Compare commits

..

1 Commits

Author SHA1 Message Date
jmorganca
19638cec55 add docs.json 2025-08-17 13:12:39 -07:00
137 changed files with 1451 additions and 7513 deletions

View File

@@ -65,36 +65,14 @@ jobs:
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
cuda-version: '12.8'
flags: ''
runner_dir: 'cuda_v12'
- os: windows
arch: amd64
preset: 'CUDA 13'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
flags: ''
runner_dir: 'cuda_v13'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runner_dir: ''
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -118,7 +96,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
@@ -160,7 +138,7 @@ jobs:
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
@@ -254,7 +232,7 @@ jobs:
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_sbsa) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;

View File

@@ -46,7 +46,7 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
container: nvidia/cuda:12.8.1-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -78,17 +78,8 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
@@ -111,8 +102,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path

1
.gitignore vendored
View File

@@ -6,7 +6,6 @@
dist
build
.cache
.gocache
*.exe
.idea
test_data

View File

@@ -38,7 +38,7 @@ if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
@@ -81,7 +81,7 @@ if(CMAKE_CUDA_COMPILER)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA

View File

@@ -18,14 +18,6 @@
"name": "CUDA",
"inherits": [ "Default" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
@@ -34,14 +26,6 @@
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],
@@ -88,21 +72,11 @@
"configurePreset": "CUDA",
"targets": [ "ggml-cuda" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 12"
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],

View File

@@ -1,7 +1,6 @@
# vim: filetype=dockerfile
ARG FLAVOR=${TARGETARCH}
ARG PARALLEL=8
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
@@ -35,51 +34,26 @@ ENV LDFLAGS=-s
FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
FROM base AS cuda-11
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@@ -87,11 +61,10 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
@@ -99,11 +72,10 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
@@ -120,14 +92,10 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama
FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/cuda_sbsa
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6

View File

@@ -411,10 +411,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
### Cloud
@@ -541,9 +537,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
### Mobile
@@ -604,7 +597,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends

View File

@@ -45,12 +45,6 @@ func checkError(resp *http.Response, body []byte) error {
return nil
}
if resp.StatusCode == http.StatusUnauthorized {
authError := AuthorizationError{StatusCode: resp.StatusCode}
json.Unmarshal(body, &authError)
return authError
}
apiError := StatusError{StatusCode: resp.StatusCode}
err := json.Unmarshal(body, &apiError)
@@ -220,8 +214,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
scanner.Buffer(scanBuf, maxBufferSize)
for scanner.Scan() {
var errorResponse struct {
Error string `json:"error,omitempty"`
SigninURL string `json:"signin_url,omitempty"`
Error string `json:"error,omitempty"`
}
bts := scanner.Bytes()
@@ -229,13 +222,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf("unmarshal: %w", err)
}
if response.StatusCode == http.StatusUnauthorized {
return AuthorizationError{
StatusCode: response.StatusCode,
Status: response.Status,
SigninURL: errorResponse.SigninURL,
}
} else if response.StatusCode >= http.StatusBadRequest {
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -441,21 +428,3 @@ func (c *Client) Version(ctx context.Context) (string, error) {
return version.Version, nil
}
// Signout will signout a client for a local ollama server.
func (c *Client) Signout(ctx context.Context) error {
return c.do(ctx, http.MethodPost, "/api/signout", nil, nil)
}
// Disconnect will disconnect an ollama instance from ollama.com.
func (c *Client) Disconnect(ctx context.Context, encodedKey string) error {
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
}
func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
var resp UserResponse
if err := c.do(ctx, http.MethodPost, "/api/me", nil, &resp); err != nil {
return nil, err
}
return &resp, nil
}

View File

@@ -11,8 +11,6 @@ import (
"strings"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
@@ -38,19 +36,6 @@ func (e StatusError) Error() string {
}
}
type AuthorizationError struct {
StatusCode int
Status string
SigninURL string `json:"signin_url"`
}
func (e AuthorizationError) Error() string {
if e.Status != "" {
return e.Status
}
return "something went wrong, please see the ollama server logs for details"
}
// ImageData represents the raw binary data of an image file.
type ImageData []byte
@@ -105,10 +90,6 @@ type GenerateRequest struct {
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -139,10 +120,6 @@ type ChatRequest struct {
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models.
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
type Tools []Tool
@@ -301,23 +278,16 @@ func mapToTypeScriptType(jsonType string) string {
}
}
type ToolFunctionParameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
}
func (t *ToolFunctionParameters) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters ToolFunctionParameters `json:"parameters"`
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
} `json:"parameters"`
}
func (t *ToolFunction) String() string {
@@ -328,38 +298,16 @@ func (t *ToolFunction) String() string {
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Message contains the message or part of a message from the model.
Message Message `json:"message"`
// Done specifies if the response is complete.
Done bool `json:"done"`
// DoneReason is the reason the model stopped generating text.
DoneReason string `json:"done_reason,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
Metrics
}
// DebugInfo contains debug information for template rendering
type DebugInfo struct {
RenderedTemplate string `json:"rendered_template"`
ImageCount int `json:"image_count,omitempty"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@@ -412,12 +360,8 @@ type EmbedRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Truncate truncates the input to fit the model's max sequence length.
Truncate *bool `json:"truncate,omitempty"`
// Dimensions truncates the output embedding to the specified dimension.
Dimensions int `json:"dimensions,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
}
@@ -455,47 +399,18 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
// Model is the model name to create.
Model string `json:"model"`
// Stream specifies whether the response is streaming; it is true by default.
Stream *bool `json:"stream,omitempty"`
// Quantize is the quantization format for the model; leave blank to not change the quantization level.
Model string `json:"model"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// From is the name of the model or file to use as the source.
From string `json:"from,omitempty"`
// RemoteHost is the URL of the upstream ollama API for the model (if any).
RemoteHost string `json:"remote_host,omitempty"`
// Files is a map of files include when creating the model.
Files map[string]string `json:"files,omitempty"`
// Adapters is a map of LoRA adapters to include when creating the model.
Adapters map[string]string `json:"adapters,omitempty"`
// Template is the template used when constructing a request to the model.
Template string `json:"template,omitempty"`
// License is a string or list of strings for licenses.
License any `json:"license,omitempty"`
// System is the system prompt for the model.
System string `json:"system,omitempty"`
// Parameters is a map of hyper-parameters which are applied to the model.
Parameters map[string]any `json:"parameters,omitempty"`
// Messages is a list of messages added to the model before chat and generation requests.
Messages []Message `json:"messages,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
From string `json:"from,omitempty"`
Files map[string]string `json:"files,omitempty"`
Adapters map[string]string `json:"adapters,omitempty"`
Template string `json:"template,omitempty"`
License any `json:"license,omitempty"`
System string `json:"system,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Messages []Message `json:"messages,omitempty"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -533,12 +448,8 @@ type ShowResponse struct {
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
@@ -597,14 +508,12 @@ type ProcessResponse struct {
// ListModelResponse is a single model description in [ListResponse].
type ListModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
// ProcessModelResponse is a single model description in [ProcessResponse].
@@ -628,12 +537,6 @@ type GenerateResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
@@ -657,8 +560,6 @@ type GenerateResponse struct {
Metrics
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
}
// ModelDetails provides details about a model.
@@ -671,18 +572,6 @@ type ModelDetails struct {
QuantizationLevel string `json:"quantization_level"`
}
// UserResponse provides information about a user.
type UserResponse struct {
ID uuid.UUID `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
// Tensor describes the metadata for a given tensor.
type Tensor struct {
Name string `json:"name"`
@@ -971,7 +860,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(t * float64(time.Second))
d.Duration = time.Duration(int(t) * int(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)

View File

@@ -17,11 +17,6 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req string
exp *Duration
}{
{
name: "Unset",
req: `{ }`,
exp: nil,
},
{
name: "Positive Integer",
req: `{ "keep_alive": 42 }`,
@@ -30,7 +25,7 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
{
name: "Positive Float",
req: `{ "keep_alive": 42.5 }`,
exp: &Duration{42500 * time.Millisecond},
exp: &Duration{42 * time.Second},
},
{
name: "Positive Integer String",
@@ -441,50 +436,3 @@ func TestThinking_UnmarshalJSON(t *testing.T) {
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string
params ToolFunctionParameters
expected string
}{
{
name: "simple object with string property",
params: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
"name": {
Type: PropertyType{"string"},
Description: "The name of the person",
},
},
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
},
{
name: "marshal failure returns empty string",
params: ToolFunctionParameters{
Type: "object",
Defs: func() any {
// Create a cycle that will cause json.Marshal to fail
type selfRef struct {
Self *selfRef
}
s := &selfRef{}
s.Self = s
return s
}(),
Properties: map[string]ToolProperty{},
},
expected: "",
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
result := test.params.String()
assert.Equal(t, test.expected, result)
})
}
}

View File

@@ -18,13 +18,21 @@ import (
const defaultPrivateKey = "id_ed25519"
func GetPublicKey() (string, error) {
func keyPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
return filepath.Join(home, ".ollama", defaultPrivateKey), nil
}
func GetPublicKey() (string, error) {
keyPath, err := keyPath()
if err != nil {
return "", err
}
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
@@ -51,12 +59,11 @@ func NewNonce(r io.Reader, length int) (string, error) {
}
func Sign(ctx context.Context, bts []byte) (string, error) {
home, err := os.UserHomeDir()
keyPath, err := keyPath()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))

View File

@@ -47,8 +47,6 @@ import (
"github.com/ollama/ollama/version"
)
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
@@ -58,8 +56,10 @@ func ensureThinkingSupport(ctx context.Context, client *api.Client, name string)
if err != nil {
return
}
if slices.Contains(resp.Capabilities, model.CapabilityThinking) {
return
for _, cap := range resp.Capabilities {
if cap == model.CapabilityThinking {
return
}
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
@@ -288,17 +288,7 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
Think: opts.Think,
}
return client.Generate(cmd.Context(), req, func(r api.GenerateResponse) error {
if r.RemoteModel != "" && opts.ShowConnect {
p.StopAndClear()
if strings.HasPrefix(r.RemoteHost, "https://ollama.com") {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on 'ollama.com' ⚡\n", r.RemoteModel)
} else {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on '%s'\n", r.RemoteModel, r.RemoteHost)
}
}
return nil
})
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
}
func StopHandler(cmd *cobra.Command, args []string) error {
@@ -319,10 +309,9 @@ func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
ShowConnect: true,
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
}
format, err := cmd.Flags().GetString("format")
@@ -380,7 +369,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
prompts = append([]string{string(in)}, prompts...)
opts.ShowConnect = false
opts.WordWrap = false
interactive = false
}
@@ -447,15 +435,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
if errors.As(err, &sErr) && sErr.StatusCode == http.StatusUnauthorized {
fmt.Printf("You need to be signed in to Ollama to run Cloud models.\n\n")
if sErr.SigninURL != "" {
fmt.Printf(ConnectInstructions, sErr.SigninURL)
}
return nil
}
return err
}
@@ -476,59 +455,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generate(cmd, opts)
}
func SigninHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
user, err := client.Whoami(cmd.Context())
if err != nil {
var aErr api.AuthorizationError
if errors.As(err, &aErr) && aErr.StatusCode == http.StatusUnauthorized {
fmt.Println("You need to be signed in to Ollama to run Cloud models.")
fmt.Println()
if aErr.SigninURL != "" {
fmt.Printf(ConnectInstructions, aErr.SigninURL)
}
return nil
}
return err
}
if user != nil && user.Name != "" {
fmt.Printf("You are already signed in as user '%s'\n", user.Name)
fmt.Println()
return nil
}
return nil
}
func SignoutHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
err = client.Signout(cmd.Context())
if err != nil {
var aErr api.AuthorizationError
if errors.As(err, &aErr) && aErr.StatusCode == http.StatusUnauthorized {
fmt.Println("You are not signed in to ollama.com")
fmt.Println()
return nil
} else {
return err
}
}
fmt.Println("You have signed out of ollama.com")
fmt.Println()
return nil
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -581,8 +507,7 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if spinner != nil {
spinner.Stop()
}
errStr := strings.ToLower(err.Error())
if strings.Contains(errStr, "access denied") || strings.Contains(errStr, "unauthorized") {
if strings.Contains(err.Error(), "access denied") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
return err
@@ -616,14 +541,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
for _, m := range models.Models {
if len(args) == 0 || strings.HasPrefix(strings.ToLower(m.Name), strings.ToLower(args[0])) {
var size string
if m.RemoteModel != "" {
size = "-"
} else {
size = format.HumanBytes(m.Size)
}
data = append(data, []string{m.Name, m.Digest[:12], size, format.HumanTime(m.ModifiedAt, "Never")})
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
}
}
@@ -708,8 +626,8 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
KeepAlive: &api.Duration{Duration: 0},
}
if err := loadOrUnloadModel(cmd, opts); err != nil {
if !strings.Contains(strings.ToLower(err.Error()), "not found") {
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", args[0])
if !strings.Contains(err.Error(), "not found") {
return fmt.Errorf("unable to stop existing running model \"%s\": %s", args[0], err)
}
}
@@ -820,36 +738,12 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
}
tableRender("Model", func() (rows [][]string) {
if resp.RemoteHost != "" {
rows = append(rows, []string{"", "Remote model", resp.RemoteModel})
rows = append(rows, []string{"", "Remote URL", resp.RemoteHost})
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
var paramStr string
if resp.Details.ParameterSize != "" {
paramStr = resp.Details.ParameterSize
} else if v, ok := resp.ModelInfo["general.parameter_count"]; ok {
if f, ok := v.(float64); ok {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "context length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ModelInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "context length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64), 'f', -1, 64)})
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
@@ -1097,7 +991,6 @@ type runOptions struct {
KeepAlive *api.Duration
Think *api.ThinkValue
HideThinking bool
ShowConnect bool
}
type displayResponseState struct {
@@ -1653,22 +1546,6 @@ func NewCLI() *cobra.Command {
pushCmd.Flags().Bool("insecure", false, "Use an insecure registry")
signinCmd := &cobra.Command{
Use: "signin",
Short: "Sign in to ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SigninHandler,
}
signoutCmd := &cobra.Command{
Use: "signout",
Short: "Sign out from ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SignoutHandler,
}
listCmd := &cobra.Command{
Use: "list",
Aliases: []string{"ls"},
@@ -1763,8 +1640,6 @@ func NewCLI() *cobra.Command {
stopCmd,
pullCmd,
pushCmd,
signinCmd,
signoutCmd,
listCmd,
psCmd,
copyCmd,

View File

@@ -3,7 +3,6 @@ package cmd
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
@@ -305,8 +304,6 @@ func TestDeleteHandler(t *testing.T) {
w.WriteHeader(http.StatusOK)
} else {
w.WriteHeader(http.StatusNotFound)
errPayload := `{"error":"model '%s' not found"}`
w.Write([]byte(fmt.Sprintf(errPayload, req.Name)))
}
return
}
@@ -349,7 +346,7 @@ func TestDeleteHandler(t *testing.T) {
}
err := DeleteHandler(cmd, []string{"test-model-not-found"})
if err == nil || !strings.Contains(err.Error(), "model 'test-model-not-found' not found") {
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
}
}
@@ -502,7 +499,7 @@ func TestPushHandler(t *testing.T) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "403: {\"errors\":[{\"code\":\"ACCESS DENIED\", \"message\":\"access denied\"}]}",
"error": "access denied",
})
if err != nil {
t.Fatal(err)
@@ -525,10 +522,6 @@ func TestPushHandler(t *testing.T) {
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
tmpDir := t.TempDir()
t.Setenv("HOME", tmpDir)
t.Setenv("USERPROFILE", tmpDir)
initializeKeypair()
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")

View File

@@ -28,7 +28,6 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@@ -55,11 +54,9 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
break
}
}
@@ -93,7 +90,6 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

View File

@@ -15,24 +15,19 @@ import (
type gptossModel struct {
ModelParameters
HiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
LocalExperts uint32 `json:"num_local_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
RopeScaling struct {
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
HiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*gptossModel)(nil)
@@ -41,11 +36,11 @@ func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gptoss"
kv["general.file_type"] = uint32(4)
kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
kv["gptoss.context_length"] = uint32(m.RopeScalingFactor * float32(m.InitialContextLength))
kv["gptoss.block_count"] = m.HiddenLayers
kv["gptoss.embedding_length"] = m.HiddenSize
kv["gptoss.feed_forward_length"] = m.IntermediateSize
kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
kv["gptoss.expert_count"] = m.Experts
kv["gptoss.expert_used_count"] = m.ExpertsPerToken
kv["gptoss.attention.head_count"] = m.AttentionHeads
kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
@@ -54,7 +49,7 @@ func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
kv["gptoss.attention.sliding_window"] = m.SlidingWindow
kv["gptoss.rope.freq_base"] = m.RopeTheta
kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
kv["gptoss.rope.scaling.factor"] = m.RopeScalingFactor
kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
kv["tokenizer.ggml.add_bos_token"] = false
@@ -97,11 +92,6 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
for name, mxfp4 := range mxfp4s {
dims := mxfp4.blocks.Shape()
if !strings.HasSuffix(name, ".weight") {
name += ".weight"
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: uint32(ggml.TensorTypeMXFP4),
@@ -114,47 +104,25 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
}
func (m *gptossModel) Replacements() []string {
var replacements []string
if m.MaxPositionEmbeddings > 0 {
// hf flavored model
replacements = []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_out",
"self_attn.sinks", "attn_sinks",
"post_attention_layernorm", "ffn_norm",
"mlp.router", "ffn_gate_inp",
"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
"mlp.experts.down_proj_", "ffn_down_exps.",
"model.norm", "output_norm",
}
} else {
replacements = []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
}
return []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
}
return replacements
}
type mxfp4 struct {
@@ -172,20 +140,7 @@ func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
blocksDims[i] = int(d)
}
bts := b.Bytes()
var tmp [16]byte
for i := 0; i < b.Len(); i += 16 {
for j := range 8 {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[i+j], bts[i+j+8]
tmp[2*j+0] = (a & 0x0F) | (b << 4)
tmp[2*j+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[i:i+16], tmp[:])
}
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(b.Bytes()))
var s bytes.Buffer
if _, err := m.scales.WriteTo(&s); err != nil {
@@ -219,5 +174,5 @@ func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
return 0, err
}
return int64(len(u8s)), nil
return 0, nil
}

View File

@@ -33,8 +33,8 @@ func (t tensorBase) Shape() []uint64 {
const (
tensorKindFP32 uint32 = iota
tensorKindFP16
tensorKindMXFP4 = 4
tensorKindBF16 = 30
tensorKindMXFP4 = 39
)
func (t tensorBase) Kind() uint32 {

View File

@@ -96,7 +96,7 @@ type safetensor struct {
func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind()
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
if st.dtype == "BF16" && kind != tensorKindFP32 {
kind = tensorKindBF16
}
@@ -188,17 +188,17 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
switch st.Kind() {
case tensorKindFP32:
return int64(len(f32s) * 4), binary.Write(w, binary.LittleEndian, f32s)
return 0, binary.Write(w, binary.LittleEndian, f32s)
case tensorKindFP16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return int64(len(f16s) * 2), binary.Write(w, binary.LittleEndian, f16s)
return 0, binary.Write(w, binary.LittleEndian, f16s)
case tensorKindBF16:
u8s := bfloat16.EncodeFloat32(f32s)
return int64(len(u8s)), binary.Write(w, binary.LittleEndian, u8s)
return 0, binary.Write(w, binary.LittleEndian, u8s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}

View File

@@ -230,65 +230,3 @@ func TestSafetensors(t *testing.T) {
})
}
}
func TestSafetensorKind(t *testing.T) {
tests := []struct {
name string
st safetensor
expected uint32
}{
{
name: "BF16 dtype with non-v. prefix and non-FP32 base kind should return BF16",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindBF16,
},
{
name: "BF16 dtype with v. prefix should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "v.weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindFP16,
},
{
name: "BF16 dtype with FP32 base kind should return FP32",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10}, // will default to FP32
},
dtype: "BF16",
},
expected: tensorKindFP32,
},
{
name: "Non-BF16 dtype should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "FP16",
},
expected: tensorKindFP16,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.st.Kind()
if result != tt.expected {
t.Errorf("Kind() = %d, expected %d", result, tt.expected)
}
})
}
}

View File

@@ -277,7 +277,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
filterID: gpuOrdinalID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
@@ -395,7 +394,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, "HSA_ENABLE_SDMA=0")
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
}
// The GPU has passed all the verification steps and is supported
@@ -524,26 +523,19 @@ func verifyKFDDriverAccess() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
ids = append(ids, info.ID)
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES=" + strings.Join(ids, ",")
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -111,7 +111,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
filterID: i,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
@@ -201,26 +200,19 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
ids = append(ids, info.ID)
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES=" + strings.Join(ids, ",")
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -16,7 +16,20 @@ import (
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaVariant(gpuInfos []CudaGPUInfo) string {
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "cuda" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
@@ -43,22 +56,14 @@ func cudaVariant(gpuInfos []CudaGPUInfo) string {
}
}
}
return "sbsa"
}
// Check GPU compute capability FIRST, lowest common denominator if multi-gpu
for _, gpuInfo := range gpuInfos {
if gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5) {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// The detected driver is older than Feb 2023
slog.Warn("old CUDA driver detected - please upgrade to a newer driver", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
return "v11"
}
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if len(gpuInfos) > 0 && gpuInfos[0].DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfos[0].DriverMajor, gpuInfos[0].DriverMinor))
return "v12"
}
return "v13"
return "v12"
}

View File

@@ -284,8 +284,18 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
@@ -323,24 +333,6 @@ func GetGPUInfo() GpuInfoList {
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel
@@ -379,15 +371,6 @@ func GetGPUInfo() GpuInfoList {
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
@@ -697,16 +680,23 @@ func getVerboseState() C.uint16_t {
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return nil
return "", ""
}
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
return vd
}
func GetSystemInfo() SystemInfo {

View File

@@ -62,9 +62,9 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
// No-op on darwin
return nil
return "", ""
}
func GetSystemInfo() SystemInfo {

21
discover/gpu_oneapi.go Normal file
View File

@@ -0,0 +1,21 @@
//go:build linux || windows
package discover
import (
"log/slog"
"strings"
)
func oneapiGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "oneapi" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("oneapiGetVisibleDevicesEnv skipping over non-sycl device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "ONEAPI_DEVICE_SELECTOR", "level_zero:" + strings.Join(ids, ",")
}

View File

@@ -27,8 +27,8 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key=value]
EnvWorkarounds []string `json:"envs,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
@@ -36,10 +36,9 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
filterID int //nolint:unused,nolintlint // AMD Workaround: The numeric ID of the device used to filter out other devices
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`

View File

@@ -1708,7 +1708,6 @@ Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
### Examples

View File

@@ -1,40 +0,0 @@
# Cloud
| Ollama's cloud is currently in preview. For full documentation, see [Ollama's documentation](https://docs.ollama.com/cloud).
## Cloud Models
[Cloud models](https://ollama.com/cloud) are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldnt fit on a personal computer.
Ollama currently supports the following cloud models, with more coming soon:
- `gpt-oss:20b-cloud`
- `gpt-oss:120b-cloud`
- `deepseek-v3.1:671b-cloud`
- `qwen3-coder:480b-cloud`
### Get started
To run a cloud model, open the terminal and run:
```
ollama run gpt-oss:120b-cloud
```
To run cloud models with integrations that work with Ollama, first download the cloud model:
```
ollama pull qwen3-coder:480b-cloud
```
Then sign in to Ollama:
```
ollama signin
```
Finally, access the model using the model name `qwen3-coder:480b-cloud` via Ollama's local API or tooling.
## Cloud API access
Cloud models can also be accessed directly on ollama.com's API. For more information, see the [docs](https://docs.ollama.com/cloud).

View File

@@ -11,10 +11,6 @@ Then build and run Ollama from the root directory of the repository:
go run . serve
```
> [!NOTE]
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
## macOS (Apple Silicon)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.

75
docs/docs.json Normal file
View File

@@ -0,0 +1,75 @@
{
"$schema": "https://mintlify.com/docs.json",
"theme": "mint",
"background": {
"color": {
"light": "#ffffff",
"dark": "#000000"
}
},
"appearance": {
"default": "light"
},
"styling": {
"codeblocks": "system"
},
"contextual": {
"options": ["copy", "chatgpt", "claude", "view"]
},
"fonts": {
"heading": {
"family": "Inter"
},
"body": {
"family": "Inter"
}
},
"name": "Ollama",
"colors": {
"primary": "#000",
"light": "#b5b5b5",
"dark": "#fff"
},
"favicon": "/ollama.png",
"logo": {
"light": "/ollama.png",
"dark": "/favicon.svg"
},
"navigation": {
"tabs": [
{
"tab": "Documentation",
"groups": [
{
"group": "Home",
"pages": ["index", "quickstart", "faq", "troubleshooting"]
},
{
"group": "Platforms",
"pages": ["linux", "windows", "docker"]
},
{
"group": "Features",
"pages": [
"modelfile",
"apis",
"openai",
"import",
"gpu",
"benchmark"
]
}
]
},
{
"tab": "Development",
"groups": [
{
"group": " ",
"pages": ["development", "examples", "template"]
}
]
}
]
}
}

View File

@@ -11,13 +11,12 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
> [!NOTE]
> If you are upgrading from a prior version, you **MUST** remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
Download and extract the package:
```shell
curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
sudo rm -rf /usr/lib/ollama
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```

View File

@@ -92,9 +92,6 @@ If none of those resolve the problem, gather additional information and file an
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
You may get more details for initialization failures by enabling debug prints in the uvm driver. You should only use this temporarily while troubleshooting
- `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm uvm_debug_prints=1`
## AMD GPU Discovery

107
docs/turbo.md Normal file
View File

@@ -0,0 +1,107 @@
# Turbo
>  Turbo is preview
Ollamas [Turbo](https://ollama.com/turbo) is a new way to run open-source models with acceleration from datacenter-grade hardware.
Currently, the following models are available in Turbo:
- `gpt-oss:20b`
- `gpt-oss:120b`
## Get started
### Ollama for macOS & Windows
Download Ollama
- Select a model such as `gpt-oss:20b` or `gpt-oss:120b`
- Click on **Turbo**. Youll be prompted to create an account or sign in
### Ollamas CLI
- [Sign up](https://ollama.com/signup) for an Ollama account
- Add your Ollama key [to ollama.com](https://ollama.com/settings/keys).
On macOS and Linux:
```shell
cat ~/.ollama/id_ed25519.pub
```
On Windows:
```
type "%USERPROFILE%\.ollama\id_ed25519.pub"
```
- Then run a model setting `OLLAMA_HOST` to `ollama.com`:
```shell
OLLAMA_HOST=ollama.com ollama run gpt-oss:120b
```
### Ollamas Python library
- Download Ollama's [Python library](https://github.com/ollama/ollama-python)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```python
from ollama import Client
client = Client(
host="https://ollama.com",
headers={'Authorization': '<api key>'}
)
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
### Ollamas JavaScript library
- Download Ollama's [JavaScript library](https://github.com/ollama/ollama-js)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```typescript
import { Ollama } from 'ollama';
const ollama = new Ollama({
host: 'https://ollama.com',
headers: {
Authorization: "Bearer <api key>"
}
});
const response = await ollama.chat({
model: 'gpt-oss:120b',
messages: [{ role: 'user', content: 'Explain quantum computing' }],
stream: true
});
for await (const part of response) {
process.stdout.write(part.message.content)
}
```
### Community integrations
Turbo mode is also compatible with several community integrations.
#### Open WebUI
- Go to **settings** → **Admin settings** → **Connections**
- Under **Ollama API,** click **+**
- For the **URL** put `https://ollama.com`
- For the **API key,** create an API key on https://ollama.com/settings/keys and add it.
- Click **Save**
Now, if you navigate to the model selector, Turbo models should be available under **External**.

View File

@@ -134,17 +134,6 @@ func LoadTimeout() (loadTimeout time.Duration) {
return loadTimeout
}
func Remotes() []string {
var r []string
raw := strings.TrimSpace(Var("OLLAMA_REMOTES"))
if raw == "" {
r = []string{"ollama.com"}
} else {
r = strings.Split(raw, ",")
}
return r
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
@@ -196,6 +185,8 @@ var (
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
// Enable the new memory estimation logic
NewMemoryEstimates = Bool("OLLAMA_NEW_ESTIMATES")
)
func String(s string) func() string {
@@ -281,7 +272,7 @@ func AsMap() map[string]EnvVar {
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
"OLLAMA_NEW_ESTIMATES": {"OLLAMA_NEW_ESTIMATES", NewMemoryEstimates(), "Enable the new memory estimation logic"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

View File

@@ -7,11 +7,9 @@ import (
"fmt"
"io"
"log/slog"
"math"
"slices"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
)
@@ -57,28 +55,10 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() []uint64 {
headCountDefault := uint32(1)
headCount := kv.UintOrArrayValueAsArray("attention.head_count", headCountDefault)
if len(headCount) == 1 {
headCountDefault = headCount[0]
}
nLayers := int(kv.BlockCount())
if len(headCount) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCount)", len(headCount), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCount) {
out[i] = uint64(headCountDefault)
} else {
out[i] = uint64(headCount[i])
}
}
return out
}
func (kv KV) HeadCountMax() uint64 {
// TODO(drifkin): using the max value can cause an overestimation. In the
// future if array values become more popular, we can adapt the more invasive
// <https://github.com/ollama/ollama/pull/10225>
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
}
@@ -86,27 +66,6 @@ func (kv KV) HeadCountMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
}
func (kv KV) HeadCountKV() []uint64 {
headCountKVDefault := uint32(1)
headCountKV := kv.UintOrArrayValueAsArray("attention.head_count_kv", headCountKVDefault)
if len(headCountKV) == 1 {
headCountKVDefault = headCountKV[0]
}
nLayers := int(kv.BlockCount())
if len(headCountKV) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCountKV)", len(headCountKV), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCountKV) {
out[i] = uint64(headCountKVDefault)
} else {
out[i] = uint64(headCountKV[i])
}
}
return out
}
func (kv KV) HeadCountKVMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
}
@@ -139,26 +98,6 @@ func (kv KV) ChatTemplate() string {
return kv.String("tokenizer.chat_template")
}
// ssm architecture parameters
func (kv KV) SSMConvKernel() uint64 {
return uint64(kv.Uint("ssm.conv_kernel"))
}
func (kv KV) SSMInnerSize() uint64 {
return uint64(kv.Uint("ssm.inner_size"))
}
func (kv KV) SSMStateSize() uint64 {
return uint64(kv.Uint("ssm.state_size"))
}
func (kv KV) SSMGroupCount() uint64 {
return uint64(kv.Uint("ssm.group_count"))
}
// general types
func (kv KV) String(key string, defaultValue ...string) string {
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
@@ -190,27 +129,22 @@ func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
}
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
arrVal := kv.UintOrArrayValueAsArray(key, defaultValue)
return slices.Min(arrVal), slices.Max(arrVal)
}
func (kv KV) UintOrArrayValueAsArray(key string, defaultValue uint32) []uint32 {
if u32, ok := keyValue(kv, key, uint32(0)); ok {
return []uint32{u32}
return u32, u32
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
return u32s.values
min := slices.Min(u32s.values)
max := slices.Max(u32s.values)
return min, max
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
dst := make([]uint32, len(i32s.values))
for i, v := range i32s.values {
if v < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "i", i, "v", v)
}
dst[i] = uint32(v)
min := slices.Min(i32s.values)
max := slices.Max(i32s.values)
if min < 0 || max < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "min", min, "max", max)
}
return dst
return uint32(min), uint32(max)
}
return []uint32{defaultValue}
return defaultValue, defaultValue
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
@@ -243,7 +177,6 @@ func (kv KV) OllamaEngineRequired() bool {
"gemma3",
"gemma3n",
"mistral3",
"qwen3",
"llama4",
"mllama",
"qwen25vl",
@@ -342,7 +275,7 @@ type Tensor struct {
func (t Tensor) block() (n int) {
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
return math.MaxInt
return -1
}
return
@@ -355,24 +288,24 @@ func (t Tensor) blockSize() uint64 {
func (t TensorType) BlockSize() uint64 {
switch t {
case
TensorTypeF32,
TensorTypeF16,
TensorTypeI8,
TensorTypeI16,
TensorTypeI32,
TensorTypeI64,
TensorTypeF64,
TensorTypeBF16:
0, // F32
1, // F16
24, // I8
25, // I16
26, // I32
27, // I64
28, // F64
30: // BF16
return 1
case
TensorTypeQ4_0,
TensorTypeQ4_1,
TensorTypeQ5_0,
TensorTypeQ5_1,
TensorTypeQ8_0,
TensorTypeQ8_1,
tensorTypeIQ4_NL,
4, TensorTypeMXFP4:
2, // Q4_0
3, // Q4_1
4, // MXFP4
6, // Q5_0
7, // Q5_1
8, // Q8_0
9, // Q8_1
20: // IQ4_NL
return 32
default:
return 256
@@ -395,6 +328,8 @@ func (t TensorType) TypeSize() uint64 {
return 2 + blockSize/2
case TensorTypeQ4_1:
return 2 + 2 + blockSize/2
case TensorTypeMXFP4, 39:
return 1 + blockSize/2
case TensorTypeQ5_0:
return 2 + 4 + blockSize/2
case TensorTypeQ5_1:
@@ -445,8 +380,6 @@ func (t TensorType) TypeSize() uint64 {
return blockSize/8 + blockSize/16 + blockSize/32
case TensorTypeBF16:
return 2
case 4, TensorTypeMXFP4:
return 1 + blockSize/2
default:
return 0
}
@@ -546,14 +479,12 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCountMax()
headsArr := f.KV().HeadCount()
headsKV := f.KV().HeadCountKVMax()
headsKVArr := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
embeddingHeads := f.KV().EmbeddingHeadCountMax()
@@ -563,51 +494,12 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
// Default for models unless special-cased below. These defaults mirror the
// cache usage in llama.cpp under the assumption that models without special
// cases below will use the llamarunner and caching will be handled by the
// llama.cpp layer.
//
// This also assumes that a layer without heads or headsKV set is recurrent
// which is usually the case. Some models (eg nemotronh) use "blocks" in
// place of layers where some are MLP blocks that don't have any cache.
// Models like this will need a special case below to be accurately
// estimated.
var kvTotal uint64
kv = make([]uint64, f.KV().BlockCount())
kvSizeAttn := uint64(0)
kvSizeRecurrent := uint64(0)
for i := range kv {
headsL := headsArr[i]
headsKVL := headsKVArr[i]
if headsL > 0 && headsKVL > 0 {
// full attention layer
// NOTE: Assumes uniform values for all attn layers
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKVL) * bytesPerElement)
kvSizeAttn += kv[i]
} else {
// recurrent layer
ssmDConv := f.KV().SSMConvKernel()
ssmDState := f.KV().SSMStateSize()
ssmDInner := f.KV().SSMInnerSize()
ssmNGroups := f.KV().SSMGroupCount()
nEmbdR := uint64(0)
if ssmDConv > 0 {
nEmbdR = (ssmDConv - 1) * (ssmDInner + 2*ssmNGroups*ssmDState)
}
nEmbdS := ssmDState * ssmDInner
// recurrent always uses F32 in llama.cpp backend
// https://github.com/ggml-org/llama.cpp/blob/master/src/llama-model.cpp#L18644
bytesPerElementRecurrent := kvCacheBytesPerElement("f32")
kv[i] = (nEmbdR + nEmbdS) * uint64(bytesPerElementRecurrent)
kvSizeRecurrent += kv[i]
}
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kvTotal += kv[i]
}
slog.Debug("default cache size estimate", "attention MiB", float32(kvSizeAttn)/(1024.*1024.), "attention bytes", kvSizeAttn, "recurrent MiB", float32(kvSizeRecurrent)/(1024.*1024.), "recurrent bytes", kvSizeRecurrent)
switch f.KV().Architecture() {
case "llama", "llama4":
@@ -785,12 +677,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
kv[i] *= context
}
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
}
return
@@ -865,16 +752,12 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
if cacheType == "" || cacheType == "f16" {
return true
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gptoss", "gpt-oss"}, arch) {
// gpt-oss uses attention with sinks which does not support quantized cache types
slog.Warn("model only supports non-quantized cache types", "model", arch)
return false
slog.Warn("model only supports non-quantized cache types ", "mode", arch)
return cacheType == "f16"
}
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
@@ -884,23 +767,12 @@ func (f GGML) SupportsFlashAttention() bool {
return false
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gemma2"}, arch) {
return false
}
// Check head counts match and are non-zero
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}
// FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"gptoss", "gpt-oss",
}, f.KV().String("general.architecture"))
}
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
func kvCacheBytesPerElement(cacheType string) float64 {
switch cacheType {
@@ -908,8 +780,6 @@ func kvCacheBytesPerElement(cacheType string) float64 {
return 1 // 1/2 of fp16
case "q4_0":
return 0.5 // 1/4 of fp16
case "f32":
return 4 // f32 (default for recurrent)
default:
return 2 // f16 (default)
}

View File

@@ -533,15 +533,12 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
}
}
slices.SortStableFunc(
ts,
func(a, b *Tensor) int {
return cmp.Or(
cmp.Compare(a.block(), b.block()),
cmp.Compare(a.Name, b.Name),
)
},
)
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i > 0 && j > 0 {
return cmp.Compare(i, j)
}
return cmp.Compare(a.Name, b.Name)
})
var s uint64
for i := range ts {

View File

@@ -11,24 +11,24 @@ import (
)
func TestWriteGGUF(t *testing.T) {
b := bytes.NewBuffer(make([]byte, 2*3))
r := rand.New(rand.NewPCG(0, 0))
for range 8 {
t.Run("shuffle", func(t *testing.T) {
t.Parallel()
ts := []*Tensor{
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.1.ffn_up.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.2.ffn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.1.ffn_down.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.attn_k.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: b},
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: b},
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.1.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.2.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.3.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.4.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.5.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
}
rand.Shuffle(len(ts), func(i, j int) {
r.Shuffle(len(ts), func(i, j int) {
ts[i], ts[j] = ts[j], ts[i]
})
@@ -63,14 +63,14 @@ func TestWriteGGUF(t *testing.T) {
}
if diff := cmp.Diff(Tensors{
Offset: 592,
Offset: 608,
items: []*Tensor{
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.0.ffn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.1.ffn_down.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.1.ffn_up.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.2.ffn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.1.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.2.attn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.3.attn_norm.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.4.attn_norm.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.5.attn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "output.weight", Offset: 192, Shape: []uint64{3, 2}},
{Name: "output_norm.weight", Offset: 224, Shape: []uint64{3, 2}},
{Name: "token_embd.weight", Offset: 256, Shape: []uint64{2, 3}},

View File

@@ -146,6 +146,8 @@ func (ftype FileType) ToTensorType() TensorType {
return TensorTypeQ4_0
case fileTypeQ4_1:
return TensorTypeQ4_1
case fileTypeMXFP4:
return TensorTypeMXFP4 // Formerly unused tensorTypeQ4_2
case FileTypeQ8_0:
return TensorTypeQ8_0
case fileTypeQ5_0:
@@ -174,8 +176,6 @@ func (ftype FileType) ToTensorType() TensorType {
return TensorTypeQ2_K
case FileTypeBF16:
return TensorTypeBF16
case fileTypeMXFP4:
return TensorTypeMXFP4
default:
slog.Warn("unsupported file type", "type", ftype)
return 0 // F32
@@ -191,8 +191,8 @@ const (
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
tensorTypeQ4_2
tensorTypeQ4_3 // unused by GGML
TensorTypeMXFP4 // Formerly unused tensorTypeQ4_2
tensorTypeQ4_3 // unused by GGML
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
@@ -226,7 +226,6 @@ const (
tensorTypeIQ4_NL_4_4 // unused by GGML
tensorTypeIQ4_NL_4_8 // unused by GGML
tensorTypeIQ4_NL_8_8 // unused by GGML
TensorTypeMXFP4
)
// ParseFileType parses the provided GGUF file type
@@ -319,7 +318,7 @@ func (t TensorType) String() string {
return "F64"
case TensorTypeBF16:
return "BF16"
case 4, TensorTypeMXFP4:
case TensorTypeMXFP4:
return "MXFP4"
default:
return "unknown"

View File

@@ -2,16 +2,10 @@
This directory contains integration tests to exercise Ollama end-to-end to verify behavior
By default, these tests are disabled so `go test ./...` will exercise only unit tests. To run integration tests you must pass the integration tag. `go test -tags=integration ./...` Some tests require additional tags to enable to allow scoped testing to keep the duration reasonable. For example, testing a broad set of models requires `-tags=integration,models` and a longer timeout (~60m or more depending on the speed of your GPU.). To view the current set of tag combinations use `find integration -type f | xargs grep "go:build"`
By default, these tests are disabled so `go test ./...` will exercise only unit tests. To run integration tests you must pass the integration tag. `go test -tags=integration ./...`
The integration tests have 2 modes of operating.
1. By default, they will start the server on a random port, run the tests, and then shutdown the server.
2. If `OLLAMA_TEST_EXISTING` is set to a non-empty string, the tests will run against an existing running server, which can be remote based on your `OLLAMA_HOST` environment variable
> [!IMPORTANT]
> Before running the tests locally without the "test existing" setting, compile ollama from the top of the source tree `go build .` in addition to GPU support with cmake if applicable on your platform. The integration tests expect to find an ollama binary at the top of the tree.
Many tests use a default small model suitable to run on many systems. You can override this default model by setting `OLLAMA_TEST_DEFAULT_MODEL`
2. If `OLLAMA_TEST_EXISTING` is set to a non-empty string, the tests will run against an existing running server, which can be remote

View File

@@ -22,12 +22,13 @@ func TestAPIGenerate(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: blueSkyPrompt,
Prompt: "why is the sky blue? be brief",
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scattering"}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
@@ -119,14 +120,14 @@ func TestAPIGenerate(t *testing.T) {
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range blueSkyExpected {
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Errorf("none of %v found in %s", blueSkyExpected, response)
t.Errorf("none of %v found in %s", anyResp, response)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for generate")
@@ -180,7 +181,7 @@ func TestAPIChat(t *testing.T) {
Messages: []api.Message{
{
Role: "user",
Content: blueSkyPrompt,
Content: "why is the sky blue? be brief",
},
},
Options: map[string]interface{}{
@@ -188,6 +189,7 @@ func TestAPIChat(t *testing.T) {
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scattering"}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
@@ -277,14 +279,14 @@ func TestAPIChat(t *testing.T) {
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range blueSkyExpected {
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Errorf("none of %v found in %s", blueSkyExpected, response)
t.Errorf("none of %v found in %s", anyResp, response)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for chat")
@@ -388,7 +390,7 @@ func TestAPIEmbeddings(t *testing.T) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
req := api.EmbeddingRequest{
Model: libraryEmbedModels[0],
Model: "orca-mini",
Prompt: "why is the sky blue?",
Options: map[string]interface{}{
"temperature": 0,
@@ -408,99 +410,3 @@ func TestAPIEmbeddings(t *testing.T) {
t.Errorf("zero length embedding response")
}
}
func TestAPIToolCalling(t *testing.T) {
initialTimeout := 60 * time.Second
streamTimeout := 30 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
modelName := "qwen3:0.6b"
if err := PullIfMissing(ctx, client, modelName); err != nil {
t.Fatalf("pull failed %s", err)
}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
},
},
},
},
}
req := api.ChatRequest{
Model: modelName,
Messages: []api.Message{
{
Role: "user",
Content: "Call get_weather with location set to San Francisco.",
},
},
Tools: tools,
Options: map[string]any{
"temperature": 0,
},
}
stallTimer := time.NewTimer(initialTimeout)
var gotToolCall bool
var lastToolCall api.ToolCall
fn := func(response api.ChatResponse) error {
if len(response.Message.ToolCalls) > 0 {
gotToolCall = true
lastToolCall = response.Message.ToolCalls[len(response.Message.ToolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
}
if !gotToolCall {
t.Fatalf("expected at least one tool call, got none")
}
if lastToolCall.Function.Name != "get_weather" {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if _, ok := lastToolCall.Function.Arguments["location"]; !ok {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String())
}
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat")
}
}

View File

@@ -11,6 +11,7 @@ import (
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestBlueSky(t *testing.T) {
@@ -19,14 +20,14 @@ func TestBlueSky(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: blueSkyPrompt,
Prompt: "why is the sky blue?",
Stream: &stream,
Options: map[string]any{
"temperature": 0,
"seed": 123,
},
}
GenerateTestHelper(ctx, t, req, blueSkyExpected)
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
}
func TestUnicode(t *testing.T) {
@@ -36,8 +37,8 @@ func TestUnicode(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
// DeepSeek has a Unicode tokenizer regex, making it a unicode torture test
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K", // TODO is there an ollama-engine model we can switch to and keep the coverage?
Prompt: "天空为什么是蓝色的?", // Why is the sky blue?
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Stream: &stream,
Options: map[string]any{
"temperature": 0,
@@ -49,20 +50,8 @@ func TestUnicode(t *testing.T) {
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx, &api.GenerateRequest{Model: req.Model}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
skipIfNotGPULoaded(ctx, t, client, req.Model, 100)
DoGenerate(ctx, t, client, req, []string{
"散射", // scattering
"频率", // frequency
}, 120*time.Second, 120*time.Second)
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"散射", "频率"}, 120*time.Second, 120*time.Second)
}
func TestExtendedUnicodeOutput(t *testing.T) {
@@ -80,9 +69,7 @@ func TestExtendedUnicodeOutput(t *testing.T) {
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"}, 120*time.Second, 120*time.Second)
}
@@ -97,9 +84,7 @@ func TestUnicodeModelDir(t *testing.T) {
}
modelDir, err := os.MkdirTemp("", "ollama_埃")
if err != nil {
t.Fatal(err)
}
require.NoError(t, err)
defer os.RemoveAll(modelDir)
slog.Info("unicode", "OLLAMA_MODELS", modelDir)
@@ -110,12 +95,12 @@ func TestUnicodeModelDir(t *testing.T) {
req := api.GenerateRequest{
Model: smol,
Prompt: blueSkyPrompt,
Prompt: "why is the sky blue?",
Stream: &stream,
Options: map[string]any{
"temperature": 0,
"seed": 123,
},
}
GenerateTestHelper(ctx, t, req, blueSkyExpected)
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
}

View File

@@ -14,6 +14,8 @@ import (
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
@@ -77,21 +79,21 @@ func TestMultiModelStress(t *testing.T) {
t.Fatal(err)
}
// All models compatible with ollama-engine
smallModels := []string{
"llama3.2:1b",
"qwen3:0.6b",
"gemma2:2b",
"deepseek-r1:1.5b", // qwen2 arch
"gemma3:270m",
"gemma:2b",
"deepseek-r1:1.5b",
"starcoder2:3b",
}
mediumModels := []string{
"llama3.2:3b", // ~3.4G
"qwen3:8b", // ~6.6G
"gpt-oss:20b", // ~15G
"deepseek-r1:7b", // ~5.6G
"gemma3:4b", // ~5.8G
"gemma2:9b", // ~8.1G
"qwen3:8b",
"llama2",
"deepseek-r1:7b",
"mistral",
"dolphin-mistral",
"gemma:7b",
"codellama:7b",
}
var chosenModels []string
@@ -112,16 +114,13 @@ func TestMultiModelStress(t *testing.T) {
// Make sure all the models are pulled before we get started
for _, model := range chosenModels {
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatal(err)
}
require.NoError(t, PullIfMissing(ctx, client, model))
}
// Determine how many models we can load in parallel before we exceed VRAM
// The intent is to go 1 over what can fit so we force the scheduler to thrash
targetLoadCount := 0
slog.Info("Loading models to find how many can fit in VRAM before overflowing")
chooseModels:
for i, model := range chosenModels {
req := &api.GenerateRequest{Model: model}
slog.Info("loading", "model", model)
@@ -143,13 +142,6 @@ chooseModels:
slog.Info("found model load capacity", "target", targetLoadCount, "current", loaded, "chosen", chosenModels[:targetLoadCount])
break
}
// Effectively limit model count to 2 on CPU only systems to avoid thrashing and timeouts
for _, m := range models.Models {
if m.SizeVRAM == 0 {
slog.Info("model running on CPU", "name", m.Name, "target", targetLoadCount, "chosen", chosenModels[:targetLoadCount])
break chooseModels
}
}
}
}
if targetLoadCount == len(chosenModels) {

View File

@@ -22,7 +22,7 @@ func TestLongInputContext(t *testing.T) {
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Model: "llama2",
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]any{
@@ -36,7 +36,7 @@ func TestLongInputContext(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia", "europe", "individuals", "coalition", "conflict"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia"}, 120*time.Second, 10*time.Second)
}
func TestContextExhaustion(t *testing.T) {
@@ -49,8 +49,8 @@ func TestContextExhaustion(t *testing.T) {
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: "Write me a story in english with a lot of emojis",
Model: "llama2",
Prompt: "Write me a story with a ton of emojis?",
Stream: &stream,
Options: map[string]any{
"temperature": 0,
@@ -63,11 +63,11 @@ func TestContextExhaustion(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived", "sunny", "cloudy", "clear", "water", "time", "travel", "world"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
}
// Send multiple generate requests with prior context and ensure the response is coherant and expected
func TestParallelGenerateWithHistory(t *testing.T) {
// Send multiple requests with prior context and ensure the response is coherant and expected
func TestGenerateWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := GenerateRequests()
numParallel := 2
@@ -111,148 +111,5 @@ func TestParallelGenerateWithHistory(t *testing.T) {
}(i)
}
wg.Wait()
}
// Send generate requests with prior context and ensure the response is coherant and expected
func TestGenerateWithHistory(t *testing.T) {
req := api.GenerateRequest{
Model: smol,
Prompt: rainbowPrompt,
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"num_ctx": 16384,
},
}
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial request
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx,
&api.GenerateRequest{Model: req.Model, KeepAlive: &api.Duration{Duration: 10 * time.Second}, Options: req.Options},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
req.Context = DoGenerate(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
for i := 0; i < len(rainbowFollowups); i++ {
req.Prompt = rainbowFollowups[i]
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
req.Context = DoGenerate(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
}
}
// Send multiple chat requests with prior context and ensure the response is coherant and expected
func TestParallelChatWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := ChatRequests()
numParallel := 2
iterLimit := 2
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial empty request
slog.Info("loading", "model", modelOverride)
err := client.Generate(ctx,
&api.GenerateRequest{Model: modelOverride, KeepAlive: &api.Duration{Duration: 10 * time.Second}},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", modelOverride, err)
}
var wg sync.WaitGroup
wg.Add(numParallel)
for i := range numParallel {
go func(i int) {
defer wg.Done()
k := i % len(req)
req[k].Model = modelOverride
for j := 0; j < iterLimit; j++ {
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
slog.Info("Starting", "thread", i, "iter", j)
// On slower GPUs it can take a while to process the concurrent requests
// so we allow a much longer initial timeout
assistant := DoChat(ctx, t, client, req[k], resp[k], 120*time.Second, 20*time.Second)
if assistant == nil {
t.Fatalf("didn't get an assistant response for context")
}
req[k].Messages = append(req[k].Messages,
*assistant,
api.Message{Role: "user", Content: "tell me more!"},
)
}
}(i)
}
wg.Wait()
}
// Send generate requests with prior context and ensure the response is coherant and expected
func TestChatWithHistory(t *testing.T) {
req := api.ChatRequest{
Model: smol,
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"num_ctx": 16384,
},
Messages: []api.Message{
{
Role: "user",
Content: rainbowPrompt,
},
},
}
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial request
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx,
&api.GenerateRequest{Model: req.Model, KeepAlive: &api.Duration{Duration: 10 * time.Second}, Options: req.Options},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
assistant := DoChat(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
for i := 0; i < len(rainbowFollowups); i++ {
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
req.Messages = append(req.Messages,
*assistant,
api.Message{Role: "user", Content: rainbowFollowups[i]},
)
assistant = DoChat(ctx, t, client, req, rainbowExpected, 30*time.Second, 20*time.Second)
if assistant == nil {
t.Fatalf("didn't get an assistant response for context")
}
}
}

View File

@@ -8,7 +8,6 @@ import (
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
@@ -39,14 +38,14 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
defer cleanup()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Model: "all-minilm",
Prompt: "why is the sky blue?",
}
res, err := embeddingTestHelper(ctx, client, t, req)
if err != nil {
t.Fatal(err)
t.Fatalf("error: %v", err)
}
if len(res.Embedding) != 384 {
@@ -74,8 +73,9 @@ func TestAllMiniLMEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatal(err)
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 1 {
@@ -111,8 +111,9 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatal(err)
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 2 {
@@ -154,135 +155,93 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
truncTrue, truncFalse := true, false
want, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why",
})
if err != nil {
t.Fatal(err)
type testReq struct {
Name string
Request api.EmbedRequest
}
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
}{
reqs := []testReq{
{
name: "target truncation",
request: api.EmbedRequest{
Name: "Target Truncation",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "default truncate",
request: api.EmbedRequest{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
Options: map[string]any{"num_ctx": 1},
},
},
{
name: "explicit truncate",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
}
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
})
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, client, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
}
}
func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
return client.Embeddings(ctx, &req)
response, err := client.Embeddings(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}
func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
return client.Embed(ctx, &req)
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}

View File

@@ -4,9 +4,7 @@ package integration
import (
"context"
"fmt"
"log/slog"
"os"
"testing"
"time"
@@ -22,7 +20,6 @@ func TestLibraryModelsGenerate(t *testing.T) {
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
targetArch := os.Getenv("OLLAMA_TEST_ARCHITECTURE")
chatModels := libraryChatModels
for _, model := range chatModels {
@@ -33,26 +30,16 @@ func TestLibraryModelsGenerate(t *testing.T) {
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatalf("pull failed %s", err)
}
if targetArch != "" {
resp, err := client.Show(ctx, &api.ShowRequest{Name: model})
if err != nil {
t.Fatalf("unable to show model: %s", err)
}
arch := resp.ModelInfo["general.architecture"].(string)
if arch != targetArch {
t.Skip(fmt.Sprintf("Skipping %s architecture %s != %s", model, arch, targetArch))
}
}
req := api.GenerateRequest{
Model: model,
Prompt: blueSkyPrompt,
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
"temperature": 0.1,
"seed": 123,
},
}
anyResp := blueSkyExpected
anyResp := []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength"}
// Special cases
if model == "duckdb-nsql" {
anyResp = []string{"select", "from"}

View File

@@ -9,6 +9,7 @@ import (
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestVisionModels(t *testing.T) {
@@ -31,9 +32,7 @@ func TestVisionModels(t *testing.T) {
for _, v := range testCases {
t.Run(v.model, func(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
if err != nil {
t.Fatal(err)
}
require.NoError(t, err)
req := api.GenerateRequest{
Model: v.model,
Prompt: "what does the text in this image say?",
@@ -53,9 +52,7 @@ func TestVisionModels(t *testing.T) {
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
resp := "the ollam"
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// llava models on CPU can be quite slow to start
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
})
@@ -65,9 +62,7 @@ func TestVisionModels(t *testing.T) {
func TestIntegrationSplitBatch(t *testing.T) {
skipUnderMinVRAM(t, 6)
image, err := base64.StdEncoding.DecodeString(imageEncoding)
if err != nil {
t.Fatal(err)
}
require.NoError(t, err)
req := api.GenerateRequest{
Model: "gemma3:4b",
// Fill up a chunk of the batch so the image will partially spill over into the next one
@@ -89,9 +84,7 @@ func TestIntegrationSplitBatch(t *testing.T) {
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}

47
integration/llm_test.go Normal file
View File

@@ -0,0 +1,47 @@
//go:build integration
package integration
import (
"context"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// TODO - this would ideally be in the llm package, but that would require some refactoring of interfaces in the server
// package to avoid circular dependencies
var (
stream = false
req = [2]api.GenerateRequest{
{
Model: smol,
Prompt: "why is the ocean blue?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
},
}
resp = [2][]string{
{"sunlight", "scattering", "interact"},
{"england", "english", "massachusetts", "pilgrims"},
}
)
func TestIntegrationSimple(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
defer cancel()
GenerateTestHelper(ctx, t, req[0], resp[0])
}

View File

@@ -13,12 +13,12 @@ import (
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
)
func TestMaxQueue(t *testing.T) {
t.Skip("this test needs to be re-evaluated to use a proper embedding model")
if os.Getenv("OLLAMA_TEST_EXISTING") != "" {
t.Skip("Max Queue test requires spawning a local server so we can adjust the queue size")
return
@@ -45,9 +45,7 @@ func TestMaxQueue(t *testing.T) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// Context for the worker threads so we can shut them down
// embedCtx, embedCancel := context.WithCancel(ctx)
@@ -91,9 +89,7 @@ func TestMaxQueue(t *testing.T) {
switch {
case genErr == nil:
successCount++
if len(resp.Embedding) < 5 { // somewhat arbitrary, but sufficient to be reasonable
t.Fatalf("embeddings shorter than expected: %d", len(resp.Embedding))
}
require.Greater(t, len(resp.Embedding), 5) // somewhat arbitrary, but sufficient to be reasonable
case errors.Is(genErr, context.Canceled):
canceledCount++
case strings.Contains(genErr.Error(), "busy"):
@@ -101,9 +97,7 @@ func TestMaxQueue(t *testing.T) {
case strings.Contains(genErr.Error(), "connection reset by peer"):
resetByPeerCount++
default:
if genErr != nil {
t.Fatalf("%d request failed", i)
}
require.NoError(t, genErr, "%d request failed", i)
}
slog.Info("embed finished", "id", i)
@@ -114,13 +108,8 @@ func TestMaxQueue(t *testing.T) {
embedwg.Wait()
slog.Info("embeds completed", "success", successCount, "busy", busyCount, "reset", resetByPeerCount, "canceled", canceledCount)
if resetByPeerCount != 0 {
t.Fatalf("Connections reset by peer, have you updated your fd and socket limits? %d", resetByPeerCount)
}
if busyCount == 0 {
t.Fatalf("no requests hit busy error but some should have")
}
if canceledCount > 0 {
t.Fatalf("no requests should have been canceled due to timeout %d", canceledCount)
}
require.Equal(t, resetByPeerCount, 0, "Connections reset by peer, have you updated your fd and socket limits?")
require.True(t, busyCount > 0, "no requests hit busy error but some should have")
require.True(t, canceledCount == 0, "no requests should have been canceled due to timeout")
}

View File

@@ -68,13 +68,14 @@ func TestModelsGenerate(t *testing.T) {
// TODO - fiddle with context size
req := api.GenerateRequest{
Model: model,
Prompt: blueSkyPrompt,
Prompt: "why is the sky blue?",
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
DoGenerate(ctx, t, client, req, blueSkyExpected, 120*time.Second, 30*time.Second)
anyResp := []string{"rayleigh", "scattering", "atmosphere", "nitrogen", "oxygen"}
DoGenerate(ctx, t, client, req, anyResp, 120*time.Second, 30*time.Second)
})
}
}

View File

@@ -40,18 +40,6 @@ var (
// cat int.log | grep MODEL_PERF_HEADER | head -1| cut -f2- -d: > perf.csv
// cat int.log | grep MODEL_PERF_DATA | cut -f2- -d: >> perf.csv
func TestModelsPerf(t *testing.T) {
if s := os.Getenv("OLLAMA_NEW_ENGINE"); s != "" {
doModelPerfTest(t, ollamaEngineChatModels)
} else {
doModelPerfTest(t, append(ollamaEngineChatModels, llamaRunnerChatModels...))
}
}
func TestLibraryModelsPerf(t *testing.T) {
doModelPerfTest(t, libraryChatModels)
}
func doModelPerfTest(t *testing.T, chatModels []string) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
@@ -77,12 +65,14 @@ func doModelPerfTest(t *testing.T, chatModels []string) {
}
longPrompt := "summarize the following: " + string(data)
targetArch := os.Getenv("OLLAMA_TEST_ARCHITECTURE")
var chatModels []string
if s := os.Getenv("OLLAMA_NEW_ENGINE"); s != "" {
chatModels = ollamaEngineChatModels
} else {
chatModels = append(ollamaEngineChatModels, llamaRunnerChatModels...)
}
for _, model := range chatModels {
if !strings.Contains(model, ":") {
model = model + ":latest"
}
t.Run(model, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {
t.Skip("skipping remaining tests to avoid excessive runtime")
@@ -98,9 +88,6 @@ func doModelPerfTest(t *testing.T, chatModels []string) {
}
arch := resp.ModelInfo["general.architecture"].(string)
maxContext = int(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))
if targetArch != "" && arch != targetArch {
t.Skip(fmt.Sprintf("Skipping %s architecture %s != %s", model, arch, targetArch))
}
if maxVram > 0 {
resp, err := client.List(ctx)
@@ -164,8 +151,8 @@ func doModelPerfTest(t *testing.T, chatModels []string) {
prompt string
anyResp []string
}{
{blueSkyPrompt, blueSkyExpected},
{maxPrompt, []string{"shakespeare", "oppression", "sorrows", "gutenberg", "child", "license", "sonnet", "melancholy", "love", "sorrow", "beauty"}},
{"why is the sky blue?", []string{"rayleigh", "scattering", "atmosphere", "nitrogen", "oxygen"}},
{maxPrompt, []string{"shakespeare", "oppression", "sorrows", "gutenberg", "child", "license", "sonnet", "melancholy"}},
}
var gpuPercent int
for _, tc := range testCases {
@@ -254,12 +241,11 @@ func doModelPerfTest(t *testing.T, chatModels []string) {
}
}
}
// Round the logged prompt count for comparisons across versions/configurations which can vary slightly
fmt.Fprintf(os.Stderr, "MODEL_PERF_HEADER:%s,%s,%s,%s,%s,%s,%s\n",
"MODEL",
"CONTEXT",
"GPU PERCENT",
"APPROX PROMPT COUNT",
"PROMPT COUNT",
"LOAD TIME",
"PROMPT EVAL TPS",
"EVAL TPS",
@@ -268,7 +254,7 @@ func doModelPerfTest(t *testing.T, chatModels []string) {
model,
numCtx,
gpuPercent,
(resp.PromptEvalCount/10)*10,
resp.PromptEvalCount,
float64(resp.LoadDuration)/1000000000.0,
float64(resp.PromptEvalCount)/(float64(resp.PromptEvalDuration)/1000000000.0),
float64(resp.EvalCount)/(float64(resp.EvalDuration)/1000000000.0),

View File

@@ -76,7 +76,7 @@ func TestQuantization(t *testing.T) {
stream := true
genReq := api.GenerateRequest{
Model: newName,
Prompt: blueSkyPrompt,
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 3 * time.Second},
Options: map[string]any{
"seed": 42,
@@ -88,13 +88,14 @@ func TestQuantization(t *testing.T) {
// Some smaller quantizations can cause models to have poor quality
// or get stuck in repetition loops, so we stop as soon as we have any matches
anyResp := []string{"rayleigh", "scattering", "day", "sun", "moon", "color", "nitrogen", "oxygen"}
reqCtx, reqCancel := context.WithCancel(ctx)
atLeastOne := false
var buf bytes.Buffer
genfn := func(response api.GenerateResponse) error {
buf.Write([]byte(response.Response))
fullResp := strings.ToLower(buf.String())
for _, resp := range blueSkyExpected {
for _, resp := range anyResp {
if strings.Contains(fullResp, resp) {
atLeastOne = true
t.Log(fullResp)

View File

@@ -9,7 +9,6 @@ import (
"fmt"
"io"
"log/slog"
"math"
"math/rand"
"net"
"net/http"
@@ -26,11 +25,11 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/lifecycle"
"github.com/ollama/ollama/format"
"github.com/stretchr/testify/require"
)
var (
smol = "llama3.2:1b"
stream = false
smol = "llama3.2:1b"
)
var (
@@ -256,29 +255,13 @@ var (
"snowflake-arctic-embed",
"snowflake-arctic-embed2",
}
blueSkyPrompt = "why is the sky blue? Be brief but factual in your reply"
blueSkyExpected = []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength", "interact"}
rainbowPrompt = "how do rainbows form? Be brief but factual in your reply"
rainbowFollowups = []string{
"Explain the physics involved in them. Be breif in your reply",
"Explain the chemistry involved in them. Be breif in your reply",
"Explain the quantum mechanics involved in them. Be breif in your reply",
"What are common myths related to them? Be brief in your reply",
"What are common fairytales related to them? Be brief in your reply",
"Can they form if there is no rain? Be breif in your reply",
"Can they form if there are no clouds? Be breif in your reply",
"Do they happen on other planets? Be brief in your reply",
}
rainbowExpected = []string{"water", "droplet", "mist", "glow", "refracted", "reflect", "color", "spectrum", "frequency", "end", "gold", "fortune", "blessing", "prosperity"}
)
func init() {
lifecycle.InitLogging()
custom := os.Getenv("OLLAMA_TEST_DEFAULT_MODEL")
custom := os.Getenv("OLLAMA_TEST_SMOL_MODEL")
if custom != "" {
slog.Info("setting default test model to " + custom)
slog.Info("setting smol test model to " + custom)
smol = custom
}
}
@@ -452,9 +435,7 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
}
lifecycle.ServerLogFile = fp.Name()
fp.Close()
if err := startServer(t, ctx, testEndpoint); err != nil {
t.Fatal(err)
}
require.NoError(t, startServer(t, ctx, testEndpoint))
}
return client, testEndpoint, func() {
@@ -487,9 +468,7 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
func GenerateTestHelper(ctx context.Context, t *testing.T, genReq api.GenerateRequest, anyResp []string) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, genReq.Model); err != nil {
t.Fatal(err)
}
require.NoError(t, PullIfMissing(ctx, client, genReq.Model))
DoGenerate(ctx, t, client, genReq, anyResp, 30*time.Second, 10*time.Second)
}
@@ -518,22 +497,6 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in %s", genReq.Model, anyResp, response)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
@@ -546,17 +509,20 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
slog.Warn("model is too large for the target test system", "model", genReq.Model, "error", genErr)
return context
}
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %s", genErr, genReq.Model, genReq.Prompt)
require.NoError(t, genErr, "failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
verify()
require.True(t, atLeastOne, "%s: none of %v found in %s", genReq.Model, anyResp, response)
slog.Info("test pass", "model", genReq.Model, "prompt", genReq.Prompt, "contains", anyResp, "response", response)
case <-ctx.Done():
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for generate")
verify()
t.Error("outer test context done while waiting for generate")
}
return context
}
@@ -577,7 +543,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
Model: smol,
Prompt: "how do rainbows form? Be brief but factual in your reply",
Prompt: "what is the origin of the US thanksgiving holiday? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
@@ -593,106 +559,19 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
},
},
[][]string{
{"sunlight", "scatter", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorb", "wavelength", "water", "molecule"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigment", "particle", "iron oxide", "rust", "air", "water", "wet", "mixture", "mixing", "mineral", "element", "decomposed", "matter", "wavelength"},
{"water", "droplet", "refract", "reflect", "color", "spectrum", "raindrop"},
{"sunlight", "scattering", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorbs", "wavelength"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigments", "particles", "iron oxide", "rust", "air", "water", "mixture", "mixing"},
{"england", "english", "massachusetts", "pilgrims", "colonists", "independence", "british", "feast", "family", "gatherings", "traditions", "turkey", "colonial", "period", "harvest", "agricultural", "european settlers", "american revolution", "civil war", "16th century", "17th century", "native american", "united states"},
{"fourth", "july", "declaration", "independence"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor", "fluid", "particles", "gas"},
{"nitrogen", "oxygen", "carbon", "dioxide"},
}
}
func DoChat(ctx context.Context, t *testing.T, client *api.Client, req api.ChatRequest, anyResp []string, initialTimeout, streamTimeout time.Duration) *api.Message {
stallTimer := time.NewTimer(initialTimeout)
var buf bytes.Buffer
role := "assistant"
fn := func(response api.ChatResponse) error {
// fmt.Print(".")
role = response.Message.Role
buf.Write([]byte(response.Message.Content))
if !stallTimer.Reset(streamTimeout) {
return errors.New("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in \"%s\" -- request was:%v", req.Model, anyResp, response, req.Messages)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
t.Errorf("generate never started. Timed out after :%s", initialTimeout.String())
} else {
t.Errorf("generate stalled. Response so far:%s", buf.String())
}
case <-done:
if genErr != nil && strings.Contains(genErr.Error(), "model requires more system memory") {
slog.Warn("model is too large for the target test system", "model", req.Model, "error", genErr)
return nil
}
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %v", genErr, req.Model, req.Messages)
}
verify()
slog.Info("test pass", "model", req.Model, "messages", req.Messages, "contains", anyResp, "response", response)
case <-ctx.Done():
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for chat")
verify()
}
return &api.Message{Role: role, Content: buf.String()}
}
func ChatRequests() ([]api.ChatRequest, [][]string) {
genReqs, results := GenerateRequests()
reqs := make([]api.ChatRequest, len(genReqs))
// think := api.ThinkValue{Value: "low"}
for i := range reqs {
reqs[i].Model = genReqs[i].Model
reqs[i].Stream = genReqs[i].Stream
reqs[i].KeepAlive = genReqs[i].KeepAlive
// reqs[i].Think = &think
reqs[i].Messages = []api.Message{
{
Role: "user",
Content: genReqs[i].Prompt,
},
}
}
return reqs, results
}
func skipUnderMinVRAM(t *testing.T, gb uint64) {
// TODO use info API in the future
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
maxVram, err := strconv.ParseUint(s, 10, 64)
if err != nil {
t.Fatal(err)
}
require.NoError(t, err)
// Don't hammer on small VRAM cards...
if maxVram < gb*format.GibiByte {
t.Skip("skipping with small VRAM to avoid timeouts")
@@ -700,39 +579,6 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
}
}
// Skip if the target model isn't X% GPU loaded to avoid excessive runtime
func skipIfNotGPULoaded(ctx context.Context, t *testing.T, client *api.Client, model string, minPercent int) {
models, err := client.ListRunning(ctx)
if err != nil {
t.Fatalf("failed to list running models: %s", err)
}
loaded := []string{}
for _, m := range models.Models {
loaded = append(loaded, m.Name)
if m.Name != model {
continue
}
gpuPercent := 0
switch {
case m.SizeVRAM == 0:
gpuPercent = 0
case m.SizeVRAM == m.Size:
gpuPercent = 100
case m.SizeVRAM > m.Size || m.Size == 0:
t.Logf("unexpected size detected: %d", m.SizeVRAM)
default:
sizeCPU := m.Size - m.SizeVRAM
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 110)
gpuPercent = int(100 - cpuPercent)
}
if gpuPercent < minPercent {
t.Skip(fmt.Sprintf("test requires minimum %d%% GPU load, but model %s only has %d%%", minPercent, model, gpuPercent))
}
return
}
t.Skip(fmt.Sprintf("model %s not loaded - actually loaded: %v", model, loaded))
}
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {

View File

@@ -378,7 +378,9 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
if c.config.MaskDType != ml.DTypeF32 {
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
}
return maskTensor

View File

@@ -962,7 +962,8 @@ int llama_context::decode(const llama_batch & batch_inp) {
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
const bool output_all = false;
// when computing embeddings, all tokens are output
const bool output_all = cparams.embeddings;
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);

View File

@@ -515,34 +515,33 @@ func (c *MtmdContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32,
}
nChunks := C.mtmd_input_chunks_size(ic)
numEmbed := llamaContext.Model().NEmbd()
embed := make([][]float32, 0)
lastChunkSize := 0
for i := range int(nChunks) {
chunk := C.mtmd_input_chunks_get(ic, C.size_t(i))
numTokens := int(C.mtmd_input_chunk_get_n_tokens(chunk))
slog.Debug("chunk tokens", "index", i, "numTokens", numTokens)
lastChunkSize = numTokens
// Encode the chunk
if C.int32_t(0) != C.mtmd_encode_chunk(c.c, chunk) {
return nil, errors.New("unable to encode mtmd image chunk")
}
// Get the embeddings for this chunk
chunkEmbed := make([][]float32, numTokens)
chunkEmbd := C.mtmd_get_output_embd(c.c)
if nil == chunkEmbd {
continue
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(chunkEmbd), numTokens*numEmbed)
rows := make([]float32, len(s))
copy(rows, s)
for i := range numTokens {
chunkEmbed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
embed = append(embed, chunkEmbed...)
}
slog.Debug("image embeddings", "totalEmbeddings", len(embed))
// Get the embeddings
embed := make([][]float32, lastChunkSize)
embd := C.mtmd_get_output_embd(c.c)
if nil == embd {
return nil, errors.New("failed to get image embedding")
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(embd), numEmbed*lastChunkSize)
rows := make([]float32, len(s))
copy(rows, s)
for i := range lastChunkSize {
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
return embed, nil
}

View File

@@ -13,7 +13,7 @@ checks.
1 file changed, 18 insertions(+)
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 57eae461..c7f9dc3a 100644
index 57eae461..9db0c8b5 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2671,12 +2671,24 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud

View File

@@ -1,23 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <git@mxy.ng>
Date: Mon, 18 Aug 2025 16:58:39 -0700
Subject: [PATCH] decode: disable output_all
---
src/llama-context.cpp | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 26a5cf9c..6ece5263 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -962,8 +962,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
- // when computing embeddings, all tokens are output
- const bool output_all = cparams.embeddings;
+ const bool output_all = false;
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);

View File

@@ -1,130 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Wed, 27 Aug 2025 14:39:48 -0700
Subject: [PATCH] ggml: Enable resetting backend devices
Touching a CUDA device causes the allocation of a primary context
with CUDA data structures (~300 MB of VRAM). If a device is
unused then it can be reset to free these data structures.
---
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-backend-impl.h | 4 ++++
ggml/src/ggml-backend.cpp | 8 ++++++++
ggml/src/ggml-cuda/ggml-cuda.cu | 17 +++++++++++++++--
ggml/src/ggml-cuda/vendors/hip.h | 1 +
5 files changed, 29 insertions(+), 2 deletions(-)
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index b602a7c78..fda5ceb24 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -167,6 +167,7 @@ extern "C" {
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
+ GGML_API void ggml_backend_dev_reset(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h
index 81749a5a3..6f10c353b 100644
--- a/ggml/src/ggml-backend-impl.h
+++ b/ggml/src/ggml-backend-impl.h
@@ -178,6 +178,10 @@ extern "C" {
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
+
+ // (optional) reset device, clearing existing allocations and context
+ // the caller must ensure that there are no outstanding buffers, as these will become invalid
+ void (*reset)(ggml_backend_dev_t dev);
};
struct ggml_backend_device {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index 05a842ed5..6556943b0 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -477,6 +477,14 @@ ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * par
return device->iface.init_backend(device, params);
}
+void ggml_backend_dev_reset(ggml_backend_dev_t device) {
+ if (device->iface.reset == NULL) {
+ return;
+ }
+
+ device->iface.reset(device);
+}
+
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
return device->iface.get_buffer_type(device);
}
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index c7f9dc3a5..e43fde523 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -103,6 +103,11 @@ int ggml_cuda_get_device() {
return id;
}
+void ggml_cuda_reset_device(int device) {
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaDeviceReset());
+}
+
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
cudaError_t err;
@@ -3243,7 +3248,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
props->description = ggml_backend_cuda_device_get_description(dev);
props->id = ggml_backend_cuda_device_get_id(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
- ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
+
+ // Memory reporting is disabled to avoid allocation of a CUDA primary context (~300 MB per device).
+ // If you need the memory data, call ggml_backend_dev_memory() explicitly.
+ props->memory_total = props->memory_free = 0;
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
@@ -3700,6 +3708,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
+static void ggml_backend_cuda_device_reset(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ ggml_cuda_reset_device(ctx->device);
+}
+
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .get_name = */ ggml_backend_cuda_device_get_name,
/* .get_description = */ ggml_backend_cuda_device_get_description,
@@ -3716,6 +3729,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .event_new = */ ggml_backend_cuda_device_event_new,
/* .event_free = */ ggml_backend_cuda_device_event_free,
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
+ /* .reset = */ ggml_backend_cuda_device_reset,
};
// backend reg
@@ -3835,7 +3849,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
dev_ctx->device = i;
dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
- ggml_cuda_set_device(i);
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index c31f31923..cf22e60d2 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -40,6 +40,7 @@
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
+#define cudaDeviceReset hipDeviceReset
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled

View File

@@ -1,28 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Fri, 29 Aug 2025 16:53:08 -0700
Subject: [PATCH] harden uncaught exception registration
---
ggml/src/ggml.cpp | 8 ++++++--
1 file changed, 6 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml.cpp b/ggml/src/ggml.cpp
index 0d388d45..f5bcb446 100644
--- a/ggml/src/ggml.cpp
+++ b/ggml/src/ggml.cpp
@@ -19,8 +19,12 @@ static bool ggml_uncaught_exception_init = []{
return false;
}
const auto prev{std::get_terminate()};
- GGML_ASSERT(prev != ggml_uncaught_exception);
- previous_terminate_handler = prev;
+ // GGML_ASSERT(prev != ggml_uncaught_exception);
+ if (prev != ggml_uncaught_exception) {
+ previous_terminate_handler = prev;
+ } else {
+ GGML_LOG_WARN("%s double registration of ggml_uncaught_exception\n", __func__);
+ }
std::set_terminate(ggml_uncaught_exception);
return true;
}();

View File

@@ -30,7 +30,7 @@ func pickBestFullFitByLibrary(f *ggml.GGML, modelPath string, projectors []strin
// Try to pack into as few GPUs as possible, starting from 1 GPU
for numGPUs := 1; numGPUs <= len(sgl); numGPUs++ {
gpuSubset := sgl[:numGPUs]
ok, estimatedVRAM := predictServerFit(gpuSubset, f, adapters, projectors, opts, numParallel)
ok, estimatedVRAM := PredictServerFit(gpuSubset, f, adapters, projectors, opts, numParallel)
if ok {
slog.Info("new model will fit in available VRAM across minimum required GPUs, loading",
@@ -48,7 +48,7 @@ func pickBestFullFitByLibrary(f *ggml.GGML, modelPath string, projectors []strin
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUS (OLLAMA_SCHED_SPREAD is set)
if ok, estimatedVRAM := predictServerFit(sgl, f, adapters, projectors, opts, numParallel); ok {
if ok, estimatedVRAM := PredictServerFit(sgl, f, adapters, projectors, opts, numParallel); ok {
slog.Info("new model will fit in available VRAM, loading",
"model", modelPath,
"library", sgl[0].Library,
@@ -71,7 +71,7 @@ func pickBestPartialFitByLibrary(f *ggml.GGML, projectors []string, adapters []s
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := predictServerFit(gl, f, adapters, projectors, opts, numParallel)
_, estimatedVRAM := PredictServerFit(gl, f, adapters, projectors, opts, numParallel)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
@@ -81,7 +81,7 @@ func pickBestPartialFitByLibrary(f *ggml.GGML, projectors []string, adapters []s
}
// This algorithm looks for a complete fit to determine if we need to unload other models
func predictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
@@ -97,10 +97,6 @@ func predictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, proj
return true, estimatedVRAM
}
}
if len(gpus) == 1 && gpus[0].Library == "cpu" && estimate.TotalSize <= gpus[0].FreeMemory {
return true, estimatedVRAM
}
}
return false, estimatedVRAM
}
@@ -195,19 +191,17 @@ func estimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
slog.Warn("model missing blk.0 layer size")
}
useFlashAttention := (envconfig.FlashAttention() || f.FlashAttention()) &&
discover.GetGPUInfo().FlashAttentionSupported() &&
f.SupportsFlashAttention()
var kvct string
if useFlashAttention {
if envconfig.FlashAttention() &&
discover.GetGPUInfo().FlashAttentionSupported() &&
f.SupportsFlashAttention() {
requested := strings.ToLower(envconfig.KvCacheType())
if f.SupportsKVCacheType(requested) {
if requested != "" && f.SupportsKVCacheType(requested) {
kvct = requested
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct, useFlashAttention)
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
if len(kv) > 0 {
layerSize += kv[0]

View File

@@ -148,11 +148,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
var textProcessor model.TextProcessor
var err error
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
if len(projectors) == 0 {
textProcessor, err = model.NewTextProcessor(modelPath)
} else {
err = errors.New("split vision models aren't supported")
}
textProcessor, err = model.NewTextProcessor(modelPath)
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
@@ -165,6 +161,11 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}
newEstimates := textProcessor != nil && envconfig.NewMemoryEstimates()
if newEstimates {
slog.Info("enabling new memory estimates")
}
// Verify the requested context size is <= the model training size
trainCtx := f.KV().ContextLength()
if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
@@ -172,8 +173,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
opts.NumCtx = int(trainCtx)
}
opts.NumBatch = min(opts.NumBatch, opts.NumCtx)
loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
defaultThreads := discover.GetSystemInfo().GetOptimalThreadCount()
@@ -196,11 +195,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
// that can handle it.
fa := envconfig.FlashAttention()
if f.FlashAttention() {
slog.Info("model wants flash attention")
fa = true
}
if fa && !gpus.FlashAttentionSupported() {
slog.Warn("flash attention enabled but not supported by gpu")
fa = false
@@ -219,7 +213,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if f.SupportsKVCacheType(kvct) {
if kvct != "" && f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
@@ -361,28 +355,23 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
s.cmd.Env = append(s.cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ggmlPaths, string(filepath.ListSeparator)))
envWorkarounds := []string{}
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
// Always filter down the set of GPUs in case there are any unsupported devices that might crash
envWorkarounds = append(envWorkarounds, gpus.GetVisibleDevicesEnv()...)
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path variable with our adjusted version
pathNeeded := true
envWorkaroundDone := make([]bool, len(envWorkarounds))
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if len(envWorkarounds) != 0 {
for j, kv := range envWorkarounds {
tmp := strings.SplitN(kv, "=", 2)
if strings.EqualFold(cmp[0], tmp[0]) {
s.cmd.Env[i] = kv
envWorkaroundDone[j] = true
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
}
@@ -390,11 +379,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
for i, done := range envWorkaroundDone {
if !done {
s.cmd.Env = append(s.cmd.Env, envWorkarounds[i])
}
}
slog.Info("starting runner", "cmd", s.cmd)
slog.Debug("subprocess", "", filteredEnv(s.cmd.Env))
@@ -432,7 +416,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}()
if textProcessor != nil {
if newEstimates {
return &ollamaServer{llmServer: s}, nil
} else {
return &llamaServer{llmServer: s, ggml: f}, nil
@@ -508,7 +492,6 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
if !requireFull {
g = pickBestPartialFitByLibrary(s.ggml, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
} else {
slog.Info("model requires more memory than is currently available, evicting a model to make space", "estimate", s.estimate)
return ErrLoadRequiredFull
}
}
@@ -541,6 +524,10 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
}
}
if requireFull && len(gpus) == 1 && gpus[0].Library == "cpu" && s.estimate.TotalSize > gpus[0].FreeMemory {
return ErrLoadRequiredFull
}
slog.Info("offload", "", s.estimate)
s.gpus = gpus
@@ -664,9 +651,7 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
if !success {
s.initModel(ctx, LoadRequest{}, LoadOperationClose)
}
if s.mem != nil {
s.mem.Log(slog.LevelInfo)
}
s.mem.Log(slog.LevelInfo)
}()
slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)
@@ -679,12 +664,8 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
if !(len(gpus) == 1 && gpus[0].Library == "cpu") {
for _, gpu := range gpus {
available := gpu.FreeMemory - envconfig.GpuOverhead() - gpu.MinimumMemory
if gpu.FreeMemory < envconfig.GpuOverhead()+gpu.MinimumMemory {
available = 0
}
slog.Info("gpu memory", "id", gpu.ID,
"available", format.HumanBytes2(available),
"available", format.HumanBytes2(gpu.FreeMemory-envconfig.GpuOverhead()-gpu.MinimumMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
"minimum", format.HumanBytes2(gpu.MinimumMemory),
"overhead", format.HumanBytes2(envconfig.GpuOverhead()))
@@ -866,7 +847,7 @@ func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs d
}
layers[i] += memory.CPU.Weights[i].Size
layers[i] += memory.CPU.Cache[i].Size
logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
slog.Log(context.TODO(), logutil.LevelTrace, "layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
}
gpuLayers := ml.GPULayersList{}

View File

@@ -1,12 +1,9 @@
package logutil
import (
"context"
"io"
"log/slog"
"path/filepath"
"runtime"
"time"
)
const LevelTrace slog.Level = -8
@@ -30,19 +27,3 @@ func NewLogger(w io.Writer, level slog.Level) *slog.Logger {
},
}))
}
type key string
func Trace(msg string, args ...any) {
TraceContext(context.WithValue(context.TODO(), key("skip"), 1), msg, args...)
}
func TraceContext(ctx context.Context, msg string, args ...any) {
if logger := slog.Default(); logger.Enabled(ctx, LevelTrace) {
skip, _ := ctx.Value(key("skip")).(int)
pc, _, _, _ := runtime.Caller(1 + skip)
record := slog.NewRecord(time.Now(), LevelTrace, msg, pc)
record.Add(args...)
logger.Handler().Handle(ctx, record)
}
}

View File

@@ -266,7 +266,7 @@ func (m DeviceMemory) LogValue() slog.Value {
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputWeights are always located on the CPU and cannot be moved
// InputsWeights are always located on the CPU and cannot be moved
InputWeights Memory
// CPU model components are located in system memory. This does not
@@ -372,7 +372,6 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
@@ -397,13 +396,10 @@ type Tensor interface {
Shape() []int
DType() DType
Cast(ctx Context, dtype DType) Tensor
Bytes() []byte
Floats() []float32
SetValueFromIntSlice(s []int32)
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Sub(ctx Context, t2 Tensor) Tensor
@@ -416,7 +412,6 @@ type Tensor interface {
AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
@@ -430,13 +425,12 @@ type Tensor interface {
Sin(ctx Context) Tensor
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
SILU(ctx Context, up ...Tensor) Tensor
RELU(ctx Context, up ...Tensor) Tensor
GELU(ctx Context) Tensor
QuickGELU(ctx Context) Tensor
SILU(ctx Context) Tensor
RELU(ctx Context) Tensor
Sigmoid(ctx Context) Tensor
// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
SwiGLU(ctx Context, up Tensor, alpha, limit float32) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor

View File

@@ -82,7 +82,6 @@ type Backend struct {
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
schedMu sync.Mutex // Only one Compute can run at a time
sched C.ggml_backend_sched_t
schedBackends []C.ggml_backend_t
schedBufts []C.ggml_backend_buffer_type_t
@@ -271,7 +270,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
@@ -378,7 +377,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
for bs := range maps.Values(bbs) {
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
slog.Log(context.TODO(), logutil.LevelTrace, "model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
@@ -536,7 +535,6 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
const BS = 17 // MXFP4 block size
bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
var s uint64
var tmp [16]byte
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
@@ -548,13 +546,37 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
return err
}
for j := range n / BS {
for i := 1; i < 9; i++ {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[j*BS+i], bts[j*BS+i+8]
tmp[2*(i-1)] = (a & 0x0F) | (b << 4)
tmp[2*(i-1)+1] = (a >> 4) | (b & 0xF0)
for i := 1; i < BS; i++ {
// swap nibbles
t_lo := bts[j*BS+i] & 0x0F
t_hi := bts[j*BS+i] & 0xF0
bts[j*BS+i] = (t_lo << 4) | (t_hi >> 4)
}
// transform aaaa...bbbb... to abababab...
oi := 0
tmp := [16]byte{}
for i := 1; i < 9; i++ {
blk_a0 := bts[j*BS+i] & 0xF0
blk_a1 := bts[j*BS+i] << 4
blk_b0 := bts[j*BS+i+8] >> 4
blk_b1 := bts[j*BS+i+8] & 0x0F
// swap once more
out0 := blk_a0 | blk_b0
out1 := blk_a1 | blk_b1
out_h0 := out0 & 0xF0
out_l0 := out0 & 0x0F
out_h1 := out1 & 0xF0
out_l1 := out1 & 0x0F
out0 = (out_h0 >> 4) | (out_l0 << 4)
out1 = (out_h1 >> 4) | (out_l1 << 4)
tmp[oi] = out0
oi++
tmp[oi] = out1
oi++
}
for i := range tmp {
bts[j*BS+i+1] = tmp[i]
}
copy(bts[j*BS+1:j*BS+17], tmp[:])
}
for _, tt := range tts {
@@ -630,18 +652,6 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
})
}
// Cleanup any backend state from devices that we didn't end up using
nextDevice:
for _, d := range append(gpus, append(accels, cpus...)...) {
for _, backend := range b.schedBackends {
if d == C.ggml_backend_get_device(backend) {
continue nextDevice
}
}
C.ggml_backend_dev_reset(d)
}
if err := g.Wait(); err != nil {
return err
}
@@ -759,15 +769,6 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
}
func (c *Context) Compute(tensors ...ml.Tensor) {
c.ComputeWithNotify(nil, tensors...)
}
func (c *Context) ComputeWithNotify(cb func(), tensors ...ml.Tensor) {
c.b.schedMu.Lock()
defer c.b.schedMu.Unlock()
if cb != nil {
go cb()
}
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
@@ -811,7 +812,7 @@ func (c *Context) Reserve() {
}
}
logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
slog.Log(context.TODO(), logutil.LevelTrace, "compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferStatus.size)))
}
@@ -842,7 +843,23 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
panic("set Input or Layer before creating tensors")
}
cdtype := ggmlDType(dtype)
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeQ80:
cdtype = C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
cdtype = C.GGML_TYPE_Q4_0
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
case ml.DTypeMXFP4:
cdtype = C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
@@ -1020,12 +1037,6 @@ func (t *Tensor) Floats() (data []float32) {
return
}
func (t *Tensor) SetValueFromIntSlice(s []int32) {
if len(s) > 0 {
C.ggml_backend_tensor_set(t.t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.t))
}
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
@@ -1045,32 +1056,6 @@ func (t *Tensor) DType() ml.DType {
}
}
func ggmlDType(dtype ml.DType) uint32 {
switch dtype {
case ml.DTypeF32:
return C.GGML_TYPE_F32
case ml.DTypeF16:
return C.GGML_TYPE_F16
case ml.DTypeQ80:
return C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
return C.GGML_TYPE_Q4_0
case ml.DTypeI32:
return C.GGML_TYPE_I32
case ml.DTypeMXFP4:
return C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
}
func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)),
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1205,13 +1190,6 @@ func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
@@ -1431,46 +1409,35 @@ func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
}
}
func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
func (t *Tensor) QuickGELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_quick_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
func (t *Tensor) SwiGLU(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),

View File

@@ -167,7 +167,6 @@ extern "C" {
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
GGML_API void ggml_backend_dev_reset(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);

View File

@@ -178,10 +178,6 @@ extern "C" {
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
// (optional) reset device, clearing existing allocations and context
// the caller must ensure that there are no outstanding buffers, as these will become invalid
void (*reset)(ggml_backend_dev_t dev);
};
struct ggml_backend_device {

View File

@@ -477,14 +477,6 @@ ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * par
return device->iface.init_backend(device, params);
}
void ggml_backend_dev_reset(ggml_backend_dev_t device) {
if (device->iface.reset == NULL) {
return;
}
device->iface.reset(device);
}
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
return device->iface.get_buffer_type(device);
}

View File

@@ -103,11 +103,6 @@ int ggml_cuda_get_device() {
return id;
}
void ggml_cuda_reset_device(int device) {
ggml_cuda_set_device(device);
CUDA_CHECK(cudaDeviceReset());
}
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
cudaError_t err;
@@ -3248,10 +3243,7 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
props->description = ggml_backend_cuda_device_get_description(dev);
props->id = ggml_backend_cuda_device_get_id(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
// Memory reporting is disabled to avoid allocation of a CUDA primary context (~300 MB per device).
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
props->memory_total = props->memory_free = 0;
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
@@ -3708,11 +3700,6 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
static void ggml_backend_cuda_device_reset(ggml_backend_dev_t dev) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_reset_device(ctx->device);
}
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .get_name = */ ggml_backend_cuda_device_get_name,
/* .get_description = */ ggml_backend_cuda_device_get_description,
@@ -3729,7 +3716,6 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .event_new = */ ggml_backend_cuda_device_event_new,
/* .event_free = */ ggml_backend_cuda_device_event_free,
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
/* .reset = */ ggml_backend_cuda_device_reset,
};
// backend reg
@@ -3849,6 +3835,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
dev_ctx->device = i;
dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
ggml_cuda_set_device(i);
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;

View File

@@ -40,7 +40,6 @@
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceReset hipDeviceReset
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled

View File

@@ -19,12 +19,8 @@ static bool ggml_uncaught_exception_init = []{
return false;
}
const auto prev{std::get_terminate()};
// GGML_ASSERT(prev != ggml_uncaught_exception);
if (prev != ggml_uncaught_exception) {
previous_terminate_handler = prev;
} else {
GGML_LOG_WARN("%s double registration of ggml_uncaught_exception\n", __func__);
}
GGML_ASSERT(prev != ggml_uncaught_exception);
previous_terminate_handler = prev;
std::set_terminate(ggml_uncaught_exception);
return true;
}();

View File

@@ -26,7 +26,6 @@ func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache
}
func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
ctx.Forward(query)
if key != nil && value != nil {
if query.Dim(0) != key.Dim(0) {
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
@@ -40,7 +39,6 @@ func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scal
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
}
ctx.Forward(key, value)
if cache != nil {
cache.Put(ctx, key, value)
}

View File

@@ -1,42 +0,0 @@
package pooling
import (
"github.com/ollama/ollama/ml"
)
type Type uint32
const (
TypeNone Type = iota
TypeMean
TypeCLS
TypeLast
)
func (t Type) String() string {
switch t {
case TypeMean:
return "Mean"
case TypeCLS:
return "CLS"
case TypeLast:
return "Last"
default:
return "Unknown"
}
}
func (t Type) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
switch t {
case TypeMean:
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
return hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
case TypeCLS:
return hiddenStates.View(ctx, 0, hiddenStates.Dim(0))
case TypeLast:
hiddenStates = hiddenStates.View(ctx, (hiddenStates.Dim(1)-1)*hiddenStates.Stride(1), hiddenStates.Dim(0))
return hiddenStates
default:
panic("unknown pooling type")
}
}

View File

@@ -1,79 +0,0 @@
package pooling_test
import (
"bytes"
"os"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/discover"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn/pooling"
)
func setup(tb testing.TB, n int) ml.Backend {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "*.bin")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
if err := fsggml.WriteGGUF(f, fsggml.KV{
"general.architecture": "test",
"test.block_count": uint32(1),
}, []*fsggml.Tensor{
{Name: "blk.0.weight", Shape: []uint64{1}, WriterTo: bytes.NewBuffer(make([]byte, 4))},
}); err != nil {
tb.Fatal(err)
}
var gpuLayers ml.GPULayersList
if gpus := discover.GetGPUInfo(); len(gpus) > 0 {
gpuLayers = append(gpuLayers, ml.GPULayers{
ID: gpus[0].ID,
Layers: slices.Collect(func(yield func(int) bool) {
for i := range n {
if !yield(i) {
return
}
}
}),
})
}
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true, GPULayers: gpuLayers})
if err != nil {
tb.Fatal(err)
}
return b
}
func TestForward(t *testing.T) {
cases := map[pooling.Type][]float32{
pooling.TypeMean: {4, 5, 6, 7, 8, 9, 10, 11},
pooling.TypeCLS: {0, 1, 2, 3, 4, 5, 6, 7},
pooling.TypeLast: {8, 9, 10, 11, 12, 13, 14, 15},
}
for typ, want := range cases {
t.Run(typ.String(), func(t *testing.T) {
b := setup(t, 99)
defer b.Close()
ctx := b.NewContext()
defer ctx.Close()
tt := ctx.Input().Arange(0, 16, 1, ml.DTypeF32).Reshape(ctx, 8, 2)
tt = typ.Forward(ctx, tt)
ctx.Forward(tt).Compute(tt)
if diff := cmp.Diff(want, tt.Floats()); diff != "" {
t.Error(diff)
}
})
}
}

View File

@@ -2,6 +2,7 @@ package model
import (
"cmp"
"context"
"fmt"
"iter"
"log/slog"
@@ -108,7 +109,7 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
r = 0x0143
case r <= 0x0020:
r = r + 0x0100
case r >= 0x007f && r <= 0x00a0:
case r >= 0x007e && r <= 0x00a0:
r = r + 0x00a2
}
@@ -201,11 +202,12 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = bpe.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
@@ -241,6 +243,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
logutil.Trace("decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
return sb.String(), nil
}

View File

@@ -207,36 +207,6 @@ func TestLlama(t *testing.T) {
}
}
})
t.Run("roundtriping 0x00-0xFF", func(t *testing.T) {
t.Parallel()
for b := 0x00; b <= 0xFF; b++ {
input := string(rune(b))
ids, err := tokenizer.Encode(input, false)
if err != nil {
t.Errorf("failed to encode rune 0x%02X: %v", b, err)
continue
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Errorf("failed to decode rune 0x%02X: %v", b, err)
continue
}
if b == 0x00 {
if len(decoded) != 0 {
t.Errorf("Decode(Encode(0x00)) should be empty, got %v", ids)
}
continue
}
if decoded != input {
t.Errorf("rune 0x%02X failed roundtrip: got %q, want %q", b, decoded, input)
}
}
})
}
func BenchmarkBytePairEncoding(b *testing.B) {

View File

@@ -54,9 +54,10 @@ type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
@@ -65,8 +66,7 @@ type Batch struct {
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
}

View File

@@ -1,10 +1,12 @@
package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
_ "image/png"
"log/slog"
"os"
"reflect"
"strconv"
@@ -20,15 +22,10 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model/input"
)
var (
ErrNoVisionModel = errors.New("this model is missing data required for image input")
ErrUnsupportedModel = errors.New("model not supported")
ErrUnsupportedTokenizer = errors.New("tokenizer not supported")
)
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
@@ -67,7 +64,7 @@ type MultimodalProcessor interface {
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize([]*input.Input) ([]*input.Input, error)
PostTokenize([]input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models
@@ -107,12 +104,19 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return nil, err
}
m, err := modelForArch(b.Config())
arch := b.Config().Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(b.Config())
if err != nil {
return nil, err
}
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
return m, nil
@@ -124,38 +128,30 @@ func NewTextProcessor(s string) (TextProcessor, error) {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
m, err := modelForArch(meta.KV())
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(kv)
if err != nil {
return nil, err
}
tp, ok := m.(TextProcessor)
if !ok {
return nil, ErrUnsupportedTokenizer
return nil, fmt.Errorf("%v is not a TextProcessor", m)
}
return tp, nil
}
func modelForArch(c fs.Config) (Model, error) {
arch := c.Architecture()
if pooling.Type(c.Uint("pooling_type")) != pooling.TypeNone {
arch = arch + "_embed"
}
f, ok := models[arch]
if !ok {
return nil, ErrUnsupportedModel
}
return f(c)
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
@@ -202,7 +198,7 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
names := fn(tagsCopy)
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
logutil.Trace("found tensor", "", tensor)
slog.Log(context.TODO(), logutil.LevelTrace, "found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
@@ -243,7 +239,7 @@ func setPointer(base Base, v reflect.Value, tags []Tag) {
vv = vv.Elem()
}
vv = reflect.Indirect(vv)
vv = vv.Elem()
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}
@@ -282,7 +278,7 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, batch input.Batch) (ml.Tensor, error) {
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
if len(batch.Positions) != len(batch.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
}
@@ -291,6 +287,8 @@ func Forward(ctx ml.Context, m Model, batch input.Batch) (ml.Tensor, error) {
return nil, errors.New("batch size cannot be less than 1")
}
batch.Inputs = ctx.Input().FromIntSlice(inputs, len(inputs))
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, false)
@@ -304,7 +302,7 @@ func Forward(ctx ml.Context, m Model, batch input.Batch) (ml.Tensor, error) {
return nil, err
}
ctx.Forward(t)
ctx.Forward(t).Compute(t)
return t, nil
}

View File

@@ -1,9 +1,9 @@
package model
import (
"errors"
"reflect"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
@@ -12,6 +12,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@@ -147,58 +148,39 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
}
}
func TestModelForArch(t *testing.T) {
type fakeModel struct {
Model
func TestGetTextProcessor(t *testing.T) {
tp, err := getTextProcessor(fsggml.KV{})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
type fakeEmbeddingModel struct {
Model
models["dummy"] = func(fs.Config) (Model, error) {
return notTextProcessorModel{}, nil
}
models["model"] = func(c fs.Config) (Model, error) { return fakeModel{}, nil }
models["model_embed"] = func(c fs.Config) (Model, error) { return fakeEmbeddingModel{}, nil }
cases := []struct {
name string
config fs.Config
want any
err error
}{
{
name: "model",
config: fsggml.KV{
"general.architecture": "model",
},
want: fakeModel{},
},
{
name: "embedding",
config: fsggml.KV{
"general.architecture": "model",
"model.pooling_type": uint32(1),
},
want: fakeEmbeddingModel{},
},
{
name: "unsupported",
config: fsggml.KV{
"general.architecture": "unsupported",
},
err: ErrUnsupportedModel,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got, err := modelForArch(tt.config)
if !errors.Is(err, tt.err) {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, got); diff != "" {
t.Errorf("modelForArch() returned unexpected values (-want +got):\n%s", diff)
}
})
tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
}
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
panic("unimplemented")
}
func (notTextProcessorModel) Backend() ml.Backend {
panic("unimplemented")
}
func (notTextProcessorModel) Config() config {
panic("unimplemented")
}

View File

@@ -1,181 +0,0 @@
package bert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.View(ctx, 0, m.hiddenSize))
hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))))
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
// Attention
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
// MLP
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := a.Query.Forward(ctx, hiddenStates)
if a.QueryNorm != nil {
query = a.QueryNorm.Forward(ctx, query, opts.eps)
}
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key := a.Key.Forward(ctx, hiddenStates)
if a.KeyNorm != nil {
key = a.KeyNorm.Forward(ctx, key, opts.eps)
}
key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
value := a.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
poolingType pooling.Type
eps float32
normalize bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func New(c fs.Config) (model.Model, error) {
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
processor = model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
//nolint:misspell
// NOTE: "seperator_token_id" is a typo in model metadata but we need to
// support it for compatibility.
c.Uint("tokenizer.ggml.seperator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", true),
},
}, nil
}
func init() {
model.Register("bert", New)
model.Register("bert_embed", New)
}

View File

@@ -24,7 +24,7 @@ type Options struct {
type Model struct {
model.Base
model.SentencePiece
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -40,7 +40,7 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePiece: model.NewSentencePiece(
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -63,7 +63,7 @@ func New(c fs.Config) (model.Model, error) {
attnValLen: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 10000.0),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
finalLogitSoftcap: c.Float("final_logit_softcapping"),
},
@@ -88,7 +88,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -98,7 +98,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -128,7 +128,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, 1/m.Options.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
}
type MLP struct {
@@ -138,7 +138,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -176,6 +176,7 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
@@ -192,7 +193,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = batch.Outputs
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)

View File

@@ -1,62 +0,0 @@
package gemma3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePiece
*TextModel
poolingType pooling.Type
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
}
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
kvcache.NewCausalCache(m.Shift),
)
return m, nil
}

View File

@@ -16,9 +16,9 @@ import (
type Model struct {
model.Base
model.SentencePiece
model.SentencePieceModel
*VisionModel `gguf:"v"`
*VisionModel `gguf:"v,vision"`
*TextModel
*MultiModalProjector `gguf:"mm"`
@@ -55,7 +55,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePiece: model.NewSentencePiece(
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -112,8 +112,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
@@ -122,17 +122,17 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
inputMultimodal := inp.Multimodal[0].Tensor
result = append(result,
&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
&input.Input{Token: 255999}, // "<start_of_image>""
&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
// add image token placeholders
result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result,
&input.Input{Token: 256000}, // <end_of_image>
&input.Input{Token: 108}, // "\n\n"
input.Input{Token: 256000}, // <end_of_image>
input.Input{Token: 108}, // "\n\n"
)
}
}
@@ -141,11 +141,12 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}

View File

@@ -53,10 +53,7 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: 1,
// NOTE: the rope.scaling.factor is set incorrectly in the official QAT weights
// (8 instead of 1)
// ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
},
}
@@ -87,7 +84,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -98,7 +95,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -116,7 +113,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, 1/m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
}
type TextMLP struct {
@@ -126,7 +123,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -162,10 +159,8 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
// set image embeddings
@@ -196,12 +191,12 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = batch.Outputs
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return hiddenState
return m.Output.Forward(ctx, hiddenState)
}

View File

@@ -10,7 +10,7 @@ import (
type Model struct {
model.Base
model.SentencePiece
model.SentencePieceModel
*TextModel
}
@@ -23,7 +23,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
SentencePiece: model.NewSentencePiece(
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),

View File

@@ -83,7 +83,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Rows(ctx, batch.Outputs)
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
@@ -95,7 +95,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.ropeBaseLocal
}
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
type TextScaledWordEmbedding struct {
@@ -170,7 +170,8 @@ func (d TextLayer) Forward(ctx ml.Context, hiddenStates, perLayerInput, position
}
active = d.PerLayerInputGate.Forward(ctx, active)
active = active.GELU(ctx, perLayerInput)
active = active.GELU(ctx)
active = active.Mul(ctx, perLayerInput)
active = d.PerLayerProjection.Forward(ctx, active)
active = d.PostPerLayerNorm.Forward(ctx, active, opts.eps)
@@ -256,14 +257,14 @@ func (attn TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Ten
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
query = attn.QueryNorm.Forward(ctx, query, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
var key, value ml.Tensor
if !sharedKV {
key = attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
key = attn.KeyNorm.Forward(ctx, key, opts.eps)
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
value = attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
@@ -291,7 +292,7 @@ func (mlp TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, activationSpa
hiddenStates = hiddenStates.Sub(ctx, cutoff).RELU(ctx)
}
hiddenStates = hiddenStates.GELU(ctx, upStates)
hiddenStates = hiddenStates.GELU(ctx).Mul(ctx, upStates)
hiddenStates = mlp.Down.Forward(ctx, hiddenStates)
return hiddenStates
}
@@ -349,7 +350,7 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeBase: c.Float("rope.freq_base", 1_000_000),
ropeBaseLocal: c.Float("rope.freq_base_local", 10_000),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
activationSparsityScale: c.Floats("activation_sparsity_scale"),

View File

@@ -41,8 +41,8 @@ func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, err
}
var outputs ml.Tensor
if i == len(m.TransformerBlocks)-1 {
outputs = batch.Outputs
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
@@ -210,7 +210,7 @@ func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *
up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
}
hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
hiddenStates = gate.SwiGLU(ctx, up, 1.702, 7)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)

View File

@@ -2,6 +2,7 @@ package llama
import (
"cmp"
"fmt"
"math"
"github.com/ollama/ollama/fs"
@@ -22,60 +23,51 @@ type Options struct {
type Model struct {
model.Base
model.TextProcessor
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
*Options
}
func New(c fs.Config) (model.Model, error) {
if c.Uint("expert_count") > 0 {
// TODO: support mixtures of experts
return nil, model.ErrUnsupportedModel
// This model currently only supports the gpt2 tokenizer
if c.String("tokenizer.ggml.model") == "llama" {
return nil, fmt.Errorf("unsupported tokenizer: llama")
}
var processor model.TextProcessor
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
// Best effort detection of library/deepseek-coder model(s) which are incompatible
if c.String("general.name") == "deepseek-ai" {
return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
}
switch c.String("tokenizer.ggml.model") {
case "gpt2":
processor = model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&vocabulary,
)
case "llama":
processor = model.NewSentencePiece(&vocabulary)
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 1e5),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
@@ -106,8 +98,8 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
@@ -116,7 +108,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
}
type MLP struct {
@@ -126,7 +118,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -168,10 +160,10 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, &m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
ImageProcessor
*VisionModel `gguf:"v"`
*VisionModel `gguf:"v,vision"`
*Projector `gguf:"mm"`
*TextModel
}
@@ -134,16 +134,16 @@ type separator struct {
y bool
}
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
continue
}
var imageInputs []*input.Input
imageInputs = append(imageInputs, &input.Input{Token: 200080}) // <|image_start|>
var imageInputs []input.Input
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>
for i, mm := range inp.Multimodal {
patchesPerChunk := mm.Tensor.Dim(1)
@@ -151,20 +151,20 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
if i < len(inp.Multimodal)-1 {
separator := mm.Data.(*separator)
imageInputs = append(imageInputs, &input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]*input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
if separator.x {
imageInputs = append(imageInputs, &input.Input{Token: 200084}) // <|tile_x_separator|>
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
}
if separator.y {
imageInputs = append(imageInputs, &input.Input{Token: 200085}) // <|tile_y_separator|>
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
}
} else {
imageInputs = append(imageInputs, &input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, &input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]*input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, &input.Input{Token: 200080}) // <|image_end|>
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
}
}
@@ -176,7 +176,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -33,8 +33,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
if useRope {
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
}
if opts.useQKNorm {
@@ -58,14 +58,14 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextExperts struct {
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -76,9 +76,9 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.Forward(ctx, hiddenStates, experts)
gateStates := e.Gate.Forward(ctx, hiddenStates, experts)
downStates := e.Down.Forward(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
upStates := e.Up.Weight.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.Weight.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.Weight.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
@@ -96,7 +96,7 @@ type TextSharedExpert struct {
}
func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -196,7 +196,7 @@ func newTextModel(c fs.Config) *TextModel {
numExpertsUsed: int(c.Uint("expert_used_count")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
interleaveLayerStep: int(c.Uint("interleave_moe_layer_step", 1)),
noRopeInterval: int(c.Uint("no_rope_interval", 4)),
@@ -248,5 +248,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
}

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
*VisionModel `gguf:"v,vision"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
@@ -133,22 +133,22 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
// that can be processed together.
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
} else {
for i, row := range inp.Multimodal {
// [IMG]
result = append(result, &input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]*input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
result = append(result, input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
if i == len(inp.Multimodal)-1 {
// [IMG_END]
result = append(result, &input.Input{Token: 13})
result = append(result, input.Input{Token: 13})
} else {
// [IMG_BREAK]
result = append(result, &input.Input{Token: 12})
result = append(result, input.Input{Token: 12})
}
}
}
@@ -159,8 +159,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -40,11 +40,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -55,7 +55,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -65,7 +65,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -132,7 +132,7 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
}

View File

@@ -51,7 +51,7 @@ type VisionMLP struct {
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@@ -17,7 +17,7 @@ type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v"`
*VisionModel `gguf:"v,vision"`
*TextModel
Projector *nn.Linear `gguf:"mm.0"`
@@ -90,7 +90,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: projectedOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
for i := range inputs {
if inputs[i].Multimodal != nil {
inputs[i].Token = 128256 // <|image|>
@@ -107,9 +107,10 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -26,11 +26,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -45,7 +45,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
}
return key, nil
@@ -58,7 +58,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -244,7 +244,7 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
crossAttentionLayers: c.Ints("attention.cross_attention_layers"),
},
}

View File

@@ -1,7 +1,6 @@
package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"

View File

@@ -43,8 +43,8 @@ func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
@@ -59,7 +59,7 @@ type MLP struct {
}
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -111,7 +111,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
@@ -124,7 +124,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
func New(c fs.Config) (model.Model, error) {
@@ -160,7 +160,7 @@ func New(c fs.Config) (model.Model, error) {
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
},
}

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
*VisionModel `gguf:"v,vision"`
ImageProcessor
}
@@ -89,8 +89,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
var (
imageToken int32 = 151655
@@ -112,16 +112,16 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, &input.Input{Token: pre[i]})
result = append(result, input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, &input.Input{Token: visionStartToken})
result = append(result, input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, &input.Input{
result = append(result, input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
@@ -129,9 +129,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]*input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, &input.Input{Token: visionEndToken})
result = append(result, input.Input{Token: visionEndToken})
}
}
@@ -140,8 +140,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
}
func init() {

View File

@@ -38,7 +38,7 @@ func NewTextModel(c fs.Config) *TextModel {
originalContextLength: int(c.Uint("context_length", 128000)),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
@@ -60,11 +60,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -78,7 +78,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
}
// MLP implements the feed-forward network component with SwiGLU activation
@@ -90,7 +90,7 @@ type MLP struct {
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
// Apply SwiGLU activation gating
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
// Project back to hidden dimension
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@@ -100,7 +100,8 @@ type VisionMLP struct {
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@@ -1,73 +0,0 @@
package qwen3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.BytePairEncoding
*Model
poolingType pooling.Type
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbed(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
layers[i].MLP = &dense{}
}
m := embedModel{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Model: &Model{
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
},
poolingType: pooling.Type(c.Uint("pooling_type")),
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}

View File

@@ -30,10 +30,10 @@ func (o Options) headDim() int {
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
Query *nn.Linear `gguf:"attn_q"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
@@ -52,8 +52,8 @@ func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
@@ -65,10 +65,10 @@ type MLP interface {
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
@@ -87,9 +87,13 @@ func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
upStates := mlp.Up.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
hiddenStates = mlp.Gate.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.SILU(ctx)
hiddenStates = hiddenStates.Mul(ctx, upStates)
experts := mlp.Down.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
@@ -107,8 +111,7 @@ type dense struct {
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).
SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -151,39 +154,29 @@ type Model struct {
*Options
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
return m.Output.Forward(ctx, hiddenStates), nil
}
// Forward implements model.Model.
func (m *Model) forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
if m.Cache != nil {
m.Cache.SetLayer(i)
}
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
return m.OutputNorm.Forward(ctx, hiddenStates, m.eps), nil
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
var _ model.Model = (*Model)(nil)
@@ -223,7 +216,7 @@ func New(c fs.Config) (model.Model, error) {
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
@@ -237,5 +230,4 @@ func New(c fs.Config) (model.Model, error) {
func init() {
model.Register("qwen3", New)
model.Register("qwen3moe", New)
model.Register("qwen3_embed", newEmbed)
}

Some files were not shown because too many files have changed in this diff Show More