or [download manually](https://ollama.com/download/OllamaSetup.exe)
### Linux
@@ -36,649 +46,311 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
### Community
- [Discord](https://discord.gg/ollama)
- [𝕏 (Twitter)](https://x.com/ollama)
- [Reddit](https://reddit.com/r/ollama)
## Quickstart
## Get started
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
```
ollama
```
```shell
You'll be prompted to run a model or connect Ollama to your existing agents or applications such as `claude`, `codex`, `openclaw` and more.
### Coding
To launch a specific integration:
```
ollama launch claude
```
Supported integrations include [Claude Code](https://docs.ollama.com/integrations/claude-code), [Codex](https://docs.ollama.com/integrations/codex), [Droid](https://docs.ollama.com/integrations/droid), and [OpenCode](https://docs.ollama.com/integrations/opencode).
### AI assistant
Use [OpenClaw](https://docs.ollama.com/integrations/openclaw) to turn Ollama into a personal AI assistant across WhatsApp, Telegram, Slack, Discord, and more:
```
ollama launch openclaw
```
### Chat with a model
Run and chat with [Gemma 3](https://ollama.com/library/gemma3):
```
ollama run gemma3
```
## Model library
See [ollama.com/library](https://ollama.com/library) for the full list.
Ollama supports a list of models available on [ollama.com/library](https://ollama.com/library "ollama model library")
Here are some example models that can be downloaded:
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Customize a model
### Import from GGUF
Ollama supports importing GGUF models in the Modelfile:
1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import.
```
FROM ./vicuna-33b.Q4_0.gguf
```
2. Create the model in Ollama
```shell
ollama create example -f Modelfile
```
3. Run the model
```shell
ollama run example
```
### Import from Safetensors
See the [guide](https://docs.ollama.com/import) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
```shell
ollama pull llama3.2
```
Create a `Modelfile`:
```
FROM llama3.2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
```
Next, create and run the model:
```
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
```
For more information on working with a Modelfile, see the [Modelfile](https://docs.ollama.com/modelfile) documentation.
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
```shell
ollama create mymodel -f ./Modelfile
```
### Pull a model
```shell
ollama pull llama3.2
```
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
```shell
ollama rm llama3.2
```
### Copy a model
```shell
ollama cp llama3.2 my-model
```
### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Multimodal models
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
```
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
### Pass the prompt as an argument
```shell
ollama run llama3.2 "Summarize this file: $(cat README.md)"
```
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
### Show model information
```shell
ollama show llama3.2
```
### List models on your computer
```shell
ollama list
```
### List which models are currently loaded
```shell
ollama ps
```
### Stop a model which is currently running
```shell
ollama stop llama3.2
```
### Generate embeddings from the CLI
```shell
ollama run embeddinggemma "Your text to embed"
```
You can also pipe text for scripted workflows:
```shell
echo "Your text to embed" | ollama run embeddinggemma
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
## Building
See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/development.md)
### Running local builds
Next, start the server:
```shell
./ollama serve
```
Finally, in a separate shell, run a model:
```shell
./ollama run llama3.2
```
## Building with MLX (experimental)
First build the MLX libraries:
```shell
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install build --component MLX
```
When building with the `-tags mlx` flag, the main `ollama` binary includes MLX support for experimental features like image generation:
```shell
go build -tags mlx .
```
Finally, start the server:
```
./ollama serve
```
### Building MLX with CUDA
When building with CUDA, use the preset "MLX CUDA 13" or "MLX CUDA 12" to enable CUDA with default architectures:
```shell
cmake --preset 'MLX CUDA 13'
cmake --build --preset 'MLX CUDA 13' --parallel
cmake --install build --component MLX
```
See the [quickstart guide](https://docs.ollama.com/quickstart) for more details.
## REST API
Ollama has a REST API for running and managing models.
### Generate a response
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt":"Why is the sky blue?"
}'
```
### Chat with a model
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
"model": "gemma3",
"messages": [{
"role": "user",
"content": "Why is the sky blue?"
}],
"stream": false
}'
```
See the [API documentation](./docs/api.md) for all endpoints.
See the [API documentation](https://docs.ollama.com/api) for all endpoints.
### Python
```
pip install ollama
```
```python
fromollamaimportchat
response=chat(model='gemma3',messages=[
{
'role':'user',
'content':'Why is the sky blue?',
},
])
print(response.message.content)
```
### JavaScript
```
npm i ollama
```
```javascript
importollamafrom"ollama";
constresponse=awaitollama.chat({
model:"gemma3",
messages:[{role:"user",content:"Why is the sky blue?"}],
});
console.log(response.message.content);
```
## Supported backends
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
## Documentation
- [CLI reference](https://docs.ollama.com/cli)
- [REST API reference](https://docs.ollama.com/api)
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
- [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding)
- [chat](https://github.com/swuecho/chat) (chat web app for teams)
- [Lobe Chat](https://github.com/lobehub/lobe-chat) with [Integrating Doc](https://lobehub.com/docs/self-hosting/examples/ollama)
- [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG)
- [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation)
- [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends)
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG and deep research on Mac/Windows/Linux)
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application available for Mac/Windows/Linux)
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VS Code extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [KDeps](https://github.com/kdeps/kdeps) (Kdeps is an offline-first AI framework for building Dockerized full-stack AI applications declaratively using Apple PKL and integrates APIs with Ollama on the backend.)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
- [Hillnote](https://hillnote.com) (A Markdown-first workspace designed to supercharge your AI workflow. Create documents ready to integrate with Claude, ChatGPT, Gemini, Cursor, and more - all while keeping your work on your device.)
- [Stakpak](https://github.com/stakpak/agent) (An open source, vendor neutral DevOps agent that works with any model, and any stack, for teams who just want to ship)
### Chat Interfaces
### Cloud
#### Web
- [Open WebUI](https://github.com/open-webui/open-webui) - Extensible, self-hosted AI interface
- [Onyx](https://github.com/onyx-dot-app/onyx) - Connected AI workspace
- [LibreChat](https://github.com/danny-avila/LibreChat) - Enhanced ChatGPT clone with multi-provider support
- [Lobe Chat](https://github.com/lobehub/lobe-chat) - Modern chat framework with plugin ecosystem ([docs](https://lobehub.com/docs/self-hosting/examples/ollama))
- [BoltAI for Mac](https://boltai.com) - AI chat client for Mac
- [IntelliBar](https://intellibar.app/) - AI-powered assistant for macOS
- [Kerlig AI](https://www.kerlig.com/) - AI writing assistant for macOS
- [Hillnote](https://hillnote.com) - Markdown-first AI workspace
- [Perfect Memory AI](https://www.perfectmemory.ai/) - Productivity AI personalized by screen and meeting history
#### Mobile
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) - One-click Ollama on Android
> SwiftChat, Enchanted, Maid, Ollama App, Reins, and ConfiChat listed above also support mobile platforms.
### Code Editors & Development
- [Cline](https://github.com/cline/cline) - VS Code extension for multi-file/whole-repo coding
- [Continue](https://github.com/continuedev/continue) - Open-source AI code assistant for any IDE
- [Void](https://github.com/voideditor/void) - Open source AI code editor, Cursor alternative
- [Copilot for Obsidian](https://github.com/logancyang/obsidian-copilot) - AI assistant for Obsidian
- [twinny](https://github.com/rjmacarthy/twinny) - Copilot and Copilot chat alternative
- [gptel Emacs client](https://github.com/karthink/gptel) - LLM client for Emacs
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) - Use Ollama as GitHub Copilot
- [Obsidian Local GPT](https://github.com/pfrankov/obsidian-local-gpt) - Local AI for Obsidian
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama) - LLM tool for Emacs
- [orbiton](https://github.com/xyproto/orbiton) - Config-free text editor with Ollama tab completion
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) - Sublime Text 4 AI assistant
- [VT Code](https://github.com/vinhnx/vtcode) - Rust-based terminal coding agent with Tree-sitter
- [QodeAssist](https://github.com/Palm1r/QodeAssist) - AI coding assistant for Qt Creator
- [AI Toolkit for VS Code](https://aka.ms/ai-tooklit/ollama-docs) - Microsoft-official VS Code extension
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama) - Natural language interface for computers
### Libraries & SDKs
- [LiteLLM](https://github.com/BerriAI/litellm) - Unified API for 100+ LLM providers
- [Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/ai/ollama) - Microsoft AI orchestration SDK
- [LangChainGo](https://github.com/tmc/langchaingo/) - Go LangChain ([example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example))
- [Spring AI](https://github.com/spring-projects/spring-ai) - Spring framework AI support ([docs](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html))
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Ollama for Ruby](https://github.com/crmne/ruby_llm) - Ruby LLM library
- [any-llm](https://github.com/mozilla-ai/any-llm) - Unified LLM interface by Mozilla
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp) - .NET SDK
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs) - Rust SDK
- [LangChain for .NET](https://github.com/tryAGI/LangChain) - .NET LangChain ([example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs))
- [chromem-go](https://github.com/philippgille/chromem-go) - Go vector database with Ollama embeddings ([example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama))
- [LlmTornado](https://github.com/lofcz/llmtornado) - Unified C# interface for multiple inference APIs
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j) - Java SDK
- [Ollama for Laravel](https://github.com/cloudstudio/ollama-laravel) - Laravel integration
- [Ollama for Swift](https://github.com/mattt/ollama-swift) - Swift SDK
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama) - Data framework for LLM apps
- [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md) - AI pipeline framework
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama) - Google AI framework
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp) - C++ SDK
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) - Julia LLM toolkit ([example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama))
- [Ollama for R - rollama](https://github.com/JBGruber/rollama) - R SDK
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama) - AI gateway
- [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama) - Ollama in Raycast
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) - Painting app with AI integrations
- [Serene Pub](https://github.com/doolijb/serene-pub) - AI roleplaying app
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) - Document management with Ollama workflows
- [TagSpaces](https://www.tagspaces.org) - File management with [AI tagging](https://docs.tagspaces.org/ai/)
### Observability & Monitoring
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) - Debug, evaluate, and monitor LLM applications
- [OpenLIT](https://github.com/openlit/openlit) - OpenTelemetry-native monitoring for Ollama and GPUs
- [Lunary](https://lunary.ai/docs/integrations/ollama) - LLM observability with analytics and PII masking
- [Langfuse](https://langfuse.com/docs/integrations/ollama) - Open source LLM observability
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) - AI observability and evaluation for agents
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) - Open source LLM observability
### Database & Embeddings
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database ([guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md))
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) - Connect Ollama with 200+ data platforms
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) - Embeddable vector database for Go ([example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama))
- [Harbor](https://github.com/av/harbor) - Containerized LLM toolkit with Ollama as default backend
### Tutorial
- [handy-ollama](https://github.com/datawhalechina/handy-ollama) (Chinese Tutorial for Ollama by [Datawhale ](https://github.com/datawhalechina) - China's Largest Open Source AI Learning Community)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
- [x-cmd ollama](https://x-cmd.com/mod/ollama)
- [bb7](https://github.com/drunkwcodes/bb7)
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
- [ollama-bash-toolshed](https://github.com/attogram/ollama-bash-toolshed) - Bash scripts to chat with tool using models. Add new tools to your shed with ease. Runs on Ollama.
- [hle-eval-ollama](https://github.com/mags0ft/hle-eval-ollama) - Runs benchmarks like "Humanity's Last Exam" (HLE) on your favorite local Ollama models and evaluates the quality of their responses
- [VT Code](https://github.com/vinhnx/vtcode) - VT Code is a Rust-based terminal coding agent with semantic code intelligence via Tree-sitter. Ollama integration for running local/cloud models with configurable endpoints.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
- [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases)
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
- [Strands Agents](https://github.com/strands-agents/sdk-python) (A model-driven approach to building AI agents in just a few lines of code)
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/crmne/ruby_llm)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
- [achatbot-go](https://github.com/ai-bot-pro/achatbot-go) a multimodal(text/audio/image) chatbot.
- [Ollama Bash Lib](https://github.com/attogram/ollama-bash-lib) - A Bash Library for Ollama. Run LLM prompts straight from your shell, and more
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Plasmoid Ollama Control](https://github.com/imoize/plasmoid-ollamacontrol) (KDE Plasma extension that allows you to quickly manage/control Ollama model)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Editor tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native integration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
// waitUntilRunning waits for the subprocess to be ready.
func(s*Server)waitUntilRunning()error{
ctx:=context.Background()
timeout:=time.After(2*time.Minute)
timeout:=time.After(envconfig.LoadTimeout())
ticker:=time.NewTicker(100*time.Millisecond)
deferticker.Stop()
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.