Compare commits

..

1 Commits

Author SHA1 Message Date
Bruce MacDonald
f92a82db15 app: match model picker to server models
Rather than adding models to the model picker to guide users on first use, take the ollama tags response as a source of truth.
2026-02-05 15:43:22 -08:00
132 changed files with 6958 additions and 3799 deletions

View File

@@ -1,22 +0,0 @@
name: test-install
on:
pull_request:
paths:
- 'scripts/install.sh'
- '.github/workflows/test-install.yaml'
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, macos-latest]
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- name: Run install script
run: sh ./scripts/install.sh
env:
OLLAMA_NO_START: 1 # do not start app
- name: Verify ollama is available
run: ollama --version

View File

@@ -182,7 +182,7 @@ option(MLX_ENGINE "Enable MLX backend" OFF)
if(MLX_ENGINE)
message(STATUS "Setting up MLX (this takes a while...)")
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/x/imagegen/mlx)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/x/ml/backend/mlx)
# Find CUDA toolkit if MLX is built with CUDA support
find_package(CUDAToolkit)
@@ -216,4 +216,4 @@ if(MLX_ENGINE)
COMPONENT MLX)
endif()
endif()
endif()
endif()

View File

@@ -147,7 +147,7 @@ ARG PARALLEL
WORKDIR /go/src/github.com/ollama/ollama
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
COPY x/imagegen/mlx x/imagegen/mlx
COPY x/ml/backend/mlx x/ml/backend/mlx
COPY go.mod go.sum .
COPY MLX_VERSION .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local

View File

@@ -518,26 +518,24 @@ func mapStopReason(reason string, hasToolCalls bool) string {
// StreamConverter manages state for converting Ollama streaming responses to Anthropic format
type StreamConverter struct {
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
estimatedInputTokens int // Estimated tokens from request (used when actual metrics are 0)
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
}
func NewStreamConverter(id, model string, estimatedInputTokens int) *StreamConverter {
func NewStreamConverter(id, model string) *StreamConverter {
return &StreamConverter{
ID: id,
Model: model,
firstWrite: true,
estimatedInputTokens: estimatedInputTokens,
toolCallsSent: make(map[string]bool),
ID: id,
Model: model,
firstWrite: true,
toolCallsSent: make(map[string]bool),
}
}
@@ -553,11 +551,7 @@ func (c *StreamConverter) Process(r api.ChatResponse) []StreamEvent {
if c.firstWrite {
c.firstWrite = false
// Use actual metrics if available, otherwise use estimate
c.inputTokens = r.Metrics.PromptEvalCount
if c.inputTokens == 0 && c.estimatedInputTokens > 0 {
c.inputTokens = c.estimatedInputTokens
}
events = append(events, StreamEvent{
Event: "message_start",
@@ -785,117 +779,3 @@ func mapToArgs(m map[string]any) api.ToolCallFunctionArguments {
}
return args
}
// CountTokensRequest represents an Anthropic count_tokens request
type CountTokensRequest struct {
Model string `json:"model"`
Messages []MessageParam `json:"messages"`
System any `json:"system,omitempty"`
Tools []Tool `json:"tools,omitempty"`
Thinking *ThinkingConfig `json:"thinking,omitempty"`
}
// EstimateInputTokens estimates input tokens from a MessagesRequest (reuses CountTokensRequest logic)
func EstimateInputTokens(req MessagesRequest) int {
return estimateTokens(CountTokensRequest{
Model: req.Model,
Messages: req.Messages,
System: req.System,
Tools: req.Tools,
Thinking: req.Thinking,
})
}
// CountTokensResponse represents an Anthropic count_tokens response
type CountTokensResponse struct {
InputTokens int `json:"input_tokens"`
}
// estimateTokens returns a rough estimate of tokens (len/4).
// TODO: Replace with actual tokenization via Tokenize API for accuracy.
// Current len/4 heuristic is a rough approximation (~4 chars/token average).
func estimateTokens(req CountTokensRequest) int {
var totalLen int
// Count system prompt
if req.System != nil {
totalLen += countAnyContent(req.System)
}
// Count messages
for _, msg := range req.Messages {
// Count role (always present)
totalLen += len(msg.Role)
// Count content
contentLen := countAnyContent(msg.Content)
totalLen += contentLen
}
for _, tool := range req.Tools {
totalLen += len(tool.Name) + len(tool.Description) + len(tool.InputSchema)
}
// Return len/4 as rough token estimate, minimum 1 if there's any content
tokens := totalLen / 4
if tokens == 0 && (len(req.Messages) > 0 || req.System != nil) {
tokens = 1
}
return tokens
}
func countAnyContent(content any) int {
if content == nil {
return 0
}
switch c := content.(type) {
case string:
return len(c)
case []any:
total := 0
for _, block := range c {
total += countContentBlock(block)
}
return total
default:
if data, err := json.Marshal(content); err == nil {
return len(data)
}
return 0
}
}
func countContentBlock(block any) int {
blockMap, ok := block.(map[string]any)
if !ok {
if s, ok := block.(string); ok {
return len(s)
}
return 0
}
total := 0
blockType, _ := blockMap["type"].(string)
if text, ok := blockMap["text"].(string); ok {
total += len(text)
}
if thinking, ok := blockMap["thinking"].(string); ok {
total += len(thinking)
}
if blockType == "tool_use" {
if data, err := json.Marshal(blockMap); err == nil {
total += len(data)
}
}
if blockType == "tool_result" {
if data, err := json.Marshal(blockMap); err == nil {
total += len(data)
}
}
return total
}

View File

@@ -321,6 +321,8 @@ func TestFromMessagesRequest_WithThinking(t *testing.T) {
}
}
// TestFromMessagesRequest_ThinkingOnlyBlock verifies that messages containing only
// a thinking block (no text, images, or tool calls) are preserved and not dropped.
func TestFromMessagesRequest_ThinkingOnlyBlock(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
@@ -603,7 +605,7 @@ func TestGenerateMessageID(t *testing.T) {
}
func TestStreamConverter_Basic(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
// First chunk
resp1 := api.ChatResponse{
@@ -676,7 +678,7 @@ func TestStreamConverter_Basic(t *testing.T) {
}
func TestStreamConverter_WithToolCalls(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
@@ -729,7 +731,7 @@ func TestStreamConverter_WithToolCalls(t *testing.T) {
func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
// Test that unmarshalable arguments (like channels) are handled gracefully
// and don't cause a panic or corrupt stream
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
// Create a channel which cannot be JSON marshaled
unmarshalable := make(chan int)
@@ -776,7 +778,7 @@ func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
func TestStreamConverter_MultipleToolCallsWithMixedValidity(t *testing.T) {
// Test that valid tool calls still work when mixed with invalid ones
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
unmarshalable := make(chan int)
badArgs := api.NewToolCallFunctionArguments()
@@ -840,6 +842,10 @@ func TestStreamConverter_MultipleToolCallsWithMixedValidity(t *testing.T) {
}
}
// TestContentBlockJSON_EmptyFieldsPresent verifies that empty text and thinking fields
// are serialized in JSON output. The Anthropic SDK requires these fields to be present
// (even when empty) in content_block_start events to properly accumulate streaming deltas.
// Without these fields, the SDK throws: "TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'"
func TestContentBlockJSON_EmptyFieldsPresent(t *testing.T) {
tests := []struct {
name string
@@ -893,9 +899,11 @@ func TestContentBlockJSON_EmptyFieldsPresent(t *testing.T) {
}
}
// TestStreamConverter_ContentBlockStartIncludesEmptyFields verifies that content_block_start
// events include the required empty fields for SDK compatibility.
func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
t.Run("text block start includes empty text", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
@@ -929,7 +937,7 @@ func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
})
t.Run("thinking block start includes empty thinking", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
@@ -961,105 +969,3 @@ func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
}
})
}
func TestEstimateTokens_SimpleMessage(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{
{Role: "user", Content: "Hello, world!"},
},
}
tokens := estimateTokens(req)
// "user" (4) + "Hello, world!" (13) = 17 chars / 4 = 4 tokens
if tokens < 1 {
t.Errorf("expected at least 1 token, got %d", tokens)
}
// Sanity check: shouldn't be wildly off
if tokens > 10 {
t.Errorf("expected fewer than 10 tokens for short message, got %d", tokens)
}
}
func TestEstimateTokens_WithSystemPrompt(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
System: "You are a helpful assistant.",
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
},
}
tokens := estimateTokens(req)
// System prompt adds to count
if tokens < 5 {
t.Errorf("expected at least 5 tokens with system prompt, got %d", tokens)
}
}
func TestEstimateTokens_WithTools(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{
{Role: "user", Content: "What's the weather?"},
},
Tools: []Tool{
{
Name: "get_weather",
Description: "Get the current weather for a location",
InputSchema: json.RawMessage(`{"type":"object","properties":{"location":{"type":"string"}}}`),
},
},
}
tokens := estimateTokens(req)
// Tools add significant content
if tokens < 10 {
t.Errorf("expected at least 10 tokens with tools, got %d", tokens)
}
}
func TestEstimateTokens_WithThinking(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
{
Role: "assistant",
Content: []any{
map[string]any{
"type": "thinking",
"thinking": "Let me think about this carefully...",
},
map[string]any{
"type": "text",
"text": "Here is my response.",
},
},
},
},
}
tokens := estimateTokens(req)
// Thinking content should be counted
if tokens < 10 {
t.Errorf("expected at least 10 tokens with thinking content, got %d", tokens)
}
}
func TestEstimateTokens_EmptyContent(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{},
}
tokens := estimateTokens(req)
if tokens != 0 {
t.Errorf("expected 0 tokens for empty content, got %d", tokens)
}
}

View File

@@ -466,25 +466,3 @@ func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
}
return &resp, nil
}
// AliasRequest is the request body for creating or updating a model alias.
type AliasRequest struct {
Alias string `json:"alias"`
Target string `json:"target"`
PrefixMatching bool `json:"prefix_matching,omitempty"`
}
// SetAliasExperimental creates or updates a model alias via the experimental aliases API.
func (c *Client) SetAliasExperimental(ctx context.Context, req *AliasRequest) error {
return c.do(ctx, http.MethodPost, "/api/experimental/aliases", req, nil)
}
// AliasDeleteRequest is the request body for deleting a model alias.
type AliasDeleteRequest struct {
Alias string `json:"alias"`
}
// DeleteAliasExperimental deletes a model alias via the experimental aliases API.
func (c *Client) DeleteAliasExperimental(ctx context.Context, req *AliasDeleteRequest) error {
return c.do(ctx, http.MethodDelete, "/api/experimental/aliases", req, nil)
}

View File

@@ -1,13 +1,12 @@
import { useQuery } from "@tanstack/react-query";
import { Model } from "@/gotypes";
import { getModels } from "@/api";
import { mergeModels } from "@/utils/mergeModels";
import { useSettings } from "./useSettings";
import { useMemo } from "react";
const DEFAULT_MODEL = "gemma3:4b";
export function useModels(searchQuery = "") {
const { settings } = useSettings();
const localQuery = useQuery<Model[], Error>({
const query = useQuery<Model[], Error>({
queryKey: ["models", searchQuery],
queryFn: () => getModels(searchQuery),
gcTime: 10 * 60 * 1000, // Keep in cache for 10 minutes
@@ -19,33 +18,18 @@ export function useModels(searchQuery = "") {
refetchIntervalInBackground: true,
});
const allModels = useMemo(() => {
const models = mergeModels(localQuery.data || [], settings.airplaneMode);
if (searchQuery && searchQuery.trim()) {
const query = searchQuery.toLowerCase().trim();
const filteredModels = models.filter((model) =>
model.model.toLowerCase().includes(query),
);
const seen = new Set<string>();
return filteredModels.filter((model) => {
const currentModel = model.model.toLowerCase();
if (seen.has(currentModel)) {
return false;
}
seen.add(currentModel);
return true;
});
const models = useMemo(() => {
const data = query.data || [];
if (data.length === 0) {
return [new Model({ model: DEFAULT_MODEL })];
}
return models;
}, [localQuery.data, searchQuery, settings.airplaneMode]);
return data;
}, [query.data]);
return {
...localQuery,
data: allModels,
isLoading: localQuery.isLoading,
...query,
data: models,
isLoading: query.isLoading,
};
}

View File

@@ -4,7 +4,6 @@ import { useModels } from "./useModels";
import { useChat } from "./useChats";
import { useSettings } from "./useSettings.ts";
import { Model } from "@/gotypes";
import { FEATURED_MODELS } from "@/utils/mergeModels";
import { getTotalVRAM } from "@/utils/vram.ts";
import { getInferenceCompute } from "@/api";
@@ -46,77 +45,13 @@ export function useSelectedModel(currentChatId?: string, searchQuery?: string) {
const restoredChatRef = useRef<string | null>(null);
const selectedModel: Model | null = useMemo(() => {
// if airplane mode is on and selected model ends with cloud,
// switch to recommended default model
if (settings.airplaneMode && settings.selectedModel?.endsWith("cloud")) {
return (
models.find((m) => m.model === recommendedModel) ||
models.find((m) => m.isCloud) ||
models.find((m) => m.digest === undefined || m.digest === "") ||
models[0] ||
null
);
}
// Migration logic: if turboEnabled is true and selectedModel is a base model,
// migrate to the cloud version and disable turboEnabled permanently
// TODO: remove this logic in a future release
const baseModelsToMigrate = [
"gpt-oss:20b",
"gpt-oss:120b",
"deepseek-v3.1:671b",
"qwen3-coder:480b",
];
const shouldMigrate =
!settings.airplaneMode &&
settings.turboEnabled &&
baseModelsToMigrate.includes(settings.selectedModel);
if (shouldMigrate) {
const cloudModel = `${settings.selectedModel}cloud`;
return (
models.find((m) => m.model === cloudModel) ||
new Model({
model: cloudModel,
cloud: true,
ollama_host: false,
})
);
}
return (
models.find((m) => m.model === settings.selectedModel) ||
(settings.selectedModel &&
new Model({
model: settings.selectedModel,
cloud: FEATURED_MODELS.some(
(f) => f.endsWith("cloud") && f === settings.selectedModel,
),
ollama_host: false,
})) ||
new Model({ model: settings.selectedModel })) ||
null
);
}, [models, settings.selectedModel, settings.airplaneMode, recommendedModel]);
useEffect(() => {
if (!selectedModel) return;
if (
settings.airplaneMode &&
settings.selectedModel?.endsWith("cloud") &&
selectedModel.model !== settings.selectedModel
) {
setSettings({ SelectedModel: selectedModel.model });
}
if (
!settings.airplaneMode &&
settings.turboEnabled &&
selectedModel.model !== settings.selectedModel
) {
setSettings({ SelectedModel: selectedModel.model, TurboEnabled: false });
}
}, [selectedModel, settings.airplaneMode, settings.selectedModel]);
}, [models, settings.selectedModel]);
// Set model from chat history when chat data loads
useEffect(() => {
@@ -169,8 +104,6 @@ export function useSelectedModel(currentChatId?: string, searchQuery?: string) {
const defaultModel =
models.find((m) => m.model === recommendedModel) ||
models.find((m) => m.isCloud()) ||
models.find((m) => m.digest === undefined || m.digest === "") ||
models[0];
if (defaultModel) {

View File

@@ -1,128 +0,0 @@
import { describe, it, expect } from "vitest";
import { Model } from "@/gotypes";
import { mergeModels, FEATURED_MODELS } from "@/utils/mergeModels";
import "@/api";
describe("Model merging logic", () => {
it("should handle cloud models with -cloud suffix", () => {
const localModels: Model[] = [
new Model({ model: "gpt-oss:120b-cloud" }),
new Model({ model: "llama3:latest" }),
new Model({ model: "mistral:latest" }),
];
const merged = mergeModels(localModels);
// First verify cloud models are first and in FEATURED_MODELS order
const cloudModels = FEATURED_MODELS.filter((m: string) =>
m.endsWith("cloud"),
);
for (let i = 0; i < cloudModels.length; i++) {
expect(merged[i].model).toBe(cloudModels[i]);
expect(merged[i].isCloud()).toBe(true);
}
// Then verify non-cloud featured models are next and in FEATURED_MODELS order
const nonCloudFeatured = FEATURED_MODELS.filter(
(m: string) => !m.endsWith("cloud"),
);
for (let i = 0; i < nonCloudFeatured.length; i++) {
const model = merged[i + cloudModels.length];
expect(model.model).toBe(nonCloudFeatured[i]);
expect(model.isCloud()).toBe(false);
}
// Verify local models are preserved and come after featured models
const featuredCount = FEATURED_MODELS.length;
expect(merged[featuredCount].model).toBe("llama3:latest");
expect(merged[featuredCount + 1].model).toBe("mistral:latest");
// Length should be exactly featured models plus our local models
expect(merged.length).toBe(FEATURED_MODELS.length + 2);
});
it("should hide cloud models in airplane mode", () => {
const localModels: Model[] = [
new Model({ model: "gpt-oss:120b-cloud" }),
new Model({ model: "llama3:latest" }),
new Model({ model: "mistral:latest" }),
];
const merged = mergeModels(localModels, true); // airplane mode = true
// No cloud models should be present
const cloudModels = merged.filter((m) => m.isCloud());
expect(cloudModels.length).toBe(0);
// Should have non-cloud featured models
const nonCloudFeatured = FEATURED_MODELS.filter(
(m) => !m.endsWith("cloud"),
);
for (let i = 0; i < nonCloudFeatured.length; i++) {
const model = merged[i];
expect(model.model).toBe(nonCloudFeatured[i]);
expect(model.isCloud()).toBe(false);
}
// Local models should be preserved
const featuredCount = nonCloudFeatured.length;
expect(merged[featuredCount].model).toBe("llama3:latest");
expect(merged[featuredCount + 1].model).toBe("mistral:latest");
});
it("should handle empty input", () => {
const merged = mergeModels([]);
// First verify cloud models are first and in FEATURED_MODELS order
const cloudModels = FEATURED_MODELS.filter((m) => m.endsWith("cloud"));
for (let i = 0; i < cloudModels.length; i++) {
expect(merged[i].model).toBe(cloudModels[i]);
expect(merged[i].isCloud()).toBe(true);
}
// Then verify non-cloud featured models are next and in FEATURED_MODELS order
const nonCloudFeatured = FEATURED_MODELS.filter(
(m) => !m.endsWith("cloud"),
);
for (let i = 0; i < nonCloudFeatured.length; i++) {
const model = merged[i + cloudModels.length];
expect(model.model).toBe(nonCloudFeatured[i]);
expect(model.isCloud()).toBe(false);
}
// Length should be exactly FEATURED_MODELS length
expect(merged.length).toBe(FEATURED_MODELS.length);
});
it("should sort models correctly", () => {
const localModels: Model[] = [
new Model({ model: "zephyr:latest" }),
new Model({ model: "alpha:latest" }),
new Model({ model: "gpt-oss:120b-cloud" }),
];
const merged = mergeModels(localModels);
// First verify cloud models are first and in FEATURED_MODELS order
const cloudModels = FEATURED_MODELS.filter((m) => m.endsWith("cloud"));
for (let i = 0; i < cloudModels.length; i++) {
expect(merged[i].model).toBe(cloudModels[i]);
expect(merged[i].isCloud()).toBe(true);
}
// Then verify non-cloud featured models are next and in FEATURED_MODELS order
const nonCloudFeatured = FEATURED_MODELS.filter(
(m) => !m.endsWith("cloud"),
);
for (let i = 0; i < nonCloudFeatured.length; i++) {
const model = merged[i + cloudModels.length];
expect(model.model).toBe(nonCloudFeatured[i]);
expect(model.isCloud()).toBe(false);
}
// Non-featured local models should be at the end in alphabetical order
const featuredCount = FEATURED_MODELS.length;
expect(merged[featuredCount].model).toBe("alpha:latest");
expect(merged[featuredCount + 1].model).toBe("zephyr:latest");
});
});

View File

@@ -1,101 +0,0 @@
import { Model } from "@/gotypes";
// Featured models list (in priority order)
export const FEATURED_MODELS = [
"gpt-oss:120b-cloud",
"gpt-oss:20b-cloud",
"deepseek-v3.1:671b-cloud",
"qwen3-coder:480b-cloud",
"qwen3-vl:235b-cloud",
"minimax-m2:cloud",
"glm-4.6:cloud",
"gpt-oss:120b",
"gpt-oss:20b",
"gemma3:27b",
"gemma3:12b",
"gemma3:4b",
"gemma3:1b",
"deepseek-r1:8b",
"qwen3-coder:30b",
"qwen3-vl:30b",
"qwen3-vl:8b",
"qwen3-vl:4b",
"qwen3:30b",
"qwen3:8b",
"qwen3:4b",
];
function alphabeticalSort(a: Model, b: Model): number {
return a.model.toLowerCase().localeCompare(b.model.toLowerCase());
}
//Merges models, sorting cloud models first, then other models
export function mergeModels(
localModels: Model[],
airplaneMode: boolean = false,
): Model[] {
const allModels = (localModels || []).map((model) => model);
// 1. Get cloud models from local models and featured list
const cloudModels = [...allModels.filter((m) => m.isCloud())];
// Add any cloud models from FEATURED_MODELS that aren't in local models
FEATURED_MODELS.filter((f) => f.endsWith("cloud")).forEach((cloudModel) => {
if (!cloudModels.some((m) => m.model === cloudModel)) {
cloudModels.push(new Model({ model: cloudModel }));
}
});
// 2. Get other featured models (non-cloud)
const featuredModels = FEATURED_MODELS.filter(
(f) => !f.endsWith("cloud"),
).map((model) => {
// Check if this model exists in local models
const localMatch = allModels.find(
(m) => m.model.toLowerCase() === model.toLowerCase(),
);
if (localMatch) return localMatch;
return new Model({
model,
});
});
// 3. Get remaining local models that aren't featured and aren't cloud models
const remainingModels = allModels.filter(
(model) =>
!model.isCloud() &&
!FEATURED_MODELS.some(
(f) => f.toLowerCase() === model.model.toLowerCase(),
),
);
cloudModels.sort((a, b) => {
const aIndex = FEATURED_MODELS.indexOf(a.model);
const bIndex = FEATURED_MODELS.indexOf(b.model);
// If both are featured, sort by their position in FEATURED_MODELS
if (aIndex !== -1 && bIndex !== -1) {
return aIndex - bIndex;
}
// If only one is featured, featured model comes first
if (aIndex !== -1 && bIndex === -1) return -1;
if (aIndex === -1 && bIndex !== -1) return 1;
// If neither is featured, sort alphabetically
return a.model.toLowerCase().localeCompare(b.model.toLowerCase());
});
featuredModels.sort(
(a, b) =>
FEATURED_MODELS.indexOf(a.model) - FEATURED_MODELS.indexOf(b.model),
);
remainingModels.sort(alphabeticalSort);
return airplaneMode
? [...featuredModels, ...remainingModels]
: [...cloudModels, ...featuredModels, ...remainingModels];
}

View File

@@ -1763,7 +1763,7 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return err
return fmt.Errorf("ollama server not responding - %w", err)
}
}
return nil

View File

@@ -1,23 +1,18 @@
package config
import (
"context"
"fmt"
"os"
"os/exec"
"path/filepath"
"runtime"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
// Claude implements Runner and AliasConfigurer for Claude Code integration
// Claude implements Runner for Claude Code integration
type Claude struct{}
// Compile-time check that Claude implements AliasConfigurer
var _ AliasConfigurer = (*Claude)(nil)
func (c *Claude) String() string { return "Claude Code" }
func (c *Claude) args(model string, extra []string) []string {
@@ -58,136 +53,10 @@ func (c *Claude) Run(model string, args []string) error {
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
env := append(os.Environ(),
cmd.Env = append(os.Environ(),
"ANTHROPIC_BASE_URL="+envconfig.Host().String(),
"ANTHROPIC_API_KEY=",
"ANTHROPIC_AUTH_TOKEN=ollama",
)
env = append(env, c.modelEnvVars(model)...)
cmd.Env = env
return cmd.Run()
}
// modelEnvVars returns Claude Code env vars that route all model tiers through Ollama.
func (c *Claude) modelEnvVars(model string) []string {
primary := model
fast := model
if cfg, err := loadIntegration("claude"); err == nil && cfg.Aliases != nil {
if p := cfg.Aliases["primary"]; p != "" {
primary = p
}
if f := cfg.Aliases["fast"]; f != "" {
fast = f
}
}
return []string{
"ANTHROPIC_DEFAULT_OPUS_MODEL=" + primary,
"ANTHROPIC_DEFAULT_SONNET_MODEL=" + primary,
"ANTHROPIC_DEFAULT_HAIKU_MODEL=" + fast,
"CLAUDE_CODE_SUBAGENT_MODEL=" + primary,
}
}
// ConfigureAliases sets up model aliases for Claude Code.
// model: the model to use (if empty, user will be prompted to select)
// aliases: existing alias configuration to preserve/update
// Cloud-only: subagent routing (fast model) is gated to cloud models only until
// there is a better strategy for prompt caching on local models.
func (c *Claude) ConfigureAliases(ctx context.Context, model string, existingAliases map[string]string, force bool) (map[string]string, bool, error) {
aliases := make(map[string]string)
for k, v := range existingAliases {
aliases[k] = v
}
if model != "" {
aliases["primary"] = model
}
if !force && aliases["primary"] != "" {
client, _ := api.ClientFromEnvironment()
if isCloudModel(ctx, client, aliases["primary"]) {
if isCloudModel(ctx, client, aliases["fast"]) {
return aliases, false, nil
}
} else {
delete(aliases, "fast")
return aliases, false, nil
}
}
items, existingModels, cloudModels, client, err := listModels(ctx)
if err != nil {
return nil, false, err
}
fmt.Fprintf(os.Stderr, "\n%sModel Configuration%s\n\n", ansiBold, ansiReset)
if aliases["primary"] == "" || force {
primary, err := selectPrompt("Select model:", items)
fmt.Fprintf(os.Stderr, "\033[3A\033[J")
if err != nil {
return nil, false, err
}
if err := pullIfNeeded(ctx, client, existingModels, primary); err != nil {
return nil, false, err
}
if err := ensureAuth(ctx, client, cloudModels, []string{primary}); err != nil {
return nil, false, err
}
aliases["primary"] = primary
}
if isCloudModel(ctx, client, aliases["primary"]) {
if aliases["fast"] == "" || !isCloudModel(ctx, client, aliases["fast"]) {
aliases["fast"] = aliases["primary"]
}
} else {
delete(aliases, "fast")
}
return aliases, true, nil
}
// SetAliases syncs the configured aliases to the Ollama server using prefix matching.
// Cloud-only: for local models (fast is empty), we delete any existing aliases to
// prevent stale routing to a previous cloud model.
func (c *Claude) SetAliases(ctx context.Context, aliases map[string]string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
prefixes := []string{"claude-sonnet-", "claude-haiku-"}
if aliases["fast"] == "" {
for _, prefix := range prefixes {
_ = client.DeleteAliasExperimental(ctx, &api.AliasDeleteRequest{Alias: prefix})
}
return nil
}
prefixAliases := map[string]string{
"claude-sonnet-": aliases["primary"],
"claude-haiku-": aliases["fast"],
}
var errs []string
for prefix, target := range prefixAliases {
req := &api.AliasRequest{
Alias: prefix,
Target: target,
PrefixMatching: true,
}
if err := client.SetAliasExperimental(ctx, req); err != nil {
errs = append(errs, prefix)
}
}
if len(errs) > 0 {
return fmt.Errorf("failed to set aliases: %v", errs)
}
return nil
}

View File

@@ -5,7 +5,6 @@ import (
"path/filepath"
"runtime"
"slices"
"strings"
"testing"
)
@@ -104,95 +103,3 @@ func TestClaudeArgs(t *testing.T) {
})
}
}
func TestClaudeModelEnvVars(t *testing.T) {
c := &Claude{}
envMap := func(envs []string) map[string]string {
m := make(map[string]string)
for _, e := range envs {
k, v, _ := strings.Cut(e, "=")
m[k] = v
}
return m
}
t.Run("falls back to model param when no aliases saved", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
got := envMap(c.modelEnvVars("llama3.2"))
if got["ANTHROPIC_DEFAULT_OPUS_MODEL"] != "llama3.2" {
t.Errorf("OPUS = %q, want llama3.2", got["ANTHROPIC_DEFAULT_OPUS_MODEL"])
}
if got["ANTHROPIC_DEFAULT_SONNET_MODEL"] != "llama3.2" {
t.Errorf("SONNET = %q, want llama3.2", got["ANTHROPIC_DEFAULT_SONNET_MODEL"])
}
if got["ANTHROPIC_DEFAULT_HAIKU_MODEL"] != "llama3.2" {
t.Errorf("HAIKU = %q, want llama3.2", got["ANTHROPIC_DEFAULT_HAIKU_MODEL"])
}
if got["CLAUDE_CODE_SUBAGENT_MODEL"] != "llama3.2" {
t.Errorf("SUBAGENT = %q, want llama3.2", got["CLAUDE_CODE_SUBAGENT_MODEL"])
}
})
t.Run("uses primary alias for opus sonnet and subagent", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
saveIntegration("claude", []string{"qwen3:8b"})
saveAliases("claude", map[string]string{"primary": "qwen3:8b"})
got := envMap(c.modelEnvVars("qwen3:8b"))
if got["ANTHROPIC_DEFAULT_OPUS_MODEL"] != "qwen3:8b" {
t.Errorf("OPUS = %q, want qwen3:8b", got["ANTHROPIC_DEFAULT_OPUS_MODEL"])
}
if got["ANTHROPIC_DEFAULT_SONNET_MODEL"] != "qwen3:8b" {
t.Errorf("SONNET = %q, want qwen3:8b", got["ANTHROPIC_DEFAULT_SONNET_MODEL"])
}
if got["ANTHROPIC_DEFAULT_HAIKU_MODEL"] != "qwen3:8b" {
t.Errorf("HAIKU = %q, want qwen3:8b (no fast alias)", got["ANTHROPIC_DEFAULT_HAIKU_MODEL"])
}
if got["CLAUDE_CODE_SUBAGENT_MODEL"] != "qwen3:8b" {
t.Errorf("SUBAGENT = %q, want qwen3:8b", got["CLAUDE_CODE_SUBAGENT_MODEL"])
}
})
t.Run("uses fast alias for haiku", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
saveIntegration("claude", []string{"llama3.2:70b"})
saveAliases("claude", map[string]string{
"primary": "llama3.2:70b",
"fast": "llama3.2:8b",
})
got := envMap(c.modelEnvVars("llama3.2:70b"))
if got["ANTHROPIC_DEFAULT_OPUS_MODEL"] != "llama3.2:70b" {
t.Errorf("OPUS = %q, want llama3.2:70b", got["ANTHROPIC_DEFAULT_OPUS_MODEL"])
}
if got["ANTHROPIC_DEFAULT_SONNET_MODEL"] != "llama3.2:70b" {
t.Errorf("SONNET = %q, want llama3.2:70b", got["ANTHROPIC_DEFAULT_SONNET_MODEL"])
}
if got["ANTHROPIC_DEFAULT_HAIKU_MODEL"] != "llama3.2:8b" {
t.Errorf("HAIKU = %q, want llama3.2:8b", got["ANTHROPIC_DEFAULT_HAIKU_MODEL"])
}
if got["CLAUDE_CODE_SUBAGENT_MODEL"] != "llama3.2:70b" {
t.Errorf("SUBAGENT = %q, want llama3.2:70b", got["CLAUDE_CODE_SUBAGENT_MODEL"])
}
})
t.Run("alias primary overrides model param", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
saveIntegration("claude", []string{"saved-model"})
saveAliases("claude", map[string]string{"primary": "saved-model"})
got := envMap(c.modelEnvVars("different-model"))
if got["ANTHROPIC_DEFAULT_OPUS_MODEL"] != "saved-model" {
t.Errorf("OPUS = %q, want saved-model", got["ANTHROPIC_DEFAULT_OPUS_MODEL"])
}
})
}

View File

@@ -6,14 +6,14 @@ import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"strings"
)
type integration struct {
Models []string `json:"models"`
Aliases map[string]string `json:"aliases,omitempty"`
Models []string `json:"models"`
}
type config struct {
@@ -53,6 +53,7 @@ func migrateConfig() (bool, error) {
var js json.RawMessage
if err := json.Unmarshal(oldData, &js); err != nil {
slog.Warn("legacy config has invalid JSON, skipping migration", "path", oldPath, "error", err)
return false, nil
}
@@ -71,6 +72,7 @@ func migrateConfig() (bool, error) {
_ = os.Remove(oldPath)
_ = os.Remove(filepath.Dir(oldPath)) // clean up empty directory
slog.Info("migrated config", "from", oldPath, "to", newPath)
return true, nil
}
@@ -131,16 +133,8 @@ func saveIntegration(appName string, models []string) error {
return err
}
key := strings.ToLower(appName)
existing := cfg.Integrations[key]
var aliases map[string]string
if existing != nil && existing.Aliases != nil {
aliases = existing.Aliases
}
cfg.Integrations[key] = &integration{
Models: models,
Aliases: aliases,
cfg.Integrations[strings.ToLower(appName)] = &integration{
Models: models,
}
return save(cfg)
@@ -160,29 +154,6 @@ func loadIntegration(appName string) (*integration, error) {
return ic, nil
}
func saveAliases(appName string, aliases map[string]string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
key := strings.ToLower(appName)
existing := cfg.Integrations[key]
if existing == nil {
existing = &integration{}
}
// Replace aliases entirely (not merge) so deletions are persisted
existing.Aliases = aliases
cfg.Integrations[key] = existing
return save(cfg)
}
func listIntegrations() ([]integration, error) {
cfg, err := load()
if err != nil {

View File

@@ -1,677 +0,0 @@
package config
import (
"context"
"errors"
"os"
"path/filepath"
"testing"
)
func TestSetAliases_CloudModel(t *testing.T) {
// Test the SetAliases logic by checking the alias map behavior
aliases := map[string]string{
"primary": "kimi-k2.5:cloud",
"fast": "kimi-k2.5:cloud",
}
// Verify fast is set (cloud model behavior)
if aliases["fast"] == "" {
t.Error("cloud model should have fast alias set")
}
if aliases["fast"] != aliases["primary"] {
t.Errorf("fast should equal primary for auto-set, got fast=%q primary=%q", aliases["fast"], aliases["primary"])
}
}
func TestSetAliases_LocalModel(t *testing.T) {
aliases := map[string]string{
"primary": "llama3.2:latest",
}
// Simulate local model behavior: fast should be empty
delete(aliases, "fast")
if aliases["fast"] != "" {
t.Error("local model should have empty fast alias")
}
}
func TestSaveAliases_ReplacesNotMerges(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// First save with both primary and fast
initial := map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}
if err := saveAliases("claude", initial); err != nil {
t.Fatalf("failed to save initial aliases: %v", err)
}
// Verify both are saved
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["fast"] != "cloud-model" {
t.Errorf("expected fast=cloud-model, got %q", loaded.Aliases["fast"])
}
// Now save without fast (simulating switch to local model)
updated := map[string]string{
"primary": "local-model",
// fast intentionally missing
}
if err := saveAliases("claude", updated); err != nil {
t.Fatalf("failed to save updated aliases: %v", err)
}
// Verify fast is GONE (not merged/preserved)
loaded, err = loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load after update: %v", err)
}
if loaded.Aliases["fast"] != "" {
t.Errorf("fast should be removed after saving without it, got %q", loaded.Aliases["fast"])
}
if loaded.Aliases["primary"] != "local-model" {
t.Errorf("primary should be updated to local-model, got %q", loaded.Aliases["primary"])
}
}
func TestSaveAliases_PreservesModels(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// First save integration with models
if err := saveIntegration("claude", []string{"model1", "model2"}); err != nil {
t.Fatalf("failed to save integration: %v", err)
}
// Then update aliases
aliases := map[string]string{"primary": "new-model"}
if err := saveAliases("claude", aliases); err != nil {
t.Fatalf("failed to save aliases: %v", err)
}
// Verify models are preserved
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if len(loaded.Models) != 2 || loaded.Models[0] != "model1" {
t.Errorf("models should be preserved, got %v", loaded.Models)
}
}
// TestSaveAliases_EmptyMap clears all aliases
func TestSaveAliases_EmptyMap(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save with aliases
if err := saveAliases("claude", map[string]string{"primary": "model", "fast": "model"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Save empty map
if err := saveAliases("claude", map[string]string{}); err != nil {
t.Fatalf("failed to save empty: %v", err)
}
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if len(loaded.Aliases) != 0 {
t.Errorf("aliases should be empty, got %v", loaded.Aliases)
}
}
// TestSaveAliases_NilMap handles nil gracefully
func TestSaveAliases_NilMap(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save with aliases first
if err := saveAliases("claude", map[string]string{"primary": "model"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Save nil map - should clear aliases
if err := saveAliases("claude", nil); err != nil {
t.Fatalf("failed to save nil: %v", err)
}
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if len(loaded.Aliases) > 0 {
t.Errorf("aliases should be nil or empty, got %v", loaded.Aliases)
}
}
// TestSaveAliases_EmptyAppName returns error
func TestSaveAliases_EmptyAppName(t *testing.T) {
err := saveAliases("", map[string]string{"primary": "model"})
if err == nil {
t.Error("expected error for empty app name")
}
}
func TestSaveAliases_CaseInsensitive(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if err := saveAliases("Claude", map[string]string{"primary": "model1"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Load with different case
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != "model1" {
t.Errorf("expected primary=model1, got %q", loaded.Aliases["primary"])
}
// Update with different case
if err := saveAliases("CLAUDE", map[string]string{"primary": "model2"}); err != nil {
t.Fatalf("failed to update: %v", err)
}
loaded, err = loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load after update: %v", err)
}
if loaded.Aliases["primary"] != "model2" {
t.Errorf("expected primary=model2, got %q", loaded.Aliases["primary"])
}
}
// TestSaveAliases_CreatesIntegration creates integration if it doesn't exist
func TestSaveAliases_CreatesIntegration(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save aliases for non-existent integration
if err := saveAliases("newintegration", map[string]string{"primary": "model"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
loaded, err := loadIntegration("newintegration")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != "model" {
t.Errorf("expected primary=model, got %q", loaded.Aliases["primary"])
}
}
func TestConfigureAliases_AliasMap(t *testing.T) {
t.Run("cloud model auto-sets fast to primary", func(t *testing.T) {
aliases := make(map[string]string)
aliases["primary"] = "cloud-model"
// Simulate cloud model behavior
isCloud := true
if isCloud {
if aliases["fast"] == "" {
aliases["fast"] = aliases["primary"]
}
}
if aliases["fast"] != "cloud-model" {
t.Errorf("expected fast=cloud-model, got %q", aliases["fast"])
}
})
t.Run("cloud model preserves custom fast", func(t *testing.T) {
aliases := map[string]string{
"primary": "cloud-model",
"fast": "custom-fast-model",
}
// Simulate cloud model behavior - should preserve existing fast
isCloud := true
if isCloud {
if aliases["fast"] == "" {
aliases["fast"] = aliases["primary"]
}
}
if aliases["fast"] != "custom-fast-model" {
t.Errorf("expected fast=custom-fast-model (preserved), got %q", aliases["fast"])
}
})
t.Run("local model clears fast", func(t *testing.T) {
aliases := map[string]string{
"primary": "local-model",
"fast": "should-be-cleared",
}
// Simulate local model behavior
isCloud := false
if !isCloud {
delete(aliases, "fast")
}
if aliases["fast"] != "" {
t.Errorf("expected fast to be cleared, got %q", aliases["fast"])
}
})
t.Run("switching cloud to local clears fast", func(t *testing.T) {
// Start with cloud config
aliases := map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}
// Switch to local
aliases["primary"] = "local-model"
isCloud := false
if !isCloud {
delete(aliases, "fast")
}
if aliases["fast"] != "" {
t.Errorf("fast should be cleared when switching to local, got %q", aliases["fast"])
}
if aliases["primary"] != "local-model" {
t.Errorf("primary should be updated, got %q", aliases["primary"])
}
})
t.Run("switching local to cloud sets fast", func(t *testing.T) {
// Start with local config (no fast)
aliases := map[string]string{
"primary": "local-model",
}
// Switch to cloud
aliases["primary"] = "cloud-model"
isCloud := true
if isCloud {
if aliases["fast"] == "" {
aliases["fast"] = aliases["primary"]
}
}
if aliases["fast"] != "cloud-model" {
t.Errorf("fast should be set when switching to cloud, got %q", aliases["fast"])
}
})
}
func TestSetAliases_PrefixMapping(t *testing.T) {
// This tests the expected mapping without needing a real client
aliases := map[string]string{
"primary": "my-cloud-model",
"fast": "my-fast-model",
}
expectedMappings := map[string]string{
"claude-sonnet-": aliases["primary"],
"claude-haiku-": aliases["fast"],
}
if expectedMappings["claude-sonnet-"] != "my-cloud-model" {
t.Errorf("claude-sonnet- should map to primary")
}
if expectedMappings["claude-haiku-"] != "my-fast-model" {
t.Errorf("claude-haiku- should map to fast")
}
}
func TestSetAliases_LocalDeletesPrefixes(t *testing.T) {
aliases := map[string]string{
"primary": "local-model",
// fast is empty/missing - indicates local model
}
prefixesToDelete := []string{"claude-sonnet-", "claude-haiku-"}
// Verify the logic: when fast is empty, we should delete
if aliases["fast"] != "" {
t.Error("fast should be empty for local model")
}
// Verify we have the right prefixes to delete
if len(prefixesToDelete) != 2 {
t.Errorf("expected 2 prefixes to delete, got %d", len(prefixesToDelete))
}
}
// TestAtomicUpdate_ServerFailsConfigNotSaved simulates atomic update behavior
func TestAtomicUpdate_ServerFailsConfigNotSaved(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Simulate: server fails, config should NOT be saved
serverErr := errors.New("server unavailable")
if serverErr == nil {
t.Error("config should NOT be saved when server fails")
}
}
// TestAtomicUpdate_ServerSucceedsConfigSaved simulates successful atomic update
func TestAtomicUpdate_ServerSucceedsConfigSaved(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Simulate: server succeeds, config should be saved
var serverErr error
if serverErr != nil {
t.Fatal("server should succeed")
}
if err := saveAliases("claude", map[string]string{"primary": "model"}); err != nil {
t.Fatalf("saveAliases failed: %v", err)
}
// Verify it was actually saved
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != "model" {
t.Errorf("expected primary=model, got %q", loaded.Aliases["primary"])
}
}
func TestConfigFile_PreservesUnknownFields(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Write config with extra fields
configPath := filepath.Join(tmpDir, ".ollama", "config.json")
os.MkdirAll(filepath.Dir(configPath), 0o755)
// Note: Our config struct only has Integrations, so top-level unknown fields
// won't be preserved by our current implementation. This test documents that.
initialConfig := `{
"integrations": {
"claude": {
"models": ["model1"],
"aliases": {"primary": "model1"},
"unknownField": "should be lost"
}
},
"topLevelUnknown": "will be lost"
}`
os.WriteFile(configPath, []byte(initialConfig), 0o644)
// Update aliases
if err := saveAliases("claude", map[string]string{"primary": "model2"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Read raw file to check
data, _ := os.ReadFile(configPath)
content := string(data)
// models should be preserved
if !contains(content, "model1") {
t.Error("models should be preserved")
}
// primary should be updated
if !contains(content, "model2") {
t.Error("primary should be updated to model2")
}
}
func contains(s, substr string) bool {
return len(s) >= len(substr) && (s == substr || len(s) > 0 && containsHelper(s, substr))
}
func containsHelper(s, substr string) bool {
for i := 0; i <= len(s)-len(substr); i++ {
if s[i:i+len(substr)] == substr {
return true
}
}
return false
}
func TestClaudeImplementsAliasConfigurer(t *testing.T) {
c := &Claude{}
var _ AliasConfigurer = c // Compile-time check
}
func TestModelNameEdgeCases(t *testing.T) {
testCases := []struct {
name string
model string
}{
{"simple", "llama3.2"},
{"with tag", "llama3.2:latest"},
{"with cloud tag", "kimi-k2.5:cloud"},
{"with namespace", "library/llama3.2"},
{"with dots", "glm-4.7-flash"},
{"with numbers", "qwen3:8b"},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
aliases := map[string]string{"primary": tc.model}
if err := saveAliases("claude", aliases); err != nil {
t.Fatalf("failed to save model %q: %v", tc.model, err)
}
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != tc.model {
t.Errorf("expected primary=%q, got %q", tc.model, loaded.Aliases["primary"])
}
})
}
}
func TestSwitchingScenarios(t *testing.T) {
t.Run("cloud to local removes fast", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial cloud config
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}); err != nil {
t.Fatal(err)
}
// Switch to local (no fast)
if err := saveAliases("claude", map[string]string{
"primary": "local-model",
}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["fast"] != "" {
t.Errorf("fast should be removed, got %q", loaded.Aliases["fast"])
}
if loaded.Aliases["primary"] != "local-model" {
t.Errorf("primary should be local-model, got %q", loaded.Aliases["primary"])
}
})
t.Run("local to cloud adds fast", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial local config
if err := saveAliases("claude", map[string]string{
"primary": "local-model",
}); err != nil {
t.Fatal(err)
}
// Switch to cloud (with fast)
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["fast"] != "cloud-model" {
t.Errorf("fast should be cloud-model, got %q", loaded.Aliases["fast"])
}
})
t.Run("cloud to different cloud updates both", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial cloud config
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model-1",
"fast": "cloud-model-1",
}); err != nil {
t.Fatal(err)
}
// Switch to different cloud
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model-2",
"fast": "cloud-model-2",
}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["primary"] != "cloud-model-2" {
t.Errorf("primary should be cloud-model-2, got %q", loaded.Aliases["primary"])
}
if loaded.Aliases["fast"] != "cloud-model-2" {
t.Errorf("fast should be cloud-model-2, got %q", loaded.Aliases["fast"])
}
})
}
func TestToolCapabilityFiltering(t *testing.T) {
t.Run("all models checked for tool capability", func(t *testing.T) {
// Both cloud and local models are checked for tool capability via Show API
// Only models with "tools" in capabilities are included
m := modelInfo{Name: "tool-model", Remote: false, ToolCapable: true}
if !m.ToolCapable {
t.Error("tool capable model should be marked as such")
}
})
t.Run("modelInfo includes ToolCapable field", func(t *testing.T) {
m := modelInfo{Name: "test", Remote: true, ToolCapable: true}
if !m.ToolCapable {
t.Error("ToolCapable field should be accessible")
}
})
}
func TestIsCloudModel_RequiresClient(t *testing.T) {
t.Run("nil client always returns false", func(t *testing.T) {
// isCloudModel now only uses Show API, no suffix detection
if isCloudModel(context.Background(), nil, "model:cloud") {
t.Error("nil client should return false regardless of suffix")
}
if isCloudModel(context.Background(), nil, "local-model") {
t.Error("nil client should return false")
}
})
}
func TestModelsAndAliasesMustStayInSync(t *testing.T) {
t.Run("saveAliases followed by saveIntegration keeps them in sync", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save aliases with one model
if err := saveAliases("claude", map[string]string{"primary": "model-a"}); err != nil {
t.Fatal(err)
}
// Save integration with same model (this is the pattern we use)
if err := saveIntegration("claude", []string{"model-a"}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["primary"] != loaded.Models[0] {
t.Errorf("aliases.primary (%q) != models[0] (%q)", loaded.Aliases["primary"], loaded.Models[0])
}
})
t.Run("out of sync config is detectable", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Simulate out-of-sync state (like manual edit or bug)
if err := saveIntegration("claude", []string{"old-model"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "new-model"}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
// They should be different (this is the bug state)
if loaded.Models[0] == loaded.Aliases["primary"] {
t.Error("expected out-of-sync state for this test")
}
// The fix: when updating aliases, also update models
if err := saveIntegration("claude", []string{loaded.Aliases["primary"]}); err != nil {
t.Fatal(err)
}
loaded, _ = loadIntegration("claude")
if loaded.Models[0] != loaded.Aliases["primary"] {
t.Errorf("after fix: models[0] (%q) should equal aliases.primary (%q)",
loaded.Models[0], loaded.Aliases["primary"])
}
})
t.Run("updating primary alias updates models too", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial state
if err := saveIntegration("claude", []string{"initial-model"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "initial-model"}); err != nil {
t.Fatal(err)
}
// Update aliases AND models together
newAliases := map[string]string{"primary": "updated-model"}
if err := saveAliases("claude", newAliases); err != nil {
t.Fatal(err)
}
if err := saveIntegration("claude", []string{newAliases["primary"]}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Models[0] != "updated-model" {
t.Errorf("models[0] should be updated-model, got %q", loaded.Models[0])
}
if loaded.Aliases["primary"] != "updated-model" {
t.Errorf("aliases.primary should be updated-model, got %q", loaded.Aliases["primary"])
}
})
}

View File

@@ -46,53 +46,6 @@ func TestIntegrationConfig(t *testing.T) {
}
})
t.Run("save and load aliases", func(t *testing.T) {
models := []string{"llama3.2"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
aliases := map[string]string{
"primary": "llama3.2:70b",
"fast": "llama3.2:8b",
}
if err := saveAliases("claude", aliases); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if config.Aliases == nil {
t.Fatal("expected aliases to be saved")
}
for k, v := range aliases {
if config.Aliases[k] != v {
t.Errorf("alias %s: expected %s, got %s", k, v, config.Aliases[k])
}
}
})
t.Run("saveIntegration preserves aliases", func(t *testing.T) {
if err := saveIntegration("claude", []string{"model-a"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "model-a", "fast": "model-small"}); err != nil {
t.Fatal(err)
}
if err := saveIntegration("claude", []string{"model-b"}); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if config.Aliases["primary"] != "model-a" {
t.Errorf("expected aliases to be preserved, got %v", config.Aliases)
}
})
t.Run("defaultModel returns first model", func(t *testing.T) {
saveIntegration("codex", []string{"model-a", "model-b"})

View File

@@ -1,7 +1,6 @@
package config
import (
"context"
"encoding/json"
"fmt"
"os"
@@ -9,7 +8,6 @@ import (
"path/filepath"
"slices"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
@@ -114,17 +112,9 @@ func (d *Droid) Edit(models []string) error {
}
// Build new Ollama model entries with sequential indices (0, 1, 2, ...)
client, _ := api.ClientFromEnvironment()
var newModels []any
var defaultModelID string
for i, model := range models {
maxOutput := 64000
if isCloudModel(context.Background(), client, model) {
if l, ok := lookupCloudModelLimit(model); ok {
maxOutput = l.Output
}
}
modelID := fmt.Sprintf("custom:%s-%d", model, i)
newModels = append(newModels, modelEntry{
Model: model,
@@ -132,7 +122,7 @@ func (d *Droid) Edit(models []string) error {
BaseURL: envconfig.Host().String() + "/v1",
APIKey: "ollama",
Provider: "generic-chat-completion-api",
MaxOutputTokens: maxOutput,
MaxOutputTokens: 64000,
SupportsImages: false,
ID: modelID,
Index: i,

View File

@@ -1251,55 +1251,6 @@ func TestDroidEdit_LargeNumberOfModels(t *testing.T) {
}
}
func TestDroidEdit_LocalModelDefaultMaxOutput(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
if err := d.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(settingsPath)
var settings map[string]any
json.Unmarshal(data, &settings)
models := settings["customModels"].([]any)
entry := models[0].(map[string]any)
if entry["maxOutputTokens"] != float64(64000) {
t.Errorf("local model maxOutputTokens = %v, want 64000", entry["maxOutputTokens"])
}
}
func TestDroidEdit_CloudModelLimitsUsed(t *testing.T) {
// Verify that every cloud model in cloudModelLimits has a valid output
// value that would be used for maxOutputTokens when isCloudModel returns true.
// :cloud suffix stripping must also work since that's how users specify them.
for name, expected := range cloudModelLimits {
t.Run(name, func(t *testing.T) {
l, ok := lookupCloudModelLimit(name)
if !ok {
t.Fatalf("lookupCloudModelLimit(%q) returned false", name)
}
if l.Output != expected.Output {
t.Errorf("output = %d, want %d", l.Output, expected.Output)
}
// Also verify :cloud suffix lookup
cloudName := name + ":cloud"
l2, ok := lookupCloudModelLimit(cloudName)
if !ok {
t.Fatalf("lookupCloudModelLimit(%q) returned false", cloudName)
}
if l2.Output != expected.Output {
t.Errorf(":cloud output = %d, want %d", l2.Output, expected.Output)
}
})
}
}
func TestDroidEdit_ArraysWithMixedTypes(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()

View File

@@ -39,15 +39,6 @@ type Editor interface {
Models() []string
}
// AliasConfigurer can configure model aliases (e.g., for subagent routing).
// Integrations like Claude and Codex use this to route model requests to local models.
type AliasConfigurer interface {
// ConfigureAliases prompts the user to configure aliases and returns the updated map.
ConfigureAliases(ctx context.Context, primaryModel string, existing map[string]string, force bool) (map[string]string, bool, error)
// SetAliases syncs the configured aliases to the server
SetAliases(ctx context.Context, aliases map[string]string) error
}
// integrations is the registry of available integrations.
var integrations = map[string]Runner{
"claude": &Claude{},
@@ -138,11 +129,7 @@ func selectModels(ctx context.Context, name, current string) ([]string, error) {
return nil, err
}
} else {
prompt := fmt.Sprintf("Select model for %s:", r)
if _, ok := r.(AliasConfigurer); ok {
prompt = fmt.Sprintf("Select Primary model for %s:", r)
}
model, err := selectPrompt(prompt, items)
model, err := selectPrompt(fmt.Sprintf("Select model for %s:", r), items)
if err != nil {
return nil, err
}
@@ -170,137 +157,73 @@ func selectModels(ctx context.Context, name, current string) ([]string, error) {
}
}
if err := ensureAuth(ctx, client, cloudModels, selected); err != nil {
return nil, err
}
return selected, nil
}
func pullIfNeeded(ctx context.Context, client *api.Client, existingModels map[string]bool, model string) error {
if existingModels[model] {
return nil
}
msg := fmt.Sprintf("Download %s?", model)
if ok, err := confirmPrompt(msg); err != nil {
return err
} else if !ok {
return errCancelled
}
fmt.Fprintf(os.Stderr, "\n")
if err := pullModel(ctx, client, model); err != nil {
return fmt.Errorf("failed to pull %s: %w", model, err)
}
return nil
}
// showOrPull checks if a model exists via client.Show and offers to pull it if not found.
func showOrPull(ctx context.Context, client *api.Client, model string) error {
if _, err := client.Show(ctx, &api.ShowRequest{Model: model}); err == nil {
return nil
}
if ok, err := confirmPrompt(fmt.Sprintf("Download %s?", model)); err != nil {
return err
} else if !ok {
return errCancelled
}
fmt.Fprintf(os.Stderr, "\n")
return pullModel(ctx, client, model)
}
func listModels(ctx context.Context) ([]selectItem, map[string]bool, map[string]bool, *api.Client, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, nil, nil, nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, nil, nil, nil, err
}
var existing []modelInfo
for _, m := range models.Models {
existing = append(existing, modelInfo{
Name: m.Name,
Remote: m.RemoteModel != "",
})
}
items, _, existingModels, cloudModels := buildModelList(existing, nil, "")
if len(items) == 0 {
return nil, nil, nil, nil, fmt.Errorf("no models available, run 'ollama pull <model>' first")
}
return items, existingModels, cloudModels, client, nil
}
func ensureAuth(ctx context.Context, client *api.Client, cloudModels map[string]bool, selected []string) error {
var selectedCloudModels []string
for _, m := range selected {
if cloudModels[m] {
selectedCloudModels = append(selectedCloudModels, m)
}
}
if len(selectedCloudModels) == 0 {
return nil
}
if len(selectedCloudModels) > 0 {
// ensure user is signed in
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return selected, nil
}
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return nil
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return nil, err
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return err
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return nil, fmt.Errorf("%s requires sign in", modelList)
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return fmt.Errorf("%s requires sign in", modelList)
}
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
// TODO(parthsareen): extract into auth package for cmd
// Auto-open browser (best effort, fail silently)
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return nil, ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return nil
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return selected, nil
}
}
}
}
}
return selected, nil
}
func runIntegration(name, modelName string, args []string) error {
@@ -308,33 +231,10 @@ func runIntegration(name, modelName string, args []string) error {
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
fmt.Fprintf(os.Stderr, "\nLaunching %s with %s...\n", r, modelName)
return r.Run(modelName, args)
}
// syncAliases syncs aliases to server and saves locally for an AliasConfigurer.
func syncAliases(ctx context.Context, client *api.Client, ac AliasConfigurer, name, model string, existing map[string]string) error {
aliases := make(map[string]string)
for k, v := range existing {
aliases[k] = v
}
aliases["primary"] = model
if isCloudModel(ctx, client, model) {
if aliases["fast"] == "" || !isCloudModel(ctx, client, aliases["fast"]) {
aliases["fast"] = model
}
} else {
delete(aliases, "fast")
}
if err := ac.SetAliases(ctx, aliases); err != nil {
return err
}
return saveAliases(name, aliases)
}
// LaunchCmd returns the cobra command for launching integrations.
func LaunchCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
@@ -402,102 +302,9 @@ Examples:
return fmt.Errorf("unknown integration: %s", name)
}
// Handle AliasConfigurer integrations (claude, codex)
if ac, ok := r.(AliasConfigurer); ok {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
// Validate --model flag if provided
if modelFlag != "" {
if err := showOrPull(cmd.Context(), client, modelFlag); err != nil {
if errors.Is(err, errCancelled) {
return nil
}
return err
}
}
var model string
var existingAliases map[string]string
// Load saved config
if cfg, err := loadIntegration(name); err == nil {
existingAliases = cfg.Aliases
if len(cfg.Models) > 0 {
model = cfg.Models[0]
// AliasConfigurer integrations use single model; sanitize if multiple
if len(cfg.Models) > 1 {
_ = saveIntegration(name, []string{model})
}
}
}
// --model flag overrides saved model
if modelFlag != "" {
model = modelFlag
}
// Validate saved model still exists
if model != "" && modelFlag == "" {
if _, err := client.Show(cmd.Context(), &api.ShowRequest{Model: model}); err != nil {
fmt.Fprintf(os.Stderr, "%sConfigured model %q not found%s\n\n", ansiGray, model, ansiReset)
if err := showOrPull(cmd.Context(), client, model); err != nil {
model = ""
}
}
}
// If no valid model or --config flag, show picker
if model == "" || configFlag {
aliases, _, err := ac.ConfigureAliases(cmd.Context(), model, existingAliases, configFlag)
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
model = aliases["primary"]
existingAliases = aliases
}
// Ensure cloud models are authenticated
if isCloudModel(cmd.Context(), client, model) {
if err := ensureAuth(cmd.Context(), client, map[string]bool{model: true}, []string{model}); err != nil {
return err
}
}
// Sync aliases and save
if err := syncAliases(cmd.Context(), client, ac, name, model, existingAliases); err != nil {
fmt.Fprintf(os.Stderr, "%sWarning: Could not sync aliases: %v%s\n", ansiGray, err, ansiReset)
}
if err := saveIntegration(name, []string{model}); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
// Launch (unless --config without confirmation)
if configFlag {
if launch, _ := confirmPrompt(fmt.Sprintf("Launch %s now?", r)); launch {
return runIntegration(name, model, passArgs)
}
return nil
}
return runIntegration(name, model, passArgs)
}
// Validate --model flag for non-AliasConfigurer integrations
if modelFlag != "" {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
if err := showOrPull(cmd.Context(), client, modelFlag); err != nil {
if errors.Is(err, errCancelled) {
return nil
}
return err
if !configFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
return runIntegration(name, config.Models[0], passArgs)
}
}
@@ -511,8 +318,6 @@ Examples:
}
}
}
} else if saved, err := loadIntegration(name); err == nil && len(saved.Models) > 0 && !configFlag {
return runIntegration(name, saved.Models[0], passArgs)
} else {
var err error
models, err = selectModels(cmd.Context(), name, "")
@@ -575,9 +380,8 @@ Examples:
}
type modelInfo struct {
Name string
Remote bool
ToolCapable bool
Name string
Remote bool
}
// buildModelList merges existing models with recommendations, sorts them, and returns
@@ -614,7 +418,7 @@ func buildModelList(existing []modelInfo, preChecked []string, current string) (
continue
}
items = append(items, rec)
if strings.HasSuffix(rec.Name, ":cloud") {
if isCloudModel(rec.Name) {
cloudModels[rec.Name] = true
}
}
@@ -674,16 +478,8 @@ func buildModelList(existing []modelInfo, preChecked []string, current string) (
return items, preChecked, existingModels, cloudModels
}
// isCloudModel checks if a model is a cloud model using the Show API.
func isCloudModel(ctx context.Context, client *api.Client, name string) bool {
if client == nil {
return false
}
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
if err != nil {
return false
}
return resp.RemoteModel != ""
func isCloudModel(name string) bool {
return strings.HasSuffix(name, ":cloud")
}
func pullModel(ctx context.Context, client *api.Client, model string) error {

View File

@@ -1,18 +1,12 @@
package config
import (
"context"
"encoding/json"
"fmt"
"net/http"
"net/http/httptest"
"net/url"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/spf13/cobra"
)
@@ -303,15 +297,24 @@ func TestParseArgs(t *testing.T) {
}
func TestIsCloudModel(t *testing.T) {
// isCloudModel now only uses Show API, so nil client always returns false
t.Run("nil client returns false", func(t *testing.T) {
models := []string{"glm-4.7:cloud", "kimi-k2.5:cloud", "local-model"}
for _, model := range models {
if isCloudModel(context.Background(), nil, model) {
t.Errorf("isCloudModel(%q) with nil client should return false", model)
tests := []struct {
name string
want bool
}{
{"glm-4.7:cloud", true},
{"kimi-k2.5:cloud", true},
{"glm-4.7-flash", false},
{"glm-4.7-flash:latest", false},
{"cloud-model", false},
{"model:cloudish", false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if got := isCloudModel(tt.name); got != tt.want {
t.Errorf("isCloudModel(%q) = %v, want %v", tt.name, got, tt.want)
}
}
})
})
}
}
func names(items []selectItem) []string {
@@ -506,174 +509,3 @@ func TestBuildModelList_ReturnsExistingAndCloudMaps(t *testing.T) {
t.Error("llama3.2 should not be in cloudModels")
}
}
func TestEditorIntegration_SavedConfigSkipsSelection(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save a config for opencode so it looks like a previous launch
if err := saveIntegration("opencode", []string{"llama3.2"}); err != nil {
t.Fatal(err)
}
// Verify loadIntegration returns the saved models
saved, err := loadIntegration("opencode")
if err != nil {
t.Fatal(err)
}
if len(saved.Models) == 0 {
t.Fatal("expected saved models")
}
if saved.Models[0] != "llama3.2" {
t.Errorf("expected llama3.2, got %s", saved.Models[0])
}
}
func TestAliasConfigurerInterface(t *testing.T) {
t.Run("claude implements AliasConfigurer", func(t *testing.T) {
claude := &Claude{}
if _, ok := interface{}(claude).(AliasConfigurer); !ok {
t.Error("Claude should implement AliasConfigurer")
}
})
t.Run("codex does not implement AliasConfigurer", func(t *testing.T) {
codex := &Codex{}
if _, ok := interface{}(codex).(AliasConfigurer); ok {
t.Error("Codex should not implement AliasConfigurer")
}
})
}
func TestShowOrPull_ModelExists(t *testing.T) {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path == "/api/show" {
w.WriteHeader(http.StatusOK)
fmt.Fprintf(w, `{"model":"test-model"}`)
return
}
w.WriteHeader(http.StatusNotFound)
}))
defer srv.Close()
u, _ := url.Parse(srv.URL)
client := api.NewClient(u, srv.Client())
err := showOrPull(context.Background(), client, "test-model")
if err != nil {
t.Errorf("showOrPull should return nil when model exists, got: %v", err)
}
}
func TestShowOrPull_ModelNotFound_NoTerminal(t *testing.T) {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusNotFound)
fmt.Fprintf(w, `{"error":"model not found"}`)
}))
defer srv.Close()
u, _ := url.Parse(srv.URL)
client := api.NewClient(u, srv.Client())
// confirmPrompt will fail in test (no terminal), so showOrPull should return an error
err := showOrPull(context.Background(), client, "missing-model")
if err == nil {
t.Error("showOrPull should return error when model not found and no terminal available")
}
}
func TestShowOrPull_ShowCalledWithCorrectModel(t *testing.T) {
var receivedModel string
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path == "/api/show" {
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err == nil {
receivedModel = req.Model
}
w.WriteHeader(http.StatusOK)
fmt.Fprintf(w, `{"model":"%s"}`, receivedModel)
return
}
w.WriteHeader(http.StatusNotFound)
}))
defer srv.Close()
u, _ := url.Parse(srv.URL)
client := api.NewClient(u, srv.Client())
_ = showOrPull(context.Background(), client, "qwen3:8b")
if receivedModel != "qwen3:8b" {
t.Errorf("expected Show to be called with %q, got %q", "qwen3:8b", receivedModel)
}
}
func TestEnsureAuth_NoCloudModels(t *testing.T) {
// ensureAuth should be a no-op when no cloud models are selected
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
t.Error("no API calls expected when no cloud models selected")
}))
defer srv.Close()
u, _ := url.Parse(srv.URL)
client := api.NewClient(u, srv.Client())
err := ensureAuth(context.Background(), client, map[string]bool{}, []string{"local-model"})
if err != nil {
t.Errorf("ensureAuth should return nil for non-cloud models, got: %v", err)
}
}
func TestEnsureAuth_CloudModelFilteredCorrectly(t *testing.T) {
// ensureAuth should only care about models in cloudModels map
var whoamiCalled bool
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path == "/api/me" {
whoamiCalled = true
w.WriteHeader(http.StatusOK)
fmt.Fprintf(w, `{"name":"testuser"}`)
return
}
w.WriteHeader(http.StatusNotFound)
}))
defer srv.Close()
u, _ := url.Parse(srv.URL)
client := api.NewClient(u, srv.Client())
cloudModels := map[string]bool{"cloud-model:cloud": true}
selected := []string{"cloud-model:cloud", "local-model"}
err := ensureAuth(context.Background(), client, cloudModels, selected)
if err != nil {
t.Errorf("ensureAuth should succeed when user is authenticated, got: %v", err)
}
if !whoamiCalled {
t.Error("expected whoami to be called for cloud model")
}
}
func TestEnsureAuth_SkipsWhenNoCloudSelected(t *testing.T) {
var whoamiCalled bool
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path == "/api/me" {
whoamiCalled = true
}
w.WriteHeader(http.StatusOK)
}))
defer srv.Close()
u, _ := url.Parse(srv.URL)
client := api.NewClient(u, srv.Client())
// cloudModels has entries but none are in selected
cloudModels := map[string]bool{"cloud-model:cloud": true}
selected := []string{"local-model"}
err := ensureAuth(context.Background(), client, cloudModels, selected)
if err != nil {
t.Errorf("expected nil error, got: %v", err)
}
if whoamiCalled {
t.Error("whoami should not be called when no cloud models are selected")
}
}

View File

@@ -17,6 +17,8 @@ type Openclaw struct{}
func (c *Openclaw) String() string { return "OpenClaw" }
const ansiGreen = "\033[32m"
func (c *Openclaw) Run(model string, args []string) error {
bin := "openclaw"
if _, err := exec.LookPath(bin); err != nil {

View File

@@ -1,7 +1,6 @@
package config
import (
"context"
"encoding/json"
"fmt"
"maps"
@@ -11,53 +10,12 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
// OpenCode implements Runner and Editor for OpenCode integration
type OpenCode struct{}
// cloudModelLimit holds context and output token limits for a cloud model.
type cloudModelLimit struct {
Context int
Output int
}
// cloudModelLimits maps cloud model base names to their token limits.
// TODO(parthsareen): grab context/output limits from model info instead of hardcoding
var cloudModelLimits = map[string]cloudModelLimit{
"cogito-2.1:671b": {Context: 163_840, Output: 65_536},
"deepseek-v3.1:671b": {Context: 163_840, Output: 163_840},
"deepseek-v3.2": {Context: 163_840, Output: 65_536},
"glm-4.6": {Context: 202_752, Output: 131_072},
"glm-4.7": {Context: 202_752, Output: 131_072},
"gpt-oss:120b": {Context: 131_072, Output: 131_072},
"gpt-oss:20b": {Context: 131_072, Output: 131_072},
"kimi-k2:1t": {Context: 262_144, Output: 262_144},
"kimi-k2.5": {Context: 262_144, Output: 262_144},
"kimi-k2-thinking": {Context: 262_144, Output: 262_144},
"nemotron-3-nano:30b": {Context: 1_048_576, Output: 131_072},
"qwen3-coder:480b": {Context: 262_144, Output: 65_536},
"qwen3-coder-next": {Context: 262_144, Output: 32_768},
"qwen3-next:80b": {Context: 262_144, Output: 32_768},
}
// lookupCloudModelLimit returns the token limits for a cloud model.
// It tries the exact name first, then strips the ":cloud" suffix.
func lookupCloudModelLimit(name string) (cloudModelLimit, bool) {
if l, ok := cloudModelLimits[name]; ok {
return l, true
}
base := strings.TrimSuffix(name, ":cloud")
if base != name {
if l, ok := cloudModelLimits[base]; ok {
return l, true
}
}
return cloudModelLimit{}, false
}
func (o *OpenCode) String() string { return "OpenCode" }
func (o *OpenCode) Run(model string, args []string) error {
@@ -155,8 +113,6 @@ func (o *OpenCode) Edit(modelList []string) error {
}
}
client, _ := api.ClientFromEnvironment()
for _, model := range modelList {
if existing, ok := models[model].(map[string]any); ok {
// migrate existing models without _launch marker
@@ -166,29 +122,12 @@ func (o *OpenCode) Edit(modelList []string) error {
existing["name"] = strings.TrimSuffix(name, " [Ollama]")
}
}
if isCloudModel(context.Background(), client, model) {
if l, ok := lookupCloudModelLimit(model); ok {
existing["limit"] = map[string]any{
"context": l.Context,
"output": l.Output,
}
}
}
continue
}
entry := map[string]any{
models[model] = map[string]any{
"name": model,
"_launch": true,
}
if isCloudModel(context.Background(), client, model) {
if l, ok := lookupCloudModelLimit(model); ok {
entry["limit"] = map[string]any{
"context": l.Context,
"output": l.Output,
}
}
}
models[model] = entry
}
ollama["models"] = models

View File

@@ -2,7 +2,6 @@ package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"testing"
@@ -496,166 +495,6 @@ func TestOpenCodeEdit_SpecialCharsInModelName(t *testing.T) {
}
}
func readOpenCodeModel(t *testing.T, configPath, model string) map[string]any {
t.Helper()
data, err := os.ReadFile(configPath)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
ollama := provider["ollama"].(map[string]any)
models := ollama["models"].(map[string]any)
entry, ok := models[model].(map[string]any)
if !ok {
t.Fatalf("model %s not found in config", model)
}
return entry
}
func TestOpenCodeEdit_LocalModelNoLimit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configPath := filepath.Join(tmpDir, ".config", "opencode", "opencode.json")
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
entry := readOpenCodeModel(t, configPath, "llama3.2")
if entry["limit"] != nil {
t.Errorf("local model should not have limit set, got %v", entry["limit"])
}
}
func TestOpenCodeEdit_PreservesUserLimit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
// Set up a model with a user-configured limit
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{
"provider": {
"ollama": {
"models": {
"llama3.2": {
"name": "llama3.2",
"_launch": true,
"limit": {"context": 8192, "output": 4096}
}
}
}
}
}`), 0o644)
// Re-edit should preserve the user's limit (not delete it)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
entry := readOpenCodeModel(t, configPath, "llama3.2")
limit, ok := entry["limit"].(map[string]any)
if !ok {
t.Fatal("user-configured limit was removed")
}
if limit["context"] != float64(8192) {
t.Errorf("context limit changed: got %v, want 8192", limit["context"])
}
if limit["output"] != float64(4096) {
t.Errorf("output limit changed: got %v, want 4096", limit["output"])
}
}
func TestOpenCodeEdit_CloudModelLimitStructure(t *testing.T) {
// Verify that when a cloud model entry has limits set (as Edit would do),
// the structure matches what opencode expects and re-edit preserves them.
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
expected := cloudModelLimits["glm-4.7"]
// Simulate a cloud model that already has the limit set by a previous Edit
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(fmt.Sprintf(`{
"provider": {
"ollama": {
"models": {
"glm-4.7:cloud": {
"name": "glm-4.7:cloud",
"_launch": true,
"limit": {"context": %d, "output": %d}
}
}
}
}
}`, expected.Context, expected.Output)), 0o644)
// Re-edit should preserve the cloud model limit
if err := o.Edit([]string{"glm-4.7:cloud"}); err != nil {
t.Fatal(err)
}
entry := readOpenCodeModel(t, configPath, "glm-4.7:cloud")
limit, ok := entry["limit"].(map[string]any)
if !ok {
t.Fatal("cloud model limit was removed on re-edit")
}
if limit["context"] != float64(expected.Context) {
t.Errorf("context = %v, want %d", limit["context"], expected.Context)
}
if limit["output"] != float64(expected.Output) {
t.Errorf("output = %v, want %d", limit["output"], expected.Output)
}
}
func TestLookupCloudModelLimit(t *testing.T) {
tests := []struct {
name string
wantOK bool
wantContext int
wantOutput int
}{
{"glm-4.7", true, 202_752, 131_072},
{"glm-4.7:cloud", true, 202_752, 131_072},
{"kimi-k2.5", true, 262_144, 262_144},
{"kimi-k2.5:cloud", true, 262_144, 262_144},
{"deepseek-v3.2", true, 163_840, 65_536},
{"deepseek-v3.2:cloud", true, 163_840, 65_536},
{"qwen3-coder:480b", true, 262_144, 65_536},
{"qwen3-coder-next:cloud", true, 262_144, 32_768},
{"llama3.2", false, 0, 0},
{"unknown-model:cloud", false, 0, 0},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
l, ok := lookupCloudModelLimit(tt.name)
if ok != tt.wantOK {
t.Errorf("lookupCloudModelLimit(%q) ok = %v, want %v", tt.name, ok, tt.wantOK)
}
if ok {
if l.Context != tt.wantContext {
t.Errorf("context = %d, want %d", l.Context, tt.wantContext)
}
if l.Output != tt.wantOutput {
t.Errorf("output = %d, want %d", l.Output, tt.wantOutput)
}
}
})
}
}
func TestOpenCodeModels_NoConfig(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()

View File

@@ -17,7 +17,6 @@ const (
ansiBold = "\033[1m"
ansiReset = "\033[0m"
ansiGray = "\033[37m"
ansiGreen = "\033[32m"
ansiClearDown = "\033[J"
)

View File

@@ -96,14 +96,6 @@ func TestSelectState(t *testing.T) {
}
})
t.Run("Enter_EmptyFilteredList_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState([]selectItem{})
done, result, err := s.handleInput(eventEnter, 0)
if done || result != "" || err != nil {
t.Errorf("expected (false, '', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEscape, 0)
@@ -582,19 +574,8 @@ func TestRenderSelect(t *testing.T) {
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "no matches") {
t.Errorf("expected 'no matches' message, got: %s", output)
}
})
t.Run("EmptyFilteredList_EmptyFilter_ShowsNoMatches", func(t *testing.T) {
s := newSelectState([]selectItem{})
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' message for empty list with no filter")
t.Error("expected 'no matches' message")
}
})

View File

@@ -10,21 +10,19 @@ import (
"github.com/ollama/ollama/api"
)
var errNotRunning = errors.New("could not connect to ollama server, run 'ollama serve' to start it")
func startApp(ctx context.Context, client *api.Client) error {
exe, err := os.Executable()
if err != nil {
return errNotRunning
return err
}
link, err := os.Readlink(exe)
if err != nil {
return errNotRunning
return err
}
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
return errNotRunning
return errors.New("could not find ollama app")
}
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
return err

View File

@@ -312,7 +312,7 @@ Parallel request processing for a given model results in increasing the context
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 \* the number of GPUs or 3 for CPU inference.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time, default 1. Required RAM will scale by `OLLAMA_NUM_PARALLEL` * `OLLAMA_CONTEXT_LENGTH`.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.

View File

@@ -34,7 +34,6 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/tokenizer"
)
type filteredEnv []string
@@ -117,7 +116,7 @@ type llamaServer struct {
type ollamaServer struct {
llmServer
tokenizer tokenizer.Tokenizer // tokenizer handles text encoding/decoding
textProcessor model.TextProcessor // textProcessor handles text encoding/decoding
}
// LoadModel will load a model from disk. The model must be in the GGML format.
@@ -143,11 +142,11 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
// NewLlamaServer will run a server for the given GPUs
func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
var llamaModel *llama.Model
var tok tokenizer.Tokenizer
var textProcessor model.TextProcessor
var err error
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
if len(projectors) == 0 {
tok, err = model.NewTextProcessor(modelPath)
textProcessor, err = model.NewTextProcessor(modelPath)
} else {
err = errors.New("split vision models aren't supported")
}
@@ -156,7 +155,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
}
}
if tok == nil {
if textProcessor == nil {
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
@@ -212,7 +211,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
kvct := strings.ToLower(envconfig.KvCacheType())
if tok == nil {
if textProcessor == nil {
flashAttention := ml.FlashAttentionAuto
if faUserSet {
if fa {
@@ -262,7 +261,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
gpuLibs := ml.LibraryPaths(gpus)
status := NewStatusWriter(os.Stderr)
cmd, port, err := StartRunner(
tok != nil,
textProcessor != nil,
modelPath,
gpuLibs,
status,
@@ -311,8 +310,8 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
}
}()
if tok != nil {
return &ollamaServer{llmServer: s, tokenizer: tok}, nil
if textProcessor != nil {
return &ollamaServer{llmServer: s, textProcessor: textProcessor}, nil
} else {
return &llamaServer{llmServer: s, ggml: f}, nil
}
@@ -1775,7 +1774,7 @@ func (s *llamaServer) Tokenize(ctx context.Context, content string) ([]int, erro
}
func (s *ollamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
tokens, err := s.tokenizer.Encode(content, false)
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
@@ -1810,7 +1809,7 @@ func (s *ollamaServer) Detokenize(ctx context.Context, tokens []int) (string, er
toks[i] = int32(t)
}
content, err := s.tokenizer.Decode(toks)
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}

View File

@@ -131,15 +131,12 @@ func AnthropicMessagesMiddleware() gin.HandlerFunc {
messageID := anthropic.GenerateMessageID()
// Estimate input tokens for streaming (actual count not available until generation completes)
estimatedTokens := anthropic.EstimateInputTokens(req)
w := &AnthropicWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
stream: req.Stream,
id: messageID,
model: req.Model,
converter: anthropic.NewStreamConverter(messageID, req.Model, estimatedTokens),
converter: anthropic.NewStreamConverter(messageID, req.Model),
}
if req.Stream {

272
model/bytepairencoding.go Normal file
View File

@@ -0,0 +1,272 @@
package model
import (
"cmp"
"iter"
"slices"
"strings"
"github.com/dlclark/regexp2"
heap "github.com/emirpasic/gods/v2/trees/binaryheap"
"github.com/ollama/ollama/logutil"
)
type BytePairEncoding struct {
vocab *Vocabulary
regexps []*regexp2.Regexp
}
var _ TextProcessor = (*BytePairEncoding)(nil)
func NewBytePairEncoding(vocab *Vocabulary, pretokenizers ...string) BytePairEncoding {
if len(pretokenizers) == 0 {
// set default byte-level pretokenizer if none provided, e.g.
// https://github.com/huggingface/tokenizers/blob/main/tokenizers/src/pre_tokenizers/byte_level.rs#L44
pretokenizers = []string{`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`}
}
return BytePairEncoding{
vocab: vocab,
regexps: slices.Collect(func(yield func(*regexp2.Regexp) bool) {
for _, p := range pretokenizers {
if !yield(regexp2.MustCompile(p, regexp2.RE2)) {
return
}
}
}),
}
}
func (bpe BytePairEncoding) Vocabulary() *Vocabulary {
return bpe.vocab
}
func (bpe BytePairEncoding) Is(id int32, special Special) bool {
return bpe.vocab.Is(id, special)
}
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
parts := []string{s}
for _, re := range bpe.regexps {
parts = slices.Collect(func(yield func(string) bool) {
for _, part := range parts {
r := []rune(part)
var offset int
for m, _ := re.FindRunesMatch(r); m != nil; m, _ = re.FindNextMatch(m) {
if offset-m.Index != 0 {
if !yield(string(r[:m.Index])) {
return
}
}
if !yield(m.String()) {
return
}
offset = m.Index + m.Length
}
if offset < len(r) {
if !yield(string(r[offset:])) {
return
}
}
}
})
}
return slices.Values(parts)
}
// fragment is a string fragment and their corresponding token IDs
type fragment struct {
value string
ids []int32
}
// pair is a pair of runes and its rank
type pair struct {
a, b int
rank int
value string
}
type merge struct {
p, n int
runes []rune
}
func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := bpe.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
continue
}
var middle []fragment
switch i := strings.Index(frag.value, special); {
case i < 0:
middle = append(middle, frag)
case i > 0:
middle = append(middle, fragment{value: frag.value[:i]})
fallthrough
default:
middle = append(middle, fragment{value: special, ids: []int32{id}})
if rest := frag.value[i+len(special):]; rest != "" {
middle = append(middle, fragment{value: rest})
}
}
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
var ids []int32
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
continue
}
for split := range bpe.split(frag.value) {
// TODO: process splits concurrently
var sb strings.Builder
for _, b := range []byte(split) {
r := rune(b)
switch {
case r == 0x00ad:
r = 0x0143
case r <= 0x0020:
r = r + 0x0100
case r >= 0x007f && r <= 0x00a0:
r = r + 0x00a2
}
sb.WriteRune(r)
}
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
}
runes := []rune(sb.String())
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
pairwise := func(a, b int) *pair {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
rank := bpe.vocab.Merge(left, right)
if rank < 0 {
return nil
}
return &pair{
a: a,
b: b,
rank: rank,
value: left + right,
}
}
pairs := heap.NewWith(func(i, j *pair) int {
return cmp.Compare(i.rank, j.rank)
})
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pairs.Push(pair)
}
}
for !pairs.Empty() {
pair, _ := pairs.Pop()
left, right := merges[pair.a], merges[pair.b]
if len(left.runes) == 0 || len(right.runes) == 0 ||
string(left.runes)+string(right.runes) != pair.value {
continue
}
if id := bpe.vocab.Encode(pair.value); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pairs.Push(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pairs.Push(pair)
}
}
for _, merge := range merges {
if len(merge.runes) > 0 {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
}
}
}
}
}
if addSpecial {
ids = bpe.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
for _, r := range bpe.vocab.Decode(id) {
switch {
case r == 0x0100:
// this produces 0x00 aka NULL
continue
case r == 0x0143:
r = 0x00ad
case r > 0x0100 && r <= 0x0120:
r = r - 0x0100
case r > 0x0120 && r <= 0x0142:
r = r - 0x00a2
}
// NOTE: not using WriteRune here because it writes the UTF-8
// encoding of the rune which is _not_ what we want
if err := sb.WriteByte(byte(r)); err != nil {
return "", err
}
}
}
logutil.Trace("decoded", "string", sb.String(), "from", ids)
return sb.String(), nil
}

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"bufio"
@@ -17,7 +17,7 @@ import (
func llama(t testing.TB) BytePairEncoding {
t.Helper()
f, err := os.Open(filepath.FromSlash("testdata/llama3.2/encoder.json"))
f, err := os.Open(filepath.Join("testdata", "llama3.2", "encoder.json"))
if err != nil {
t.Fatal(err)
}
@@ -43,7 +43,7 @@ func llama(t testing.TB) BytePairEncoding {
}
}
f, err = os.Open(filepath.FromSlash("testdata/llama3.2/vocab.bpe"))
f, err = os.Open(filepath.Join("testdata", "llama3.2", "vocab.bpe"))
if err != nil {
t.Fatal(err)
}

View File

@@ -23,7 +23,6 @@ import (
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
var (
@@ -134,7 +133,7 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return m, nil
}
func NewTextProcessor(s string) (tokenizer.Tokenizer, error) {
func NewTextProcessor(s string) (TextProcessor, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
@@ -151,7 +150,7 @@ func NewTextProcessor(s string) (tokenizer.Tokenizer, error) {
return nil, err
}
tp, ok := m.(tokenizer.Tokenizer)
tp, ok := m.(TextProcessor)
if !ok {
return nil, ErrUnsupportedTokenizer
}

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
@@ -130,7 +129,7 @@ func (o Options) headDim() int {
}
func New(c fs.Config) (model.Model, error) {
vocab := &tokenizer.Vocabulary{
vocab := &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -154,17 +153,17 @@ func New(c fs.Config) (model.Model, error) {
},
}
var t tokenizer.Tokenizer
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
t = tokenizer.NewWordPiece(vocab, true)
processor = model.NewWordPiece(vocab, true)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
Tokenizer: t,
Layers: make([]EncoderLayer, c.Uint("block_count")),
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),

View File

@@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -223,7 +222,7 @@ func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tens
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -278,8 +277,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
Sam *samModel `gguf:"s"`
Vision *visionModel `gguf:"v"`
@@ -135,8 +134,8 @@ func init() {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
TextProcessor: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,7 +10,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -28,7 +27,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
type Model struct {
model.Base
tokenizer.Tokenizer
model.SentencePiece
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -44,8 +43,8 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewSentencePiece(
&tokenizer.Vocabulary{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),

View File

@@ -7,12 +7,11 @@ import (
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type embedModel struct {
model.Base
tokenizer.Tokenizer
model.SentencePiece
*TextModel
poolingType pooling.Type
@@ -32,8 +31,8 @@ func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, erro
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
Tokenizer: tokenizer.NewSentencePiece(
&tokenizer.Vocabulary{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),

View File

@@ -12,12 +12,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
*VisionModel `gguf:"v"`
*TextModel
@@ -55,7 +54,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
}
func New(c fs.Config) (model.Model, error) {
vocabulary := tokenizer.Vocabulary{
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -71,19 +70,19 @@ func New(c fs.Config) (model.Model, error) {
),
}
var t tokenizer.Tokenizer
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model") {
case "gpt2":
t = tokenizer.NewBytePairEncoding(&vocabulary)
processor = model.NewBytePairEncoding(&vocabulary)
default:
// Previous uploads of Gemma 3 on Ollama did not have token 106
// (i.e. "<end_of_turn>") so we need to add in case it's not already present
vocabulary.EOS = append(vocabulary.EOS, int32(c.Uint("tokenizer.ggml.eot_token_id", 106)))
t = tokenizer.NewSentencePiece(&vocabulary)
processor = model.NewSentencePiece(&vocabulary)
}
m := Model{
Tokenizer: t,
TextProcessor: processor,
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),

View File

@@ -6,12 +6,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.SentencePiece
*TextModel
}
@@ -24,8 +23,8 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
Tokenizer: tokenizer.NewSentencePiece(
&tokenizer.Vocabulary{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),

View File

@@ -10,7 +10,6 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
var ErrOldModelFormat = errors.New("this model uses a weight format that is no longer supported; please re-download it")
@@ -199,7 +198,7 @@ func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tens
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -237,8 +236,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
@@ -38,8 +37,8 @@ func New(c fs.Config) (model.Model, error) {
allEOS := append([]int32{eosTokenID}, eosTokenIDs...)
m := &Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -12,12 +12,11 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Transformer struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TransformerBlocks []TransformerBlock `gguf:"blk"`
@@ -197,8 +196,8 @@ func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Optio
func New(c fs.Config) (model.Model, error) {
m := Transformer{
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,7 +10,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -60,7 +59,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -79,7 +78,7 @@ func New(c fs.Config) (model.Model, error) {
return nil, model.ErrUnsupportedTokenizer
}
vocabulary := tokenizer.Vocabulary{
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -105,8 +104,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
TextProcessor: model.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
headDim: int(c.Uint("attention.key_length")),

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -26,7 +25,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -42,8 +41,8 @@ func New(c fs.Config) (model.Model, error) {
return nil, model.ErrUnsupportedModel
}
var processor tokenizer.Tokenizer
vocabulary := tokenizer.Vocabulary{
var processor model.TextProcessor
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -81,16 +80,16 @@ func New(c fs.Config) (model.Model, error) {
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
}
processor = tokenizer.NewBytePairEncoding(&vocabulary, pretokenizers...)
processor = model.NewBytePairEncoding(&vocabulary, pretokenizers...)
case "llama":
processor = tokenizer.NewSentencePiece(&vocabulary)
processor = model.NewSentencePiece(&vocabulary)
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
Tokenizer: processor,
Layers: make([]Layer, c.Uint("block_count")),
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
ImageProcessor
*VisionModel `gguf:"v"`
@@ -34,8 +33,8 @@ func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
@@ -29,12 +28,12 @@ type Model struct {
var _ model.MultimodalProcessor = (*Model)(nil)
// Implement TextProcessor interface
var _ tokenizer.Tokenizer = (*Model)(nil)
var _ model.TextProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*VisionModel `gguf:"v"`
*TextModel
@@ -33,8 +32,8 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
@@ -179,6 +178,29 @@ func New(c fs.Config) (model.Model, error) {
numHeads := int(c.Uint("attention.head_count"))
headDim := hiddenSize / numHeads
processor := model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
false,
)
blockCount := int(c.Uint("block_count"))
moeEveryNLayers := int(c.Uint("moe_every_n_layers", 0))
layers := make([]EncoderLayer, blockCount)
@@ -197,29 +219,8 @@ func New(c fs.Config) (model.Model, error) {
}
return &Model{
Tokenizer: tokenizer.NewWordPiece(
&tokenizer.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
false,
),
Layers: layers,
TextProcessor: processor,
Layers: layers,
Options: Options{
hiddenSize: hiddenSize,
numHeads: numHeads,

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
const (
@@ -34,7 +33,7 @@ type Options struct {
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -45,24 +44,28 @@ type Model struct {
}
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
Layers: make([]Layer, c.Uint("block_count")),
}
processor := model.NewBytePairEncoding(
&vocabulary,
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
)
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),

View File

@@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -93,7 +92,7 @@ func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs m
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []DecoderLayer `gguf:"blk"`
@@ -140,8 +139,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Layers: make([]DecoderLayer, c.Uint("block_count")),
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
@@ -28,8 +27,8 @@ var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -7,12 +7,11 @@ import (
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type embedModel struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*Model
poolingType pooling.Type
@@ -35,8 +34,8 @@ func newEmbed(c fs.Config) (model.Model, error) {
layers[i].MLP = &dense{}
}
m := embedModel{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -12,7 +12,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -160,7 +159,7 @@ func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tens
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
@@ -219,8 +218,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
// Options contains model configuration
@@ -208,7 +207,7 @@ func (l *Layer) Forward(ctx ml.Context, layer int, hiddenStates, positions, outp
// Model is the main Qwen3-Next model
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
@@ -354,8 +353,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
*TextModel
*VisionModel `gguf:"v"`
@@ -173,8 +172,8 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
TextProcessor: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"container/heap"
@@ -17,7 +17,7 @@ type SentencePiece struct {
vocab *Vocabulary
}
var _ Tokenizer = (*SentencePiece)(nil)
var _ TextProcessor = (*SentencePiece)(nil)
func (spm SentencePiece) Vocabulary() *Vocabulary {
return spm.vocab
@@ -224,7 +224,7 @@ func (spm SentencePiece) Decode(ids []int32) (string, error) {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
// For tokenizer that use byte tokens like "<0xEA>"
// For tokenizers that use byte tokens like "<0xEA>"
// convert them to the partial unicode character
// so they are buffered correctly by the runner instead
// of being sent back to the api as "<0xEA>"

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"log/slog"
@@ -15,7 +15,7 @@ import (
func loadSentencePieceVocab(t *testing.T) SentencePiece {
t.Helper()
bts, err := os.ReadFile(filepath.FromSlash("testdata/gemma2/tokenizer.model"))
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
if err != nil {
t.Fatal(err)
}

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
const (
TOKEN_TYPE_NORMAL = iota + 1
@@ -9,7 +9,7 @@ const (
TOKEN_TYPE_BYTE
)
type Tokenizer interface {
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"log/slog"

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"testing"

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"fmt"
@@ -32,7 +32,7 @@ var wordPieceReplacer = strings.NewReplacer(
" 're", "'re",
)
// Decode implements Tokenizer.
// Decode implements TextProcessor.
func (wpm WordPiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for i, id := range ids {
@@ -96,7 +96,7 @@ func (wpm WordPiece) words(s string) iter.Seq[string] {
}
}
// Encode implements Tokenizer.
// Encode implements TextProcessor.
func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
var ids []int32
@@ -151,17 +151,17 @@ func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
return ids, nil
}
// Is implements Tokenizer.
// Is implements TextProcessor.
func (wpm WordPiece) Is(id int32, special Special) bool {
return wpm.vocab.Is(id, special)
}
// Vocabulary implements Tokenizer.
// Vocabulary implements TextProcessor.
func (wpm WordPiece) Vocabulary() *Vocabulary {
return wpm.vocab
}
var _ Tokenizer = (*WordPiece)(nil)
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary, lowercase bool) WordPiece {
return WordPiece{

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"slices"

View File

@@ -37,7 +37,6 @@ import (
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
"github.com/ollama/ollama/tokenizer"
_ "github.com/ollama/ollama/model/models"
)
@@ -211,9 +210,9 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
}
// calculateLogprobs converts raw logits to log probabilities and finds top K tokens
func calculateLogprobs(logits []float32, selectedToken int32, topK int, tok tokenizer.Tokenizer) []llm.Logprob {
func calculateLogprobs(logits []float32, selectedToken int32, topK int, textProcessor model.TextProcessor) []llm.Logprob {
decoder := func(tokenID int) string {
text, _ := tok.Decode([]int32{int32(tokenID)})
text, _ := textProcessor.Decode([]int32{int32(tokenID)})
return text
}
return common.CalculateLogprobs(logits, int(selectedToken), topK, decoder)
@@ -243,7 +242,7 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input,
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(tokenizer.Tokenizer).Encode(part, i == 0)
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, nil, nil, err
}
@@ -765,7 +764,7 @@ func (s *Server) computeBatch(activeBatch batchState) {
nextBatchTokens[i].Token = token
// if it's an end of sequence token, break
if s.model.(tokenizer.Tokenizer).Is(token, tokenizer.SpecialEOS) {
if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
@@ -774,14 +773,14 @@ func (s *Server) computeBatch(activeBatch batchState) {
continue
}
piece, err := s.model.(tokenizer.Tokenizer).Decode([]int32{token})
piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
if err != nil {
panic("failed to decode token")
}
// Calculate logprobs if requested (after EOS check to avoid logprobs for EOS tokens)
if seq.logprobs {
logprobs := calculateLogprobs(logits, token, seq.topLogprobs, s.model.(tokenizer.Tokenizer))
logprobs := calculateLogprobs(logits, token, seq.topLogprobs, s.model.(model.TextProcessor))
seq.pendingLogprobs = append(seq.pendingLogprobs, logprobs...)
}
@@ -879,7 +878,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var grammar *sample.GrammarSampler
var err error
if req.Grammar != "" {
grammar, err = sample.NewGrammarSampler(s.model.(tokenizer.Tokenizer), req.Grammar)
grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
if err != nil {
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
return

View File

@@ -3,7 +3,7 @@ package runner
import (
"github.com/ollama/ollama/runner/llamarunner"
"github.com/ollama/ollama/runner/ollamarunner"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/mlxrunner"
)
func Execute(args []string) error {
@@ -11,13 +11,22 @@ func Execute(args []string) error {
args = args[1:]
}
if len(args) > 0 {
switch args[0] {
case "--ollama-engine":
return ollamarunner.Execute(args[1:])
case "--imagegen-engine":
return imagegen.Execute(args[1:])
}
var newRunner bool
var mlxRunner bool
if len(args) > 0 && args[0] == "--ollama-engine" {
args = args[1:]
newRunner = true
}
if len(args) > 0 && args[0] == "--mlx-engine" {
args = args[1:]
mlxRunner = true
}
if mlxRunner {
return mlxrunner.Execute(args)
} else if newRunner {
return ollamarunner.Execute(args)
} else {
return llamarunner.Execute(args)
}
return llamarunner.Execute(args)
}

View File

@@ -7,7 +7,7 @@ import (
"slices"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/tokenizer"
"github.com/ollama/ollama/model"
)
// token represents information about a single token during sampling
@@ -168,15 +168,15 @@ type GrammarSampler struct {
grammar *llama.Grammar
}
func NewGrammarSampler(tok tokenizer.Tokenizer, grammarStr string) (*GrammarSampler, error) {
vocabIds := make([]uint32, len(tok.Vocabulary().Values))
pieces := make([]string, len(tok.Vocabulary().Values))
for i := range tok.Vocabulary().Values {
pieces[i], _ = tok.Decode([]int32{int32(i)})
func NewGrammarSampler(model model.TextProcessor, grammarStr string) (*GrammarSampler, error) {
vocabIds := make([]uint32, len(model.Vocabulary().Values))
pieces := make([]string, len(model.Vocabulary().Values))
for i := range model.Vocabulary().Values {
pieces[i], _ = model.Decode([]int32{int32(i)})
vocabIds[i] = uint32(i)
}
grammar := llama.NewGrammar(grammarStr, vocabIds, pieces, tok.Vocabulary().EOS)
grammar := llama.NewGrammar(grammarStr, vocabIds, pieces, model.Vocabulary().EOS)
if grammar == nil {
return nil, errors.New("sample: failed to initialize grammar")
}

View File

@@ -8,7 +8,7 @@ import (
"path/filepath"
"testing"
"github.com/ollama/ollama/tokenizer"
"github.com/ollama/ollama/model"
)
func TestWeighted(t *testing.T) {
@@ -60,10 +60,10 @@ func TestWeighted(t *testing.T) {
}
}
func modelHelper(t testing.TB) tokenizer.Tokenizer {
func modelHelper(t testing.TB) model.BytePairEncoding {
t.Helper()
f, err := os.Open(filepath.FromSlash("../tokenizer/testdata/llama3.2/encoder.json"))
f, err := os.Open(filepath.Join("..", "model", "testdata", "llama3.2", "encoder.json"))
if err != nil {
t.Fatal(err)
}
@@ -81,8 +81,8 @@ func modelHelper(t testing.TB) tokenizer.Tokenizer {
merges := make([]string, 0, 1)
// Only need vocab for Grammar Test
return tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
return model.NewBytePairEncoding(
&model.Vocabulary{
Values: tokens,
Types: make([]int32, len(vocab)),
Merges: merges,

View File

@@ -1,5 +1,5 @@
#!/bin/sh
# This script installs Ollama on Linux and macOS.
# This script installs Ollama on Linux.
# It detects the current operating system architecture and installs the appropriate version of Ollama.
set -eu
@@ -27,7 +27,8 @@ require() {
echo $MISSING
}
OS="$(uname -s)"
[ "$(uname -s)" = "Linux" ] || error 'This script is intended to run on Linux only.'
ARCH=$(uname -m)
case "$ARCH" in
x86_64) ARCH="amd64" ;;
@@ -35,65 +36,6 @@ case "$ARCH" in
*) error "Unsupported architecture: $ARCH" ;;
esac
###########################################
# macOS
###########################################
if [ "$OS" = "Darwin" ]; then
NEEDS=$(require curl unzip)
if [ -n "$NEEDS" ]; then
status "ERROR: The following tools are required but missing:"
for NEED in $NEEDS; do
echo " - $NEED"
done
exit 1
fi
if [ -n "${OLLAMA_VERSION:-}" ]; then
DOWNLOAD_URL="https://github.com/ollama/ollama/releases/download/${OLLAMA_VERSION}/Ollama-darwin.zip"
else
DOWNLOAD_URL="https://github.com/ollama/ollama/releases/latest/download/Ollama-darwin.zip"
fi
if pgrep -x Ollama >/dev/null 2>&1; then
status "Stopping running Ollama instance..."
pkill -x Ollama 2>/dev/null || true
sleep 2
fi
if [ -d "/Applications/Ollama.app" ]; then
status "Removing existing Ollama installation..."
rm -rf "/Applications/Ollama.app"
fi
status "Downloading Ollama for macOS..."
curl --fail --show-error --location --progress-bar \
-o "$TEMP_DIR/Ollama-darwin.zip" "$DOWNLOAD_URL"
status "Installing Ollama to /Applications..."
unzip -q "$TEMP_DIR/Ollama-darwin.zip" -d "$TEMP_DIR"
mv "$TEMP_DIR/Ollama.app" "/Applications/"
status "Adding 'ollama' command to PATH (may require password)..."
mkdir -p "/usr/local/bin" 2>/dev/null || sudo mkdir -p "/usr/local/bin"
ln -sf "/Applications/Ollama.app/Contents/Resources/ollama" "/usr/local/bin/ollama" 2>/dev/null || \
sudo ln -sf "/Applications/Ollama.app/Contents/Resources/ollama" "/usr/local/bin/ollama"
if [ -z "${OLLAMA_NO_START:-}" ]; then
status "Starting Ollama..."
open -a Ollama --args hidden
fi
status "Install complete. You can now run 'ollama'."
exit 0
fi
###########################################
# Linux
###########################################
[ "$OS" = "Linux" ] || error 'This script is intended to run on Linux and macOS only.'
IS_WSL2=false
KERN=$(uname -r)

View File

@@ -1,422 +0,0 @@
package server
import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"sort"
"strings"
"sync"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
const (
serverConfigFilename = "server.json"
serverConfigVersion = 1
)
var errAliasCycle = errors.New("alias cycle detected")
type aliasEntry struct {
Alias string `json:"alias"`
Target string `json:"target"`
PrefixMatching bool `json:"prefix_matching,omitempty"`
}
type serverConfig struct {
Version int `json:"version"`
Aliases []aliasEntry `json:"aliases"`
}
type store struct {
mu sync.RWMutex
path string
entries map[string]aliasEntry // normalized alias -> entry (exact matches)
prefixEntries []aliasEntry // prefix matches, sorted longest-first
}
func createStore(path string) (*store, error) {
store := &store{
path: path,
entries: make(map[string]aliasEntry),
}
if err := store.load(); err != nil {
return nil, err
}
return store, nil
}
func (s *store) load() error {
data, err := os.ReadFile(s.path)
if err != nil {
if errors.Is(err, os.ErrNotExist) {
return nil
}
return err
}
var cfg serverConfig
if err := json.Unmarshal(data, &cfg); err != nil {
return err
}
if cfg.Version != 0 && cfg.Version != serverConfigVersion {
return fmt.Errorf("unsupported router config version %d", cfg.Version)
}
for _, entry := range cfg.Aliases {
targetName := model.ParseName(entry.Target)
if !targetName.IsValid() {
slog.Warn("invalid alias target in router config", "target", entry.Target)
continue
}
canonicalTarget := displayAliasName(targetName)
if entry.PrefixMatching {
// Prefix aliases don't need to be valid model names
alias := strings.TrimSpace(entry.Alias)
if alias == "" {
slog.Warn("empty prefix alias in router config")
continue
}
s.prefixEntries = append(s.prefixEntries, aliasEntry{
Alias: alias,
Target: canonicalTarget,
PrefixMatching: true,
})
} else {
aliasName := model.ParseName(entry.Alias)
if !aliasName.IsValid() {
slog.Warn("invalid alias name in router config", "alias", entry.Alias)
continue
}
canonicalAlias := displayAliasName(aliasName)
s.entries[normalizeAliasKey(aliasName)] = aliasEntry{
Alias: canonicalAlias,
Target: canonicalTarget,
}
}
}
// Sort prefix entries by alias length descending (longest prefix wins)
s.sortPrefixEntriesLocked()
return nil
}
func (s *store) saveLocked() error {
dir := filepath.Dir(s.path)
if err := os.MkdirAll(dir, 0o755); err != nil {
return err
}
// Combine exact and prefix entries
entries := make([]aliasEntry, 0, len(s.entries)+len(s.prefixEntries))
for _, entry := range s.entries {
entries = append(entries, entry)
}
entries = append(entries, s.prefixEntries...)
sort.Slice(entries, func(i, j int) bool {
return strings.Compare(entries[i].Alias, entries[j].Alias) < 0
})
cfg := serverConfig{
Version: serverConfigVersion,
Aliases: entries,
}
f, err := os.CreateTemp(dir, "router-*.json")
if err != nil {
return err
}
enc := json.NewEncoder(f)
enc.SetIndent("", " ")
if err := enc.Encode(cfg); err != nil {
_ = f.Close()
_ = os.Remove(f.Name())
return err
}
if err := f.Close(); err != nil {
_ = os.Remove(f.Name())
return err
}
if err := os.Chmod(f.Name(), 0o644); err != nil {
_ = os.Remove(f.Name())
return err
}
return os.Rename(f.Name(), s.path)
}
func (s *store) ResolveName(name model.Name) (model.Name, bool, error) {
// If a local model exists, do not allow alias shadowing (highest priority).
exists, err := localModelExists(name)
if err != nil {
return name, false, err
}
if exists {
return name, false, nil
}
key := normalizeAliasKey(name)
s.mu.RLock()
entry, exactMatch := s.entries[key]
var prefixMatch *aliasEntry
if !exactMatch {
// Try prefix matching - prefixEntries is sorted longest-first
nameStr := strings.ToLower(displayAliasName(name))
for i := range s.prefixEntries {
prefix := strings.ToLower(s.prefixEntries[i].Alias)
if strings.HasPrefix(nameStr, prefix) {
prefixMatch = &s.prefixEntries[i]
break // First match is longest due to sorting
}
}
}
s.mu.RUnlock()
if !exactMatch && prefixMatch == nil {
return name, false, nil
}
var current string
var visited map[string]struct{}
if exactMatch {
visited = map[string]struct{}{key: {}}
current = entry.Target
} else {
// For prefix match, use the target as-is
visited = map[string]struct{}{}
current = prefixMatch.Target
}
targetKey := normalizeAliasKeyString(current)
for {
targetName := model.ParseName(current)
if !targetName.IsValid() {
return name, false, fmt.Errorf("alias target %q is invalid", current)
}
if _, seen := visited[targetKey]; seen {
return name, false, errAliasCycle
}
visited[targetKey] = struct{}{}
s.mu.RLock()
next, ok := s.entries[targetKey]
s.mu.RUnlock()
if !ok {
return targetName, true, nil
}
current = next.Target
targetKey = normalizeAliasKeyString(current)
}
}
func (s *store) Set(alias, target model.Name, prefixMatching bool) error {
targetKey := normalizeAliasKey(target)
s.mu.Lock()
defer s.mu.Unlock()
if prefixMatching {
// For prefix aliases, we skip cycle detection since prefix matching
// works differently and the target is a specific model
aliasStr := displayAliasName(alias)
// Remove any existing prefix entry with the same alias
for i, e := range s.prefixEntries {
if strings.EqualFold(e.Alias, aliasStr) {
s.prefixEntries = append(s.prefixEntries[:i], s.prefixEntries[i+1:]...)
break
}
}
s.prefixEntries = append(s.prefixEntries, aliasEntry{
Alias: aliasStr,
Target: displayAliasName(target),
PrefixMatching: true,
})
s.sortPrefixEntriesLocked()
return s.saveLocked()
}
aliasKey := normalizeAliasKey(alias)
if aliasKey == targetKey {
return fmt.Errorf("alias cannot point to itself")
}
visited := map[string]struct{}{aliasKey: {}}
currentKey := targetKey
for {
if _, seen := visited[currentKey]; seen {
return errAliasCycle
}
visited[currentKey] = struct{}{}
next, ok := s.entries[currentKey]
if !ok {
break
}
currentKey = normalizeAliasKeyString(next.Target)
}
s.entries[aliasKey] = aliasEntry{
Alias: displayAliasName(alias),
Target: displayAliasName(target),
}
return s.saveLocked()
}
func (s *store) Delete(alias model.Name) (bool, error) {
aliasKey := normalizeAliasKey(alias)
s.mu.Lock()
defer s.mu.Unlock()
// Try exact match first
if _, ok := s.entries[aliasKey]; ok {
delete(s.entries, aliasKey)
return true, s.saveLocked()
}
// Try prefix entries
aliasStr := displayAliasName(alias)
for i, e := range s.prefixEntries {
if strings.EqualFold(e.Alias, aliasStr) {
s.prefixEntries = append(s.prefixEntries[:i], s.prefixEntries[i+1:]...)
return true, s.saveLocked()
}
}
return false, nil
}
// DeleteByString deletes an alias by its raw string value, useful for prefix
// aliases that may not be valid model names.
func (s *store) DeleteByString(alias string) (bool, error) {
alias = strings.TrimSpace(alias)
aliasLower := strings.ToLower(alias)
s.mu.Lock()
defer s.mu.Unlock()
// Try prefix entries first (since this is mainly for prefix aliases)
for i, e := range s.prefixEntries {
if strings.EqualFold(e.Alias, alias) {
s.prefixEntries = append(s.prefixEntries[:i], s.prefixEntries[i+1:]...)
return true, s.saveLocked()
}
}
// Also check exact entries by normalized key
if _, ok := s.entries[aliasLower]; ok {
delete(s.entries, aliasLower)
return true, s.saveLocked()
}
return false, nil
}
func (s *store) List() []aliasEntry {
s.mu.RLock()
defer s.mu.RUnlock()
entries := make([]aliasEntry, 0, len(s.entries)+len(s.prefixEntries))
for _, entry := range s.entries {
entries = append(entries, entry)
}
entries = append(entries, s.prefixEntries...)
sort.Slice(entries, func(i, j int) bool {
return strings.Compare(entries[i].Alias, entries[j].Alias) < 0
})
return entries
}
func normalizeAliasKey(name model.Name) string {
return strings.ToLower(displayAliasName(name))
}
func (s *store) sortPrefixEntriesLocked() {
sort.Slice(s.prefixEntries, func(i, j int) bool {
// Sort by length descending (longest prefix first)
return len(s.prefixEntries[i].Alias) > len(s.prefixEntries[j].Alias)
})
}
func normalizeAliasKeyString(value string) string {
n := model.ParseName(value)
if !n.IsValid() {
return strings.ToLower(strings.TrimSpace(value))
}
return normalizeAliasKey(n)
}
func displayAliasName(n model.Name) string {
display := n.DisplayShortest()
if strings.EqualFold(n.Tag, "latest") {
if idx := strings.LastIndex(display, ":"); idx != -1 {
return display[:idx]
}
}
return display
}
func localModelExists(name model.Name) (bool, error) {
manifests, err := manifest.Manifests(true)
if err != nil {
return false, err
}
needle := name.String()
for existing := range manifests {
if strings.EqualFold(existing.String(), needle) {
return true, nil
}
}
return false, nil
}
func serverConfigPath() string {
home, err := os.UserHomeDir()
if err != nil {
return filepath.Join(".ollama", serverConfigFilename)
}
return filepath.Join(home, ".ollama", serverConfigFilename)
}
func (s *Server) aliasStore() (*store, error) {
s.aliasesOnce.Do(func() {
s.aliases, s.aliasesErr = createStore(serverConfigPath())
})
return s.aliases, s.aliasesErr
}
func (s *Server) resolveAlias(name model.Name) (model.Name, bool, error) {
store, err := s.aliasStore()
if err != nil {
return name, false, err
}
if store == nil {
return name, false, nil
}
return store.ResolveName(name)
}

View File

@@ -22,7 +22,6 @@ import (
"os/signal"
"slices"
"strings"
"sync"
"sync/atomic"
"syscall"
"time"
@@ -52,7 +51,7 @@ import (
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
imagegenmanifest "github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
xserver "github.com/ollama/ollama/x/server"
)
@@ -82,9 +81,6 @@ type Server struct {
addr net.Addr
sched *Scheduler
defaultNumCtx int
aliasesOnce sync.Once
aliases *store
aliasesErr error
}
func init() {
@@ -195,16 +191,9 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
resolvedName, _, err := s.resolveAlias(name)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
name = resolvedName
// We cannot currently consolidate this into GetModel because all we'll
// induce infinite recursion given the current code structure.
name, err = getExistingName(name)
name, err := getExistingName(name)
if err != nil {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
return
@@ -1106,7 +1095,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
// For image generation models, populate details from imagegen package
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
if info, err := imagegenmanifest.GetModelInfo(name.String()); err == nil {
if info, err := imagegen.GetModelInfo(name.String()); err == nil {
modelDetails.Family = info.Architecture
modelDetails.ParameterSize = format.HumanNumber(uint64(info.ParameterCount))
modelDetails.QuantizationLevel = info.Quantization
@@ -1591,9 +1580,6 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.POST("/api/blobs/:digest", s.CreateBlobHandler)
r.HEAD("/api/blobs/:digest", s.HeadBlobHandler)
r.POST("/api/copy", s.CopyHandler)
r.GET("/api/experimental/aliases", s.ListAliasesHandler)
r.POST("/api/experimental/aliases", s.CreateAliasHandler)
r.DELETE("/api/experimental/aliases", s.DeleteAliasHandler)
// Inference
r.GET("/api/ps", s.PsHandler)
@@ -1964,20 +1950,13 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
resolvedName, _, err := s.resolveAlias(name)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
name = resolvedName
name, err = getExistingName(name)
name, err := getExistingName(name)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
m, err := GetModel(name.String())
m, err := GetModel(req.Model)
if err != nil {
switch {
case os.IsNotExist(err):

View File

@@ -1,159 +0,0 @@
package server
import (
"errors"
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/types/model"
)
type aliasListResponse struct {
Aliases []aliasEntry `json:"aliases"`
}
type aliasDeleteRequest struct {
Alias string `json:"alias"`
}
func (s *Server) ListAliasesHandler(c *gin.Context) {
store, err := s.aliasStore()
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
var aliases []aliasEntry
if store != nil {
aliases = store.List()
}
c.JSON(http.StatusOK, aliasListResponse{Aliases: aliases})
}
func (s *Server) CreateAliasHandler(c *gin.Context) {
var req aliasEntry
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
req.Alias = strings.TrimSpace(req.Alias)
req.Target = strings.TrimSpace(req.Target)
if req.Alias == "" || req.Target == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "alias and target are required"})
return
}
// Target must always be a valid model name
targetName := model.ParseName(req.Target)
if !targetName.IsValid() {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("target %q is invalid", req.Target)})
return
}
var aliasName model.Name
if req.PrefixMatching {
// For prefix aliases, we still parse the alias to normalize it,
// but we allow any non-empty string since prefix patterns may not be valid model names
aliasName = model.ParseName(req.Alias)
// Even if not valid as a model name, we accept it for prefix matching
} else {
aliasName = model.ParseName(req.Alias)
if !aliasName.IsValid() {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("alias %q is invalid", req.Alias)})
return
}
if normalizeAliasKey(aliasName) == normalizeAliasKey(targetName) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "alias cannot point to itself"})
return
}
exists, err := localModelExists(aliasName)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if exists {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("alias %q conflicts with existing model", req.Alias)})
return
}
}
store, err := s.aliasStore()
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if err := store.Set(aliasName, targetName, req.PrefixMatching); err != nil {
status := http.StatusInternalServerError
if errors.Is(err, errAliasCycle) {
status = http.StatusBadRequest
}
c.AbortWithStatusJSON(status, gin.H{"error": err.Error()})
return
}
resp := aliasEntry{
Alias: displayAliasName(aliasName),
Target: displayAliasName(targetName),
PrefixMatching: req.PrefixMatching,
}
if req.PrefixMatching && !aliasName.IsValid() {
// For prefix aliases that aren't valid model names, use the raw alias
resp.Alias = req.Alias
}
c.JSON(http.StatusOK, resp)
}
func (s *Server) DeleteAliasHandler(c *gin.Context) {
var req aliasDeleteRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
req.Alias = strings.TrimSpace(req.Alias)
if req.Alias == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "alias is required"})
return
}
store, err := s.aliasStore()
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
aliasName := model.ParseName(req.Alias)
var deleted bool
if aliasName.IsValid() {
deleted, err = store.Delete(aliasName)
} else {
// For invalid model names (like prefix aliases), try deleting by raw string
deleted, err = store.DeleteByString(req.Alias)
}
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if !deleted {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("alias %q not found", req.Alias)})
return
}
c.JSON(http.StatusOK, gin.H{"deleted": true})
}

View File

@@ -1,426 +0,0 @@
package server
import (
"encoding/json"
"net/http"
"net/http/httptest"
"net/url"
"path/filepath"
"testing"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
func TestAliasShadowingRejected(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
s := Server{}
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "shadowed-model",
RemoteHost: "example.com",
From: "test",
Info: map[string]any{
"capabilities": []string{"completion"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.CreateAliasHandler, aliasEntry{Alias: "shadowed-model", Target: "other-model"})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status 400, got %d", w.Code)
}
}
func TestAliasResolvesForChatRemote(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
var remoteModel string
rs := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
var req api.ChatRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatal(err)
}
remoteModel = req.Model
w.Header().Set("Content-Type", "application/json")
resp := api.ChatResponse{
Model: req.Model,
Done: true,
DoneReason: "load",
}
if err := json.NewEncoder(w).Encode(&resp); err != nil {
t.Fatal(err)
}
}))
defer rs.Close()
p, err := url.Parse(rs.URL)
if err != nil {
t.Fatal(err)
}
t.Setenv("OLLAMA_REMOTES", p.Hostname())
s := Server{}
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "target-model",
RemoteHost: rs.URL,
From: "test",
Info: map[string]any{
"capabilities": []string{"completion"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.CreateAliasHandler, aliasEntry{Alias: "alias-model", Target: "target-model"})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "alias-model",
Messages: []api.Message{{Role: "user", Content: "hi"}},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
var resp api.ChatResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
if resp.Model != "alias-model" {
t.Fatalf("expected response model to be alias-model, got %q", resp.Model)
}
if remoteModel != "test" {
t.Fatalf("expected remote model to be 'test', got %q", remoteModel)
}
}
func TestPrefixAliasBasicMatching(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Create a prefix alias: "myprefix-" -> "targetmodel"
targetName := model.ParseName("targetmodel")
// Set a prefix alias (using "myprefix-" as the pattern)
store.mu.Lock()
store.prefixEntries = append(store.prefixEntries, aliasEntry{
Alias: "myprefix-",
Target: "targetmodel",
PrefixMatching: true,
})
store.mu.Unlock()
// Test that "myprefix-foo" resolves to "targetmodel"
testName := model.ParseName("myprefix-foo")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
if resolved.DisplayShortest() != targetName.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", targetName.DisplayShortest(), resolved.DisplayShortest())
}
// Test that "otherprefix-foo" does not resolve
otherName := model.ParseName("otherprefix-foo")
_, wasResolved, err = store.ResolveName(otherName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if wasResolved {
t.Fatal("expected name not to be resolved")
}
// Test that exact alias takes precedence
exactAlias := model.ParseName("myprefix-exact")
exactTarget := model.ParseName("exacttarget")
if err := store.Set(exactAlias, exactTarget, false); err != nil {
t.Fatal(err)
}
resolved, wasResolved, err = store.ResolveName(exactAlias)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
if resolved.DisplayShortest() != exactTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q (exact match), got %q", exactTarget.DisplayShortest(), resolved.DisplayShortest())
}
}
func TestPrefixAliasLongestMatchWins(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Add two prefix aliases with overlapping patterns
store.mu.Lock()
store.prefixEntries = []aliasEntry{
{Alias: "abc-", Target: "short-target", PrefixMatching: true},
{Alias: "abc-def-", Target: "long-target", PrefixMatching: true},
}
store.sortPrefixEntriesLocked()
store.mu.Unlock()
// "abc-def-ghi" should match the longer prefix "abc-def-"
testName := model.ParseName("abc-def-ghi")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
expectedLongTarget := model.ParseName("long-target")
if resolved.DisplayShortest() != expectedLongTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q (longest prefix match), got %q", expectedLongTarget.DisplayShortest(), resolved.DisplayShortest())
}
// "abc-xyz" should match the shorter prefix "abc-"
testName2 := model.ParseName("abc-xyz")
resolved, wasResolved, err = store.ResolveName(testName2)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
expectedShortTarget := model.ParseName("short-target")
if resolved.DisplayShortest() != expectedShortTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", expectedShortTarget.DisplayShortest(), resolved.DisplayShortest())
}
}
func TestPrefixAliasChain(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Create a chain: prefix "test-" -> "intermediate" -> "final"
intermediate := model.ParseName("intermediate")
final := model.ParseName("final")
// Add prefix alias
store.mu.Lock()
store.prefixEntries = []aliasEntry{
{Alias: "test-", Target: "intermediate", PrefixMatching: true},
}
store.mu.Unlock()
// Add exact alias for the intermediate step
if err := store.Set(intermediate, final, false); err != nil {
t.Fatal(err)
}
// "test-foo" should resolve through the chain to "final"
testName := model.ParseName("test-foo")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
if resolved.DisplayShortest() != final.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", final.DisplayShortest(), resolved.DisplayShortest())
}
}
func TestPrefixAliasCRUD(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
s := Server{}
// Create a prefix alias via API
w := createRequest(t, s.CreateAliasHandler, aliasEntry{
Alias: "myprefix-",
Target: "llama2",
PrefixMatching: true,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
var createResp aliasEntry
if err := json.NewDecoder(w.Body).Decode(&createResp); err != nil {
t.Fatal(err)
}
if !createResp.PrefixMatching {
t.Fatal("expected prefix_matching to be true in response")
}
// List aliases and verify the prefix alias is included
w = createRequest(t, s.ListAliasesHandler, nil)
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
var listResp aliasListResponse
if err := json.NewDecoder(w.Body).Decode(&listResp); err != nil {
t.Fatal(err)
}
found := false
for _, a := range listResp.Aliases {
if a.PrefixMatching && a.Target == "llama2" {
found = true
break
}
}
if !found {
t.Fatal("expected to find prefix alias in list")
}
// Delete the prefix alias
w = createRequest(t, s.DeleteAliasHandler, aliasDeleteRequest{Alias: "myprefix-"})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify it's deleted
w = createRequest(t, s.ListAliasesHandler, nil)
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
if err := json.NewDecoder(w.Body).Decode(&listResp); err != nil {
t.Fatal(err)
}
for _, a := range listResp.Aliases {
if a.PrefixMatching {
t.Fatal("expected prefix alias to be deleted")
}
}
}
func TestPrefixAliasCaseInsensitive(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Add a prefix alias with mixed case
store.mu.Lock()
store.prefixEntries = []aliasEntry{
{Alias: "MyPrefix-", Target: "targetmodel", PrefixMatching: true},
}
store.mu.Unlock()
// Test that matching is case-insensitive
testName := model.ParseName("myprefix-foo")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved (case-insensitive)")
}
expectedTarget := model.ParseName("targetmodel")
if resolved.DisplayShortest() != expectedTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", expectedTarget.DisplayShortest(), resolved.DisplayShortest())
}
// Test uppercase request
testName2 := model.ParseName("MYPREFIX-BAR")
_, wasResolved, err = store.ResolveName(testName2)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved (uppercase)")
}
}
func TestPrefixAliasLocalModelPrecedence(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
s := Server{}
// Create a local model that would match a prefix alias
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "myprefix-localmodel",
RemoteHost: "example.com",
From: "test",
Info: map[string]any{
"capabilities": []string{"completion"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Create a prefix alias that would match the local model name
w = createRequest(t, s.CreateAliasHandler, aliasEntry{
Alias: "myprefix-",
Target: "someothermodel",
PrefixMatching: true,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify that resolving "myprefix-localmodel" returns the local model, not the alias target
store, err := s.aliasStore()
if err != nil {
t.Fatal(err)
}
localModelName := model.ParseName("myprefix-localmodel")
resolved, wasResolved, err := store.ResolveName(localModelName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if wasResolved {
t.Fatalf("expected local model to take precedence (wasResolved should be false), but got resolved to %q", resolved.DisplayShortest())
}
if resolved.DisplayShortest() != localModelName.DisplayShortest() {
t.Fatalf("expected resolved name to be local model %q, got %q", localModelName.DisplayShortest(), resolved.DisplayShortest())
}
// Also verify that a non-local model matching the prefix DOES resolve to the alias target
nonLocalName := model.ParseName("myprefix-nonexistent")
resolved, wasResolved, err = store.ResolveName(nonLocalName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected non-local model to resolve via prefix alias")
}
expectedTarget := model.ParseName("someothermodel")
if resolved.DisplayShortest() != expectedTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", expectedTarget.DisplayShortest(), resolved.DisplayShortest())
}
}

View File

@@ -21,7 +21,7 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/mlxrunner"
)
type LlmRequest struct {
@@ -417,9 +417,9 @@ func (s *Scheduler) load(req *LlmRequest, f *ggml.GGML, systemInfo ml.SystemInfo
numParallel = 1
}
// Some architectures are not safe with num_parallel > 1.
// `mllama`, `qwen3vl`, and `qwen3vlmoe` are snowflakes and uses an encoder cache which cannot be used with num_parallel > 1
// ref: https://github.com/ollama/ollama/issues/4165
if slices.Contains([]string{"mllama", "qwen3vl", "qwen3vlmoe", "qwen3next", "lfm2", "lfm2moe"}, req.model.Config.ModelFamily) && numParallel != 1 {
if slices.Contains([]string{"mllama", "qwen3vl", "qwen3vlmoe"}, req.model.Config.ModelFamily) && numParallel != 1 {
numParallel = 1
slog.Warn("model architecture does not currently support parallel requests", "architecture", req.model.Config.ModelFamily)
}
@@ -567,16 +567,16 @@ iGPUScan:
// This supports both LLM (completion) and image generation models.
func (s *Scheduler) loadMLX(req *LlmRequest) bool {
// Determine mode based on capabilities
var mode imagegen.ModelMode
var mode mlxrunner.ModelMode
if slices.Contains(req.model.Config.Capabilities, "image") {
mode = imagegen.ModeImageGen
mode = mlxrunner.ModeImageGen
} else {
mode = imagegen.ModeLLM
mode = mlxrunner.ModeLLM
}
// Use model name for MLX (it resolves manifests by name, not file path)
modelName := req.model.ShortName
server, err := imagegen.NewServer(modelName, mode)
server, err := mlxrunner.NewServer(modelName, mode)
if err != nil {
req.errCh <- err
return true

View File

@@ -1,4 +1,4 @@
package manifest
package imagegen
import (
"encoding/json"

View File

@@ -1,4 +1,4 @@
package manifest
package imagegen
import (
"path/filepath"

View File

@@ -14,8 +14,6 @@ import (
"encoding/json"
"fmt"
"runtime"
"github.com/ollama/ollama/x/imagegen/manifest"
)
// SupportedBackends lists the backends that support image generation.
@@ -43,8 +41,8 @@ func CheckPlatformSupport() error {
// ResolveModelName checks if a model name is a known image generation model.
// Returns the normalized model name if found, empty string otherwise.
func ResolveModelName(modelName string) string {
modelManifest, err := manifest.LoadManifest(modelName)
if err == nil && modelManifest.HasTensorLayers() {
manifest, err := LoadManifest(modelName)
if err == nil && manifest.HasTensorLayers() {
return modelName
}
return ""
@@ -54,12 +52,12 @@ func ResolveModelName(modelName string) string {
// Checks both "architecture" (Ollama format) and "_class_name" (diffusers format).
// Returns empty string if detection fails.
func DetectModelType(modelName string) string {
modelManifest, err := manifest.LoadManifest(modelName)
manifest, err := LoadManifest(modelName)
if err != nil {
return ""
}
data, err := modelManifest.ReadConfig("model_index.json")
data, err := manifest.ReadConfig("model_index.json")
if err != nil {
return ""
}

View File

@@ -12,7 +12,7 @@ import (
"math"
"time"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/qwen3"
"github.com/ollama/ollama/x/imagegen/tokenizer"
@@ -61,7 +61,7 @@ func (m *Model) Load(modelName string) error {
m.ModelName = modelName
// Load manifest
manifest, err := manifest.LoadManifest(modelName)
manifest, err := imagegen.LoadManifest(modelName)
if err != nil {
return fmt.Errorf("load manifest: %w", err)
}

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -14,19 +14,19 @@ import (
// TransformerConfig holds Flux2 transformer configuration
type TransformerConfig struct {
AttentionHeadDim int32 `json:"attention_head_dim"` // 128
AxesDimsRoPE []int32 `json:"axes_dims_rope"` // [32, 32, 32, 32]
Eps float32 `json:"eps"` // 1e-6
GuidanceEmbeds bool `json:"guidance_embeds"` // false for Klein
InChannels int32 `json:"in_channels"` // 128
JointAttentionDim int32 `json:"joint_attention_dim"` // 7680
MLPRatio float32 `json:"mlp_ratio"` // 3.0
NumAttentionHeads int32 `json:"num_attention_heads"` // 24
NumLayers int32 `json:"num_layers"` // 5
NumSingleLayers int32 `json:"num_single_layers"` // 20
PatchSize int32 `json:"patch_size"` // 1
RopeTheta int32 `json:"rope_theta"` // 2000
TimestepGuidanceChannels int32 `json:"timestep_guidance_channels"` // 256
AttentionHeadDim int32 `json:"attention_head_dim"` // 128
AxesDimsRoPE []int32 `json:"axes_dims_rope"` // [32, 32, 32, 32]
Eps float32 `json:"eps"` // 1e-6
GuidanceEmbeds bool `json:"guidance_embeds"` // false for Klein
InChannels int32 `json:"in_channels"` // 128
JointAttentionDim int32 `json:"joint_attention_dim"` // 7680
MLPRatio float32 `json:"mlp_ratio"` // 3.0
NumAttentionHeads int32 `json:"num_attention_heads"` // 24
NumLayers int32 `json:"num_layers"` // 5
NumSingleLayers int32 `json:"num_single_layers"` // 20
PatchSize int32 `json:"patch_size"` // 1
RopeTheta int32 `json:"rope_theta"` // 2000
TimestepGuidanceChannels int32 `json:"timestep_guidance_channels"` // 256
}
// Computed dimensions
@@ -392,12 +392,12 @@ type Flux2Transformer2DModel struct {
}
// Load loads the Flux2 transformer from ollama blob storage.
func (m *Flux2Transformer2DModel) Load(modelManifest *manifest.ModelManifest) error {
func (m *Flux2Transformer2DModel) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading transformer... ")
// Load config from blob
var cfg TransformerConfig
if err := modelManifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.TransformerConfig = &cfg
@@ -412,7 +412,7 @@ func (m *Flux2Transformer2DModel) Load(modelManifest *manifest.ModelManifest) er
}
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "transformer")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "transformer")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -15,21 +15,21 @@ import (
// VAEConfig holds AutoencoderKLFlux2 configuration
type VAEConfig struct {
ActFn string `json:"act_fn"` // "silu"
BatchNormEps float32 `json:"batch_norm_eps"` // 0.0001
BatchNormMomentum float32 `json:"batch_norm_momentum"` // 0.1
BlockOutChannels []int32 `json:"block_out_channels"` // [128, 256, 512, 512]
ForceUpcast bool `json:"force_upcast"` // true
InChannels int32 `json:"in_channels"` // 3
LatentChannels int32 `json:"latent_channels"` // 32
LayersPerBlock int32 `json:"layers_per_block"` // 2
ActFn string `json:"act_fn"` // "silu"
BatchNormEps float32 `json:"batch_norm_eps"` // 0.0001
BatchNormMomentum float32 `json:"batch_norm_momentum"` // 0.1
BlockOutChannels []int32 `json:"block_out_channels"` // [128, 256, 512, 512]
ForceUpcast bool `json:"force_upcast"` // true
InChannels int32 `json:"in_channels"` // 3
LatentChannels int32 `json:"latent_channels"` // 32
LayersPerBlock int32 `json:"layers_per_block"` // 2
MidBlockAddAttn bool `json:"mid_block_add_attention"` // true
NormNumGroups int32 `json:"norm_num_groups"` // 32
OutChannels int32 `json:"out_channels"` // 3
PatchSize []int32 `json:"patch_size"` // [2, 2]
SampleSize int32 `json:"sample_size"` // 1024
UsePostQuantConv bool `json:"use_post_quant_conv"` // true
UseQuantConv bool `json:"use_quant_conv"` // true
NormNumGroups int32 `json:"norm_num_groups"` // 32
OutChannels int32 `json:"out_channels"` // 3
PatchSize []int32 `json:"patch_size"` // [2, 2]
SampleSize int32 `json:"sample_size"` // 1024
UsePostQuantConv bool `json:"use_post_quant_conv"` // true
UseQuantConv bool `json:"use_quant_conv"` // true
}
// BatchNorm2D implements 2D batch normalization with running statistics
@@ -356,18 +356,18 @@ func (db *DownEncoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
}
// Load loads the Flux2 VAE from ollama blob storage.
func (m *AutoencoderKLFlux2) Load(modelManifest *manifest.ModelManifest) error {
func (m *AutoencoderKLFlux2) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading VAE... ")
// Load config from blob
var cfg VAEConfig
if err := modelManifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "vae")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "vae")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -9,8 +9,8 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -38,11 +38,11 @@ type Config struct {
AttentionBias bool `json:"attention_bias"`
// MLA (Multi-head Latent Attention) parameters
QLoraRank int32 `json:"q_lora_rank"`
KVLoraRank int32 `json:"kv_lora_rank"`
QKRopeHeadDim int32 `json:"qk_rope_head_dim"`
QKNopeHeadDim int32 `json:"qk_nope_head_dim"`
VHeadDim int32 `json:"v_head_dim"`
QLoraRank int32 `json:"q_lora_rank"`
KVLoraRank int32 `json:"kv_lora_rank"`
QKRopeHeadDim int32 `json:"qk_rope_head_dim"`
QKNopeHeadDim int32 `json:"qk_nope_head_dim"`
VHeadDim int32 `json:"v_head_dim"`
// MoE parameters
NRoutedExperts int32 `json:"n_routed_experts"`
@@ -82,7 +82,7 @@ type MLAAttention struct {
// Absorbed MLA projections (derived from kv_b_proj)
// EmbedQ: projects q_nope to latent space [num_heads, kv_lora_rank, qk_nope_head_dim]
// UnembedOut: projects attention output from latent space [num_heads, v_head_dim, kv_lora_rank]
EmbedQ *nn.MultiLinear `weight:"-"`
EmbedQ *nn.MultiLinear `weight:"-"`
UnembedOut *nn.MultiLinear `weight:"-"`
// Output projection
@@ -194,8 +194,8 @@ func (m *DenseMLP) Forward(x *mlx.Array) *mlx.Array {
// MoEGate implements the expert gating mechanism
type MoEGate struct {
Gate nn.LinearLayer `weight:"mlp.gate"`
EScoreCorrectionBias *mlx.Array `weight:"mlp.gate.e_score_correction_bias,optional"`
Gate nn.LinearLayer `weight:"mlp.gate"`
EScoreCorrectionBias *mlx.Array `weight:"mlp.gate.e_score_correction_bias,optional"`
}
// Forward computes expert selection indices and scores
@@ -617,9 +617,9 @@ func sanitizeExpertWeights(weights safetensors.WeightSource, prefix string, numE
}
// LoadFromManifest loads a GLM4-MoE-Lite model from a manifest (Ollama blob storage).
func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
func LoadFromManifest(manifest *imagegen.ModelManifest) (*Model, error) {
// Read config from manifest
configData, err := modelManifest.ReadConfig("config.json")
configData, err := manifest.ReadConfig("config.json")
if err != nil {
return nil, fmt.Errorf("load config: %w", err)
}
@@ -634,7 +634,7 @@ func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
cfg.Scale = computeScale(&cfg)
// Load weights from manifest blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "")
if err != nil {
return nil, fmt.Errorf("load weights: %w", err)
}
@@ -653,7 +653,7 @@ func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
}
// Load tokenizer from manifest with config files for EOS token detection
tokData, err := modelManifest.ReadConfig("tokenizer.json")
tokData, err := manifest.ReadConfig("tokenizer.json")
if err != nil {
return nil, fmt.Errorf("load tokenizer config: %w", err)
}
@@ -664,12 +664,12 @@ func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
}
// Try to load generation_config.json if available (preferred source for EOS)
if genConfigData, err := modelManifest.ReadConfig("generation_config.json"); err == nil {
if genConfigData, err := manifest.ReadConfig("generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = genConfigData
}
// Try to load tokenizer_config.json if available
if tokConfigData, err := modelManifest.ReadConfig("tokenizer_config.json"); err == nil {
if tokConfigData, err := manifest.ReadConfig("tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = tokConfigData
}

View File

@@ -7,7 +7,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -181,19 +181,19 @@ type TextEncoder struct {
}
// Load loads the Qwen3 text encoder from ollama blob storage.
func (m *TextEncoder) Load(modelManifest *manifest.ModelManifest, configPath string) error {
func (m *TextEncoder) Load(manifest *imagegen.ModelManifest, configPath string) error {
fmt.Print(" Loading text encoder... ")
// Load config from blob
var cfg Config
if err := modelManifest.ReadConfigJSON(configPath, &cfg); err != nil {
if err := manifest.ReadConfigJSON(configPath, &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
m.Layers = make([]*Block, cfg.NumHiddenLayers)
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "text_encoder")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "text_encoder")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -7,8 +7,8 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -38,7 +38,7 @@ type TransformerConfig struct {
type TimestepEmbedder struct {
Linear1 nn.LinearLayer `weight:"mlp.0"`
Linear2 nn.LinearLayer `weight:"mlp.2"`
FreqEmbedSize int32 // 256 (computed)
FreqEmbedSize int32 // 256 (computed)
}
// Forward computes timestep embeddings -> [B, 256]
@@ -85,9 +85,9 @@ func (xe *XEmbedder) Forward(x *mlx.Array) *mlx.Array {
// CapEmbedder projects caption features to model dimension
type CapEmbedder struct {
Norm *nn.RMSNorm `weight:"0"`
Linear nn.LinearLayer `weight:"1"`
PadToken *mlx.Array // loaded separately at root level
Norm *nn.RMSNorm `weight:"0"`
Linear nn.LinearLayer `weight:"1"`
PadToken *mlx.Array // loaded separately at root level
}
// Forward projects caption embeddings: [B, L, cap_feat_dim] -> [B, L, dim]
@@ -103,9 +103,10 @@ type FeedForward struct {
W1 nn.LinearLayer `weight:"w1"` // gate projection
W2 nn.LinearLayer `weight:"w2"` // down projection
W3 nn.LinearLayer `weight:"w3"` // up projection
OutDim int32 // computed from W2
OutDim int32 // computed from W2
}
// Forward applies SwiGLU: silu(W1(x)) * W3(x), then W2
func (ff *FeedForward) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
@@ -131,11 +132,11 @@ type Attention struct {
ToK nn.LinearLayer `weight:"to_k"`
ToV nn.LinearLayer `weight:"to_v"`
ToOut nn.LinearLayer `weight:"to_out.0"`
NormQ *mlx.Array `weight:"norm_q.weight"` // [head_dim] for per-head RMSNorm
NormK *mlx.Array `weight:"norm_k.weight"`
NormQ *mlx.Array `weight:"norm_q.weight"` // [head_dim] for per-head RMSNorm
NormK *mlx.Array `weight:"norm_k.weight"`
// Fused QKV (computed at init time for efficiency, not loaded from weights)
ToQKV nn.LinearLayer `weight:"-"` // Fused Q+K+V projection (created by FuseQKV)
Fused bool `weight:"-"` // Whether to use fused QKV path
Fused bool `weight:"-"` // Whether to use fused QKV path
// Computed fields (not loaded from weights)
NHeads int32 `weight:"-"`
HeadDim int32 `weight:"-"`
@@ -287,13 +288,13 @@ func applyRoPE3D(x *mlx.Array, cos, sin *mlx.Array) *mlx.Array {
// TransformerBlock is a single transformer block with optional AdaLN modulation
type TransformerBlock struct {
Attention *Attention `weight:"attention"`
FeedForward *FeedForward `weight:"feed_forward"`
AttentionNorm1 *nn.RMSNorm `weight:"attention_norm1"`
AttentionNorm2 *nn.RMSNorm `weight:"attention_norm2"`
FFNNorm1 *nn.RMSNorm `weight:"ffn_norm1"`
FFNNorm2 *nn.RMSNorm `weight:"ffn_norm2"`
AdaLN nn.LinearLayer `weight:"adaLN_modulation.0,optional"` // only if modulation
Attention *Attention `weight:"attention"`
FeedForward *FeedForward `weight:"feed_forward"`
AttentionNorm1 *nn.RMSNorm `weight:"attention_norm1"`
AttentionNorm2 *nn.RMSNorm `weight:"attention_norm2"`
FFNNorm1 *nn.RMSNorm `weight:"ffn_norm1"`
FFNNorm2 *nn.RMSNorm `weight:"ffn_norm2"`
AdaLN nn.LinearLayer `weight:"adaLN_modulation.0,optional"` // only if modulation
// Computed fields
HasModulation bool
Dim int32
@@ -349,7 +350,7 @@ func (tb *TransformerBlock) Forward(x *mlx.Array, adaln *mlx.Array, cos, sin *ml
type FinalLayer struct {
AdaLN nn.LinearLayer `weight:"adaLN_modulation.1"` // [256] -> [dim]
Output nn.LinearLayer `weight:"linear"` // [dim] -> [out_channels]
OutDim int32 // computed from Output
OutDim int32 // computed from Output
}
// Forward computes final output
@@ -400,12 +401,12 @@ type Transformer struct {
}
// Load loads the Z-Image transformer from ollama blob storage.
func (m *Transformer) Load(modelManifest *manifest.ModelManifest) error {
func (m *Transformer) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading transformer... ")
// Load config from blob
var cfg TransformerConfig
if err := modelManifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
if len(cfg.AllPatchSize) > 0 {
@@ -416,7 +417,7 @@ func (m *Transformer) Load(modelManifest *manifest.ModelManifest) error {
m.ContextRefiners = make([]*TransformerBlock, cfg.NRefinerLayers)
m.Layers = make([]*TransformerBlock, cfg.NLayers)
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "transformer")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "transformer")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
"github.com/ollama/ollama/x/imagegen/vae"
@@ -562,7 +562,7 @@ func (ub *UpDecoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
if ub.Upsample != nil {
// Stage 1: Upsample2x (nearest neighbor)
{
prev := x
prev := x
x = Upsample2x(x)
prev.Free()
mlx.Eval(x)
@@ -570,7 +570,7 @@ func (ub *UpDecoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
// Stage 2: Upsample conv
{
prev := x
prev := x
x = ub.Upsample.Forward(x)
prev.Free()
mlx.Eval(x)
@@ -643,16 +643,16 @@ type VAEDecoder struct {
}
// Load loads the VAE decoder from ollama blob storage.
func (m *VAEDecoder) Load(modelManifest *manifest.ModelManifest) error {
func (m *VAEDecoder) Load(manifest *imagegen.ModelManifest) error {
// Load config from blob
var cfg VAEConfig
if err := modelManifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "vae")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "vae")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -8,8 +8,8 @@ import (
"fmt"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/tokenizer"
"github.com/ollama/ollama/x/imagegen/vae"
@@ -18,14 +18,14 @@ import (
// GenerateConfig holds all options for image generation.
type GenerateConfig struct {
Prompt string
NegativePrompt string // Empty = no CFG
CFGScale float32 // Only used if NegativePrompt is set (default: 4.0)
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 9 for turbo)
Seed int64 // Random seed
NegativePrompt string // Empty = no CFG
CFGScale float32 // Only used if NegativePrompt is set (default: 4.0)
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 9 for turbo)
Seed int64 // Random seed
Progress func(step, totalSteps int) // Optional progress callback
CapturePath string // GPU capture path (debug)
CapturePath string // GPU capture path (debug)
// TeaCache options (timestep embedding aware caching)
TeaCache bool // TeaCache is always enabled for faster inference
@@ -58,7 +58,7 @@ func (m *Model) Load(modelName string) error {
m.ModelName = modelName
// Load manifest
manifest, err := manifest.LoadManifest(modelName)
manifest, err := imagegen.LoadManifest(modelName)
if err != nil {
return fmt.Errorf("load manifest: %w", err)
}

View File

@@ -1,6 +1,6 @@
//go:build mlx
package manifest
package imagegen
import (
"fmt"
@@ -15,9 +15,9 @@ import (
type ManifestWeights struct {
manifest *ModelManifest
component string
tensors map[string]ManifestLayer // name -> layer
cache map[string]*mlx.Array // name -> loaded array
nativeCache []*mlx.SafetensorsFile // keep native handles alive
tensors map[string]ManifestLayer // name -> layer
cache map[string]*mlx.Array // name -> loaded array
nativeCache []*mlx.SafetensorsFile // keep native handles alive
}
// LoadWeightsFromManifest creates a weight loader from manifest storage.

77
x/kvcache/cache.go Normal file
View File

@@ -0,0 +1,77 @@
package kvcache
import (
"errors"
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model/input"
)
var (
ErrKvCacheFull = errors.New("could not find a kv cache slot")
ErrNotSupported = errors.New("model does not support operation")
)
type Cache interface {
// ** used by model implementations **
// SetLayer sets the active layer of the cache
SetLayer(layer int)
// Get returns the history of key and value tensors plus a mask
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Put stores a batch of key and value in the cache
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// SetConfig controls optimizations (mostly backend-specific) that may transform
// the output of the cache to work better with specific kernels. If not called,
// the backend settings will be used. This works well when calling Attention.
//
// The config can be overridden by models, especially if they require vanilla
// output when implementing their own version of attention. To do this, pass
// an empty ml.CacheConfig.
//
// Most models will not need to use this.
SetConfig(ml.CacheConfig)
// ** cache management **
// Init sets up runtime parameters.
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
// dtype: The data type for storing cache entries
// maxSequences: The maximum number of sequences stored in the cache - across all batches
// capacity: The number of cache entries to store, per sequence
// maxBatch: The maximum number of tokens that can occur in a single batch
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs. reserve is to preallocate memory
// without actually storing data in the cache.
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// CanResume returns true if the cache can continue with the next token at
// the given position and sequence. Assumes that the caller has already
// verified the contents of the cache.
CanResume(seq int, pos int32) bool
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//
// If an error occurs, the entire context for the sequence should be
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}

144
x/kvcache/causal.go Normal file
View File

@@ -0,0 +1,144 @@
//go:build mlx
package kvcache
import (
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model/input"
)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
type Causal struct {
DType ml.DType
// locations for data storage for this batch
curLocPut ml.Tensor
// locations for data storage for this batch
curLocGet ml.Tensor
// the active layer for Get and Put
curLayer int
capacity int
offset int
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
// TODO is this needed per layer, or will it always be consistent?
kHeadDims, vHeadDims, numKVHeads map[int]int
}
func NewCausalCache() *Causal {
return &Causal{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
kHeadDims: make(map[int]int),
vHeadDims: make(map[int]int),
numKVHeads: make(map[int]int),
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.DType = dtype
c.capacity = capacity
c.backend = backend
}
func (c *Causal) SetConfig(config ml.CacheConfig) {}
func (c *Causal) SetLayer(layer int) {
c.curLayer = layer
}
func (c *Causal) Close() {
// slog.Info("XXX Causal.Close called", "number of contexts", len(c.ctxs))
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
locsPut := make([]int32, len(batch.Positions))
for i := c.offset; i < len(batch.Positions); i++ {
locsPut[i-c.offset] = int32(i)
}
c.offset += len(batch.Positions)
locsGet := make([]int32, c.offset)
for i := range c.offset {
locsGet[i] = int32(i)
}
c.curLocGet = ctx.Input().FromInts(locsGet, len(locsGet))
c.curLocPut = ctx.Input().FromInts(locsPut, len(locsPut))
// slog.Info("XXX Causal.StartForward", "offset", c.offset, "put", locsPut, "get", locsGet)
return nil
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
kHeadDim := key.Dim(3)
vHeadDim := value.Dim(3)
numKVHeads := key.Dim(1)
batchSize := key.Dim(2)
kCellSize := kHeadDim * numKVHeads
vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Put", "kHeadDim", kHeadDim, "vHeadDim", vHeadDim, "numKVHeads", numKVHeads, "batchSize", batchSize, "kCellSize", kCellSize, "vCellSize", vCellSize)
if _, ok := c.ctxs[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put creating new context", "c.curLayer", c.curLayer)
c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put allocating keys and values", "c.curLayer", c.curLayer, "shape", []int{c.capacity, kCellSize})
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, kCellSize)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, vCellSize)
c.kHeadDims[c.curLayer] = kHeadDim
c.vHeadDims[c.curLayer] = vHeadDim
c.numKVHeads[c.curLayer] = numKVHeads
}
key = key.Reshape(ctx, batchSize, 1, kCellSize)
// slog.Info("XXX Causal.Put ", "c.keys[c.curLayer]", c.keys[c.curLayer])
// slog.Info("XXX Causal.Put ", "c.curLocPut", c.curLocPut)
// slog.Info("XXX Causal.Put ", "key", key)
ctx.Forward(c.keys[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, key, []int{0}))
value = value.Reshape(ctx, batchSize, 1, vCellSize)
ctx.Forward(c.values[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, value, []int{0}))
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
kHeadDim := c.kHeadDims[c.curLayer]
vHeadDim := c.vHeadDims[c.curLayer]
numKVHeads := c.numKVHeads[c.curLayer]
// rowSize := numKVHeads * c.curBatchSize
// cachedSize := c.curMask.Dim(1)
cachedSize := c.curLocGet.Dim(0)
// kCellSize := kHeadDim * numKVHeads
// vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Get", "shape", []int{1, numKVHeads, cachedSize, kHeadDim})
key = key.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, kHeadDim)
value = value.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, vHeadDim)
return key, value, nil
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("not implemented")
}
func (c *Causal) CanResume(seq int, pos int32) bool {
panic("not implemented")
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
panic("not implemented")
}

156
x/kvcache/encoder.go Normal file
View File

@@ -0,0 +1,156 @@
package kvcache
// import (
// "fmt"
// "github.com/ollama/ollama/ml"
// "github.com/ollama/ollama/model/input"
// )
// // Encoder cache stores K and V tensors that are position independent
// //
// // The tensors can be of any shape and will be returned as they were stored
// // The mask is currently always nil
// //
// // Not currently safe for multiple sequences
// type EncoderCache struct {
// // config controls mostly backend-specific optimizations
// config *ml.CacheConfig
// // ** current forward pass **
// // the active layer for Get and Put
// curLayer int
// // if something is stored during this pass, this
// // will be the position (but there is no guarantee
// // anything will be stored)
// curPos int32
// // curReserve indicates that this forward pass is only for
// // memory reservation and we should not update our metadata
// // based on it.
// curReserve bool
// // ** cache metadata **
// // was something stored in the cache?
// encoderCached bool
// // position of the cached data
// encoderPos int32
// // ** cache data storage **
// backend ml.Backend
// ctxs map[int]ml.Context
// keys, values map[int]ml.Tensor
// }
// func NewEncoderCache() *EncoderCache {
// return &EncoderCache{
// ctxs: make(map[int]ml.Context),
// keys: make(map[int]ml.Tensor),
// values: make(map[int]ml.Tensor),
// }
// }
// func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
// if c.config == nil {
// var config ml.CacheConfig
// if cc, ok := backend.(ml.BackendCacheConfig); ok {
// config = cc.CacheConfig()
// }
// c.config = &config
// }
// if maxSequences > 1 {
// panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
// }
// if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
// panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
// }
// c.backend = backend
// }
// func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
// if c.config != nil {
// panic("config cannot be changed after being previously set, either by the model or backend")
// }
// c.config = &config
// }
// func (c *EncoderCache) Close() {
// for _, ctx := range c.ctxs {
// ctx.Close()
// }
// }
// func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
// // We work with the most recent image
// if len(batch.Multimodal) > 0 {
// c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
// }
// c.curReserve = reserve
// return nil
// }
// func (c *EncoderCache) SetLayer(layer int) {
// c.curLayer = layer
// }
// func (c *EncoderCache) EncoderCached() bool {
// return c.encoderCached
// }
// func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
// return c.keys[c.curLayer], c.values[c.curLayer], nil
// }
// func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
// if !c.curReserve {
// c.encoderPos = c.curPos
// c.encoderCached = true
// }
// if c.config.PermutedV {
// value = value.Transpose(ctx, 1, 2, 0, 3)
// }
// if _, ok := c.ctxs[c.curLayer]; !ok {
// c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
// }
// if _, ok := c.keys[c.curLayer]; !ok {
// c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
// }
// if _, ok := c.values[c.curLayer]; !ok {
// c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
// }
// ctx.Forward(
// key.Copy(ctx, c.keys[c.curLayer]),
// value.Copy(ctx, c.values[c.curLayer]),
// )
// }
// func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
// panic("encoder cache does not support multiple sequences")
// }
// func (c *EncoderCache) CanResume(seq int, pos int32) bool {
// return true
// }
// func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
// if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
// c.encoderCached = false
// }
// return nil
// }

110
x/kvcache/wrapper.go Normal file
View File

@@ -0,0 +1,110 @@
package kvcache
// import (
// "math"
// "github.com/ollama/ollama/ml"
// "github.com/ollama/ollama/model/input"
// )
// // Wrapper cache is a container for multiple types of caches,
// // such as for the encoding and decoding portions of a model.
// type WrapperCache struct {
// // caches we are wrapping
// caches []Cache
// // cache to be used for this layer
// curType int
// }
// func NewWrapperCache(caches ...Cache) *WrapperCache {
// return &WrapperCache{
// caches: caches,
// }
// }
// func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
// for _, cache := range c.caches {
// cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
// }
// }
// func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
// for _, cache := range c.caches {
// cache.SetConfig(config)
// }
// }
// func (c *WrapperCache) Close() {
// for _, cache := range c.caches {
// cache.Close()
// }
// }
// func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
// for i, cache := range c.caches {
// err := cache.StartForward(ctx, batch, reserve)
// if err != nil {
// // unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
// for j := i - 1; j >= 0; j-- {
// for k := range batch.Positions {
// _ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
// }
// }
// return err
// }
// }
// c.curType = 0
// return nil
// }
// func (c *WrapperCache) SetLayer(layer int) {
// for _, cache := range c.caches {
// cache.SetLayer(layer)
// }
// }
// func (c *WrapperCache) SetLayerType(layerType int) {
// c.curType = layerType
// }
// func (c *WrapperCache) UnderlyingCache() Cache {
// return c.caches[c.curType]
// }
// func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
// return c.caches[c.curType].Get(ctx)
// }
// func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
// c.caches[c.curType].Put(ctx, key, value)
// }
// func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
// for _, cache := range c.caches {
// cache.CopyPrefix(srcSeq, dstSeq, len)
// }
// }
// func (c *WrapperCache) CanResume(seq int, pos int32) bool {
// for _, cache := range c.caches {
// if !cache.CanResume(seq, pos) {
// return false
// }
// }
// return true
// }
// func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// // If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
// for _, cache := range c.caches {
// err := cache.Remove(seq, beginIndex, endIndex)
// if err != nil {
// return err
// }
// }
// return nil
// }

433
x/ml/backend.go Normal file
View File

@@ -0,0 +1,433 @@
package ml
import (
"fmt"
"log/slog"
"os"
"github.com/ollama/ollama/fs"
)
type Backend interface {
// Close frees all memory associated with this backend
// Close()
// Load(ctx context.Context, progress func(float32)) error
// BackendMemory returns the memory allocations that were made for this model
// BackendMemory() BackendMemory
Config() fs.Config
Get(name string) Tensor
NewContext() Context
// NewContextSize(size int) Context
// Enumerate the devices available for inference via this backend
// BackendDevices() []DeviceInfo
}
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
CacheConfig() CacheConfig
}
// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
// CachePadding specifies the multiple for the number of tokens of cache history
// that will be returned from cache Get for k, v and mask. The capacity of the
// cache itself will also be increased to a multiple of this size if needed.
CachePadding int
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
// and return the permuted version via Get. This uses the cache copy operation
// to avoid a Contiguous call on the permuted tensor.
PermutedV bool
// MaskDType specifies the data type for generating the mask. If unset it will
// default to DTypeF32.
MaskDType DType
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
// Any position that does not correspond to an actual token will be filled with -Inf.
MaskBatchPadding int
}
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// AllocMemory causes the backend to allocate memory for the model. If
// false, this is only being used for discovering the required amount of
// memory and cannot load the model for running.
AllocMemory bool
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
// GPULayers is the set of layers to offload to GPUs
GPULayers GPULayersList
// FlashAttention indicates that we should use a fused flash attention kernel
FlashAttention bool
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
backends[name] = f
}
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
be := os.Getenv("OLLAMA_BACKEND")
if be == "" {
be = "mlx"
slog.Info("Defaulting to " + be + ". Set OLLAMA_BACKEND to override")
}
slog.Info("Loading new engine", "backend", be)
if backend, ok := backends[be]; ok {
return backend(modelPath, params)
}
return nil, fmt.Errorf("unsupported backend")
}
type Context interface {
Empty(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int) Tensor
// FromBytes(dtype DType, s []byte, shape ...int) Tensor
FromFloats(s []float32, shape ...int) Tensor
FromInts(s []int32, shape ...int) Tensor
RandomNormal(shape []int, dtype DType, loc, scale float32, key Tensor) Tensor
// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
Arange(start, stop, step float32, dtype DType) Tensor
Forward(...Tensor) Context
// SetBatchSize provides a hint on the batch size to optimize processing
// Uses heuristics if not set
// SetBatchSize(int)
Compute(...Tensor)
// ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
// Reserve()
// MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating tensors that are
// inputs to the model (which includes things like output locations)
Input() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
// Load a tensor from "filename" safetensors file, and compare with the input tensor
// Returns error if the shape is inconsistent, or similarity measures are below 99%
CompareWith(filename string, tensors map[string]Tensor, abortOnError bool) error
}
type RoPEOptions struct {
Base *float32
Freqs Tensor
}
func WithRoPEBase(base float32) func(*RoPEOptions) {
return func(opts *RoPEOptions) {
opts.Base = &base
}
}
func WithRoPEFreqs(freqs Tensor) func(*RoPEOptions) {
return func(opts *RoPEOptions) {
opts.Freqs = freqs
}
}
type Tensor interface {
ToString() string
RoPE(ctx Context, dims int, traditional bool, scale float32, offset int, options ...func(*RoPEOptions)) Tensor
ScaledDotProductAttention(ctx Context, keys, values Tensor, scale float64, maskMode string, mask Tensor, sinks Tensor) Tensor
TakeAxes(ctx Context, indicies Tensor, axes int) Tensor
// TakeAxes(ctx Context, axes int, indicies ...int) Tensor
Dim(n int) int
Stride(n int) int
Shape() []int
DType() DType
// Cast(ctx Context, dtype DType) Tensor
// Bytes() []byte
Floats() []float32
Ints() []int32
// FromBytes([]byte)
// FromFloats([]float32)
// FromInts([]int32)
Add(ctx Context, t2 Tensor) Tensor
Sub(ctx Context, t2 Tensor) Tensor
// Mul(ctx Context, t2 Tensor) Tensor
// Div(ctx Context, t2 Tensor) Tensor
Max(ctx Context, axes []int, keepDims bool) Tensor
Min(ctx Context, axes []int, keepDims bool) Tensor
Matmul(ctx Context, a2 Tensor) Tensor
// Mulmat(ctx Context, t2 Tensor) Tensor
// MulmatFullPrec(ctx Context, t2 Tensor) Tensor
// MulmatID(ctx Context, t2, ids Tensor) Tensor
// AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
// SumRows(ctx Context) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, stride0, stride1, padding0, padding1, dilation0, dilation1, groups int) Tensor
Conv3D(ctx Context, weight Tensor, stride0, stride1, stride2, padding0, padding1, padding2, dilation0, dilation1, dilation2, groups int) Tensor
// IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
// Sin(ctx Context) Tensor
// Cos(ctx Context) Tensor
// Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
// QuickGELU(ctx Context, up ...Tensor) Tensor
// SILU(ctx Context, up ...Tensor) Tensor
// RELU(ctx Context, up ...Tensor) Tensor
// Sigmoid(ctx Context) Tensor
// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
// SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
Reshape(ctx Context, shape ...int) Tensor
AsStrided(ctx Context, shape, strides []int, offset int) Tensor
Transpose(ctx Context, shape ...int) Tensor
Contiguous(ctx Context, allowColMajor bool) Tensor
// Pad(ctx Context, shape ...int) Tensor
// Stack(ctx Context, dim int, s ...Tensor) Tensor
// Repeat repeats the tensor n times along dimension dim
// Repeat(ctx Context, dim, n int) Tensor
// Concat(ctx Context, t2 Tensor, dim int) Tensor
// Rows(ctx Context, t2 Tensor) Tensor
// TODO these probably aren't actually needed - false starts on trying to wire up cache
// SliceUpdate(ctx Context, update Tensor, start, stop, strides []int) Tensor
// SliceUpdateDynamic(ctx Context, update, start Tensor, axes []int) Tensor
// PutAlongAxis(ctx Context, indicies, values Tensor, axis int) Tensor
Scatter(ctx Context, indicies []Tensor, updates Tensor, axes []int) Tensor
Copy(ctx Context, t2 Tensor) Tensor
// Duplicate(ctx Context) Tensor
// Slice(ctx Context, dim, low, high, step int) Tensor
// Chunk(ctx Context, dim int, size int) []Tensor
// ChunkSections(ctx Context, dim int, sections ...int) []Tensor
// TopK(ctx Context, k int) Tensor
// Argsort(ctx Context) Tensor
// Mean(ctx Context) Tensor
// Variance(ctx Context) Tensor
// Stddev(ctx Context) Tensor
// Sqr(ctx Context) Tensor
// Sqrt(ctx Context) Tensor
// Interpolate(ctx Context, dims [4]int, samplingMode SamplingMode) Tensor
}
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
// if mask != nil {
// kq = kq.Add(ctx, mask)
// }
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
// type ScaledDotProductAttention interface {
// ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, vmla Tensor, scale float64) Tensor
// }
// type number interface {
// ~int | ~int8 | ~int16 | ~int32 | ~int64 |
// ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
// ~float32 | ~float64 |
// ~complex64 | ~complex128
// }
// func mul[T number](s ...T) T {
// p := T(1)
// for _, v := range s {
// p *= v
// }
// return p
// }
// type DumpOptions func(*dumpOptions)
// // DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
// func DumpWithPrecision(n int) DumpOptions {
// return func(opts *dumpOptions) {
// opts.Precision = n
// }
// }
// // DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// // is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// // beginning and end of each dimension will be printed.
// func DumpWithThreshold(n int) DumpOptions {
// return func(opts *dumpOptions) {
// opts.Threshold = n
// }
// }
// // DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
// func DumpWithEdgeItems(n int) DumpOptions {
// return func(opts *dumpOptions) {
// opts.EdgeItems = n
// }
// }
// type dumpOptions struct {
// Precision, Threshold, EdgeItems int
// }
// func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
// opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
// for _, optsFunc := range optsFuncs {
// optsFunc(&opts)
// }
// if mul(t.Shape()...) <= opts.Threshold {
// opts.EdgeItems = math.MaxInt
// }
// switch t.DType() {
// case DTypeFloat32:
// return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
// return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
// })
// case DTypeFloat16: // TODO other types...
// f32 := ctx.Input().Empty(DTypeFloat32, t.Shape()...)
// f32 = t.Copy(ctx, f32)
// return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
// return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
// })
// case DTypeInt32:
// return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
// return strconv.FormatInt(int64(i), 10)
// })
// default:
// return "<unsupported>"
// }
// }
// func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
// if t.Bytes() == nil {
// ctx.Compute(t)
// }
// s := make(S, mul(t.Shape()...))
// if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
// panic(err)
// }
// shape := t.Shape()
// slices.Reverse(shape)
// var sb strings.Builder
// var f func([]int, int)
// f = func(dims []int, stride int) {
// prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
// sb.WriteString("[")
// defer func() { sb.WriteString("]") }()
// for i := 0; i < dims[0]; i++ {
// if i >= items && i < dims[0]-items {
// sb.WriteString("..., ")
// // skip to next printable element
// skip := dims[0] - 2*items
// if len(dims) > 1 {
// stride += mul(append(dims[1:], skip)...)
// fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
// }
// i += skip - 1
// } else if len(dims) > 1 {
// f(dims[1:], stride)
// stride += mul(dims[1:]...)
// if i < dims[0]-1 {
// fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
// }
// } else {
// text := fn(s[stride+i])
// if len(text) > 0 && text[0] != '-' {
// sb.WriteString(" ")
// }
// sb.WriteString(text)
// if i < dims[0]-1 {
// sb.WriteString(", ")
// }
// }
// }
// }
// f(shape, 0)
// return sb.String()
// }
type DType int
const (
DTypeBool DType = iota
DTypeUint8
DTypeUint16
DTypeUint32
DTypeUint64
DTypeInt8
DTypeInt16
DTypeInt32
DTypeInt64
DTypeFloat16
DTypeFloat32
DTypeFloat64
DTypeBfloat16
DTypeComplex64
)
type SamplingMode int
const (
SamplingModeNearest SamplingMode = iota
SamplingModeBilinear
)

3
x/ml/backend/backend.go Normal file
View File

@@ -0,0 +1,3 @@
package backend
// _ "github.com/ollama/ollama/x/ml/backend/mlx"

1278
x/ml/backend/mlx/mlx.go Normal file
View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,92 @@
// mlx_dynamic.c - Dynamic loading wrapper for MLX-C library
// This file provides runtime dynamic loading of libmlxc instead of link-time binding
#include "mlx_dynamic.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include <windows.h>
typedef HMODULE lib_handle_t;
#define LOAD_LIB(path) LoadLibraryA(path)
#define GET_SYMBOL(handle, name) GetProcAddress(handle, name)
#define CLOSE_LIB(handle) FreeLibrary(handle)
#define LIB_ERROR() "LoadLibrary failed"
static const char* LIB_NAMES[] = {"libmlxc.dll", NULL};
#else
#include <dlfcn.h>
typedef void* lib_handle_t;
#define LOAD_LIB(path) dlopen(path, RTLD_LAZY | RTLD_GLOBAL)
#define GET_SYMBOL(handle, name) dlsym(handle, name)
#define CLOSE_LIB(handle) dlclose(handle)
#define LIB_ERROR() dlerror()
#ifdef __APPLE__
static const char* LIB_NAMES[] = {
"libmlxc.dylib",
"@loader_path/../build/lib/ollama/libmlxc.dylib",
"@executable_path/../build/lib/ollama/libmlxc.dylib",
"build/lib/ollama/libmlxc.dylib",
"../build/lib/ollama/libmlxc.dylib",
NULL
};
#else
static const char* LIB_NAMES[] = {
"libmlxc.so",
"$ORIGIN/../build/lib/ollama/libmlxc.so",
"build/lib/ollama/libmlxc.so",
"../build/lib/ollama/libmlxc.so",
NULL
};
#endif
#endif
static lib_handle_t mlx_handle = NULL;
static int mlx_initialized = 0;
static char mlx_error_buffer[512] = {0};
// Initialize MLX dynamic library
// Returns 0 on success, -1 on failure
// On failure, call mlx_dynamic_error() to get error message
int mlx_dynamic_init(void) {
if (mlx_initialized) {
return 0; // Already initialized
}
// Try each possible library path
for (int i = 0; LIB_NAMES[i] != NULL; i++) {
mlx_handle = LOAD_LIB(LIB_NAMES[i]);
if (mlx_handle != NULL) {
mlx_initialized = 1;
snprintf(mlx_error_buffer, sizeof(mlx_error_buffer),
"MLX: Successfully loaded %s", LIB_NAMES[i]);
return 0;
}
}
// Failed to load library
const char* err = LIB_ERROR();
snprintf(mlx_error_buffer, sizeof(mlx_error_buffer),
"MLX: Failed to load libmlxc library. %s",
err ? err : "Unknown error");
return -1;
}
// Get the last error message
const char* mlx_dynamic_error(void) {
return mlx_error_buffer;
}
// Check if MLX is initialized
int mlx_dynamic_is_initialized(void) {
return mlx_initialized;
}
// Cleanup (optional, called at program exit)
void mlx_dynamic_cleanup(void) {
if (mlx_handle != NULL) {
CLOSE_LIB(mlx_handle);
mlx_handle = NULL;
mlx_initialized = 0;
}
}

View File

@@ -0,0 +1,26 @@
// mlx_dynamic.h - Dynamic loading interface for MLX-C library
#ifndef MLX_DYNAMIC_H
#define MLX_DYNAMIC_H
#ifdef __cplusplus
extern "C" {
#endif
// Initialize the MLX dynamic library
// Returns 0 on success, -1 on failure
int mlx_dynamic_init(void);
// Get the last error message from dynamic loading
const char* mlx_dynamic_error(void);
// Check if MLX is initialized
int mlx_dynamic_is_initialized(void);
// Cleanup resources (optional, for clean shutdown)
void mlx_dynamic_cleanup(void);
#ifdef __cplusplus
}
#endif
#endif // MLX_DYNAMIC_H

View File

@@ -0,0 +1,314 @@
//go:build mlx
package mlx
import (
"log/slog"
"os"
"reflect"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model"
"github.com/ollama/ollama/x/model/input"
_ "github.com/ollama/ollama/x/model/models/gemma3"
)
func init() {
logger := slog.New(slog.NewTextHandler(os.Stdout, &slog.HandlerOptions{Level: slog.LevelDebug}))
slog.SetDefault(logger)
}
func TestLoadModel(t *testing.T) {
dir := "/Users/daniel/Models/gemma-3-4b-it/"
b := &Backend{}
err := b.LoadSafeTensors(dir)
if err != nil {
t.Fatalf("load failed: %s", err)
}
}
func TestFromInts(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
data := []int32{1, 2, 3, 4, 5, 6}
a := c.FromInts(data, 2, 3)
slog.Info("", "array", a)
t.Log(a.ToString())
if !reflect.DeepEqual(a.Shape(), []int{2, 3}) {
t.Fatalf("incorrect shape: %v", a.Shape())
}
}
func TestFromFloats(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
data := []float32{1, 2, 3, 4, 5, 6}
a := c.FromFloats(data, 2, 3)
slog.Info("", "array", a)
t.Log(a.ToString())
if !reflect.DeepEqual(a.Shape(), []int{2, 3}) {
t.Fatalf("incorrect shape: %v", a.Shape())
}
res := a.Floats()
if !reflect.DeepEqual(res, data) {
t.Fatalf("incorrect results: %v", res)
}
}
func TestAdd(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
t1 := c.Arange(0, 24, 1, ml.DTypeFloat16)
t2 := c.Arange(0, 24, 1, ml.DTypeFloat16)
exp := c.Arange(0, 48, 2, ml.DTypeFloat16)
t3 := t1.Add(c, t2)
c.Compute(t3, exp)
t3f := t3.Floats()
if !reflect.DeepEqual(t3f, exp.Floats()) {
t.Fatalf("incorrect result: %v", t3f)
}
}
func TestReshapeTranspose(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
t1 := c.Arange(0, 24, 1, ml.DTypeFloat16).Reshape(c, 2, 3, 4).Transpose(c, 0, 2, 1).Contiguous(c, false)
c.Compute(t1)
t1f := t1.Floats()
exp := []float32{
0, 4, 8,
1, 5, 9,
2, 6, 10,
3, 7, 11,
12, 16, 20,
13, 17, 21,
14, 18, 22,
15, 19, 23,
}
if !reflect.DeepEqual(t1f, exp) {
t.Fatalf("incorrect results: %v", t1f)
}
}
func prod(vals ...int) int {
r := 1
for _, v := range vals {
r *= v
}
return r
}
func TestMatmul(t *testing.T) {
// TODO create scenarios...
b := &Backend{}
c := b.NewContext()
defer c.Close()
s1 := []int{1, 3, 2, 4}
t1 := c.Arange(0, float32(prod(s1...)), 1, ml.DTypeFloat16).Reshape(c, s1...)
s2 := []int{4, 2}
t2 := c.Arange(0, float32(prod(s2...)), 1, ml.DTypeFloat16).Reshape(c, s2...)
t3 := t1.Matmul(c, t2)
exp := []float32{
28, 34,
76, 98,
124, 162,
172, 226,
220, 290,
268, 354,
}
c.Compute(t3)
t3f := t3.Floats()
if !reflect.DeepEqual(t3f, exp) {
t.Fatalf("incorrect result: %v", t3f)
}
}
func TestRows(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
t1 := c.Arange(0, 12, 1, ml.DTypeFloat32).Reshape(c, 1, 4, 3)
outputs := c.Zeros(ml.DTypeInt32, 1)
t2 := t1.TakeAxes(c, outputs, 1)
c.Forward(t1, t2).Compute(t1, t2)
t.Log(t1.ToString())
t.Log(t2.ToString())
f := t2.Floats()
t.Logf("Result: %v", f)
}
func TestCaching(t *testing.T) {
// Validate the caching algorithm
b := &Backend{}
c := b.NewContext()
defer c.Close()
batchSize := 3
headDim := 4
numKVHeads := 2
// Make cache twice the size of one test batch
cells := batchSize * 2
cellSize := numKVHeads * headDim
shape := []int{1, numKVHeads, batchSize, headDim}
stop := float32(1)
for _, x := range shape {
stop *= float32(x)
}
// Create the cache
cache := c.Zeros(ml.DTypeFloat16, cells, cellSize)
t.Logf("Empty Cache shape%v\n"+cache.ToString(), []int{cells, cellSize})
// Input tensor
t1 := c.Arange(0, stop, 1, ml.DTypeFloat16).Reshape(c, shape...)
t.Logf("Initial Data shape%v\n"+t1.ToString(), shape)
// Reshape to copy into the cache
/*
From MLX python/src/indexing.cpp mlx_scatter_args_array
// The update shape must broadcast with indices.shape + [1] + src.shape[1:]
auto up_shape = indices.shape();
up_shape.insert(up_shape.end(), src.shape().begin() + 1, src.shape().end());
up = broadcast_to(up, up_shape);
up_shape.insert(up_shape.begin() + indices.ndim(), 1);
up = reshape(up, up_shape);
*/
numRows := 3
up := t1.Reshape(c, numRows, 1, cellSize) // The shape has to look like this for scatter to work properly
t.Logf("Data reshaped for cache input shape%v\n"+up.ToString(), []int{batchSize, numKVHeads * headDim})
// Simulate cells 1,3,5 are available
indicies := []ml.Tensor{c.FromInts([]int32{1, 3, 5}, numRows)}
t.Logf("Indicies shape%v\n"+indicies[0].ToString(), []int{numRows})
axis := []int{0} // The 1,3,5 of the indicies are in reference to axis 0 in the cache shape
cache.Scatter(c, indicies, up, axis)
c.Forward(cache)
// Cache should contain the data now
t.Log("Cache after put\n" + cache.ToString())
// Retrieve cache content and verify it matches
out := cache.TakeAxes(c, indicies[0], 0).Reshape(c, shape...)
t.Logf("Output shape%v\n"+out.ToString(), out.Shape())
t1f := t1.Floats()
outf := out.Floats()
if !reflect.DeepEqual(t1f, outf) {
t.Fatalf("mismatched in->out\n%v\n ->\n%v", t1f, outf)
}
}
func TestGemma3(t *testing.T) {
// Why is the sky blue
inputs := []int32{2, 105, 2364, 107, 36425, 563, 506, 7217, 3730, 106, 107, 105, 4368}
limit := 50
// TODO generalize this
dir := "/Users/daniel/Models/gemma-3-4b-it/"
m, err := model.New(dir, ml.BackendParams{})
if err != nil {
t.Fatalf("unable to load model: %s", err)
}
b := m.Backend()
ctx := b.NewContext()
defer ctx.Close()
batch := input.Batch{
Inputs: ctx.FromInts(inputs[:], 1, len(inputs)),
Positions: make([]int32, len(inputs)),
Sequences: make([]int, len(inputs)),
Outputs: ctx.FromInts([]int32{int32(len(inputs) - 1)}, 1),
Offset: 0,
}
for i := range len(inputs) {
batch.Positions[i] = int32(i)
}
offset := len(inputs)
cache := m.Config().Cache
if cache != nil {
numSlots := 1
batchSize := 512
numCtx := 4096
// Note: this is inconsistent with mlx-py, but trying to be consistent with the GGML cache impl to get things working
// cache.SetConfig(ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeBfloat16, MaskBatchPadding: 64})
cache.SetConfig(ml.CacheConfig{CachePadding: 0, MaskDType: ml.DTypeBfloat16, MaskBatchPadding: 0})
cache.Init(b, ml.DTypeBfloat16, numSlots, int(numCtx), batchSize)
err := cache.StartForward(ctx, batch, false)
if err != nil {
t.Fatalf("failed cache.StartForward: %s", err)
}
}
opts := api.DefaultOptions()
var grammar *sample.GrammarSampler
sampler := sample.NewSampler(
opts.Temperature,
opts.TopK,
opts.TopP,
opts.MinP,
opts.Seed,
grammar,
)
t.Log("Starting Forward pass loop")
pendingResponses := []string{}
for {
out, err := m.Forward(ctx, batch)
if err != nil {
t.Fatalf("failed forward pass: %s", err)
}
ctx.Forward(out)
outputs := out.Floats()
t.Logf("finished forward pass! length:%d", len(outputs))
// sample a token
logits := outputs
token, err := sampler.Sample(logits)
if err != nil {
t.Fatalf("unable to sample token: %s", err)
}
t.Logf("Sampled token: %v", token)
if m.(model.TextProcessor).Is(token, model.SpecialEOS) {
t.Log("hit EOS")
break
}
piece, err := m.(model.TextProcessor).Decode([]int32{token})
if err != nil {
t.Fatalf("unable to decode token: %s", err)
}
pendingResponses = append(pendingResponses, piece)
sequence := strings.Join(pendingResponses, "")
if ok, stop := common.FindStop(sequence, opts.Stop); ok {
t.Logf("hit stop token: %v", stop)
break
}
t.Logf("RESULTS: %s", sequence)
batch = input.Batch{
Inputs: ctx.FromInts([]int32{token}, 1, 1),
Positions: make([]int32, 1),
Sequences: make([]int, 1),
Outputs: ctx.FromInts([]int32{0}, 1),
Offset: offset,
}
offset++
batch.Positions[0] = 0
err = cache.StartForward(ctx, batch, false)
if err != nil {
t.Fatalf("failed cache.StartForward: %s", err)
}
if offset > limit {
break
}
}
}

335
x/ml/backend/mlx/quant.go Normal file
View File

@@ -0,0 +1,335 @@
//go:build mlx
package mlx
/*
#include <stdio.h>
#include <string.h>
#include "mlx/c/array.h"
#include "mlx/c/ops.h"
// Derived from https://github.com/ml-explore/mlx/blob/main/mlx/io/gguf_quants.cpp
void unpack_32_4(uint8_t* data, int8_t* dst) {
memset(dst, 0, 16);
for (int j = 0; j < 16; ++j) {
uint8_t x = (data[j + 2] & 0x0F); // j+2 to skip scale bytes.
if (j % 2 != 0) {
x <<= 4;
}
dst[j / 2] += x;
}
// Last 16 weights are in the higher bits
for (int j = 0; j < 16; ++j) {
uint8_t x = (data[j + 2] >> 4);
if (j % 2 != 0) {
x <<= 4;
}
dst[8 + j / 2] += x;
}
}
// Extracts (weight, scales, biases) from Q4_0 tensors.
// Data layout is: |16 bit scale|32 x 4bit weights|.
void extract_q4_0_data(
uint8_t* data,
mlx_array* weights_arr,
mlx_array* scales_arr,
mlx_array* biases_arr) {
const uint64_t bytes_per_block = 18; // 2 bytes scale, 32x0.5 byte weights
uint8_t* weights = mlx_array_data_uint8(*weights_arr);
float16_t* scales = mlx_array_data_float16(*scales_arr);
float16_t* biases = mlx_array_data_float16(*biases_arr);
for (int64_t i = 0; i < mlx_array_size(*scales_arr); i++) {
scales[i] = *((float16_t*)data);
biases[i] = -8 * scales[i];
unpack_32_4(data, weights);
weights += 16;
data += bytes_per_block;
}
}
// Extracts (weight, scales, biases) from Q4_1 tensors.
// Data layout is: |16 bit scale|16 bit bias|32 x 4bit weights|.
void extract_q4_1_data(
uint8_t* data,
mlx_array* weights_arr,
mlx_array* scales_arr,
mlx_array* biases_arr) {
const uint64_t bytes_per_block = 20; // 2 bytes scale, 2 bytes bias, 32x0.5 byte weights
uint8_t* weights = mlx_array_data_uint8(*weights_arr);
float16_t* scales = mlx_array_data_float16(*scales_arr);
float16_t* biases = mlx_array_data_float16(*biases_arr);
for (int64_t i = 0; i < mlx_array_size(*scales_arr); i++) {
scales[i] = *((float16_t*)data);
biases[i] = *((float16_t*)(data) + 1);
unpack_32_4(data, weights);
weights += 16;
data += bytes_per_block;
}
}
// Extracts (weight, scales, biases) from Q8_0 tensors.
// Data layout is: |16 bit scale|32 x 8bit weights|.
void extract_q8_0_data(
uint8_t* data,
mlx_array* weights_arr,
mlx_array* scales_arr,
mlx_array* biases_arr) {
const uint64_t weights_per_block = 32;
const uint64_t bytes_per_block = 34; // 2 bytes scale, 32x1 byte weights
uint8_t* weights = mlx_array_data_uint8(*weights_arr);
float16_t* scales = mlx_array_data_float16(*scales_arr);
float16_t* biases = mlx_array_data_float16(*biases_arr);
for (int64_t i = 0; i < mlx_array_size(*scales_arr); i++) {
uint8_t* block_data = data + i * bytes_per_block;
scales[i] = *((float16_t*)block_data);
biases[i] = -128 * scales[i];
for (int64_t j = 0; j < weights_per_block; ++j) {
uint8_t x = block_data[j + 2]; // j+2 to skip the scale bytes.
// Original data is in int8_t, so we add a bias of -128 and invert the
// first bit.
x ^= 1 << 7;
weights[i * weights_per_block + j] = x;
}
}
}
// Drived from ggml-quants.c
#define QK_K 256
// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 6.5625 bits per weight
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
uint16_t d; // super-block scale
} block_q6_K;
void dequant_row_q6_K(const void * restrict vx, void * restrict vy, int k) {
const int64_t nb = k / QK_K;
block_q6_K *x = (block_q6_K *)vx;
float16_t* y = (float16_t *)vy;
for (int i = 0; i < nb; i++) {
float16_t d = 0.0;
memcpy(&d, &x[i].d, sizeof(d));
const uint8_t * restrict ql = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict sc = x[i].scales;
for (int n = 0; n < QK_K; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
y[l + 0] = d * sc[is + 0] * q1;
y[l + 32] = d * sc[is + 2] * q2;
y[l + 64] = d * sc[is + 4] * q3;
y[l + 96] = d * sc[is + 6] * q4;
}
y += 128;
ql += 64;
qh += 32;
sc += 8;
}
}
}
#define K_SCALE_SIZE 12
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S
// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
typedef struct {
union {
struct {
uint16_t d; // super-block scale for quantized scales
uint16_t dmin; // super-block scale for quantized mins
} GGML_COMMON_AGGR_S;
uint16_t dm;
} GGML_COMMON_AGGR_U;
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
if (j < 4) {
*d = q[j] & 63; *m = q[j + 4] & 63;
} else {
*d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
*m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
}
}
void dequant_row_q4_K(const void * restrict vx, void * restrict vy, int k) {
block_q4_K *x = (block_q4_K *)vx;
float16_t* y = (float16_t *)vy;
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const uint8_t * q = x[i].qs;
float16_t d = 0.0;
memcpy(&d, &x[i].d, sizeof(d));
float16_t min = 0.0;
memcpy(&min, &x[i].dmin, sizeof(d));
int is = 0;
uint8_t sc, m;
for (int j = 0; j < QK_K; j += 64) {
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
const float16_t d1 = d * sc; const float16_t m1 = min * m;
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
const float16_t d2 = d * sc; const float16_t m2 = min * m;
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
q += 32; is += 2;
}
}
}
*/
import "C"
import (
"fmt"
"unsafe"
"github.com/x448/float16"
)
func gguf_load_quantized(data unsafe.Pointer, name string, final_shape []C.int, dtype uint32, stream C.mlx_stream) (r C.mlx_array, err error) {
shape := append([]C.int{}, final_shape...)
var weights_per_byte C.int
if dtype == 2 || dtype == 3 {
weights_per_byte = 2
} else if dtype == 8 {
weights_per_byte = 1
} else {
return r, fmt.Errorf("unsupported tensor type %d", dtype)
}
weights_per_block := C.int(32)
if shape[len(shape)-1]%weights_per_block != 0 {
return r, fmt.Errorf("[load_gguf] tensor has incompatible last dim shape: %d", shape[len(shape)-1])
}
weights_shape := append([]C.int{}, shape...)
weights_shape[len(weights_shape)-1] /= (weights_per_byte * 4)
w_nbytes := C.int(unsafe.Sizeof(uint32(0)))
for i := range weights_shape {
w_nbytes *= weights_shape[i]
}
w_data := make([]byte, w_nbytes)
cbytes := C.CBytes(w_data)
defer C.free(cbytes)
weights := C.mlx_array_new_data(
cbytes,
&weights_shape[0],
C.int(len(weights_shape)),
C.MLX_UINT32,
)
// For scales and bias
shape[len(shape)-1] = shape[len(shape)-1] / weights_per_block
sb_nbytes := C.int(unsafe.Sizeof(float16.Float16(0)))
for i := range shape {
sb_nbytes *= shape[i]
}
s_data := make([]byte, sb_nbytes)
cbytes = C.CBytes(s_data)
defer C.free(cbytes)
scales := C.mlx_array_new_data(
cbytes,
&shape[0],
C.int(len(shape)),
C.MLX_FLOAT16,
)
b_data := make([]byte, sb_nbytes)
cbytes = C.CBytes(b_data)
defer C.free(cbytes)
biases := C.mlx_array_new_data(
cbytes,
&shape[0],
C.int(len(shape)),
C.MLX_FLOAT16,
)
var bits C.int
switch dtype {
case 2:
C.extract_q4_0_data((*C.uint8_t)(data), &weights, &scales, &biases)
bits = 4
case 3:
C.extract_q4_1_data((*C.uint8_t)(data), &weights, &scales, &biases)
bits = 4
case 8:
C.extract_q8_0_data((*C.uint8_t)(data), &weights, &scales, &biases)
bits = 8
}
groupSize := C.mlx_optional_int{value: 32, has_value: true}
bitsOpt := C.mlx_optional_int{value: bits, has_value: true}
var dtypeOpt C.mlx_optional_dtype // has_value defaults to false
C.mlx_dequantize(
&r,
weights,
scales,
biases,
groupSize,
bitsOpt,
nil, // TODO mode
dtypeOpt,
stream,
)
C.mlx_array_free(weights)
C.mlx_array_free(scales)
C.mlx_array_free(biases)
return r, nil
}
func load_k_quantized(data unsafe.Pointer, name string, shape []C.int, dtype uint32, stream C.mlx_stream) (r C.mlx_array, err error) {
size := 1
for _, d := range shape {
size *= int(d)
}
fdata := make([]float16.Float16, size)
switch dtype {
case 14:
C.dequant_row_q6_K(
data,
unsafe.Pointer(&fdata[0]),
C.int(size),
)
case 12:
C.dequant_row_q4_K(
data,
unsafe.Pointer(&fdata[0]),
C.int(size),
)
default:
return r, fmt.Errorf("unsupported K quant")
}
r = C.mlx_array_new_data(
unsafe.Pointer(&fdata[0]),
&shape[0],
C.int(len(shape)),
C.MLX_FLOAT16,
)
return r, nil
}

Some files were not shown because too many files have changed in this diff Show More