ import (
)
type LLM interface {
Predict(context.Context, []int, string, func(api.GenerateResponse)) error
Predict(context.Context, []int, string, string, func(api.GenerateResponse)) error
Embedding(context.Context, string) ([]float64, error)
Encode(context.Context, string) ([]int, error)
Decode(context.Context, []int) (string, error)

View File

@@ -291,7 +291,7 @@ func OptionShowDescriptionAtLineEnd() Option {
}
}
var defaultTheme = Theme{Saucer: "█", SaucerPadding: " ", BarStart: "|", BarEnd: "|"}
var defaultTheme = Theme{Saucer: "█", SaucerPadding: " ", BarStart: "", BarEnd: ""}
// NewOptions constructs a new instance of ProgressBar, with any options you specify
func NewOptions(max int, options ...Option) *ProgressBar {

View File

@@ -180,7 +180,7 @@ install_cuda_driver_apt() {
case $1 in
debian)
status 'Enabling contrib sources...'
$SUDO sed 's/main/contrib/' < /etc/apt/sources.list | sudo tee /etc/apt/sources.list.d/contrib.list > /dev/null
$SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/null
;;
esac

View File

@@ -149,9 +149,10 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *Regis
i := i
g.Go(func() error {
var err error
for try := 0; try < maxRetries; try++ {
w := io.NewOffsetWriter(file, part.StartsAt())
err := b.downloadChunk(inner, requestURL, w, part, opts)
err = b.downloadChunk(inner, requestURL, w, part, opts)
switch {
case errors.Is(err, context.Canceled), errors.Is(err, syscall.ENOSPC):
// return immediately if the context is canceled or the device is out of space
@@ -160,11 +161,14 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *Regis
log.Printf("%s part %d attempt %d failed: %v, retrying", b.Digest[7:19], i, try, err)
continue
default:
if try > 0 {
log.Printf("%s part %d completed after %d retries", b.Digest[7:19], i, try)
}
return nil
}
}
return errMaxRetriesExceeded
return fmt.Errorf("%w: %w", errMaxRetriesExceeded, err)
})
}
@@ -201,7 +205,7 @@ func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w
defer resp.Body.Close()
n, err := io.Copy(w, io.TeeReader(resp.Body, b))
if err != nil && !errors.Is(err, context.Canceled) {
if err != nil && !errors.Is(err, context.Canceled) && !errors.Is(err, io.ErrUnexpectedEOF) {
// rollback progress
b.Completed.Add(-n)
return err
@@ -212,7 +216,7 @@ func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w
return err
}
// return nil or context.Canceled
// return nil or context.Canceled or UnexpectedEOF (resumable)
return err
}

View File

@@ -60,12 +60,10 @@ func (m *Model) Prompt(request api.GenerateRequest) (string, error) {
}
var vars struct {
First bool
System string
Prompt string
}
vars.First = len(request.Context) == 0
vars.System = m.System
vars.Prompt = request.Prompt
@@ -397,7 +395,7 @@ func CreateModel(ctx context.Context, name string, path string, fn func(resp api
if err != nil {
return err
}
newLayer.From = mp.GetNamespaceRepository()
newLayer.From = mp.GetShortTagname()
layers = append(layers, newLayer)
}
}

View File

@@ -158,9 +158,17 @@ func GenerateHandler(c *gin.Context) {
return
}
if req.Model == "" {
// validate the request
switch {
case req.Model == "":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
case len(req.Format) > 0 && req.Format != "json":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
return
case req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0):
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "raw mode does not support template, system, or context"})
return
}
model, err := GetModel(req.Model)
@@ -189,10 +197,13 @@ func GenerateHandler(c *gin.Context) {
checkpointLoaded := time.Now()
prompt, err := model.Prompt(req)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
prompt := req.Prompt
if !req.Raw {
prompt, err = model.Prompt(req)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
}
ch := make(chan any)
@@ -215,10 +226,15 @@ func GenerateHandler(c *gin.Context) {
r.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
if req.Raw {
// in raw mode the client must manage history on their own
r.Context = nil
}
ch <- r
}
if err := loaded.runner.Predict(c.Request.Context(), req.Context, prompt, fn); err != nil {
if err := loaded.runner.Predict(c.Request.Context(), req.Context, prompt, req.Format, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()

View File

@@ -40,14 +40,6 @@ type blobUpload struct {
references atomic.Int32
}
type blobUploadPart struct {
// N is the part number
N int
Offset int64
Size int64
hash.Hash
}
const (
numUploadParts = 64
minUploadPartSize int64 = 95 * 1000 * 1000
@@ -100,7 +92,7 @@ func (b *blobUpload) Prepare(ctx context.Context, requestURL *url.URL, opts *Reg
}
// set part.N to the current number of parts
b.Parts = append(b.Parts, blobUploadPart{N: len(b.Parts), Offset: offset, Size: size, Hash: md5.New()})
b.Parts = append(b.Parts, blobUploadPart{blobUpload: b, N: len(b.Parts), Offset: offset, Size: size})
offset += size
}
@@ -143,9 +135,10 @@ func (b *blobUpload) Run(ctx context.Context, opts *RegistryOptions) {
case <-inner.Done():
case requestURL := <-b.nextURL:
g.Go(func() error {
var err error
for try := 0; try < maxRetries; try++ {
r := io.NewSectionReader(f, part.Offset, part.Size)
err := b.uploadChunk(inner, http.MethodPatch, requestURL, r, part, opts)
part.ReadSeeker = io.NewSectionReader(f, part.Offset, part.Size)
err = b.uploadChunk(inner, http.MethodPatch, requestURL, part, opts)
switch {
case errors.Is(err, context.Canceled):
return err
@@ -159,7 +152,7 @@ func (b *blobUpload) Run(ctx context.Context, opts *RegistryOptions) {
return nil
}
return errMaxRetriesExceeded
return fmt.Errorf("%w: %w", errMaxRetriesExceeded, err)
})
}
}
@@ -197,7 +190,9 @@ func (b *blobUpload) Run(ctx context.Context, opts *RegistryOptions) {
b.done = true
}
func (b *blobUpload) uploadChunk(ctx context.Context, method string, requestURL *url.URL, rs io.ReadSeeker, part *blobUploadPart, opts *RegistryOptions) error {
func (b *blobUpload) uploadChunk(ctx context.Context, method string, requestURL *url.URL, part *blobUploadPart, opts *RegistryOptions) error {
part.Reset()
headers := make(http.Header)
headers.Set("Content-Type", "application/octet-stream")
headers.Set("Content-Length", fmt.Sprintf("%d", part.Size))
@@ -207,8 +202,7 @@ func (b *blobUpload) uploadChunk(ctx context.Context, method string, requestURL
headers.Set("Content-Range", fmt.Sprintf("%d-%d", part.Offset, part.Offset+part.Size-1))
}
buw := blobUploadWriter{blobUpload: b}
resp, err := makeRequest(ctx, method, requestURL, headers, io.TeeReader(rs, io.MultiWriter(&buw, part.Hash)), opts)
resp, err := makeRequest(ctx, method, requestURL, headers, io.TeeReader(part.ReadSeeker, io.MultiWriter(part, part.Hash)), opts)
if err != nil {
return err
}
@@ -234,11 +228,7 @@ func (b *blobUpload) uploadChunk(ctx context.Context, method string, requestURL
}
for try := 0; try < maxRetries; try++ {
rs.Seek(0, io.SeekStart)
b.Completed.Add(-buw.written)
buw.written = 0
part.Hash = md5.New()
err := b.uploadChunk(ctx, http.MethodPut, redirectURL, rs, part, nil)
err = b.uploadChunk(ctx, http.MethodPut, redirectURL, part, nil)
switch {
case errors.Is(err, context.Canceled):
return err
@@ -252,7 +242,7 @@ func (b *blobUpload) uploadChunk(ctx context.Context, method string, requestURL
return nil
}
return errMaxRetriesExceeded
return fmt.Errorf("%w: %w", errMaxRetriesExceeded, err)
case resp.StatusCode == http.StatusUnauthorized:
auth := resp.Header.Get("www-authenticate")
@@ -270,9 +260,6 @@ func (b *blobUpload) uploadChunk(ctx context.Context, method string, requestURL
return err
}
rs.Seek(0, io.SeekStart)
b.Completed.Add(-buw.written)
buw.written = 0
return fmt.Errorf("http status %d %s: %s", resp.StatusCode, resp.Status, body)
}
@@ -318,18 +305,33 @@ func (b *blobUpload) Wait(ctx context.Context, fn func(api.ProgressResponse)) er
}
}
type blobUploadWriter struct {
type blobUploadPart struct {
// N is the part number
N int
Offset int64
Size int64
hash.Hash
written int64
io.ReadSeeker
*blobUpload
}
func (b *blobUploadWriter) Write(p []byte) (n int, err error) {
n = len(p)
b.written += int64(n)
b.Completed.Add(int64(n))
func (p *blobUploadPart) Write(b []byte) (n int, err error) {
n = len(b)
p.written += int64(n)
p.Completed.Add(int64(n))
return n, nil
}
func (p *blobUploadPart) Reset() {
p.Seek(0, io.SeekStart)
p.Completed.Add(-int64(p.written))
p.written = 0
p.Hash = md5.New()
}
func uploadBlob(ctx context.Context, mp ModelPath, layer *Layer, opts *RegistryOptions, fn func(api.ProgressResponse)) error {
requestURL := mp.BaseURL()
requestURL = requestURL.JoinPath("v2", mp.GetNamespaceRepository(), "blobs", layer.Digest)