Compare commits

..

59 Commits

Author SHA1 Message Date
jmorganca
bac80afe6a runner: discard compute results if sequence replaced mid-batch
If a sequence is replaced in s.seqs while a batch is computing, the old logits can be decoded into the new sequence. This change rechecks the sequence pointer after compute and skips decoding for replaced entries, preventing stale results from being applied.
2026-02-04 09:05:26 -08:00
Jeffrey Morgan
77eb2ca619 model: add qwen3-next architecture (#14051) 2026-02-03 23:27:21 -08:00
Parth Sareen
ee25219edd cmd: claude launch improvements (#14064) 2026-02-03 19:33:58 -08:00
Jeffrey Morgan
b1fccabb34 Revert "Update vendored llama.cpp to b7847" (#14061) 2026-02-03 18:39:36 -08:00
Bruce MacDonald
a6355329bf cmd: open browser on ollama signin when available (#14055)
When a browser is available open it to the connect URL automatically when running the `ollama signin` command. Browser is not opened in any other unauthorized scenario.
2026-02-03 16:42:09 -08:00
Parth Sareen
0398b24b42 cmd: launch defaults (#14035) 2026-02-02 23:19:11 -08:00
Parth Sareen
75b1dddf91 cmd: launch extra params (#14039) 2026-02-03 02:03:33 -05:00
Parth Sareen
e1e80ffc3e cmd/config: move config location (#14034) 2026-02-02 22:48:51 -05:00
Aleksandr Vukmirovich
71896485fd anthropic: add InputTokens to streaming response (#13934)
---------

Co-authored-by: ParthSareen <parth.sareen@ollama.com>
2026-02-02 18:29:37 -08:00
Jeffrey Morgan
ef00199fb4 Update vendor ggml code to a5bb8ba4 (#13832)
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2026-02-02 17:31:59 -08:00
Jeffrey Morgan
8f4a008139 Add GLM-OCR vision model support (#14024) 2026-02-02 15:39:18 -08:00
Patrick Devine
d8cc798c2b glm 4.7 flash support on experimental engine (#13838) 2026-02-02 15:22:11 -08:00
Richard Lyons
6582f6da5c llm: Make "do load request" error message more informative 2026-02-02 11:13:21 -08:00
Jesse Gross
0334ffa625 server: use tiered VRAM-based default context length
Replace binary low VRAM mode with tiered VRAM thresholds that set
default context lengths for all models:

- < 24 GiB VRAM: 4,096 context
- 24-48 GiB VRAM: 32,768 context
- >= 48 GiB VRAM: 262,144 context
2026-02-02 10:47:09 -08:00
Jesse Gross
d11fbd2c60 server: fix ollama ps showing configured instead of actual context length
When context length is clamped to the model's trained context length,
ollama ps now shows the actual clamped value instead of the originally
configured value.
2026-02-02 10:47:09 -08:00
Jeffrey Morgan
6a7c3f188e openclaw: run onboarding for fresh installs (#14006)
When launching OpenClaw without prior onboarding, run the onboarding
wizard instead of going straight to gateway. This ensures proper
gateway configuration (mode, token, etc.) before first use.

- Add onboarded() to check for wizard.lastRunAt marker in config
- Run onboard with --auth-choice skip --gateway-token ollama for fresh installs
- Existing installs (onboarding completed) run gateway directly
2026-02-01 13:46:45 -08:00
Jeffrey Morgan
427e2c962a docs: add redirect from clawdbot to openclaw (#14004) 2026-01-31 20:50:42 -08:00
Thanh Nguyen
27db7f806f cmd/config: rename integration to openclaw (#13979)
---------

Co-authored-by: ParthSareen <parth.sareen@ollama.com>
2026-01-31 18:31:13 -05:00
Dhiraj Lochib
3590fbfa76 runner: fix typo 'baackend' -> 'backend' in error messages (#13645)
Fix typo in three error messages where 'baackend' was written instead
of 'backend' in the /health endpoint handler when initializing the
dummy model load.
2026-01-31 13:26:20 -08:00
noureldin-azzab
cd0094f772 added stakpak to web & desktop (#13961) 2026-01-31 13:04:34 -08:00
Louis Beaumont
06bc8e6712 docs: add Screenpipe to Community Integrations (#13906)
Screenpipe is a 24/7 screen & mic recording tool that uses Ollama
for local LLM-powered search and AI features. 16k+ GitHub stars.
2026-01-31 12:49:52 -08:00
frob
fc5f9bb448 docs: remove unsupported quantizations (#13982) 2026-01-31 12:46:20 -08:00
frob
a0740f7ef7 docs: add GB10 to supported devices (#13987) 2026-01-31 12:45:27 -08:00
Parth Sareen
a0923cbdd0 cmd: ollama launch add placeholder text for selector (#13966) 2026-01-29 09:48:49 -08:00
Seokrin Taron Sung
f92e362b2e cmd: capitalize Ollama in serve command help text (#13965) 2026-01-29 09:47:53 -08:00
Tincho
aa23d8ecd2 docs: update installation command for OpenCode CLI (#13971) 2026-01-29 09:47:02 -08:00
Gabe Goodhart
7b62c41060 cmd/config: use envconfig.Host() for base API in launch config packages (#13937) 2026-01-27 13:30:00 -08:00
Parth Sareen
26acab64b7 docs: add clawdbot (#13925) 2026-01-26 18:32:54 -08:00
Gyungrai Wang
e0f03790b1 parsers/ministral: fix nested tool call parsing by counting brace nesting (#13905)
* parsers/ministral: fix nested tool call parsing by counting brace nesting

* fix lint error

* parsers: refactor ministral parser

The old one was very tied to expecting to see only one token at a time,
which I don't like to assume (who knows what the future might hold wrt
speculative decoding, etc). This new one follows a similar structure to
qwen3-coder's parser, which incidentally makes it easier to test as well
(since we can test the individual events that come out when given
particular inputs).

---------

Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2026-01-26 15:03:43 -08:00
Parth Sareen
3ab842b0f5 cmd: clawdbot config fixes (#13922) 2026-01-26 14:34:29 -08:00
Parth Sareen
b8e8ef8929 cmd: ollama launch clawdbot (#13921) 2026-01-26 13:40:59 -08:00
Parth Sareen
465d124183 cmd: fix opencode config (#13894) 2026-01-24 18:42:56 -08:00
Parth Sareen
d310e56fa3 cmd: add fallback for claude (#13892) 2026-01-24 18:26:01 -08:00
Jeffrey Morgan
a1ca428c90 glm4moelite: fix attention scale calculation (#13893)
Use the original key dimension (qkNopeHeadDim + qkRopeHeadDim = 256) for
the attention scale instead of the MLA absorbed dimension (kvLoraRank +
qkRopeHeadDim = 576).

MLA absorption is a mathematically equivalent reorganization of the
attention computation - it should not change the effective attention
scale. The scale should match training, which uses 1/sqrt(256).

This improves tool calling and model looping issues.
2026-01-24 17:48:09 -08:00
Jeffrey Morgan
16750865d1 glm4moelite: quantize more tensors to q8_0 and avoid double BOS token (#13891) 2026-01-24 16:33:54 -08:00
Jeffrey Morgan
f3b476c592 build: add -O3 optimization to CGO flags (#13877)
CGO_CFLAGS and CGO_CXXFLAGS were being set without optimization flags,
which overrides Go's default -O2 and results in unoptimized C++ code.

This caused significant performance degradation in release builds
compared to local `go build` which uses the default optimization.

- build_darwin.sh: add -O3 to CGO_CFLAGS and CGO_CXXFLAGS exports
- Dockerfile: preserve CGO_CFLAGS/CGO_CXXFLAGS from build args instead
  of overwriting them
- app/README.md: update documentation to include -O3
2026-01-24 10:55:38 -08:00
Parth Sareen
5267d31d56 docs: ollama launch (#13852) 2026-01-23 23:18:50 -08:00
Stillhart
b44f56319f README: Update the "Ollama for ruby" to the most popular and maintained ruby gem. (#13855)
* update README ruby link

the ollama-ai ruby gem is vastly less popular and seems unmaintained
https://rubygems.org/gems/ollama-ai

the defacto standard with the most downloads in the ruby ecosystem is ruby_llm
https://rubygems.org/gems/ruby_llm

I would link to that to avoid complication and guarantee feature compatibility with ollama.

* Update gem link ruby_llm from website to GitHub

ollama links mostly to github, not project websites, hence link to ruby_llm github.
2026-01-24 01:24:52 -05:00
Jeffrey Morgan
0209c268bb llama: fix CUDA MMA errors in release build (#13874) 2026-01-23 20:10:04 -08:00
Jeffrey Morgan
912d984346 llama: fix fattn-tile shared memory overflow on sm_50/52 (#13872)
Use nthreads=128 for ncols=4 configurations in flash attention tile
kernel to reduce shared memory usage below 48KB limit on Maxwell
architectures (sm_50/52).

With nthreads=256 and ncols=4, np=2 which caused shared memory to
exceed 48KB. With nthreads=128 and ncols=4, np=1 keeps shared memory
under the limit.
2026-01-23 19:22:32 -08:00
Parth Sareen
aae6ecbaff cmd: rename ollama config to ollama launch (#13871) 2026-01-23 18:40:40 -08:00
Jeffrey Morgan
64737330a4 Re-apply "model: add MLA absorption for glm4moelite" with fix (#13870)
The nvidia_fp32 config for (576, 512) head sizes had nbatch_fa=32,
which caused zero-sized arrays when computing array dimensions:
  nbatch_fa / (np * warp_size) = 32 / (2 * 32) = 0

This resulted in CUDA compilation failures on CUDA 12 (Windows and
Linux arm64):
- "static assertion failed with nbatch_fa % (np*warp_size) != 0"
- "the size of an array must be greater than zero"

Fix by changing nbatch_fa from 32 to 64 for all (576, 512) configs
in the nvidia_fp32 function, matching the nvidia_fp16 and AMD configs.
2026-01-23 18:40:28 -08:00
Jeffrey Morgan
2eda97f1c3 Revert "model: add MLA absorption for glm4moelite (#13810)" (#13869)
This reverts commit 1044b0419a.
2026-01-23 17:14:15 -08:00
Jeffrey Morgan
66831dcf70 x/imagegen: fix image editing support (#13866)
- Fix panic in ollama show for image gen models (safe type assertion)
- Add vision capability for Flux2KleinPipeline models at create time
- Flatten transparent PNG images onto white background for better results
2026-01-23 15:37:17 -08:00
Jeffrey Morgan
1044b0419a model: add MLA absorption for glm4moelite (#13810)
* model: add MLA absorption for glm4moelite

Split the combined KV_B tensor into separate K_B and V_B tensors
during conversion, enabling MLA (Multi-head Latent Attention)
absorption which compresses the KV cache for improved efficiency.

* ggml: enable MLA flash attention for GLM-4.7-flash

Add support for gqa_ratio 4 in MLA flash attention kernels. GLM-4.7-flash
uses head size 576 with gqa_ratio 4, which was previously only supported
for gqa_ratio 16 (DeepSeek).

Metal changes:
- Enable head size 576 for flash attention
- Increase simdgroups to 8 for large heads (>=512)
- Add case 8 kernel dispatch for 8 simdgroups

CUDA changes:
- Add gqa_ratio 4 support for head 576/512
- Add tile configs for (576, 512, 4) and (576, 512, 8)
- Add MMA config cases for ncols 4
- Add template instances for ncols2=4

* model: add compatibility validation for glm4moelite architecture
2026-01-23 14:47:42 -08:00
Parth Sareen
771d9280ec cmd: ollama config fix droid model name configuration (#13856) 2026-01-23 11:44:22 -08:00
Jeffrey Morgan
862bc0a3bf x/imagegen: respect stream=false in /api/generate (#13853)
When stream=false is set for image generation requests, return a single
JSON response instead of streaming multiple ndjson progress updates.
2026-01-22 22:16:39 -08:00
Jeffrey Morgan
c01608b6a1 x/imagegen: add image edit capabilities (#13846) 2026-01-22 20:35:08 -08:00
Parth Sareen
199c41e16e cmd: ollama config command to help configure integrations to use Ollama (#13712) 2026-01-22 20:17:11 -08:00
Jeffrey Morgan
3b3bf6c217 x/imagegen: replace memory estimation with actual weight size (#13848)
Remove static VRAM estimation (EstimateVRAM, CheckMemoryRequirements)
which wasn't helpful. Instead, report the actual tensor weight size
from the manifest for ollama ps.

- Remove memory estimation check from runner startup
- Remove EstimateVRAM, CheckMemoryRequirements, modelVRAMEstimates
- Add TotalTensorSize() to get actual weight size from manifest
- Use weight size for Server.vramSize instead of estimates

Note: This is better than showing 0 or inaccurate estimates, but the
weight size is a drastic underestimation of actual memory usage since
it doesn't account for activations, intermediate tensors, or MLX
overhead. Future work should query real-time memory from MLX
(e.g., MetalGetActiveMemory) for accurate reporting.
2026-01-22 18:32:41 -08:00
Parth Sareen
f52c21f457 fix: handle Enter key pressed during model loading (#13839) 2026-01-22 18:32:02 -08:00
Jeffrey Morgan
b5d0f72f16 x/imagegen: remove qwen_image and qwen_image_edit models (#13827)
Remove the Qwen image generation and image editing model packages
to clean up the codebase. These models will be reintroduced later.

- Delete x/imagegen/models/qwen_image/ (10 files)
- Delete x/imagegen/models/qwen_image_edit/ (5 files)
- Remove related CLI flags and imports from cmd/engine/main.go
- Update comments in cache/step.go to remove Qwen-specific references
2026-01-21 13:37:08 -08:00
Patrick Devine
148a1be0a3 Clean up the manifest and modelpath (#13807) 2026-01-21 11:46:17 -08:00
next-n
d6dd430abd x/imagegen: respect OLLAMA_MODELS for manifests and blobs (#13797) 2026-01-20 13:01:52 -08:00
Daniel Hiltgen
ae78112c50 test: add lfm2.5-thinking coverage (#13802) 2026-01-20 12:57:02 -08:00
Jeffrey Morgan
01cf7445f3 model: add lfm2 architecture and LFM2.5-1.2B-Thinking support (#13792)
Co-Authored-By: TommyBoiss <165361500+TommyBoiss@users.noreply.github.com>
2026-01-20 12:20:53 -08:00
Jeffrey Morgan
31085d5e53 fix: use api.GenerateRequest for image generation test (#13793)
Remove non-existent x/imagegen/api import and use the standard
api.GenerateRequest/GenerateResponse with the Image field instead.
2026-01-20 03:23:31 -08:00
Daniel Hiltgen
c42e9d244f test: add image gen test case (#13698)
* test: fix type regression in tools test.

* test: add image gen integration test
2026-01-19 16:01:31 -08:00
Devon Rifkin
e98b5e8b4e /api/show: default to empty model_info (#13785)
For `/api/show`, a fully missing `model_info` field trips up various
integrators (including a recent Android Studio integration).

The primary source of missing info tends to come from models with a
remote that are also missing other data. It seems better to me to return
an empty `model_info` than making up some other fields within
`model_info` (like saying the architecture is `remote` or something like
that). So this does slightly change `/api/show`'s behavior that possibly
someone is relying on, but it seems more important to ensure the field
is always there (from a quick sampling integrations seem to be robust to
missing fields _within_ it).

Fixes: https://github.com/ollama/ollama/issues/13783
2026-01-19 15:26:17 -08:00
204 changed files with 25222 additions and 10871 deletions

View File

@@ -169,8 +169,10 @@ COPY . .
RUN git clone --depth 1 --branch "$(cat MLX_VERSION)" https://github.com/ml-explore/mlx-c.git build/_deps/mlx-c-src
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ENV CGO_CFLAGS="-I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
ENV CGO_CFLAGS="${CGO_CFLAGS} -I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ENV CGO_CXXFLAGS="${CGO_CXXFLAGS}"
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -tags mlx -trimpath -buildmode=pie -o /bin/ollama .

View File

@@ -358,6 +358,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Odin Runes](https://github.com/leonid20000/OdinRunes)
- [LLM-X](https://github.com/mrdjohnson/llm-x) (Progressive Web App)
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
- [Screenpipe](https://github.com/mediar-ai/screenpipe) (24/7 screen & mic recording with AI-powered search, uses Ollama for local LLM features)
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
@@ -465,6 +466,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
- [Hillnote](https://hillnote.com) (A Markdown-first workspace designed to supercharge your AI workflow. Create documents ready to integrate with Claude, ChatGPT, Gemini, Cursor, and more - all while keeping your work on your device.)
- [Stakpak](https://github.com/stakpak/agent) (An open source, vendor neutral DevOps agent that works with any model, and any stack, for teams who just want to ship)
### Cloud
@@ -558,7 +560,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama for Ruby](https://github.com/crmne/ruby_llm)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)

157
anthropic/anthropic.go Normal file → Executable file
View File

@@ -211,6 +211,7 @@ type MessageDelta struct {
// DeltaUsage contains cumulative token usage
type DeltaUsage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
@@ -517,24 +518,26 @@ func mapStopReason(reason string, hasToolCalls bool) string {
// StreamConverter manages state for converting Ollama streaming responses to Anthropic format
type StreamConverter struct {
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
estimatedInputTokens int // Estimated tokens from request (used when actual metrics are 0)
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
}
func NewStreamConverter(id, model string) *StreamConverter {
func NewStreamConverter(id, model string, estimatedInputTokens int) *StreamConverter {
return &StreamConverter{
ID: id,
Model: model,
firstWrite: true,
toolCallsSent: make(map[string]bool),
ID: id,
Model: model,
firstWrite: true,
estimatedInputTokens: estimatedInputTokens,
toolCallsSent: make(map[string]bool),
}
}
@@ -550,7 +553,11 @@ func (c *StreamConverter) Process(r api.ChatResponse) []StreamEvent {
if c.firstWrite {
c.firstWrite = false
// Use actual metrics if available, otherwise use estimate
c.inputTokens = r.Metrics.PromptEvalCount
if c.inputTokens == 0 && c.estimatedInputTokens > 0 {
c.inputTokens = c.estimatedInputTokens
}
events = append(events, StreamEvent{
Event: "message_start",
@@ -721,6 +728,7 @@ func (c *StreamConverter) Process(r api.ChatResponse) []StreamEvent {
})
}
c.inputTokens = r.Metrics.PromptEvalCount
c.outputTokens = r.Metrics.EvalCount
stopReason := mapStopReason(r.DoneReason, len(c.toolCallsSent) > 0)
@@ -732,6 +740,7 @@ func (c *StreamConverter) Process(r api.ChatResponse) []StreamEvent {
StopReason: stopReason,
},
Usage: DeltaUsage{
InputTokens: c.inputTokens,
OutputTokens: c.outputTokens,
},
},
@@ -776,3 +785,121 @@ func mapToArgs(m map[string]any) api.ToolCallFunctionArguments {
}
return args
}
// CountTokensRequest represents an Anthropic count_tokens request
type CountTokensRequest struct {
Model string `json:"model"`
Messages []MessageParam `json:"messages"`
System any `json:"system,omitempty"`
Tools []Tool `json:"tools,omitempty"`
Thinking *ThinkingConfig `json:"thinking,omitempty"`
}
// EstimateInputTokens estimates input tokens from a MessagesRequest (reuses CountTokensRequest logic)
func EstimateInputTokens(req MessagesRequest) int {
return estimateTokens(CountTokensRequest{
Model: req.Model,
Messages: req.Messages,
System: req.System,
Tools: req.Tools,
Thinking: req.Thinking,
})
}
// CountTokensResponse represents an Anthropic count_tokens response
type CountTokensResponse struct {
InputTokens int `json:"input_tokens"`
}
// estimateTokens returns a rough estimate of tokens (len/4)
func estimateTokens(req CountTokensRequest) int {
var totalLen int
// Count system prompt
if req.System != nil {
totalLen += countAnyContent(req.System)
}
// Count messages
for _, msg := range req.Messages {
// Count role (always present)
totalLen += len(msg.Role)
// Count content
contentLen := countAnyContent(msg.Content)
totalLen += contentLen
}
for _, tool := range req.Tools {
totalLen += len(tool.Name) + len(tool.Description) + len(tool.InputSchema)
}
// Return len/4 as rough token estimate, minimum 1 if there's any content
tokens := totalLen / 4
if tokens == 0 && (len(req.Messages) > 0 || req.System != nil) {
tokens = 1
}
return tokens
}
func countAnyContent(content any) int {
if content == nil {
return 0
}
switch c := content.(type) {
case string:
return len(c)
case []any:
total := 0
for _, block := range c {
total += countContentBlock(block)
}
return total
default:
if data, err := json.Marshal(content); err == nil {
return len(data)
}
return 0
}
}
func countContentBlock(block any) int {
blockMap, ok := block.(map[string]any)
if !ok {
if s, ok := block.(string); ok {
return len(s)
}
return 0
}
total := 0
blockType, _ := blockMap["type"].(string)
if text, ok := blockMap["text"].(string); ok {
total += len(text)
}
if thinking, ok := blockMap["thinking"].(string); ok {
total += len(thinking)
}
if blockType == "tool_use" {
if data, err := json.Marshal(blockMap); err == nil {
total += len(data)
}
}
if blockType == "tool_result" {
if data, err := json.Marshal(blockMap); err == nil {
total += len(data)
}
}
if source, ok := blockMap["source"].(map[string]any); ok {
if data, ok := source["data"].(string); ok {
total += len(data)
}
}
return total
}

32
anthropic/anthropic_test.go Normal file → Executable file
View File

@@ -605,7 +605,7 @@ func TestGenerateMessageID(t *testing.T) {
}
func TestStreamConverter_Basic(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
conv := NewStreamConverter("msg_123", "test-model", 0)
// First chunk
resp1 := api.ChatResponse{
@@ -642,7 +642,7 @@ func TestStreamConverter_Basic(t *testing.T) {
},
Done: true,
DoneReason: "stop",
Metrics: api.Metrics{EvalCount: 5},
Metrics: api.Metrics{PromptEvalCount: 10, EvalCount: 5},
}
events2 := conv.Process(resp2)
@@ -650,6 +650,24 @@ func TestStreamConverter_Basic(t *testing.T) {
// Should have content_block_delta, content_block_stop, message_delta, message_stop
hasStop := false
for _, e := range events2 {
if e.Event == "message_delta" {
if data, ok := e.Data.(MessageDeltaEvent); ok {
if data.Type != "message_delta" {
t.Errorf("unexpected data type: %+v", data)
}
if data.Delta.StopReason != "end_turn" {
t.Errorf("unexpected stop reason: %+v", data.Delta.StopReason)
}
if data.Usage.InputTokens != 10 || data.Usage.OutputTokens != 5 {
t.Errorf("unexpected usage: %+v", data.Usage)
}
} else {
t.Errorf("unexpected data: %+v", e.Data)
}
}
if e.Event == "message_stop" {
hasStop = true
}
@@ -660,7 +678,7 @@ func TestStreamConverter_Basic(t *testing.T) {
}
func TestStreamConverter_WithToolCalls(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
conv := NewStreamConverter("msg_123", "test-model", 0)
resp := api.ChatResponse{
Model: "test-model",
@@ -713,7 +731,7 @@ func TestStreamConverter_WithToolCalls(t *testing.T) {
func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
// Test that unmarshalable arguments (like channels) are handled gracefully
// and don't cause a panic or corrupt stream
conv := NewStreamConverter("msg_123", "test-model")
conv := NewStreamConverter("msg_123", "test-model", 0)
// Create a channel which cannot be JSON marshaled
unmarshalable := make(chan int)
@@ -760,7 +778,7 @@ func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
func TestStreamConverter_MultipleToolCallsWithMixedValidity(t *testing.T) {
// Test that valid tool calls still work when mixed with invalid ones
conv := NewStreamConverter("msg_123", "test-model")
conv := NewStreamConverter("msg_123", "test-model", 0)
unmarshalable := make(chan int)
badArgs := api.NewToolCallFunctionArguments()
@@ -885,7 +903,7 @@ func TestContentBlockJSON_EmptyFieldsPresent(t *testing.T) {
// events include the required empty fields for SDK compatibility.
func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
t.Run("text block start includes empty text", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
conv := NewStreamConverter("msg_123", "test-model", 0)
resp := api.ChatResponse{
Model: "test-model",
@@ -919,7 +937,7 @@ func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
})
t.Run("thinking block start includes empty thinking", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
conv := NewStreamConverter("msg_123", "test-model", 0)
resp := api.ChatResponse{
Model: "test-model",

View File

@@ -466,3 +466,15 @@ func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
}
return &resp, nil
}
// AliasRequest is the request body for creating or updating a model alias.
type AliasRequest struct {
Alias string `json:"alias"`
Target string `json:"target"`
PrefixMatching bool `json:"prefix_matching,omitempty"`
}
// SetAliasExperimental creates or updates a model alias via the experimental aliases API.
func (c *Client) SetAliasExperimental(ctx context.Context, req *AliasRequest) error {
return c.do(ctx, http.MethodPost, "/api/experimental/aliases", req, nil)
}

View File

@@ -749,7 +749,7 @@ type ShowResponse struct {
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ModelInfo map[string]any `json:"model_info"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`

View File

@@ -75,9 +75,9 @@ The `-dev` flag enables:
CI builds with Xcode 14.1 for OS compatibility prior to v13. If you want to manually build v11+ support, you can download the older Xcode [here](https://developer.apple.com/services-account/download?path=/Developer_Tools/Xcode_14.1/Xcode_14.1.xip), extract, then `mv ./Xcode.app /Applications/Xcode_14.1.0.app` then activate with:
```
export CGO_CFLAGS=-mmacosx-version-min=12.0
export CGO_CXXFLAGS=-mmacosx-version-min=12.0
export CGO_LDFLAGS=-mmacosx-version-min=12.0
export CGO_CFLAGS="-O3 -mmacosx-version-min=12.0"
export CGO_CXXFLAGS="-O3 -mmacosx-version-min=12.0"
export CGO_LDFLAGS="-mmacosx-version-min=12.0"
export SDKROOT=/Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
export DEVELOPER_DIR=/Applications/Xcode_14.1.0.app/Contents/Developer
```

View File

@@ -29,12 +29,14 @@ import (
"github.com/containerd/console"
"github.com/mattn/go-runewidth"
"github.com/olekukonko/tablewriter"
"github.com/pkg/browser"
"github.com/spf13/cobra"
"golang.org/x/crypto/ssh"
"golang.org/x/sync/errgroup"
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/cmd/config"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
@@ -51,7 +53,7 @@ import (
"github.com/ollama/ollama/x/imagegen"
)
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
const ConnectInstructions = "If your browser did not open, navigate to:\n %s\n\n"
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
@@ -662,6 +664,7 @@ func SigninHandler(cmd *cobra.Command, args []string) error {
fmt.Println()
if aErr.SigninURL != "" {
_ = browser.OpenURL(aErr.SigninURL)
fmt.Printf(ConnectInstructions, aErr.SigninURL)
}
return nil
@@ -1018,8 +1021,10 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
arch, _ := resp.ModelInfo["general.architecture"].(string)
if arch != "" {
rows = append(rows, []string{"", "architecture", arch})
}
var paramStr string
if resp.Details.ParameterSize != "" {
@@ -1029,7 +1034,9 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if paramStr != "" {
rows = append(rows, []string{"", "parameters", paramStr})
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
@@ -1883,7 +1890,7 @@ func NewCLI() *cobra.Command {
serveCmd := &cobra.Command{
Use: "serve",
Aliases: []string{"start"},
Short: "Start ollama",
Short: "Start Ollama",
Args: cobra.ExactArgs(0),
RunE: RunServer,
}
@@ -2026,6 +2033,7 @@ func NewCLI() *cobra.Command {
copyCmd,
deleteCmd,
runnerCmd,
config.LaunchCmd(checkServerHeartbeat),
)
return rootCmd

View File

@@ -1553,7 +1553,7 @@ func TestShowInfoImageGen(t *testing.T) {
Details: api.ModelDetails{
Family: "ZImagePipeline",
ParameterSize: "10.3B",
QuantizationLevel: "FP8",
QuantizationLevel: "Q8",
},
Capabilities: []model.Capability{model.CapabilityImage},
Requires: "0.14.0",
@@ -1565,7 +1565,7 @@ func TestShowInfoImageGen(t *testing.T) {
expect := " Model\n" +
" architecture ZImagePipeline \n" +
" parameters 10.3B \n" +
" quantization FP8 \n" +
" quantization Q8 \n" +
" requires 0.14.0 \n" +
"\n" +
" Capabilities\n" +

160
cmd/config/claude.go Normal file
View File

@@ -0,0 +1,160 @@
package config
import (
"context"
"fmt"
"os"
"os/exec"
"path/filepath"
"runtime"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
// Claude implements Runner and AliasConfigurer for Claude Code integration
type Claude struct{}
// Compile-time check that Claude implements AliasConfigurer
var _ AliasConfigurer = (*Claude)(nil)
func (c *Claude) String() string { return "Claude Code" }
func (c *Claude) args(model string, extra []string) []string {
var args []string
if model != "" {
args = append(args, "--model", model)
}
args = append(args, extra...)
return args
}
func (c *Claude) findPath() (string, error) {
if p, err := exec.LookPath("claude"); err == nil {
return p, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
name := "claude"
if runtime.GOOS == "windows" {
name = "claude.exe"
}
fallback := filepath.Join(home, ".claude", "local", name)
if _, err := os.Stat(fallback); err != nil {
return "", err
}
return fallback, nil
}
func (c *Claude) Run(model string, args []string) error {
claudePath, err := c.findPath()
if err != nil {
return fmt.Errorf("claude is not installed, install from https://code.claude.com/docs/en/quickstart")
}
cmd := exec.Command(claudePath, c.args(model, args)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = append(os.Environ(),
"ANTHROPIC_BASE_URL="+envconfig.Host().String(),
"ANTHROPIC_API_KEY=",
"ANTHROPIC_AUTH_TOKEN=ollama",
)
return cmd.Run()
}
// ConfigureAliases sets up Primary and Fast model aliases for Claude Code.
func (c *Claude) ConfigureAliases(ctx context.Context, primaryModel string, existing map[string]string, force bool) (map[string]string, bool, error) {
aliases := make(map[string]string)
for k, v := range existing {
aliases[k] = v
}
if primaryModel != "" {
aliases["primary"] = primaryModel
}
if !force && aliases["primary"] != "" && aliases["fast"] != "" {
return aliases, false, nil
}
items, existingModels, cloudModels, client, err := listModels(ctx)
if err != nil {
return nil, false, err
}
fmt.Fprintf(os.Stderr, "\n%sModel Configuration%s\n", ansiBold, ansiReset)
fmt.Fprintf(os.Stderr, "%sClaude Code uses multiple models for various tasks%s\n\n", ansiGray, ansiReset)
fmt.Fprintf(os.Stderr, "%sPrimary%s\n", ansiBold, ansiReset)
fmt.Fprintf(os.Stderr, "%sHandles complex reasoning: planning, code generation, debugging.%s\n\n", ansiGray, ansiReset)
if aliases["primary"] == "" || force {
primary, err := selectPrompt("Select Primary model:", items)
if err != nil {
return nil, false, err
}
if err := pullIfNeeded(ctx, client, existingModels, primary); err != nil {
return nil, false, err
}
if err := ensureAuth(ctx, client, cloudModels, []string{primary}); err != nil {
return nil, false, err
}
aliases["primary"] = primary
} else {
fmt.Fprintf(os.Stderr, " %s\n\n", aliases["primary"])
}
fmt.Fprintf(os.Stderr, "%sFast%s\n", ansiBold, ansiReset)
fmt.Fprintf(os.Stderr, "%sHandles quick operations: file searches, simple edits, status checks.%s\n", ansiGray, ansiReset)
fmt.Fprintf(os.Stderr, "%sSmaller models work well and respond faster.%s\n\n", ansiGray, ansiReset)
if aliases["fast"] == "" || force {
fast, err := selectPrompt("Select Fast model:", items)
if err != nil {
return nil, false, err
}
if err := pullIfNeeded(ctx, client, existingModels, fast); err != nil {
return nil, false, err
}
if err := ensureAuth(ctx, client, cloudModels, []string{fast}); err != nil {
return nil, false, err
}
aliases["fast"] = fast
}
return aliases, true, nil
}
// SetAliases syncs the configured aliases to the Ollama server using prefix matching.
func (c *Claude) SetAliases(ctx context.Context, aliases map[string]string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
prefixAliases := map[string]string{
"claude-sonnet-": aliases["primary"],
"claude-haiku-": aliases["fast"],
}
var errs []string
for prefix, target := range prefixAliases {
req := &api.AliasRequest{
Alias: prefix,
Target: target,
PrefixMatching: true,
}
if err := client.SetAliasExperimental(ctx, req); err != nil {
errs = append(errs, prefix)
}
}
if len(errs) > 0 {
return fmt.Errorf("failed to set aliases: %v", errs)
}
return nil
}

105
cmd/config/claude_test.go Normal file
View File

@@ -0,0 +1,105 @@
package config
import (
"os"
"path/filepath"
"runtime"
"slices"
"testing"
)
func TestClaudeIntegration(t *testing.T) {
c := &Claude{}
t.Run("String", func(t *testing.T) {
if got := c.String(); got != "Claude Code" {
t.Errorf("String() = %q, want %q", got, "Claude Code")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = c
})
}
func TestClaudeFindPath(t *testing.T) {
c := &Claude{}
t.Run("finds claude in PATH", func(t *testing.T) {
tmpDir := t.TempDir()
name := "claude"
if runtime.GOOS == "windows" {
name = "claude.exe"
}
fakeBin := filepath.Join(tmpDir, name)
os.WriteFile(fakeBin, []byte("#!/bin/sh\n"), 0o755)
t.Setenv("PATH", tmpDir)
got, err := c.findPath()
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if got != fakeBin {
t.Errorf("findPath() = %q, want %q", got, fakeBin)
}
})
t.Run("falls back to ~/.claude/local/claude", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Setenv("PATH", t.TempDir()) // empty dir, no claude binary
name := "claude"
if runtime.GOOS == "windows" {
name = "claude.exe"
}
fallback := filepath.Join(tmpDir, ".claude", "local", name)
os.MkdirAll(filepath.Dir(fallback), 0o755)
os.WriteFile(fallback, []byte("#!/bin/sh\n"), 0o755)
got, err := c.findPath()
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if got != fallback {
t.Errorf("findPath() = %q, want %q", got, fallback)
}
})
t.Run("returns error when neither PATH nor fallback exists", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Setenv("PATH", t.TempDir()) // empty dir, no claude binary
_, err := c.findPath()
if err == nil {
t.Fatal("expected error, got nil")
}
})
}
func TestClaudeArgs(t *testing.T) {
c := &Claude{}
tests := []struct {
name string
model string
args []string
want []string
}{
{"with model", "llama3.2", nil, []string{"--model", "llama3.2"}},
{"empty model", "", nil, nil},
{"with model and verbose", "llama3.2", []string{"--verbose"}, []string{"--model", "llama3.2", "--verbose"}},
{"empty model with help", "", []string{"--help"}, []string{"--help"}},
{"with allowed tools", "llama3.2", []string{"--allowedTools", "Read,Write,Bash"}, []string{"--model", "llama3.2", "--allowedTools", "Read,Write,Bash"}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model, tt.args)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q, %v) = %v, want %v", tt.model, tt.args, got, tt.want)
}
})
}
}

62
cmd/config/codex.go Normal file
View File

@@ -0,0 +1,62 @@
package config
import (
"fmt"
"os"
"os/exec"
"strings"
"golang.org/x/mod/semver"
)
// Codex implements Runner for Codex integration
type Codex struct{}
func (c *Codex) String() string { return "Codex" }
func (c *Codex) args(model string, extra []string) []string {
args := []string{"--oss"}
if model != "" {
args = append(args, "-m", model)
}
args = append(args, extra...)
return args
}
func (c *Codex) Run(model string, args []string) error {
if err := checkCodexVersion(); err != nil {
return err
}
cmd := exec.Command("codex", c.args(model, args)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func checkCodexVersion() error {
if _, err := exec.LookPath("codex"); err != nil {
return fmt.Errorf("codex is not installed, install with: npm install -g @openai/codex")
}
out, err := exec.Command("codex", "--version").Output()
if err != nil {
return fmt.Errorf("failed to get codex version: %w", err)
}
// Parse output like "codex-cli 0.87.0"
fields := strings.Fields(strings.TrimSpace(string(out)))
if len(fields) < 2 {
return fmt.Errorf("unexpected codex version output: %s", string(out))
}
version := "v" + fields[len(fields)-1]
minVersion := "v0.81.0"
if semver.Compare(version, minVersion) < 0 {
return fmt.Errorf("codex version %s is too old, minimum required is %s, update with: npm update -g @openai/codex", fields[len(fields)-1], "0.81.0")
}
return nil
}

31
cmd/config/codex_test.go Normal file
View File

@@ -0,0 +1,31 @@
package config
import (
"slices"
"testing"
)
func TestCodexArgs(t *testing.T) {
c := &Codex{}
tests := []struct {
name string
model string
args []string
want []string
}{
{"with model", "llama3.2", nil, []string{"--oss", "-m", "llama3.2"}},
{"empty model", "", nil, []string{"--oss"}},
{"with model and profile", "qwen3-coder", []string{"-p", "myprofile"}, []string{"--oss", "-m", "qwen3-coder", "-p", "myprofile"}},
{"with sandbox flag", "llama3.2", []string{"--sandbox", "workspace-write"}, []string{"--oss", "-m", "llama3.2", "--sandbox", "workspace-write"}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model, tt.args)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q, %v) = %v, want %v", tt.model, tt.args, got, tt.want)
}
})
}
}

205
cmd/config/config.go Normal file
View File

@@ -0,0 +1,205 @@
// Package config provides integration configuration for external coding tools
// (Claude Code, Codex, Droid, OpenCode) to use Ollama models.
package config
import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"strings"
)
type integration struct {
Models []string `json:"models"`
Aliases map[string]string `json:"aliases,omitempty"`
}
type config struct {
Integrations map[string]*integration `json:"integrations"`
}
func configPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "config.json"), nil
}
func legacyConfigPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "config", "config.json"), nil
}
// migrateConfig moves the config from the legacy path to ~/.ollama/config.json
func migrateConfig() (bool, error) {
oldPath, err := legacyConfigPath()
if err != nil {
return false, err
}
oldData, err := os.ReadFile(oldPath)
if err != nil {
if os.IsNotExist(err) {
return false, nil
}
return false, err
}
var js json.RawMessage
if err := json.Unmarshal(oldData, &js); err != nil {
slog.Warn("legacy config has invalid JSON, skipping migration", "path", oldPath, "error", err)
return false, nil
}
newPath, err := configPath()
if err != nil {
return false, err
}
if err := os.MkdirAll(filepath.Dir(newPath), 0o755); err != nil {
return false, err
}
if err := os.WriteFile(newPath, oldData, 0o644); err != nil {
return false, fmt.Errorf("write new config: %w", err)
}
_ = os.Remove(oldPath)
_ = os.Remove(filepath.Dir(oldPath)) // clean up empty directory
slog.Info("migrated config", "from", oldPath, "to", newPath)
return true, nil
}
func load() (*config, error) {
path, err := configPath()
if err != nil {
return nil, err
}
data, err := os.ReadFile(path)
if err != nil && os.IsNotExist(err) {
if migrated, merr := migrateConfig(); merr == nil && migrated {
data, err = os.ReadFile(path)
}
}
if err != nil {
if os.IsNotExist(err) {
return &config{Integrations: make(map[string]*integration)}, nil
}
return nil, err
}
var cfg config
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("failed to parse config: %w, at: %s", err, path)
}
if cfg.Integrations == nil {
cfg.Integrations = make(map[string]*integration)
}
return &cfg, nil
}
func save(cfg *config) error {
path, err := configPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(path), 0o755); err != nil {
return err
}
data, err := json.MarshalIndent(cfg, "", " ")
if err != nil {
return err
}
return writeWithBackup(path, data)
}
func saveIntegration(appName string, models []string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
key := strings.ToLower(appName)
existing := cfg.Integrations[key]
var aliases map[string]string
if existing != nil && existing.Aliases != nil {
aliases = existing.Aliases
}
cfg.Integrations[key] = &integration{
Models: models,
Aliases: aliases,
}
return save(cfg)
}
func loadIntegration(appName string) (*integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
ic, ok := cfg.Integrations[strings.ToLower(appName)]
if !ok {
return nil, os.ErrNotExist
}
return ic, nil
}
func saveAliases(appName string, aliases map[string]string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
key := strings.ToLower(appName)
existing := cfg.Integrations[key]
if existing == nil {
existing = &integration{}
}
if existing.Aliases == nil {
existing.Aliases = make(map[string]string)
}
for k, v := range aliases {
existing.Aliases[k] = v
}
cfg.Integrations[key] = existing
return save(cfg)
}
func listIntegrations() ([]integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
result := make([]integration, 0, len(cfg.Integrations))
for _, ic := range cfg.Integrations {
result = append(result, *ic)
}
return result, nil
}

595
cmd/config/config_test.go Normal file
View File

@@ -0,0 +1,595 @@
package config
import (
"os"
"path/filepath"
"strings"
"testing"
)
// setTestHome sets both HOME (Unix) and USERPROFILE (Windows) for cross-platform tests
func setTestHome(t *testing.T, dir string) {
t.Setenv("HOME", dir)
t.Setenv("USERPROFILE", dir)
}
// editorPaths is a test helper that safely calls Paths if the runner implements Editor
func editorPaths(r Runner) []string {
if editor, ok := r.(Editor); ok {
return editor.Paths()
}
return nil
}
func TestIntegrationConfig(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("save and load round-trip", func(t *testing.T) {
models := []string{"llama3.2", "mistral", "qwen2.5"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if len(config.Models) != len(models) {
t.Errorf("expected %d models, got %d", len(models), len(config.Models))
}
for i, m := range models {
if config.Models[i] != m {
t.Errorf("model %d: expected %s, got %s", i, m, config.Models[i])
}
}
})
t.Run("save and load aliases", func(t *testing.T) {
models := []string{"llama3.2"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
aliases := map[string]string{
"primary": "llama3.2:70b",
"fast": "llama3.2:8b",
}
if err := saveAliases("claude", aliases); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if config.Aliases == nil {
t.Fatal("expected aliases to be saved")
}
for k, v := range aliases {
if config.Aliases[k] != v {
t.Errorf("alias %s: expected %s, got %s", k, v, config.Aliases[k])
}
}
})
t.Run("saveIntegration preserves aliases", func(t *testing.T) {
if err := saveIntegration("claude", []string{"model-a"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "model-a", "fast": "model-small"}); err != nil {
t.Fatal(err)
}
if err := saveIntegration("claude", []string{"model-b"}); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if config.Aliases["primary"] != "model-a" {
t.Errorf("expected aliases to be preserved, got %v", config.Aliases)
}
})
t.Run("defaultModel returns first model", func(t *testing.T) {
saveIntegration("codex", []string{"model-a", "model-b"})
config, _ := loadIntegration("codex")
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-a" {
t.Errorf("expected model-a, got %s", defaultModel)
}
})
t.Run("defaultModel returns empty for no models", func(t *testing.T) {
config := &integration{Models: []string{}}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "" {
t.Errorf("expected empty string, got %s", defaultModel)
}
})
t.Run("app name is case-insensitive", func(t *testing.T) {
saveIntegration("Claude", []string{"model-x"})
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-x" {
t.Errorf("expected model-x, got %s", defaultModel)
}
})
t.Run("multiple integrations in single file", func(t *testing.T) {
saveIntegration("app1", []string{"model-1"})
saveIntegration("app2", []string{"model-2"})
config1, _ := loadIntegration("app1")
config2, _ := loadIntegration("app2")
defaultModel1 := ""
if len(config1.Models) > 0 {
defaultModel1 = config1.Models[0]
}
defaultModel2 := ""
if len(config2.Models) > 0 {
defaultModel2 = config2.Models[0]
}
if defaultModel1 != "model-1" {
t.Errorf("expected model-1, got %s", defaultModel1)
}
if defaultModel2 != "model-2" {
t.Errorf("expected model-2, got %s", defaultModel2)
}
})
}
func TestListIntegrations(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty when no integrations", func(t *testing.T) {
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 0 {
t.Errorf("expected 0 integrations, got %d", len(configs))
}
})
t.Run("returns all saved integrations", func(t *testing.T) {
saveIntegration("claude", []string{"model-1"})
saveIntegration("droid", []string{"model-2"})
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 2 {
t.Errorf("expected 2 integrations, got %d", len(configs))
}
})
}
func TestEditorPaths(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty for claude (no Editor)", func(t *testing.T) {
r := integrations["claude"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for claude, got %v", paths)
}
})
t.Run("returns empty for codex (no Editor)", func(t *testing.T) {
r := integrations["codex"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for codex, got %v", paths)
}
})
t.Run("returns empty for droid when no config exists", func(t *testing.T) {
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths, got %v", paths)
}
})
t.Run("returns path for droid when config exists", func(t *testing.T) {
settingsDir, _ := os.UserHomeDir()
settingsDir = filepath.Join(settingsDir, ".factory")
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(filepath.Join(settingsDir, "settings.json"), []byte(`{}`), 0o644)
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 1 {
t.Errorf("expected 1 path, got %d", len(paths))
}
})
t.Run("returns paths for opencode when configs exist", func(t *testing.T) {
home, _ := os.UserHomeDir()
configDir := filepath.Join(home, ".config", "opencode")
stateDir := filepath.Join(home, ".local", "state", "opencode")
os.MkdirAll(configDir, 0o755)
os.MkdirAll(stateDir, 0o755)
os.WriteFile(filepath.Join(configDir, "opencode.json"), []byte(`{}`), 0o644)
os.WriteFile(filepath.Join(stateDir, "model.json"), []byte(`{}`), 0o644)
r := integrations["opencode"]
paths := editorPaths(r)
if len(paths) != 2 {
t.Errorf("expected 2 paths, got %d: %v", len(paths), paths)
}
})
}
func TestLoadIntegration_CorruptedJSON(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
dir := filepath.Join(tmpDir, ".ollama")
os.MkdirAll(dir, 0o755)
os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{corrupted json`), 0o644)
_, err := loadIntegration("test")
if err == nil {
t.Error("expected error for nonexistent integration in corrupted file")
}
}
func TestSaveIntegration_NilModels(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if err := saveIntegration("test", nil); err != nil {
t.Fatalf("saveIntegration with nil models failed: %v", err)
}
config, err := loadIntegration("test")
if err != nil {
t.Fatalf("loadIntegration failed: %v", err)
}
if config.Models == nil {
// nil is acceptable
} else if len(config.Models) != 0 {
t.Errorf("expected empty or nil models, got %v", config.Models)
}
}
func TestSaveIntegration_EmptyAppName(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
err := saveIntegration("", []string{"model"})
if err == nil {
t.Error("expected error for empty app name, got nil")
}
if err != nil && !strings.Contains(err.Error(), "app name cannot be empty") {
t.Errorf("expected 'app name cannot be empty' error, got: %v", err)
}
}
func TestLoadIntegration_NonexistentIntegration(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
_, err := loadIntegration("nonexistent")
if err == nil {
t.Error("expected error for nonexistent integration, got nil")
}
if !os.IsNotExist(err) {
t.Logf("error type is os.ErrNotExist as expected: %v", err)
}
}
func TestConfigPath(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
path, err := configPath()
if err != nil {
t.Fatal(err)
}
expected := filepath.Join(tmpDir, ".ollama", "config.json")
if path != expected {
t.Errorf("expected %s, got %s", expected, path)
}
}
func TestLoad(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty config when file does not exist", func(t *testing.T) {
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg == nil {
t.Fatal("expected non-nil config")
}
if cfg.Integrations == nil {
t.Error("expected non-nil Integrations map")
}
if len(cfg.Integrations) != 0 {
t.Errorf("expected empty Integrations, got %d", len(cfg.Integrations))
}
})
t.Run("loads existing config", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{"integrations":{"test":{"models":["model-a"]}}}`), 0o644)
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg.Integrations["test"] == nil {
t.Fatal("expected test integration")
}
if len(cfg.Integrations["test"].Models) != 1 {
t.Errorf("expected 1 model, got %d", len(cfg.Integrations["test"].Models))
}
})
t.Run("returns error for corrupted JSON", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{corrupted`), 0o644)
_, err := load()
if err == nil {
t.Error("expected error for corrupted JSON")
}
})
}
func TestMigrateConfig(t *testing.T) {
t.Run("migrates legacy file to new location", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
data := []byte(`{"integrations":{"claude":{"models":["llama3.2"]}}}`)
os.WriteFile(filepath.Join(legacyDir, "config.json"), data, 0o644)
migrated, err := migrateConfig()
if err != nil {
t.Fatal(err)
}
if !migrated {
t.Fatal("expected migration to occur")
}
newPath, _ := configPath()
got, err := os.ReadFile(newPath)
if err != nil {
t.Fatalf("new config not found: %v", err)
}
if string(got) != string(data) {
t.Errorf("content mismatch: got %s", got)
}
if _, err := os.Stat(filepath.Join(legacyDir, "config.json")); !os.IsNotExist(err) {
t.Error("legacy file should have been removed")
}
if _, err := os.Stat(legacyDir); !os.IsNotExist(err) {
t.Error("legacy directory should have been removed")
}
})
t.Run("no-op when no legacy file exists", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
migrated, err := migrateConfig()
if err != nil {
t.Fatal(err)
}
if migrated {
t.Error("expected no migration")
}
})
t.Run("skips corrupt legacy file", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "config.json"), []byte(`{corrupt`), 0o644)
migrated, err := migrateConfig()
if err != nil {
t.Fatal(err)
}
if migrated {
t.Error("should not migrate corrupt file")
}
if _, err := os.Stat(filepath.Join(legacyDir, "config.json")); os.IsNotExist(err) {
t.Error("corrupt legacy file should not have been deleted")
}
})
t.Run("new path takes precedence over legacy", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "config.json"), []byte(`{"integrations":{"old":{"models":["old-model"]}}}`), 0o644)
newDir := filepath.Join(tmpDir, ".ollama")
os.WriteFile(filepath.Join(newDir, "config.json"), []byte(`{"integrations":{"new":{"models":["new-model"]}}}`), 0o644)
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if _, ok := cfg.Integrations["new"]; !ok {
t.Error("expected new-path integration to be loaded")
}
if _, ok := cfg.Integrations["old"]; ok {
t.Error("legacy integration should not have been loaded")
}
})
t.Run("idempotent when called twice", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "config.json"), []byte(`{"integrations":{}}`), 0o644)
if _, err := migrateConfig(); err != nil {
t.Fatal(err)
}
migrated, err := migrateConfig()
if err != nil {
t.Fatal(err)
}
if migrated {
t.Error("second migration should be a no-op")
}
})
t.Run("legacy directory preserved if not empty", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "config.json"), []byte(`{"integrations":{}}`), 0o644)
os.WriteFile(filepath.Join(legacyDir, "other-file.txt"), []byte("keep me"), 0o644)
if _, err := migrateConfig(); err != nil {
t.Fatal(err)
}
if _, err := os.Stat(legacyDir); os.IsNotExist(err) {
t.Error("directory with other files should not have been removed")
}
if _, err := os.Stat(filepath.Join(legacyDir, "other-file.txt")); os.IsNotExist(err) {
t.Error("other files in legacy directory should be untouched")
}
})
t.Run("save writes to new path after migration", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "config.json"), []byte(`{"integrations":{"claude":{"models":["llama3.2"]}}}`), 0o644)
// load triggers migration, then save should write to new path
if err := saveIntegration("codex", []string{"qwen2.5"}); err != nil {
t.Fatal(err)
}
newPath := filepath.Join(tmpDir, ".ollama", "config.json")
if _, err := os.Stat(newPath); os.IsNotExist(err) {
t.Error("save should write to new path")
}
// old path should not be recreated
if _, err := os.Stat(filepath.Join(legacyDir, "config.json")); !os.IsNotExist(err) {
t.Error("save should not recreate legacy path")
}
})
t.Run("load triggers migration transparently", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "config.json"), []byte(`{"integrations":{"claude":{"models":["llama3.2"]}}}`), 0o644)
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg.Integrations["claude"] == nil || cfg.Integrations["claude"].Models[0] != "llama3.2" {
t.Error("migration via load() did not preserve data")
}
})
}
func TestSave(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("creates config file", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"test": {Models: []string{"model-a", "model-b"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
path, _ := configPath()
if _, err := os.Stat(path); os.IsNotExist(err) {
t.Error("config file was not created")
}
})
t.Run("round-trip preserves data", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"claude": {Models: []string{"llama3.2", "mistral"}},
"codex": {Models: []string{"qwen2.5"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
loaded, err := load()
if err != nil {
t.Fatal(err)
}
if len(loaded.Integrations) != 2 {
t.Errorf("expected 2 integrations, got %d", len(loaded.Integrations))
}
if loaded.Integrations["claude"] == nil {
t.Error("missing claude integration")
}
if len(loaded.Integrations["claude"].Models) != 2 {
t.Errorf("expected 2 models for claude, got %d", len(loaded.Integrations["claude"].Models))
}
})
}

186
cmd/config/droid.go Normal file
View File

@@ -0,0 +1,186 @@
package config
import (
"encoding/json"
"fmt"
"os"
"os/exec"
"path/filepath"
"slices"
"github.com/ollama/ollama/envconfig"
)
// Droid implements Runner and Editor for Droid integration
type Droid struct{}
// droidSettings represents the Droid settings.json file (only fields we use)
type droidSettings struct {
CustomModels []modelEntry `json:"customModels"`
SessionDefaultSettings sessionSettings `json:"sessionDefaultSettings"`
}
type sessionSettings struct {
Model string `json:"model"`
ReasoningEffort string `json:"reasoningEffort"`
}
type modelEntry struct {
Model string `json:"model"`
DisplayName string `json:"displayName"`
BaseURL string `json:"baseUrl"`
APIKey string `json:"apiKey"`
Provider string `json:"provider"`
MaxOutputTokens int `json:"maxOutputTokens"`
SupportsImages bool `json:"supportsImages"`
ID string `json:"id"`
Index int `json:"index"`
}
func (d *Droid) String() string { return "Droid" }
func (d *Droid) Run(model string, args []string) error {
if _, err := exec.LookPath("droid"); err != nil {
return fmt.Errorf("droid is not installed, install from https://docs.factory.ai/cli/getting-started/quickstart")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("droid"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := d.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("droid", args...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (d *Droid) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
p := filepath.Join(home, ".factory", "settings.json")
if _, err := os.Stat(p); err == nil {
return []string{p}
}
return nil
}
func (d *Droid) Edit(models []string) error {
if len(models) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
settingsPath := filepath.Join(home, ".factory", "settings.json")
if err := os.MkdirAll(filepath.Dir(settingsPath), 0o755); err != nil {
return err
}
// Read file once, unmarshal twice:
// map preserves unknown fields for writing back (including extra fields in model entries)
settingsMap := make(map[string]any)
var settings droidSettings
if data, err := os.ReadFile(settingsPath); err == nil {
if err := json.Unmarshal(data, &settingsMap); err != nil {
return fmt.Errorf("failed to parse settings file: %w, at: %s", err, settingsPath)
}
json.Unmarshal(data, &settings) // ignore error, zero values are fine
}
// Keep only non-Ollama models from the raw map (preserves extra fields)
// Rebuild Ollama models
var nonOllamaModels []any
if rawModels, ok := settingsMap["customModels"].([]any); ok {
for _, raw := range rawModels {
if m, ok := raw.(map[string]any); ok {
if m["apiKey"] != "ollama" {
nonOllamaModels = append(nonOllamaModels, raw)
}
}
}
}
// Build new Ollama model entries with sequential indices (0, 1, 2, ...)
var newModels []any
var defaultModelID string
for i, model := range models {
modelID := fmt.Sprintf("custom:%s-%d", model, i)
newModels = append(newModels, modelEntry{
Model: model,
DisplayName: model,
BaseURL: envconfig.Host().String() + "/v1",
APIKey: "ollama",
Provider: "generic-chat-completion-api",
MaxOutputTokens: 64000,
SupportsImages: false,
ID: modelID,
Index: i,
})
if i == 0 {
defaultModelID = modelID
}
}
settingsMap["customModels"] = append(newModels, nonOllamaModels...)
// Update session default settings (preserve unknown fields in the nested object)
sessionSettings, ok := settingsMap["sessionDefaultSettings"].(map[string]any)
if !ok {
sessionSettings = make(map[string]any)
}
sessionSettings["model"] = defaultModelID
if !isValidReasoningEffort(settings.SessionDefaultSettings.ReasoningEffort) {
sessionSettings["reasoningEffort"] = "none"
}
settingsMap["sessionDefaultSettings"] = sessionSettings
data, err := json.MarshalIndent(settingsMap, "", " ")
if err != nil {
return err
}
return writeWithBackup(settingsPath, data)
}
func (d *Droid) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
data, err := os.ReadFile(filepath.Join(home, ".factory", "settings.json"))
if err != nil {
return nil
}
var settings droidSettings
if err := json.Unmarshal(data, &settings); err != nil {
return nil
}
var result []string
for _, m := range settings.CustomModels {
if m.APIKey == "ollama" {
result = append(result, m.Model)
}
}
return result
}
var validReasoningEfforts = []string{"high", "medium", "low", "none"}
func isValidReasoningEffort(effort string) bool {
return slices.Contains(validReasoningEfforts, effort)
}

1302
cmd/config/droid_test.go Normal file
View File

File diff suppressed because it is too large Load Diff

99
cmd/config/files.go Normal file
View File

@@ -0,0 +1,99 @@
package config
import (
"bytes"
"encoding/json"
"fmt"
"os"
"path/filepath"
"time"
)
func readJSONFile(path string) (map[string]any, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, err
}
var result map[string]any
if err := json.Unmarshal(data, &result); err != nil {
return nil, err
}
return result, nil
}
func copyFile(src, dst string) error {
info, err := os.Stat(src)
if err != nil {
return err
}
data, err := os.ReadFile(src)
if err != nil {
return err
}
return os.WriteFile(dst, data, info.Mode().Perm())
}
func backupDir() string {
return filepath.Join(os.TempDir(), "ollama-backups")
}
func backupToTmp(srcPath string) (string, error) {
dir := backupDir()
if err := os.MkdirAll(dir, 0o755); err != nil {
return "", err
}
backupPath := filepath.Join(dir, fmt.Sprintf("%s.%d", filepath.Base(srcPath), time.Now().Unix()))
if err := copyFile(srcPath, backupPath); err != nil {
return "", err
}
return backupPath, nil
}
// writeWithBackup writes data to path via temp file + rename, backing up any existing file first
func writeWithBackup(path string, data []byte) error {
var backupPath string
// backup must be created before any writes to the target file
if existingContent, err := os.ReadFile(path); err == nil {
if !bytes.Equal(existingContent, data) {
backupPath, err = backupToTmp(path)
if err != nil {
return fmt.Errorf("backup failed: %w", err)
}
}
} else if !os.IsNotExist(err) {
return fmt.Errorf("read existing file: %w", err)
}
dir := filepath.Dir(path)
tmp, err := os.CreateTemp(dir, ".tmp-*")
if err != nil {
return fmt.Errorf("create temp failed: %w", err)
}
tmpPath := tmp.Name()
if _, err := tmp.Write(data); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("write failed: %w", err)
}
if err := tmp.Sync(); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("sync failed: %w", err)
}
if err := tmp.Close(); err != nil {
_ = os.Remove(tmpPath)
return fmt.Errorf("close failed: %w", err)
}
if err := os.Rename(tmpPath, path); err != nil {
_ = os.Remove(tmpPath)
if backupPath != "" {
_ = copyFile(backupPath, path)
}
return fmt.Errorf("rename failed: %w", err)
}
return nil
}

502
cmd/config/files_test.go Normal file
View File

@@ -0,0 +1,502 @@
package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"runtime"
"testing"
)
func mustMarshal(t *testing.T, v any) []byte {
t.Helper()
data, err := json.MarshalIndent(v, "", " ")
if err != nil {
t.Fatal(err)
}
return data
}
func TestWriteWithBackup(t *testing.T) {
tmpDir := t.TempDir()
t.Run("creates file", func(t *testing.T) {
path := filepath.Join(tmpDir, "new.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var result map[string]string
if err := json.Unmarshal(content, &result); err != nil {
t.Fatal(err)
}
if result["key"] != "value" {
t.Errorf("expected value, got %s", result["key"])
}
})
t.Run("creates backup in /tmp/ollama-backups", func(t *testing.T) {
path := filepath.Join(tmpDir, "backup.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
data := mustMarshal(t, map[string]bool{"updated": true})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, err := os.ReadDir(backupDir())
if err != nil {
t.Fatal("backup directory not created")
}
var foundBackup bool
for _, entry := range entries {
if filepath.Ext(entry.Name()) != ".json" {
name := entry.Name()
if len(name) > len("backup.json.") && name[:len("backup.json.")] == "backup.json." {
backupPath := filepath.Join(backupDir(), name)
backup, err := os.ReadFile(backupPath)
if err == nil {
var backupData map[string]bool
json.Unmarshal(backup, &backupData)
if backupData["original"] {
foundBackup = true
os.Remove(backupPath)
break
}
}
}
}
}
if !foundBackup {
t.Error("backup file not created in /tmp/ollama-backups")
}
current, _ := os.ReadFile(path)
var currentData map[string]bool
json.Unmarshal(current, &currentData)
if !currentData["updated"] {
t.Error("file doesn't contain updated data")
}
})
t.Run("no backup for new file", func(t *testing.T) {
path := filepath.Join(tmpDir, "nobak.json")
data := mustMarshal(t, map[string]string{"new": "file"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
for _, entry := range entries {
if len(entry.Name()) > len("nobak.json.") && entry.Name()[:len("nobak.json.")] == "nobak.json." {
t.Error("backup should not exist for new file")
}
}
})
t.Run("no backup when content unchanged", func(t *testing.T) {
path := filepath.Join(tmpDir, "unchanged.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries1, _ := os.ReadDir(backupDir())
countBefore := 0
for _, e := range entries1 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countBefore++
}
}
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries2, _ := os.ReadDir(backupDir())
countAfter := 0
for _, e := range entries2 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countAfter++
}
}
if countAfter != countBefore {
t.Errorf("backup was created when content unchanged (before=%d, after=%d)", countBefore, countAfter)
}
})
t.Run("backup filename contains unix timestamp", func(t *testing.T) {
path := filepath.Join(tmpDir, "timestamped.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
data := mustMarshal(t, map[string]int{"v": 2})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
var found bool
for _, entry := range entries {
name := entry.Name()
if len(name) > len("timestamped.json.") && name[:len("timestamped.json.")] == "timestamped.json." {
timestamp := name[len("timestamped.json."):]
for _, c := range timestamp {
if c < '0' || c > '9' {
t.Errorf("backup filename timestamp contains non-numeric character: %s", name)
}
}
found = true
os.Remove(filepath.Join(backupDir(), name))
break
}
}
if !found {
t.Error("backup file with timestamp not found")
}
})
}
// Edge case tests for files.go
// TestWriteWithBackup_FailsIfBackupFails documents critical behavior: if backup fails, we must not proceed.
// User could lose their config with no way to recover.
func TestWriteWithBackup_FailsIfBackupFails(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "config.json")
// Create original file
originalContent := []byte(`{"original": true}`)
os.WriteFile(path, originalContent, 0o644)
// Make backup directory read-only to force backup failure
backupDir := backupDir()
os.MkdirAll(backupDir, 0o755)
os.Chmod(backupDir, 0o444) // Read-only
defer os.Chmod(backupDir, 0o755)
newContent := []byte(`{"updated": true}`)
err := writeWithBackup(path, newContent)
// Should fail because backup couldn't be created
if err == nil {
t.Error("expected error when backup fails, got nil")
}
// Original file should be preserved
current, _ := os.ReadFile(path)
if string(current) != string(originalContent) {
t.Errorf("original file was modified despite backup failure: got %s", string(current))
}
}
// TestWriteWithBackup_PermissionDenied verifies clear error when target file has wrong permissions.
// Common issue when config owned by root or wrong perms.
func TestWriteWithBackup_PermissionDenied(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Create a read-only directory
readOnlyDir := filepath.Join(tmpDir, "readonly")
os.MkdirAll(readOnlyDir, 0o755)
os.Chmod(readOnlyDir, 0o444)
defer os.Chmod(readOnlyDir, 0o755)
path := filepath.Join(readOnlyDir, "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
if err == nil {
t.Error("expected permission error, got nil")
}
}
// TestWriteWithBackup_DirectoryDoesNotExist verifies behavior when target directory doesn't exist.
// writeWithBackup doesn't create directories - caller is responsible.
func TestWriteWithBackup_DirectoryDoesNotExist(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "nonexistent", "subdir", "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
// Should fail because directory doesn't exist
if err == nil {
t.Error("expected error for nonexistent directory, got nil")
}
}
// TestWriteWithBackup_SymlinkTarget documents behavior when target is a symlink.
// Documents what happens if user symlinks their config file.
func TestWriteWithBackup_SymlinkTarget(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("symlink tests may require admin on Windows")
}
tmpDir := t.TempDir()
realFile := filepath.Join(tmpDir, "real.json")
symlink := filepath.Join(tmpDir, "link.json")
// Create real file and symlink
os.WriteFile(realFile, []byte(`{"v": 1}`), 0o644)
os.Symlink(realFile, symlink)
// Write through symlink
err := writeWithBackup(symlink, []byte(`{"v": 2}`))
if err != nil {
t.Fatalf("writeWithBackup through symlink failed: %v", err)
}
// The real file should be updated (symlink followed for temp file creation)
content, _ := os.ReadFile(symlink)
if string(content) != `{"v": 2}` {
t.Errorf("symlink target not updated correctly: got %s", string(content))
}
}
// TestBackupToTmp_SpecialCharsInFilename verifies backup works with special characters.
// User may have config files with unusual names.
func TestBackupToTmp_SpecialCharsInFilename(t *testing.T) {
tmpDir := t.TempDir()
// File with spaces and special chars
path := filepath.Join(tmpDir, "my config (backup).json")
os.WriteFile(path, []byte(`{"test": true}`), 0o644)
backupPath, err := backupToTmp(path)
if err != nil {
t.Fatalf("backupToTmp with special chars failed: %v", err)
}
// Verify backup exists and has correct content
content, err := os.ReadFile(backupPath)
if err != nil {
t.Fatalf("could not read backup: %v", err)
}
if string(content) != `{"test": true}` {
t.Errorf("backup content mismatch: got %s", string(content))
}
os.Remove(backupPath)
}
// TestCopyFile_PreservesPermissions verifies that copyFile preserves file permissions.
func TestCopyFile_PreservesPermissions(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission preservation tests unreliable on Windows")
}
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "src.json")
dst := filepath.Join(tmpDir, "dst.json")
// Create source with specific permissions
os.WriteFile(src, []byte(`{"test": true}`), 0o600)
err := copyFile(src, dst)
if err != nil {
t.Fatalf("copyFile failed: %v", err)
}
srcInfo, _ := os.Stat(src)
dstInfo, _ := os.Stat(dst)
if srcInfo.Mode().Perm() != dstInfo.Mode().Perm() {
t.Errorf("permissions not preserved: src=%v, dst=%v", srcInfo.Mode().Perm(), dstInfo.Mode().Perm())
}
}
// TestCopyFile_SourceNotFound verifies clear error when source doesn't exist.
func TestCopyFile_SourceNotFound(t *testing.T) {
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "nonexistent.json")
dst := filepath.Join(tmpDir, "dst.json")
err := copyFile(src, dst)
if err == nil {
t.Error("expected error for nonexistent source, got nil")
}
}
// TestWriteWithBackup_TargetIsDirectory verifies error when path points to a directory.
func TestWriteWithBackup_TargetIsDirectory(t *testing.T) {
tmpDir := t.TempDir()
dirPath := filepath.Join(tmpDir, "actualdir")
os.MkdirAll(dirPath, 0o755)
err := writeWithBackup(dirPath, []byte(`{"test": true}`))
if err == nil {
t.Error("expected error when target is a directory, got nil")
}
}
// TestWriteWithBackup_EmptyData verifies writing zero bytes works correctly.
func TestWriteWithBackup_EmptyData(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "empty.json")
err := writeWithBackup(path, []byte{})
if err != nil {
t.Fatalf("writeWithBackup with empty data failed: %v", err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatalf("could not read file: %v", err)
}
if len(content) != 0 {
t.Errorf("expected empty file, got %d bytes", len(content))
}
}
// TestWriteWithBackup_FileUnreadableButDirWritable verifies behavior when existing file
// cannot be read (for backup comparison) but directory is writable.
func TestWriteWithBackup_FileUnreadableButDirWritable(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "unreadable.json")
// Create file and make it unreadable
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
os.Chmod(path, 0o000)
defer os.Chmod(path, 0o644)
// Should fail because we can't read the file to compare/backup
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when file is unreadable, got nil")
}
}
// TestWriteWithBackup_RapidSuccessiveWrites verifies backup works with multiple writes
// within the same second (timestamp collision scenario).
func TestWriteWithBackup_RapidSuccessiveWrites(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "rapid.json")
// Create initial file
os.WriteFile(path, []byte(`{"v": 0}`), 0o644)
// Rapid successive writes
for i := 1; i <= 3; i++ {
data := []byte(fmt.Sprintf(`{"v": %d}`, i))
if err := writeWithBackup(path, data); err != nil {
t.Fatalf("write %d failed: %v", i, err)
}
}
// Verify final content
content, _ := os.ReadFile(path)
if string(content) != `{"v": 3}` {
t.Errorf("expected final content {\"v\": 3}, got %s", string(content))
}
// Verify at least one backup exists
entries, _ := os.ReadDir(backupDir())
var backupCount int
for _, e := range entries {
if len(e.Name()) > len("rapid.json.") && e.Name()[:len("rapid.json.")] == "rapid.json." {
backupCount++
}
}
if backupCount == 0 {
t.Error("expected at least one backup file from rapid writes")
}
}
// TestWriteWithBackup_BackupDirIsFile verifies error when backup directory path is a file.
func TestWriteWithBackup_BackupDirIsFile(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("test modifies system temp directory")
}
// Create a file at the backup directory path
backupPath := backupDir()
// Clean up any existing directory first
os.RemoveAll(backupPath)
// Create a file instead of directory
os.WriteFile(backupPath, []byte("not a directory"), 0o644)
defer func() {
os.Remove(backupPath)
os.MkdirAll(backupPath, 0o755)
}()
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "test.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when backup dir is a file, got nil")
}
}
// TestWriteWithBackup_NoOrphanTempFiles verifies temp files are cleaned up on failure.
func TestWriteWithBackup_NoOrphanTempFiles(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Count existing temp files
countTempFiles := func() int {
entries, _ := os.ReadDir(tmpDir)
count := 0
for _, e := range entries {
if len(e.Name()) > 4 && e.Name()[:4] == ".tmp" {
count++
}
}
return count
}
before := countTempFiles()
// Create a file, then make directory read-only to cause rename failure
path := filepath.Join(tmpDir, "orphan.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
// Make a subdirectory and try to write there after making parent read-only
subDir := filepath.Join(tmpDir, "subdir")
os.MkdirAll(subDir, 0o755)
subPath := filepath.Join(subDir, "config.json")
os.WriteFile(subPath, []byte(`{"v": 1}`), 0o644)
// Make subdir read-only after creating temp file would succeed but rename would fail
// This is tricky to test - the temp file is created in the same dir, so if we can't
// rename, we also couldn't create. Let's just verify normal failure cleanup works.
// Force a failure by making the target a directory
badPath := filepath.Join(tmpDir, "isdir")
os.MkdirAll(badPath, 0o755)
_ = writeWithBackup(badPath, []byte(`{"test": true}`))
after := countTempFiles()
if after > before {
t.Errorf("orphan temp files left behind: before=%d, after=%d", before, after)
}
}

668
cmd/config/integrations.go Normal file
View File

@@ -0,0 +1,668 @@
package config
import (
"context"
"errors"
"fmt"
"maps"
"os"
"os/exec"
"runtime"
"slices"
"strings"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/progress"
"github.com/spf13/cobra"
)
// Runners execute the launching of a model with the integration - claude, codex
// Editors can edit config files (supports multi-model selection) - opencode, droid
// They are composable interfaces where in some cases an editor is also a runner - opencode, droid
// Runner can run an integration with a model.
type Runner interface {
Run(model string, args []string) error
// String returns the human-readable name of the integration
String() string
}
// Editor can edit config files (supports multi-model selection)
type Editor interface {
// Paths returns the paths to the config files for the integration
Paths() []string
// Edit updates the config files for the integration with the given models
Edit(models []string) error
// Models returns the models currently configured for the integration
// TODO(parthsareen): add error return to Models()
Models() []string
}
// AliasConfigurer can configure model aliases (e.g., for subagent routing).
// Integrations like Claude and Codex use this to route model requests to local models.
type AliasConfigurer interface {
// ConfigureAliases prompts the user to configure aliases and returns the updated map.
ConfigureAliases(ctx context.Context, primaryModel string, existing map[string]string, force bool) (map[string]string, bool, error)
// SetAliases syncs the configured aliases to the server
SetAliases(ctx context.Context, aliases map[string]string) error
}
// integrations is the registry of available integrations.
var integrations = map[string]Runner{
"claude": &Claude{},
"clawdbot": &Openclaw{},
"codex": &Codex{},
"moltbot": &Openclaw{},
"droid": &Droid{},
"opencode": &OpenCode{},
"openclaw": &Openclaw{},
}
// recommendedModels are shown when the user has no models or as suggestions.
// Order matters: local models first, then cloud models.
var recommendedModels = []selectItem{
{Name: "glm-4.7-flash", Description: "Recommended (requires ~25GB VRAM)"},
{Name: "qwen3:8b", Description: "Recommended (requires ~11GB VRAM)"},
{Name: "glm-4.7:cloud", Description: "Recommended"},
{Name: "kimi-k2.5:cloud", Description: "Recommended"},
}
// integrationAliases are hidden from the interactive selector but work as CLI arguments.
var integrationAliases = map[string]bool{
"clawdbot": true,
"moltbot": true,
}
func selectIntegration() (string, error) {
if len(integrations) == 0 {
return "", fmt.Errorf("no integrations available")
}
names := slices.Sorted(maps.Keys(integrations))
var items []selectItem
for _, name := range names {
if integrationAliases[name] {
continue
}
r := integrations[name]
description := r.String()
if conn, err := loadIntegration(name); err == nil && len(conn.Models) > 0 {
description = fmt.Sprintf("%s (%s)", r.String(), conn.Models[0])
}
items = append(items, selectItem{Name: name, Description: description})
}
return selectPrompt("Select integration:", items)
}
// selectModels lets the user select models for an integration
func selectModels(ctx context.Context, name, current string) ([]string, error) {
r, ok := integrations[name]
if !ok {
return nil, fmt.Errorf("unknown integration: %s", name)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, err
}
var existing []modelInfo
for _, m := range models.Models {
existing = append(existing, modelInfo{Name: m.Name, Remote: m.RemoteModel != ""})
}
var preChecked []string
if saved, err := loadIntegration(name); err == nil {
preChecked = saved.Models
} else if editor, ok := r.(Editor); ok {
preChecked = editor.Models()
}
items, preChecked, existingModels, cloudModels := buildModelList(existing, preChecked, current)
if len(items) == 0 {
return nil, fmt.Errorf("no models available")
}
var selected []string
if _, ok := r.(Editor); ok {
selected, err = multiSelectPrompt(fmt.Sprintf("Select models for %s:", r), items, preChecked)
if err != nil {
return nil, err
}
} else {
prompt := fmt.Sprintf("Select model for %s:", r)
if _, ok := r.(AliasConfigurer); ok {
prompt = fmt.Sprintf("Select Primary model for %s:", r)
}
model, err := selectPrompt(prompt, items)
if err != nil {
return nil, err
}
selected = []string{model}
}
var toPull []string
for _, m := range selected {
if !existingModels[m] {
toPull = append(toPull, m)
}
}
if len(toPull) > 0 {
msg := fmt.Sprintf("Download %s?", strings.Join(toPull, ", "))
if ok, err := confirmPrompt(msg); err != nil {
return nil, err
} else if !ok {
return nil, errCancelled
}
for _, m := range toPull {
fmt.Fprintf(os.Stderr, "\n")
if err := pullModel(ctx, client, m); err != nil {
return nil, fmt.Errorf("failed to pull %s: %w", m, err)
}
}
}
if err := ensureAuth(ctx, client, cloudModels, selected); err != nil {
return nil, err
}
return selected, nil
}
func pullIfNeeded(ctx context.Context, client *api.Client, existingModels map[string]bool, model string) error {
if existingModels[model] {
return nil
}
msg := fmt.Sprintf("Download %s?", model)
if ok, err := confirmPrompt(msg); err != nil {
return err
} else if !ok {
return errCancelled
}
fmt.Fprintf(os.Stderr, "\n")
if err := pullModel(ctx, client, model); err != nil {
return fmt.Errorf("failed to pull %s: %w", model, err)
}
return nil
}
func listModels(ctx context.Context) ([]selectItem, map[string]bool, map[string]bool, *api.Client, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, nil, nil, nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, nil, nil, nil, err
}
var existing []modelInfo
for _, m := range models.Models {
existing = append(existing, modelInfo{Name: m.Name, Remote: m.RemoteModel != ""})
}
items, _, existingModels, cloudModels := buildModelList(existing, nil, "")
if len(items) == 0 {
return nil, nil, nil, nil, fmt.Errorf("no models available, run 'ollama pull <model>' first")
}
return items, existingModels, cloudModels, client, nil
}
func ensureAuth(ctx context.Context, client *api.Client, cloudModels map[string]bool, selected []string) error {
var selectedCloudModels []string
for _, m := range selected {
if cloudModels[m] {
selectedCloudModels = append(selectedCloudModels, m)
}
}
if len(selectedCloudModels) == 0 {
return nil
}
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return nil
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return err
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return fmt.Errorf("%s requires sign in", modelList)
}
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return nil
}
}
}
}
}
func ensureAliases(ctx context.Context, r Runner, name string, primaryModel string, existing map[string]string, force bool) (bool, error) {
ac, ok := r.(AliasConfigurer)
if !ok {
return false, nil
}
aliases, updated, err := ac.ConfigureAliases(ctx, primaryModel, existing, force)
if err != nil {
return false, err
}
if !updated {
return false, nil
}
if err := saveAliases(name, aliases); err != nil {
return false, err
}
if err := ac.SetAliases(ctx, aliases); err != nil {
fmt.Fprintf(os.Stderr, "%sWarning: Could not sync aliases to server: %v%s\n", ansiGray, err, ansiReset)
fmt.Fprintf(os.Stderr, "%sAliases saved locally. Server sync will retry on next launch.%s\n\n", ansiGray, ansiReset)
}
return true, nil
}
func runIntegration(name, modelName string, args []string) error {
r, ok := integrations[name]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
if _, ok := r.(AliasConfigurer); ok {
if config, err := loadIntegration(name); err == nil && config.Aliases != nil {
primary, fast := config.Aliases["primary"], config.Aliases["fast"]
if primary != "" && fast != "" {
fmt.Fprintf(os.Stderr, "\nLaunching %s with Primary: %s, Fast: %s...\n", r, primary, fast)
return r.Run(modelName, args)
}
}
}
fmt.Fprintf(os.Stderr, "\nLaunching %s with %s...\n", r, modelName)
return r.Run(modelName, args)
}
// LaunchCmd returns the cobra command for launching integrations.
func LaunchCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
var configFlag bool
cmd := &cobra.Command{
Use: "launch [INTEGRATION] [-- [EXTRA_ARGS...]]",
Short: "Launch an integration with Ollama",
Long: `Launch an integration configured with Ollama models.
Supported integrations:
claude Claude Code
codex Codex
droid Droid
opencode OpenCode
openclaw OpenClaw (aliases: clawdbot, moltbot)
Examples:
ollama launch
ollama launch claude
ollama launch claude --model <model>
ollama launch droid --config (does not auto-launch)
ollama launch codex -- -p myprofile (pass extra args to integration)
ollama launch codex -- --sandbox workspace-write`,
Args: cobra.ArbitraryArgs,
PreRunE: checkServerHeartbeat,
RunE: func(cmd *cobra.Command, args []string) error {
// Extract integration name and args to pass through using -- separator
var name string
var passArgs []string
dashIdx := cmd.ArgsLenAtDash()
if dashIdx == -1 {
// No "--" separator: only allow 0 or 1 args (integration name)
if len(args) > 1 {
return fmt.Errorf("unexpected arguments: %v\nUse '--' to pass extra arguments to the integration", args[1:])
}
if len(args) == 1 {
name = args[0]
}
} else {
// "--" was used: args before it = integration name, args after = passthrough
if dashIdx > 1 {
return fmt.Errorf("expected at most 1 integration name before '--', got %d", dashIdx)
}
if dashIdx == 1 {
name = args[0]
}
passArgs = args[dashIdx:]
}
if name == "" {
var err error
name, err = selectIntegration()
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
r, ok := integrations[strings.ToLower(name)]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
if !configFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
if _, err := ensureAliases(cmd.Context(), r, name, config.Models[0], config.Aliases, false); errors.Is(err, errCancelled) {
return nil
} else if err != nil {
return err
}
return runIntegration(name, config.Models[0], passArgs)
}
}
if ac, ok := r.(AliasConfigurer); ok {
var existingAliases map[string]string
if existing, err := loadIntegration(name); err == nil {
existingAliases = existing.Aliases
}
aliases, updated, err := ac.ConfigureAliases(cmd.Context(), "", existingAliases, configFlag)
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
if updated {
if err := saveAliases(name, aliases); err != nil {
return err
}
if err := ac.SetAliases(cmd.Context(), aliases); err != nil {
fmt.Fprintf(os.Stderr, "%sWarning: Could not sync aliases to server: %v%s\n", ansiGray, err, ansiReset)
}
fmt.Fprintf(os.Stderr, "\n%sConfiguration Complete%s\n", ansiBold, ansiReset)
fmt.Fprintf(os.Stderr, "Primary: %s\n", aliases["primary"])
fmt.Fprintf(os.Stderr, "Fast: %s\n\n", aliases["fast"])
}
if err := saveIntegration(name, []string{aliases["primary"]}); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
if configFlag {
if launch, _ := confirmPrompt(fmt.Sprintf("Launch %s now?", r)); launch {
return runIntegration(name, aliases["primary"], passArgs)
}
return nil
}
return runIntegration(name, aliases["primary"], passArgs)
}
var models []string
if modelFlag != "" {
models = []string{modelFlag}
if existing, err := loadIntegration(name); err == nil && len(existing.Models) > 0 {
for _, m := range existing.Models {
if m != modelFlag {
models = append(models, m)
}
}
}
} else {
var err error
models, err = selectModels(cmd.Context(), name, "")
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
if editor, isEditor := r.(Editor); isEditor {
paths := editor.Paths()
if len(paths) > 0 {
fmt.Fprintf(os.Stderr, "This will modify your %s configuration:\n", r)
for _, p := range paths {
fmt.Fprintf(os.Stderr, " %s\n", p)
}
fmt.Fprintf(os.Stderr, "Backups will be saved to %s/\n\n", backupDir())
if ok, _ := confirmPrompt("Proceed?"); !ok {
return nil
}
}
}
if err := saveIntegration(name, models); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
if editor, isEditor := r.(Editor); isEditor {
if err := editor.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
}
if _, isEditor := r.(Editor); isEditor {
if len(models) == 1 {
fmt.Fprintf(os.Stderr, "Added %s to %s\n", models[0], r)
} else {
fmt.Fprintf(os.Stderr, "Added %d models to %s (default: %s)\n", len(models), r, models[0])
}
}
if configFlag {
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
return runIntegration(name, models[0], passArgs)
}
fmt.Fprintf(os.Stderr, "Run 'ollama launch %s' to start with %s\n", strings.ToLower(name), models[0])
return nil
}
return runIntegration(name, models[0], passArgs)
},
}
cmd.Flags().StringVar(&modelFlag, "model", "", "Model to use")
cmd.Flags().BoolVar(&configFlag, "config", false, "Configure without launching")
return cmd
}
type modelInfo struct {
Name string
Remote bool
}
// buildModelList merges existing models with recommendations, sorts them, and returns
// the ordered items along with maps of existing and cloud model names.
func buildModelList(existing []modelInfo, preChecked []string, current string) (items []selectItem, orderedChecked []string, existingModels, cloudModels map[string]bool) {
existingModels = make(map[string]bool)
cloudModels = make(map[string]bool)
recommended := make(map[string]bool)
var hasLocalModel, hasCloudModel bool
for _, rec := range recommendedModels {
recommended[rec.Name] = true
}
for _, m := range existing {
existingModels[m.Name] = true
if m.Remote {
cloudModels[m.Name] = true
hasCloudModel = true
} else {
hasLocalModel = true
}
displayName := strings.TrimSuffix(m.Name, ":latest")
existingModels[displayName] = true
item := selectItem{Name: displayName}
if recommended[displayName] {
item.Description = "recommended"
}
items = append(items, item)
}
for _, rec := range recommendedModels {
if existingModels[rec.Name] || existingModels[rec.Name+":latest"] {
continue
}
items = append(items, rec)
if isCloudModel(rec.Name) {
cloudModels[rec.Name] = true
}
}
checked := make(map[string]bool, len(preChecked))
for _, n := range preChecked {
checked[n] = true
}
// Resolve current to full name (e.g., "llama3.2" -> "llama3.2:latest")
for _, item := range items {
if item.Name == current || strings.HasPrefix(item.Name, current+":") {
current = item.Name
break
}
}
if checked[current] {
preChecked = append([]string{current}, slices.DeleteFunc(preChecked, func(m string) bool { return m == current })...)
}
// Non-existing models get "install?" suffix and are pushed to the bottom.
// When user has no models, preserve recommended order.
notInstalled := make(map[string]bool)
for i := range items {
if !existingModels[items[i].Name] {
notInstalled[items[i].Name] = true
if items[i].Description != "" {
items[i].Description += ", install?"
} else {
items[i].Description = "install?"
}
}
}
if hasLocalModel || hasCloudModel {
slices.SortStableFunc(items, func(a, b selectItem) int {
ac, bc := checked[a.Name], checked[b.Name]
aNew, bNew := notInstalled[a.Name], notInstalled[b.Name]
if ac != bc {
if ac {
return -1
}
return 1
}
if !ac && !bc && aNew != bNew {
if aNew {
return 1
}
return -1
}
return strings.Compare(strings.ToLower(a.Name), strings.ToLower(b.Name))
})
}
return items, preChecked, existingModels, cloudModels
}
func isCloudModel(name string) bool {
return strings.HasSuffix(name, ":cloud")
}
func pullModel(ctx context.Context, client *api.Client, model string) error {
p := progress.NewProgress(os.Stderr)
defer p.Stop()
bars := make(map[string]*progress.Bar)
var status string
var spinner *progress.Spinner
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
if resp.Completed == 0 {
return nil
}
if spinner != nil {
spinner.Stop()
}
bar, ok := bars[resp.Digest]
if !ok {
name, isDigest := strings.CutPrefix(resp.Digest, "sha256:")
name = strings.TrimSpace(name)
if isDigest {
name = name[:min(12, len(name))]
}
bar = progress.NewBar(fmt.Sprintf("pulling %s:", name), resp.Total, resp.Completed)
bars[resp.Digest] = bar
p.Add(resp.Digest, bar)
}
bar.Set(resp.Completed)
} else if status != resp.Status {
if spinner != nil {
spinner.Stop()
}
status = resp.Status
spinner = progress.NewSpinner(status)
p.Add(status, spinner)
}
return nil
}
request := api.PullRequest{Name: model}
return client.Pull(ctx, &request, fn)
}

View File

@@ -0,0 +1,527 @@
package config
import (
"fmt"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/spf13/cobra"
)
func TestIntegrationLookup(t *testing.T) {
tests := []struct {
name string
input string
wantFound bool
wantName string
}{
{"claude lowercase", "claude", true, "Claude Code"},
{"claude uppercase", "CLAUDE", true, "Claude Code"},
{"claude mixed case", "Claude", true, "Claude Code"},
{"codex", "codex", true, "Codex"},
{"droid", "droid", true, "Droid"},
{"opencode", "opencode", true, "OpenCode"},
{"unknown integration", "unknown", false, ""},
{"empty string", "", false, ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
r, found := integrations[strings.ToLower(tt.input)]
if found != tt.wantFound {
t.Errorf("integrations[%q] found = %v, want %v", tt.input, found, tt.wantFound)
}
if found && r.String() != tt.wantName {
t.Errorf("integrations[%q].String() = %q, want %q", tt.input, r.String(), tt.wantName)
}
})
}
}
func TestIntegrationRegistry(t *testing.T) {
expectedIntegrations := []string{"claude", "codex", "droid", "opencode"}
for _, name := range expectedIntegrations {
t.Run(name, func(t *testing.T) {
r, ok := integrations[name]
if !ok {
t.Fatalf("integration %q not found in registry", name)
}
if r.String() == "" {
t.Error("integration.String() should not be empty")
}
})
}
}
func TestHasLocalModel(t *testing.T) {
tests := []struct {
name string
models []string
want bool
}{
{"empty list", []string{}, false},
{"single local model", []string{"llama3.2"}, true},
{"single cloud model", []string{"cloud-model"}, false},
{"mixed models", []string{"cloud-model", "llama3.2"}, true},
{"multiple local models", []string{"llama3.2", "qwen2.5"}, true},
{"multiple cloud models", []string{"cloud-a", "cloud-b"}, false},
{"local model first", []string{"llama3.2", "cloud-model"}, true},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v", tt.models, got, tt.want)
}
})
}
}
func TestLaunchCmd(t *testing.T) {
// Mock checkServerHeartbeat that always succeeds
mockCheck := func(cmd *cobra.Command, args []string) error {
return nil
}
cmd := LaunchCmd(mockCheck)
t.Run("command structure", func(t *testing.T) {
if cmd.Use != "launch [INTEGRATION] [-- [EXTRA_ARGS...]]" {
t.Errorf("Use = %q, want %q", cmd.Use, "launch [INTEGRATION] [-- [EXTRA_ARGS...]]")
}
if cmd.Short == "" {
t.Error("Short description should not be empty")
}
if cmd.Long == "" {
t.Error("Long description should not be empty")
}
})
t.Run("flags exist", func(t *testing.T) {
modelFlag := cmd.Flags().Lookup("model")
if modelFlag == nil {
t.Error("--model flag should exist")
}
configFlag := cmd.Flags().Lookup("config")
if configFlag == nil {
t.Error("--config flag should exist")
}
})
t.Run("PreRunE is set", func(t *testing.T) {
if cmd.PreRunE == nil {
t.Error("PreRunE should be set to checkServerHeartbeat")
}
})
}
func TestRunIntegration_UnknownIntegration(t *testing.T) {
err := runIntegration("unknown-integration", "model", nil)
if err == nil {
t.Error("expected error for unknown integration, got nil")
}
if !strings.Contains(err.Error(), "unknown integration") {
t.Errorf("error should mention 'unknown integration', got: %v", err)
}
}
func TestHasLocalModel_DocumentsHeuristic(t *testing.T) {
tests := []struct {
name string
models []string
want bool
reason string
}{
{"empty list", []string{}, false, "empty list has no local models"},
{"contains-cloud-substring", []string{"deepseek-r1:cloud"}, false, "model with 'cloud' substring is considered cloud"},
{"cloud-in-name", []string{"my-cloud-model"}, false, "'cloud' anywhere in name = cloud model"},
{"cloudless", []string{"cloudless-model"}, false, "'cloudless' still contains 'cloud'"},
{"local-model", []string{"llama3.2"}, true, "no 'cloud' = local"},
{"mixed", []string{"cloud-model", "llama3.2"}, true, "one local model = hasLocalModel true"},
{"all-cloud", []string{"cloud-a", "cloud-b"}, false, "all contain 'cloud'"},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v (%s)", tt.models, got, tt.want, tt.reason)
}
})
}
}
func TestLaunchCmd_NilHeartbeat(t *testing.T) {
// This should not panic - cmd creation should work even with nil
cmd := LaunchCmd(nil)
if cmd == nil {
t.Fatal("LaunchCmd returned nil")
}
// PreRunE should be nil when passed nil
if cmd.PreRunE != nil {
t.Log("Note: PreRunE is set even when nil is passed (acceptable)")
}
}
func TestAllIntegrations_HaveRequiredMethods(t *testing.T) {
for name, r := range integrations {
t.Run(name, func(t *testing.T) {
displayName := r.String()
if displayName == "" {
t.Error("String() should not return empty")
}
var _ func(string, []string) error = r.Run
})
}
}
func TestParseArgs(t *testing.T) {
// Tests reflect cobra's ArgsLenAtDash() semantics:
// - cobra strips "--" from args
// - ArgsLenAtDash() returns the index where "--" was, or -1
tests := []struct {
name string
args []string // args as cobra delivers them (no "--")
dashIdx int // what ArgsLenAtDash() returns
wantName string
wantArgs []string
wantErr bool
}{
{
name: "no extra args, no dash",
args: []string{"claude"},
dashIdx: -1,
wantName: "claude",
},
{
name: "with extra args after --",
args: []string{"codex", "-p", "myprofile"},
dashIdx: 1,
wantName: "codex",
wantArgs: []string{"-p", "myprofile"},
},
{
name: "extra args only after --",
args: []string{"codex", "--sandbox", "workspace-write"},
dashIdx: 1,
wantName: "codex",
wantArgs: []string{"--sandbox", "workspace-write"},
},
{
name: "-- at end with no args after",
args: []string{"claude"},
dashIdx: 1,
wantName: "claude",
},
{
name: "-- with no integration name",
args: []string{"--verbose"},
dashIdx: 0,
wantName: "",
wantArgs: []string{"--verbose"},
},
{
name: "multiple args before -- is error",
args: []string{"claude", "codex", "--verbose"},
dashIdx: 2,
wantErr: true,
},
{
name: "multiple args without -- is error",
args: []string{"claude", "codex"},
dashIdx: -1,
wantErr: true,
},
{
name: "no args, no dash",
args: []string{},
dashIdx: -1,
wantName: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Simulate the parsing logic from LaunchCmd using dashIdx
var name string
var parsedArgs []string
var err error
dashIdx := tt.dashIdx
args := tt.args
if dashIdx == -1 {
if len(args) > 1 {
err = fmt.Errorf("unexpected arguments: %v", args[1:])
} else if len(args) == 1 {
name = args[0]
}
} else {
if dashIdx > 1 {
err = fmt.Errorf("expected at most 1 integration name before '--', got %d", dashIdx)
} else {
if dashIdx == 1 {
name = args[0]
}
parsedArgs = args[dashIdx:]
}
}
if tt.wantErr {
if err == nil {
t.Fatal("expected error, got nil")
}
return
}
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if name != tt.wantName {
t.Errorf("name = %q, want %q", name, tt.wantName)
}
if !slices.Equal(parsedArgs, tt.wantArgs) {
t.Errorf("args = %v, want %v", parsedArgs, tt.wantArgs)
}
})
}
}
func TestIsCloudModel(t *testing.T) {
tests := []struct {
name string
want bool
}{
{"glm-4.7:cloud", true},
{"kimi-k2.5:cloud", true},
{"glm-4.7-flash", false},
{"glm-4.7-flash:latest", false},
{"cloud-model", false},
{"model:cloudish", false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if got := isCloudModel(tt.name); got != tt.want {
t.Errorf("isCloudModel(%q) = %v, want %v", tt.name, got, tt.want)
}
})
}
}
func names(items []selectItem) []string {
var out []string
for _, item := range items {
out = append(out, item.Name)
}
return out
}
func TestBuildModelList_NoExistingModels(t *testing.T) {
items, _, _, _ := buildModelList(nil, nil, "")
want := []string{"glm-4.7-flash", "qwen3:8b", "glm-4.7:cloud", "kimi-k2.5:cloud"}
if diff := cmp.Diff(want, names(items)); diff != "" {
t.Errorf("with no existing models, items should be recommended in order (-want +got):\n%s", diff)
}
for _, item := range items {
if !strings.HasSuffix(item.Description, "install?") {
t.Errorf("item %q should have description ending with 'install?', got %q", item.Name, item.Description)
}
}
}
func TestBuildModelList_OnlyLocalModels_CloudRecsAtBottom(t *testing.T) {
existing := []modelInfo{
{Name: "llama3.2:latest", Remote: false},
{Name: "qwen2.5:latest", Remote: false},
}
items, _, _, _ := buildModelList(existing, nil, "")
got := names(items)
want := []string{"llama3.2", "qwen2.5", "glm-4.7-flash", "glm-4.7:cloud", "kimi-k2.5:cloud", "qwen3:8b"}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("cloud recs should be at bottom (-want +got):\n%s", diff)
}
}
func TestBuildModelList_BothCloudAndLocal_RegularSort(t *testing.T) {
existing := []modelInfo{
{Name: "llama3.2:latest", Remote: false},
{Name: "glm-4.7:cloud", Remote: true},
}
items, _, _, _ := buildModelList(existing, nil, "")
got := names(items)
want := []string{"glm-4.7:cloud", "llama3.2", "glm-4.7-flash", "kimi-k2.5:cloud", "qwen3:8b"}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("mixed models should be alphabetical (-want +got):\n%s", diff)
}
}
func TestBuildModelList_PreCheckedFirst(t *testing.T) {
existing := []modelInfo{
{Name: "llama3.2:latest", Remote: false},
{Name: "glm-4.7:cloud", Remote: true},
}
items, _, _, _ := buildModelList(existing, []string{"llama3.2"}, "")
got := names(items)
if got[0] != "llama3.2" {
t.Errorf("pre-checked model should be first, got %v", got)
}
}
func TestBuildModelList_ExistingRecommendedMarked(t *testing.T) {
existing := []modelInfo{
{Name: "glm-4.7-flash", Remote: false},
{Name: "glm-4.7:cloud", Remote: true},
}
items, _, _, _ := buildModelList(existing, nil, "")
for _, item := range items {
switch item.Name {
case "glm-4.7-flash", "glm-4.7:cloud":
if strings.HasSuffix(item.Description, "install?") {
t.Errorf("installed recommended %q should not have 'install?' suffix, got %q", item.Name, item.Description)
}
case "kimi-k2.5:cloud", "qwen3:8b":
if !strings.HasSuffix(item.Description, "install?") {
t.Errorf("non-installed recommended %q should have 'install?' suffix, got %q", item.Name, item.Description)
}
}
}
}
func TestBuildModelList_ExistingCloudModelsNotPushedToBottom(t *testing.T) {
existing := []modelInfo{
{Name: "glm-4.7-flash", Remote: false},
{Name: "glm-4.7:cloud", Remote: true},
}
items, _, _, _ := buildModelList(existing, nil, "")
got := names(items)
// glm-4.7-flash and glm-4.7:cloud are installed so they sort normally;
// kimi-k2.5:cloud and qwen3:8b are not installed so they go to the bottom
want := []string{"glm-4.7-flash", "glm-4.7:cloud", "kimi-k2.5:cloud", "qwen3:8b"}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("existing cloud models should sort normally (-want +got):\n%s", diff)
}
}
func TestBuildModelList_HasRecommendedCloudModel_OnlyNonInstalledAtBottom(t *testing.T) {
existing := []modelInfo{
{Name: "llama3.2:latest", Remote: false},
{Name: "kimi-k2.5:cloud", Remote: true},
}
items, _, _, _ := buildModelList(existing, nil, "")
got := names(items)
// kimi-k2.5:cloud is installed so it sorts normally;
// the rest of the recommendations are not installed so they go to the bottom
want := []string{"kimi-k2.5:cloud", "llama3.2", "glm-4.7-flash", "glm-4.7:cloud", "qwen3:8b"}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("only non-installed models should be at bottom (-want +got):\n%s", diff)
}
for _, item := range items {
if !slices.Contains([]string{"kimi-k2.5:cloud", "llama3.2"}, item.Name) {
if !strings.HasSuffix(item.Description, "install?") {
t.Errorf("non-installed %q should have 'install?' suffix, got %q", item.Name, item.Description)
}
}
}
}
func TestBuildModelList_LatestTagStripped(t *testing.T) {
existing := []modelInfo{
{Name: "glm-4.7-flash:latest", Remote: false},
{Name: "llama3.2:latest", Remote: false},
}
items, _, existingModels, _ := buildModelList(existing, nil, "")
got := names(items)
// :latest should be stripped from display names
for _, name := range got {
if strings.HasSuffix(name, ":latest") {
t.Errorf("name %q should not have :latest suffix", name)
}
}
// glm-4.7-flash should not be duplicated (existing :latest matches the recommendation)
count := 0
for _, name := range got {
if name == "glm-4.7-flash" {
count++
}
}
if count != 1 {
t.Errorf("glm-4.7-flash should appear exactly once, got %d in %v", count, got)
}
// Stripped name should be in existingModels so it won't be pulled
if !existingModels["glm-4.7-flash"] {
t.Error("glm-4.7-flash should be in existingModels")
}
}
func TestBuildModelList_ReturnsExistingAndCloudMaps(t *testing.T) {
existing := []modelInfo{
{Name: "llama3.2:latest", Remote: false},
{Name: "glm-4.7:cloud", Remote: true},
}
_, _, existingModels, cloudModels := buildModelList(existing, nil, "")
if !existingModels["llama3.2"] {
t.Error("llama3.2 should be in existingModels")
}
if !existingModels["glm-4.7:cloud"] {
t.Error("glm-4.7:cloud should be in existingModels")
}
if existingModels["glm-4.7-flash"] {
t.Error("glm-4.7-flash should not be in existingModels (it's a recommendation)")
}
if !cloudModels["glm-4.7:cloud"] {
t.Error("glm-4.7:cloud should be in cloudModels")
}
if !cloudModels["kimi-k2.5:cloud"] {
t.Error("kimi-k2.5:cloud should be in cloudModels (recommended cloud)")
}
if cloudModels["llama3.2"] {
t.Error("llama3.2 should not be in cloudModels")
}
}
func TestAliasConfigurerInterface(t *testing.T) {
t.Run("claude implements AliasConfigurer", func(t *testing.T) {
claude := &Claude{}
if _, ok := interface{}(claude).(AliasConfigurer); !ok {
t.Error("Claude should implement AliasConfigurer")
}
})
t.Run("codex does not implement AliasConfigurer", func(t *testing.T) {
codex := &Codex{}
if _, ok := interface{}(codex).(AliasConfigurer); ok {
t.Error("Codex should not implement AliasConfigurer")
}
})
}

254
cmd/config/openclaw.go Normal file
View File

@@ -0,0 +1,254 @@
package config
import (
"bytes"
"encoding/json"
"fmt"
"io"
"os"
"os/exec"
"path/filepath"
"strings"
"github.com/ollama/ollama/envconfig"
)
type Openclaw struct{}
func (c *Openclaw) String() string { return "OpenClaw" }
const ansiGreen = "\033[32m"
func (c *Openclaw) Run(model string, args []string) error {
bin := "openclaw"
if _, err := exec.LookPath(bin); err != nil {
bin = "clawdbot"
if _, err := exec.LookPath(bin); err != nil {
return fmt.Errorf("openclaw is not installed, install from https://docs.openclaw.ai")
}
}
models := []string{model}
if config, err := loadIntegration("openclaw"); err == nil && len(config.Models) > 0 {
models = config.Models
} else if config, err := loadIntegration("clawdbot"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := c.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
if !c.onboarded() {
// Onboarding not completed: run it (model already set via Edit)
// Use "ollama" as gateway token for simple local access
cmd := exec.Command(bin, "onboard",
"--auth-choice", "skip",
"--gateway-token", "ollama",
)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
// Onboarding completed: run gateway
cmd := exec.Command(bin, append([]string{"gateway"}, args...)...)
cmd.Stdin = os.Stdin
// Capture output to detect "already running" message
var outputBuf bytes.Buffer
cmd.Stdout = io.MultiWriter(os.Stdout, &outputBuf)
cmd.Stderr = io.MultiWriter(os.Stderr, &outputBuf)
err := cmd.Run()
if err != nil && strings.Contains(outputBuf.String(), "Gateway already running") {
fmt.Fprintf(os.Stderr, "%sOpenClaw has been configured with Ollama. Gateway is already running.%s\n", ansiGreen, ansiReset)
return nil
}
return err
}
// onboarded checks if OpenClaw onboarding wizard was completed
// by looking for the wizard.lastRunAt marker in the config
func (c *Openclaw) onboarded() bool {
home, err := os.UserHomeDir()
if err != nil {
return false
}
configPath := filepath.Join(home, ".openclaw", "openclaw.json")
legacyPath := filepath.Join(home, ".clawdbot", "clawdbot.json")
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config)
} else if data, err := os.ReadFile(legacyPath); err == nil {
_ = json.Unmarshal(data, &config)
} else {
return false
}
// Check for wizard.lastRunAt marker (set when onboarding completes)
wizard, _ := config["wizard"].(map[string]any)
if wizard == nil {
return false
}
lastRunAt, _ := wizard["lastRunAt"].(string)
return lastRunAt != ""
}
func (c *Openclaw) Paths() []string {
home, _ := os.UserHomeDir()
p := filepath.Join(home, ".openclaw", "openclaw.json")
if _, err := os.Stat(p); err == nil {
return []string{p}
}
legacy := filepath.Join(home, ".clawdbot", "clawdbot.json")
if _, err := os.Stat(legacy); err == nil {
return []string{legacy}
}
return nil
}
func (c *Openclaw) Edit(models []string) error {
if len(models) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
configPath := filepath.Join(home, ".openclaw", "openclaw.json")
legacyPath := filepath.Join(home, ".clawdbot", "clawdbot.json")
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return err
}
// Read into map[string]any to preserve unknown fields
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config)
} else if data, err := os.ReadFile(legacyPath); err == nil {
_ = json.Unmarshal(data, &config)
}
// Navigate/create: models.providers.ollama (preserving other providers)
modelsSection, _ := config["models"].(map[string]any)
if modelsSection == nil {
modelsSection = make(map[string]any)
}
providers, _ := modelsSection["providers"].(map[string]any)
if providers == nil {
providers = make(map[string]any)
}
ollama, _ := providers["ollama"].(map[string]any)
if ollama == nil {
ollama = make(map[string]any)
}
ollama["baseUrl"] = envconfig.Host().String() + "/v1"
// needed to register provider
ollama["apiKey"] = "ollama-local"
// TODO(parthsareen): potentially move to responses
ollama["api"] = "openai-completions"
// Build map of existing models to preserve user customizations
existingModels, _ := ollama["models"].([]any)
existingByID := make(map[string]map[string]any)
for _, m := range existingModels {
if entry, ok := m.(map[string]any); ok {
if id, ok := entry["id"].(string); ok {
existingByID[id] = entry
}
}
}
var newModels []any
for _, model := range models {
entry := map[string]any{
"id": model,
"name": model,
"reasoning": false,
"input": []any{"text"},
"cost": map[string]any{
"input": 0,
"output": 0,
"cacheRead": 0,
"cacheWrite": 0,
},
// TODO(parthsareen): get these values from API
"contextWindow": 131072,
"maxTokens": 16384,
}
// Merge existing fields (user customizations)
if existing, ok := existingByID[model]; ok {
for k, v := range existing {
if _, isNew := entry[k]; !isNew {
entry[k] = v
}
}
}
newModels = append(newModels, entry)
}
ollama["models"] = newModels
providers["ollama"] = ollama
modelsSection["providers"] = providers
config["models"] = modelsSection
// Update agents.defaults.model.primary (preserving other agent settings)
agents, _ := config["agents"].(map[string]any)
if agents == nil {
agents = make(map[string]any)
}
defaults, _ := agents["defaults"].(map[string]any)
if defaults == nil {
defaults = make(map[string]any)
}
modelConfig, _ := defaults["model"].(map[string]any)
if modelConfig == nil {
modelConfig = make(map[string]any)
}
modelConfig["primary"] = "ollama/" + models[0]
defaults["model"] = modelConfig
agents["defaults"] = defaults
config["agents"] = agents
data, err := json.MarshalIndent(config, "", " ")
if err != nil {
return err
}
return writeWithBackup(configPath, data)
}
func (c *Openclaw) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
config, err := readJSONFile(filepath.Join(home, ".openclaw", "openclaw.json"))
if err != nil {
config, err = readJSONFile(filepath.Join(home, ".clawdbot", "clawdbot.json"))
if err != nil {
return nil
}
}
modelsSection, _ := config["models"].(map[string]any)
providers, _ := modelsSection["providers"].(map[string]any)
ollama, _ := providers["ollama"].(map[string]any)
modelList, _ := ollama["models"].([]any)
var result []string
for _, m := range modelList {
if entry, ok := m.(map[string]any); ok {
if id, ok := entry["id"].(string); ok {
result = append(result, id)
}
}
}
return result
}

878
cmd/config/openclaw_test.go Normal file
View File

@@ -0,0 +1,878 @@
package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"testing"
)
func TestOpenclawIntegration(t *testing.T) {
c := &Openclaw{}
t.Run("String", func(t *testing.T) {
if got := c.String(); got != "OpenClaw" {
t.Errorf("String() = %q, want %q", got, "OpenClaw")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = c
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = c
})
}
func TestOpenclawEdit(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
cleanup := func() { os.RemoveAll(configDir) }
t.Run("fresh install", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenclawModelExists(t, configPath, "llama3.2")
assertOpenclawPrimaryModel(t, configPath, "ollama/llama3.2")
})
t.Run("multiple models - first is primary", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"llama3.2", "mistral"}); err != nil {
t.Fatal(err)
}
assertOpenclawModelExists(t, configPath, "llama3.2")
assertOpenclawModelExists(t, configPath, "mistral")
assertOpenclawPrimaryModel(t, configPath, "ollama/llama3.2")
})
t.Run("preserve other providers", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"anthropic":{"apiKey":"xxx"}}}}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
if providers["anthropic"] == nil {
t.Error("anthropic provider was removed")
}
})
t.Run("preserve top-level keys", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"theme":"dark","mcp":{"servers":{}}}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("theme was removed")
}
if cfg["mcp"] == nil {
t.Error("mcp was removed")
}
})
t.Run("preserve user customizations on models", func(t *testing.T) {
cleanup()
c.Edit([]string{"llama3.2"})
// User adds custom field
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
ollama := providers["ollama"].(map[string]any)
modelList := ollama["models"].([]any)
entry := modelList[0].(map[string]any)
entry["customField"] = "user-value"
configData, _ := json.MarshalIndent(cfg, "", " ")
os.WriteFile(configPath, configData, 0o644)
// Re-run Edit
c.Edit([]string{"llama3.2"})
data, _ = os.ReadFile(configPath)
json.Unmarshal(data, &cfg)
models = cfg["models"].(map[string]any)
providers = models["providers"].(map[string]any)
ollama = providers["ollama"].(map[string]any)
modelList = ollama["models"].([]any)
entry = modelList[0].(map[string]any)
if entry["customField"] != "user-value" {
t.Error("custom field was lost")
}
})
t.Run("edit replaces models list", func(t *testing.T) {
cleanup()
c.Edit([]string{"llama3.2", "mistral"})
c.Edit([]string{"llama3.2"})
assertOpenclawModelExists(t, configPath, "llama3.2")
assertOpenclawModelNotExists(t, configPath, "mistral")
})
t.Run("empty models is no-op", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
original := `{"existing":"data"}`
os.WriteFile(configPath, []byte(original), 0o644)
c.Edit([]string{})
data, _ := os.ReadFile(configPath)
if string(data) != original {
t.Error("empty models should not modify file")
}
})
t.Run("corrupted JSON treated as empty", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Error("result should be valid JSON")
}
})
t.Run("wrong type models section", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":"not a map"}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenclawModelExists(t, configPath, "llama3.2")
})
}
func TestOpenclawModels(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("no config returns nil", func(t *testing.T) {
if models := c.Models(); len(models) > 0 {
t.Errorf("expected nil/empty, got %v", models)
}
})
t.Run("returns all ollama models", func(t *testing.T) {
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{
"models":{"providers":{"ollama":{"models":[
{"id":"llama3.2"},
{"id":"mistral"}
]}}}
}`), 0o644)
models := c.Models()
if len(models) != 2 {
t.Errorf("expected 2 models, got %v", models)
}
})
}
// Helper functions
func assertOpenclawModelExists(t *testing.T, path, model string) {
t.Helper()
data, _ := os.ReadFile(path)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
ollama := providers["ollama"].(map[string]any)
modelList := ollama["models"].([]any)
for _, m := range modelList {
if entry, ok := m.(map[string]any); ok {
if entry["id"] == model {
return
}
}
}
t.Errorf("model %s not found", model)
}
func assertOpenclawModelNotExists(t *testing.T, path, model string) {
t.Helper()
data, _ := os.ReadFile(path)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models, _ := cfg["models"].(map[string]any)
providers, _ := models["providers"].(map[string]any)
ollama, _ := providers["ollama"].(map[string]any)
modelList, _ := ollama["models"].([]any)
for _, m := range modelList {
if entry, ok := m.(map[string]any); ok {
if entry["id"] == model {
t.Errorf("model %s should not exist", model)
}
}
}
}
func assertOpenclawPrimaryModel(t *testing.T, path, expected string) {
t.Helper()
data, _ := os.ReadFile(path)
var cfg map[string]any
json.Unmarshal(data, &cfg)
agents := cfg["agents"].(map[string]any)
defaults := agents["defaults"].(map[string]any)
model := defaults["model"].(map[string]any)
if model["primary"] != expected {
t.Errorf("primary model = %v, want %v", model["primary"], expected)
}
}
func TestOpenclawPaths(t *testing.T) {
c := &Openclaw{}
t.Run("returns path when config exists", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{}`), 0o644)
paths := c.Paths()
if len(paths) != 1 {
t.Errorf("expected 1 path, got %d", len(paths))
}
})
t.Run("returns nil when config missing", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if paths := c.Paths(); paths != nil {
t.Errorf("expected nil, got %v", paths)
}
})
}
func TestOpenclawModelsEdgeCases(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
cleanup := func() { os.RemoveAll(configDir) }
t.Run("corrupted JSON returns nil", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("wrong type at models level", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":"string"}`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("wrong type at providers level", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":"string"}}`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("wrong type at ollama level", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"ollama":"string"}}}`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("model entry missing id", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"ollama":{"models":[{"name":"test"}]}}}}`), 0o644)
if len(c.Models()) != 0 {
t.Error("expected empty for missing id")
}
})
t.Run("model id is not string", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"ollama":{"models":[{"id":123}]}}}}`), 0o644)
if len(c.Models()) != 0 {
t.Error("expected empty for non-string id")
}
})
}
func TestOpenclawEditSchemaFields(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configPath := filepath.Join(tmpDir, ".openclaw", "openclaw.json")
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
ollama := providers["ollama"].(map[string]any)
modelList := ollama["models"].([]any)
entry := modelList[0].(map[string]any)
// Verify required schema fields
if entry["reasoning"] != false {
t.Error("reasoning should be false")
}
if entry["input"] == nil {
t.Error("input should be set")
}
if entry["contextWindow"] == nil {
t.Error("contextWindow should be set")
}
if entry["maxTokens"] == nil {
t.Error("maxTokens should be set")
}
cost := entry["cost"].(map[string]any)
if cost["cacheRead"] == nil {
t.Error("cost.cacheRead should be set")
}
if cost["cacheWrite"] == nil {
t.Error("cost.cacheWrite should be set")
}
}
func TestOpenclawEditModelNames(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configPath := filepath.Join(tmpDir, ".openclaw", "openclaw.json")
cleanup := func() { os.RemoveAll(filepath.Join(tmpDir, ".openclaw")) }
t.Run("model with colon tag", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"llama3.2:70b"}); err != nil {
t.Fatal(err)
}
assertOpenclawModelExists(t, configPath, "llama3.2:70b")
assertOpenclawPrimaryModel(t, configPath, "ollama/llama3.2:70b")
})
t.Run("model with slash", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"library/model:tag"}); err != nil {
t.Fatal(err)
}
assertOpenclawModelExists(t, configPath, "library/model:tag")
assertOpenclawPrimaryModel(t, configPath, "ollama/library/model:tag")
})
t.Run("model with hyphen", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"test-model"}); err != nil {
t.Fatal(err)
}
assertOpenclawModelExists(t, configPath, "test-model")
})
}
func TestOpenclawEditAgentsPreservation(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
cleanup := func() { os.RemoveAll(configDir) }
t.Run("preserve other agent defaults", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"agents":{"defaults":{"model":{"primary":"old"},"temperature":0.7}}}`), 0o644)
c.Edit([]string{"llama3.2"})
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
agents := cfg["agents"].(map[string]any)
defaults := agents["defaults"].(map[string]any)
if defaults["temperature"] != 0.7 {
t.Error("temperature setting was lost")
}
})
t.Run("preserve other agents besides defaults", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"agents":{"defaults":{},"custom-agent":{"foo":"bar"}}}`), 0o644)
c.Edit([]string{"llama3.2"})
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
agents := cfg["agents"].(map[string]any)
if agents["custom-agent"] == nil {
t.Error("custom-agent was lost")
}
})
}
const testOpenclawFixture = `{
"theme": "dark",
"mcp": {"servers": {"custom": {"enabled": true}}},
"models": {
"providers": {
"anthropic": {"apiKey": "xxx"},
"ollama": {
"baseUrl": "http://127.0.0.1:11434/v1",
"models": [{"id": "old-model", "customField": "preserved"}]
}
}
},
"agents": {
"defaults": {"model": {"primary": "old"}, "temperature": 0.7},
"custom-agent": {"foo": "bar"}
}
}`
func TestOpenclawEdit_RoundTrip(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(testOpenclawFixture), 0o644)
if err := c.Edit([]string{"llama3.2", "mistral"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
// Verify top-level preserved
if cfg["theme"] != "dark" {
t.Error("theme not preserved")
}
mcp := cfg["mcp"].(map[string]any)
servers := mcp["servers"].(map[string]any)
if servers["custom"] == nil {
t.Error("mcp.servers.custom not preserved")
}
// Verify other providers preserved
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
if providers["anthropic"] == nil {
t.Error("anthropic provider not preserved")
}
// Verify agents preserved
agents := cfg["agents"].(map[string]any)
if agents["custom-agent"] == nil {
t.Error("custom-agent not preserved")
}
defaults := agents["defaults"].(map[string]any)
if defaults["temperature"] != 0.7 {
t.Error("temperature not preserved")
}
}
func TestOpenclawEdit_Idempotent(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(testOpenclawFixture), 0o644)
c.Edit([]string{"llama3.2", "mistral"})
firstData, _ := os.ReadFile(configPath)
c.Edit([]string{"llama3.2", "mistral"})
secondData, _ := os.ReadFile(configPath)
if string(firstData) != string(secondData) {
t.Error("repeated edits with same models produced different results")
}
}
func TestOpenclawEdit_MultipleConsecutiveEdits(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(testOpenclawFixture), 0o644)
for i := range 10 {
models := []string{"model-a", "model-b"}
if i%2 == 0 {
models = []string{"model-x", "model-y", "model-z"}
}
if err := c.Edit(models); err != nil {
t.Fatalf("edit %d failed: %v", i, err)
}
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatalf("file is not valid JSON after multiple edits: %v", err)
}
if cfg["theme"] != "dark" {
t.Error("theme lost after multiple edits")
}
}
func TestOpenclawEdit_BackupCreated(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
configPath := filepath.Join(configDir, "openclaw.json")
backupDir := filepath.Join(os.TempDir(), "ollama-backups")
os.MkdirAll(configDir, 0o755)
uniqueMarker := fmt.Sprintf("test-marker-%d", os.Getpid())
original := fmt.Sprintf(`{"theme": "%s"}`, uniqueMarker)
os.WriteFile(configPath, []byte(original), 0o644)
if err := c.Edit([]string{"model-a"}); err != nil {
t.Fatal(err)
}
backups, _ := filepath.Glob(filepath.Join(backupDir, "openclaw.json.*"))
foundBackup := false
for _, backup := range backups {
data, _ := os.ReadFile(backup)
if string(data) == original {
foundBackup = true
break
}
}
if !foundBackup {
t.Error("backup with original content not found")
}
}
func TestOpenclawClawdbotAlias(t *testing.T) {
for _, alias := range []string{"clawdbot", "moltbot"} {
t.Run(alias+" alias resolves to Openclaw runner", func(t *testing.T) {
r, ok := integrations[alias]
if !ok {
t.Fatalf("%s not found in integrations", alias)
}
if _, ok := r.(*Openclaw); !ok {
t.Errorf("%s integration is %T, want *Openclaw", alias, r)
}
})
t.Run(alias+" is hidden from selector", func(t *testing.T) {
if !integrationAliases[alias] {
t.Errorf("%s should be in integrationAliases", alias)
}
})
}
}
func TestOpenclawLegacyPaths(t *testing.T) {
c := &Openclaw{}
t.Run("falls back to legacy clawdbot path", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{}`), 0o644)
paths := c.Paths()
if len(paths) != 1 {
t.Fatalf("expected 1 path, got %d", len(paths))
}
if paths[0] != filepath.Join(legacyDir, "clawdbot.json") {
t.Errorf("expected legacy path, got %s", paths[0])
}
})
t.Run("prefers new path over legacy", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
newDir := filepath.Join(tmpDir, ".openclaw")
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(newDir, 0o755)
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(newDir, "openclaw.json"), []byte(`{}`), 0o644)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{}`), 0o644)
paths := c.Paths()
if len(paths) != 1 {
t.Fatalf("expected 1 path, got %d", len(paths))
}
if paths[0] != filepath.Join(newDir, "openclaw.json") {
t.Errorf("expected new path, got %s", paths[0])
}
})
t.Run("Models reads from legacy path", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{
"models":{"providers":{"ollama":{"models":[{"id":"llama3.2"}]}}}
}`), 0o644)
models := c.Models()
if len(models) != 1 || models[0] != "llama3.2" {
t.Errorf("expected [llama3.2], got %v", models)
}
})
t.Run("Models prefers new path over legacy", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
newDir := filepath.Join(tmpDir, ".openclaw")
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(newDir, 0o755)
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(newDir, "openclaw.json"), []byte(`{
"models":{"providers":{"ollama":{"models":[{"id":"new-model"}]}}}
}`), 0o644)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{
"models":{"providers":{"ollama":{"models":[{"id":"legacy-model"}]}}}
}`), 0o644)
models := c.Models()
if len(models) != 1 || models[0] != "new-model" {
t.Errorf("expected [new-model], got %v", models)
}
})
t.Run("Edit reads new path over legacy when both exist", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
newDir := filepath.Join(tmpDir, ".openclaw")
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(newDir, 0o755)
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(newDir, "openclaw.json"), []byte(`{"theme":"new"}`), 0o644)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{"theme":"legacy"}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(filepath.Join(newDir, "openclaw.json"))
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "new" {
t.Errorf("expected theme from new config, got %v", cfg["theme"])
}
})
t.Run("Edit migrates from legacy config", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{"theme":"dark"}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
// Should write to new path
newPath := filepath.Join(tmpDir, ".openclaw", "openclaw.json")
data, err := os.ReadFile(newPath)
if err != nil {
t.Fatal("expected new config file to be created")
}
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("legacy theme setting was not migrated")
}
})
}
func TestOpenclawEdit_CreatesDirectoryIfMissing(t *testing.T) {
c := &Openclaw{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
if _, err := os.Stat(configDir); !os.IsNotExist(err) {
t.Fatal("directory should not exist before test")
}
if err := c.Edit([]string{"model-a"}); err != nil {
t.Fatal(err)
}
if _, err := os.Stat(configDir); os.IsNotExist(err) {
t.Fatal("directory was not created")
}
}
func TestOpenclawOnboarded(t *testing.T) {
c := &Openclaw{}
t.Run("returns false when no config exists", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if c.onboarded() {
t.Error("expected false when no config exists")
}
})
t.Run("returns false when config exists but no wizard section", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{"theme":"dark"}`), 0o644)
if c.onboarded() {
t.Error("expected false when no wizard section")
}
})
t.Run("returns false when wizard section exists but no lastRunAt", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{"wizard":{}}`), 0o644)
if c.onboarded() {
t.Error("expected false when wizard.lastRunAt is missing")
}
})
t.Run("returns false when wizard.lastRunAt is empty string", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{"wizard":{"lastRunAt":""}}`), 0o644)
if c.onboarded() {
t.Error("expected false when wizard.lastRunAt is empty")
}
})
t.Run("returns true when wizard.lastRunAt is set", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{"wizard":{"lastRunAt":"2024-01-01T00:00:00Z"}}`), 0o644)
if !c.onboarded() {
t.Error("expected true when wizard.lastRunAt is set")
}
})
t.Run("checks legacy clawdbot path", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(legacyDir, 0o755)
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{"wizard":{"lastRunAt":"2024-01-01T00:00:00Z"}}`), 0o644)
if !c.onboarded() {
t.Error("expected true when legacy config has wizard.lastRunAt")
}
})
t.Run("prefers new path over legacy", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
newDir := filepath.Join(tmpDir, ".openclaw")
legacyDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(newDir, 0o755)
os.MkdirAll(legacyDir, 0o755)
// New path has no wizard marker
os.WriteFile(filepath.Join(newDir, "openclaw.json"), []byte(`{}`), 0o644)
// Legacy has wizard marker
os.WriteFile(filepath.Join(legacyDir, "clawdbot.json"), []byte(`{"wizard":{"lastRunAt":"2024-01-01T00:00:00Z"}}`), 0o644)
if c.onboarded() {
t.Error("expected false - should prefer new path which has no wizard marker")
}
})
t.Run("handles corrupted JSON gracefully", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{corrupted`), 0o644)
if c.onboarded() {
t.Error("expected false for corrupted JSON")
}
})
t.Run("handles wrong type for wizard section", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".openclaw")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "openclaw.json"), []byte(`{"wizard":"not a map"}`), 0o644)
if c.onboarded() {
t.Error("expected false when wizard is wrong type")
}
})
}

226
cmd/config/opencode.go Normal file
View File

@@ -0,0 +1,226 @@
package config
import (
"encoding/json"
"fmt"
"maps"
"os"
"os/exec"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/envconfig"
)
// OpenCode implements Runner and Editor for OpenCode integration
type OpenCode struct{}
func (o *OpenCode) String() string { return "OpenCode" }
func (o *OpenCode) Run(model string, args []string) error {
if _, err := exec.LookPath("opencode"); err != nil {
return fmt.Errorf("opencode is not installed, install from https://opencode.ai")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("opencode"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := o.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("opencode", args...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (o *OpenCode) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
var paths []string
p := filepath.Join(home, ".config", "opencode", "opencode.json")
if _, err := os.Stat(p); err == nil {
paths = append(paths, p)
}
sp := filepath.Join(home, ".local", "state", "opencode", "model.json")
if _, err := os.Stat(sp); err == nil {
paths = append(paths, sp)
}
return paths
}
func (o *OpenCode) Edit(modelList []string) error {
if len(modelList) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
configPath := filepath.Join(home, ".config", "opencode", "opencode.json")
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return err
}
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config) // Ignore parse errors; treat missing/corrupt files as empty
}
config["$schema"] = "https://opencode.ai/config.json"
provider, ok := config["provider"].(map[string]any)
if !ok {
provider = make(map[string]any)
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
ollama = map[string]any{
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama (local)",
"options": map[string]any{
"baseURL": envconfig.Host().String() + "/v1",
},
}
}
models, ok := ollama["models"].(map[string]any)
if !ok {
models = make(map[string]any)
}
selectedSet := make(map[string]bool)
for _, m := range modelList {
selectedSet[m] = true
}
for name, cfg := range models {
if cfgMap, ok := cfg.(map[string]any); ok {
if isOllamaModel(cfgMap) && !selectedSet[name] {
delete(models, name)
}
}
}
for _, model := range modelList {
if existing, ok := models[model].(map[string]any); ok {
// migrate existing models without _launch marker
if isOllamaModel(existing) {
existing["_launch"] = true
if name, ok := existing["name"].(string); ok {
existing["name"] = strings.TrimSuffix(name, " [Ollama]")
}
}
continue
}
models[model] = map[string]any{
"name": model,
"_launch": true,
}
}
ollama["models"] = models
provider["ollama"] = ollama
config["provider"] = provider
configData, err := json.MarshalIndent(config, "", " ")
if err != nil {
return err
}
if err := writeWithBackup(configPath, configData); err != nil {
return err
}
statePath := filepath.Join(home, ".local", "state", "opencode", "model.json")
if err := os.MkdirAll(filepath.Dir(statePath), 0o755); err != nil {
return err
}
state := map[string]any{
"recent": []any{},
"favorite": []any{},
"variant": map[string]any{},
}
if data, err := os.ReadFile(statePath); err == nil {
_ = json.Unmarshal(data, &state) // Ignore parse errors; use defaults
}
recent, _ := state["recent"].([]any)
modelSet := make(map[string]bool)
for _, m := range modelList {
modelSet[m] = true
}
// Filter out existing Ollama models we're about to re-add
newRecent := slices.DeleteFunc(slices.Clone(recent), func(entry any) bool {
e, ok := entry.(map[string]any)
if !ok || e["providerID"] != "ollama" {
return false
}
modelID, _ := e["modelID"].(string)
return modelSet[modelID]
})
// Prepend models in reverse order so first model ends up first
for _, model := range slices.Backward(modelList) {
newRecent = slices.Insert(newRecent, 0, any(map[string]any{
"providerID": "ollama",
"modelID": model,
}))
}
const maxRecentModels = 10
newRecent = newRecent[:min(len(newRecent), maxRecentModels)]
state["recent"] = newRecent
stateData, err := json.MarshalIndent(state, "", " ")
if err != nil {
return err
}
return writeWithBackup(statePath, stateData)
}
func (o *OpenCode) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
config, err := readJSONFile(filepath.Join(home, ".config", "opencode", "opencode.json"))
if err != nil {
return nil
}
provider, _ := config["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if len(models) == 0 {
return nil
}
keys := slices.Collect(maps.Keys(models))
slices.Sort(keys)
return keys
}
// isOllamaModel reports whether a model config entry is managed by us
func isOllamaModel(cfg map[string]any) bool {
if v, ok := cfg["_launch"].(bool); ok && v {
return true
}
// previously used [Ollama] as a suffix for the model managed by ollama launch
if name, ok := cfg["name"].(string); ok {
return strings.HasSuffix(name, "[Ollama]")
}
return false
}

507
cmd/config/opencode_test.go Normal file
View File

@@ -0,0 +1,507 @@
package config
import (
"encoding/json"
"os"
"path/filepath"
"testing"
)
func TestOpenCodeIntegration(t *testing.T) {
o := &OpenCode{}
t.Run("String", func(t *testing.T) {
if got := o.String(); got != "OpenCode" {
t.Errorf("String() = %q, want %q", got, "OpenCode")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = o
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = o
})
}
func TestOpenCodeEdit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
cleanup := func() {
os.RemoveAll(configDir)
os.RemoveAll(stateDir)
}
t.Run("fresh install", func(t *testing.T) {
cleanup()
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("preserve other providers", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"anthropic":{"apiKey":"xxx"}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
if provider["anthropic"] == nil {
t.Error("anthropic provider was removed")
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve other models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"mistral":{"name":"Mistral"}}}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "mistral")
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("update existing model", func(t *testing.T) {
cleanup()
o.Edit([]string{"llama3.2"})
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve top-level keys", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"theme":"dark","keybindings":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("theme was removed")
}
if cfg["keybindings"] == nil {
t.Error("keybindings was removed")
}
})
t.Run("model state - insert at index 0", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
assertOpenCodeRecentModel(t, statePath, 1, "anthropic", "claude")
})
t.Run("model state - preserve favorites and variants", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[],"favorite":[{"providerID":"x","modelID":"y"}],"variant":{"a":"b"}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
if len(state["favorite"].([]any)) != 1 {
t.Error("favorite was modified")
}
if state["variant"].(map[string]any)["a"] != "b" {
t.Error("variant was modified")
}
})
t.Run("model state - deduplicate on re-add", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"ollama","modelID":"llama3.2"},{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
recent := state["recent"].([]any)
if len(recent) != 2 {
t.Errorf("expected 2 recent entries, got %d", len(recent))
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("remove model", func(t *testing.T) {
cleanup()
// First add two models
o.Edit([]string{"llama3.2", "mistral"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "mistral")
// Then remove one by only selecting the other
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelNotExists(t, configPath, "mistral")
})
t.Run("preserve user customizations on managed models", func(t *testing.T) {
cleanup()
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
// Add custom fields to the model entry (simulating user edits)
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
ollama := provider["ollama"].(map[string]any)
models := ollama["models"].(map[string]any)
entry := models["llama3.2"].(map[string]any)
entry["_myPref"] = "custom-value"
entry["_myNum"] = 42
configData, _ := json.MarshalIndent(cfg, "", " ")
os.WriteFile(configPath, configData, 0o644)
// Re-run Edit — should preserve custom fields
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ = os.ReadFile(configPath)
json.Unmarshal(data, &cfg)
provider = cfg["provider"].(map[string]any)
ollama = provider["ollama"].(map[string]any)
models = ollama["models"].(map[string]any)
entry = models["llama3.2"].(map[string]any)
if entry["_myPref"] != "custom-value" {
t.Errorf("_myPref was lost: got %v", entry["_myPref"])
}
if entry["_myNum"] != float64(42) {
t.Errorf("_myNum was lost: got %v", entry["_myNum"])
}
if v, ok := entry["_launch"].(bool); !ok || !v {
t.Errorf("_launch marker missing or false: got %v", entry["_launch"])
}
})
t.Run("migrate legacy [Ollama] suffix entries", func(t *testing.T) {
cleanup()
// Write a config with a legacy entry (has [Ollama] suffix but no _launch marker)
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"llama3.2":{"name":"llama3.2 [Ollama]"}}}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
ollama := provider["ollama"].(map[string]any)
models := ollama["models"].(map[string]any)
entry := models["llama3.2"].(map[string]any)
// _launch marker should be added
if v, ok := entry["_launch"].(bool); !ok || !v {
t.Errorf("_launch marker not added during migration: got %v", entry["_launch"])
}
// [Ollama] suffix should be stripped
if name, ok := entry["name"].(string); !ok || name != "llama3.2" {
t.Errorf("name suffix not stripped: got %q", entry["name"])
}
})
t.Run("remove model preserves non-ollama models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
// Add a non-Ollama model manually
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"external":{"name":"External Model"}}}}}`), 0o644)
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "external") // Should be preserved
})
}
func assertOpenCodeModelExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatal("provider not found")
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
t.Fatal("ollama provider not found")
}
models, ok := ollama["models"].(map[string]any)
if !ok {
t.Fatal("models not found")
}
if models[model] == nil {
t.Errorf("model %s not found", model)
}
}
func assertOpenCodeModelNotExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
return // No provider means no model
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
return // No ollama means no model
}
models, ok := ollama["models"].(map[string]any)
if !ok {
return // No models means no model
}
if models[model] != nil {
t.Errorf("model %s should not exist but was found", model)
}
}
func assertOpenCodeRecentModel(t *testing.T, path string, index int, providerID, modelID string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Fatal(err)
}
recent, ok := state["recent"].([]any)
if !ok {
t.Fatal("recent not found")
}
if index >= len(recent) {
t.Fatalf("index %d out of range (len=%d)", index, len(recent))
}
entry, ok := recent[index].(map[string]any)
if !ok {
t.Fatal("entry is not a map")
}
if entry["providerID"] != providerID {
t.Errorf("expected providerID %s, got %s", providerID, entry["providerID"])
}
if entry["modelID"] != modelID {
t.Errorf("expected modelID %s, got %s", modelID, entry["modelID"])
}
}
// Edge case tests for opencode.go
func TestOpenCodeEdit_CorruptedConfigJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted json content`), 0o644)
// Should not panic - corrupted JSON should be treated as empty
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted config: %v", err)
}
// Verify valid JSON was created
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Errorf("resulting config is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_CorruptedStateJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{corrupted state`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted state: %v", err)
}
// Verify valid state was created
data, _ := os.ReadFile(statePath)
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Errorf("resulting state is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_WrongTypeProvider(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider": "not a map"}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type provider failed: %v", err)
}
// Verify provider is now correct type
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatalf("provider should be map after setup, got %T", cfg["provider"])
}
if provider["ollama"] == nil {
t.Error("ollama provider should be created")
}
}
func TestOpenCodeEdit_WrongTypeRecent(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent": "not an array", "favorite": [], "variant": {}}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type recent failed: %v", err)
}
// The function should handle this gracefully
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
// recent should be properly set after setup
recent, ok := state["recent"].([]any)
if !ok {
t.Logf("Note: recent type after setup is %T (documenting behavior)", state["recent"])
} else if len(recent) == 0 {
t.Logf("Note: recent is empty (documenting behavior)")
}
}
func TestOpenCodeEdit_EmptyModels(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
originalContent := `{"provider":{"ollama":{"models":{"existing":{}}}}}`
os.WriteFile(configPath, []byte(originalContent), 0o644)
// Empty models should be no-op
err := o.Edit([]string{})
if err != nil {
t.Fatalf("Edit with empty models failed: %v", err)
}
// Original content should be preserved (file not modified)
data, _ := os.ReadFile(configPath)
if string(data) != originalContent {
t.Errorf("empty models should not modify file, but content changed")
}
}
func TestOpenCodeEdit_SpecialCharsInModelName(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Model name with special characters (though unusual)
specialModel := `model-with-"quotes"`
err := o.Edit([]string{specialModel})
if err != nil {
t.Fatalf("Edit with special chars failed: %v", err)
}
// Verify it was stored correctly
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatalf("resulting config is invalid JSON: %v", err)
}
// Model should be accessible
provider, _ := cfg["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if models[specialModel] == nil {
t.Errorf("model with special chars not found in config")
}
}
func TestOpenCodeModels_NoConfig(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
models := o.Models()
if len(models) > 0 {
t.Errorf("expected nil/empty for missing config, got %v", models)
}
}

520
cmd/config/selector.go Normal file
View File

@@ -0,0 +1,520 @@
package config
import (
"errors"
"fmt"
"io"
"os"
"strings"
"golang.org/x/term"
)
// ANSI escape sequences for terminal formatting.
const (
ansiHideCursor = "\033[?25l"
ansiShowCursor = "\033[?25h"
ansiBold = "\033[1m"
ansiReset = "\033[0m"
ansiGray = "\033[37m"
ansiClearDown = "\033[J"
)
const maxDisplayedItems = 10
var errCancelled = errors.New("cancelled")
type selectItem struct {
Name string
Description string
}
type inputEvent int
const (
eventNone inputEvent = iota
eventEnter
eventEscape
eventUp
eventDown
eventTab
eventBackspace
eventChar
)
type selectState struct {
items []selectItem
filter string
selected int
scrollOffset int
}
func newSelectState(items []selectItem) *selectState {
return &selectState{items: items}
}
func (s *selectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *selectState) handleInput(event inputEvent, char byte) (done bool, result string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if len(filtered) > 0 && s.selected < len(filtered) {
return true, filtered[s.selected].Name, nil
}
// No matches but user typed something - return filter for pull prompt
if len(filtered) == 0 && s.filter != "" {
return true, s.filter, nil
}
case eventEscape:
return true, "", errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.selected = 0
s.scrollOffset = 0
}
case eventUp:
if s.selected > 0 {
s.selected--
if s.selected < s.scrollOffset {
s.scrollOffset = s.selected
}
}
case eventDown:
if s.selected < len(filtered)-1 {
s.selected++
if s.selected >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.selected - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.selected = 0
s.scrollOffset = 0
}
return false, "", nil
}
type multiSelectState struct {
items []selectItem
itemIndex map[string]int
filter string
highlighted int
scrollOffset int
checked map[int]bool
checkOrder []int
focusOnButton bool
}
func newMultiSelectState(items []selectItem, preChecked []string) *multiSelectState {
s := &multiSelectState{
items: items,
itemIndex: make(map[string]int, len(items)),
checked: make(map[int]bool),
}
for i, item := range items {
s.itemIndex[item.Name] = i
}
for _, name := range preChecked {
if idx, ok := s.itemIndex[name]; ok {
s.checked[idx] = true
s.checkOrder = append(s.checkOrder, idx)
}
}
return s
}
func (s *multiSelectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *multiSelectState) toggleItem() {
filtered := s.filtered()
if len(filtered) == 0 || s.highlighted >= len(filtered) {
return
}
item := filtered[s.highlighted]
origIdx := s.itemIndex[item.Name]
if s.checked[origIdx] {
delete(s.checked, origIdx)
for i, idx := range s.checkOrder {
if idx == origIdx {
s.checkOrder = append(s.checkOrder[:i], s.checkOrder[i+1:]...)
break
}
}
} else {
s.checked[origIdx] = true
s.checkOrder = append(s.checkOrder, origIdx)
}
}
func (s *multiSelectState) handleInput(event inputEvent, char byte) (done bool, result []string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if s.focusOnButton && len(s.checkOrder) > 0 {
var res []string
for _, idx := range s.checkOrder {
res = append(res, s.items[idx].Name)
}
return true, res, nil
} else if !s.focusOnButton {
s.toggleItem()
}
case eventTab:
if len(s.checkOrder) > 0 {
s.focusOnButton = !s.focusOnButton
}
case eventEscape:
return true, nil, errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
case eventUp:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted > 0 {
s.highlighted--
if s.highlighted < s.scrollOffset {
s.scrollOffset = s.highlighted
}
}
case eventDown:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted < len(filtered)-1 {
s.highlighted++
if s.highlighted >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.highlighted - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
return false, nil, nil
}
func (s *multiSelectState) selectedCount() int {
return len(s.checkOrder)
}
// Terminal I/O handling
type terminalState struct {
fd int
oldState *term.State
}
func enterRawMode() (*terminalState, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return nil, err
}
fmt.Fprint(os.Stderr, ansiHideCursor)
return &terminalState{fd: fd, oldState: oldState}, nil
}
func (t *terminalState) restore() {
fmt.Fprint(os.Stderr, ansiShowCursor)
term.Restore(t.fd, t.oldState)
}
func clearLines(n int) {
if n > 0 {
fmt.Fprintf(os.Stderr, "\033[%dA", n)
fmt.Fprint(os.Stderr, ansiClearDown)
}
}
func parseInput(r io.Reader) (inputEvent, byte, error) {
buf := make([]byte, 3)
n, err := r.Read(buf)
if err != nil {
return 0, 0, err
}
switch {
case n == 1 && buf[0] == 13:
return eventEnter, 0, nil
case n == 1 && (buf[0] == 3 || buf[0] == 27):
return eventEscape, 0, nil
case n == 1 && buf[0] == 9:
return eventTab, 0, nil
case n == 1 && buf[0] == 127:
return eventBackspace, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 65:
return eventUp, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 66:
return eventDown, 0, nil
case n == 1 && buf[0] >= 32 && buf[0] < 127:
return eventChar, buf[0], nil
}
return eventNone, 0, nil
}
// Rendering
func renderSelect(w io.Writer, prompt string, s *selectState) int {
filtered := s.filtered()
if s.filter == "" {
fmt.Fprintf(w, "%s %sType to filter...%s\r\n", prompt, ansiGray, ansiReset)
} else {
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
}
lineCount := 1
if len(filtered) == 0 {
if s.filter != "" {
fmt.Fprintf(w, " %s→ Download model: '%s'? Press Enter%s\r\n", ansiGray, s.filter, ansiReset)
} else {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
}
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
prefix := " "
if idx == s.selected {
prefix = " " + ansiBold + "> "
}
if item.Description != "" {
fmt.Fprintf(w, "%s%s%s %s- %s%s\r\n", prefix, item.Name, ansiReset, ansiGray, item.Description, ansiReset)
} else {
fmt.Fprintf(w, "%s%s%s\r\n", prefix, item.Name, ansiReset)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
return lineCount
}
func renderMultiSelect(w io.Writer, prompt string, s *multiSelectState) int {
filtered := s.filtered()
if s.filter == "" {
fmt.Fprintf(w, "%s %sType to filter...%s\r\n", prompt, ansiGray, ansiReset)
} else {
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
}
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
origIdx := s.itemIndex[item.Name]
checkbox := "[ ]"
if s.checked[origIdx] {
checkbox = "[x]"
}
prefix := " "
suffix := ""
if idx == s.highlighted && !s.focusOnButton {
prefix = "> "
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == origIdx {
suffix = " " + ansiGray + "(default)" + ansiReset
}
desc := ""
if item.Description != "" {
desc = " " + ansiGray + "- " + item.Description + ansiReset
}
if idx == s.highlighted && !s.focusOnButton {
fmt.Fprintf(w, " %s%s %s %s%s%s%s\r\n", ansiBold, prefix, checkbox, item.Name, ansiReset, desc, suffix)
} else {
fmt.Fprintf(w, " %s %s %s%s%s\r\n", prefix, checkbox, item.Name, desc, suffix)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
fmt.Fprintf(w, "\r\n")
lineCount++
count := s.selectedCount()
switch {
case count == 0:
fmt.Fprintf(w, " %sSelect at least one model.%s\r\n", ansiGray, ansiReset)
case s.focusOnButton:
fmt.Fprintf(w, " %s> [ Continue ]%s %s(%d selected)%s\r\n", ansiBold, ansiReset, ansiGray, count, ansiReset)
default:
fmt.Fprintf(w, " %s[ Continue ] (%d selected) - press Tab%s\r\n", ansiGray, count, ansiReset)
}
lineCount++
return lineCount
}
// selectPrompt prompts the user to select a single item from a list.
func selectPrompt(prompt string, items []selectItem) (string, error) {
if len(items) == 0 {
return "", fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return "", err
}
defer ts.restore()
state := newSelectState(items)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return "", err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return "", err
}
return result, nil
}
render()
}
}
// multiSelectPrompt prompts the user to select multiple items from a list.
func multiSelectPrompt(prompt string, items []selectItem, preChecked []string) ([]string, error) {
if len(items) == 0 {
return nil, fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return nil, err
}
defer ts.restore()
state := newMultiSelectState(items, preChecked)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderMultiSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return nil, err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return nil, err
}
return result, nil
}
render()
}
}
func confirmPrompt(prompt string) (bool, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return false, err
}
defer term.Restore(fd, oldState)
fmt.Fprintf(os.Stderr, "%s (\033[1my\033[0m/n) ", prompt)
buf := make([]byte, 1)
for {
if _, err := os.Stdin.Read(buf); err != nil {
return false, err
}
switch buf[0] {
case 'Y', 'y', 13:
fmt.Fprintf(os.Stderr, "yes\r\n")
return true, nil
case 'N', 'n', 27, 3:
fmt.Fprintf(os.Stderr, "no\r\n")
return false, nil
}
}
}
func filterItems(items []selectItem, filter string) []selectItem {
if filter == "" {
return items
}
var result []selectItem
filterLower := strings.ToLower(filter)
for _, item := range items {
if strings.Contains(strings.ToLower(item.Name), filterLower) {
result = append(result, item)
}
}
return result
}

932
cmd/config/selector_test.go Normal file
View File

@@ -0,0 +1,932 @@
package config
import (
"bytes"
"strings"
"testing"
)
func TestFilterItems(t *testing.T) {
items := []selectItem{
{Name: "llama3.2:latest"},
{Name: "qwen2.5:7b"},
{Name: "deepseek-v3:cloud"},
{Name: "GPT-OSS:20b"},
}
t.Run("EmptyFilter_ReturnsAllItems", func(t *testing.T) {
result := filterItems(items, "")
if len(result) != len(items) {
t.Errorf("expected %d items, got %d", len(items), len(result))
}
})
t.Run("CaseInsensitive_UppercaseFilterMatchesLowercase", func(t *testing.T) {
result := filterItems(items, "LLAMA")
if len(result) != 1 || result[0].Name != "llama3.2:latest" {
t.Errorf("expected llama3.2:latest, got %v", result)
}
})
t.Run("CaseInsensitive_LowercaseFilterMatchesUppercase", func(t *testing.T) {
result := filterItems(items, "gpt")
if len(result) != 1 || result[0].Name != "GPT-OSS:20b" {
t.Errorf("expected GPT-OSS:20b, got %v", result)
}
})
t.Run("PartialMatch", func(t *testing.T) {
result := filterItems(items, "deep")
if len(result) != 1 || result[0].Name != "deepseek-v3:cloud" {
t.Errorf("expected deepseek-v3:cloud, got %v", result)
}
})
t.Run("NoMatch_ReturnsEmpty", func(t *testing.T) {
result := filterItems(items, "nonexistent")
if len(result) != 0 {
t.Errorf("expected 0 items, got %d", len(result))
}
})
}
func TestSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState", func(t *testing.T) {
s := newSelectState(items)
if s.selected != 0 {
t.Errorf("expected selected=0, got %d", s.selected)
}
if s.filter != "" {
t.Errorf("expected empty filter, got %q", s.filter)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Enter_SelectsCurrentItem", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item1" || err != nil {
t.Errorf("expected (true, item1, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_WithFilter_SelectsFilteredItem", func(t *testing.T) {
s := newSelectState(items)
s.filter = "item3"
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item3" || err != nil {
t.Errorf("expected (true, item3, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_EmptyFilteredList_ReturnsFilter", func(t *testing.T) {
s := newSelectState(items)
s.filter = "nonexistent"
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "nonexistent" || err != nil {
t.Errorf("expected (true, 'nonexistent', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_EmptyFilteredList_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState([]selectItem{})
done, result, err := s.handleInput(eventEnter, 0)
if done || result != "" || err != nil {
t.Errorf("expected (false, '', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != "" || err != errCancelled {
t.Errorf("expected (true, '', errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Down_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventDown, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Down_AtBottom_StaysAtBottom", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventDown, 0)
if s.selected != 2 {
t.Errorf("expected selected=2 (stayed at bottom), got %d", s.selected)
}
})
t.Run("Up_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventUp, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Up_AtTop_StaysAtTop", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 (stayed at top), got %d", s.selected)
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventChar, 'i')
s.handleInput(eventChar, 't')
s.handleInput(eventChar, 'e')
s.handleInput(eventChar, 'm')
s.handleInput(eventChar, '2')
if s.filter != "item2" {
t.Errorf("expected filter='item2', got %q", s.filter)
}
filtered := s.filtered()
if len(filtered) != 1 || filtered[0].Name != "item2" {
t.Errorf("expected [item2], got %v", filtered)
}
})
t.Run("Char_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventChar, 'x')
if s.selected != 0 {
t.Errorf("expected selected=0 after typing, got %d", s.selected)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventBackspace, 0)
if s.filter != "" {
t.Errorf("expected filter='', got %q", s.filter)
}
})
t.Run("Backspace_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.selected = 2
s.handleInput(eventBackspace, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 after backspace, got %d", s.selected)
}
})
t.Run("Scroll_DownPastVisibleItems_ScrollsViewport", func(t *testing.T) {
// maxDisplayedItems is 10, so with 15 items we need to scroll
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
// move down 12 times (past the 10-item viewport)
for range 12 {
s.handleInput(eventDown, 0)
}
if s.selected != 12 {
t.Errorf("expected selected=12, got %d", s.selected)
}
if s.scrollOffset != 3 {
t.Errorf("expected scrollOffset=3 (12-10+1), got %d", s.scrollOffset)
}
})
t.Run("Scroll_UpPastScrollOffset_ScrollsViewport", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
s.selected = 5
s.scrollOffset = 5
s.handleInput(eventUp, 0)
if s.selected != 4 {
t.Errorf("expected selected=4, got %d", s.selected)
}
if s.scrollOffset != 4 {
t.Errorf("expected scrollOffset=4, got %d", s.scrollOffset)
}
})
}
func TestMultiSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState_NoPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected, got %d", s.selectedCount())
}
if s.focusOnButton {
t.Error("expected focusOnButton=false initially")
}
})
t.Run("InitialState_WithPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item3"})
if s.selectedCount() != 2 {
t.Errorf("expected 2 selected, got %d", s.selectedCount())
}
if !s.checked[1] || !s.checked[2] {
t.Error("expected item2 and item3 to be checked")
}
})
t.Run("Prechecked_PreservesSelectionOrder", func(t *testing.T) {
// order matters: first checked = default model
s := newMultiSelectState(items, []string{"item3", "item1"})
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
if s.checkOrder[0] != 2 || s.checkOrder[1] != 0 {
t.Errorf("expected checkOrder=[2,0] (item3 first), got %v", s.checkOrder)
}
})
t.Run("Prechecked_IgnoresInvalidNames", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "nonexistent"})
if s.selectedCount() != 1 {
t.Errorf("expected 1 selected (nonexistent ignored), got %d", s.selectedCount())
}
})
t.Run("Toggle_ChecksUncheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.toggleItem()
if !s.checked[0] {
t.Error("expected item1 to be checked after toggle")
}
})
t.Run("Toggle_UnchecksCheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.toggleItem()
if s.checked[0] {
t.Error("expected item1 to be unchecked after toggle")
}
})
t.Run("Toggle_RemovesFromCheckOrder", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2", "item3"})
s.highlighted = 1 // toggle item2
s.toggleItem()
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
// should be [0, 2] (item1, item3) with item2 removed
if s.checkOrder[0] != 0 || s.checkOrder[1] != 2 {
t.Errorf("expected checkOrder=[0,2], got %v", s.checkOrder)
}
})
t.Run("Enter_TogglesWhenNotOnButton", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventEnter, 0)
if !s.checked[0] {
t.Error("expected item1 to be checked after enter")
}
})
t.Run("Enter_OnButton_ReturnsSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if !done || err != nil {
t.Errorf("expected done=true, err=nil, got done=%v, err=%v", done, err)
}
// result should preserve selection order
if len(result) != 2 || result[0] != "item2" || result[1] != "item1" {
t.Errorf("expected [item2, item1], got %v", result)
}
})
t.Run("Enter_OnButton_EmptySelection_DoesNothing", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if done || result != nil || err != nil {
t.Errorf("expected (false, nil, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Tab_SwitchesToButton_WhenHasSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after tab")
}
})
t.Run("Tab_DoesNothing_WhenNoSelection", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("tab should not focus button when nothing selected")
}
})
t.Run("Tab_TogglesButtonFocus", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after first tab")
}
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("expected focus back on list after second tab")
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != nil || err != errCancelled {
t.Errorf("expected (true, nil, errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("IsDefault_TrueForFirstChecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
if !(len(s.checkOrder) > 0 && s.checkOrder[0] == 1) {
t.Error("expected item2 (idx 1) to be default (first checked)")
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected item1 (idx 0) to NOT be default")
}
})
t.Run("IsDefault_FalseWhenNothingChecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected isDefault=false when nothing checked")
}
})
t.Run("Down_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventDown, 0)
if s.highlighted != 1 {
t.Errorf("expected highlighted=1, got %d", s.highlighted)
}
})
t.Run("Up_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.highlighted = 1
s.handleInput(eventUp, 0)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
})
t.Run("Arrow_ReturnsFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.focusOnButton = true
s.handleInput(eventDown, 0)
if s.focusOnButton {
t.Error("expected focus to return to list on arrow key")
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventChar, 'x')
if s.filter != "x" {
t.Errorf("expected filter='x', got %q", s.filter)
}
})
t.Run("Char_ResetsHighlightAndScroll", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newMultiSelectState(manyItems, nil)
s.highlighted = 10
s.scrollOffset = 5
s.handleInput(eventChar, 'x')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_RemovesFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.filter = "x"
s.focusOnButton = true
s.handleInput(eventBackspace, 0)
if s.focusOnButton {
t.Error("expected focusOnButton=false after backspace")
}
})
}
func TestParseInput(t *testing.T) {
t.Run("Enter", func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{13}))
if err != nil || event != eventEnter || char != 0 {
t.Errorf("expected (eventEnter, 0, nil), got (%v, %v, %v)", event, char, err)
}
})
t.Run("Escape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape, got %v", event)
}
})
t.Run("CtrlC_TreatedAsEscape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{3}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape for Ctrl+C, got %v", event)
}
})
t.Run("Tab", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{9}))
if err != nil || event != eventTab {
t.Errorf("expected eventTab, got %v", event)
}
})
t.Run("Backspace", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{127}))
if err != nil || event != eventBackspace {
t.Errorf("expected eventBackspace, got %v", event)
}
})
t.Run("UpArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 65}))
if err != nil || event != eventUp {
t.Errorf("expected eventUp, got %v", event)
}
})
t.Run("DownArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 66}))
if err != nil || event != eventDown {
t.Errorf("expected eventDown, got %v", event)
}
})
t.Run("PrintableChars", func(t *testing.T) {
tests := []struct {
name string
char byte
}{
{"lowercase", 'a'},
{"uppercase", 'Z'},
{"digit", '5'},
{"space", ' '},
{"tilde", '~'},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{tt.char}))
if err != nil || event != eventChar || char != tt.char {
t.Errorf("expected (eventChar, %q), got (%v, %q)", tt.char, event, char)
}
})
}
})
}
func TestRenderSelect(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "first item"},
{Name: "item2"},
}
t.Run("ShowsPromptAndItems", func(t *testing.T) {
s := newSelectState(items)
var buf bytes.Buffer
lineCount := renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "Select:") {
t.Error("expected prompt in output")
}
if !strings.Contains(output, "item1") {
t.Error("expected item1 in output")
}
if !strings.Contains(output, "first item") {
t.Error("expected description in output")
}
if !strings.Contains(output, "item2") {
t.Error("expected item2 in output")
}
if lineCount != 3 { // 1 prompt + 2 items
t.Errorf("expected 3 lines, got %d", lineCount)
}
})
t.Run("EmptyFilteredList_ShowsPullPrompt", func(t *testing.T) {
s := newSelectState(items)
s.filter = "xyz"
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "Download model: 'xyz'?") {
t.Errorf("expected 'Download model: xyz?' message, got: %s", output)
}
})
t.Run("EmptyFilteredList_EmptyFilter_ShowsNoMatches", func(t *testing.T) {
s := newSelectState([]selectItem{})
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' message for empty list with no filter")
}
})
t.Run("LongList_ShowsRemainingCount", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
// 15 items - 10 displayed = 5 more
if !strings.Contains(buf.String(), "5 more") {
t.Error("expected '5 more' indicator")
}
})
}
func TestRenderMultiSelect(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
}
t.Run("ShowsCheckboxes", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "[x]") {
t.Error("expected checked checkbox [x]")
}
if !strings.Contains(output, "[ ]") {
t.Error("expected unchecked checkbox [ ]")
}
})
t.Run("ShowsDefaultMarker", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "(default)") {
t.Error("expected (default) marker for first checked item")
}
})
t.Run("ShowsSelectedCount", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "2 selected") {
t.Error("expected '2 selected' in output")
}
})
t.Run("NoSelection_ShowsHelperText", func(t *testing.T) {
s := newMultiSelectState(items, nil)
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "Select at least one") {
t.Error("expected 'Select at least one' helper text")
}
})
}
func TestErrCancelled(t *testing.T) {
t.Run("NotNil", func(t *testing.T) {
if errCancelled == nil {
t.Error("errCancelled should not be nil")
}
})
t.Run("Message", func(t *testing.T) {
if errCancelled.Error() != "cancelled" {
t.Errorf("expected 'cancelled', got %q", errCancelled.Error())
}
})
}
// Edge case tests for selector.go
// TestSelectState_SingleItem verifies that single item list works without crash.
// List with only one item should still work.
func TestSelectState_SingleItem(t *testing.T) {
items := []selectItem{{Name: "only-one"}}
s := newSelectState(items)
// Down should do nothing (already at bottom)
s.handleInput(eventDown, 0)
if s.selected != 0 {
t.Errorf("down on single item: expected selected=0, got %d", s.selected)
}
// Up should do nothing (already at top)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("up on single item: expected selected=0, got %d", s.selected)
}
// Enter should select the only item
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "only-one" || err != nil {
t.Errorf("enter on single item: expected (true, 'only-one', nil), got (%v, %q, %v)", done, result, err)
}
}
// TestSelectState_ExactlyMaxItems verifies boundary condition at maxDisplayedItems.
// List with exactly maxDisplayedItems items should not scroll.
func TestSelectState_ExactlyMaxItems(t *testing.T) {
items := make([]selectItem, maxDisplayedItems)
for i := range items {
items[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(items)
// Move to last item
for range maxDisplayedItems - 1 {
s.handleInput(eventDown, 0)
}
if s.selected != maxDisplayedItems-1 {
t.Errorf("expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
// Should not scroll when exactly at max
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0 for exactly maxDisplayedItems, got %d", s.scrollOffset)
}
// One more down should do nothing
s.handleInput(eventDown, 0)
if s.selected != maxDisplayedItems-1 {
t.Errorf("down at max: expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
}
// TestFilterItems_RegexSpecialChars verifies that filter is literal, not regex.
// User typing "model.v1" shouldn't match "modelsv1".
func TestFilterItems_RegexSpecialChars(t *testing.T) {
items := []selectItem{
{Name: "model.v1"},
{Name: "modelsv1"},
{Name: "model-v1"},
}
// Filter with dot should only match literal dot
result := filterItems(items, "model.v1")
if len(result) != 1 {
t.Errorf("expected 1 exact match, got %d", len(result))
}
if len(result) > 0 && result[0].Name != "model.v1" {
t.Errorf("expected 'model.v1', got %s", result[0].Name)
}
// Other regex special chars should be literal too
items2 := []selectItem{
{Name: "test[0]"},
{Name: "test0"},
{Name: "test(1)"},
}
result2 := filterItems(items2, "test[0]")
if len(result2) != 1 || result2[0].Name != "test[0]" {
t.Errorf("expected only 'test[0]', got %v", result2)
}
}
// TestMultiSelectState_DuplicateNames documents handling of duplicate item names.
// itemIndex uses name as key - duplicates cause collision. This documents
// the current behavior: the last index for a duplicate name is stored
func TestMultiSelectState_DuplicateNames(t *testing.T) {
// Duplicate names - this is an edge case that shouldn't happen in practice
items := []selectItem{
{Name: "duplicate"},
{Name: "duplicate"},
{Name: "unique"},
}
s := newMultiSelectState(items, nil)
// DOCUMENTED BEHAVIOR: itemIndex maps name to LAST index
// When there are duplicates, only the last occurrence's index is stored
if s.itemIndex["duplicate"] != 1 {
t.Errorf("itemIndex should map 'duplicate' to last index (1), got %d", s.itemIndex["duplicate"])
}
// Toggle item at highlighted=0 (first "duplicate")
// Due to name collision, toggleItem uses itemIndex["duplicate"] = 1
// So it actually toggles the SECOND duplicate item, not the first
s.toggleItem()
// This documents the potentially surprising behavior:
// We toggled at highlighted=0, but itemIndex lookup returned 1
if !s.checked[1] {
t.Error("toggle should check index 1 (due to name collision in itemIndex)")
}
if s.checked[0] {
t.Log("Note: index 0 is NOT checked, even though highlighted=0 (name collision behavior)")
}
}
// TestSelectState_FilterReducesBelowSelection verifies selection resets when filter reduces list.
// Prevents index-out-of-bounds on next keystroke
func TestSelectState_FilterReducesBelowSelection(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newSelectState(items)
s.selected = 2 // Select "cherry"
// Type a filter that removes cherry from results
s.handleInput(eventChar, 'a') // Filter to "a" - matches "apple" and "banana"
// Selection should reset to 0
if s.selected != 0 {
t.Errorf("expected selected=0 after filter, got %d", s.selected)
}
filtered := s.filtered()
if len(filtered) != 2 {
t.Errorf("expected 2 filtered items, got %d", len(filtered))
}
}
// TestFilterItems_UnicodeCharacters verifies filtering works with UTF-8.
// Model names might contain unicode characters
func TestFilterItems_UnicodeCharacters(t *testing.T) {
items := []selectItem{
{Name: "llama-日本語"},
{Name: "模型-chinese"},
{Name: "émoji-🦙"},
{Name: "regular-model"},
}
t.Run("filter japanese", func(t *testing.T) {
result := filterItems(items, "日本")
if len(result) != 1 || result[0].Name != "llama-日本語" {
t.Errorf("expected llama-日本語, got %v", result)
}
})
t.Run("filter chinese", func(t *testing.T) {
result := filterItems(items, "模型")
if len(result) != 1 || result[0].Name != "模型-chinese" {
t.Errorf("expected 模型-chinese, got %v", result)
}
})
t.Run("filter emoji", func(t *testing.T) {
result := filterItems(items, "🦙")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
t.Run("filter accented char", func(t *testing.T) {
result := filterItems(items, "émoji")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
}
// TestMultiSelectState_FilterReducesBelowHighlight verifies highlight resets when filter reduces list.
func TestMultiSelectState_FilterReducesBelowHighlight(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newMultiSelectState(items, nil)
s.highlighted = 2 // Highlight "cherry"
// Type a filter that removes cherry
s.handleInput(eventChar, 'a')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0 after filter, got %d", s.highlighted)
}
}
// TestMultiSelectState_EmptyItems verifies handling of empty item list.
// Empty list should be handled gracefully.
func TestMultiSelectState_EmptyItems(t *testing.T) {
s := newMultiSelectState([]selectItem{}, nil)
// Toggle should not panic on empty list
s.toggleItem()
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected for empty list, got %d", s.selectedCount())
}
// Render should handle empty list
var buf bytes.Buffer
lineCount := renderMultiSelect(&buf, "Select:", s)
if lineCount == 0 {
t.Error("renderMultiSelect should produce output even for empty list")
}
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' for empty list")
}
}
// TestSelectState_RenderWithDescriptions verifies rendering items with descriptions.
func TestSelectState_RenderWithDescriptions(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "First item description"},
{Name: "item2", Description: ""},
{Name: "item3", Description: "Third item"},
}
s := newSelectState(items)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "First item description") {
t.Error("expected description to be rendered")
}
if !strings.Contains(output, "item2") {
t.Error("expected item without description to be rendered")
}
}

View File

@@ -159,6 +159,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
scanner.Prompt.UseAlt = true
continue
}

View File

@@ -313,6 +313,12 @@ func LoadModelMetadata(fsys fs.FS) (ModelKV, *Tokenizer, error) {
conv = &deepseek2Model{}
case "Glm4MoeLiteForCausalLM":
conv = &glm4MoeLiteModel{}
case "GlmOcrForConditionalGeneration":
conv = &glmOcrModel{}
case "Lfm2ForCausalLM":
conv = &lfm2Model{}
case "Qwen3NextForCausalLM":
conv = &qwen3NextModel{}
default:
return nil, nil, fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -6,6 +6,10 @@ import (
"log/slog"
"regexp"
"strconv"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
@@ -69,6 +73,9 @@ func (p *glm4MoeLiteModel) KV(t *Tokenizer) KV {
kv["glm4moelite.rope.dimension_count"] = p.QKRopeHeadDim
kv["glm4moelite.rope.freq_base"] = cmp.Or(p.RopeTheta, float32(1000000.0))
kv["glm4moelite.attention.key_length_mla"] = p.KVLoraRank + p.QKRopeHeadDim
kv["glm4moelite.attention.value_length_mla"] = p.KVLoraRank
kv["tokenizer.ggml.pre"] = "glm4"
return kv
@@ -100,6 +107,67 @@ func (p *glm4MoeLiteModel) Replacements() []string {
}
}
// repackKVB extracts K or V from the combined KV_B tensor for MLA absorption.
// K output row-major: [n_head, kv_lora_rank, qk_nope] -> GGML ne[]={qk_nope, kv_lora_rank, n_head}
// V output row-major: [n_head, v_head, kv_lora_rank] -> GGML ne[]={kv_lora_rank, v_head, n_head}
func (p *glm4MoeLiteModel) repackKVB(extractK bool, kvFirst bool, numHeads int) Repacker {
qkNope := int(p.QKNopeHeadDim)
vHeadDim := int(p.VHeadDim)
kvLoraRank := int(p.KVLoraRank)
kvPerHead := qkNope + vHeadDim
return func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var err error
// Normalize to [n_head * (qk_nope + v_head), kv_lora_rank] layout
if kvFirst {
tt, err = tensor.Transpose(tt, 1, 0)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
}
// Reshape to [n_head, qk_nope + v_head, kv_lora_rank]
if err := tt.Reshape(numHeads, kvPerHead, kvLoraRank); err != nil {
return nil, err
}
if extractK {
// Slice K: [n_head, qk_nope, kv_lora_rank]
tt, err = tt.Slice(nil, tensor.S(0, qkNope), nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
// Transpose to [n_head, kv_lora_rank, qk_nope]
tt, err = tensor.Transpose(tt, 0, 2, 1)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
} else {
// Slice V: [n_head, v_head, kv_lora_rank] - already correct layout
tt, err = tt.Slice(nil, tensor.S(qkNope, kvPerHead), nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
}
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
}
}
func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
@@ -139,6 +207,52 @@ func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
// Split attn_kv_b into separate attn_k_b and attn_v_b for MLA absorption
if strings.HasSuffix(t.Name(), ".attn_kv_b.weight") {
qkNope := int(p.QKNopeHeadDim)
vHeadDim := int(p.VHeadDim)
kvLoraRank := int(p.KVLoraRank)
kvPerHead := qkNope + vHeadDim
numHeads := int(p.NumAttentionHeads)
kvFirst := true
if len(t.Shape()) == 2 {
switch {
case int(t.Shape()[0]) == kvLoraRank:
if kvPerHead > 0 && int(t.Shape()[1])%kvPerHead == 0 {
numHeads = int(t.Shape()[1]) / kvPerHead
}
kvFirst = true
case int(t.Shape()[1]) == kvLoraRank:
if kvPerHead > 0 && int(t.Shape()[0])%kvPerHead == 0 {
numHeads = int(t.Shape()[0]) / kvPerHead
}
kvFirst = false
default:
slog.Warn("glm4moelite: unexpected attn_kv_b layout", "name", t.Name(), "shape", t.Shape())
}
}
kTensor := t.Clone()
kTensor.SetRepacker(p.repackKVB(true, kvFirst, numHeads))
out = append(out, &ggml.Tensor{
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_k_b", 1),
Kind: t.Kind(),
Shape: []uint64{uint64(numHeads), uint64(kvLoraRank), uint64(qkNope)},
WriterTo: kTensor,
})
vTensor := t.Clone()
vTensor.SetRepacker(p.repackKVB(false, kvFirst, numHeads))
out = append(out, &ggml.Tensor{
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_v_b", 1),
Kind: t.Kind(),
Shape: []uint64{uint64(numHeads), uint64(vHeadDim), uint64(kvLoraRank)},
WriterTo: vTensor,
})
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),

455
convert/convert_glmocr.go Normal file
View File

@@ -0,0 +1,455 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"log/slog"
"regexp"
"strconv"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
// normalToNeoXRepacker creates a repacker that permutes Q/K weights from interleaved (LLaMA)
// to NeoX ordering for compatibility with GGML's M-RoPE kernel.
//
// For weights: reshape [out, in] -> [n_heads, head_dim, in], permute rotary dims, reshape back
// For biases: reshape [out] -> [n_heads, head_dim], permute rotary dims, reshape back
func normalToNeoXRepacker(nHeads, headDim int, partialRotaryFactor float32) func(string, []float32, []uint64) ([]float32, error) {
return func(_ string, data []float32, shape []uint64) ([]float32, error) {
rotaryDim := int(float32(headDim) * partialRotaryFactor)
if rotaryDim%2 != 0 {
rotaryDim = (rotaryDim / 2) * 2 // Round down to even
}
// Handle 1D (bias) or 2D (weight) tensors
is1D := len(shape) == 1
var inFeatures int
if is1D {
inFeatures = 1
} else {
inFeatures = int(shape[1])
}
outFeatures := int(shape[0])
nEffectiveHeads := outFeatures / headDim
if nEffectiveHeads != nHeads {
slog.Warn("normalToNeoX: unexpected head count", "effective", nEffectiveHeads, "expected", nHeads)
}
// Reshape to [n_heads, head_dim, in_features]
reshaped := make([]float32, len(data))
copy(reshaped, data)
// Permute the rotary dimensions: even indices first, then odd
// For each head, reorder [0,1,2,3,4,5...] to [0,2,4...,1,3,5...]
result := make([]float32, len(data))
halfRotary := rotaryDim / 2
for h := range nEffectiveHeads {
for f := range inFeatures {
for i := range halfRotary {
// Even dim (0, 2, 4, ...) -> position i
srcIdx := h*headDim*inFeatures + (2*i)*inFeatures + f
dstIdx := h*headDim*inFeatures + i*inFeatures + f
result[dstIdx] = reshaped[srcIdx]
// Odd dim (1, 3, 5, ...) -> position halfRotary + i
srcIdx = h*headDim*inFeatures + (2*i+1)*inFeatures + f
dstIdx = h*headDim*inFeatures + (halfRotary+i)*inFeatures + f
result[dstIdx] = reshaped[srcIdx]
}
// Non-rotary part: copy as-is
for i := rotaryDim; i < headDim; i++ {
srcIdx := h*headDim*inFeatures + i*inFeatures + f
result[srcIdx] = reshaped[srcIdx]
}
}
}
return result, nil
}
}
type glmOcrModel struct {
ModelParameters
TextConfig struct {
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
MaxPositionEmbed uint32 `json:"max_position_embeddings"`
RMSNormEps float32 `json:"rms_norm_eps"`
PartialRotaryFactor float32 `json:"partial_rotary_factor"`
RopeParameters struct {
RopeType string `json:"rope_type"`
MRopeSection []int32 `json:"mrope_section"`
RopeTheta float32 `json:"rope_theta"`
PartialRotaryFactor float32 `json:"partial_rotary_factor"`
} `json:"rope_parameters"`
} `json:"text_config"`
VisionConfig struct {
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
Depth uint32 `json:"depth"`
NumHeads uint32 `json:"num_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
OutHiddenSize uint32 `json:"out_hidden_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
} `json:"vision_config"`
ImageStartTokenID uint32 `json:"image_start_token_id"`
ImageEndTokenID uint32 `json:"image_end_token_id"`
VideoStartTokenID uint32 `json:"video_start_token_id"`
VideoEndTokenID uint32 `json:"video_end_token_id"`
ImageTokenID uint32 `json:"image_token_id"`
VideoTokenID uint32 `json:"video_token_id"`
// Preprocessor config (preprocessor_config.json)
Preprocessor struct {
Size struct {
ShortestEdge uint32 `json:"shortest_edge"`
LongestEdge uint32 `json:"longest_edge"`
} `json:"size"`
PatchSize uint32 `json:"patch_size"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
MergeSize uint32 `json:"merge_size"`
ImageMean []float32 `json:"image_mean"`
ImageStd []float32 `json:"image_std"`
} `json:"-"`
}
var _ ModelConverter = (*glmOcrModel)(nil)
func (m *glmOcrModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "preprocessor_config.json")
if err != nil {
return err
}
return json.Unmarshal(bts, &m.Preprocessor)
}
func (m *glmOcrModel) KV(t *Tokenizer) KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "glmocr"
// Text model parameters
kv["glmocr.block_count"] = cmp.Or(m.TextConfig.NumHiddenLayers, 16)
kv["glmocr.embedding_length"] = cmp.Or(m.TextConfig.HiddenSize, 1536)
kv["glmocr.attention.head_count"] = cmp.Or(m.TextConfig.NumAttentionHeads, 16)
kv["glmocr.attention.head_count_kv"] = cmp.Or(m.TextConfig.NumKeyValueHeads, 8)
headDim := cmp.Or(m.TextConfig.HeadDim, m.TextConfig.HiddenSize/m.TextConfig.NumAttentionHeads)
kv["glmocr.attention.key_length"] = headDim
kv["glmocr.attention.value_length"] = headDim
kv["glmocr.feed_forward_length"] = cmp.Or(m.TextConfig.IntermediateSize, 4608)
kv["glmocr.attention.layer_norm_rms_epsilon"] = cmp.Or(m.TextConfig.RMSNormEps, 1e-5)
kv["glmocr.context_length"] = cmp.Or(m.TextConfig.MaxPositionEmbed, 131072)
kv["glmocr.rope.freq_base"] = cmp.Or(m.TextConfig.RopeParameters.RopeTheta, float32(10000))
kv["glmocr.rope.partial_rotary_factor"] = cmp.Or(m.TextConfig.RopeParameters.PartialRotaryFactor, m.TextConfig.PartialRotaryFactor, float32(1.0))
if len(m.TextConfig.RopeParameters.MRopeSection) > 0 {
kv["glmocr.rope.mrope_section"] = m.TextConfig.RopeParameters.MRopeSection
}
// Vision model parameters
kv["glmocr.vision.block_count"] = cmp.Or(m.VisionConfig.Depth, 24)
kv["glmocr.vision.embedding_length"] = cmp.Or(m.VisionConfig.HiddenSize, 1024)
kv["glmocr.vision.attention.head_count"] = cmp.Or(m.VisionConfig.NumHeads, 16)
kv["glmocr.vision.image_size"] = cmp.Or(m.VisionConfig.ImageSize, 336)
kv["glmocr.vision.patch_size"] = cmp.Or(m.VisionConfig.PatchSize, m.Preprocessor.PatchSize, 14)
kv["glmocr.vision.spatial_merge_size"] = cmp.Or(m.VisionConfig.SpatialMergeSize, m.Preprocessor.MergeSize, 2)
kv["glmocr.vision.temporal_patch_size"] = cmp.Or(m.VisionConfig.TemporalPatchSize, m.Preprocessor.TemporalPatchSize, 2)
kv["glmocr.vision.out_hidden_size"] = cmp.Or(m.VisionConfig.OutHiddenSize, 1536)
kv["glmocr.vision.intermediate_size"] = cmp.Or(m.VisionConfig.IntermediateSize, 4096)
kv["glmocr.vision.attention.layer_norm_rms_epsilon"] = cmp.Or(m.VisionConfig.RMSNormEps, 1e-5)
// Preprocessor-derived image settings (min/max pixels and normalization)
// Note: fs.Config.keyValue() auto-prepends architecture prefix, so use full key
if m.Preprocessor.Size.ShortestEdge > 0 {
kv["glmocr.vision.min_pixels"] = m.Preprocessor.Size.ShortestEdge
}
if m.Preprocessor.Size.LongestEdge > 0 {
kv["glmocr.vision.max_pixels"] = m.Preprocessor.Size.LongestEdge
}
if len(m.Preprocessor.ImageMean) == 3 {
kv["glmocr.vision.image_mean"] = m.Preprocessor.ImageMean
}
if len(m.Preprocessor.ImageStd) == 3 {
kv["glmocr.vision.image_std"] = m.Preprocessor.ImageStd
}
// Special tokens
kv["glmocr.image_token_id"] = m.ImageTokenID
kv["glmocr.image_start_token_id"] = m.ImageStartTokenID
kv["glmocr.image_end_token_id"] = m.ImageEndTokenID
kv["glmocr.video_token_id"] = m.VideoTokenID
kv["glmocr.video_start_token_id"] = m.VideoStartTokenID
kv["glmocr.video_end_token_id"] = m.VideoEndTokenID
return kv
}
func (m *glmOcrModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
// Skip layers >= num_hidden_layers (Multi-Token Prediction layers not needed for basic inference)
numLayers := int(cmp.Or(m.TextConfig.NumHiddenLayers, 16))
skipLayer := func(name string) bool {
// Tensor names are already replaced to "blk.N.xxx" format
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(name)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return blkNum >= numLayers
}
for _, t := range ts {
name := t.Name()
// Skip next-n prediction layers (layers >= num_hidden_layers)
if skipLayer(name) {
continue
}
// Split ffn_gate_up into separate gate and up projections
if strings.Contains(name, "ffn_gate_up") {
for t := range splitDim(t, 0,
split{Replacer: strings.NewReplacer("ffn_gate_up", "ffn_gate")},
split{Replacer: strings.NewReplacer("ffn_gate_up", "ffn_up")},
) {
out = append(out, t)
}
continue
}
if strings.HasSuffix(name, "patch_embd.weight") {
shape := t.Shape()
if len(shape) == 5 && shape[2] == 2 {
newShape := []uint64{shape[0], shape[1], shape[3], shape[4]}
t0 := t.Clone()
t0.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(nil, nil, tensor.S(0, 1), nil, nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
newDims := []int{int(shape[0]), int(shape[1]), int(shape[3]), int(shape[4])}
if err := tt.Reshape(newDims...); err != nil {
return nil, err
}
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.weight", "patch_embd_0.weight", 1),
Kind: t.Kind(),
Shape: newShape,
WriterTo: t0,
})
t1 := t.Clone()
t1.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(nil, nil, tensor.S(1, 2), nil, nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
newDims := []int{int(shape[0]), int(shape[1]), int(shape[3]), int(shape[4])}
if err := tt.Reshape(newDims...); err != nil {
return nil, err
}
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.weight", "patch_embd_1.weight", 1),
Kind: t.Kind(),
Shape: newShape,
WriterTo: t1,
})
continue
}
if len(shape) == 4 {
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.weight", "patch_embd_0.weight", 1),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
continue
}
slog.Warn("glmocr: patch_embed weight has unexpected shape - not splitting", "shape", shape)
// Fall through to default handling
}
// Handle pre-split patch embedding weights
// Pattern 1: v.patch_embd.0.weight, v.patch_embd.1.weight -> patch_embd_0.weight, patch_embd_1.weight
// Pattern 2: v.patch_embd.weight.0, v.patch_embd.weight.1 -> patch_embd_0.weight, patch_embd_1.weight
if strings.Contains(name, "patch_embd.0.") {
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.0.", "patch_embd_0.", 1),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
continue
}
if strings.Contains(name, "patch_embd.1.") {
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.1.", "patch_embd_1.", 1),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
continue
}
// Handle .weight.0 and .weight.1 suffix patterns
if strings.HasSuffix(name, "patch_embd.weight.0") {
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.weight.0", "patch_embd_0.weight", 1),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
continue
}
if strings.HasSuffix(name, "patch_embd.weight.1") {
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "patch_embd.weight.1", "patch_embd_1.weight", 1),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
continue
}
// Permute Q/K weights for M-RoPE compatibility (interleaved -> NeoX ordering)
// GGML's M-RoPE kernel uses NeoX-style rotation, but GLM-OCR uses interleaved (LLaMA-style)
// We permute at conversion time so the weights work correctly with GGML's kernel
// This aligns Q/K rotary dimensions with GGML's NeoX-style rotation
if len(m.TextConfig.RopeParameters.MRopeSection) > 0 &&
strings.Contains(name, "blk.") && (strings.Contains(name, "attn_q.") || strings.Contains(name, "attn_k.")) {
// Get config values for permutation
nHeads := int(cmp.Or(m.TextConfig.NumAttentionHeads, 16))
nKVHeads := int(cmp.Or(m.TextConfig.NumKeyValueHeads, 8))
hiddenSize := int(cmp.Or(m.TextConfig.HiddenSize, 1536))
headDim := int(cmp.Or(m.TextConfig.HeadDim, uint32(hiddenSize/nHeads)))
partialRotaryFactor := cmp.Or(m.TextConfig.PartialRotaryFactor, m.TextConfig.RopeParameters.PartialRotaryFactor, float32(1.0))
// Use appropriate head count: nHeads for Q, nKVHeads for K
effectiveHeads := nHeads
if strings.Contains(name, "attn_k.") {
effectiveHeads = nKVHeads
}
permutedT := t.Clone()
permutedT.SetRepacker(normalToNeoXRepacker(effectiveHeads, headDim, partialRotaryFactor))
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: permutedT,
})
continue
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *glmOcrModel) Replacements() []string {
return []string{
// Vision encoder
"model.visual.patch_embed.proj_1", "v.patch_embd_1", // Second temporal split
"model.visual.patch_embed.proj", "v.patch_embd",
"model.visual.blocks", "v.blk",
"model.visual.post_layernorm", "v.post_ln",
"model.visual.downsample", "mm.patch_merger",
// Vision attention
"attn.qkv", "attn_qkv",
"attn.proj", "attn_out",
"attn.q_norm", "attn_q_norm",
"attn.k_norm", "attn_k_norm",
// Vision norms
"norm1", "ln1",
"norm2", "ln2",
// Vision MLP
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
// Merger (multimodal projector)
"model.visual.merger.proj", "mm.model.fc",
"model.visual.merger.post_projection_norm", "mm.post_norm",
"model.visual.merger.gate_proj", "mm.gate",
"model.visual.merger.up_proj", "mm.up",
"model.visual.merger.down_proj", "mm.down",
// Language model
"model.language_model.embed_tokens", "token_embd",
"model.language_model.layers", "blk",
"model.language_model.norm", "output_norm",
"lm_head", "output",
// Language model attention
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_out",
// Language model norms
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"post_self_attn_layernorm", "post_attn_norm",
"post_mlp_layernorm", "post_ffn_norm",
// Language model MLP (remove mlp. prefix so ffn_* names work)
"mlp.gate_up_proj", "ffn_gate_up",
"mlp.down_proj", "ffn_down",
}
}

100
convert/convert_lfm2.go Normal file
View File

@@ -0,0 +1,100 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type lfm2Model struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
NormEps float32 `json:"norm_eps"`
ConvLCache uint32 `json:"conv_L_cache"`
LayerTypes []string `json:"layer_types"`
TieEmbedding bool `json:"tie_embedding"`
}
var _ ModelConverter = (*lfm2Model)(nil)
func (p *lfm2Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "lfm2"
kv["lfm2.vocab_size"] = p.VocabSize
kv["lfm2.block_count"] = p.NumHiddenLayers
kv["lfm2.embedding_length"] = p.HiddenSize
kv["lfm2.feed_forward_length"] = p.IntermediateSize
kv["lfm2.context_length"] = p.MaxPositionEmbeddings
// Build per-layer KV head count array based on layer_types
// (0 = shortconv layer, non-zero = attention layer with that many KV heads)
kvHeadCounts := make([]uint32, p.NumHiddenLayers)
for i := range p.NumHiddenLayers {
if int(i) < len(p.LayerTypes) && p.LayerTypes[i] == "full_attention" {
kvHeadCounts[i] = p.NumKeyValueHeads
}
}
kv["lfm2.attention.head_count"] = p.NumAttentionHeads
kv["lfm2.attention.head_count_kv"] = kvHeadCounts
kv["lfm2.attention.key_length"] = p.HiddenSize / p.NumAttentionHeads
kv["lfm2.attention.value_length"] = p.HiddenSize / p.NumAttentionHeads
kv["lfm2.attention.layer_norm_rms_epsilon"] = p.NormEps
kv["lfm2.rope.freq_base"] = p.RopeTheta
kv["lfm2.shortconv.l_cache"] = p.ConvLCache
return kv
}
func (p *lfm2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
// Squeeze conv weights: [D, 1, K] -> [D, K]
if strings.HasSuffix(t.Name(), "shortconv.conv.weight") {
if len(shape) == 3 && shape[1] == 1 {
shape = []uint64{shape[0], shape[2]}
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
}
return out
}
func (p *lfm2Model) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.embedding_norm", "output_norm",
"model.layers", "blk",
"operator_norm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.out_proj", "attn_output",
"self_attn.q_layernorm", "attn_q_norm",
"self_attn.k_layernorm", "attn_k_norm",
"conv.conv", "shortconv.conv",
"conv.in_proj", "shortconv.in_proj",
"conv.out_proj", "shortconv.out_proj",
"feed_forward.w1", "ffn_gate",
"feed_forward.w2", "ffn_down",
"feed_forward.w3", "ffn_up",
"ffn_norm", "ffn_norm",
}
}

View File

@@ -0,0 +1,512 @@
package convert
import (
"fmt"
"io/fs"
"math"
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type qwen3NextModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
// MoE config
NumExperts uint32 `json:"num_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
NormTopkProb bool `json:"norm_topk_prob"`
MoEIntermediateSize uint32 `json:"moe_intermediate_size"`
SharedExpertIntermSize uint32 `json:"shared_expert_intermediate_size"`
// Hybrid attention config
FullAttentionInterval uint32 `json:"full_attention_interval"`
// Linear attention (Gated Delta Net) config
LinearConvKernelDim uint32 `json:"linear_conv_kernel_dim"`
LinearKeyHeadDim uint32 `json:"linear_key_head_dim"`
LinearNumKeyHeads uint32 `json:"linear_num_key_heads"`
LinearNumValueHeads uint32 `json:"linear_num_value_heads"`
LinearValueHeadDim uint32 `json:"linear_value_head_dim"`
// RoPE config
PartialRotaryFactor float32 `json:"partial_rotary_factor"`
RopeScaling struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
} `json:"rope_scaling"`
}
var _ ModelConverter = (*qwen3NextModel)(nil)
func (q *qwen3NextModel) parseMore(_ fs.FS) error {
if q.NumHiddenLayers == 0 {
return fmt.Errorf("qwen3next: num_hidden_layers must be set")
}
if q.NumAttentionHeads == 0 {
return fmt.Errorf("qwen3next: num_attention_heads must be set")
}
if q.NumKeyValueHeads == 0 {
return fmt.Errorf("qwen3next: num_key_value_heads must be set")
}
if q.HeadDim == 0 {
return fmt.Errorf("qwen3next: head_dim must be set")
}
if q.RopeTheta == 0 {
return fmt.Errorf("qwen3next: rope_theta must be set")
}
if q.PartialRotaryFactor <= 0 || q.PartialRotaryFactor > 1 {
return fmt.Errorf("qwen3next: partial_rotary_factor must be in (0,1], got %v", q.PartialRotaryFactor)
}
if q.LinearNumKeyHeads == 0 || q.LinearNumValueHeads == 0 || q.LinearKeyHeadDim == 0 || q.LinearValueHeadDim == 0 {
return fmt.Errorf("qwen3next: linear attention config must be set (linear_num_key_heads, linear_num_value_heads, linear_key_head_dim, linear_value_head_dim)")
}
if q.FullAttentionInterval == 0 {
return fmt.Errorf("qwen3next: full_attention_interval must be set")
}
if q.FullAttentionInterval > q.NumHiddenLayers {
return fmt.Errorf("qwen3next: full_attention_interval (%d) exceeds num_hidden_layers (%d)", q.FullAttentionInterval, q.NumHiddenLayers)
}
hasFull := false
for i := range q.NumHiddenLayers {
if (i+1)%q.FullAttentionInterval == 0 {
hasFull = true
break
}
}
if !hasFull {
return fmt.Errorf("qwen3next: head_count_kv would be all zeros (full_attention_interval=%d, num_hidden_layers=%d)", q.FullAttentionInterval, q.NumHiddenLayers)
}
return nil
}
func (q *qwen3NextModel) KV(t *Tokenizer) KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen3next"
kv["tokenizer.ggml.pre"] = "qwen2"
kv["block_count"] = q.NumHiddenLayers
kv["context_length"] = q.MaxPositionEmbeddings
kv["embedding_length"] = q.HiddenSize
kv["feed_forward_length"] = q.IntermediateSize
kv["attention.head_count"] = q.NumAttentionHeads
headDim := q.HeadDim
if headDim == 0 && q.NumAttentionHeads > 0 {
headDim = q.HiddenSize / q.NumAttentionHeads
}
kv["attention.key_length"] = headDim
kv["attention.value_length"] = headDim
kv["attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
kv["rope.freq_base"] = q.RopeTheta
// RoPE dimension count (partial rotary)
// partial_rotary_factor = 0.25 means only 25% of head_dim uses RoPE
partialRotary := q.PartialRotaryFactor
if partialRotary > 0 && partialRotary <= 1 {
kv["rope.dimension_count"] = uint32(float32(headDim) * partialRotary)
}
// MoE config
if q.NumExperts > 0 {
kv["expert_count"] = q.NumExperts
kv["expert_used_count"] = q.NumExpertsPerToken
kv["norm_top_k_prob"] = q.NormTopkProb
if q.MoEIntermediateSize > 0 {
kv["expert_feed_forward_length"] = q.MoEIntermediateSize
}
if q.SharedExpertIntermSize > 0 {
kv["expert_shared_feed_forward_length"] = q.SharedExpertIntermSize
}
}
// SSM/Linear attention config
// d_inner = linear_value_head_dim * linear_num_value_heads
dInner := q.LinearValueHeadDim * q.LinearNumValueHeads
kv["ssm.inner_size"] = dInner
kv["ssm.state_size"] = q.LinearKeyHeadDim // head_k_dim
kv["ssm.group_count"] = q.LinearNumKeyHeads // num_k_heads
kv["ssm.time_step_rank"] = q.LinearNumValueHeads // num_v_heads
kv["ssm.conv_kernel"] = q.LinearConvKernelDim
interval := q.FullAttentionInterval
kv["full_attention_interval"] = interval
// Build per-layer KV head count array to identify layer types
// 0 = recurrent (linear attention), non-zero = full attention
kvHeadCounts := make([]uint32, q.NumHiddenLayers)
for i := range q.NumHiddenLayers {
// Full attention every full_attention_interval layers (starting at interval-1)
if interval > 0 && (i+1)%interval == 0 {
kvHeadCounts[i] = q.NumKeyValueHeads
}
// else stays 0 (recurrent layer)
}
kv["attention.head_count_kv"] = kvHeadCounts
// RoPE scaling
if q.RopeScaling.Type != "" {
kv["rope.scaling.type"] = q.RopeScaling.Type
kv["rope.scaling.factor"] = q.RopeScaling.Factor
}
return kv
}
func (q *qwen3NextModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
// Create merges for expert tensors - stack individual experts into batched tensors
merges := make([]merge, q.NumHiddenLayers*3)
for i := range q.NumHiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
// Merge expert tensors
merged, remaining := mergeTensors(ts, merges...)
out = append(out, merged...)
// Process remaining tensors
for _, t := range remaining {
name := t.Name()
shape := t.Shape()
// Split linear_attn.in_proj_qkvz (ssm_in) into attn_qkv + attn_gate when possible
if strings.HasSuffix(name, ".ssm_in.weight") {
if qkv, gate, ok := q.splitQKVZTensor(t); ok {
out = append(out, qkv, gate)
continue
}
panic(fmt.Sprintf("qwen3next: failed to split %s into attn_qkv/attn_gate (shape=%v)", name, shape))
}
switch {
// Add 1 to norm weights (except ssm_norm which is linear_attn.norm)
// This matches the Python converter behavior for qwen3next
case strings.HasSuffix(name, "_norm.weight") && !strings.HasSuffix(name, ".ssm_norm.weight"):
t.SetRepacker(q.addOne)
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
// Handle linear attention A_log -> ssm_a (negate and exp)
// Note: name has already been transformed by Replacements at this point
case strings.HasSuffix(name, ".ssm_a"):
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
// Compute -exp(A_log)
result := make([]float32, len(data))
for i, v := range data {
// -exp(v)
result[i] = -float32(math.Exp(float64(v)))
}
return result, nil
})
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
// Squeeze conv1d weights: [1, D, K] or [D, 1, K] -> [D, K]
case strings.HasSuffix(name, ".ssm_conv1d.weight"):
newShape := slices.Clone(shape)
if len(shape) == 3 {
if shape[0] == 1 {
// [1, D, K] -> [D, K]
newShape = []uint64{shape[1], shape[2]}
} else if shape[1] == 1 {
// [D, 1, K] -> [D, K]
newShape = []uint64{shape[0], shape[2]}
}
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: newShape,
WriterTo: t,
})
// Squeeze shared expert gate: [D, 1] or [1, D] -> [D]
case strings.HasSuffix(name, ".ffn_gate_inp_shexp.weight"):
newShape := slices.Clone(shape)
if len(shape) == 2 {
if shape[0] == 1 && shape[1] > 1 {
newShape = []uint64{shape[1]}
} else if shape[1] == 1 && shape[0] > 1 {
newShape = []uint64{shape[0]}
}
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: newShape,
WriterTo: t,
})
default:
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
}
}
return out
}
type qkvzSplitSpec struct {
hidden int
headKDim int
headVDim int
numKHeads int
numVHeads int
qkvzDim int
qkvOut int
gateOut int
}
func (q *qwen3NextModel) qkvzSpec(shape []uint64) (qkvzSplitSpec, bool) {
if len(shape) != 2 {
return qkvzSplitSpec{}, false
}
numKHeads := int(q.LinearNumKeyHeads)
numVHeads := int(q.LinearNumValueHeads)
headKDim := int(q.LinearKeyHeadDim)
headVDim := int(q.LinearValueHeadDim)
if numKHeads == 0 || numVHeads == 0 || headKDim == 0 || headVDim == 0 {
return qkvzSplitSpec{}, false
}
if numVHeads%numKHeads != 0 {
return qkvzSplitSpec{}, false
}
hidden := int(shape[1])
vPerHead := headVDim * (numVHeads / numKHeads)
qkvzDim := 2*headKDim + 2*vPerHead
expectedOut := qkvzDim * numKHeads
if int(shape[0]) != expectedOut {
return qkvzSplitSpec{}, false
}
return qkvzSplitSpec{
hidden: hidden,
headKDim: headKDim,
headVDim: headVDim,
numKHeads: numKHeads,
numVHeads: numVHeads,
qkvzDim: qkvzDim,
qkvOut: 2*headKDim*numKHeads + headVDim*numVHeads,
gateOut: headVDim * numVHeads,
}, true
}
func (q *qwen3NextModel) splitQKVZTensor(t Tensor) (*ggml.Tensor, *ggml.Tensor, bool) {
spec, ok := q.qkvzSpec(t.Shape())
if !ok {
return nil, nil, false
}
qkvTensor := t.Clone()
qkvTensor.SetRepacker(q.repackQKVZ(spec, false))
gateTensor := t.Clone()
gateTensor.SetRepacker(q.repackQKVZ(spec, true))
qkvName := strings.Replace(t.Name(), "ssm_in", "attn_qkv", 1)
gateName := strings.Replace(t.Name(), "ssm_in", "attn_gate", 1)
return &ggml.Tensor{
Name: qkvName,
Kind: t.Kind(),
Shape: []uint64{uint64(spec.qkvOut), uint64(spec.hidden)},
WriterTo: qkvTensor,
}, &ggml.Tensor{
Name: gateName,
Kind: t.Kind(),
Shape: []uint64{uint64(spec.gateOut), uint64(spec.hidden)},
WriterTo: gateTensor,
}, true
}
func (q *qwen3NextModel) repackQKVZ(spec qkvzSplitSpec, extractGate bool) Repacker {
vPerHead := spec.headVDim * (spec.numVHeads / spec.numKHeads)
return func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var err error
// Convert to [hidden, out_features] layout for slicing
tt, err = tensor.Transpose(tt, 1, 0)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
if err := tt.Reshape(spec.hidden, spec.numKHeads, spec.qkvzDim); err != nil {
return nil, err
}
offset := 0
qSlice, err := tt.Slice(nil, nil, tensor.S(offset, offset+spec.headKDim))
if err != nil {
return nil, err
}
offset += spec.headKDim
kSlice, err := tt.Slice(nil, nil, tensor.S(offset, offset+spec.headKDim))
if err != nil {
return nil, err
}
offset += spec.headKDim
vSlice, err := tt.Slice(nil, nil, tensor.S(offset, offset+vPerHead))
if err != nil {
return nil, err
}
offset += vPerHead
zSlice, err := tt.Slice(nil, nil, tensor.S(offset, offset+vPerHead))
if err != nil {
return nil, err
}
qMat := tensor.Materialize(qSlice).(*tensor.Dense)
kMat := tensor.Materialize(kSlice).(*tensor.Dense)
vMat := tensor.Materialize(vSlice).(*tensor.Dense)
zMat := tensor.Materialize(zSlice).(*tensor.Dense)
if err := qMat.Reshape(spec.hidden, spec.numKHeads*spec.headKDim); err != nil {
return nil, err
}
if err := kMat.Reshape(spec.hidden, spec.numKHeads*spec.headKDim); err != nil {
return nil, err
}
if err := vMat.Reshape(spec.hidden, spec.numKHeads*vPerHead); err != nil {
return nil, err
}
if err := zMat.Reshape(spec.hidden, spec.numKHeads*vPerHead); err != nil {
return nil, err
}
var out tensor.Tensor
if extractGate {
out = zMat
} else {
out, err = tensor.Concat(1, qMat, kMat, vMat)
if err != nil {
return nil, err
}
}
out = tensor.Materialize(out)
out, err = tensor.Transpose(out, 1, 0)
if err != nil {
return nil, err
}
out = tensor.Materialize(out)
if err := out.Reshape(out.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(out.(*tensor.Dense))
}
}
// addOne adds 1.0 to all elements in the tensor (for norm weights)
func (*qwen3NextModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (q *qwen3NextModel) Replacements() []string {
return []string{
// Embeddings and output
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
// Layer norms
"input_layernorm", "attn_norm",
"post_attention_layernorm", "post_attention_norm",
// Full attention (self_attn)
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
// Linear attention (Gated Delta Net)
"linear_attn.in_proj_qkvz", "ssm_in",
"linear_attn.in_proj_ba", "ssm_ba",
"linear_attn.conv1d", "ssm_conv1d",
"linear_attn.dt_bias", "ssm_dt",
"linear_attn.dt_proj", "ssm_dt",
"linear_attn.A_log", "ssm_a",
"linear_attn.norm", "ssm_norm",
"linear_attn.out_proj", "ssm_out",
// MoE (experts are stacked via mergeTensors, not replaced here)
"mlp.gate.weight", "ffn_gate_inp.weight",
"mlp.shared_expert.down_proj", "ffn_down_shexp",
"mlp.shared_expert.gate_proj", "ffn_gate_shexp",
"mlp.shared_expert.up_proj", "ffn_up_shexp",
"mlp.shared_expert_gate", "ffn_gate_inp_shexp",
// Dense FFN (if any layers use it)
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
}
}

View File

@@ -40,6 +40,8 @@ const (
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
strings.HasSuffix(t.name, ".bias") ||
strings.HasSuffix(t.name, ".shortconv.conv.weight") ||
strings.HasSuffix(t.name, ".ssm_conv1d.weight") || // SSM conv kernel must be F32 for Metal
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||

View File

@@ -99,6 +99,8 @@ func (st safetensor) Kind() uint32 {
if st.dtype == "BF16" &&
!strings.HasPrefix(st.name, "v.") &&
!strings.HasPrefix(st.name, "s.") &&
!strings.HasPrefix(st.name, "mm.") &&
!strings.Contains(st.name, "ffn_gate_inp_shexp.weight") &&
kind != tensorKindFP32 {
kind = tensorKindBF16
}

View File

@@ -4,16 +4,6 @@ title: Anthropic compatibility
Ollama provides compatibility with the [Anthropic Messages API](https://docs.anthropic.com/en/api/messages) to help connect existing applications to Ollama, including tools like Claude Code.
## Recommended models
For coding use cases, models like `glm-4.7:cloud`, `minimax-m2.1:cloud`, and `qwen3-coder` are recommended.
Pull a model before use:
```shell
ollama pull qwen3-coder
ollama pull glm-4.7:cloud
```
## Usage
### Environment variables
@@ -22,8 +12,8 @@ To use Ollama with tools that expect the Anthropic API (like Claude Code), set t
```shell
export ANTHROPIC_AUTH_TOKEN=ollama # required but ignored
export ANTHROPIC_API_KEY="" # required but ignored
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama # required but ignored
```
### Simple `/v1/messages` example
@@ -245,10 +235,41 @@ curl -X POST http://localhost:11434/v1/messages \
## Using with Claude Code
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend:
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend.
### Recommended models
For coding use cases, models like `glm-4.7`, `minimax-m2.1`, and `qwen3-coder` are recommended.
Download a model before use:
```shell
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
ollama pull qwen3-coder
```
> Note: Qwen 3 coder is a 30B parameter model requiring at least 24GB of VRAM to run smoothly. More is required for longer context lengths.
```shell
ollama pull glm-4.7:cloud
```
### Quick setup
```shell
ollama launch claude
```
This will prompt you to select a model, configure Claude Code automatically, and launch it. To configure without launching:
```shell
ollama launch claude --config
```
### Manual setup
Set the environment variables and run Claude Code:
```shell
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY="" claude --model qwen3-coder
```
Or set the environment variables in your shell profile:
@@ -256,19 +277,13 @@ Or set the environment variables in your shell profile:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama
export ANTHROPIC_API_KEY=""
```
Then run Claude Code with any Ollama model:
```shell
# Local models
claude --model qwen3-coder
claude --model gpt-oss:20b
# Cloud models
claude --model glm-4.7:cloud
claude --model minimax-m2.1:cloud
```
## Endpoints

View File

@@ -8,6 +8,47 @@ title: CLI Reference
ollama run gemma3
```
### Launch integrations
```
ollama launch
```
Configure and launch external applications to use Ollama models. This provides an interactive way to set up and start integrations with supported apps.
#### Supported integrations
- **OpenCode** - Open-source coding assistant
- **Claude Code** - Anthropic's agentic coding tool
- **Codex** - OpenAI's coding assistant
- **Droid** - Factory's AI coding agent
#### Examples
Launch an integration interactively:
```
ollama launch
```
Launch a specific integration:
```
ollama launch claude
```
Launch with a specific model:
```
ollama launch claude --model qwen3-coder
```
Configure without launching:
```
ollama launch droid --config
```
#### Multiline input
For multiline input, you can wrap text with `"""`:

View File

@@ -3,8 +3,6 @@ title: Cloud
sidebarTitle: Cloud
---
<Info>Ollama's cloud is currently in preview.</Info>
## Cloud Models
Ollama's cloud models are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud service while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn't fit on a personal computer.

View File

@@ -8,7 +8,7 @@ Context length is the maximum number of tokens that the model has access to in m
The default context length in Ollama is 4096 tokens.
</Note>
Tasks which require large context like web search, agents, and coding tools should be set to at least 32000 tokens.
Tasks which require large context like web search, agents, and coding tools should be set to at least 64000 tokens.
## Setting context length
@@ -24,7 +24,7 @@ Change the slider in the Ollama app under settings to your desired context lengt
### CLI
If editing the context length for Ollama is not possible, the context length can also be updated when serving Ollama.
```
OLLAMA_CONTEXT_LENGTH=32000 ollama serve
OLLAMA_CONTEXT_LENGTH=64000 ollama serve
```
### Check allocated context length and model offloading

View File

@@ -71,6 +71,10 @@
{
"source": "/api",
"destination": "/api/introduction"
},
{
"source": "/integrations/clawdbot",
"destination": "/integrations/openclaw"
}
],
"navigation": {
@@ -102,18 +106,20 @@
"group": "Integrations",
"pages": [
"/integrations/claude-code",
"/integrations/vscode",
"/integrations/jetbrains",
"/integrations/codex",
"/integrations/cline",
"/integrations/openclaw",
"/integrations/codex",
"/integrations/droid",
"/integrations/goose",
"/integrations/zed",
"/integrations/roo-code",
"/integrations/jetbrains",
"/integrations/marimo",
"/integrations/n8n",
"/integrations/xcode",
"/integrations/onyx",
"/integrations/marimo"
"/integrations/opencode",
"/integrations/roo-code",
"/integrations/vscode",
"/integrations/xcode",
"/integrations/zed"
]
},
{

View File

@@ -10,6 +10,7 @@ Check your compute compatibility to see if your card is supported:
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| 12.1 | NVIDIA | `GB10 (DGX Spark)` |
| 12.0 | GeForce RTX 50xx | `RTX 5060` `RTX 5060 Ti` `RTX 5070` `RTX 5070 Ti` `RTX 5080` `RTX 5090` |
| | NVIDIA Professional | `RTX PRO 4000 Blackwell` `RTX PRO 4500 Blackwell` `RTX PRO 5000 Blackwell` `RTX PRO 6000 Blackwell` |
| 9.0 | NVIDIA | `H200` `H100` |
@@ -163,4 +164,4 @@ To select specific Vulkan GPU(s), you can set the environment variable
`GGML_VK_VISIBLE_DEVICES` to one or more numeric IDs on the Ollama server as
described in the [FAQ](faq#how-do-i-configure-ollama-server). If you
encounter any problems with Vulkan based GPUs, you can disable all Vulkan GPUs
by setting `GGML_VK_VISIBLE_DEVICES=-1`
by setting `GGML_VK_VISIBLE_DEVICES=-1`

View File

@@ -134,22 +134,12 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com

View File

@@ -9,7 +9,7 @@ sidebarTitle: Welcome
<CardGroup cols={2}>
<Card title="Quickstart" icon="rocket" href="/quickstart">
Get up and running with your first model
Get up and running with your first model or integrate Ollama with your favorite tools
</Card>
<Card
title="Download Ollama"

View File

@@ -4,7 +4,7 @@ title: Claude Code
Claude Code is Anthropic's agentic coding tool that can read, modify, and execute code in your working directory.
Open models can be used with Claude Code through Ollama's Anthropic-compatible API, enabling you to use models such as `qwen3-coder`, `gpt-oss:20b`, or other models.
Open models can be used with Claude Code through Ollama's Anthropic-compatible API, enabling you to use models such as `glm-4.7`, `qwen3-coder`, `gpt-oss`.
![Claude Code with Ollama](https://files.ollama.com/claude-code.png)
@@ -26,12 +26,27 @@ irm https://claude.ai/install.ps1 | iex
## Usage with Ollama
### Quick setup
```shell
ollama launch claude
```
To configure without launching:
```shell
ollama launch claude --config
```
### Manual setup
Claude Code connects to Ollama using the Anthropic-compatible API.
1. Set the environment variables:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama
export ANTHROPIC_API_KEY=""
export ANTHROPIC_BASE_URL=http://localhost:11434
```
@@ -44,35 +59,17 @@ claude --model gpt-oss:20b
Or run with environment variables inline:
```shell
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 claude --model gpt-oss:20b
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY="" claude --model qwen3-coder
```
**Note:** Claude Code requires a large context window. We recommend at least 32K tokens. See the [context length documentation](/context-length) for how to adjust context length in Ollama.
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) on ollama.com
2. Set the environment variables:
```shell
export ANTHROPIC_BASE_URL=https://ollama.com
export ANTHROPIC_API_KEY=<your-api-key>
```
3. Run Claude Code with a cloud model:
```shell
claude --model glm-4.7:cloud
```
**Note:** Claude Code requires a large context window. We recommend at least 64k tokens. See the [context length documentation](/context-length) for how to adjust context length in Ollama.
## Recommended Models
### Cloud models
- `glm-4.7:cloud` - High-performance cloud model
- `minimax-m2.1:cloud` - Fast cloud model
- `qwen3-coder:480b` - Large coding model
- `qwen3-coder`
- `glm-4.7`
- `gpt-oss:20b`
- `gpt-oss:120b`
Cloud models are also available at [ollama.com/search?c=cloud](https://ollama.com/search?c=cloud).
### Local models
- `qwen3-coder` - Excellent for coding tasks
- `gpt-oss:20b` - Strong general-purpose model
- `gpt-oss:120b` - Larger general-purpose model for more complex tasks

View File

@@ -13,7 +13,21 @@ npm install -g @openai/codex
## Usage with Ollama
<Note>Codex requires a larger context window. It is recommended to use a context window of at least 32K tokens.</Note>
<Note>Codex requires a larger context window. It is recommended to use a context window of at least 64k tokens.</Note>
### Quick setup
```
ollama launch codex
```
To configure without launching:
```shell
ollama launch codex --config
```
### Manual setup
To use `codex` with Ollama, use the `--oss` flag:

View File

@@ -11,10 +11,24 @@ Install the [Droid CLI](https://factory.ai/):
curl -fsSL https://app.factory.ai/cli | sh
```
<Note>Droid requires a larger context window. It is recommended to use a context window of at least 32K tokens. See [Context length](/context-length) for more information.</Note>
<Note>Droid requires a larger context window. It is recommended to use a context window of at least 64k tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
### Quick setup
```bash
ollama launch droid
```
To configure without launching:
```shell
ollama launch droid --config
```
### Manual setup
Add a local configuration block to `~/.factory/config.json`:
```json
@@ -73,4 +87,4 @@ Add the cloud configuration block to `~/.factory/config.json`:
}
```
Run `droid` in a new terminal to load the new settings.
Run `droid` in a new terminal to load the new settings.

View File

@@ -0,0 +1,50 @@
---
title: OpenClaw
---
OpenClaw is a personal AI assistant that runs on your own devices. It bridges messaging services (WhatsApp, Telegram, Slack, Discord, iMessage, and more) to AI coding agents through a centralized gateway.
## Install
Install [OpenClaw](https://openclaw.ai/)
```bash
npm install -g openclaw@latest
```
Then run the onboarding wizard:
```bash
openclaw onboard --install-daemon
```
<Note>OpenClaw requires a larger context window. It is recommended to use a context window of at least 64k tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
### Quick setup
```bash
ollama launch openclaw
```
<Note>Previously known as Clawdbot. `ollama launch clawdbot` still works as an alias.</Note>
This configures OpenClaw to use Ollama and starts the gateway.
If the gateway is already running, no changes need to be made as the gateway will auto-reload the changes.
To configure without launching:
```shell
ollama launch openclaw --config
```
## Recommended Models
- `qwen3-coder`
- `glm-4.7`
- `gpt-oss:20b`
- `gpt-oss:120b`
Cloud models are also available at [ollama.com/search?c=cloud](https://ollama.com/search?c=cloud).

View File

@@ -0,0 +1,106 @@
---
title: OpenCode
---
OpenCode is an open-source AI coding assistant that runs in your terminal.
## Install
Install the [OpenCode CLI](https://opencode.ai):
```bash
curl -fsSL https://opencode.ai/install | bash
```
<Note>OpenCode requires a larger context window. It is recommended to use a context window of at least 64k tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
### Quick setup
```bash
ollama launch opencode
```
To configure without launching:
```shell
ollama launch opencode --config
```
### Manual setup
Add a configuration block to `~/.config/opencode/opencode.json`:
```json
{
"$schema": "https://opencode.ai/config.json",
"provider": {
"ollama": {
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama",
"options": {
"baseURL": "http://localhost:11434/v1"
},
"models": {
"qwen3-coder": {
"name": "qwen3-coder"
}
}
}
}
}
```
## Cloud Models
`glm-4.7:cloud` is the recommended model for use with OpenCode.
Add the cloud configuration to `~/.config/opencode/opencode.json`:
```json
{
"$schema": "https://opencode.ai/config.json",
"provider": {
"ollama": {
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama",
"options": {
"baseURL": "http://localhost:11434/v1"
},
"models": {
"glm-4.7:cloud": {
"name": "glm-4.7:cloud"
}
}
}
}
}
```
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) from ollama.com and export it as `OLLAMA_API_KEY`.
2. Update `~/.config/opencode/opencode.json` to point to ollama.com:
```json
{
"$schema": "https://opencode.ai/config.json",
"provider": {
"ollama": {
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama Cloud",
"options": {
"baseURL": "https://ollama.com/v1"
},
"models": {
"glm-4.7:cloud": {
"name": "glm-4.7:cloud"
}
}
}
}
}
```
Run `opencode` in a new terminal to load the new settings.

View File

@@ -18,13 +18,13 @@ This quickstart will walk your through running your first model with Ollama. To
<Tab title="CLI">
Open a terminal and run the command:
```
```sh
ollama run gemma3
```
</Tab>
<Tab title="cURL">
```
```sh
ollama pull gemma3
```
@@ -45,13 +45,13 @@ This quickstart will walk your through running your first model with Ollama. To
<Tab title="Python">
Start by downloading a model:
```
```sh
ollama pull gemma3
```
Then install Ollama's Python library:
```
```sh
pip install ollama
```
@@ -101,3 +101,42 @@ This quickstart will walk your through running your first model with Ollama. To
</Tabs>
See a full list of available models [here](https://ollama.com/models).
## Coding
For coding use cases, we recommend using the `glm-4.7-flash` model.
Note: this model requires 23 GB of VRAM with 64000 tokens context length.
```sh
ollama pull glm-4.7-flash
```
Alternatively, you can use a more powerful cloud model (with full context length):
```sh
ollama pull glm-4.7:cloud
```
Use `ollama launch` to quickly set up a coding tool with Ollama models:
```sh
ollama launch
```
### Supported integrations
- [OpenCode](/integrations/opencode) - Open-source coding assistant
- [Claude Code](/integrations/claude-code) - Anthropic's agentic coding tool
- [Codex](/integrations/codex) - OpenAI's coding assistant
- [Droid](/integrations/droid) - Factory's AI coding agent
### Launch with a specific model
```sh
ollama launch claude --model glm-4.7-flash
```
### Configure without launching
```sh
ollama launch claude --config
```

View File

@@ -201,7 +201,7 @@ var (
// Enable the new Ollama engine
NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 0)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
// Enable Vulkan backend
@@ -290,7 +290,7 @@ func AsMap() map[string]EnvVar {
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4k/32k/256k based on VRAM)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},

View File

@@ -282,7 +282,7 @@ func TestVar(t *testing.T) {
func TestContextLength(t *testing.T) {
cases := map[string]uint{
"": 4096,
"": 0,
"2048": 2048,
}

View File

@@ -268,8 +268,11 @@ func (kv KV) OllamaEngineRequired() bool {
"olmo3",
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3next",
"qwen3vl", "qwen3vlmoe",
"glm4moelite",
"glmocr",
"lfm2",
}, kv.Architecture())
}
@@ -858,10 +861,13 @@ func (f GGML) FlashAttention() bool {
"bert",
"gemma3",
"glm4moelite",
"glmocr",
"gptoss", "gpt-oss",
"lfm2",
"mistral3",
"olmo3",
"qwen3", "qwen3moe",
"qwen3next",
"qwen3vl", "qwen3vlmoe",
}, f.KV().String("general.architecture"))
}

1
go.mod
View File

@@ -27,6 +27,7 @@ require (
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c
github.com/tkrajina/typescriptify-golang-structs v0.2.0
github.com/wk8/go-ordered-map/v2 v2.1.8
golang.org/x/image v0.22.0

3
go.sum
View File

@@ -174,6 +174,8 @@ github.com/phpdave11/gofpdf v1.4.2/go.mod h1:zpO6xFn9yxo3YLyMvW8HcKWVdbNqgIfOOp2
github.com/phpdave11/gofpdi v1.0.12/go.mod h1:vBmVV0Do6hSBHC8uKUQ71JGW+ZGQq74llk/7bXwjDoI=
github.com/pierrec/lz4/v4 v4.1.8 h1:ieHkV+i2BRzngO4Wd/3HGowuZStgq6QkPsD1eolNAO4=
github.com/pierrec/lz4/v4 v4.1.8/go.mod h1:gZWDp/Ze/IJXGXf23ltt2EXimqmTUXEy0GFuRQyBid4=
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c h1:+mdjkGKdHQG3305AYmdv1U2eRNDiU2ErMBj1gwrq8eQ=
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c/go.mod h1:7rwL4CYBLnjLxUqIJNnCWiEdr3bn6IUYi15bNlnbCCU=
github.com/pkg/errors v0.8.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
@@ -304,6 +306,7 @@ golang.org/x/sys v0.0.0-20210330210617-4fbd30eecc44/go.mod h1:h1NjWce9XRLGQEsW7w
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.1.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.37.0 h1:fdNQudmxPjkdUTPnLn5mdQv7Zwvbvpaxqs831goi9kQ=

View File

@@ -0,0 +1,148 @@
//go:build integration
package integration
import (
"context"
"encoding/base64"
"fmt"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestImageGeneration(t *testing.T) {
skipUnderMinVRAM(t, 8)
type testCase struct {
imageGenModel string
visionModel string
prompt string
expectedWords []string
}
testCases := []testCase{
{
imageGenModel: "jmorgan/z-image-turbo",
visionModel: "llama3.2-vision",
prompt: "A cartoon style llama flying like a superhero through the air with clouds in the background",
expectedWords: []string{"llama", "flying", "cartoon", "cloud", "sky", "superhero", "air", "animal", "camelid"},
},
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%s->%s", tc.imageGenModel, tc.visionModel), func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Pull both models
if err := PullIfMissing(ctx, client, tc.imageGenModel); err != nil {
t.Fatalf("failed to pull image gen model: %v", err)
}
if err := PullIfMissing(ctx, client, tc.visionModel); err != nil {
t.Fatalf("failed to pull vision model: %v", err)
}
// Generate the image
t.Logf("Generating image with prompt: %s", tc.prompt)
imageBase64, err := generateImage(ctx, client, tc.imageGenModel, tc.prompt)
if err != nil {
if strings.Contains(err.Error(), "image generation not available") {
t.Skip("Target system does not support image generation")
} else if strings.Contains(err.Error(), "executable file not found in") { // Windows pattern, not yet supported
t.Skip("Windows does not support image generation yet")
} else if strings.Contains(err.Error(), "CUDA driver version is insufficient") {
t.Skip("Driver is too old")
} else if strings.Contains(err.Error(), "insufficient memory for image generation") {
t.Skip("insufficient memory for image generation")
} else if strings.Contains(err.Error(), "error while loading shared libraries: libcuda.so.1") { // AMD GPU or CPU
t.Skip("CUDA GPU is not available")
} else if strings.Contains(err.Error(), "ollama-mlx: no such file or directory") {
// most likely linux arm - not supported yet
t.Skip("unsupported architecture")
}
t.Fatalf("failed to generate image: %v", err)
}
imageData, err := base64.StdEncoding.DecodeString(imageBase64)
if err != nil {
t.Fatalf("failed to decode image: %v", err)
}
t.Logf("Generated image: %d bytes", len(imageData))
// Preload vision model and check GPU loading
err = client.Generate(ctx, &api.GenerateRequest{Model: tc.visionModel}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load vision model: %v", err)
}
// Use vision model to describe the image
chatReq := api.ChatRequest{
Model: tc.visionModel,
Messages: []api.Message{
{
Role: "user",
Content: "Describe this image in detail. What is shown? What style is it? What is the main subject doing?",
Images: []api.ImageData{imageData},
},
},
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}
// Verify the vision model's response contains expected keywords
response := DoChat(ctx, t, client, chatReq, tc.expectedWords, 240*time.Second, 30*time.Second)
if response != nil {
t.Logf("Vision model response: %s", response.Content)
// Additional detailed check for keywords
content := strings.ToLower(response.Content)
foundWords := []string{}
missingWords := []string{}
for _, word := range tc.expectedWords {
if strings.Contains(content, word) {
foundWords = append(foundWords, word)
} else {
missingWords = append(missingWords, word)
}
}
t.Logf("Found keywords: %v", foundWords)
if len(missingWords) > 0 {
t.Logf("Missing keywords (at least one was found so test passed): %v", missingWords)
}
}
})
}
}
// generateImage calls the Ollama API to generate an image and returns the base64 image data
func generateImage(ctx context.Context, client *api.Client, model, prompt string) (string, error) {
var imageBase64 string
err := client.Generate(ctx, &api.GenerateRequest{
Model: model,
Prompt: prompt,
}, func(resp api.GenerateResponse) error {
if resp.Image != "" {
imageBase64 = resp.Image
}
return nil
})
if err != nil {
return "", fmt.Errorf("failed to generate image: %w", err)
}
if imageBase64 == "" {
return "", fmt.Errorf("no image data in response")
}
return imageBase64, nil
}

View File

@@ -38,6 +38,7 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"lfm2.5-thinking",
"ministral-3",
"qwen3-coder:30b",
"gpt-oss:20b",
@@ -143,6 +144,7 @@ var (
"granite3.3",
"hermes3",
"internlm2",
"lfm2.5-thinking",
"llama-guard3",
"llama-pro",
"llama2-chinese",
@@ -263,6 +265,7 @@ var (
"snowflake-arctic-embed2",
}
libraryToolsModels = []string{
"lfm2.5-thinking",
"qwen3-vl",
"gpt-oss:20b",
"gpt-oss:120b",

View File

@@ -75,3 +75,10 @@ type Cache interface {
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}
// CheckpointCache optionally supports restoring recurrent state to a prior
// position to avoid full prompt reprocessing when a prefix mismatch occurs.
// The returned position is the number of tokens that can be kept (prefix length).
type CheckpointCache interface {
PrepareRestore(seq int, targetPos int32) (int32, bool)
}

View File

@@ -0,0 +1,309 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: nobody <>
Date: Sat, 24 Jan 2026 02:31:01 +0000
Subject: [PATCH] ggml: enable MLA flash attention for GLM-4.7-flash
Add support for gqa_ratio 4 in MLA flash attention kernels. GLM-4.7-flash
uses head size 576 with gqa_ratio 4, which was previously only supported
for gqa_ratio 16 (DeepSeek).
Metal changes:
- Enable head size 576 for flash attention
- Increase simdgroups to 8 for large heads (>=512)
- Add case 8 kernel dispatch for 8 simdgroups
CUDA changes:
- Add gqa_ratio 4 support for head 576/512
- Add tile configs for (576, 512, 4) and (576, 512, 8)
- Add MMA config cases for ncols 4
- Add template instances for ncols2=4
- Fix nbatch_fa values in nvidia_fp32 config (32->64)
---
ggml/src/ggml-cuda/fattn-mma-f16.cuh | 40 +++++++++++++++----
ggml/src/ggml-cuda/fattn-tile.cuh | 16 ++++++++
ggml/src/ggml-cuda/fattn.cu | 12 ++++--
...ttn-mma-f16-instance-ncols1_16-ncols2_4.cu | 1 +
...attn-mma-f16-instance-ncols1_2-ncols2_4.cu | 1 +
...attn-mma-f16-instance-ncols1_4-ncols2_4.cu | 1 +
...attn-mma-f16-instance-ncols1_8-ncols2_4.cu | 1 +
ggml/src/ggml-metal/ggml-metal-device.m | 8 +---
ggml/src/ggml-metal/ggml-metal-ops.cpp | 2 +-
ggml/src/ggml-metal/ggml-metal.metal | 1 +
10 files changed, 64 insertions(+), 19 deletions(-)
diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh
index 7bd1044c1..3dea2205e 100644
--- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh
+++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh
@@ -66,7 +66,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 32, 128, 128, 128, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 32, 128, 128, 128, 2, true);
- GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -80,7 +81,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 64, 128, 128, 64, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 64, 128, 128, 64, 2, true);
- GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 96, 64, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -89,7 +91,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
}
static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_config_volta(const int DKQ, const int DV, const int ncols) {
- GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 64, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 64, 1, false);
@@ -397,7 +400,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
constexpr int ncols = ncols1 * ncols2;
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
- constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
+ constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa(DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2(DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2(DKQ, DV, ncols);
@@ -467,7 +470,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
} else {
- static_assert(cols_per_warp != 8, "cols_per_warp == 8 not implemented");
#pragma unroll
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += T_A_KQ::J) {
load_ldmatrix(Q_B[0], tile_Q + (threadIdx.y / np)*(T_B_KQ::I*stride_tile_Q) + k_KQ_0, stride_tile_Q);
@@ -479,8 +481,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
T_A_KQ K_A;
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
- // Wide version of KQ_C is column-major => swap A and B.
- mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
+ if constexpr (cols_per_warp == 8) {
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
+ } else {
+ // Wide version of KQ_C is column-major
+#if defined(AMD_WMMA_AVAILABLE)
+ // RDNA matrix C is column-major.
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
+#else
+ // swap A and B for CUDA.
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
+#endif // defined(AMD_WMMA_AVAILABLE)
+ }
}
}
}
@@ -841,7 +853,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
- constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
+ constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa (DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2 (DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2 (DKQ, DV, ncols);
@@ -1353,6 +1365,13 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
+#ifdef VOLTA_MMA_AVAILABLE
+ if (ncols1*ncols2 < 32) {
+ NO_DEVICE_CODE;
+ return;
+ }
+#endif // VOLTA_MMA_AVAILABLE
+
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
if (ncols1*ncols2 > 32) {
NO_DEVICE_CODE;
@@ -1585,3 +1604,8 @@ DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64)
extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);
+
+// For GLM 4.7 Flash
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
diff --git a/ggml/src/ggml-cuda/fattn-tile.cuh b/ggml/src/ggml-cuda/fattn-tile.cuh
index 7c4d6fe67..371be7442 100644
--- a/ggml/src/ggml-cuda/fattn-tile.cuh
+++ b/ggml/src/ggml-cuda/fattn-tile.cuh
@@ -68,6 +68,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
return 0;
@@ -122,6 +124,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 32, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
return 0;
@@ -183,6 +187,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
@@ -245,6 +251,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
@@ -1187,6 +1195,14 @@ static void launch_fattn_tile_switch_ncols2(ggml_backend_cuda_context & ctx, ggm
launch_fattn_tile_switch_ncols1<DKQ, DV, 16, use_logit_softcap>(ctx, dst);
return;
}
+ if (use_gqa_opt && gqa_ratio % 8 == 0) {
+ launch_fattn_tile_switch_ncols1<DKQ, DV, 8, use_logit_softcap>(ctx, dst);
+ return;
+ }
+ if (use_gqa_opt && gqa_ratio % 4 == 0) {
+ launch_fattn_tile_switch_ncols1<DKQ, DV, 4, use_logit_softcap>(ctx, dst);
+ return;
+ }
}
if constexpr (DV <= 256) {
diff --git a/ggml/src/ggml-cuda/fattn.cu b/ggml/src/ggml-cuda/fattn.cu
index 015540666..1693479cb 100644
--- a/ggml/src/ggml-cuda/fattn.cu
+++ b/ggml/src/ggml-cuda/fattn.cu
@@ -111,7 +111,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
break;
case 576: {
- // For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
+ // For Deepseek/GLM4, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
GGML_ASSERT(V->ne[0] == 512);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
@@ -121,8 +121,12 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
- GGML_ASSERT(gqa_ratio % 16 == 0);
- ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
+ GGML_ASSERT(gqa_ratio % 4 == 0);
+ if (gqa_ratio % 16 == 0) {
+ ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
+ } else {
+ ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 4>(ctx, dst);
+ }
} break;
default:
GGML_ABORT("fatal error");
@@ -251,7 +255,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
if (V->ne[0] != 512) {
return BEST_FATTN_KERNEL_NONE;
}
- if (!gqa_opt_applies || gqa_ratio % 16 != 0) {
+ if (!gqa_opt_applies || gqa_ratio % 4 != 0) {
return BEST_FATTN_KERNEL_NONE;
}
break;
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu
index 2074e954a..517993cb0 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu
index 24c64cf00..97b19c67a 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 2, 4);
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu
index 1ada657f1..989626dfa 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu
index 86d4ffae2..173de7aac 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
diff --git a/ggml/src/ggml-metal/ggml-metal-device.m b/ggml/src/ggml-metal/ggml-metal-device.m
index f24270bb1..7b5ee968c 100644
--- a/ggml/src/ggml-metal/ggml-metal-device.m
+++ b/ggml/src/ggml-metal/ggml-metal-device.m
@@ -1071,12 +1071,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
op->src[0]->ne[0] != 112 &&
op->src[0]->ne[0] != 128 &&
op->src[0]->ne[0] != 192 &&
- op->src[0]->ne[0] != 256) {
- return false;
- }
- if (op->src[0]->ne[0] == 576) {
- // DeepSeek sizes
- // TODO: disabled for now, until optmized
+ op->src[0]->ne[0] != 256 &&
+ op->src[0]->ne[0] != 576) {
return false;
}
if (op->src[1]->type != op->src[2]->type) {
diff --git a/ggml/src/ggml-metal/ggml-metal-ops.cpp b/ggml/src/ggml-metal/ggml-metal-ops.cpp
index e99c1763f..80864f303 100644
--- a/ggml/src/ggml-metal/ggml-metal-ops.cpp
+++ b/ggml/src/ggml-metal/ggml-metal-ops.cpp
@@ -2456,7 +2456,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
// simdgroups per threadgroup (a.k.a. warps)
//nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
- int32_t nsg = 4;
+ int32_t nsg = ne00 >= 512 ? 8 : 4;
const size_t smem = FATTN_SMEM(nsg);
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index c98d269d1..d33c16079 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -6166,6 +6166,7 @@ kernel void kernel_flash_attn_ext(
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
+ case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS

View File

@@ -0,0 +1,276 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jeffrey Morgan <jmorganca@gmail.com>
Date: Tue, 3 Feb 2026 12:00:00 -0800
Subject: [PATCH] ggml: metal solve_tri
---
ggml/src/ggml-metal/ggml-metal-device.cpp | 20 +++++++
ggml/src/ggml-metal/ggml-metal-device.h | 1 +
ggml/src/ggml-metal/ggml-metal-device.m | 11 ++++
ggml/src/ggml-metal/ggml-metal-impl.h | 21 ++++++++
ggml/src/ggml-metal/ggml-metal-ops.cpp | 63 +++++++++++++++++++++++
ggml/src/ggml-metal/ggml-metal-ops.h | 1 +
ggml/src/ggml-metal/ggml-metal.metal | 60 +++++++++++++++++++++
7 files changed, 177 insertions(+)
diff --git a/ggml/src/ggml-metal/ggml-metal-device.cpp b/ggml/src/ggml-metal/ggml-metal-device.cpp
index 680904d13..83385c9ef 100644
--- a/ggml/src/ggml-metal/ggml-metal-device.cpp
+++ b/ggml/src/ggml-metal/ggml-metal-device.cpp
@@ -1370,6 +1370,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm(ggml_met
return res;
}
+ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_SOLVE_TRI);
+
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+ GGML_ASSERT(ggml_is_contiguous(op->src[1]));
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_solve_tri_f32");
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
+ if (!res.pipeline) {
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+ }
+
+ return res;
+}
+
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_GROUP_NORM);
diff --git a/ggml/src/ggml-metal/ggml-metal-device.h b/ggml/src/ggml-metal/ggml-metal-device.h
index 0a8b9211a..8a9d17460 100644
--- a/ggml/src/ggml-metal/ggml-metal-device.h
+++ b/ggml/src/ggml-metal/ggml-metal-device.h
@@ -133,6 +133,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
+struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
diff --git a/ggml/src/ggml-metal/ggml-metal-device.m b/ggml/src/ggml-metal/ggml-metal-device.m
index 7b5ee968c..4e5acfbe5 100644
--- a/ggml/src/ggml-metal/ggml-metal-device.m
+++ b/ggml/src/ggml-metal/ggml-metal-device.m
@@ -1023,6 +1023,17 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_L2_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
+ case GGML_OP_SOLVE_TRI:
+ return ggml_is_contiguous(op->src[0]) &&
+ ggml_is_contiguous(op->src[1]) &&
+ op->src[0]->type == GGML_TYPE_F32 &&
+ op->src[1]->type == GGML_TYPE_F32 &&
+ op->type == GGML_TYPE_F32;
+ case GGML_OP_COUNT_EQUAL:
+ return has_simdgroup_reduction &&
+ op->src[0]->type == GGML_TYPE_I32 &&
+ op->src[1]->type == GGML_TYPE_I32 &&
+ op->type == GGML_TYPE_I64;
case GGML_OP_ARGMAX:
return has_simdgroup_reduction;
case GGML_OP_NORM:
diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h
index 8944b07e9..cfdea9c07 100644
--- a/ggml/src/ggml-metal/ggml-metal-impl.h
+++ b/ggml/src/ggml-metal/ggml-metal-impl.h
@@ -500,6 +500,27 @@ typedef struct {
float eps;
} ggml_metal_kargs_l2_norm;
+typedef struct {
+ int32_t ne00;
+ int32_t ne01;
+ int32_t ne02;
+ int32_t ne03;
+ uint64_t nb00;
+ uint64_t nb01;
+ uint64_t nb02;
+ uint64_t nb03;
+ int32_t ne10;
+ int32_t ne11;
+ uint64_t nb10;
+ uint64_t nb11;
+ uint64_t nb12;
+ uint64_t nb13;
+ uint64_t nb0;
+ uint64_t nb1;
+ uint64_t nb2;
+ uint64_t nb3;
+} ggml_metal_kargs_solve_tri;
+
typedef struct {
int64_t ne00;
int64_t ne01;
diff --git a/ggml/src/ggml-metal/ggml-metal-ops.cpp b/ggml/src/ggml-metal/ggml-metal-ops.cpp
index 80864f303..4ac135603 100644
--- a/ggml/src/ggml-metal/ggml-metal-ops.cpp
+++ b/ggml/src/ggml-metal/ggml-metal-ops.cpp
@@ -357,6 +357,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_l2_norm(ctx, idx);
} break;
+ case GGML_OP_SOLVE_TRI:
+ {
+ n_fuse = ggml_metal_op_solve_tri(ctx, idx);
+ } break;
case GGML_OP_GROUP_NORM:
{
n_fuse = ggml_metal_op_group_norm(ctx, idx);
@@ -2931,6 +2935,65 @@ int ggml_metal_op_l2_norm(ggml_metal_op_t ctx, int idx) {
return 1;
}
+int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
+ ggml_tensor * op = ctx->node(idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
+
+ ggml_metal_kargs_solve_tri args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ };
+
+ auto pipeline = ggml_metal_library_get_pipeline_solve_tri(lib, op);
+
+ const int64_t ncols = ne10;
+ const int64_t n_batches = (int64_t)ne02 * ne03;
+ const int64_t nr = n_batches * ncols;
+
+ int nth = 64;
+ nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+ if (nth < 1) {
+ nth = 1;
+ }
+
+ const int64_t n_tg = (nr + nth - 1) / nth;
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, n_tg, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
int ggml_metal_op_group_norm(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
diff --git a/ggml/src/ggml-metal/ggml-metal-ops.h b/ggml/src/ggml-metal/ggml-metal-ops.h
index 902b54452..a475183d3 100644
--- a/ggml/src/ggml-metal/ggml-metal-ops.h
+++ b/ggml/src/ggml-metal/ggml-metal-ops.h
@@ -68,6 +68,7 @@ int ggml_metal_op_add_id (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_flash_attn_ext (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_bin (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_l2_norm (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_group_norm (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_norm (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_rope (ggml_metal_op_t ctx, int idx);
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index d33c16079..c37447a10 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -3012,6 +3012,66 @@ kernel void kernel_l2_norm_f32(
}
}
+kernel void kernel_solve_tri_f32(
+ constant ggml_metal_kargs_solve_tri & args,
+ device const char * src0,
+ device const char * src1,
+ device char * dst,
+ uint tgpig[[threadgroup_position_in_grid]],
+ ushort tpitg[[thread_position_in_threadgroup]],
+ ushort ntg[[threads_per_threadgroup]]) {
+ const uint64_t ncols = (uint64_t) args.ne10;
+ const uint64_t n_batches = (uint64_t) args.ne02 * (uint64_t) args.ne03;
+ const uint64_t nr = n_batches * ncols;
+
+ const uint64_t gid = (uint64_t) tgpig * (uint64_t) ntg + (uint64_t) tpitg;
+ if (gid >= nr) {
+ return;
+ }
+
+ const uint64_t i03 = gid / ((uint64_t) args.ne02 * ncols);
+ const uint64_t rem = gid - i03 * (uint64_t) args.ne02 * ncols;
+ const uint64_t i02 = rem / ncols;
+ const uint64_t i01 = rem - i02 * ncols;
+
+ const uint64_t sa0 = args.nb00 / sizeof(float);
+ const uint64_t sa1 = args.nb01 / sizeof(float);
+ const uint64_t sa2 = args.nb02 / sizeof(float);
+ const uint64_t sa3 = args.nb03 / sizeof(float);
+
+ const uint64_t sb0 = args.nb10 / sizeof(float);
+ const uint64_t sb1 = args.nb11 / sizeof(float);
+ const uint64_t sb2 = args.nb12 / sizeof(float);
+ const uint64_t sb3 = args.nb13 / sizeof(float);
+
+ const uint64_t sx0 = args.nb0 / sizeof(float);
+ const uint64_t sx1 = args.nb1 / sizeof(float);
+ const uint64_t sx2 = args.nb2 / sizeof(float);
+ const uint64_t sx3 = args.nb3 / sizeof(float);
+
+ device const float * A = (device const float *) src0;
+ device const float * B = (device const float *) src1;
+ device float * X = (device float *) dst;
+
+ const uint64_t A_base = i02 * sa2 + i03 * sa3;
+ const uint64_t B_base = i02 * sb2 + i03 * sb3;
+ const uint64_t X_base = i02 * sx2 + i03 * sx3;
+
+ const uint64_t n = (uint64_t) args.ne11;
+
+ for (uint64_t i00 = 0; i00 < n; ++i00) {
+ float sum = 0.0f;
+ for (uint64_t t = 0; t < i00; ++t) {
+ sum += A[A_base + i00 * sa1 + t * sa0] *
+ X[X_base + t * sx1 + i01 * sx0];
+ }
+
+ const float diag = A[A_base + i00 * sa1 + i00 * sa0];
+ X[X_base + i00 * sx1 + i01 * sx0] =
+ (B[B_base + i00 * sb1 + i01 * sb0] - sum) / diag;
+ }
+}
+
kernel void kernel_group_norm_f32(
constant ggml_metal_kargs_group_norm & args,
device const float * src0,

View File

@@ -80,6 +80,7 @@ type LlamaServer interface {
GetPort() int
GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
HasExited() bool
ContextLength() int
}
// llmServer is an instance of a runner hosting a single model
@@ -1200,7 +1201,8 @@ func (s *llmServer) initModel(ctx context.Context, req LoadRequest, operation Lo
resp, err := http.DefaultClient.Do(r)
if err != nil {
return nil, fmt.Errorf("do load request: %w", err)
slog.Error("do load request", "error", err)
return nil, errors.New("model failed to load, this may be due to resource limitations or an internal error, check ollama server logs for details")
}
defer resp.Body.Close()
@@ -1901,6 +1903,10 @@ func (s *llmServer) VRAMByGPU(id ml.DeviceID) uint64 {
return 0
}
func (s *llmServer) ContextLength() int {
return s.options.NumCtx
}
func (s *ollamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
devices, err := ml.GetDevicesFromRunner(ctx, s)
if err != nil {

View File

@@ -1,4 +1,4 @@
package server
package manifest
import (
"crypto/sha256"
@@ -14,7 +14,7 @@ type Layer struct {
Size int64 `json:"size"`
From string `json:"from,omitempty"`
Name string `json:"name,omitempty"` // tensor name, e.g., "text_encoder/model.embed_tokens.weight"
status string
Status string `json:"-"`
}
const (
@@ -22,7 +22,7 @@ const (
)
func NewLayer(r io.Reader, mediatype string) (Layer, error) {
blobs, err := GetBlobsPath("")
blobs, err := BlobsPath("")
if err != nil {
return Layer{}, err
}
@@ -45,7 +45,7 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
}
digest := fmt.Sprintf("sha256:%x", sha256sum.Sum(nil))
blob, err := GetBlobsPath(digest)
blob, err := BlobsPath(digest)
if err != nil {
return Layer{}, err
}
@@ -65,7 +65,7 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
MediaType: mediatype,
Digest: digest,
Size: n,
status: fmt.Sprintf("%s %s", status, digest),
Status: fmt.Sprintf("%s %s", status, digest),
}, nil
}
@@ -74,7 +74,7 @@ func NewLayerFromLayer(digest, mediatype, from string) (Layer, error) {
return Layer{}, errors.New("creating new layer from layer with empty digest")
}
blob, err := GetBlobsPath(digest)
blob, err := BlobsPath(digest)
if err != nil {
return Layer{}, err
}
@@ -89,7 +89,7 @@ func NewLayerFromLayer(digest, mediatype, from string) (Layer, error) {
Digest: digest,
Size: fi.Size(),
From: from,
status: fmt.Sprintf("using existing layer %s", digest),
Status: fmt.Sprintf("using existing layer %s", digest),
}, nil
}
@@ -98,7 +98,7 @@ func (l *Layer) Open() (io.ReadSeekCloser, error) {
return nil, errors.New("opening layer with empty digest")
}
blob, err := GetBlobsPath(l.Digest)
blob, err := BlobsPath(l.Digest)
if err != nil {
return nil, err
}
@@ -126,7 +126,7 @@ func (l *Layer) Remove() error {
}
}
blob, err := GetBlobsPath(l.Digest)
blob, err := BlobsPath(l.Digest)
if err != nil {
return err
}

View File

@@ -1,10 +1,9 @@
package server
package manifest
import (
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
@@ -33,12 +32,38 @@ func (m *Manifest) Size() (size int64) {
return
}
func (m *Manifest) Digest() string {
return m.digest
}
func (m *Manifest) FileInfo() os.FileInfo {
return m.fi
}
// ReadConfigJSON reads and unmarshals a config layer as JSON.
func (m *Manifest) ReadConfigJSON(configPath string, v any) error {
for _, layer := range m.Layers {
if layer.MediaType == "application/vnd.ollama.image.json" && layer.Name == configPath {
blobPath, err := BlobsPath(layer.Digest)
if err != nil {
return err
}
data, err := os.ReadFile(blobPath)
if err != nil {
return err
}
return json.Unmarshal(data, v)
}
}
return fmt.Errorf("config %q not found in manifest", configPath)
}
func (m *Manifest) Remove() error {
if err := os.Remove(m.filepath); err != nil {
return err
}
manifests, err := GetManifestPath()
manifests, err := Path()
if err != nil {
return err
}
@@ -70,11 +95,11 @@ func (m *Manifest) RemoveLayers() error {
if _, used := inUse[layer.Digest]; used {
continue
}
blob, err := GetBlobsPath(layer.Digest)
blob, err := BlobsPath(layer.Digest)
if err != nil {
return err
}
if err := os.Remove(blob); errors.Is(err, os.ErrNotExist) {
if err := os.Remove(blob); os.IsNotExist(err) {
slog.Debug("layer does not exist", "digest", layer.Digest)
} else if err != nil {
return err
@@ -89,7 +114,7 @@ func ParseNamedManifest(n model.Name) (*Manifest, error) {
return nil, model.Unqualified(n)
}
manifests, err := GetManifestPath()
manifests, err := Path()
if err != nil {
return nil, err
}
@@ -121,7 +146,7 @@ func ParseNamedManifest(n model.Name) (*Manifest, error) {
}
func WriteManifest(name model.Name, config Layer, layers []Layer) error {
manifests, err := GetManifestPath()
manifests, err := Path()
if err != nil {
return err
}
@@ -148,7 +173,7 @@ func WriteManifest(name model.Name, config Layer, layers []Layer) error {
}
func Manifests(continueOnError bool) (map[model.Name]*Manifest, error) {
manifests, err := GetManifestPath()
manifests, err := Path()
if err != nil {
return nil, err
}

View File

@@ -1,4 +1,4 @@
package server
package manifest
import (
"encoding/json"

95
manifest/paths.go Normal file
View File

@@ -0,0 +1,95 @@
package manifest
import (
"errors"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
var ErrInvalidDigestFormat = errors.New("invalid digest format")
func Path() (string, error) {
path := filepath.Join(envconfig.Models(), "manifests")
if err := os.MkdirAll(path, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
}
return path, nil
}
// PathForName returns the path to the manifest file for a specific model name.
func PathForName(n model.Name) (string, error) {
if !n.IsValid() {
return "", os.ErrNotExist
}
manifests, err := Path()
if err != nil {
return "", err
}
return filepath.Join(manifests, n.Filepath()), nil
}
func BlobsPath(digest string) (string, error) {
// only accept actual sha256 digests
pattern := "^sha256[:-][0-9a-fA-F]{64}$"
re := regexp.MustCompile(pattern)
if digest != "" && !re.MatchString(digest) {
return "", ErrInvalidDigestFormat
}
digest = strings.ReplaceAll(digest, ":", "-")
path := filepath.Join(envconfig.Models(), "blobs", digest)
dirPath := filepath.Dir(path)
if digest == "" {
dirPath = path
}
if err := os.MkdirAll(dirPath, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
}
return path, nil
}
// PruneDirectory removes empty directories recursively.
func PruneDirectory(path string) error {
info, err := os.Lstat(path)
if err != nil {
return err
}
if info.IsDir() && info.Mode()&os.ModeSymlink == 0 {
entries, err := os.ReadDir(path)
if err != nil {
return err
}
for _, entry := range entries {
if err := PruneDirectory(filepath.Join(path, entry.Name())); err != nil {
return err
}
}
entries, err = os.ReadDir(path)
if err != nil {
return err
}
if len(entries) > 0 {
return nil
}
return os.Remove(path)
}
return nil
}

View File

@@ -131,12 +131,15 @@ func AnthropicMessagesMiddleware() gin.HandlerFunc {
messageID := anthropic.GenerateMessageID()
// Estimate input tokens for streaming (actual count not available until generation completes)
estimatedTokens := anthropic.EstimateInputTokens(req)
w := &AnthropicWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
stream: req.Stream,
id: messageID,
model: req.Model,
converter: anthropic.NewStreamConverter(messageID, req.Model),
converter: anthropic.NewStreamConverter(messageID, req.Model, estimatedTokens),
}
if req.Stream {

View File

@@ -609,3 +609,49 @@ func ImageGenerationsMiddleware() gin.HandlerFunc {
c.Next()
}
}
func ImageEditsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ImageEditRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Prompt == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "prompt is required"))
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "model is required"))
return
}
if req.Image == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "image is required"))
return
}
genReq, err := openai.FromImageEditRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(genReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &ImageWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
}
c.Writer = w
c.Next()
}
}

View File

@@ -1112,3 +1112,129 @@ func TestImageWriterResponse(t *testing.T) {
t.Errorf("expected image data 'dGVzdC1pbWFnZS1kYXRh', got %s", imageResp.Data[0].B64JSON)
}
}
func TestImageEditsMiddleware(t *testing.T) {
type testCase struct {
name string
body string
req api.GenerateRequest
err openai.ErrorResponse
}
var capturedRequest *api.GenerateRequest
// Base64-encoded test image (1x1 pixel PNG)
testImage := ""
decodedImage, _ := base64.StdEncoding.DecodeString("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=")
testCases := []testCase{
{
name: "image edit basic",
body: `{
"model": "test-model",
"prompt": "make it blue",
"image": "` + testImage + `"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "make it blue",
Images: []api.ImageData{decodedImage},
},
},
{
name: "image edit with size",
body: `{
"model": "test-model",
"prompt": "make it blue",
"image": "` + testImage + `",
"size": "512x768"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "make it blue",
Images: []api.ImageData{decodedImage},
Width: 512,
Height: 768,
},
},
{
name: "image edit missing prompt",
body: `{
"model": "test-model",
"image": "` + testImage + `"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "prompt is required",
Type: "invalid_request_error",
},
},
},
{
name: "image edit missing model",
body: `{
"prompt": "make it blue",
"image": "` + testImage + `"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "model is required",
Type: "invalid_request_error",
},
},
},
{
name: "image edit missing image",
body: `{
"model": "test-model",
"prompt": "make it blue"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "image is required",
Type: "invalid_request_error",
},
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ImageEditsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if tc.err.Error.Message != "" {
var errResp openai.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tc.err, errResp); diff != "" {
t.Fatalf("errors did not match:\n%s", diff)
}
return
}
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
if diff := cmp.Diff(&tc.req, capturedRequest); diff != "" {
t.Fatalf("requests did not match:\n%s", diff)
}
})
}
}

View File

@@ -162,6 +162,7 @@ type Tensor interface {
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Conv3D(ctx Context, weight Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) Tensor
SSMConv(ctx Context, kernel Tensor) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
@@ -169,6 +170,7 @@ type Tensor interface {
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
GELU_ERF(ctx Context) Tensor
QuickGELU(ctx Context, up ...Tensor) Tensor
SILU(ctx Context, up ...Tensor) Tensor
RELU(ctx Context, up ...Tensor) Tensor
@@ -205,6 +207,32 @@ type Tensor interface {
Stddev(ctx Context) Tensor
Sqr(ctx Context) Tensor
Sqrt(ctx Context) Tensor
Exp(ctx Context) Tensor
Neg(ctx Context) Tensor
// Clamp clamps values to [min, max] range
Clamp(ctx Context, min, max float32) Tensor
// Softplus computes ln(1 + exp(x))
Softplus(ctx Context) Tensor
// CumSum computes cumulative sum along dimension 0
CumSum(ctx Context) Tensor
// Diag creates a diagonal matrix from a 1D tensor
Diag(ctx Context) Tensor
// Tri converts a matrix to triangular form (0=upper+diag, 1=upper, 2=lower+diag, 3=lower)
Tri(ctx Context, triType int) Tensor
// Fill fills a tensor with a constant value (in-place)
Fill(ctx Context, value float32) Tensor
// Repeat4D repeats tensor to match target shape
Repeat4D(ctx Context, dim0, dim1, dim2, dim3 int) Tensor
// SolveTri solves a triangular system Ax = B
SolveTri(ctx Context, b Tensor, lower, left, unitDiag bool) Tensor
Interpolate(ctx Context, dims [4]int, samplingMode SamplingMode) Tensor
}

View File

@@ -378,7 +378,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
}
maxGraphNodes := max(1024, len(meta.Tensors().Items())*8)
maxGraphNodes := max(1024, len(meta.Tensors().Items())*32)
sched := C.ggml_backend_sched_new_ext(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
@@ -1581,6 +1581,13 @@ func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) GELU_ERF(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_erf_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) QuickGELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
var tt *C.struct_ggml_tensor
if len(t2) > 0 {
@@ -1641,6 +1648,13 @@ func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2,
return tt
}
func (t *Tensor) SSMConv(ctx ml.Context, kernel ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_ssm_conv(ctx.(*Context).ctx, t.t, kernel.(*Tensor).t),
}
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1765,6 +1779,76 @@ func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Exp(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_exp(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
}
}
func (t *Tensor) Softplus(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_softplus(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) CumSum(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cumsum(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Diag(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_diag(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tri(ctx ml.Context, triType int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_tri(ctx.(*Context).ctx, t.t, C.enum_ggml_tri_type(triType)),
}
}
func (t *Tensor) Fill(ctx ml.Context, value float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_fill_inplace(ctx.(*Context).ctx, t.t, C.float(value)),
}
}
func (t *Tensor) Repeat4D(ctx ml.Context, dim0, dim1, dim2, dim3 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_repeat_4d(ctx.(*Context).ctx, t.t, C.int64_t(dim0), C.int64_t(dim1), C.int64_t(dim2), C.int64_t(dim3)),
}
}
func (t *Tensor) SolveTri(ctx ml.Context, b ml.Tensor, lower, left, unitDiag bool) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_solve_tri(ctx.(*Context).ctx, t.t, b.(*Tensor).t, C._Bool(lower), C._Bool(left), C._Bool(unitDiag)),
}
}
func (t *Tensor) Interpolate(ctx ml.Context, dims [4]int, samplingMode ml.SamplingMode) ml.Tensor {
var mode C.uint32_t
switch samplingMode {

View File

@@ -66,7 +66,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 32, 128, 128, 128, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 32, 128, 128, 128, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -80,7 +81,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 64, 128, 128, 64, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 64, 128, 128, 64, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -89,7 +91,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
}
static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_config_volta(const int DKQ, const int DV, const int ncols) {
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 64, 1, false);
@@ -397,7 +400,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
constexpr int ncols = ncols1 * ncols2;
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa(DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2(DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2(DKQ, DV, ncols);
@@ -467,7 +470,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
} else {
static_assert(cols_per_warp != 8, "cols_per_warp == 8 not implemented");
#pragma unroll
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += T_A_KQ::J) {
load_ldmatrix(Q_B[0], tile_Q + (threadIdx.y / np)*(T_B_KQ::I*stride_tile_Q) + k_KQ_0, stride_tile_Q);
@@ -479,8 +481,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
T_A_KQ K_A;
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
// Wide version of KQ_C is column-major => swap A and B.
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
if constexpr (cols_per_warp == 8) {
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
} else {
// Wide version of KQ_C is column-major
#if defined(AMD_WMMA_AVAILABLE)
// RDNA matrix C is column-major.
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
#else
// swap A and B for CUDA.
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
#endif // defined(AMD_WMMA_AVAILABLE)
}
}
}
}
@@ -841,7 +853,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa (DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2 (DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2 (DKQ, DV, ncols);
@@ -1353,6 +1365,13 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
#ifdef VOLTA_MMA_AVAILABLE
if (ncols1*ncols2 < 32) {
NO_DEVICE_CODE;
return;
}
#endif // VOLTA_MMA_AVAILABLE
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
if (ncols1*ncols2 > 32) {
NO_DEVICE_CODE;
@@ -1585,3 +1604,8 @@ DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64)
extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);
// For GLM 4.7 Flash
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);

View File

@@ -68,6 +68,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
return 0;
@@ -122,6 +124,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
return 0;
@@ -183,6 +187,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
@@ -245,6 +251,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
@@ -1187,6 +1195,14 @@ static void launch_fattn_tile_switch_ncols2(ggml_backend_cuda_context & ctx, ggm
launch_fattn_tile_switch_ncols1<DKQ, DV, 16, use_logit_softcap>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio % 8 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 8, use_logit_softcap>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio % 4 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 4, use_logit_softcap>(ctx, dst);
return;
}
}
if constexpr (DV <= 256) {

View File

@@ -111,7 +111,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
break;
case 576: {
// For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
// For Deepseek/GLM4, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
GGML_ASSERT(V->ne[0] == 512);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
@@ -121,8 +121,12 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
GGML_ASSERT(gqa_ratio % 16 == 0);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
GGML_ASSERT(gqa_ratio % 4 == 0);
if (gqa_ratio % 16 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 4>(ctx, dst);
}
} break;
default:
GGML_ABORT("fatal error");
@@ -251,7 +255,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
if (V->ne[0] != 512) {
return BEST_FATTN_KERNEL_NONE;
}
if (!gqa_opt_applies || gqa_ratio % 16 != 0) {
if (!gqa_opt_applies || gqa_ratio % 4 != 0) {
return BEST_FATTN_KERNEL_NONE;
}
break;

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 2, 4);

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);

View File

@@ -1370,6 +1370,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm(ggml_met
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_SOLVE_TRI);
GGML_ASSERT(ggml_is_contiguous(op->src[0]));
GGML_ASSERT(ggml_is_contiguous(op->src[1]));
char base[256];
char name[256];
snprintf(base, 256, "kernel_solve_tri_f32");
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
}
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_GROUP_NORM);

View File

@@ -133,6 +133,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);

View File

@@ -1023,6 +1023,17 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_L2_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
case GGML_OP_SOLVE_TRI:
return ggml_is_contiguous(op->src[0]) &&
ggml_is_contiguous(op->src[1]) &&
op->src[0]->type == GGML_TYPE_F32 &&
op->src[1]->type == GGML_TYPE_F32 &&
op->type == GGML_TYPE_F32;
case GGML_OP_COUNT_EQUAL:
return has_simdgroup_reduction &&
op->src[0]->type == GGML_TYPE_I32 &&
op->src[1]->type == GGML_TYPE_I32 &&
op->type == GGML_TYPE_I64;
case GGML_OP_ARGMAX:
return has_simdgroup_reduction;
case GGML_OP_NORM:
@@ -1071,12 +1082,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
op->src[0]->ne[0] != 112 &&
op->src[0]->ne[0] != 128 &&
op->src[0]->ne[0] != 192 &&
op->src[0]->ne[0] != 256) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek sizes
// TODO: disabled for now, until optmized
op->src[0]->ne[0] != 256 &&
op->src[0]->ne[0] != 576) {
return false;
}
if (op->src[1]->type != op->src[2]->type) {

View File

@@ -2385,6 +2385,27 @@ typedef struct {
float eps;
} ggml_metal_kargs_l2_norm;
typedef struct {
int32_t ne00;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne10;
int32_t ne11;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_solve_tri;
typedef struct {
int64_t ne00;
int64_t ne01;
@@ -5813,6 +5834,66 @@ kernel void kernel_l2_norm_f32(
}
}
kernel void kernel_solve_tri_f32(
constant ggml_metal_kargs_solve_tri & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort ntg[[threads_per_threadgroup]]) {
const uint64_t ncols = (uint64_t) args.ne10;
const uint64_t n_batches = (uint64_t) args.ne02 * (uint64_t) args.ne03;
const uint64_t nr = n_batches * ncols;
const uint64_t gid = (uint64_t) tgpig * (uint64_t) ntg + (uint64_t) tpitg;
if (gid >= nr) {
return;
}
const uint64_t i03 = gid / ((uint64_t) args.ne02 * ncols);
const uint64_t rem = gid - i03 * (uint64_t) args.ne02 * ncols;
const uint64_t i02 = rem / ncols;
const uint64_t i01 = rem - i02 * ncols;
const uint64_t sa0 = args.nb00 / sizeof(float);
const uint64_t sa1 = args.nb01 / sizeof(float);
const uint64_t sa2 = args.nb02 / sizeof(float);
const uint64_t sa3 = args.nb03 / sizeof(float);
const uint64_t sb0 = args.nb10 / sizeof(float);
const uint64_t sb1 = args.nb11 / sizeof(float);
const uint64_t sb2 = args.nb12 / sizeof(float);
const uint64_t sb3 = args.nb13 / sizeof(float);
const uint64_t sx0 = args.nb0 / sizeof(float);
const uint64_t sx1 = args.nb1 / sizeof(float);
const uint64_t sx2 = args.nb2 / sizeof(float);
const uint64_t sx3 = args.nb3 / sizeof(float);
device const float * A = (device const float *) src0;
device const float * B = (device const float *) src1;
device float * X = (device float *) dst;
const uint64_t A_base = i02 * sa2 + i03 * sa3;
const uint64_t B_base = i02 * sb2 + i03 * sb3;
const uint64_t X_base = i02 * sx2 + i03 * sx3;
const uint64_t n = (uint64_t) args.ne11;
for (uint64_t i00 = 0; i00 < n; ++i00) {
float sum = 0.0f;
for (uint64_t t = 0; t < i00; ++t) {
sum += A[A_base + i00 * sa1 + t * sa0] *
X[X_base + t * sx1 + i01 * sx0];
}
const float diag = A[A_base + i00 * sa1 + i00 * sa0];
X[X_base + i00 * sx1 + i01 * sx0] =
(B[B_base + i00 * sb1 + i01 * sb0] - sum) / diag;
}
}
kernel void kernel_group_norm_f32(
constant ggml_metal_kargs_group_norm & args,
device const float * src0,
@@ -8967,6 +9048,7 @@ kernel void kernel_flash_attn_ext(
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS

View File

@@ -500,6 +500,27 @@ typedef struct {
float eps;
} ggml_metal_kargs_l2_norm;
typedef struct {
int32_t ne00;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne10;
int32_t ne11;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_solve_tri;
typedef struct {
int64_t ne00;
int64_t ne01;

View File

@@ -357,6 +357,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_l2_norm(ctx, idx);
} break;
case GGML_OP_SOLVE_TRI:
{
n_fuse = ggml_metal_op_solve_tri(ctx, idx);
} break;
case GGML_OP_GROUP_NORM:
{
n_fuse = ggml_metal_op_group_norm(ctx, idx);
@@ -2456,7 +2460,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
// simdgroups per threadgroup (a.k.a. warps)
//nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
int32_t nsg = 4;
int32_t nsg = ne00 >= 512 ? 8 : 4;
const size_t smem = FATTN_SMEM(nsg);
@@ -2931,6 +2935,65 @@ int ggml_metal_op_l2_norm(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_kargs_solve_tri args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
};
auto pipeline = ggml_metal_library_get_pipeline_solve_tri(lib, op);
const int64_t ncols = ne10;
const int64_t n_batches = (int64_t)ne02 * ne03;
const int64_t nr = n_batches * ncols;
int nth = 64;
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
if (nth < 1) {
nth = 1;
}
const int64_t n_tg = (nr + nth - 1) / nth;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
ggml_metal_encoder_dispatch_threadgroups(enc, n_tg, 1, 1, nth, 1, 1);
return 1;
}
int ggml_metal_op_group_norm(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);

View File

@@ -68,6 +68,7 @@ int ggml_metal_op_add_id (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_flash_attn_ext (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_bin (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_l2_norm (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_group_norm (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_norm (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_rope (ggml_metal_op_t ctx, int idx);

View File

@@ -3012,6 +3012,66 @@ kernel void kernel_l2_norm_f32(
}
}
kernel void kernel_solve_tri_f32(
constant ggml_metal_kargs_solve_tri & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort ntg[[threads_per_threadgroup]]) {
const uint64_t ncols = (uint64_t) args.ne10;
const uint64_t n_batches = (uint64_t) args.ne02 * (uint64_t) args.ne03;
const uint64_t nr = n_batches * ncols;
const uint64_t gid = (uint64_t) tgpig * (uint64_t) ntg + (uint64_t) tpitg;
if (gid >= nr) {
return;
}
const uint64_t i03 = gid / ((uint64_t) args.ne02 * ncols);
const uint64_t rem = gid - i03 * (uint64_t) args.ne02 * ncols;
const uint64_t i02 = rem / ncols;
const uint64_t i01 = rem - i02 * ncols;
const uint64_t sa0 = args.nb00 / sizeof(float);
const uint64_t sa1 = args.nb01 / sizeof(float);
const uint64_t sa2 = args.nb02 / sizeof(float);
const uint64_t sa3 = args.nb03 / sizeof(float);
const uint64_t sb0 = args.nb10 / sizeof(float);
const uint64_t sb1 = args.nb11 / sizeof(float);
const uint64_t sb2 = args.nb12 / sizeof(float);
const uint64_t sb3 = args.nb13 / sizeof(float);
const uint64_t sx0 = args.nb0 / sizeof(float);
const uint64_t sx1 = args.nb1 / sizeof(float);
const uint64_t sx2 = args.nb2 / sizeof(float);
const uint64_t sx3 = args.nb3 / sizeof(float);
device const float * A = (device const float *) src0;
device const float * B = (device const float *) src1;
device float * X = (device float *) dst;
const uint64_t A_base = i02 * sa2 + i03 * sa3;
const uint64_t B_base = i02 * sb2 + i03 * sb3;
const uint64_t X_base = i02 * sx2 + i03 * sx3;
const uint64_t n = (uint64_t) args.ne11;
for (uint64_t i00 = 0; i00 < n; ++i00) {
float sum = 0.0f;
for (uint64_t t = 0; t < i00; ++t) {
sum += A[A_base + i00 * sa1 + t * sa0] *
X[X_base + t * sx1 + i01 * sx0];
}
const float diag = A[A_base + i00 * sa1 + i00 * sa0];
X[X_base + i00 * sx1 + i01 * sx0] =
(B[B_base + i00 * sb1 + i01 * sb0] - sum) / diag;
}
}
kernel void kernel_group_norm_f32(
constant ggml_metal_kargs_group_norm & args,
device const float * src0,
@@ -6166,6 +6226,7 @@ kernel void kernel_flash_attn_ext(
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS

View File

@@ -39,6 +39,13 @@ type Model interface {
Config() config
}
// Validator is an optional interface that models can implement to perform
// validation after tensors have been loaded. If validation fails, model
// loading will fail with the returned error.
type Validator interface {
Validate() error
}
// MultimodalProcessor must be implemented by multimodal models.
type MultimodalProcessor interface {
// EncodeMultimodal processes a single input (such as an image) and
@@ -116,6 +123,13 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
if validator, ok := m.(Validator); ok {
if err := validator.Validate(); err != nil {
return nil, err
}
}
return m, nil
}

View File

@@ -56,6 +56,18 @@ type fakeTensor struct {
Name string
}
// Stub methods to satisfy ml.Tensor interface
func (f *fakeTensor) Exp(ctx ml.Context) ml.Tensor { return f }
func (f *fakeTensor) Neg(ctx ml.Context) ml.Tensor { return f }
func (f *fakeTensor) Clamp(ctx ml.Context, _, _ float32) ml.Tensor { return f }
func (f *fakeTensor) Softplus(ctx ml.Context) ml.Tensor { return f }
func (f *fakeTensor) CumSum(ctx ml.Context) ml.Tensor { return f }
func (f *fakeTensor) Diag(ctx ml.Context) ml.Tensor { return f }
func (f *fakeTensor) Tri(ctx ml.Context, _ int) ml.Tensor { return f }
func (f *fakeTensor) Fill(ctx ml.Context, _ float32) ml.Tensor { return f }
func (f *fakeTensor) Repeat4D(ctx ml.Context, _, _, _, _ int) ml.Tensor { return f }
func (f *fakeTensor) SolveTri(ctx ml.Context, _ ml.Tensor, _, _, _ bool) ml.Tensor { return f }
func (m *fakeBackend) Get(name string) ml.Tensor {
if slices.Contains(m.names, name) {
return &fakeTensor{Name: name}

View File

@@ -1,6 +1,7 @@
package glm4moelite
import (
"errors"
"math"
"github.com/ollama/ollama/fs"
@@ -11,6 +12,8 @@ import (
"github.com/ollama/ollama/model/input"
)
var ErrOldModelFormat = errors.New("this model uses a weight format that is no longer supported; please re-download it")
type Options struct {
numExpertsUsed int
numExperts int
@@ -47,7 +50,9 @@ type Attention struct {
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
KB *nn.Linear `gguf:"attn_k_b"`
VB *nn.Linear `gguf:"attn_v_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
@@ -78,15 +83,16 @@ func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor
qRot := opts.applyRotaryPositionEmbeddings(ctx, queryChunks[1], positions)
kRot = opts.applyRotaryPositionEmbeddings(ctx, kRot, positions)
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
// MLA absorption: absorb K projection into query
qPass := queryChunks[0].Permute(ctx, 0, 2, 1, 3)
qPassAbsorb := attn.KB.Forward(ctx, qPass).Permute(ctx, 0, 2, 1, 3)
query = qRot.Concat(ctx, qPassAbsorb, 0)
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
query = qRot.Concat(ctx, queryChunks[0], 0)
key := kRot.Concat(ctx, kvChunks[0], 0)
attention := nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
kPass = kPass.Reshape(ctx, opts.kvLoraRank, 1, seqLength)
key := kRot.Concat(ctx, kPass, 0)
attention := nn.AttentionWithVMLA(ctx, query, key, kPass, nil, attn.VB.Weight, opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
@@ -217,7 +223,6 @@ func New(c fs.Config) (model.Model, error) {
keyLength := int(c.Uint("attention.key_length"))
valueLength := int(c.Uint("attention.value_length"))
kqScale := 1.0 / math.Sqrt(float64(keyLength))
var pre []string
@@ -236,7 +241,7 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
@@ -279,6 +284,15 @@ func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Validate() error {
for _, layer := range m.Layers {
if layer.Attention != nil && (layer.Attention.KB == nil || layer.Attention.VB == nil) {
return ErrOldModelFormat
}
}
return nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))

View File

@@ -0,0 +1,73 @@
package glm4moelite
import (
"testing"
"github.com/ollama/ollama/ml/nn"
)
func TestValidate(t *testing.T) {
tests := []struct {
name string
model *Model
wantErr bool
}{
{
name: "valid model with KB and VB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{KB: &nn.Linear{}, VB: &nn.Linear{}}},
},
},
wantErr: false,
},
{
name: "missing KB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{VB: &nn.Linear{}}},
},
},
wantErr: true,
},
{
name: "missing VB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{KB: &nn.Linear{}}},
},
},
wantErr: true,
},
{
name: "missing both KB and VB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{}},
},
},
wantErr: true,
},
{
name: "nil Attention is ok",
model: &Model{
Layers: []Layer{
{Attention: nil},
},
},
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
err := tt.model.Validate()
if (err != nil) != tt.wantErr {
t.Errorf("Validate() error = %v, wantErr %v", err, tt.wantErr)
}
if tt.wantErr && err != ErrOldModelFormat {
t.Errorf("Validate() error = %v, want %v", err, ErrOldModelFormat)
}
})
}
}

View File

@@ -0,0 +1,174 @@
package glmocr
import (
"image"
"log/slog"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/model/imageproc"
)
type ImageProcessor struct {
imageSize int
patchSize int
temporalPatchSize int
spatialMergeSize int
minPixels int
maxPixels int
factor int
imageMean [3]float32
imageStd [3]float32
}
func newImageProcessor(c fs.Config) ImageProcessor {
patchSize := int(c.Uint("vision.patch_size", 14))
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
// Read normalization values from config if available, otherwise use CLIP defaults
imageMean := c.Floats("vision.image_mean", imageproc.ClipDefaultMean[:])
imageStd := c.Floats("vision.image_std", imageproc.ClipDefaultSTD[:])
// Default max_pixels: 2048 * patchSize^2 * mergeSize^2 * temporal = ~3.2M pixels
// This limits to ~16k patches (4k output tokens) to keep memory stable without flash attention
defaultMaxPixels := 2048 * patchSize * patchSize * spatialMergeSize * spatialMergeSize * temporalPatchSize
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size", 336)),
patchSize: patchSize,
temporalPatchSize: temporalPatchSize,
spatialMergeSize: spatialMergeSize,
minPixels: int(c.Uint("vision.min_pixels", uint32(8*patchSize*patchSize*spatialMergeSize*spatialMergeSize*temporalPatchSize))),
maxPixels: int(c.Uint("vision.max_pixels", uint32(defaultMaxPixels))),
factor: patchSize * spatialMergeSize,
imageMean: [3]float32{imageMean[0], imageMean[1], imageMean[2]},
imageStd: [3]float32{imageStd[0], imageStd[1], imageStd[2]},
}
}
func (p *ImageProcessor) SmartResize(height, width int) (int, int) {
factor := p.factor
temporalFactor := p.temporalPatchSize
numFrames := temporalFactor // single image
if height < factor || width < factor {
// Scale up small images
scale := float64(factor) / float64(min(height, width))
height = int(math.Ceil(float64(height) * scale))
width = int(math.Ceil(float64(width) * scale))
}
if temporalFactor <= 0 {
slog.Warn("temporal_patch_size must be > 0, defaulting to 1")
temporalFactor = 1
}
if numFrames < temporalFactor {
slog.Warn("num_frames must be >= temporal_patch_size, adjusting num_frames", "num_frames", numFrames, "temporal_patch_size", temporalFactor)
numFrames = temporalFactor
}
if aspectRatio := float64(max(height, width)) / float64(min(height, width)); aspectRatio > 200 {
slog.Warn("aspect ratio exceeds 200, image quality may be affected", "aspect_ratio", aspectRatio)
}
round := func(x float64) int { return int(math.RoundToEven(x)) }
hBar := round(float64(height)/float64(factor)) * factor
wBar := round(float64(width)/float64(factor)) * factor
tBar := round(float64(numFrames)/float64(temporalFactor)) * temporalFactor
if tBar*hBar*wBar > p.maxPixels {
beta := math.Sqrt(float64(numFrames*height*width) / float64(p.maxPixels))
hBar = int(math.Floor(float64(height)/beta/float64(factor))) * factor
wBar = int(math.Floor(float64(width)/beta/float64(factor))) * factor
} else if tBar*hBar*wBar < p.minPixels {
beta := math.Sqrt(float64(p.minPixels) / float64(numFrames*height*width))
hBar = int(math.Ceil(float64(height)*beta/float64(factor))) * factor
wBar = int(math.Ceil(float64(width)*beta/float64(factor))) * factor
}
return hBar, wBar
}
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, *Grid, error) {
img = imageproc.Composite(img)
origWidth := img.Bounds().Dx()
origHeight := img.Bounds().Dy()
// Calculate smart resize dimensions
resizedHeight, resizedWidth := p.SmartResize(origHeight, origWidth)
// Resize image
resizedImg := imageproc.Resize(img, image.Point{X: resizedWidth, Y: resizedHeight}, imageproc.ResizeCatmullrom)
// Normalize pixels - output format is [C, H, W] with rescale and channelFirst
// We keep [C, H, W] for patch extraction
normalizedPixels := imageproc.Normalize(resizedImg, p.imageMean, p.imageStd, true, true)
// Calculate grid dimensions (after Conv2D patching)
grid := &Grid{
Height: resizedHeight / p.patchSize,
Width: resizedWidth / p.patchSize,
Temporal: 1, // Single image
ImageHeight: resizedHeight,
ImageWidth: resizedWidth,
}
patches, err := p.createPatches(normalizedPixels, resizedHeight, resizedWidth, grid)
if err != nil {
return nil, nil, err
}
return patches, grid, nil
}
func (p *ImageProcessor) createPatches(pixels []float32, height, width int, grid *Grid) ([]float32, error) {
channels := 3
patchSize := p.patchSize
mergeSize := p.spatialMergeSize
temporalPatchSize := p.temporalPatchSize
numPatches := grid.Temporal * grid.Height * grid.Width
patchDim := channels * temporalPatchSize * patchSize * patchSize
result := make([]float32, numPatches*patchDim)
patchIndex := 0
// Single temporal frame handling (copies to all frames)
for range grid.Temporal {
for h := 0; h < grid.Height; h += mergeSize {
for w := 0; w < grid.Width; w += mergeSize {
for mh := range mergeSize {
for mw := range mergeSize {
baseOffset := patchIndex * patchDim
for c := range channels {
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
for py := range patchSize {
for px := range patchSize {
y := (h+mh)*patchSize + py
x := (w+mw)*patchSize + px
srcIdx := c*height*width + y*width + x
dstIdx := channelOffset + (py * patchSize) + px
result[dstIdx] = pixels[srcIdx]
}
}
if temporalPatchSize > 1 {
frameSize := patchSize * patchSize
for tp := 1; tp < temporalPatchSize; tp++ {
currentFrameOffset := channelOffset + (tp * frameSize)
copy(result[currentFrameOffset:currentFrameOffset+frameSize],
result[channelOffset:channelOffset+frameSize])
}
}
}
patchIndex++
}
}
}
}
}
return result, nil
}

View File

@@ -0,0 +1,235 @@
package glmocr
import (
"bytes"
"errors"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
VisionDownsample *VisionDownsample `gguf:"mm.patch_merger"`
PatchMerger *PatchMerger `gguf:"mm"`
ImageProcessor
imageTokenID int32
imageStartTokenID int32
imageEndTokenID int32
}
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
eosTokenID := int32(c.Uint("tokenizer.ggml.eos_token_id"))
eosTokenIDs := c.Ints("tokenizer.ggml.eos_token_ids")
allEOS := append([]int32{eosTokenID}, eosTokenIDs...)
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: allEOS,
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
imageTokenID: int32(c.Uint("image_token_id", 59280)),
imageStartTokenID: int32(c.Uint("image_start_token_id", 59256)),
imageEndTokenID: int32(c.Uint("image_end_token_id", 59257)),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Blocks) == 0 {
return nil, model.ErrNoVisionModel
}
img, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, grid, err := m.ImageProcessor.ProcessImage(img)
if err != nil {
return nil, err
}
// Create pixel values tensor from flattened patches
// Shape: [patchDim, numPatches]
patchDim := m.VisionModel.numChannels * m.temporalPatchSize * m.patchSize * m.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloats(f32s, patchDim, numPatches)
// Forward through vision encoder
visionOutputs := m.VisionModel.Forward(ctx, pixelValues, grid)
// Forward through downsample (patch merger)
if m.VisionDownsample == nil || m.VisionDownsample.Weight == nil {
return nil, errors.New("glmocr: missing vision downsample weights")
}
visionOutputs = m.VisionDownsample.Forward(ctx, visionOutputs, grid, m.VisionModel.VisionModelOptions)
// Forward through patch merger (FC + LayerNorm + GELU + SwiGLU FFN)
if m.PatchMerger == nil {
return nil, errors.New("glmocr: missing patch merger weights")
}
visionOutputs = m.PatchMerger.Forward(ctx, visionOutputs, m.VisionModel.VisionModelOptions)
return []input.Multimodal{{Tensor: visionOutputs, Data: grid}}, nil
}
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
// Reset position cache
m.TextModel.positionCache = m.TextModel.positionCache[:0]
m.TextModel.ropeDelta = 0
pos := int32(0)
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
m.TextModel.positionCache = append(m.TextModel.positionCache, pos)
pos++
continue
}
// Get grid info for position calculation
grid := inp.Multimodal[0].Data.(*Grid)
mergedH := grid.Height / m.VisionModel.spatialMergeSize
mergedW := grid.Width / m.VisionModel.spatialMergeSize
// Add image start token
result = append(result, &input.Input{Token: m.imageStartTokenID})
m.TextModel.positionCache = append(m.TextModel.positionCache, pos)
pos++
// Add image tokens with multimodal data
// All image tokens share the same base position for temporal dimension
tokensPerGrid := inp.Multimodal[0].Tensor.Dim(1)
basePos := pos
sameBatch := tokensPerGrid - 1
if sameBatch < 0 {
sameBatch = 0
}
result = append(result, &input.Input{
Token: m.imageTokenID,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
SameBatch: sameBatch,
})
m.TextModel.positionCache = append(m.TextModel.positionCache, basePos)
// Add placeholder tokens for remaining positions
// All image tokens use the same base position (temporal stays constant)
for range tokensPerGrid - 1 {
result = append(result, &input.Input{Token: m.imageTokenID})
m.TextModel.positionCache = append(m.TextModel.positionCache, basePos)
}
// Advance position by max(mergedH, mergedW) after image tokens
pos = basePos + int32(max(mergedH, mergedW))
// Add image end token
result = append(result, &input.Input{Token: m.imageEndTokenID})
m.TextModel.positionCache = append(m.TextModel.positionCache, pos)
pos++
}
// Compute rope delta for continuation after the prefill segment:
// delta = (max_position_id + 1) - sequence_length
if len(m.TextModel.positionCache) > 0 {
last := m.TextModel.positionCache[len(m.TextModel.positionCache)-1]
m.TextModel.ropeDelta = last + 1 - int32(len(m.TextModel.positionCache))
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
// Initial token embedding
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs).Duplicate(ctx)
ctx.Forward(hiddenStates)
// Build position slices for M-RoPE
positionSlice := func() [][]int32 {
s := [][]int32{
make([]int32, len(batch.Positions)), // temporal
make([]int32, len(batch.Positions)), // height
make([]int32, len(batch.Positions)), // width
make([]int32, len(batch.Positions)), // unused (zeros)
}
for i, position := range batch.Positions {
// Translate through position cache or continue sequence
if position < int32(len(m.TextModel.positionCache)) {
position = m.TextModel.positionCache[position]
} else if len(m.TextModel.positionCache) > 0 {
// Continue sequence after cached positions using ropeDelta
position = position + m.TextModel.ropeDelta
}
s[0][i] = position
s[1][i] = position
s[2][i] = position
}
return s
}()
// Inject vision embeddings and adjust positions for image tokens
for _, mi := range batch.Multimodal {
img := mi.Multimodal[0].Tensor
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
if grid, ok := mi.Multimodal[0].Data.(*Grid); ok {
w := grid.Width / m.VisionModel.spatialMergeSize
for i := range img.Dim(1) {
positionSlice[1][mi.Index+i] += int32(i / w)
positionSlice[2][mi.Index+i] += int32(i % w)
}
}
}
positions := ctx.Input().FromInts(slices.Concat(positionSlice...), len(positionSlice[0])*len(positionSlice))
// Process through transformer layers
for i, layer := range m.TextModel.Layers {
m.Cache.SetLayer(i)
var lastLayerOutputs ml.Tensor
if i == len(m.TextModel.Layers)-1 {
lastLayerOutputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, m.Cache, m.TextModel.TextModelOptions)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.TextModel.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("glmocr", New)
}

View File

@@ -0,0 +1,190 @@
package glmocr
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
)
type TextModelOptions struct {
hiddenSize int
numHeads int
numKVHeads int
headDim int
rotaryDim int
intermediateSize int
eps float32
ropeBase float32
mropeSections []int
}
func (o *TextModelOptions) applyMRoPE(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
// With 4 sections for [temporal, height, width, unused]
return nn.RoPE(ctx, states, positions, o.rotaryDim, o.ropeBase, 1.0, rope.WithMRoPE(o.mropeSections))
}
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenStates.Dim(1)
// Separate Q, K, V projections
q := sa.Query.Forward(ctx, hiddenStates)
k := sa.Key.Forward(ctx, hiddenStates)
v := sa.Value.Forward(ctx, hiddenStates)
// Reshape for GQA
q = q.Reshape(ctx, opts.headDim, opts.numHeads, batchSize)
k = k.Reshape(ctx, opts.headDim, opts.numKVHeads, batchSize)
v = v.Reshape(ctx, opts.headDim, opts.numKVHeads, batchSize)
// Apply M-RoPE (multi-resolution rotary position embeddings)
q = opts.applyMRoPE(ctx, q, positions)
k = opts.applyMRoPE(ctx, k, positions)
// Scaled dot-product attention with KV cache
scaleFactor := 1.0 / math.Sqrt(float64(opts.headDim))
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
// Reshape attention output: [headDim, numHeads, batchSize] -> [numHeads*headDim, batchSize]
// Note: numHeads * headDim = 16 * 128 = 2048, which is the attention hidden size
kqv = kqv.Reshape(ctx, opts.numHeads*opts.headDim, batchSize)
return sa.Output.Forward(ctx, kqv)
}
type TextMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextModelOptions) ml.Tensor {
// SwiGLU: down(silu(gate(x)) * up(x))
gate := mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, gate)
}
type TextDecoderLayer struct {
// Input layernorm (before attention)
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *TextSelfAttention
// Post self-attention layernorm (after attention, before residual add)
PostAttnNorm *nn.RMSNorm `gguf:"post_attn_norm"`
// FFN input layernorm (after first residual, before MLP)
FFNNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
// Post MLP layernorm (after MLP, before residual add)
PostFFNNorm *nn.RMSNorm `gguf:"post_ffn_norm"`
}
func (l *TextDecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *TextModelOptions) ml.Tensor {
// Attention block
residual := hiddenStates
hiddenStates = l.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = l.SelfAttention.Forward(ctx, hiddenStates, positions, cache, opts)
hiddenStates = l.PostAttnNorm.Forward(ctx, hiddenStates, opts.eps)
// Prune to output positions in final layer
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
// MLP block
residual = hiddenStates
hiddenStates = l.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = l.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = l.PostFFNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type TextModel struct {
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []TextDecoderLayer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextModelOptions
// positionCache stores the M-RoPE position for each token in the sequence.
// This is needed because image tokens share the same base position but have
// different height/width offsets, and the end token position depends on the
// image grid dimensions.
positionCache []int32
ropeDelta int32
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// Clear position cache when KV cache shifts
m.positionCache = nil
m.ropeDelta = 0
return m.applyMRoPE(ctx, key, shift), nil
}
func newTextModel(c fs.Config) *TextModel {
hiddenSize := int(c.Uint("embedding_length", 1536))
numHeads := int(c.Uint("attention.head_count", 16))
numKVHeads := int(c.Uint("attention.head_count_kv", 8))
intermediateSize := int(c.Uint("feed_forward_length", 4608))
eps := c.Float("attention.layer_norm_rms_epsilon", 1e-5)
ropeBase := c.Float("rope.freq_base", 10000)
headDim := int(c.Uint("attention.key_length", uint32(hiddenSize/numHeads)))
ropeDim := int(c.Uint("rope.dimension_count", uint32(headDim)))
if ropeDim <= 0 {
ropeDim = headDim
}
mropeSections := c.Ints("rope.mrope_section")
var sectionInts []int
if len(mropeSections) > 0 {
sectionInts = make([]int, len(mropeSections))
for i, section := range mropeSections {
sectionInts[i] = int(section)
}
} else {
// Default to GLM-OCR's HF ratio (2:3:3) scaled to rotaryDim/2.
// For rotaryDim=64 this yields [8, 12, 12].
total := ropeDim / 2
if total <= 0 {
total = 32
}
s0 := total * 2 / 8
s1 := total * 3 / 8
s2 := total - s0 - s1
sectionInts = []int{s0, s1, s2}
}
// GGML rope_multi: sector = (dim_pair) % sum(sections), mapping each pair to its position dim
rotaryDim := ropeDim
return &TextModel{
Layers: make([]TextDecoderLayer, c.Uint("block_count", 16)),
TextModelOptions: &TextModelOptions{
hiddenSize: hiddenSize,
numHeads: numHeads,
numKVHeads: numKVHeads,
headDim: headDim,
rotaryDim: rotaryDim,
intermediateSize: intermediateSize,
eps: eps,
ropeBase: ropeBase,
mropeSections: sectionInts,
},
}
}

View File

@@ -0,0 +1,355 @@
package glmocr
import (
"log/slog"
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
)
type Grid struct {
Height int // Number of patches in height direction
Width int // Number of patches in width direction
Temporal int
ImageHeight int // Full image height in pixels
ImageWidth int // Full image width in pixels
}
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
numChannels int
patchSize int
temporalPatchSize int
imageSize int
spatialMergeSize int
outHiddenSize int
intermediateSize int
eps float32
}
type VisionPatchEmbed struct {
Proj *nn.Conv2D `gguf:"patch_embd_0"`
Proj1 *nn.Conv2D `gguf:"patch_embd_1"`
Bias ml.Tensor `gguf:"patch_embd.bias"`
}
func (pe *VisionPatchEmbed) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid, opts *VisionModelOptions) ml.Tensor {
_ = grid // patches are already in merge-block order
// pixelValues shape: [patchDim, numPatches]
numPatches := pixelValues.Shape()[1]
// Reshape to [patchSize*patchSize, temporalPatchSize, numChannels, numPatches]
pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)
// Permute to [temporalPatchSize, patchSize*patchSize, numChannels, numPatches]
pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
// Slice temporal frames for Conv2D (simulate Conv3D)
in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
s0, s1 := opts.patchSize, opts.patchSize
p0, p1 := 0, 0
d0, d1 := 1, 1
hiddenStates := pe.Proj.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
if pe.Proj1 != nil && opts.temporalPatchSize > 1 {
in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
out1 := pe.Proj1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)
hiddenStates = hiddenStates.Add(ctx, out1)
}
// Flatten to [hidden_size, num_patches]
hiddenStates = hiddenStates.Reshape(ctx, opts.hiddenSize, numPatches)
// Add patch bias - reshape from [hidden_size] to [hidden_size, 1] for broadcasting
if pe.Bias != nil {
hiddenStates = hiddenStates.Add(ctx, pe.Bias.Reshape(ctx, opts.hiddenSize, 1))
}
return hiddenStates
}
type VisionSelfAttention struct {
QKV *nn.Linear `gguf:"attn_qkv"`
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Output *nn.Linear `gguf:"attn_out"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, opts *VisionModelOptions) ml.Tensor {
batchSize := hiddenStates.Dim(1)
// Combined QKV projection: [3*hidden_size, batch_size]
qkv := sa.QKV.Forward(ctx, hiddenStates)
// Split using ChunkSections along dim 0 (handles byte offsets correctly)
// ChunkSections returns views - must make contiguous before further operations
chunks := qkv.ChunkSections(ctx, 0, opts.hiddenSize, opts.hiddenSize, opts.hiddenSize)
q := chunks[0].Contiguous(ctx)
k := chunks[1].Contiguous(ctx)
v := chunks[2].Contiguous(ctx)
// Reshape for multi-head attention: [hiddenSize, N] -> [headDim, numHeads, N]
q = q.Reshape(ctx, opts.headDim, opts.numHeads, batchSize)
k = k.Reshape(ctx, opts.headDim, opts.numHeads, batchSize)
v = v.Reshape(ctx, opts.headDim, opts.numHeads, batchSize)
// Apply Q-norm and K-norm after head reshape
// Weights are [headDim]=64, tensor is [headDim, numHeads, N]
q = sa.QNorm.Forward(ctx, q, opts.eps)
k = sa.KNorm.Forward(ctx, k, opts.eps)
// Apply rotary position embeddings with vision-style 2D positions.
// ggml's vision RoPE uses two position dimensions (H/W) with half-rotation pairs.
// We provide H/W sections and leave the remaining sections empty.
ropeFreqBase := float32(10000.0)
section := opts.headDim / 4
if section <= 0 {
section = 1
}
sections := []int{section, section, 0, 0}
q = nn.RoPE(ctx, q, positions, opts.headDim/2, ropeFreqBase, 1.0, rope.WithVision(sections))
k = nn.RoPE(ctx, k, positions, opts.headDim/2, ropeFreqBase, 1.0, rope.WithVision(sections))
// Scale factor for scaled dot-product attention
scale := 1.0 / math.Sqrt(float64(opts.headDim))
// Try flash attention first (ScaledDotProductAttention), fall back to manual
if sdpa, ok := q.(ml.ScaledDotProductAttention); ok {
attention := sdpa.ScaledDotProductAttention(ctx, k, v, nil, nil, nil, scale, false)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
slog.Warn("glmocr: vision attention falling back to manual attention",
"batchSize", batchSize, "numHeads", opts.numHeads,
"hint", "set OLLAMA_FLASH_ATTENTION=1 to enable flash attention")
// Manual attention fallback
// q, k, v are [headDim, numHeads, batchSize] - GGML treats as 4D with implicit dim 3 = 1
q = q.Permute(ctx, 0, 2, 1, 3)
k = k.Permute(ctx, 0, 2, 1, 3)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
// Attention scores
kq := k.MulmatFullPrec(ctx, q)
kq = kq.Scale(ctx, scale)
kq = kq.Softmax(ctx)
// Attention output: v @ kq (note: v first)
kqv := v.Mulmat(ctx, kq)
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
// SwiGLU: down(silu(gate(x)) * up(x))
gate := mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, gate)
}
type VisionBlock struct {
Norm1 *nn.RMSNorm `gguf:"ln1"`
SelfAttention *VisionSelfAttention
Norm2 *nn.RMSNorm `gguf:"ln2"`
MLP *VisionMLP
}
func (b *VisionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Pre-norm architecture
residual := hiddenStates
hiddenStates = b.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = b.SelfAttention.Forward(ctx, hiddenStates, positions, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = b.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = b.MLP.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type VisionDownsample struct {
*nn.Conv2D
}
func (d *VisionDownsample) Forward(ctx ml.Context, hiddenStates ml.Tensor, grid *Grid, opts *VisionModelOptions) ml.Tensor {
// Apply spatial downsampling via Conv2D
// Input: [hidden_size, num_patches] where patches are in merge-block order
if d.Conv2D == nil || d.Weight == nil {
slog.Error("VisionDownsample weights not loaded - model may be corrupted or incompatible")
return hiddenStates // Return input unchanged as fallback
}
merge := opts.spatialMergeSize
numOutputTokens := (grid.Height / merge) * (grid.Width / merge)
// Step 1: Reshape to [hidden_size, merge, merge, num_output_tokens]
hiddenStates = hiddenStates.Reshape(ctx, opts.hiddenSize, merge, merge, numOutputTokens)
// Step 2: Permute to [merge, merge, hidden_size, num_output_tokens]
// ggml semantics: result.ne[perm[i]] = input.ne[i]
// So permute(2,0,1,3) on [1024,2,2,N] gives: ne[2]=1024, ne[0]=2, ne[1]=2, ne[3]=N -> [2,2,1024,N]
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
// Step 3: Apply Conv2D without bias (bias added after reshape)
// Note: ggml_conv_2d takes (kernel, input) - kernel must be receiver in ollama
s0, s1 := merge, merge
p0, p1 := 0, 0
d0, d1 := 1, 1
hiddenStates = d.Weight.Conv2D(ctx, hiddenStates, s0, s1, p0, p1, d0, d1)
// Step 4: Reshape to [out_hidden_size, num_output_tokens]
hiddenStates = hiddenStates.Reshape(ctx, opts.outHiddenSize, numOutputTokens)
// Step 5: Add bias after reshape
// Reshape bias from [out_hidden_size] to [out_hidden_size, 1] for proper broadcasting
if d.Bias != nil {
hiddenStates = hiddenStates.Add(ctx, d.Bias.Reshape(ctx, opts.outHiddenSize, 1))
}
return hiddenStates
}
type PatchMerger struct {
// GGUF tags align with mm.* keys used by the model
Proj *nn.Linear `gguf:"model.fc"` // mm.model.fc.weight
PostLN *nn.LayerNorm `gguf:"post_norm"` // mm.post_norm.weight/bias
GateProj *nn.Linear `gguf:"gate"` // mm.gate.weight
UpProj *nn.Linear `gguf:"up"` // mm.up.weight
DownProj *nn.Linear `gguf:"down"` // mm.down.weight
}
func (m *PatchMerger) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Linear projection
hiddenStates = m.Proj.Forward(ctx, hiddenStates)
// Post-projection layer norm + GELU ERF
hiddenStates = m.PostLN.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = hiddenStates.GELU_ERF(ctx)
// Force a copy to avoid in-place mutation issues with GELU_ERF
hiddenStates = hiddenStates.Contiguous(ctx)
// SwiGLU MLP: down(silu(gate(x)) * up(x))
gateOut := m.GateProj.Forward(ctx, hiddenStates)
upOut := m.UpProj.Forward(ctx, hiddenStates)
gate := gateOut.SILU(ctx, upOut)
return m.DownProj.Forward(ctx, gate)
}
type VisionModel struct {
PatchEmbed *VisionPatchEmbed
Blocks []VisionBlock `gguf:"blk"`
PostLN *nn.RMSNorm `gguf:"post_ln"`
// Note: Downsample is applied at the model level so mm.patch_merger stays separate
*VisionModelOptions
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
// Extract patch embeddings from flattened patches
hiddenStates := m.PatchEmbed.Forward(ctx, pixelValues, grid, m.VisionModelOptions)
// Create position IDs for RoPE (spatial grid)
// Patches are already in merge-block order from preprocessing
positions := m.createPositions(ctx, grid)
// Process through vision blocks
for _, block := range m.Blocks {
hiddenStates = block.Forward(ctx, hiddenStates, positions, m.VisionModelOptions)
}
// Post-layernorm
hiddenStates = m.PostLN.Forward(ctx, hiddenStates, m.eps)
// Note: Downsample is now applied separately in Model.EncodeMultimodal
// so mm.patch_merger remains a distinct module
return hiddenStates
}
func (m *VisionModel) createPositions(ctx ml.Context, grid *Grid) ml.Tensor {
// Create spatial position IDs for vision RoPE
// Position layout: [height, width, height, width] - 4 sections for mrope
// Patches are in MERGE-BLOCK order after VisionPatchEmbed interleaving
// This follows the GLM-OCR rot_pos_emb layout
numPatches := grid.Height * grid.Width
mergeRatio := m.spatialMergeSize
// Build position arrays in merge-block order
// Each merge_ratio x merge_ratio block of patches is grouped together
hpos := make([]int32, numPatches)
wpos := make([]int32, numPatches)
ptr := 0
for y := 0; y < grid.Height; y += mergeRatio {
for x := 0; x < grid.Width; x += mergeRatio {
for dy := range mergeRatio {
for dx := range mergeRatio {
hpos[ptr] = int32(y + dy)
wpos[ptr] = int32(x + dx)
ptr++
}
}
}
}
// Build position arrays for 4 sections (mrope). ggml vision RoPE uses only H/W;
// keep remaining sections zeroed to match its conventions.
zeros := make([]int32, numPatches)
s := [][]int32{
hpos, // Section 0: height
wpos, // Section 1: width
zeros, // Section 2: unused
zeros, // Section 3: unused
}
return ctx.Input().FromInts(slices.Concat(s...), numPatches*4)
}
func newVisionModel(c fs.Config) *VisionModel {
hiddenSize := int(c.Uint("vision.embedding_length", 1024))
numHeads := int(c.Uint("vision.attention.head_count", 16))
numChannels := int(c.Uint("vision.num_channels", 3))
patchSize := int(c.Uint("vision.patch_size", 14))
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
imageSize := int(c.Uint("vision.image_size", 336))
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
outHiddenSize := int(c.Uint("vision.out_hidden_size", 1536))
intermediateSize := int(c.Uint("vision.intermediate_size", 4096))
eps := c.Float("vision.attention.layer_norm_rms_epsilon", 1e-5)
return &VisionModel{
Blocks: make([]VisionBlock, c.Uint("vision.block_count", 24)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: hiddenSize,
numHeads: numHeads,
headDim: hiddenSize / numHeads,
numChannels: numChannels,
patchSize: patchSize,
temporalPatchSize: temporalPatchSize,
imageSize: imageSize,
spatialMergeSize: spatialMergeSize,
outHiddenSize: outHiddenSize,
intermediateSize: intermediateSize,
eps: eps,
},
}
}

410
model/models/lfm2/cache.go Normal file
View File

@@ -0,0 +1,410 @@
package lfm2
import (
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var _ kvcache.Cache = (*HybridCache)(nil)
// HybridCache stores:
// - a standard causal KV cache for attention layers
// - a per-sequence recurrent conv state for shortconv layers
//
// Conv state shape (per layer, per sequence): [dConv, hiddenSize] where dConv = L_cache - 1.
// Stored internally as a tensor of shape [dConv * hiddenSize, maxSlots].
type HybridCache struct {
kv *kvcache.Causal
backend ml.Backend
dtype ml.DType
maxSequences int
hiddenSize int
dConv int
// slot mapping for recurrent state
slotForSeq map[int]int
refCount []int
freeSlots []int
// per-layer conv state buffers (allocated lazily)
convCtxs map[int]ml.Context
convStates map[int]ml.Tensor // [dConv*hiddenSize, maxSlots]
// current forward batch (derived in StartForward)
curSeqs []int
curSlots []int
curSlotsInput ml.Tensor
curSeqTokens int
// track if EnsureWritable has been called for this forward pass
writableEnsured bool
// track any error from EnsureWritable to propagate later
writableError error
}
func NewHybridCache(shift func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error), hiddenSize, dConv int) *HybridCache {
return &HybridCache{
kv: kvcache.NewCausalCache(shift),
hiddenSize: hiddenSize,
dConv: dConv,
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func (c *HybridCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.backend = backend
c.dtype = dtype
c.maxSequences = maxSequences
// initialize slot allocator
c.refCount = make([]int, maxSequences)
c.freeSlots = c.freeSlots[:0]
for i := maxSequences - 1; i >= 0; i-- {
c.freeSlots = append(c.freeSlots, i)
}
c.kv.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
func (c *HybridCache) Close() {
for _, ctx := range c.convCtxs {
ctx.Close()
}
c.kv.Close()
}
func (c *HybridCache) SetConfig(config ml.CacheConfig) {
c.kv.SetConfig(config)
}
func (c *HybridCache) SetLayer(layer int) {
c.kv.SetLayer(layer)
}
func (c *HybridCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.kv.Get(ctx)
}
func (c *HybridCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.kv.Put(ctx, key, value)
}
func (c *HybridCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
if err := c.kv.StartForward(ctx, batch, reserve); err != nil {
return err
}
// Derive equal-length sequence layout for shortconv.
// LFM2 shortconv assumes tokens form a [seq_tokens, seqs] grid.
seqCounts := make(map[int]int)
c.curSeqs = c.curSeqs[:0]
for _, s := range batch.Sequences {
if _, ok := seqCounts[s]; !ok {
c.curSeqs = append(c.curSeqs, s)
}
seqCounts[s]++
}
if len(c.curSeqs) == 0 {
return nil
}
nTokens := len(batch.Sequences)
nSeqs := len(c.curSeqs)
want := nTokens / nSeqs
for _, s := range c.curSeqs {
if seqCounts[s] != want {
return kvcache.ErrNotSupported
}
}
c.curSeqTokens = want
// When reserving memory for estimation, use fake slot assignments
// without modifying permanent state (slotForSeq, refCount)
if reserve {
c.curSlots = c.curSlots[:0]
slots := make([]int32, nSeqs)
for i := range nSeqs {
c.curSlots = append(c.curSlots, i)
slots[i] = int32(i)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
// Ensure slots exist for sequences in this batch
c.curSlots = c.curSlots[:0]
var newSlots []int // track newly allocated slots that need zeroing
for _, s := range c.curSeqs {
slot, ok := c.slotForSeq[s]
if !ok {
var err error
slot, err = c.allocSlot()
if err != nil {
return err
}
c.slotForSeq[s] = slot
c.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
c.curSlots = append(c.curSlots, slot)
}
// Zero conv state for newly allocated slots to clear stale data from previous sequences
if len(newSlots) > 0 {
c.zeroConvSlots(ctx, newSlots)
}
// Create a tensor for the current slots
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
// Reset writable state for new forward pass
c.writableEnsured = false
c.writableError = nil
return nil
}
func (c *HybridCache) allocSlot() (int, error) {
if len(c.freeSlots) == 0 {
return 0, kvcache.ErrKvCacheFull
}
slot := c.freeSlots[len(c.freeSlots)-1]
c.freeSlots = c.freeSlots[:len(c.freeSlots)-1]
return slot, nil
}
func (c *HybridCache) freeSlot(slot int) {
// Bounds check before freeing
if slot >= 0 && slot < c.maxSequences {
c.freeSlots = append(c.freeSlots, slot)
}
}
// zeroConvSlots zeros the conv state for the given slots across all layers.
// This must be called when recycling slots to prevent stale state from affecting new sequences.
func (c *HybridCache) zeroConvSlots(ctx ml.Context, slots []int) {
if len(slots) == 0 || len(c.convStates) == 0 {
return
}
// Use input context for creating tensors
inputCtx := ctx.Input()
// Create slot indices tensor
slotIndices := make([]int32, len(slots))
for i, s := range slots {
slotIndices[i] = int32(s)
}
slotsTensor := inputCtx.FromInts(slotIndices, len(slotIndices))
// Create zero tensor for the slots (SetRows requires F32 source)
zeros := inputCtx.Zeros(ml.DTypeF32, c.dConv*c.hiddenSize, len(slots))
// Zero each layer's conv state for these slots
for _, buf := range c.convStates {
ctx.Forward(buf.SetRows(ctx, zeros, slotsTensor))
}
}
// EnsureWritable ensures that sequences in the current batch have private (non-shared) conv slots.
// Returns an error if slot allocation fails.
func (c *HybridCache) EnsureWritable(ctx ml.Context) error {
for i, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
continue
}
if c.refCount[slot] <= 1 {
continue
}
newSlot, err := c.allocSlot()
if err != nil {
return err
}
c.refCount[slot]--
c.refCount[newSlot] = 1
c.slotForSeq[seq] = newSlot
c.curSlots[i] = newSlot
// Copy existing conv state for all initialized layers
for _, buf := range c.convStates {
// buf: [dConv*hiddenSize, maxSlots]
src := buf.Rows(ctx, ctx.Input().FromInts([]int32{int32(slot)}, 1))
// SetRows requires F32 source
srcF32 := src.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, srcF32, ctx.Input().FromInts([]int32{int32(newSlot)}, 1)))
}
}
// Rebuild current slots tensor
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
func (c *HybridCache) CopyPrefix(srcSeq, dstSeq int, prefixLen int32) {
// KV cache shares prefix metadata (no copy) which is correct for prefix reuse.
c.kv.CopyPrefix(srcSeq, dstSeq, prefixLen)
// For shortconv state we implement copy-on-write: dst shares the same slot as src.
// On the first write to dst, EnsureWritable will create a private slot.
if dstSlot, ok := c.slotForSeq[dstSeq]; ok {
// Bounds check before decrementing
if dstSlot >= 0 && dstSlot < len(c.refCount) {
c.refCount[dstSlot]--
if c.refCount[dstSlot] <= 0 {
c.refCount[dstSlot] = 0
c.freeSlot(dstSlot)
}
}
delete(c.slotForSeq, dstSeq)
}
srcSlot, ok := c.slotForSeq[srcSeq]
if !ok {
// src may not have a slot yet; dst will allocate on demand
return
}
// Bounds check before incrementing
if srcSlot >= 0 && srcSlot < len(c.refCount) {
c.slotForSeq[dstSeq] = srcSlot
c.refCount[srcSlot]++
}
}
func (c *HybridCache) CanResume(seq int, pos int32) bool {
return c.kv.CanResume(seq, pos)
}
func (c *HybridCache) Remove(seq int, beginIndex, endIndex int32) error {
if err := c.kv.Remove(seq, beginIndex, endIndex); err != nil {
return err
}
// For recurrent state, any removal invalidates the state because
// the state at position N depends on all previous positions.
// Drop the slot mapping so it resets on next use.
slot, ok := c.slotForSeq[seq]
if !ok {
return nil
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
delete(c.slotForSeq, seq)
return nil
}
c.refCount[slot]--
if c.refCount[slot] <= 0 {
c.refCount[slot] = 0
c.freeSlot(slot)
}
delete(c.slotForSeq, seq)
return nil
}
func (c *HybridCache) slotsTensor() ml.Tensor {
return c.curSlotsInput
}
func (c *HybridCache) seqTokens() int {
return c.curSeqTokens
}
func (c *HybridCache) numSeqs() int {
return len(c.curSeqs)
}
func (c *HybridCache) convBuffer(ctx ml.Context, layer int) ml.Tensor {
if buf, ok := c.convStates[layer]; ok {
return buf
}
if _, ok := c.convCtxs[layer]; !ok {
c.convCtxs[layer] = c.backend.NewContextSize(1).Layer(layer)
}
buf := c.convCtxs[layer].Zeros(c.dtype, c.dConv*c.hiddenSize, c.maxSequences)
c.convStates[layer] = buf
return buf
}
// ConvState returns the conv state for current batch sequences as shape [dConv, hiddenSize, nSeqs].
// Returns an error if copy-on-write allocation fails.
func (c *HybridCache) ConvState(ctx ml.Context, layer int) (ml.Tensor, error) {
if !c.writableEnsured {
needsWritable := false
for _, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
if slot >= 0 && slot < len(c.refCount) && c.refCount[slot] > 1 {
needsWritable = true
break
}
}
if needsWritable {
if err := c.EnsureWritable(ctx); err != nil {
c.writableError = err
}
}
c.writableEnsured = true
}
if c.writableError != nil {
return nil, c.writableError
}
buf := c.convBuffer(ctx, layer)
cur := buf.Rows(ctx, c.slotsTensor())
return cur.Reshape(ctx, c.dConv, c.hiddenSize, c.numSeqs()), nil
}
// UpdateConvState writes a new conv state for current batch sequences.
// newState must have shape [dConv, hiddenSize, nSeqs].
func (c *HybridCache) UpdateConvState(ctx ml.Context, layer int, newState ml.Tensor) {
buf := c.convBuffer(ctx, layer)
src := newState.Reshape(ctx, c.dConv*c.hiddenSize, c.numSeqs())
// SetRows requires F32 source
srcF32 := src.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, srcF32, c.slotsTensor()))
}
// IsSupportedForBatch returns true if the current batch layout supports shortconv.
func (c *HybridCache) IsSupportedForBatch() bool {
return c.curSeqTokens > 0 && len(c.curSeqs) > 0
}
// Seqs returns the ordered unique sequences for the current forward pass.
func (c *HybridCache) Seqs() []int {
return slices.Clone(c.curSeqs)
}

View File

@@ -0,0 +1,444 @@
package lfm2
import (
"testing"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
)
// TestHybridCache tests verify the slot management logic of HybridCache.
// These tests focus on the recurrent state slot allocation, reference counting,
// and copy-on-write semantics without requiring a full ML backend.
// createSlotOnlyCache creates a HybridCache with only the slot management
// fields initialized. Used to test slot logic in isolation.
func createSlotOnlyCache(maxSequences int) *HybridCache {
return &HybridCache{
hiddenSize: 256,
dConv: 3,
maxSequences: maxSequences,
refCount: make([]int, maxSequences),
freeSlots: initFreeSlots(maxSequences),
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func initFreeSlots(n int) []int {
slots := make([]int, 0, n)
for i := n - 1; i >= 0; i-- {
slots = append(slots, i)
}
return slots
}
func TestHybridCache_SlotAllocation(t *testing.T) {
cache := createSlotOnlyCache(4)
// Verify initial state
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots, got %d", len(cache.freeSlots))
}
// Allocate all slots
for range 4 {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.refCount[slot] = 1
}
// Should be full now
if len(cache.freeSlots) != 0 {
t.Errorf("expected 0 free slots, got %d", len(cache.freeSlots))
}
// Trying to allocate another should fail
_, err := cache.allocSlot()
if err != kvcache.ErrKvCacheFull {
t.Errorf("expected ErrKvCacheFull, got %v", err)
}
}
func TestHybridCache_SlotReuse(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate a slot
slot1, _ := cache.allocSlot()
cache.refCount[slot1] = 1
// Free it
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
// Allocate again - should get the same slot back (LIFO)
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected slot %d to be reused, got %d", slot1, slot2)
}
}
func TestHybridCache_SlotRefCounting_ShareSlot(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Simulate sharing slot with seq 2 (copy-on-write style)
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Should share the same slot
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Ref count should be 2
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotRefCounting_DecRef(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share with seq 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Unshare seq 2
cache.refCount[slot1]--
delete(cache.slotForSeq, 2)
// Ref count should be back to 1
if cache.refCount[slot1] != 1 {
t.Errorf("expected refCount 1 after unshare, got %d", cache.refCount[slot1])
}
// Seq 2 should no longer have a slot
if _, ok := cache.slotForSeq[2]; ok {
t.Error("seq 2 should not have a slot after unshare")
}
}
func TestHybridCache_SlotFreeWhenUnused(t *testing.T) {
cache := createSlotOnlyCache(4)
initialFreeSlots := len(cache.freeSlots)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot when refCount drops to 0
cache.refCount[slot1]--
if cache.refCount[slot1] <= 0 {
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
}
delete(cache.slotForSeq, 1)
// Slot should be freed
if len(cache.freeSlots) != initialFreeSlots {
t.Errorf("expected %d free slots, got %d", initialFreeSlots, len(cache.freeSlots))
}
// Ref count should be 0
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotOverwrite(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slots for seq 1 and seq 2
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
slot2, _ := cache.allocSlot()
cache.slotForSeq[2] = slot2
cache.refCount[slot2] = 1
initialFreeSlots := len(cache.freeSlots)
// Simulate overwriting seq 2's slot with slot1 (sharing)
// First free the old slot
cache.refCount[slot2]--
if cache.refCount[slot2] <= 0 {
cache.refCount[slot2] = 0
cache.freeSlot(slot2)
}
// Then share slot1
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Seq 2 should now share slot1
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Old slot2 should be freed
if len(cache.freeSlots) != initialFreeSlots+1 {
t.Errorf("expected %d free slots, got %d", initialFreeSlots+1, len(cache.freeSlots))
}
}
func TestHybridCache_BoundsChecking(t *testing.T) {
cache := createSlotOnlyCache(4)
// Test freeing invalid slot (should not panic)
cache.freeSlot(-1)
cache.freeSlot(100) // out of bounds
// freeSlot does bounds checking, so invalid slots should be ignored
if len(cache.freeSlots) != 4 {
t.Errorf("invalid slots should not affect free list, got %d slots", len(cache.freeSlots))
}
}
func TestHybridCache_MultipleSequences_RefCounting(t *testing.T) {
cache := createSlotOnlyCache(8)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Fork to seq 2, 3, 4 (all share slot1)
for _, seq := range []int{2, 3, 4} {
cache.slotForSeq[seq] = slot1
cache.refCount[slot1]++
}
// Ref count should be 4
if cache.refCount[slot1] != 4 {
t.Errorf("expected refCount 4, got %d", cache.refCount[slot1])
}
// Remove seq 2, 3
for _, seq := range []int{2, 3} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
// Slot should still be allocated (not in free list)
found := false
for _, s := range cache.freeSlots {
if s == slot1 {
found = true
break
}
}
if found {
t.Error("slot1 should not be in free list yet")
}
// Remove remaining sequences
for _, seq := range []int{1, 4} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_ChainedSharing(t *testing.T) {
cache := createSlotOnlyCache(8)
// Create seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share 1 -> 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Share 2 -> 3 (should still share slot1)
cache.slotForSeq[3] = cache.slotForSeq[2] // which is slot1
cache.refCount[slot1]++
// All should share slot1
if cache.slotForSeq[1] != slot1 || cache.slotForSeq[2] != slot1 || cache.slotForSeq[3] != slot1 {
t.Error("all sequences should share slot1")
}
if cache.refCount[slot1] != 3 {
t.Errorf("expected refCount 3, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_CacheParameters(t *testing.T) {
cache := NewHybridCache(nil, 512, 5) // hiddenSize=512, dConv=5
if cache.hiddenSize != 512 {
t.Errorf("expected hiddenSize 512, got %d", cache.hiddenSize)
}
if cache.dConv != 5 {
t.Errorf("expected dConv 5, got %d", cache.dConv)
}
}
func TestHybridCache_NumSeqs(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially no sequences
if cache.numSeqs() != 0 {
t.Errorf("expected 0 seqs, got %d", cache.numSeqs())
}
// Manually set up current batch state
cache.curSeqs = []int{1, 2, 3}
if cache.numSeqs() != 3 {
t.Errorf("expected 3 seqs, got %d", cache.numSeqs())
}
}
func TestHybridCache_SeqTokens(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially 0
if cache.seqTokens() != 0 {
t.Errorf("expected 0 seqTokens, got %d", cache.seqTokens())
}
// Manually set up current batch state
cache.curSeqTokens = 16
if cache.seqTokens() != 16 {
t.Errorf("expected 16 seqTokens, got %d", cache.seqTokens())
}
}
// Test that Seqs returns a clone of curSeqs
func TestHybridCache_Seqs_ReturnsClone(t *testing.T) {
cache := createSlotOnlyCache(4)
cache.curSeqs = []int{1, 2, 3}
seqs := cache.Seqs()
// Modify returned slice
seqs[0] = 999
// Original should be unchanged
if cache.curSeqs[0] != 1 {
t.Error("Seqs should return a clone, not the original slice")
}
}
func TestHybridCache_IsSupportedForBatch(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially not supported (no batch set up)
if cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be false initially")
}
// Set up a valid batch
cache.curSeqTokens = 1
cache.curSeqs = []int{1}
if !cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be true with valid batch")
}
}
func TestHybridCache_ZeroConvSlots_EmptyInputs(t *testing.T) {
cache := createSlotOnlyCache(4)
// zeroConvSlots should handle empty slots without panicking
cache.zeroConvSlots(nil, nil)
cache.zeroConvSlots(nil, []int{})
// zeroConvSlots should handle empty convStates without panicking
cache.zeroConvSlots(nil, []int{0, 1, 2})
}
func TestHybridCache_SlotRecycling_TracksNewSlots(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot (simulating sequence removal)
cache.refCount[slot1]--
cache.freeSlot(slot1)
delete(cache.slotForSeq, 1)
// Verify slot is in free list
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots after freeing, got %d", len(cache.freeSlots))
}
// Allocate for new seq 2 - should get recycled slot
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected recycled slot %d, got %d", slot1, slot2)
}
// This recycled slot would need zeroing in the real implementation
// The actual zeroing is tested via integration tests since it requires ML context
}
func TestHybridCache_NewSequence_GetsTrackedForZeroing(t *testing.T) {
cache := createSlotOnlyCache(4)
// Simulate the slot allocation flow from StartForward
// When a sequence doesn't have a slot, it gets allocated and tracked as "new"
newSlots := []int{}
// Seq 1 doesn't have a slot - allocate and track
seq := 1
if _, ok := cache.slotForSeq[seq]; !ok {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
// Verify newSlots contains the allocated slot
if len(newSlots) != 1 {
t.Errorf("expected 1 new slot, got %d", len(newSlots))
}
// Seq 1 already has a slot - should NOT be tracked as new
newSlots2 := []int{}
if _, ok := cache.slotForSeq[seq]; !ok {
slot, _ := cache.allocSlot()
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots2 = append(newSlots2, slot)
}
// Verify no new slots for existing sequence
if len(newSlots2) != 0 {
t.Errorf("expected 0 new slots for existing sequence, got %d", len(newSlots2))
}
}

253
model/models/lfm2/model.go Normal file
View File

@@ -0,0 +1,253 @@
package lfm2
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
ropeType string
originalContextLength int
// per-layer head counts (LFM2 alternates attention and recurrent layers)
numHeadsByLayer []int
numKVHeadsByLayer []int
}
func (o Options) headDimValue() int {
// Head dim is shared across layers; fall back to first attention layer head count.
for _, h := range o.numHeadsByLayer {
if h > 0 {
return cmp.Or(o.headDim, o.hiddenSize/h)
}
}
return cmp.Or(o.headDim, o.hiddenSize)
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
opts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
opts = append(opts,
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
)
}
headCount := 1
for _, h := range o.numHeadsByLayer {
if h > 0 {
headCount = h
break
}
}
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/headCount), o.ropeBase, 1./o.ropeScale, opts...)
}
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm,alt:token_embd_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
func New(c fs.Config) (model.Model, error) {
if c.Uint("expert_count") > 0 {
return nil, model.ErrUnsupportedModel
}
if c.String("tokenizer.ggml.model") != "gpt2" {
return nil, model.ErrUnsupportedTokenizer
}
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
}
var pretokenizers []string
switch c.String("tokenizer.ggml.pre") {
case "default":
// use default BPE pretokenizer
default:
// llama-bpe style (default for LFM2)
pretokenizers = []string{
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
}
}
m := Model{
TextProcessor: model.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeType: c.String("rope.scaling.type"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
},
}
type headCounts interface {
HeadCount() []uint64
HeadCountKV() []uint64
}
hc, ok := c.(headCounts)
if !ok {
return nil, model.ErrUnsupportedModel
}
headCount := hc.HeadCount()
headCountKV := hc.HeadCountKV()
m.numHeadsByLayer = make([]int, len(m.Layers))
m.numKVHeadsByLayer = make([]int, len(m.Layers))
for i := range m.Layers {
m.numHeadsByLayer[i] = int(headCount[i])
m.numKVHeadsByLayer[i] = int(headCountKV[i])
if m.numKVHeadsByLayer[i] == 0 {
m.Layers[i].Operator = &ShortConv{}
} else {
m.Layers[i].Operator = &Attention{}
}
}
lCache := int(c.Uint("shortconv.l_cache"))
dConv := max(0, lCache-1)
m.Cache = NewHybridCache(m.Shift, m.hiddenSize, dConv)
return &m, nil
}
type Operator interface {
Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output,alt:attn_out"`
}
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
headDim := opts.headDimValue()
numHeads := opts.numHeadsByLayer[layer]
numKVHeads := opts.numKVHeadsByLayer[layer]
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, numHeads, batchSize)
key = key.Reshape(ctx, headDim, numKVHeads, batchSize)
value = value.Reshape(ctx, headDim, numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Operator Operator
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, layer int, hiddenState, positions, outputs ml.Tensor, cache *HybridCache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.Operator.Forward(ctx, hiddenState, positions, cache, layer, opts)
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, outputs, m.Cache.(*HybridCache), &m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState), nil
}
func init() {
model.Register("lfm2", New)
}

View File

@@ -0,0 +1,50 @@
package lfm2
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type shortConvKernel struct {
Weight ml.Tensor `gguf:"weight"`
}
// ShortConv implements the LFM2 short-convolution block (GGML_OP_SSM_CONV) with a recurrent
// state stored in the HybridCache.
type ShortConv struct {
Conv *shortConvKernel `gguf:"shortconv.conv"`
InProj *nn.Linear `gguf:"shortconv.in_proj"`
OutProj *nn.Linear `gguf:"shortconv.out_proj"`
}
func (sc *ShortConv) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
nSeqs := cache.numSeqs()
seqTokens := cache.seqTokens()
hiddenSize := hiddenStates.Dim(0)
if nSeqs <= 0 || seqTokens <= 0 || hiddenStates.Dim(1) != nSeqs*seqTokens {
panic("lfm2: unsupported batch layout for shortconv")
}
bcx := sc.InProj.Forward(ctx, hiddenStates).Reshape(ctx, 3*hiddenSize, seqTokens, nSeqs)
elementSize := bcx.Stride(0)
b := bcx.View(ctx, 0*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
c := bcx.View(ctx, 1*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
x := bcx.View(ctx, 2*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
bx := b.Mul(ctx, x).Permute(ctx, 1, 0, 2, 3)
state, err := cache.ConvState(ctx, layer)
if err != nil {
panic("lfm2: failed to get conv state: " + err.Error())
}
sx := state.Concat(ctx, bx, 0)
convOut := sx.SSMConv(ctx, sc.Conv.Weight)
y := c.Mul(ctx, convOut)
dConv := sx.Dim(0) - seqTokens
cache.UpdateConvState(ctx, layer, sx.Slice(ctx, 0, sx.Dim(0)-dConv, sx.Dim(0), 1))
return sc.OutProj.Forward(ctx, y.Reshape(ctx, hiddenSize, seqTokens*nSeqs))
}

View File

@@ -8,7 +8,9 @@ import (
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"
_ "github.com/ollama/ollama/model/models/glm4moelite"
_ "github.com/ollama/ollama/model/models/glmocr"
_ "github.com/ollama/ollama/model/models/gptoss"
_ "github.com/ollama/ollama/model/models/lfm2"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"
@@ -18,5 +20,6 @@ import (
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"
_ "github.com/ollama/ollama/model/models/qwen3next"
_ "github.com/ollama/ollama/model/models/qwen3vl"
)

View File

@@ -0,0 +1,103 @@
package qwen3next
import (
"errors"
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
// ErrUnsupportedBatchLayout is returned when the batch layout is incompatible
// with the attention layer requirements.
var ErrUnsupportedBatchLayout = errors.New("qwen3next: unsupported batch layout")
// FullAttention implements gated attention with QK normalization and sigmoid-gated output.
// Key differences from standard attention:
// - Q projection outputs 2x size (Q + gate interleaved)
// - Both Q and K have RMSNorm
// - Output is gated: attn * sigmoid(gate)
type FullAttention struct {
Query *nn.Linear `gguf:"attn_q"` // outputs [n_embd_head * 2, n_head]
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *FullAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, opts *Options) (ml.Tensor, error) {
// Use Dim() instead of Shape() for consistent behavior during graph construction
hiddenDim := hiddenStates.Dim(0)
batchSize := hiddenStates.Dim(1)
nSeqs := hiddenStates.Dim(2) // 0 if 2D tensor
if cache != nil && cache.IsSupportedForBatch() {
seqTokens := cache.seqTokens()
seqs := cache.numSeqs()
if seqTokens > 0 && seqs > 0 {
if nSeqs > 0 {
// 3D tensor: [hiddenDim, seqTokens, nSeqs]
if batchSize != seqTokens || nSeqs != seqs {
return nil, ErrUnsupportedBatchLayout
}
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, seqTokens*seqs)
batchSize = seqTokens * seqs
} else if batchSize != seqTokens*seqs {
return nil, ErrUnsupportedBatchLayout
}
}
}
headDim := opts.headDim()
numHeads := opts.numHeads
// Q projection outputs query + gate interleaved
qFull := sa.Query.Forward(ctx, hiddenStates)
// Reshape to [headDim * 2, numHeads, batchSize]
qFull = qFull.Reshape(ctx, headDim*2, numHeads, batchSize)
// Split Q and gate along dimension 0
// Q: first headDim elements, gate: second headDim elements
query := qFull.Slice(ctx, 0, 0, headDim, 1)
gate := qFull.Slice(ctx, 0, headDim, headDim*2, 1)
// Make query contiguous for further operations
query = query.Contiguous(ctx, headDim, numHeads, batchSize)
// K and V projections
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
// Derive numKVHeads from tensor dimensions (per-layer value)
numKVHeads := key.Dim(0) / headDim
key = key.Reshape(ctx, headDim, numKVHeads, batchSize)
value = value.Reshape(ctx, headDim, numKVHeads, batchSize)
// Apply QK normalization
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
// Apply RoPE
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
// Standard attention computation
scale := opts.attentionScale
if scale == 0 {
scale = 1.0 / math.Sqrt(float64(headDim))
}
attention := nn.Attention(ctx, query, key, value, scale, cache)
// Flatten heads
attention = attention.Reshape(ctx, headDim*numHeads, batchSize)
// Apply sigmoid gate
// gate shape: [headDim, numHeads, batchSize] -> [headDim*numHeads, batchSize]
gate = gate.Contiguous(ctx, headDim*numHeads, batchSize)
gateSigmoid := gate.Sigmoid(ctx)
attention = attention.Mul(ctx, gateSigmoid)
return sa.Output.Forward(ctx, attention), nil
}

View File

@@ -0,0 +1,596 @@
package qwen3next
import (
"math"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var _ kvcache.Cache = (*HybridCache)(nil)
// HybridCache stores:
// - a standard causal KV cache for full attention layers
// - per-sequence conv state for linear attention layers
// - per-sequence delta state for linear attention layers
//
// Conv state shape (per layer, per sequence): [convKernelSize-1, convChannels]
// Delta state shape (per layer, per sequence): [headVDim, headVDim * numVHeads]
type HybridCache struct {
kv *kvcache.Causal
backend ml.Backend
dtype ml.DType
maxSequences int
// Conv state dimensions
convDim int // convKernelSize - 1
convChannels int // d_inner + 2 * num_k_heads * head_k_dim
// Delta state dimensions
deltaStateSize int // headVDim * headVDim * numVHeads
// slot mapping for recurrent state (copy-on-write)
slotForSeq map[int]int
refCount []int
freeSlots []int
// per-layer conv state buffers (allocated lazily)
convCtxs map[int]ml.Context
convStates map[int]ml.Tensor // [convDim*convChannels, maxSlots]
// per-layer delta state buffers (allocated lazily)
deltaCtxs map[int]ml.Context
deltaStates map[int]ml.Tensor // [deltaStateSize, maxSlots]
// recurrent checkpoints (per slot)
checkpointCount int
checkpointMinPos int32
checkpointInterval int32
checkpointCtxSize int
checkpoints map[int]*slotCheckpointStore
pendingRestore map[int]checkpointRestore
curCheckpointPos []int32
curCheckpointSlots map[int]int
reserveCheckpoints bool
checkpointConvCtxs map[int]ml.Context
checkpointDeltaCtxs map[int]ml.Context
checkpointReserved map[int]struct{}
// current forward batch (derived in StartForward)
curSeqs []int
curSlots []int
curSlotsInput ml.Tensor
curSeqTokens int
// track if EnsureWritable has been called for this forward pass
writableEnsured bool
writableError error
}
func NewHybridCache(
shift func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error),
convDim, convChannels, deltaStateSize int,
) *HybridCache {
return &HybridCache{
kv: kvcache.NewCausalCache(shift),
convDim: convDim,
convChannels: convChannels,
deltaStateSize: deltaStateSize,
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
deltaCtxs: make(map[int]ml.Context),
deltaStates: make(map[int]ml.Tensor),
checkpointCount: checkpointCountDefault,
checkpointMinPos: checkpointMinPosDefault,
checkpointInterval: checkpointIntervalDefault,
checkpoints: make(map[int]*slotCheckpointStore),
pendingRestore: make(map[int]checkpointRestore),
curCheckpointSlots: make(map[int]int),
checkpointConvCtxs: make(map[int]ml.Context),
checkpointDeltaCtxs: make(map[int]ml.Context),
checkpointReserved: make(map[int]struct{}),
}
}
func (c *HybridCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.backend = backend
c.dtype = dtype
c.maxSequences = maxSequences
c.checkpoints = make(map[int]*slotCheckpointStore)
c.pendingRestore = make(map[int]checkpointRestore)
c.curCheckpointPos = c.curCheckpointPos[:0]
c.curCheckpointSlots = make(map[int]int)
c.checkpointReserved = make(map[int]struct{})
c.checkpointCtxSize = c.checkpointCount * c.maxSequences
if c.checkpointCtxSize < 8 {
c.checkpointCtxSize = 8
}
// initialize slot allocator
c.refCount = make([]int, maxSequences)
c.freeSlots = c.freeSlots[:0]
for i := maxSequences - 1; i >= 0; i-- {
c.freeSlots = append(c.freeSlots, i)
}
c.kv.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
func (c *HybridCache) Close() {
for _, ctx := range c.convCtxs {
ctx.Close()
}
for _, ctx := range c.deltaCtxs {
ctx.Close()
}
for _, ctx := range c.checkpointConvCtxs {
ctx.Close()
}
for _, ctx := range c.checkpointDeltaCtxs {
ctx.Close()
}
c.kv.Close()
}
func (c *HybridCache) SetConfig(config ml.CacheConfig) {
c.kv.SetConfig(config)
}
func (c *HybridCache) SetLayer(layer int) {
c.kv.SetLayer(layer)
}
func (c *HybridCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.kv.Get(ctx)
}
func (c *HybridCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.kv.Put(ctx, key, value)
}
func (c *HybridCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
if err := c.kv.StartForward(ctx, batch, reserve); err != nil {
return err
}
// Derive equal-length sequence layout for recurrent layers
seqCounts := make(map[int]int)
c.curSeqs = c.curSeqs[:0]
for _, s := range batch.Sequences {
if _, ok := seqCounts[s]; !ok {
c.curSeqs = append(c.curSeqs, s)
}
seqCounts[s]++
}
if len(c.curSeqs) == 0 {
return nil
}
nTokens := len(batch.Sequences)
nSeqs := len(c.curSeqs)
want := nTokens / nSeqs
for _, s := range c.curSeqs {
if seqCounts[s] != want {
return kvcache.ErrNotSupported
}
}
c.curSeqTokens = want
// When reserving memory for estimation, use fake slot assignments
if reserve {
c.curSlots = c.curSlots[:0]
slots := make([]int32, nSeqs)
for i := range nSeqs {
c.curSlots = append(c.curSlots, i)
slots[i] = int32(i)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
c.reserveCheckpoints = true
c.planCheckpoints(batch)
return nil
}
// Ensure slots exist for sequences in this batch
c.curSlots = c.curSlots[:0]
var newSlots []int
for _, s := range c.curSeqs {
slot, ok := c.slotForSeq[s]
if !ok {
var err error
slot, err = c.allocSlot()
if err != nil {
return err
}
c.slotForSeq[s] = slot
c.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
c.curSlots = append(c.curSlots, slot)
}
// Zero state for newly allocated slots
if len(newSlots) > 0 {
c.zeroSlots(ctx, newSlots)
}
// Create a tensor for the current slots
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
// Reset writable state for new forward pass
c.writableEnsured = false
c.writableError = nil
c.reserveCheckpoints = false
c.planCheckpoints(batch)
return nil
}
func (c *HybridCache) allocSlot() (int, error) {
if len(c.freeSlots) == 0 {
return 0, kvcache.ErrKvCacheFull
}
slot := c.freeSlots[len(c.freeSlots)-1]
c.freeSlots = c.freeSlots[:len(c.freeSlots)-1]
return slot, nil
}
func (c *HybridCache) freeSlot(slot int) {
if slot >= 0 && slot < c.maxSequences {
c.freeSlots = append(c.freeSlots, slot)
}
}
// zeroSlots zeros the recurrent state for the given slots across all layers.
func (c *HybridCache) zeroSlots(ctx ml.Context, slots []int) {
if len(slots) == 0 {
return
}
inputCtx := ctx.Input()
slotIndices := make([]int32, len(slots))
for i, s := range slots {
slotIndices[i] = int32(s)
}
slotsTensor := inputCtx.FromInts(slotIndices, len(slotIndices))
// Zero conv states
if len(c.convStates) > 0 {
zeros := inputCtx.Zeros(ml.DTypeF32, c.convDim*c.convChannels, len(slots))
for _, buf := range c.convStates {
ctx.Forward(buf.SetRows(ctx, zeros, slotsTensor))
}
}
// Zero delta states
if len(c.deltaStates) > 0 {
zeros := inputCtx.Zeros(ml.DTypeF32, c.deltaStateSize, len(slots))
for _, buf := range c.deltaStates {
ctx.Forward(buf.SetRows(ctx, zeros, slotsTensor))
}
}
}
// EnsureWritable ensures sequences have private slots (copy-on-write).
func (c *HybridCache) EnsureWritable(ctx ml.Context) error {
for i, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
if slot < 0 || slot >= len(c.refCount) {
continue
}
if c.refCount[slot] <= 1 {
continue
}
newSlot, err := c.allocSlot()
if err != nil {
return err
}
c.refCount[slot]--
c.refCount[newSlot] = 1
c.slotForSeq[seq] = newSlot
c.curSlots[i] = newSlot
c.copyRecurrentState(ctx, slot, newSlot)
c.copyCheckpoints(ctx, slot, newSlot)
}
// Rebuild current slots tensor
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
func (c *HybridCache) copyRecurrentState(ctx ml.Context, srcSlot, dstSlot int) {
src := ctx.Input().FromInts([]int32{int32(srcSlot)}, 1)
dst := ctx.Input().FromInts([]int32{int32(dstSlot)}, 1)
for _, buf := range c.convStates {
rows := buf.Rows(ctx, src)
rowsF32 := rows.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, rowsF32, dst))
}
for _, buf := range c.deltaStates {
rows := buf.Rows(ctx, src)
rowsF32 := rows.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, rowsF32, dst))
}
}
func (c *HybridCache) CopyPrefix(srcSeq, dstSeq int, prefixLen int32) {
c.kv.CopyPrefix(srcSeq, dstSeq, prefixLen)
// Copy-on-write for recurrent state
if dstSlot, ok := c.slotForSeq[dstSeq]; ok {
if c.validSlot(dstSlot) {
c.refCount[dstSlot]--
if c.refCount[dstSlot] <= 0 {
c.refCount[dstSlot] = 0
c.freeSlot(dstSlot)
}
}
delete(c.slotForSeq, dstSeq)
}
srcSlot, ok := c.slotForSeq[srcSeq]
if !ok {
return
}
if c.validSlot(srcSlot) {
c.slotForSeq[dstSeq] = srcSlot
c.refCount[srcSlot]++
}
}
func (c *HybridCache) CanResume(seq int, pos int32) bool {
if !c.kv.CanResume(seq, pos) {
return false
}
if pos == 0 {
return true
}
return c.hasCheckpoint(seq, pos)
}
func (c *HybridCache) Remove(seq int, beginIndex, endIndex int32) error {
if beginIndex > 0 && endIndex != math.MaxInt32 {
return kvcache.ErrNotSupported
}
if beginIndex > 0 {
restore, ok := c.pendingRestore[seq]
if !ok || restore.pos+1 != beginIndex {
return kvcache.ErrNotSupported
}
if !c.restoreComplete(restore) {
return kvcache.ErrNotSupported
}
// If the recurrent slot is shared, detach it before applying a restore.
if slot, ok := c.slotForSeq[seq]; ok && c.validSlot(slot) && c.refCount[slot] > 1 {
newSlot, err := c.allocSlot()
if err != nil {
return err
}
ctx := c.backend.NewContext()
c.copyRecurrentState(ctx, slot, newSlot)
c.copyCheckpoints(ctx, slot, newSlot)
if len(c.convStates) > 0 || len(c.deltaStates) > 0 {
ctx.Compute()
}
ctx.Close()
c.refCount[slot]--
c.refCount[newSlot] = 1
c.slotForSeq[seq] = newSlot
restore.slot = newSlot
c.pendingRestore[seq] = restore
}
}
if err := c.kv.Remove(seq, beginIndex, endIndex); err != nil {
return err
}
if beginIndex > 0 {
restore := c.pendingRestore[seq]
delete(c.pendingRestore, seq)
return c.applyCheckpointRestore(restore)
}
// Removal invalidates recurrent state
slot, ok := c.slotForSeq[seq]
delete(c.pendingRestore, seq)
if !ok {
return nil
}
if !c.validSlot(slot) {
delete(c.slotForSeq, seq)
return nil
}
c.refCount[slot]--
if c.refCount[slot] <= 0 {
c.refCount[slot] = 0
c.clearCheckpoints(slot)
c.freeSlot(slot)
}
delete(c.slotForSeq, seq)
return nil
}
func (c *HybridCache) validSlot(slot int) bool {
return slot >= 0 && slot < len(c.refCount)
}
func (c *HybridCache) slotsTensor() ml.Tensor {
return c.curSlotsInput
}
// contiguousSlots returns the starting slot if current slots are contiguous and ordered.
func (c *HybridCache) contiguousSlots() (int, bool) {
if len(c.curSlots) == 0 {
return 0, false
}
start := c.curSlots[0]
for i, s := range c.curSlots {
if s != start+i {
return 0, false
}
}
return start, true
}
func (c *HybridCache) seqTokens() int {
return c.curSeqTokens
}
func (c *HybridCache) numSeqs() int {
return len(c.curSeqs)
}
func (c *HybridCache) convBuffer(ctx ml.Context, layer int) ml.Tensor {
if buf, ok := c.convStates[layer]; ok {
return buf
}
if _, ok := c.convCtxs[layer]; !ok {
c.convCtxs[layer] = c.backend.NewContextSize(1).Layer(layer)
}
// Recurrent state must stay in F32 (ssm_conv kernels are F32-only).
buf := c.convCtxs[layer].Zeros(ml.DTypeF32, c.convDim*c.convChannels, c.maxSequences)
c.convStates[layer] = buf
return buf
}
func (c *HybridCache) deltaBuffer(ctx ml.Context, layer int) ml.Tensor {
if buf, ok := c.deltaStates[layer]; ok {
return buf
}
if _, ok := c.deltaCtxs[layer]; !ok {
c.deltaCtxs[layer] = c.backend.NewContextSize(1).Layer(layer)
}
// Recurrent delta state must stay in F32.
buf := c.deltaCtxs[layer].Zeros(ml.DTypeF32, c.deltaStateSize, c.maxSequences)
c.deltaStates[layer] = buf
return buf
}
func (c *HybridCache) ensureWritableOnce(ctx ml.Context) {
if !c.writableEnsured {
needsWritable := false
for _, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
if slot >= 0 && slot < len(c.refCount) && c.refCount[slot] > 1 {
needsWritable = true
break
}
}
if needsWritable {
if err := c.EnsureWritable(ctx); err != nil {
c.writableError = err
}
}
c.writableEnsured = true
}
}
// ConvState returns the conv state for current batch sequences as [convDim, convChannels, nSeqs].
func (c *HybridCache) ConvState(ctx ml.Context, layer int) (ml.Tensor, error) {
c.ensureWritableOnce(ctx)
if c.writableError != nil {
return nil, c.writableError
}
buf := c.convBuffer(ctx, layer)
cur := buf.Rows(ctx, c.slotsTensor())
return cur.Reshape(ctx, c.convDim, c.convChannels, c.numSeqs()), nil
}
// UpdateConvState writes a new conv state for current batch sequences.
func (c *HybridCache) UpdateConvState(ctx ml.Context, layer int, newState ml.Tensor) {
buf := c.convBuffer(ctx, layer)
src := newState.Reshape(ctx, c.convDim*c.convChannels, c.numSeqs())
srcF32 := src.Cast(ctx, ml.DTypeF32)
if start, ok := c.contiguousSlots(); ok {
// Fast path: contiguous slots allow a single view + copy
offset := start * buf.Stride(1)
view := buf.View(ctx, offset, c.convDim*c.convChannels, buf.Stride(1), c.numSeqs())
ctx.Forward(srcF32.Copy(ctx, view))
} else {
ctx.Forward(buf.SetRows(ctx, srcF32, c.slotsTensor()))
}
c.captureConvCheckpoint(ctx, layer, srcF32)
}
// DeltaState returns the delta state for current batch sequences as [headVDim, headVDim*numVHeads, nSeqs].
func (c *HybridCache) DeltaState(ctx ml.Context, layer int, headVDim, numVHeads int) (ml.Tensor, error) {
c.ensureWritableOnce(ctx)
if c.writableError != nil {
return nil, c.writableError
}
buf := c.deltaBuffer(ctx, layer)
cur := buf.Rows(ctx, c.slotsTensor())
return cur.Reshape(ctx, headVDim, headVDim*numVHeads, c.numSeqs()), nil
}
// UpdateDeltaState writes a new delta state for current batch sequences.
func (c *HybridCache) UpdateDeltaState(ctx ml.Context, layer int, newState ml.Tensor) {
buf := c.deltaBuffer(ctx, layer)
src := newState.Reshape(ctx, c.deltaStateSize, c.numSeqs())
srcF32 := src.Cast(ctx, ml.DTypeF32)
if start, ok := c.contiguousSlots(); ok {
// Fast path: contiguous slots allow a single view + copy
offset := start * buf.Stride(1)
view := buf.View(ctx, offset, c.deltaStateSize, buf.Stride(1), c.numSeqs())
ctx.Forward(srcF32.Copy(ctx, view))
} else {
ctx.Forward(buf.SetRows(ctx, srcF32, c.slotsTensor()))
}
c.captureDeltaCheckpoint(ctx, layer, srcF32)
}
// IsSupportedForBatch returns true if the current batch layout supports recurrent layers.
func (c *HybridCache) IsSupportedForBatch() bool {
return c.curSeqTokens > 0 && len(c.curSeqs) > 0
}
// Seqs returns the ordered unique sequences for the current forward pass.
func (c *HybridCache) Seqs() []int {
return slices.Clone(c.curSeqs)
}

View File

@@ -0,0 +1,498 @@
package qwen3next
import (
"log/slog"
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
const (
checkpointCountDefault = 32
checkpointMinPosDefault = int32(16)
checkpointIntervalDefault = int32(1280)
)
// TODO(jmorganca): Add byte-serialized host-RAM checkpoints to reduce GPU
// memory usage while preserving prefix reuse for recurrent state.
type checkpointEntry struct {
pos int32
conv map[int]ml.Tensor
delta map[int]ml.Tensor
}
type slotCheckpointStore struct {
entries []checkpointEntry
size int
next int
lastPos int32
}
type checkpointRestore struct {
slot int
idx int
pos int32
}
func newSlotCheckpointStore(n int) *slotCheckpointStore {
entries := make([]checkpointEntry, n)
for i := range entries {
entries[i].pos = -1
}
return &slotCheckpointStore{
entries: entries,
lastPos: -1,
}
}
func (s *slotCheckpointStore) reset() {
s.size = 0
s.next = 0
s.lastPos = -1
for i := range s.entries {
s.entries[i].pos = -1
}
}
func (s *slotCheckpointStore) record(pos int32) int {
if len(s.entries) == 0 {
return -1
}
idx := s.next
s.next = (s.next + 1) % len(s.entries)
if s.size < len(s.entries) {
s.size++
}
s.entries[idx].pos = pos
s.lastPos = pos
return idx
}
func (s *slotCheckpointStore) bestIndex(targetPos int32) (int, int32, bool) {
bestIdx := -1
bestPos := int32(-1)
for i := range s.entries {
pos := s.entries[i].pos
if pos < 0 || pos >= targetPos {
continue
}
if pos > bestPos {
bestPos = pos
bestIdx = i
}
}
if bestIdx < 0 {
return -1, -1, false
}
return bestIdx, bestPos, true
}
func (s *slotCheckpointStore) pruneAfter(pos int32) {
if len(s.entries) == 0 {
s.size = 0
s.next = 0
s.lastPos = -1
return
}
size := 0
next := -1
minPos := int32(math.MaxInt32)
minIdx := 0
for i := range s.entries {
if s.entries[i].pos > pos {
s.entries[i].pos = -1
}
if s.entries[i].pos >= 0 {
size++
if s.entries[i].pos < minPos {
minPos = s.entries[i].pos
minIdx = i
}
} else if next == -1 {
next = i
}
}
s.size = size
if size == 0 {
s.next = 0
s.lastPos = -1
return
}
if next != -1 {
s.next = next
} else {
// Full ring: overwrite the oldest checkpoint next.
s.next = minIdx
}
s.lastPos = pos
}
func (s *slotCheckpointStore) window() (size int, minPos, maxPos, lastPos int32) {
minPos = int32(math.MaxInt32)
maxPos = int32(-1)
for i := range s.entries {
pos := s.entries[i].pos
if pos < 0 {
continue
}
size++
if pos < minPos {
minPos = pos
}
if pos > maxPos {
maxPos = pos
}
}
if size == 0 {
minPos = -1
maxPos = -1
}
return size, minPos, maxPos, s.lastPos
}
func (c *HybridCache) planCheckpoints(batch input.Batch) {
if c.checkpointCount == 0 || len(c.curSeqs) == 0 {
c.curCheckpointPos = c.curCheckpointPos[:0]
for k := range c.curCheckpointSlots {
delete(c.curCheckpointSlots, k)
}
return
}
if cap(c.curCheckpointPos) < len(c.curSeqs) {
c.curCheckpointPos = make([]int32, len(c.curSeqs))
} else {
c.curCheckpointPos = c.curCheckpointPos[:len(c.curSeqs)]
}
for i := range c.curCheckpointPos {
c.curCheckpointPos[i] = -1
}
for k := range c.curCheckpointSlots {
delete(c.curCheckpointSlots, k)
}
posMax := make(map[int]int32, len(c.curSeqs))
for i, seq := range batch.Sequences {
pos := batch.Positions[i]
if cur, ok := posMax[seq]; !ok || pos > cur {
posMax[seq] = pos
}
}
for i, seq := range c.curSeqs {
pos, ok := posMax[seq]
if !ok {
continue
}
if pos < c.checkpointMinPos {
continue
}
slot := c.curSlots[i]
store := c.checkpointStore(slot)
lastPos := store.lastPos
if lastPos < 0 || pos-lastPos >= c.checkpointInterval {
c.curCheckpointPos[i] = pos
}
}
}
func (c *HybridCache) checkpointStore(slot int) *slotCheckpointStore {
store, ok := c.checkpoints[slot]
if ok {
return store
}
store = newSlotCheckpointStore(c.checkpointCount)
c.checkpoints[slot] = store
return store
}
func (c *HybridCache) checkpointIndexForSlot(slot int, pos int32) int {
if c.checkpointCount == 0 {
return -1
}
if idx, ok := c.curCheckpointSlots[slot]; ok {
return idx
}
store := c.checkpointStore(slot)
idx := store.record(pos)
if idx >= 0 {
c.curCheckpointSlots[slot] = idx
}
return idx
}
func (c *HybridCache) hasCheckpoint(seq int, pos int32) bool {
if pos <= 0 {
return false
}
slot, ok := c.slotForSeq[seq]
if !ok {
return false
}
store, ok := c.checkpoints[slot]
if !ok {
return false
}
_, _, ok = store.bestIndex(pos)
return ok
}
func (c *HybridCache) PrepareRestore(seq int, targetPos int32) (int32, bool) {
if targetPos <= 0 {
return 0, false
}
slot, ok := c.slotForSeq[seq]
if !ok {
return 0, false
}
store, ok := c.checkpoints[slot]
if !ok {
slog.Debug("qwen3next: checkpoint miss", "seq", seq, "slot", slot, "target", targetPos, "size", 0)
return 0, false
}
idx, pos, ok := store.bestIndex(targetPos)
if !ok {
size, minPos, maxPos, lastPos := store.window()
slog.Debug("qwen3next: checkpoint miss", "seq", seq, "slot", slot, "target", targetPos, "size", size,
"min", minPos, "max", maxPos, "last", lastPos)
return 0, false
}
c.pendingRestore[seq] = checkpointRestore{
slot: slot,
idx: idx,
pos: pos,
}
return pos + 1, true
}
func (c *HybridCache) applyCheckpointRestore(restore checkpointRestore) error {
entry, ok := c.restoreEntry(restore)
if !ok {
return kvcache.ErrNotSupported
}
ctx := c.backend.NewContext()
defer ctx.Close()
slotIdx := ctx.Input().FromInts([]int32{int32(restore.slot)}, 1)
for layer, src := range entry.conv {
buf := c.convBuffer(ctx, layer)
ctx.Forward(buf.SetRows(ctx, src, slotIdx))
}
for layer, src := range entry.delta {
buf := c.deltaBuffer(ctx, layer)
ctx.Forward(buf.SetRows(ctx, src, slotIdx))
}
if len(entry.conv) > 0 || len(entry.delta) > 0 {
ctx.Compute()
}
store := c.checkpoints[restore.slot]
store.pruneAfter(restore.pos)
return nil
}
func (c *HybridCache) restoreComplete(restore checkpointRestore) bool {
_, ok := c.restoreEntry(restore)
return ok
}
func (c *HybridCache) restoreEntry(restore checkpointRestore) (*checkpointEntry, bool) {
store, ok := c.checkpoints[restore.slot]
if !ok || restore.idx < 0 || restore.idx >= len(store.entries) {
return nil, false
}
entry := &store.entries[restore.idx]
if entry.pos < 0 {
return nil, false
}
if !c.entryComplete(entry) {
return nil, false
}
return entry, true
}
func (c *HybridCache) entryComplete(entry *checkpointEntry) bool {
for layer := range c.convStates {
if entry.conv == nil || entry.conv[layer] == nil {
return false
}
}
for layer := range c.deltaStates {
if entry.delta == nil || entry.delta[layer] == nil {
return false
}
}
return true
}
func (c *HybridCache) clearCheckpoints(slot int) {
if store, ok := c.checkpoints[slot]; ok {
store.reset()
}
}
func (c *HybridCache) copyCheckpoints(ctx ml.Context, srcSlot, dstSlot int) {
if c.checkpointCount == 0 {
return
}
srcStore, ok := c.checkpoints[srcSlot]
if !ok || srcStore.size == 0 {
return
}
dstStore := c.checkpointStore(dstSlot)
dstStore.size = srcStore.size
dstStore.next = srcStore.next
dstStore.lastPos = srcStore.lastPos
for i := range srcStore.entries {
srcEntry := &srcStore.entries[i]
dstEntry := &dstStore.entries[i]
dstEntry.pos = srcEntry.pos
if srcEntry.conv != nil {
if dstEntry.conv == nil {
dstEntry.conv = make(map[int]ml.Tensor)
}
for layer, src := range srcEntry.conv {
dst := c.ensureCheckpointConv(layer, dstEntry)
ctx.Forward(src.Copy(ctx, dst))
}
}
if srcEntry.delta != nil {
if dstEntry.delta == nil {
dstEntry.delta = make(map[int]ml.Tensor)
}
for layer, src := range srcEntry.delta {
dst := c.ensureCheckpointDelta(layer, dstEntry)
ctx.Forward(src.Copy(ctx, dst))
}
}
}
}
func (c *HybridCache) captureConvCheckpoint(ctx ml.Context, layer int, src ml.Tensor) {
if c.checkpointCount == 0 {
return
}
if c.reserveCheckpoints {
c.reserveCheckpointConv(layer)
return
}
if len(c.curCheckpointPos) == 0 {
return
}
for i, pos := range c.curCheckpointPos {
if pos < 0 {
continue
}
slot := c.curSlots[i]
idx := c.checkpointIndexForSlot(slot, pos)
if idx < 0 {
continue
}
entry := &c.checkpoints[slot].entries[idx]
dst := c.ensureCheckpointConv(layer, entry)
seqSlice := src.Slice(ctx, 1, i, i+1, 1)
ctx.Forward(seqSlice.Copy(ctx, dst))
}
}
func (c *HybridCache) captureDeltaCheckpoint(ctx ml.Context, layer int, src ml.Tensor) {
if c.checkpointCount == 0 {
return
}
if c.reserveCheckpoints {
c.reserveCheckpointDelta(layer)
return
}
if len(c.curCheckpointPos) == 0 {
return
}
for i, pos := range c.curCheckpointPos {
if pos < 0 {
continue
}
slot := c.curSlots[i]
idx := c.checkpointIndexForSlot(slot, pos)
if idx < 0 {
continue
}
entry := &c.checkpoints[slot].entries[idx]
dst := c.ensureCheckpointDelta(layer, entry)
seqSlice := src.Slice(ctx, 1, i, i+1, 1)
ctx.Forward(seqSlice.Copy(ctx, dst))
}
}
func (c *HybridCache) ensureCheckpointConv(layer int, entry *checkpointEntry) ml.Tensor {
if entry.conv == nil {
entry.conv = make(map[int]ml.Tensor)
}
if t, ok := entry.conv[layer]; ok {
return t
}
ctx, ok := c.checkpointConvCtxs[layer]
if !ok {
ctx = c.backend.NewContextSize(c.checkpointCtxSize).Layer(layer)
c.checkpointConvCtxs[layer] = ctx
}
t := ctx.Zeros(ml.DTypeF32, c.convDim*c.convChannels, 1)
entry.conv[layer] = t
return t
}
func (c *HybridCache) ensureCheckpointDelta(layer int, entry *checkpointEntry) ml.Tensor {
if entry.delta == nil {
entry.delta = make(map[int]ml.Tensor)
}
if t, ok := entry.delta[layer]; ok {
return t
}
ctx, ok := c.checkpointDeltaCtxs[layer]
if !ok {
ctx = c.backend.NewContextSize(c.checkpointCtxSize).Layer(layer)
c.checkpointDeltaCtxs[layer] = ctx
}
t := ctx.Zeros(ml.DTypeF32, c.deltaStateSize, 1)
entry.delta[layer] = t
return t
}
func (c *HybridCache) reserveCheckpointConv(layer int) {
key := checkpointReserveKey(layer, 0)
if _, ok := c.checkpointReserved[key]; ok {
return
}
for slot := range c.maxSequences {
store := c.checkpointStore(slot)
for i := range store.entries {
entry := &store.entries[i]
_ = c.ensureCheckpointConv(layer, entry)
}
}
c.checkpointReserved[key] = struct{}{}
}
func (c *HybridCache) reserveCheckpointDelta(layer int) {
key := checkpointReserveKey(layer, 1)
if _, ok := c.checkpointReserved[key]; ok {
return
}
for slot := range c.maxSequences {
store := c.checkpointStore(slot)
for i := range store.entries {
entry := &store.entries[i]
_ = c.ensureCheckpointDelta(layer, entry)
}
}
c.checkpointReserved[key] = struct{}{}
}
func checkpointReserveKey(layer int, kind int) int {
return layer*2 + kind
}

Some files were not shown because too many files have changed in this diff Show More