Compare commits

..

10 Commits

Author SHA1 Message Date
Patrick Devine
e32de893ec punch the linter again 2024-07-08 18:50:10 -07:00
Patrick Devine
c37ab3b9f2 punch the linter in the face 2024-07-08 18:40:24 -07:00
Patrick Devine
6367b7449e try feeding the linter again 2024-07-08 17:23:05 -07:00
Patrick Devine
8ba3f38f82 feed the linter again + llama.cpp patches 2024-07-08 17:03:13 -07:00
Patrick Devine
a3058002c4 feed the linter 2024-07-08 15:02:13 -07:00
Patrick Devine
a451611761 add adapter conversion for modelfiles 2024-07-08 15:02:13 -07:00
Patrick Devine
5d4a331de3 more unittests 2024-07-08 15:02:13 -07:00
Patrick Devine
2e055e3af8 ggla checkin 2024-07-08 15:02:13 -07:00
Michael Yang
9f32c634ae refactor convert 2024-07-08 15:02:13 -07:00
Michael Yang
a4978a94b5 update convert test to check result data 2024-07-08 15:02:13 -07:00
155 changed files with 4088 additions and 5446 deletions

View File

@@ -147,7 +147,7 @@ jobs:
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
@@ -304,6 +304,11 @@ jobs:
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- name: remove unwanted mingw dll.a files
run: |
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libpthread.dll.a" -File | Remove-Item -Force
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libwinpthread.dll.a" -File | Remove-Item -Force
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libstdc++.dll.a" -File | Remove-Item -Force
- uses: actions/setup-go@v5
with:
go-version-file: go.mod

View File

@@ -126,7 +126,7 @@ jobs:
strategy:
matrix:
rocm-version:
- '6.1.2'
- '6.1.1'
runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps:
@@ -169,7 +169,7 @@ jobs:
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"

View File

@@ -2,7 +2,7 @@ ARG GOLANG_VERSION=1.22.1
ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1
ARG ROCM_VERSION=6.1.2
ARG ROCM_VERSION=6.1.1
# Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code

View File

@@ -293,9 +293,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
### Terminal

View File

@@ -347,16 +347,7 @@ func (c *Client) Heartbeat(ctx context.Context) error {
return nil
}
// Embed generates embeddings from a model.
func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) {
var resp EmbedResponse
if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
// Embeddings generates an embedding from a model.
// Embeddings generates embeddings from a model.
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
var resp EmbeddingResponse
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {

View File

@@ -47,9 +47,6 @@ type GenerateRequest struct {
// Prompt is the textual prompt to send to the model.
Prompt string `json:"prompt"`
// Suffix is the text that comes after the inserted text.
Suffix string `json:"suffix"`
// System overrides the model's default system message/prompt.
System string `json:"system"`
@@ -100,80 +97,17 @@ type ChatRequest struct {
// followin the request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
Tools `json:"tools,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
}
type Tools []Tool
func (t Tools) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
// Message is a single message in a chat sequence. The message contains the
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
func (m *Message) UnmarshalJSON(b []byte) error {
type Alias Message
var a Alias
if err := json.Unmarshal(b, &a); err != nil {
return err
}
*m = Message(a)
m.Role = strings.ToLower(m.Role)
return nil
}
type ToolCall struct {
Function ToolCallFunction `json:"function"`
}
type ToolCallFunction struct {
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
type ToolCallFunctionArguments map[string]any
func (t *ToolCallFunctionArguments) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type Tool struct {
Type string `json:"type"`
Function ToolFunction `json:"function"`
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}
func (t *ToolFunction) String() string {
bts, _ := json.Marshal(t)
return string(bts)
Role string `json:"role"`
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
}
// ChatResponse is the response returned by [Client.Chat]. Its fields are
@@ -239,30 +173,6 @@ type Runner struct {
NumThread int `json:"num_thread,omitempty"`
}
// EmbedRequest is the request passed to [Client.Embed].
type EmbedRequest struct {
// Model is the model name.
Model string `json:"model"`
// Input is the input to embed.
Input any `json:"input"`
// KeepAlive controls how long the model will stay loaded in memory following
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
Truncate *bool `json:"truncate,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
}
// EmbedResponse is the response from [Client.Embed].
type EmbedResponse struct {
Model string `json:"model"`
Embeddings [][]float32 `json:"embeddings"`
}
// EmbeddingRequest is the request passed to [Client.Embeddings].
type EmbeddingRequest struct {
// Model is the model name.
@@ -309,10 +219,8 @@ type DeleteRequest struct {
// ShowRequest is the request passed to [Client.Show].
type ShowRequest struct {
Model string `json:"model"`
System string `json:"system"`
// Template is deprecated
Model string `json:"model"`
System string `json:"system"`
Template string `json:"template"`
Verbose bool `json:"verbose"`

View File

@@ -208,26 +208,3 @@ func TestUseMmapFormatParams(t *testing.T) {
})
}
}
func TestMessage_UnmarshalJSON(t *testing.T) {
tests := []struct {
input string
expected string
}{
{`{"role": "USER", "content": "Hello!"}`, "user"},
{`{"role": "System", "content": "Initialization complete."}`, "system"},
{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"},
{`{"role": "TOOl", "content": "Access granted."}`, "tool"},
}
for _, test := range tests {
var msg Message
if err := json.Unmarshal([]byte(test.input), &msg); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if msg.Role != test.expected {
t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected)
}
}
}

View File

@@ -127,10 +127,6 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
[InstallDelete]
Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
[Messages]
WizardReady=Ollama Windows Preview
ReadyLabel1=%nLet's get you up and running with your own large language models.

View File

@@ -843,6 +843,7 @@ type runOptions struct {
WordWrap bool
Format string
System string
Template string
Images []api.ImageData
Options map[string]interface{}
MultiModal bool
@@ -1036,6 +1037,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
Images: opts.Images,
Format: opts.Format,
System: opts.System,
Template: opts.Template,
Options: opts.Options,
KeepAlive: opts.KeepAlive,
}

View File

@@ -27,6 +27,7 @@ const (
MultilineNone MultilineState = iota
MultilinePrompt
MultilineSystem
MultilineTemplate
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
@@ -93,6 +94,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
fmt.Fprintln(os.Stderr, " /set history Enable history")
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
@@ -202,6 +204,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
fmt.Println("Set system message.")
sb.Reset()
case MultilineTemplate:
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
}
multiline = MultilineNone
@@ -320,13 +326,17 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
opts.Options[args[2]] = fp[args[2]]
case "system":
case "system", "template":
if len(args) < 3 {
usageSet()
continue
}
multiline = MultilineSystem
if args[1] == "system" {
multiline = MultilineSystem
} else if args[1] == "template" {
multiline = MultilineTemplate
}
line := strings.Join(args[2:], " ")
line, ok := strings.CutPrefix(line, `"""`)
@@ -346,17 +356,23 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
continue
}
opts.System = sb.String() // for display in modelfile
newMessage := api.Message{Role: "system", Content: sb.String()}
// Check if the slice is not empty and the last message is from 'system'
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
// Replace the last message
opts.Messages[len(opts.Messages)-1] = newMessage
} else {
opts.Messages = append(opts.Messages, newMessage)
if args[1] == "system" {
opts.System = sb.String() // for display in modelfile
newMessage := api.Message{Role: "system", Content: sb.String()}
// Check if the slice is not empty and the last message is from 'system'
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
// Replace the last message
opts.Messages[len(opts.Messages)-1] = newMessage
} else {
opts.Messages = append(opts.Messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
} else if args[1] == "template" {
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
}
fmt.Println("Set system message.")
sb.Reset()
sb.Reset()
continue
@@ -377,6 +393,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
req := &api.ShowRequest{
Name: opts.Model,
System: opts.System,
Template: opts.Template,
Options: opts.Options,
}
resp, err := client.Show(cmd.Context(), req)
@@ -420,9 +437,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Println("No system message was specified for this model.")
}
case "template":
if resp.Template != "" {
switch {
case opts.Template != "":
fmt.Println(opts.Template + "\n")
case resp.Template != "":
fmt.Println(resp.Template)
} else {
default:
fmt.Println("No prompt template was specified for this model.")
}
default:
@@ -516,6 +536,10 @@ func buildModelfile(opts runOptions) string {
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
}
if opts.Template != "" {
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)

View File

@@ -59,6 +59,7 @@ func TestModelfileBuilder(t *testing.T) {
opts := runOptions{
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Template: "This is a template.",
Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
@@ -74,6 +75,7 @@ func TestModelfileBuilder(t *testing.T) {
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]
@@ -95,6 +97,7 @@ MESSAGE assistant """Yes it is true, I am half horse, half shark."""
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop [hi there]

View File

@@ -1,200 +1,134 @@
package convert
import (
"cmp"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"slices"
"strings"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
"github.com/ollama/ollama/llm"
)
const (
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
)
type Params struct {
Architectures []string `json:"architectures"`
VocabSize int `json:"vocab_size"`
HiddenSize int `json:"hidden_size"` // n_embd
HiddenLayers int `json:"num_hidden_layers"` // n_layer
ContextSize int `json:"max_position_embeddings"`
IntermediateSize int `json:"intermediate_size"`
AttentionHeads int `json:"num_attention_heads"` // n_head
KeyValHeads int `json:"num_key_value_heads"`
NormEPS float64 `json:"rms_norm_eps"`
BoSTokenID int `json:"bos_token_id"`
EoSTokenID int `json:"eos_token_id"`
HeadDimension int `json:"head_dim"`
PaddingTokenID int `json:"pad_token_id"`
RopeFrequencyBase float64 `json:"rope_theta"`
Experts int `json:"num_local_experts"`
ExpertsUsed int `json:"num_experts_per_tok"`
PreTokenizer string
ByteOrder
type Parameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
}
type ByteOrder interface {
binary.ByteOrder
binary.AppendByteOrder
func (Parameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
"tokenizer.ggml.model": t.Vocabulary.Model,
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
"tokenizer.ggml.scores": t.Vocabulary.Scores,
"tokenizer.ggml.token_type": t.Vocabulary.Types,
}
if t.Template != "" {
kv["tokenizer.chat_template"] = t.Template
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
return kv
}
type ModelArch interface {
GetTensors() error
LoadVocab() error
WriteGGUF(io.WriteSeeker) error
func (Parameters) specialTypes() []string {
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
}
type ModelFormat interface {
GetLayerName(string) (string, error)
GetTensors(string, *Params) ([]llm.Tensor, error)
GetParams(string) (*Params, error)
GetModelArch(string, string, *Params) (ModelArch, error)
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelData struct {
Path string
Name string
Params *Params
Vocab *Vocab
Tensors []llm.Tensor
Format ModelFormat
type Converter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []*llm.Tensor
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTypes returns any special token types the model uses
specialTypes() []string
writeFile(io.WriteSeeker, llm.KV, []*llm.Tensor) error
}
func GetModelFormat(dirname string) (ModelFormat, error) {
files, err := filepath.Glob(filepath.Join(dirname, "*"))
func ConvertAdapter(d string, ws io.WriteSeeker) error {
c := &adapter{}
ts, err := parseNPZ(d)
if err != nil {
return nil, err
return err
}
for _, fn := range files {
if strings.HasSuffix(fn, ".safetensors") {
return &SafetensorFormat{}, nil
} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
slog.Debug("model is torch")
return &TorchFormat{}, nil
}
}
return nil, fmt.Errorf("couldn't determine model format")
return c.writeFile(ws, c.KV(nil), c.Tensors(ts))
}
// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
Tokens []string
Scores []float32
Types []int32
Merges []string
}
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
func Convert(d string, ws io.WriteSeeker) error {
f, err := os.Open(filepath.Join(d, "config.json"))
if err != nil {
return nil, err
return err
}
defer f.Close()
var p Parameters
if err := json.NewDecoder(f).Decode(&p); err != nil {
return err
}
// To regenerate sentencepiece from the protobufs use:
// protoc -I=./ --go_out=./ sentencepiece_model.proto
modelProto := &sentencepiece.ModelProto{}
if err := proto.Unmarshal(in, modelProto); err != nil {
return nil, err
if len(p.Architectures) < 1 {
return errors.New("unknown architecture")
}
v := &Vocab{
Tokens: make([]string, 0),
Scores: make([]float32, 0),
Types: make([]int32, 0),
var c Converter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
c = &llama{}
case "MixtralForCausalLM":
c = &mixtral{}
case "GemmaForCausalLM":
c = &gemma{}
default:
return errors.New("unsupported architecture")
}
pieces := modelProto.GetPieces()
for _, p := range pieces {
v.Tokens = append(v.Tokens, p.GetPiece())
v.Scores = append(v.Scores, p.GetScore())
t := p.GetType()
switch t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
case sentencepiece.ModelProto_SentencePiece_CONTROL:
case sentencepiece.ModelProto_SentencePiece_UNUSED:
case sentencepiece.ModelProto_SentencePiece_BYTE:
default:
t = sentencepiece.ModelProto_SentencePiece_NORMAL
}
v.Types = append(v.Types, int32(t))
bts, err := os.ReadFile(filepath.Join(d, "config.json"))
if err != nil {
return err
}
slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))
// add any additional tokens
addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
if os.IsNotExist(err) {
return v, nil
} else if err != nil {
return nil, err
if err := json.Unmarshal(bts, c); err != nil {
return err
}
slog.Info("reading user defined tokens")
var extraTokenData map[string]int
if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
return nil, err
t, err := parseTokenizer(d, c.specialTypes())
if err != nil {
return err
}
type token struct {
key string
pos int
}
extraTokens := make([]token, 0)
for k, id := range extraTokenData {
extraTokens = append(extraTokens, token{k, id})
}
slices.SortFunc(extraTokens, func(a, b token) int {
return cmp.Compare(a.pos, b.pos)
})
numToks := len(v.Tokens)
for cnt, t := range extraTokens {
// the token id should match the specific index for the total number of tokens
if t.pos != cnt+numToks {
return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
}
v.Tokens = append(v.Tokens, t.key)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
if params.VocabSize > len(v.Tokens) {
missingTokens := params.VocabSize - len(v.Tokens)
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
for cnt := range missingTokens {
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
v.Scores = append(v.Scores, -1)
v.Types = append(v.Types, tokenTypeUserDefined)
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
}
return v, nil
ts, err := parseTensors(d)
if err != nil {
return err
}
return c.writeFile(ws, c.KV(t), c.Tensors(ts))
}

View File

@@ -0,0 +1,56 @@
package convert
import (
"io"
"strings"
"github.com/ollama/ollama/llm"
)
type adapter struct {
Parameters
}
var _ Converter = (*adapter)(nil)
func (p *adapter) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
return llm.WriteGGLA(ws, kv, ts)
}
func (p *adapter) KV(t *Tokenizer) llm.KV {
// todo - need a way to pass these in
kv := llm.KV{
"r": uint32(8),
"alpha": uint32(160),
}
return kv
}
func (p *adapter) Tensors(ts []Tensor) []*llm.Tensor {
var out []*llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
out = append(out, &llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *adapter) tensorName(n string) string {
return strings.NewReplacer(
"model.layers", "blk",
"self_attn.q_proj", "attn_q.weight",
"self_attn.k_proj", "attn_k.weight",
"self_attn.v_proj", "attn_v.weight",
"self_attn.o_proj", "attn_output.weight",
"lora_a", "loraA",
"lora_b", "loraB",
".npy", "",
).Replace(n)
}

103
convert/convert_gemma.go Normal file
View File

@@ -0,0 +1,103 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma struct {
Parameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*gemma)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
kv["gemma.feed_forward_length"] = p.IntermediateSize
kv["gemma.attention.head_count"] = p.NumAttentionHeads
kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma.attention.key_length"] = p.HeadDim
kv["gemma.attention.value_length"] = p.HeadDim
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma) Tensors(ts []Tensor) []*llm.Tensor {
var out []*llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, &llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

176
convert/convert_llama.go Normal file
View File

@@ -0,0 +1,176 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/ollama/ollama/llm"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type llama struct {
Parameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
}
var _ Converter = (*llama)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["llama.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.NumKeyValueHeads > 0 {
kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
}
if p.RMSNormEPS > 0 {
kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
}
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
return kv
}
func (p *llama) Tensors(ts []Tensor) []*llm.Tensor {
var out []*llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, &llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -0,0 +1,89 @@
package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
}
if p.NumExpertsPerToken > 0 {
kv["llama.expert_used_count"] = p.NumExpertsPerToken
}
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []*llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []*llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, &llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
return append(out, p.llama.Tensors(ts)...)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -1,48 +1,34 @@
//go:build slow
package convert
import (
"bytes"
"crypto/sha256"
"encoding/json"
"errors"
"flag"
"fmt"
"io"
"log/slog"
"math"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/llm"
"golang.org/x/exp/maps"
)
func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
func convertFull(t *testing.T, d string) (*os.File, llm.KV, llm.Tensors) {
t.Helper()
mf, err := GetModelFormat(p)
if err != nil {
t.Fatal(err)
}
params, err := mf.GetParams(p)
if err != nil {
t.Fatal(err)
}
arch, err := mf.GetModelArch("", p, params)
if err != nil {
t.Fatal(err)
}
if err := arch.LoadVocab(); err != nil {
t.Fatal(err)
}
if err := arch.GetTensors(); err != nil {
t.Fatal(err)
}
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
if err := arch.WriteGGUF(f); err != nil {
if err := Convert(d, f); err != nil {
t.Fatal(err)
}
@@ -50,54 +36,200 @@ func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
if err != nil {
t.Fatal(err)
}
defer r.Close()
t.Cleanup(func() { r.Close() })
m, _, err := llm.DecodeGGML(r)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
return m.KV(), m.Tensors()
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
return r, m.KV(), m.Tensors()
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
flag.Parse()
slog.SetLogLoggerLevel(level)
os.Exit(m.Run())
}
func TestConvertFull(t *testing.T) {
cases := []struct {
path string
arch string
tensors int
layers int
}{
{"Meta-Llama-3-8B-Instruct", "llama", 291, 35},
{"Mistral-7B-Instruct-v0.2", "llama", 291, 35},
{"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35},
{"gemma-2b-it", "gemma", 164, 20},
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
}
for _, tt := range cases {
t.Run(tt.path, func(t *testing.T) {
p := filepath.Join("testdata", tt.path)
if _, err := os.Stat(p); err != nil {
for i := range cases {
tt := cases[i]
t.Run(tt, func(t *testing.T) {
t.Parallel()
p := filepath.Join("testdata", tt)
if testing.Short() {
t.Skip("skipping in short mode")
} else if _, err := os.Stat(p); err != nil {
t.Skipf("%s not found", p)
}
kv, tensors := convertFull(t, p)
f, kv, tensors := convertFull(t, p)
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
if kv.Architecture() != tt.arch {
t.Fatalf("expected llama, got %s", kv.Architecture())
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
if kv.FileType().String() != "F16" {
t.Fatalf("expected F16, got %s", kv.FileType())
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = fmt.Sprintf("%x", sha256sum.Sum(nil))
}
if len(tensors) != tt.tensors {
t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors))
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil {
t.Fatal(err)
}
layers := tensors.Layers()
if len(layers) != tt.layers {
t.Fatalf("expected %d layers, got %d", tt.layers, len(layers))
var expect map[string]string
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
t.Fatal(err)
}
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
}
}
})
}
}
func TestConvertNPZ(t *testing.T) {
cases := []string{
"adapters.npz",
}
for _, fn := range cases {
ts, err := parseNPZ(filepath.Join("testdata", fn))
if err != nil {
t.Fatal(err)
}
if len(ts) != 16*2*2 {
t.Errorf("got: %d want: %d total layers", len(ts), 16*2*2)
}
a := adapter{}
for _, m := range ts {
at := m.(adapterTensor)
if at.path != filepath.Join("testdata", fn) {
t.Errorf("got: %s want: %s", at.path, filepath.Join("testdata", fn))
}
if at.dtype != "F32" {
t.Errorf("got: %s but only F32s are currently supported", at.dtype)
}
if len(at.tensorBase.shape) != 2 {
t.Errorf("got: %d want: %d tensor shape", at.tensorBase.shape, 2)
}
}
var ws io.WriteSeeker = &memWriter{}
err = llm.WriteGGLA(ws, a.KV(nil), a.Tensors(ts))
if err != nil {
t.Fatal(err)
}
mw := ws.(*memWriter)
slog.Info(fmt.Sprintf("buffer len = %d", len(mw.buf)))
if len(mw.buf) == 0 {
t.Errorf("ggla layer not written correctly")
}
rs := bytes.NewReader(mw.buf)
ggml, _, err := llm.DecodeGGML(rs, len(mw.buf))
if err != nil {
t.Fatal(err)
}
if ggml == nil {
t.Fatalf("ggla didn't convert to ggml correctly")
}
kv := ggml.KV()
if kv == nil {
t.Fatalf("no lora KVs were set")
}
r, ok := kv["r"]
if !ok || r != uint32(8) {
t.Errorf("lora rank was not set correctly")
}
alpha, ok := kv["alpha"]
if !ok || alpha != uint32(160) {
t.Errorf("lora alpha was not set correctly")
}
gts := ggml.Tensors()
if len(ts) != len(gts.Items) {
t.Fatalf("got: %d want: %d tensors in ggla", len(gts.Items), len(ts))
}
}
}
type memWriter struct {
buf []byte
pos int
}
func (m *memWriter) Write(p []byte) (n int, err error) {
minCap := m.pos + len(p)
if minCap > cap(m.buf) {
buf2 := make([]byte, len(m.buf), minCap+len(p)) // add some extra
copy(buf2, m.buf)
m.buf = buf2
}
if minCap > len(m.buf) {
m.buf = m.buf[:minCap]
}
copy(m.buf[m.pos:], p)
m.pos += len(p)
return len(p), nil
}
func (m *memWriter) Seek(offset int64, whence int) (int64, error) {
newPos, offs := 0, int(offset)
switch whence {
case io.SeekStart:
newPos = offs
case io.SeekCurrent:
newPos = m.pos + offs
case io.SeekEnd:
newPos = len(m.buf) + offs
}
if newPos < 0 {
return 0, errors.New("negative result pos")
}
m.pos = newPos
return int64(newPos), nil
}

View File

@@ -1,102 +0,0 @@
package convert
import (
"fmt"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type GemmaModel struct {
ModelData
}
func addOnes(data []float32, vectorSize int) ([]float32, error) {
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, vectorSize)
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (m *GemmaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
for _, l := range t {
if strings.HasSuffix(l.Name, "norm.weight") {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *GemmaModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) {
return addOnes(data, int(shape[0]))
}
func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
"gemma.context_length": uint32(m.Params.ContextSize),
"gemma.embedding_length": uint32(m.Params.HiddenSize),
"gemma.block_count": uint32(m.Params.HiddenLayers),
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
"tokenizer.ggml.unknown_token_id": uint32(3),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

View File

@@ -1,159 +0,0 @@
package convert
import (
"cmp"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type LlamaModel struct {
ModelData
}
func (m *LlamaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
switch m.Format.(type) {
case *TorchFormat:
wt := l.WriterTo.(torchWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
case *SafetensorFormat:
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *LlamaModel) LoadVocab() (err error) {
pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
if errors.Is(err, os.ErrNotExist) {
return nil
} else if err != nil {
return err
}
m.Vocab = &Vocab{}
for _, t := range ts {
m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
m.Vocab.Types = append(m.Vocab.Types, t.Type())
}
m.Vocab.Merges = merges
m.Params.PreTokenizer = pre
return nil
}
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": m.Params.PreTokenizer,
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
}
if len(m.Vocab.Merges) > 0 {
kv["tokenizer.ggml.merges"] = m.Vocab.Merges
} else {
kv["tokenizer.ggml.scores"] = m.Vocab.Scores
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
if dim != 0 {
dims = append(dims, int(dim))
}
}
var heads int
switch {
case strings.HasSuffix(name, "attn_q.weight"):
heads = params.AttentionHeads
case strings.HasSuffix(name, "attn_k.weight"):
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
default:
return nil, fmt.Errorf("unknown tensor name: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,79 +0,0 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MistralModel struct {
ModelData
}
func (m *MistralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MistralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
"tokenizer.ggml.unknown_token_id": uint32(0),
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

View File

@@ -1,87 +0,0 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MixtralModel struct {
ModelData
}
func (m *MixtralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MixtralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"llama.expert_count": uint32(m.Params.Experts),
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

74
convert/reader.go Normal file
View File

@@ -0,0 +1,74 @@
package convert
import (
"errors"
"io"
"path/filepath"
"strings"
)
type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(repacker)
WriteTo(io.Writer) (int64, error)
}
type tensorBase struct {
name string
shape []uint64
repacker
}
func (t tensorBase) Name() string {
return t.name
}
func (t tensorBase) Shape() []uint64 {
return t.shape
}
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
return 0
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return 0
default:
return 1
}
}
func (t *tensorBase) SetRepacker(fn repacker) {
t.repacker = fn
}
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(d string) ([]Tensor, error) {
patterns := map[string]func(...string) ([]Tensor, error){
"model-*-of-*.safetensors": parseSafetensors,
"model.safetensors": parseSafetensors,
"pytorch_model-*-of-*.bin": parseTorch,
"pytorch_model.bin": parseTorch,
"consolidated.*.pth": parseTorch,
}
for pattern, parseFn := range patterns {
matches, err := filepath.Glob(filepath.Join(d, pattern))
if err != nil {
return nil, err
}
if len(matches) > 0 {
return parseFn(matches...)
}
}
return nil, errors.New("unknown tensor format")
}

140
convert/reader_npz.go Normal file
View File

@@ -0,0 +1,140 @@
package convert
import (
"encoding/binary"
"fmt"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/sbinet/npyio/npz"
)
type adapterTensor struct {
path string
dtype string
*tensorBase
}
func DetectNPZ(fn string) (bool, error) {
f, err := npz.Open(fn)
if err != nil {
return false, err
}
defer f.Close()
if len(f.Keys()) > 0 && strings.HasSuffix(f.Keys()[0], ".npy") {
return true, nil
}
return false, nil
}
func parseNPZ(fn string) ([]Tensor, error) {
var ts []Tensor
f, err := npz.Open(fn)
if err != nil {
return nil, err
}
defer f.Close()
for _, name := range f.Keys() {
slog.Info(fmt.Sprintf("reading layer '%s'", name))
h := f.Header(name)
shape := make([]uint64, 2)
for cnt, v := range h.Descr.Shape {
// llamacpp expects the loraB layer to be reversed
if strings.Contains(name, "lora_b") {
shape[len(shape)-cnt-1] = uint64(v)
} else {
shape[cnt] = uint64(v)
}
}
dtypeMap := map[string]string{
"<f2": "F16",
"<f4": "F32",
}
dtype, ok := dtypeMap[h.Descr.Type]
if !ok {
return nil, fmt.Errorf("Unknown type '%s' for '%s'", h.Descr.Type, name)
}
ts = append(ts, adapterTensor{
path: fn,
dtype: dtype,
tensorBase: &tensorBase{
name: name,
shape: shape,
},
})
}
return ts, nil
}
func (t adapterTensor) Kind() uint32 {
switch t.dtype {
case "F32":
return 0
case "F16":
return 1
}
return 0
}
func (t adapterTensor) WriteTo(w io.Writer) (int64, error) {
f, err := npz.Open(t.path)
if err != nil {
return 0, err
}
defer f.Close()
switch t.dtype {
case "F32":
var f32s []float32
err = f.Read(t.tensorBase.name, &f32s)
if err != nil {
return 0, err
}
// ggla expects the loraB to be transposed
if strings.Contains(t.tensorBase.name, "lora_b") {
f32s, err = transpose(f32s, t.tensorBase.shape)
if err != nil {
return 0, err
}
}
return 0, binary.Write(w, binary.LittleEndian, f32s)
}
return 0, fmt.Errorf("unknown data type: %s", t.dtype)
}
func transpose(f32s []float32, shape []uint64) ([]float32, error) {
if len(shape) != 2 {
return nil, fmt.Errorf("only 2 dimensions supported for transpose")
}
// the shape is already backward
n := tensor.New(tensor.WithShape(int(shape[1]), int(shape[0])), tensor.WithBacking(f32s))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
f32s = make([]float32, 0)
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -0,0 +1,140 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"slices"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := os.Open(p)
if err != nil {
return nil, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, err
}
keys := maps.Keys(headers)
slices.Sort(keys)
for _, key := range keys {
if value := headers[key]; value.Type != "" {
ts = append(ts, safetensor{
path: p,
dtype: value.Type,
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: key,
shape: value.Shape,
},
})
}
}
}
return ts, nil
}
func safetensorsPad(n, s int64) int64 {
return 8 + n + s
}
type safetensor struct {
path string
dtype string
offset int64
size int64
*tensorBase
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := os.Open(st.path)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", st.dtype)
}
if st.repacker != nil {
f32s, err = st.repacker(st.Name(), f32s, st.Shape())
if err != nil {
return 0, err
}
}
switch st.Kind() {
case 0:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}
}

46
convert/reader_torch.go Normal file
View File

@@ -0,0 +1,46 @@
package convert
import (
"io"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
if err != nil {
return nil, err
}
for _, k := range pt.(*types.Dict).Keys() {
t := pt.(*types.Dict).MustGet(k)
var shape []uint64
for dim := range t.(*pytorch.Tensor).Size {
shape = append(shape, uint64(dim))
}
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: k.(string),
shape: shape,
},
})
}
}
return ts, nil
}
type torch struct {
storage pytorch.StorageInterface
*tensorBase
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

View File

@@ -1,309 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type safetensorWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
filename string
dtype string
offset, size int64
repacker func(string, []float32, []uint64) ([]float32, error)
}
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
type SafetensorFormat struct{}
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
var tensors []llm.Tensor
matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors"))
if err != nil {
return nil, err
}
var offset uint64
for _, f := range matches {
var t []llm.Tensor
var err error
t, offset, err = m.readTensors(f, offset, params)
if err != nil {
return nil, err
}
tensors = append(tensors, t...)
}
return tensors, nil
}
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
f, err := os.Open(fn)
if err != nil {
return nil, 0, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, 0, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, 0, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, 0, err
}
var keys []string
for key := range headers {
if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") {
keys = append(keys, key)
}
}
slices.Sort(keys)
var tensors []llm.Tensor
for _, key := range keys {
value := headers[key]
var kind uint32
switch len(value.Shape) {
case 0:
// valuedata
continue
case 2:
kind = 1
}
name, err := m.GetLayerName(key)
if err != nil {
return nil, 0, err
}
shape := make([]uint64, len(value.Shape))
copy(shape, value.Shape)
pad := func(s int64) int64 {
return 8 + n + s
}
t := llm.Tensor{
Name: name,
Kind: kind,
Offset: offset,
Shape: shape,
}
t.WriterTo = safetensorWriterTo{
t: &t,
params: params,
bo: params.ByteOrder,
filename: fn,
dtype: value.Type,
offset: pad(value.Offsets[0]),
size: pad(value.Offsets[1]) - pad(value.Offsets[0]),
}
offset += t.Size()
tensors = append(tensors, t)
}
return tensors, offset, nil
}
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
return nil, err
}
defer f.Close()
var params Params
if err := json.NewDecoder(f).Decode(&params); err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
tMap := map[string]string{
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range tMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
f, err := os.Open(r.filename)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(r.offset, io.SeekStart); err != nil {
return 0, err
}
var f32s []float32
switch r.dtype {
case "F32":
f32s = make([]float32, r.size/4)
if err = binary.Read(f, r.bo, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, r.size/2)
if err = binary.Read(f, r.bo, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, r.size)
if err = binary.Read(f, r.bo, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", r.dtype)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MistralForCausalLM":
return &MistralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MixtralForCausalLM":
return &MixtralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "GemmaForCausalLM":
return &GemmaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -0,0 +1,313 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "8192",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "500000",
"llama.vocab_size": "128256",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.bos_token_id": "128000",
"tokenizer.ggml.eos_token_id": "128009",
"tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b",
"tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978",
"tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a",
"token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698",
"blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee",
"blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900",
"blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd",
"blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516",
"blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb",
"blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e",
"blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc",
"blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1",
"blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8",
"blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff",
"blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0",
"blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40",
"blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f",
"blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862",
"blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d",
"blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3",
"blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c",
"blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40",
"blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539",
"blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662",
"blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718",
"blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84",
"blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe",
"blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5",
"blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343",
"blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d",
"blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02",
"blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a",
"blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4",
"blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f",
"blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e",
"blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b",
"blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291",
"blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3",
"blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8",
"blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767",
"blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217",
"blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68",
"blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee",
"blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22",
"blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9",
"blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853",
"blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b",
"blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04",
"blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d",
"blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156",
"blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9",
"blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4",
"blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0",
"blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406",
"blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb",
"blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73",
"blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409",
"blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27",
"blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942",
"blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1",
"blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04",
"blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94",
"blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8",
"blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960",
"blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3",
"blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6",
"blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36",
"blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf",
"blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f",
"blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f",
"blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e",
"blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e",
"blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44",
"blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2",
"blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff",
"blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f",
"blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec",
"blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1",
"blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc",
"blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30",
"blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e",
"blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5",
"blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4",
"blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6",
"blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e",
"blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593",
"blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9",
"blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542",
"blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e",
"blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f",
"blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f",
"blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b",
"blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476",
"blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3",
"blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94",
"blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a",
"blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226",
"blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a",
"blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3",
"blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187",
"blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a",
"blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4",
"blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2",
"blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc",
"blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898",
"blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f",
"blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be",
"blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3",
"blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855",
"blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b",
"blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f",
"blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7",
"blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6",
"blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200",
"blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f",
"blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df",
"blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6",
"blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6",
"blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238",
"blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb",
"blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc",
"blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82",
"blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3",
"blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4",
"blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943",
"blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2",
"blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360",
"blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3",
"blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9",
"blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706",
"blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093",
"blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5",
"blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1",
"blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae",
"blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003",
"blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8",
"blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514",
"blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b",
"blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687",
"blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4",
"blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801",
"blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76",
"blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d",
"blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500",
"blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751",
"blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429",
"blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e",
"blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec",
"blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0",
"blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333",
"blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e",
"blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e",
"blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651",
"blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439",
"blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0",
"blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925",
"blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25",
"blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80",
"blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05",
"blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d",
"blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09",
"blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9",
"blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02",
"blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4",
"blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7",
"blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a",
"blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835",
"blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c",
"blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb",
"blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7",
"blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960",
"blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4",
"blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2",
"blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164",
"blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c",
"blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72",
"blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04",
"blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf",
"blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17",
"blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa",
"blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5",
"blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f",
"blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60",
"blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84",
"blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba",
"blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790",
"blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6",
"blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e",
"blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17",
"blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a",
"blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204",
"blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c",
"blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2",
"blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298",
"blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53",
"blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f",
"blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789",
"blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9",
"blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a",
"blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac",
"blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee",
"blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864",
"blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a",
"blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3",
"blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e",
"blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296",
"blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28",
"blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12",
"blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de",
"blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6",
"blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703",
"blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c",
"blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7",
"blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8",
"blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf",
"blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9",
"blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe",
"blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df",
"blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965",
"blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c",
"blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850",
"blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5",
"blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117",
"blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa",
"blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b",
"blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e",
"blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac",
"blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb",
"blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2",
"blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b",
"blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f",
"blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0",
"blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5",
"blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346",
"blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4",
"blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666",
"blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10",
"blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371",
"blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee",
"blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833",
"blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62",
"blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b",
"blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8",
"blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a",
"blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84",
"blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604",
"blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4",
"blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2",
"blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0",
"blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64",
"blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a",
"blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0",
"blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925",
"blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a",
"blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3",
"blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6",
"blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40",
"blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45",
"blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a",
"blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b",
"blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e",
"blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8",
"blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9",
"blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f",
"blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3",
"blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d",
"blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f",
"blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967",
"blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642",
"blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc",
"blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa",
"blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48",
"blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada",
"blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c",
"blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af",
"blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b",
"blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638",
"blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0",
"blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03",
"blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa",
"blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc",
"blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1",
"blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81",
"blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566",
"blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a",
"blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f",
"blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a",
"blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f",
"blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56",
"blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d",
"blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2",
"blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b",
"output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892",
"output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e"
}

View File

@@ -0,0 +1,313 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.rope.dimension_count": "128",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81",
"blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be",
"blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b",
"blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373",
"blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25",
"blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd",
"blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d",
"blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e",
"blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287",
"blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987",
"blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712",
"blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357",
"blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740",
"blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b",
"blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e",
"blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db",
"blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346",
"blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed",
"blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2",
"blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153",
"blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24",
"blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348",
"blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a",
"blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567",
"blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397",
"blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd",
"blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1",
"blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c",
"blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075",
"blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b",
"blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610",
"blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948",
"blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38",
"blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf",
"blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432",
"blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c",
"blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88",
"blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b",
"blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd",
"blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de",
"blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa",
"blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8",
"blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf",
"blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6",
"blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65",
"blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642",
"blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316",
"blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443",
"blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d",
"blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d",
"blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e",
"blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e",
"blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5",
"blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b",
"blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f",
"blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932",
"blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085",
"blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075",
"blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90",
"blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555",
"blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1",
"blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f",
"blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392",
"blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab",
"blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a",
"blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f",
"blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe",
"blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c",
"blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8",
"blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387",
"blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0",
"blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff",
"blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5",
"blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5",
"blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d",
"blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff",
"blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369",
"blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f",
"blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa",
"blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a",
"blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f",
"blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89",
"blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645",
"blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d",
"blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995",
"blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006",
"blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e",
"blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75",
"blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57",
"blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97",
"blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a",
"blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d",
"blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f",
"blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c",
"blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278",
"blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93",
"blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08",
"blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3",
"blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6",
"blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5",
"blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677",
"blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4",
"blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950",
"blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be",
"blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403",
"blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87",
"blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60",
"blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb",
"blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42",
"blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec",
"blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761",
"blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04",
"blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66",
"blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10",
"blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a",
"blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d",
"blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0",
"blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04",
"blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3",
"blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be",
"blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a",
"blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b",
"blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd",
"blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5",
"blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0",
"blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683",
"blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba",
"blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be",
"blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54",
"blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a",
"blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd",
"blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9",
"blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11",
"blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c",
"blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca",
"blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38",
"blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522",
"blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313",
"blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a",
"blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626",
"blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6",
"blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19",
"blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9",
"blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623",
"blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15",
"blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e",
"blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad",
"blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4",
"blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048",
"blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b",
"blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee",
"blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15",
"blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9",
"blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c",
"blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07",
"blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1",
"blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece",
"blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed",
"blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18",
"blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196",
"blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392",
"blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e",
"blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de",
"blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b",
"blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995",
"blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa",
"blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899",
"blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156",
"blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d",
"blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb",
"blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a",
"blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd",
"blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c",
"blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4",
"blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe",
"blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724",
"blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd",
"blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd",
"blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9",
"blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881",
"blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd",
"blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0",
"blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308",
"blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b",
"blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185",
"blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7",
"blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8",
"blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2",
"blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d",
"blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101",
"blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e",
"blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276",
"blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e",
"blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f",
"blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca",
"blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30",
"blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4",
"blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462",
"blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c",
"blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87",
"blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76",
"blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0",
"blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842",
"blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73",
"blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5",
"blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8",
"blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9",
"blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7",
"blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2",
"blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4",
"blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831",
"blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795",
"blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101",
"blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf",
"blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061",
"blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10",
"blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801",
"blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66",
"blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb",
"blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8",
"blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9",
"blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590",
"blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf",
"blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e",
"blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab",
"blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d",
"blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6",
"blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97",
"blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b",
"blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f",
"blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074",
"blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6",
"blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4",
"blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75",
"blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3",
"blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9",
"blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc",
"blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509",
"blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581",
"blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e",
"blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31",
"blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6",
"blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af",
"blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287",
"blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b",
"blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c",
"blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840",
"blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54",
"blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add",
"blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e",
"blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb",
"blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8",
"blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1",
"blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba",
"blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794",
"blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d",
"blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1",
"blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c",
"blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83",
"blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83",
"blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80",
"blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05",
"blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae",
"blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859",
"blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b",
"blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53",
"blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36",
"blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89",
"blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036",
"blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2",
"blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c",
"blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743",
"blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65",
"blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3",
"blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e",
"blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267",
"blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993",
"blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46",
"blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04",
"blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6",
"blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8",
"blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101",
"blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd",
"blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda",
"blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba",
"blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec",
"blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf",
"blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268",
"blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb",
"output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330",
"output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3"
}

View File

@@ -0,0 +1,348 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "1e+06",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.expert_count": "8",
"llama.expert_used_count": "2",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4",
"blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa",
"blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5",
"blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3",
"blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314",
"blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c",
"blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2",
"blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67",
"blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227",
"blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b",
"blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366",
"blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809",
"blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd",
"blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c",
"blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33",
"blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f",
"blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a",
"blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793",
"blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1",
"blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd",
"blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c",
"blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964",
"blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c",
"blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e",
"blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2",
"blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c",
"blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6",
"blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e",
"blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9",
"blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3",
"blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1",
"blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c",
"blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497",
"blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086",
"blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210",
"blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1",
"blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86",
"blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625",
"blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75",
"blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555",
"blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e",
"blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd",
"blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4",
"blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164",
"blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6",
"blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758",
"blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790",
"blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9",
"blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12",
"blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d",
"blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb",
"blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d",
"blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff",
"blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481",
"blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e",
"blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece",
"blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd",
"blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13",
"blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba",
"blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a",
"blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca",
"blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66",
"blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470",
"blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c",
"blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b",
"blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c",
"blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424",
"blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6",
"blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84",
"blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb",
"blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1",
"blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948",
"blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc",
"blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5",
"blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a",
"blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0",
"blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0",
"blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187",
"blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948",
"blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e",
"blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2",
"blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17",
"blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983",
"blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699",
"blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0",
"blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db",
"blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7",
"blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90",
"blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5",
"blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e",
"blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b",
"blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f",
"blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333",
"blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce",
"blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0",
"blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b",
"blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c",
"blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf",
"blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351",
"blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5",
"blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99",
"blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702",
"blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39",
"blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a",
"blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5",
"blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad",
"blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd",
"blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3",
"blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac",
"blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95",
"blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482",
"blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6",
"blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea",
"blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6",
"blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325",
"blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512",
"blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47",
"blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e",
"blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89",
"blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada",
"blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee",
"blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49",
"blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829",
"blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e",
"blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a",
"blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154",
"blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97",
"blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374",
"blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5",
"blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5",
"blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52",
"blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05",
"blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace",
"blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069",
"blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc",
"blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337",
"blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899",
"blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d",
"blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec",
"blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c",
"blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d",
"blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9",
"blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78",
"blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41",
"blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4",
"blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06",
"blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8",
"blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599",
"blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab",
"blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241",
"blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211",
"blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb",
"blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98",
"blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf",
"blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e",
"blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73",
"blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef",
"blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a",
"blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c",
"blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0",
"blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c",
"blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5",
"blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa",
"blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4",
"blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6",
"blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b",
"blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62",
"blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d",
"blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc",
"blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125",
"blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248",
"blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd",
"blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5",
"blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d",
"blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940",
"blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561",
"blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac",
"blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec",
"blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3",
"blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047",
"blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298",
"blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e",
"blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8",
"blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75",
"blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f",
"blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb",
"blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4",
"blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae",
"blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78",
"blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5",
"blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057",
"blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff",
"blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8",
"blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60",
"blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd",
"blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b",
"blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0",
"blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813",
"blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226",
"blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7",
"blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39",
"blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc",
"blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4",
"blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b",
"blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5",
"blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57",
"blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765",
"blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb",
"blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2",
"blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820",
"blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6",
"blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660",
"blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c",
"blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a",
"blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93",
"blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209",
"blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa",
"blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d",
"blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12",
"blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36",
"blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369",
"blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179",
"blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb",
"blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206",
"blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237",
"blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4",
"blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a",
"blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f",
"blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32",
"blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8",
"blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2",
"blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5",
"blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779",
"blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b",
"blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd",
"blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1",
"blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e",
"blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d",
"blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c",
"blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6",
"blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8",
"blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1",
"blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192",
"blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a",
"blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79",
"blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1",
"blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33",
"blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa",
"blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643",
"blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0",
"blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61",
"blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c",
"blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c",
"blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb",
"blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7",
"blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431",
"blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b",
"blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a",
"blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7",
"blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64",
"blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e",
"blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6",
"blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781",
"blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6",
"blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff",
"blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54",
"blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82",
"blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8",
"blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765",
"blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16",
"blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd",
"blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e",
"blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2",
"blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7",
"blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61",
"blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca",
"blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4",
"blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2",
"blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1",
"blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a",
"blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4",
"blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea",
"blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b",
"blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778",
"blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74",
"blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd",
"blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2",
"blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8",
"blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc",
"blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64",
"blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805",
"blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298",
"blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e",
"blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b",
"blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78",
"blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71",
"blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7",
"blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a",
"blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705",
"blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea",
"blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9",
"blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c",
"blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb",
"blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd",
"blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044",
"blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1",
"blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70",
"blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e",
"blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646",
"blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273",
"blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e",
"blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786",
"blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40",
"blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a",
"blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b",
"blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172",
"blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7",
"blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628",
"blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802",
"blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0",
"blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8",
"output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13",
"output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564"
}

BIN
convert/testdata/adapters.npz vendored Normal file
View File

Binary file not shown.

188
convert/testdata/gemma-2b-it.json vendored Normal file
View File

@@ -0,0 +1,188 @@
{
"general.architecture": "gemma",
"general.file_type": "1",
"general.quantization_version": "2",
"gemma.block_count": "18",
"gemma.context_length": "8192",
"gemma.embedding_length": "2048",
"gemma.feed_forward_length": "16384",
"gemma.attention.head_count": "8",
"gemma.attention.head_count_kv": "1",
"gemma.attention.key_length": "256",
"gemma.attention.value_length": "256",
"gemma.attention.layer_norm_rms_epsilon": "1e-06",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "2",
"tokenizer.ggml.eos_token_id": "1",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "3",
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
"tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d",
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
"token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07",
"blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f",
"blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb",
"blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265",
"blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791",
"blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13",
"blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7",
"blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf",
"blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448",
"blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4",
"blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406",
"blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626",
"blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee",
"blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a",
"blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00",
"blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79",
"blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33",
"blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22",
"blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315",
"blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044",
"blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455",
"blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5",
"blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5",
"blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4",
"blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f",
"blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061",
"blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687",
"blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1",
"blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21",
"blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20",
"blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce",
"blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991",
"blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68",
"blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e",
"blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2",
"blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2",
"blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee",
"blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db",
"blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065",
"blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0",
"blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde",
"blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa",
"blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec",
"blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1",
"blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3",
"blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e",
"blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5",
"blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded",
"blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536",
"blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8",
"blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9",
"blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653",
"blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557",
"blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49",
"blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14",
"blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4",
"blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a",
"blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b",
"blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003",
"blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a",
"blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd",
"blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168",
"blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb",
"blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f",
"blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7",
"blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d",
"blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb",
"blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f",
"blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774",
"blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10",
"blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b",
"blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2",
"blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe",
"blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69",
"blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f",
"blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6",
"blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c",
"blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c",
"blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef",
"blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908",
"blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73",
"blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211",
"blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183",
"blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee",
"blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7",
"blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7",
"blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054",
"blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764",
"blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57",
"blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923",
"blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb",
"blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa",
"blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010",
"blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff",
"blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763",
"blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf",
"blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b",
"blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34",
"blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f",
"blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492",
"blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df",
"blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754",
"blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea",
"blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce",
"blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789",
"blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709",
"blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e",
"blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474",
"blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0",
"blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1",
"blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b",
"blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509",
"blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae",
"blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e",
"blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7",
"blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104",
"blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456",
"blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d",
"blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3",
"blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5",
"blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f",
"blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7",
"blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9",
"blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd",
"blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1",
"blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7",
"blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd",
"blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86",
"blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0",
"blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d",
"blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8",
"blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52",
"blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c",
"blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19",
"blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d",
"blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e",
"blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c",
"blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec",
"blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca",
"blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91",
"blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6",
"blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b",
"blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f",
"blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767",
"blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5",
"blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b",
"blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93",
"blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec",
"blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74",
"blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f",
"blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948",
"blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca",
"blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672",
"blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9",
"blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c",
"blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465",
"blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555",
"blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d",
"blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94",
"blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3",
"blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c",
"blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab",
"blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf",
"output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4"
}

View File

@@ -3,19 +3,148 @@ package convert
import (
"cmp"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"slices"
)
"golang.org/x/exp/maps"
const (
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
)
type Tokenizer struct {
Version string `json:"version"`
AddedTokens []Token `json:"added_tokens"`
Model TokenizerModel `json:"model"`
*Vocabulary
SpecialVocabulary []*SpecialVocabulary
Merges []string
Pre string
Template string
}
func parseTokenizer(d string, specialTypes []string) (*Tokenizer, error) {
v, err := parseVocabulary(d)
if err != nil {
return nil, err
}
t := &Tokenizer{
Vocabulary: v,
Pre: "default",
}
addedTokens := make(map[string]token)
if f, err := os.Open(filepath.Join(d, "tokenizer.json")); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var tt tokenizer
if err := json.NewDecoder(f).Decode(&tt); err != nil {
return nil, err
}
for _, t := range tt.AddedTokens {
addedTokens[t.Content] = t
}
t.Merges = tt.Model.Merges
sha256sum := sha256.New()
for _, pt := range tt.PreTokenizer.PreTokenizers {
switch pt.Type {
case "Split":
if pt.Pattern.Regex != "" {
sha256sum.Write([]byte(pt.Pattern.Regex))
}
}
}
switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
t.Pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
t.Pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
t.Pre = "deepseek-coder"
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
// noop, empty pretokenizer
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
}
}
if f, err := os.Open(filepath.Join(d, "tokenizer_config.json")); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
if template, ok := p["chat_template"]; ok {
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
}
}
for _, st := range specialTypes {
sv := SpecialVocabulary{Type: st}
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
return nil, err
}
}
if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok {
var content string
if err := json.Unmarshal(bts, &content); err != nil {
var mm map[string]any
if err := json.Unmarshal(bts, &mm); err != nil {
continue
}
content, ok = mm["content"].(string)
if !ok {
continue
}
}
sv.Content = content
}
if id, ok := addedTokens[sv.Content]; ok {
sv.ID = id.ID
t.SpecialVocabulary = append(t.SpecialVocabulary, &sv)
}
}
}
return t, nil
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
} `json:"model"`
PreTokenizer struct {
PreTokenizers []struct {
@@ -27,80 +156,106 @@ type Tokenizer struct {
} `json:"pre_tokenizer"`
}
type TokenizerModel struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
Tokens []Token
}
type Token struct {
type token struct {
ID int `json:"id"`
Content string `json:"content"`
Special bool `json:"special"`
UserDefined bool
}
func (t *Token) Type() int32 {
switch {
case t.Special:
return tokenTypeControl
case t.UserDefined:
return tokenTypeUserDefined
default:
return tokenTypeNormal
}
type Vocabulary struct {
Model string
Tokens []string
Scores []float32
Types []int32
}
func (t *Tokenizer) maxID() int {
return max(
slices.Max(maps.Values(t.Model.Vocab)),
slices.MaxFunc(t.AddedTokens, func(a, b Token) int {
return cmp.Compare(a.ID, b.ID)
}).ID,
)
}
func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) {
f, err := os.Open(dirpath)
func parseVocabularyFromTokenizer(p string) (*Vocabulary, error) {
f, err := os.Open(filepath.Join(p, "tokenizer.json"))
if err != nil {
panic(err)
return nil, err
}
defer f.Close()
var t Tokenizer
var t tokenizer
if err := json.NewDecoder(f).Decode(&t); err != nil {
return "", nil, nil, err
return nil, err
}
tokens = make([]Token, t.maxID()+1)
var tokens []token
for k, v := range t.Model.Vocab {
tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false}
tokens = append(tokens, token{
ID: v,
Content: k,
})
}
for _, v := range t.AddedTokens {
v.UserDefined = true
tokens[v.ID] = v
for _, t := range t.AddedTokens {
t.UserDefined = true
tokens = append(tokens, t)
}
sha256sum := sha256.New()
for _, pt := range t.PreTokenizer.PreTokenizers {
if pt.Type == "Split" && pt.Pattern.Regex != "" {
sha256sum.Write([]byte(pt.Pattern.Regex))
slices.SortFunc(tokens, func(i, j token) int {
return cmp.Compare(i.ID, j.ID)
})
v := Vocabulary{Model: "gpt2"}
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
switch {
case t.Special:
v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)
}
}
switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
pre = "deepseek-coder"
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
pre = "default"
return &v, nil
}
func parseVocabulary(d string) (*Vocabulary, error) {
patterns := map[string]func(string) (*Vocabulary, error){
"tokenizer.model": parseSentencePiece,
"tokenizer.json": parseVocabularyFromTokenizer,
}
return pre, tokens, t.Model.Merges, nil
for pattern, parseFn := range patterns {
matches, err := filepath.Glob(filepath.Join(d, pattern))
if err != nil {
return nil, err
}
if len(matches) > 0 {
return parseFn(d)
}
}
return nil, errors.New("unknown tensor format")
}
type SpecialVocabulary struct {
Type string
ID int
Content string
AddToken bool
}
func (sv SpecialVocabulary) Key() string {
switch t := sv.Type; t {
case "bos", "eos", "cls", "mask":
return t
case "unk":
return "unknown"
case "sep":
//nolint:misspell // this is an upstream typo
return "seperator"
case "pad":
return "padding"
}
panic("unknown special vocabulary type")
}

83
convert/tokenizer_spm.go Normal file
View File

@@ -0,0 +1,83 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"slices"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
)
func parseSentencePiece(d string) (*Vocabulary, error) {
bts, err := os.ReadFile(filepath.Join(d, "tokenizer.model"))
if err != nil {
return nil, err
}
var spm sentencepiece.ModelProto
if err := proto.Unmarshal(bts, &spm); err != nil {
return nil, err
}
v := Vocabulary{Model: "llama"}
for _, piece := range spm.GetPieces() {
v.Tokens = append(v.Tokens, piece.GetPiece())
v.Scores = append(v.Scores, piece.GetScore())
switch t := piece.GetType(); t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
sentencepiece.ModelProto_SentencePiece_CONTROL,
sentencepiece.ModelProto_SentencePiece_UNUSED,
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
}
}
f, err := os.Open(filepath.Join(d, "added_tokens.json"))
if errors.Is(err, os.ErrNotExist) {
return &v, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var atm map[string]int
if err := json.NewDecoder(f).Decode(&atm); err != nil {
return nil, err
}
type t struct {
id int
content string
}
var ts []t
for content, id := range atm {
ts = append(ts, t{id, content})
}
slices.SortFunc(ts, func(i, j t) int {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
}
v.Tokens = append(v.Tokens, t.content)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
return &v, nil
}

View File

@@ -1,287 +0,0 @@
package convert
import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type torchWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
storage pytorch.StorageInterface
repacker func(string, []float32, []uint64) ([]float32, error)
}
type TorchFormat struct{}
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
slog.Debug("getting torch tensors")
var files []string
if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 {
files = append(files, pt...)
} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 {
files = append(files, pt...)
}
var offset uint64
var tensors []llm.Tensor
for _, fn := range files {
m, err := pytorch.Load(fn)
if err != nil {
slog.Error(fmt.Sprintf("error unpickling: %q", err))
return []llm.Tensor{}, err
}
for _, k := range m.(*types.Dict).Keys() {
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
continue
}
t, _ := m.(*types.Dict).Get(k)
tshape := t.(*pytorch.Tensor).Size
var size uint64
var kind uint32
switch len(tshape) {
case 0:
continue
case 1:
// convert to float32
kind = 0
size = uint64(tshape[0] * 4)
case 2:
// convert to float16
kind = 1
size = uint64(tshape[0] * tshape[1] * 2)
}
ggufName, err := tf.GetLayerName(k.(string))
if err != nil {
slog.Error(err.Error())
return nil, err
}
slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
shape := []uint64{0, 0, 0, 0}
for i := range tshape {
shape[i] = uint64(tshape[i])
}
tensor := llm.Tensor{
Name: ggufName,
Kind: kind,
Offset: offset, // calculate the offset
Shape: shape,
}
tensor.WriterTo = torchWriterTo{
t: &tensor,
params: params,
bo: params.ByteOrder,
storage: t.(*pytorch.Tensor).Source,
}
tensors = append(tensors, tensor)
offset += size
}
}
return tensors, nil
}
func getAltParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "params.json"))
if err != nil {
slog.Error("no params.json")
return nil, err
}
defer f.Close()
type TorchParams struct {
HiddenSize int `json:"dim"`
AttentionHeads int `json:"n_heads"`
KeyValHeads int `json:"n_kv_heads"`
HiddenLayers int `json:"n_layers"`
RopeTheta float64 `json:"rope_theta"`
NormEPS float64 `json:"norm_eps"`
}
var tparams TorchParams
d := json.NewDecoder(f)
err = d.Decode(&tparams)
if err != nil {
return nil, err
}
params := &Params{
Architectures: []string{"LlamaForCausalLM"},
HiddenSize: tparams.HiddenSize,
AttentionHeads: tparams.AttentionHeads,
KeyValHeads: tparams.KeyValHeads,
HiddenLayers: tparams.HiddenLayers,
NormEPS: tparams.NormEPS,
}
switch {
case tparams.RopeTheta == 1000000:
// Codellama
params.ContextSize = 16384
case tparams.NormEPS == 1e-06:
// llama2
slog.Debug("Found llama2 - setting context size to 4096")
params.ContextSize = 4096
default:
params.ContextSize = 2048
}
params.ByteOrder = binary.LittleEndian
return params, nil
}
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
if os.IsNotExist(err) {
// try params.json instead
return getAltParams(dirpath)
} else {
return nil, err
}
}
var params Params
d := json.NewDecoder(f)
err = d.Decode(&params)
if err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *TorchFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"tok_embeddings.weight": "token_embd.weight",
"output.weight": "output.weight",
"norm.weight": "output_norm.weight",
"rope.freqs": "rope_freqs.weight",
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
lMap := map[string]string{
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range lMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
var f32s []float32
switch s := r.storage.(type) {
case *pytorch.FloatStorage:
f32s = s.Data
case *pytorch.HalfStorage:
f32s = s.Data
case *pytorch.BFloat16Storage:
f32s = s.Data
default:
return 0, fmt.Errorf("unknown data type: %T", s)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -272,4 +272,4 @@ The following server settings may be used to adjust how Ollama handles concurren
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.

View File

@@ -103,6 +103,10 @@ curl http://localhost:11434/v1/chat/completions \
- [ ] `user`
- [ ] `n`
#### Notes
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
## Models
Before using a model, pull it locally `ollama pull`:

2
go.mod
View File

@@ -18,10 +18,10 @@ require (
require (
github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/google/go-cmp v0.6.0
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/sbinet/npyio v0.9.0
)
require (

2
go.sum
View File

@@ -171,6 +171,8 @@ github.com/rogpeppe/go-internal v1.8.0 h1:FCbCCtXNOY3UtUuHUYaghJg4y7Fd14rXifAYUA
github.com/rogpeppe/go-internal v1.8.0/go.mod h1:WmiCO8CzOY8rg0OYDC4/i/2WRWAB6poM+XZ2dLUbcbE=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/ruudk/golang-pdf417 v0.0.0-20181029194003-1af4ab5afa58/go.mod h1:6lfFZQK844Gfx8o5WFuvpxWRwnSoipWe/p622j1v06w=
github.com/sbinet/npyio v0.9.0 h1:A7h8OyYsOsc+NPRtynRMSf70xSgATZNpamNp8nQ8Tjc=
github.com/sbinet/npyio v0.9.0/go.mod h1:vgjQEMRTS9aMS9GdXhr+5jounCmGqjDO2JI+IpSokns=
github.com/spf13/cobra v1.7.0 h1:hyqWnYt1ZQShIddO5kBpj3vu05/++x6tJ6dg8EC572I=
github.com/spf13/cobra v1.7.0/go.mod h1:uLxZILRyS/50WlhOIKD7W6V5bgeIt+4sICxh6uRMrb0=
github.com/spf13/pflag v1.0.5 h1:iy+VFUOCP1a+8yFto/drg2CJ5u0yRoB7fZw3DKv/JXA=

View File

@@ -49,17 +49,9 @@ func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
}
func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
// We try to favor system paths first, so that we can wire up the subprocess to use
// the system version. Only use our bundled version if the system version doesn't work
// This gives users a more recovery options if versions have subtle problems at runtime
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
@@ -95,5 +87,14 @@ func commonAMDValidateLibDir() (string, error) {
}
}
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
}

View File

@@ -84,8 +84,9 @@ func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
}
slog.Debug("hipDriverGetVersion", "version", version)
driverMajor = version / 10000000
driverMinor = (version - (driverMajor * 10000000)) / 100000
// TODO - this isn't actually right, but the docs claim hipDriverGetVersion isn't accurate anyway...
driverMajor = version / 1000
driverMinor = (version - (driverMajor * 1000)) / 10
return driverMajor, driverMinor, nil
}

View File

@@ -22,8 +22,8 @@ const (
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
)
func AMDGetGPUInfo() []RocmGPUInfo {
@@ -35,11 +35,12 @@ func AMDGetGPUInfo() []RocmGPUInfo {
}
defer hl.Release()
driverMajor, driverMinor, err := hl.AMDDriverVersion()
if err != nil {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug("error looking up amd driver version", "error", err)
}
// TODO - this reports incorrect version information, so omitting for now
// driverMajor, driverMinor, err := hl.AMDDriverVersion()
// if err != nil {
// // For now this is benign, but we may eventually need to fail compatibility checks
// slog.Debug("error looking up amd driver version", "error", err)
// }
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
@@ -131,8 +132,10 @@ func AMDGetGPUInfo() []RocmGPUInfo {
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
// DriverMajor: driverMajor,
// DriverMinor: driverMinor,
},
index: i,
}

View File

@@ -274,28 +274,6 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
@@ -360,17 +338,14 @@ func GetGPUInfo() GpuInfoList {
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
@@ -399,14 +374,9 @@ func GetGPUInfo() GpuInfoList {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),

View File

@@ -57,7 +57,6 @@ func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
FreeMemory: uint64(C.getFreeMemory()),
// FreeSwap omitted as Darwin uses dynamic paging
}, nil
}

View File

@@ -50,7 +50,7 @@ var OneapiMgmtName = "libze_intel_gpu.so"
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
var total, available, free, buffers, cached uint64
f, err := os.Open("/proc/meminfo")
if err != nil {
return mem, err
@@ -70,21 +70,20 @@ func GetCPUMem() (memInfo, error) {
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
case strings.HasPrefix(line, "SwapFree:"):
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
default:
continue
}
if err != nil {
return mem, err
}
if total > 0 && available > 0 {
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = available * format.KibiByte
return mem, nil
}
}
mem.TotalMemory = total * format.KibiByte
mem.FreeSwap = freeSwap * format.KibiByte
if available > 0 {
mem.FreeMemory = available * format.KibiByte
} else {
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
}
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
return mem, nil
}

View File

@@ -51,5 +51,5 @@ func GetCPUMem() (memInfo, error) {
if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
}
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
}

View File

@@ -10,7 +10,6 @@ import (
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"`
}
// Beginning of an `ollama info` command
@@ -53,8 +52,7 @@ type CPUInfo struct {
type CudaGPUInfo struct {
GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
index int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo

View File

@@ -1,152 +0,0 @@
//go:build integration
package integration
import (
"context"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestAllMiniLMEmbed(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
}
res, err := embedTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
}
if res.Embeddings[0][0] != 0.010071031 {
t.Fatalf("expected 0.010071031, got %f", res.Embeddings[0][0])
}
}
func TestAllMiniLMBatchEmbed(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbedRequest{
Model: "all-minilm",
Input: []string{"why is the sky blue?", "why is the grass green?"},
}
res, err := embedTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 2 {
t.Fatalf("expected 2 embeddings, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
}
if res.Embeddings[0][0] != 0.010071031 || res.Embeddings[1][0] != -0.009802706 {
t.Fatalf("expected 0.010071031 and -0.009802706, got %f and %f", res.Embeddings[0][0], res.Embeddings[1][0])
}
}
func TestAllMiniLmEmbedTruncate(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
truncTrue, truncFalse := true, false
type testReq struct {
Name string
Request api.EmbedRequest
}
reqs := []testReq{
{
Name: "Target Truncation",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
},
{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 1},
},
},
{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
},
}
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
}
}
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}

View File

@@ -3188,33 +3188,26 @@ int main(int argc, char **argv) {
prompt = "";
}
if (prompt.size() == 1) {
prompt = prompt[0];
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
// create and queue the task
json responses;
{
const int id_task = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(id_task);
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1);
// get the result
task_result result = llama.queue_results.recv(id_task);
llama.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
}
// get the result
task_result result = llama.queue_results.recv(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
responses = result.result_json.value("results", std::vector<json>{result.result_json});
json embeddings = json::array();
for (auto & elem : responses) {
embeddings.push_back(elem.at("embedding"));
}
// send the result
json embedding_res = json{{"embedding", embeddings}};
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
}
// send the result
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
});
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?

View File

@@ -178,7 +178,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DGGML_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} -DCMAKE_LIBRARY_PATH=/usr/local/cuda/compat"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
@@ -254,7 +254,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""

View File

@@ -6,9 +6,18 @@ function amdGPUs {
if ($env:AMDGPU_TARGETS) {
return $env:AMDGPU_TARGETS
}
# Current supported rocblas list from ROCm v6.1.2 on windows
# TODO - load from some common data file for linux + windows build consistency
$GPU_LIST = @(
"gfx900"
"gfx906:xnack-"
"gfx908:xnack-"
"gfx90a:xnack+"
"gfx90a:xnack-"
"gfx940"
"gfx941"
"gfx942"
"gfx1010"
"gfx1012"
"gfx1030"
"gfx1100"
"gfx1101"
@@ -357,7 +366,6 @@ function build_rocm() {
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on",
"-DLLAMA_CUDA_NO_PEER_COPY=on",
"-DHIP_PLATFORM=amd",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
@@ -386,6 +394,7 @@ function build_rocm() {
sign
install
# Assumes v5.7, may need adjustments for v6
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"

View File

@@ -1,9 +1,12 @@
package llm
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"slices"
)
@@ -16,6 +19,7 @@ func (c *containerGGLA) Name() string {
}
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
slog.Info("decoding ggla")
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
return nil, err
}
@@ -36,6 +40,8 @@ type ggla struct {
kv KV
tensors []*Tensor
tensorOffset uint64
}
func newGGLA(container *containerGGLA) *ggla {
@@ -50,10 +56,13 @@ func (llm *ggla) KV() KV {
}
func (llm *ggla) Tensors() Tensors {
return llm.tensors
return Tensors{
Items: llm.tensors,
Offset: llm.tensorOffset,
}
}
func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
func (llm *ggla) decode(rs io.ReadSeeker) error {
var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err
@@ -66,21 +75,22 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
}
llm.kv["alpha"] = alpha
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
llm.tensorOffset = uint64(offset)
for {
var dims uint32
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
if errors.Is(err, io.EOF) {
return nil
break
}
return err
}
defer func() {
if errors.Is(retErr, io.EOF) {
retErr = io.ErrUnexpectedEOF
}
}()
var namesize uint32
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
return err
@@ -111,13 +121,14 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
}
t.Name = string(name)
slog.Info(fmt.Sprintf("%s: [%d, %d] k=%d", t.Name, t.Shape[0], t.Shape[1], t.Kind))
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
if _, err := rs.Seek((offset+31)&-32, io.SeekStart); err != nil {
return err
}
@@ -134,4 +145,87 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
llm.tensors = append(llm.tensors, &t)
}
return nil
}
func WriteGGLA(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
slog.Debug("writing ggla")
if err := binary.Write(ws, binary.LittleEndian, []byte("algg")); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(1)); err != nil {
return err
}
var r uint32
var alpha uint32
var ok bool
if r, ok = kv["r"].(uint32); !ok {
r = 8
}
if err := binary.Write(ws, binary.LittleEndian, r); err != nil {
return err
}
if alpha, ok = kv["alpha"].(uint32); !ok {
alpha = 16
}
if err := binary.Write(ws, binary.LittleEndian, alpha); err != nil {
return err
}
for _, t := range ts {
dims := 0
for cnt := range len(t.Shape) {
if t.Shape[cnt] > 0 {
dims++
}
}
if err := binary.Write(ws, binary.LittleEndian, uint32(dims)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Name))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
return err
}
for cnt := range dims {
if err := binary.Write(ws, binary.LittleEndian, uint32(t.Shape[dims-1-cnt])); err != nil {
return err
}
}
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
return err
}
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
var alignment int32 = 32
pad := gglaPadding(int32(offset), alignment)
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(pad))); err != nil {
return err
}
if _, err := t.WriteTo(ws); err != nil {
return err
}
}
return nil
}
func gglaPadding(offset, align int32) int32 {
return (align - offset%align) % align
}

View File

@@ -112,11 +112,14 @@ func (kv KV) ChatTemplate() string {
return s
}
type Tensors []*Tensor
type Tensors struct {
Items []*Tensor
Offset uint64
}
func (ts Tensors) Layers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts {
for _, t := range ts.Items {
parts := strings.Split(t.Name, ".")
if parts[0] == "blk" {
// join first and second part, e.g. blk.%d
@@ -424,32 +427,6 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
case "chatglm":
fullOffload = 4 * batch * (embedding + vocab)
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
fullOffload = max(
fullOffload,
4*batch*(2+
2*embedding+
context+
context*heads+
embeddingHeadsK*heads+
qkvBias.Shape[0]),
)
partialOffload = max(
partialOffload,
4*batch*(1+
2*embedding+
embeddingHeadsK*heads+
context+
context*heads)+
4*embeddingHeadsK*context+
4*context*embeddingHeadsK+
4*qkvBias.Shape[0],
)
}
}
return

View File

@@ -2,11 +2,16 @@ package llm
import (
"bytes"
"cmp"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"slices"
"strings"
"golang.org/x/exp/maps"
)
type containerGGUF struct {
@@ -89,6 +94,7 @@ type gguf struct {
tensors []*Tensor
parameters uint64
tensorOffset uint64
scratch [16 << 10]byte
}
@@ -100,16 +106,15 @@ func newGGUF(container *containerGGUF) *gguf {
}
}
func NewGGUFV3(bo binary.ByteOrder) *gguf {
return newGGUF(&containerGGUF{ByteOrder: bo, Version: 3})
}
func (llm *gguf) KV() KV {
return llm.kv
}
func (llm *gguf) Tensors() Tensors {
return llm.tensors
return Tensors{
Items: llm.tensors,
Offset: llm.tensorOffset,
}
}
func (llm *gguf) numTensor() uint64 {
@@ -199,7 +204,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
return fmt.Errorf("failed to read tensor dimensions: %w", err)
}
shape := [4]uint64{1, 1, 1, 1}
shape := make([]uint64, dims)
for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs)
if err != nil {
@@ -236,13 +241,21 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
alignment = 32
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := ggufPadding(offset, int64(alignment))
llm.tensorOffset = uint64(offset + padding)
for _, tensor := range llm.tensors {
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return fmt.Errorf("failed to get current offset: %w", err)
}
padding := llm.padding(offset, int64(alignment))
padding := ggufPadding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to init padding: %w", err)
}
@@ -261,12 +274,12 @@ func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
return t, err
}
func writeGGUF[V any](llm *gguf, w io.Writer, t uint32, v V) error {
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
func writeGGUF[V any](w io.Writer, t uint32, v V) error {
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
return err
}
return binary.Write(w, llm.ByteOrder, v)
return binary.Write(w, binary.LittleEndian, v)
}
func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
@@ -330,12 +343,12 @@ func readGGUFString(llm *gguf, r io.Reader) (string, error) {
return string(buf), nil
}
func writeGGUFString(llm *gguf, w io.Writer, s string) error {
if err := binary.Write(w, llm.ByteOrder, ggufTypeString); err != nil {
func writeGGUFString(w io.Writer, s string) error {
if err := binary.Write(w, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
return err
}
@@ -476,21 +489,21 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
return a, nil
}
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {
if err := binary.Write(w, llm.ByteOrder, ggufTypeArray); err != nil {
func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
return err
}
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
return err
}
for _, e := range s {
if err := binary.Write(w, llm.ByteOrder, e); err != nil {
if err := binary.Write(w, binary.LittleEndian, e); err != nil {
return err
}
}
@@ -498,194 +511,55 @@ func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error
return nil
}
var ggufKVOrder = map[string][]string{
"llama": {
"general.architecture",
"general.name",
"llama.vocab_size",
"llama.context_length",
"llama.embedding_length",
"llama.block_count",
"llama.feed_forward_length",
"llama.attention.head_count",
"llama.attention.head_count_kv",
"llama.attention.layer_norm_rms_epsilon",
"llama.rope.freq_base",
"llama.rope.dimension_count",
"llama.expert_count",
"llama.expert_used_count",
"gemma.context_length",
"gemma.embedding_length",
"gemma.block_count",
"gemma.feed_forward_length",
"gemma.attention.head_count",
"gemma.attention.head_count_kv",
"gemma.attention.layer_norm_rms_epsilon",
"gemma.attention.key_length",
"gemma.attention.value_length",
"general.file_type",
"tokenizer.ggml.pre",
"tokenizer.ggml.model",
"tokenizer.ggml.tokens",
"tokenizer.ggml.scores",
"tokenizer.ggml.merges",
"tokenizer.ggml.token_type",
"tokenizer.ggml.bos_token_id",
"tokenizer.ggml.eos_token_id",
"tokenizer.ggml.unknown_token_id",
"tokenizer.ggml.padding_token_id",
"tokenizer.ggml.add_bos_token",
"tokenizer.ggml.add_eos_token",
"tokenizer.chat_template",
"bert.pooling_type",
},
}
func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
switch llm.Version {
case 3:
llm.V3.NumTensor = uint64(len(tensors))
llm.V3.NumKV = uint64(len(kv))
default:
return fmt.Errorf("not implemented: ggufv%d", llm.Version)
}
if err := binary.Write(ws, llm.ByteOrder, []byte("GGUF")); err != nil {
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, llm.Version); err != nil {
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, llm.numTensor()); err != nil {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, llm.numKV()); err != nil {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
return err
}
kvCheck := make(map[string]bool)
for k := range kv {
kvCheck[k] = false
}
keys := maps.Keys(kv)
slices.Sort(keys)
for _, k := range ggufKVOrder["llama"] {
v, ok := kv[k]
if !ok {
continue
}
kvCheck[k] = true
if err := binary.Write(ws, llm.ByteOrder, uint64(len(k))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(k)); err != nil {
return err
}
var err error
switch v := v.(type) {
case uint32:
err = writeGGUF(llm, ws, ggufTypeUint32, v)
case float32:
err = writeGGUF(llm, ws, ggufTypeFloat32, v)
case bool:
err = writeGGUF(llm, ws, ggufTypeBool, v)
case string:
err = writeGGUFString(llm, ws, v)
case []int32:
err = writeGGUFArray(llm, ws, ggufTypeInt32, v)
case []uint32:
err = writeGGUFArray(llm, ws, ggufTypeUint32, v)
case []float32:
err = writeGGUFArray(llm, ws, ggufTypeFloat32, v)
case []string:
if err := binary.Write(ws, llm.ByteOrder, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, llm.ByteOrder, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(e)); err != nil {
return err
}
}
default:
return fmt.Errorf("improper type for '%s'", k)
}
if err != nil {
for _, key := range keys {
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
return err
}
}
for k, v := range kvCheck {
if !v {
return fmt.Errorf("Didn't know how to write kv %s", k)
slices.SortFunc(ts, func(a, b *Tensor) int {
var i, j int
if n, err := fmt.Sscanf(a.Name, "blk.%d", &i); err != nil || n != 1 {
return cmp.Compare(a.Name, b.Name)
} else if n, err := fmt.Sscanf(b.Name, "blk.%d", &j); err != nil || n != 1 {
return cmp.Compare(a.Name, b.Name)
}
}
for _, tensor := range tensors {
if err := binary.Write(ws, llm.ByteOrder, uint64(len(tensor.Name))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(tensor.Name)); err != nil {
return err
}
var dims int
for cnt := range len(tensor.Shape) {
if tensor.Shape[cnt] > 0 {
dims++
}
}
if err := binary.Write(ws, llm.ByteOrder, uint32(dims)); err != nil {
return err
}
for i := range dims {
if err := binary.Write(ws, llm.ByteOrder, tensor.Shape[dims-1-i]); err != nil {
return err
}
}
if err := binary.Write(ws, llm.ByteOrder, tensor.Kind); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, tensor.Offset); err != nil {
return cmp.Compare(i, j)
})
var s uint64
for _, t := range ts {
t.Offset = s
if err := ggufWriteTensorInfo(ws, t); err != nil {
return err
}
s += t.Size()
}
var alignment int64 = 32
for _, tensor := range tensors {
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := llm.padding(offset, alignment)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
return err
}
if _, err := tensor.WriteTo(ws); err != nil {
for _, t := range ts {
if err := ggufWriteTensor(ws, t, alignment); err != nil {
return err
}
}
@@ -693,6 +567,103 @@ func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
return nil
}
func (gguf) padding(offset, align int64) int64 {
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
slog.Debug(k, "type", fmt.Sprintf("%T", v))
if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(k)); err != nil {
return err
}
var err error
switch v := v.(type) {
case uint32:
err = writeGGUF(ws, ggufTypeUint32, v)
case float32:
err = writeGGUF(ws, ggufTypeFloat32, v)
case bool:
err = writeGGUF(ws, ggufTypeBool, v)
case string:
err = writeGGUFString(ws, v)
case []int32:
err = writeGGUFArray(ws, ggufTypeInt32, v)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case []float32:
err = writeGGUFArray(ws, ggufTypeFloat32, v)
case []string:
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
default:
return fmt.Errorf("improper type for '%s'", k)
}
return err
}
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Shape))); err != nil {
return err
}
for i := range len(t.Shape) {
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
return err
}
}
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
return err
}
return binary.Write(ws, binary.LittleEndian, t.Offset)
}
func ggufWriteTensor(ws io.WriteSeeker, t *Tensor, alignment int64) error {
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
return err
}
_, err = t.WriteTo(ws)
return err
}
func ggufPadding(offset, align int64) int64 {
return (align - offset%align) % align
}

View File

@@ -4,8 +4,8 @@ package llm
// #cgo LDFLAGS: -lllama -lggml -lstdc++ -lpthread
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
// #cgo windows,amd64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
// #include <stdlib.h>
@@ -33,7 +33,7 @@ func Quantize(infile, outfile string, ftype fileType) error {
params.ftype = ftype.Value()
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version")
return fmt.Errorf("llama_model_quantize: %d", rc)
}
return nil

View File

@@ -2,7 +2,6 @@ package llm
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"testing"
@@ -20,10 +19,9 @@ func TestEstimateGPULayers(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), modelName)
require.NoError(t, err)
defer f.Close()
gguf := NewGGUFV3(binary.LittleEndian)
inputLayerCount := 5
tensors := []Tensor{
tensors := []*Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
@@ -32,7 +30,7 @@ func TestEstimateGPULayers(t *testing.T) {
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}
assert.Len(t, tensors, inputLayerCount+1)
err = gguf.Encode(f, KV{
err = WriteGGUF(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),

78
llm/patches/10-lora.diff Normal file
View File

@@ -0,0 +1,78 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4f6cd687..b8c6896b 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -189,3 +189,4 @@ if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
+add_subdirectory(../ext_server ext_server) # ollama
diff --git a/src/llama.cpp b/src/llama.cpp
index 2b9ace28..b0151571 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -18609,6 +18609,20 @@ static int llama_apply_lora_from_file_internal(
return 1;
}
+ // show tensor data
+ auto show_tensor = [](std::string name, ggml_tensor *t) {
+ LLAMA_LOG_INFO("%s\n", name.c_str());
+
+ for(int i=0; i<3; i++) {
+ for(int j=0; j<3; j++) {
+ float v = ggml_get_f32_nd(t, i, j, 0, 0);
+ LLAMA_LOG_INFO("%.8f ", v);
+ }
+ LLAMA_LOG_INFO(" ...\n");
+ }
+ LLAMA_LOG_INFO(" ...\n");
+ };
+
// load tensor data
auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
read_buf.resize(ggml_nbytes(tensor));
@@ -18619,6 +18633,9 @@ static int llama_apply_lora_from_file_internal(
load_tensor(metaA, loraA);
load_tensor(metaB, loraB);
+ show_tensor(base_name + ".loraA", loraA);
+ show_tensor(base_name + ".loraB", loraB);
+
// load base model tensor data
if (ml) {
ml->load_data_for(base_t);
@@ -18633,8 +18650,10 @@ static int llama_apply_lora_from_file_internal(
}
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
+ LLAMA_LOG_ERROR("%s: incompatible tensors: base [%lld, %lld] loraA [%lld, %lld] loraB [%lld, %lld]\n", __func__,
+ base_t->ne[0], base_t->ne[1],
+ loraA->ne[0], loraA->ne[1],
+ loraB->ne[0], loraB->ne[1]);
ggml_free(lora_ctx);
ggml_backend_buffer_free(lora_buf);
ggml_backend_free(backend_cpu);
@@ -18643,14 +18662,18 @@ static int llama_apply_lora_from_file_internal(
auto build_lora_graph = [&]() {
// w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraB, loraA);
ggml_set_name(BA, "BA");
if (scaling != 1.0f) {
- BA = ggml_scale(lora_ctx, BA, scaling);
+ //BA = ggml_scale(lora_ctx, BA, scaling);
+ BA = ggml_scale(lora_ctx, BA, 20.0);
ggml_set_name(BA, "BA_scaled");
}
+ // transpose matrix before we add
+ BA = ggml_cont(lora_ctx, ggml_transpose(lora_ctx, BA));
+
ggml_tensor * r;
r = ggml_add_inplace(lora_ctx, base_t, BA);
ggml_set_name(r, "r_add");

View File

@@ -33,7 +33,7 @@ type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embed(ctx context.Context, input []string) ([][]float32, error)
Embedding(ctx context.Context, prompt string) ([]float64, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
@@ -88,7 +88,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
var estimate MemoryEstimate
var systemTotalMemory uint64
var systemFreeMemory uint64
var systemSwapFreeMemory uint64
systemMemInfo, err := gpu.GetCPUMem()
if err != nil {
@@ -96,8 +95,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else {
systemTotalMemory = systemMemInfo.TotalMemory
systemFreeMemory = systemMemInfo.FreeMemory
systemSwapFreeMemory = systemMemInfo.FreeSwap
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
}
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
@@ -124,16 +122,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
}
// On linux, over-allocating CPU memory will almost always result in an error
if runtime.GOOS == "linux" {
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
available := systemFreeMemory + systemSwapFreeMemory
if systemMemoryRequired > available {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
}
}
estimate.log()
// Loop through potential servers
@@ -266,6 +254,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--tensor-split", estimate.TensorSplit)
}
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
for i := range len(servers) {
dir := availableServers[servers[i]]
if dir == "" {
@@ -687,7 +679,7 @@ type CompletionRequest struct {
Prompt string
Format string
Images []ImageData
Options *api.Options
Options api.Options
}
type CompletionResponse struct {
@@ -867,15 +859,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
return nil
}
type EmbedRequest struct {
Content []string `json:"content"`
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbedResponse struct {
Embedding [][]float32 `json:"embedding"`
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, error) {
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
return nil, err
@@ -890,7 +882,7 @@ func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, err
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(EmbedRequest{Content: input})
data, err := json.Marshal(TokenizeRequest{Content: prompt})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
@@ -917,7 +909,7 @@ func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, err
return nil, fmt.Errorf("%s", body)
}
var embedding EmbedResponse
var embedding EmbeddingResponse
if err := json.Unmarshal(body, &embedding); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}

View File

@@ -3,14 +3,11 @@ package openai
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"log/slog"
"math/rand"
"net/http"
"strings"
"time"
"github.com/gin-gonic/gin"
@@ -30,9 +27,8 @@ type ErrorResponse struct {
}
type Message struct {
Role string `json:"role"`
Content any `json:"content"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
Role string `json:"role"`
Content string `json:"content"`
}
type Choice struct {
@@ -63,11 +59,6 @@ type ResponseFormat struct {
Type string `json:"type"`
}
type EmbedRequest struct {
Input any `json:"input"`
Model string `json:"model"`
}
type ChatCompletionRequest struct {
Model string `json:"model"`
Messages []Message `json:"messages"`
@@ -80,7 +71,6 @@ type ChatCompletionRequest struct {
PresencePenalty *float64 `json:"presence_penalty_penalty"`
TopP *float64 `json:"top_p"`
ResponseFormat *ResponseFormat `json:"response_format"`
Tools []api.Tool `json:"tools"`
}
type ChatCompletion struct {
@@ -114,7 +104,6 @@ type CompletionRequest struct {
Stream bool `json:"stream"`
Temperature *float32 `json:"temperature"`
TopP float32 `json:"top_p"`
Suffix string `json:"suffix"`
}
type Completion struct {
@@ -136,15 +125,6 @@ type CompletionChunk struct {
SystemFingerprint string `json:"system_fingerprint"`
}
type ToolCall struct {
ID string `json:"id"`
Type string `json:"type"`
Function struct {
Name string `json:"name"`
Arguments string `json:"arguments"`
} `json:"function"`
}
type Model struct {
Id string `json:"id"`
Object string `json:"object"`
@@ -152,23 +132,11 @@ type Model struct {
OwnedBy string `json:"owned_by"`
}
type Embedding struct {
Object string `json:"object"`
Embedding []float32 `json:"embedding"`
Index int `json:"index"`
}
type ListCompletion struct {
Object string `json:"object"`
Data []Model `json:"data"`
}
type EmbeddingList struct {
Object string `json:"object"`
Data []Embedding `json:"data"`
Model string `json:"model"`
}
func NewError(code int, message string) ErrorResponse {
var etype string
switch code {
@@ -183,31 +151,7 @@ func NewError(code int, message string) ErrorResponse {
return ErrorResponse{Error{Type: etype, Message: message}}
}
func toolCallId() string {
const letterBytes = "abcdefghijklmnopqrstuvwxyz0123456789"
b := make([]byte, 8)
for i := range b {
b[i] = letterBytes[rand.Intn(len(letterBytes))]
}
return "call_" + strings.ToLower(string(b))
}
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
toolCalls := make([]ToolCall, len(r.Message.ToolCalls))
for i, tc := range r.Message.ToolCalls {
toolCalls[i].ID = toolCallId()
toolCalls[i].Type = "function"
toolCalls[i].Function.Name = tc.Function.Name
args, err := json.Marshal(tc.Function.Arguments)
if err != nil {
slog.Error("could not marshall function arguments to json", "error", err)
continue
}
toolCalls[i].Function.Arguments = string(args)
}
return ChatCompletion{
Id: id,
Object: "chat.completion",
@@ -216,7 +160,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
SystemFingerprint: "fp_ollama",
Choices: []Choice{{
Index: 0,
Message: Message{Role: r.Message.Role, Content: r.Message.Content, ToolCalls: toolCalls},
Message: Message{Role: r.Message.Role, Content: r.Message.Content},
FinishReason: func(reason string) *string {
if len(reason) > 0 {
return &reason
@@ -225,6 +169,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
}(r.DoneReason),
}},
Usage: Usage{
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
PromptTokens: r.PromptEvalCount,
CompletionTokens: r.EvalCount,
TotalTokens: r.PromptEvalCount + r.EvalCount,
@@ -270,6 +215,7 @@ func toCompletion(id string, r api.GenerateResponse) Completion {
}(r.DoneReason),
}},
Usage: Usage{
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
PromptTokens: r.PromptEvalCount,
CompletionTokens: r.EvalCount,
TotalTokens: r.PromptEvalCount + r.EvalCount,
@@ -314,27 +260,6 @@ func toListCompletion(r api.ListResponse) ListCompletion {
}
}
func toEmbeddingList(model string, r api.EmbedResponse) EmbeddingList {
if r.Embeddings != nil {
var data []Embedding
for i, e := range r.Embeddings {
data = append(data, Embedding{
Object: "embedding",
Embedding: e,
Index: i,
})
}
return EmbeddingList{
Object: "list",
Data: data,
Model: model,
}
}
return EmbeddingList{}
}
func toModel(r api.ShowResponse, m string) Model {
return Model{
Id: m,
@@ -344,78 +269,10 @@ func toModel(r api.ShowResponse, m string) Model {
}
}
func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
func fromChatRequest(r ChatCompletionRequest) api.ChatRequest {
var messages []api.Message
for _, msg := range r.Messages {
switch content := msg.Content.(type) {
case string:
messages = append(messages, api.Message{Role: msg.Role, Content: content})
case []any:
message := api.Message{Role: msg.Role}
for _, c := range content {
data, ok := c.(map[string]any)
if !ok {
return nil, fmt.Errorf("invalid message format")
}
switch data["type"] {
case "text":
text, ok := data["text"].(string)
if !ok {
return nil, fmt.Errorf("invalid message format")
}
message.Content = text
case "image_url":
var url string
if urlMap, ok := data["image_url"].(map[string]any); ok {
if url, ok = urlMap["url"].(string); !ok {
return nil, fmt.Errorf("invalid message format")
}
} else {
if url, ok = data["image_url"].(string); !ok {
return nil, fmt.Errorf("invalid message format")
}
}
types := []string{"jpeg", "jpg", "png"}
valid := false
for _, t := range types {
prefix := "data:image/" + t + ";base64,"
if strings.HasPrefix(url, prefix) {
url = strings.TrimPrefix(url, prefix)
valid = true
break
}
}
if !valid {
return nil, fmt.Errorf("invalid image input")
}
img, err := base64.StdEncoding.DecodeString(url)
if err != nil {
return nil, fmt.Errorf("invalid message format")
}
message.Images = append(message.Images, img)
default:
return nil, fmt.Errorf("invalid message format")
}
}
messages = append(messages, message)
default:
if msg.ToolCalls == nil {
return nil, fmt.Errorf("invalid message content type: %T", content)
}
toolCalls := make([]api.ToolCall, len(msg.ToolCalls))
for i, tc := range msg.ToolCalls {
toolCalls[i].Function.Name = tc.Function.Name
err := json.Unmarshal([]byte(tc.Function.Arguments), &toolCalls[i].Function.Arguments)
if err != nil {
return nil, fmt.Errorf("invalid tool call arguments")
}
}
messages = append(messages, api.Message{Role: msg.Role, ToolCalls: toolCalls})
}
messages = append(messages, api.Message{Role: msg.Role, Content: msg.Content})
}
options := make(map[string]interface{})
@@ -466,14 +323,13 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
format = "json"
}
return &api.ChatRequest{
return api.ChatRequest{
Model: r.Model,
Messages: messages,
Format: format,
Options: options,
Stream: &r.Stream,
Tools: r.Tools,
}, nil
}
}
func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
@@ -482,16 +338,12 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
switch stop := r.Stop.(type) {
case string:
options["stop"] = []string{stop}
case []any:
var stops []string
for _, s := range stop {
if str, ok := s.(string); ok {
stops = append(stops, str)
} else {
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", s)
}
case []string:
options["stop"] = stop
default:
if r.Stop != nil {
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", r.Stop)
}
options["stop"] = stops
}
if r.MaxTokens != nil {
@@ -523,7 +375,6 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
Prompt: r.Prompt,
Options: options,
Stream: &r.Stream,
Suffix: r.Suffix,
}, nil
}
@@ -552,11 +403,6 @@ type RetrieveWriter struct {
model string
}
type EmbedWriter struct {
BaseWriter
model string
}
func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
var serr api.StatusError
err := json.Unmarshal(data, &serr)
@@ -722,33 +568,6 @@ func (w *RetrieveWriter) Write(data []byte) (int, error) {
return w.writeResponse(data)
}
func (w *EmbedWriter) writeResponse(data []byte) (int, error) {
var embedResponse api.EmbedResponse
err := json.Unmarshal(data, &embedResponse)
if err != nil {
return 0, err
}
w.ResponseWriter.Header().Set("Content-Type", "application/json")
err = json.NewEncoder(w.ResponseWriter).Encode(toEmbeddingList(w.model, embedResponse))
if err != nil {
return 0, err
}
return len(data), nil
}
func (w *EmbedWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
}
return w.writeResponse(data)
}
func ListMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
w := &ListWriter{
@@ -812,47 +631,6 @@ func CompletionsMiddleware() gin.HandlerFunc {
id: fmt.Sprintf("cmpl-%d", rand.Intn(999)),
}
c.Writer = w
c.Next()
}
}
func EmbeddingsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req EmbedRequest
err := c.ShouldBindJSON(&req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Input == "" {
req.Input = []string{""}
}
if req.Input == nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
return
}
if v, ok := req.Input.([]any); ok && len(v) == 0 {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &EmbedWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
model: req.Model,
}
c.Writer = w
c.Next()
@@ -874,13 +652,7 @@ func ChatMiddleware() gin.HandlerFunc {
}
var b bytes.Buffer
chatReq, err := fromChatRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
}
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
if err := json.NewEncoder(&b).Encode(fromChatRequest(req)); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
return
}

View File

@@ -2,8 +2,8 @@ package openai
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
@@ -16,258 +16,7 @@ import (
"github.com/stretchr/testify/assert"
)
const prefix = `data:image/jpeg;base64,`
const image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
const imageURL = prefix + image
func TestMiddlewareRequests(t *testing.T) {
type testCase struct {
Name string
Method string
Path string
Handler func() gin.HandlerFunc
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *http.Request)
}
var capturedRequest *http.Request
captureRequestMiddleware := func() gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
capturedRequest = c.Request
c.Next()
}
}
testCases := []testCase{
{
Name: "chat handler",
Method: http.MethodPost,
Path: "/api/chat",
Handler: ChatMiddleware,
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: "Hello"}},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var chatReq api.ChatRequest
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
t.Fatal(err)
}
if chatReq.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
}
if chatReq.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
}
},
},
{
Name: "completions handler",
Method: http.MethodPost,
Path: "/api/generate",
Handler: CompletionsMiddleware,
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: &temp,
Stop: []string{"\n", "stop"},
Suffix: "suffix",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var genReq api.GenerateRequest
if err := json.NewDecoder(req.Body).Decode(&genReq); err != nil {
t.Fatal(err)
}
if genReq.Prompt != "Hello" {
t.Fatalf("expected 'Hello', got %s", genReq.Prompt)
}
if genReq.Options["temperature"] != 1.6 {
t.Fatalf("expected 1.6, got %f", genReq.Options["temperature"])
}
stopTokens, ok := genReq.Options["stop"].([]any)
if !ok {
t.Fatalf("expected stop tokens to be a list")
}
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
}
if genReq.Suffix != "suffix" {
t.Fatalf("expected 'suffix', got %s", genReq.Suffix)
}
},
},
{
Name: "chat handler with image content",
Method: http.MethodPost,
Path: "/api/chat",
Handler: ChatMiddleware,
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{
{
Role: "user", Content: []map[string]any{
{"type": "text", "text": "Hello"},
{"type": "image_url", "image_url": map[string]string{"url": imageURL}},
},
},
},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var chatReq api.ChatRequest
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
t.Fatal(err)
}
if chatReq.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
}
if chatReq.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
}
img, _ := base64.StdEncoding.DecodeString(imageURL[len(prefix):])
if !bytes.Equal(chatReq.Messages[0].Images[0], img) {
t.Fatalf("expected image encoding, got %s", chatReq.Messages[0].Images[0])
}
},
},
{
Name: "embed handler single input",
Method: http.MethodPost,
Path: "/api/embed",
Handler: EmbeddingsMiddleware,
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Input: "Hello",
Model: "test-model",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var embedReq api.EmbedRequest
if err := json.NewDecoder(req.Body).Decode(&embedReq); err != nil {
t.Fatal(err)
}
if embedReq.Input != "Hello" {
t.Fatalf("expected 'Hello', got %s", embedReq.Input)
}
if embedReq.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", embedReq.Model)
}
},
},
{
Name: "embed handler batch input",
Method: http.MethodPost,
Path: "/api/embed",
Handler: EmbeddingsMiddleware,
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Input: []string{"Hello", "World"},
Model: "test-model",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var embedReq api.EmbedRequest
if err := json.NewDecoder(req.Body).Decode(&embedReq); err != nil {
t.Fatal(err)
}
input, ok := embedReq.Input.([]any)
if !ok {
t.Fatalf("expected input to be a list")
}
if input[0].(string) != "Hello" {
t.Fatalf("expected 'Hello', got %s", input[0])
}
if input[1].(string) != "World" {
t.Fatalf("expected 'World', got %s", input[1])
}
if embedReq.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", embedReq.Model)
}
},
},
}
gin.SetMode(gin.TestMode)
router := gin.New()
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
router = gin.New()
router.Use(captureRequestMiddleware())
router.Use(tc.Handler())
router.Handle(tc.Method, tc.Path, endpoint)
req, _ := http.NewRequest(tc.Method, tc.Path, nil)
if tc.Setup != nil {
tc.Setup(t, req)
}
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest)
})
}
}
func TestMiddlewareResponses(t *testing.T) {
func TestMiddleware(t *testing.T) {
type testCase struct {
Name string
Method string
@@ -281,7 +30,159 @@ func TestMiddlewareResponses(t *testing.T) {
testCases := []testCase{
{
Name: "completions handler error forwarding",
Name: "chat handler",
Method: http.MethodPost,
Path: "/api/chat",
TestPath: "/api/chat",
Handler: ChatMiddleware,
Endpoint: func(c *gin.Context) {
var chatReq api.ChatRequest
if err := c.ShouldBindJSON(&chatReq); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
return
}
userMessage := chatReq.Messages[0].Content
var assistantMessage string
switch userMessage {
case "Hello":
assistantMessage = "Hello!"
default:
assistantMessage = "I'm not sure how to respond to that."
}
c.JSON(http.StatusOK, api.ChatResponse{
Message: api.Message{
Role: "assistant",
Content: assistantMessage,
},
})
},
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: "Hello"}},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var chatResp ChatCompletion
if err := json.NewDecoder(resp.Body).Decode(&chatResp); err != nil {
t.Fatal(err)
}
if chatResp.Object != "chat.completion" {
t.Fatalf("expected chat.completion, got %s", chatResp.Object)
}
if chatResp.Choices[0].Message.Content != "Hello!" {
t.Fatalf("expected Hello!, got %s", chatResp.Choices[0].Message.Content)
}
},
},
{
Name: "completions handler",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",
Handler: CompletionsMiddleware,
Endpoint: func(c *gin.Context) {
c.JSON(http.StatusOK, api.GenerateResponse{
Response: "Hello!",
})
},
Setup: func(t *testing.T, req *http.Request) {
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var completionResp Completion
if err := json.NewDecoder(resp.Body).Decode(&completionResp); err != nil {
t.Fatal(err)
}
if completionResp.Object != "text_completion" {
t.Fatalf("expected text_completion, got %s", completionResp.Object)
}
if completionResp.Choices[0].Text != "Hello!" {
t.Fatalf("expected Hello!, got %s", completionResp.Choices[0].Text)
}
},
},
{
Name: "completions handler with params",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",
Handler: CompletionsMiddleware,
Endpoint: func(c *gin.Context) {
var generateReq api.GenerateRequest
if err := c.ShouldBindJSON(&generateReq); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
return
}
temperature := generateReq.Options["temperature"].(float64)
var assistantMessage string
switch temperature {
case 1.6:
assistantMessage = "Received temperature of 1.6"
default:
assistantMessage = fmt.Sprintf("Received temperature of %f", temperature)
}
c.JSON(http.StatusOK, api.GenerateResponse{
Response: assistantMessage,
})
},
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: &temp,
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var completionResp Completion
if err := json.NewDecoder(resp.Body).Decode(&completionResp); err != nil {
t.Fatal(err)
}
if completionResp.Object != "text_completion" {
t.Fatalf("expected text_completion, got %s", completionResp.Object)
}
if completionResp.Choices[0].Text != "Received temperature of 1.6" {
t.Fatalf("expected Received temperature of 1.6, got %s", completionResp.Choices[0].Text)
}
},
},
{
Name: "completions handler with error",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",

View File

@@ -107,12 +107,9 @@ function gatherDependencies() {
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\"
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\ollama_runners\"
}
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"

View File

@@ -34,20 +34,9 @@ import (
"github.com/ollama/ollama/version"
)
var (
errCapabilities = errors.New("does not support")
errCapabilityCompletion = errors.New("completion")
errCapabilityTools = errors.New("tools")
errCapabilityInsert = errors.New("insert")
)
type Capability string
const (
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
)
const CapabilityCompletion = Capability("completion")
type registryOptions struct {
Insecure bool
@@ -73,10 +62,7 @@ type Model struct {
Template *template.Template
}
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
// any missing or unknown capabilities
func (m *Model) CheckCapabilities(caps ...Capability) error {
var errs []error
func (m *Model) Has(caps ...Capability) bool {
for _, cap := range caps {
switch cap {
case CapabilityCompletion:
@@ -95,28 +81,15 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
}
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
errs = append(errs, errCapabilityCompletion)
}
case CapabilityTools:
if !slices.Contains(m.Template.Vars(), "tools") {
errs = append(errs, errCapabilityTools)
}
case CapabilityInsert:
vars := m.Template.Vars()
if !slices.Contains(vars, "suffix") {
errs = append(errs, errCapabilityInsert)
return false
}
default:
slog.Error("unknown capability", "capability", cap)
return fmt.Errorf("unknown capability: %s", cap)
return false
}
}
if err := errors.Join(errs...); err != nil {
return fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
}
return nil
return true
}
func (m *Model) String() string {

View File

@@ -4,7 +4,6 @@ import (
"archive/zip"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
@@ -12,9 +11,6 @@ import (
"net/http"
"os"
"path/filepath"
"slices"
"strings"
"text/template/parse"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
@@ -133,38 +129,24 @@ func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse))
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
layerType := "application/vnd.ollama.image.model"
convertAdapter, err := convert.DetectNPZ(file.Name())
if err != nil {
return nil, err
}
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempDir)
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
mf, err := convert.GetModelFormat(tempDir)
if err != nil {
return nil, err
}
params, err := mf.GetParams(tempDir)
if err != nil {
return nil, err
}
mArch, err := mf.GetModelArch("", tempDir, params)
if err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "processing tensors"})
if err := mArch.GetTensors(); err != nil {
return nil, err
}
if err := mArch.LoadVocab(); err != nil {
return nil, err
if !convertAdapter {
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
} else {
layerType = "application/vnd.ollama.image.adapter"
}
fn(api.ProgressResponse{Status: "converting model"})
@@ -178,15 +160,22 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
defer temp.Close()
defer os.Remove(temp.Name())
if err = mArch.WriteGGUF(temp); err != nil {
return nil, err
if convertAdapter {
slog.Info("convert adapter")
if err := convert.ConvertAdapter(file.Name(), temp); err != nil {
return nil, err
}
} else {
if err := convert.Convert(tempDir, temp); err != nil {
return nil, err
}
}
if _, err := temp.Seek(0, io.SeekStart); err != nil {
return nil, err
}
layer, err := NewLayer(temp, "application/vnd.ollama.image.model")
layer, err := NewLayer(temp, layerType)
if err != nil {
return nil, err
}
@@ -205,7 +194,11 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
layers = append(layers, &layerGGML{layer, ggml})
intermediateBlobs[digest] = layer.Digest
return detectChatTemplate(layers)
if !convertAdapter {
return detectChatTemplate(layers)
}
return layers, nil
}
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
@@ -293,92 +286,3 @@ func detectContentType(r io.Reader) (string, error) {
return "unknown", nil
}
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
// mxyng: this only really works if the input contains tool calls in some JSON format
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
// create a subtree from the node that ranges over .ToolCalls
tmpl := m.Template.Subtree(func(n parse.Node) bool {
if t, ok := n.(*parse.RangeNode); ok {
return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls")
}
return false
})
if tmpl == nil {
return nil, false
}
var b bytes.Buffer
if err := tmpl.Execute(&b, map[string][]api.ToolCall{
"ToolCalls": {
{
Function: api.ToolCallFunction{
Name: "@@name@@",
Arguments: api.ToolCallFunctionArguments{
"@@argument@@": 1,
},
},
},
},
}); err != nil {
return nil, false
}
var kv map[string]any
// execute the subtree with placeholders to identify the keys
// trim any commands that might exist in the template
if err := json.Unmarshal(bytes.TrimSuffix(b.Bytes(), []byte(",")), &kv); err != nil {
return nil, false
}
// find the keys that correspond to the name and arguments fields
var name, arguments string
for k, v := range kv {
switch v.(type) {
case string:
name = k
case map[string]any:
arguments = k
}
}
var objs []map[string]any
for offset := 0; offset < len(s); {
var obj map[string]any
decoder := json.NewDecoder(strings.NewReader(s[offset:]))
if err := decoder.Decode(&obj); errors.Is(err, io.EOF) || errors.Is(err, io.ErrUnexpectedEOF) {
break
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
// skip over any syntax errors
offset += int(syntax.Offset)
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
// skip over any unmarshalable types
offset += int(unmarshalType.Offset)
} else if err != nil {
slog.Error("parseToolCalls", "error", err)
return nil, false
} else {
offset += int(decoder.InputOffset())
objs = append(objs, obj)
}
}
var toolCalls []api.ToolCall
for _, kv := range objs {
var call api.ToolCall
for k, v := range kv {
switch k {
case name:
call.Function.Name = v.(string)
case arguments:
call.Function.Arguments = v.(map[string]any)
}
}
toolCalls = append(toolCalls, call)
}
return toolCalls, len(toolCalls) > 0
}

View File

@@ -3,9 +3,7 @@ package server
import (
"archive/zip"
"bytes"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"path/filepath"
@@ -13,9 +11,7 @@ import (
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/template"
)
func createZipFile(t *testing.T, name string) *os.File {
@@ -114,122 +110,3 @@ func TestExtractFromZipFile(t *testing.T) {
})
}
}
func readFile(t *testing.T, base, name string) *bytes.Buffer {
t.Helper()
bts, err := os.ReadFile(filepath.Join(base, name))
if err != nil {
t.Fatal(err)
}
return bytes.NewBuffer(bts)
}
func TestExecuteWithTools(t *testing.T) {
p := filepath.Join("testdata", "tools")
cases := []struct {
model string
output string
ok bool
}{
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true},
{"mistral", `I'm not aware of that information. However, I can suggest searching for the weather using the "get_current_weather" function:
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"command-r-plus", "Action: ```json" + `
[
{
"tool_name": "get_current_weather",
"parameters": {
"format": "fahrenheit",
"location": "San Francisco, CA"
}
},
{
"tool_name": "get_current_weather",
"parameters": {
"format": "celsius",
"location": "Toronto, Canada"
}
}
]
` + "```", true},
{"command-r-plus", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"firefunction", ` functools[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"firefunction", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"llama3-groq-tool-use", `<tool_call>
{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}}
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
</tool_call>`, true},
}
var tools []api.Tool
if err := json.Unmarshal(readFile(t, p, "tools.json").Bytes(), &tools); err != nil {
t.Fatal(err)
}
var messages []api.Message
if err := json.Unmarshal(readFile(t, p, "messages.json").Bytes(), &messages); err != nil {
t.Fatal(err)
}
calls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: api.ToolCallFunctionArguments{
"format": "fahrenheit",
"location": "San Francisco, CA",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: api.ToolCallFunctionArguments{
"format": "celsius",
"location": "Toronto, Canada",
},
},
},
}
for _, tt := range cases {
t.Run(tt.model, func(t *testing.T) {
tmpl, err := template.Parse(readFile(t, p, fmt.Sprintf("%s.gotmpl", tt.model)).String())
if err != nil {
t.Fatal(err)
}
t.Run("template", func(t *testing.T) {
var actual bytes.Buffer
if err := tmpl.Execute(&actual, template.Values{Tools: tools, Messages: messages}); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(actual.String(), readFile(t, p, fmt.Sprintf("%s.out", tt.model)).String()); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("parse", func(t *testing.T) {
m := &Model{Template: tmpl}
actual, ok := m.parseToolCalls(tt.output)
if ok != tt.ok {
t.Fatalf("expected %t, got %t", tt.ok, ok)
}
if tt.ok {
if diff := cmp.Diff(actual, calls); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
})
})
}
}

View File

@@ -1,74 +1,217 @@
package server
import (
"bytes"
"context"
"fmt"
"log/slog"
"strings"
"text/template/parse"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
)
type tokenizeFunc func(context.Context, string) ([]int, error)
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
// latest message and 2) system messages
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
var system []api.Message
// always include the last message
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n - 1; i >= 0; i-- {
system = make([]api.Message, 0)
for j := range i {
if msgs[j].Role == "system" {
system = append(system, msgs[j])
// isResponseNode checks if the node contains .Response
func isResponseNode(node *parse.ActionNode) bool {
for _, cmd := range node.Pipe.Cmds {
for _, arg := range cmd.Args {
if fieldNode, ok := arg.(*parse.FieldNode); ok && len(fieldNode.Ident) > 0 {
if fieldNode.Ident[0] == "Response" {
return true
}
}
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools}); err != nil {
return "", nil, err
}
s, err := tokenize(ctx, b.String())
if err != nil {
return "", nil, err
}
c := len(s)
if m.ProjectorPaths != nil {
for _, m := range msgs[i:] {
// images are represented as 768 sized embeddings
// TODO: get embedding length from project metadata
c += 768 * len(m.Images)
}
}
if c > opts.NumCtx {
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
break
} else {
n = i
}
}
// truncate any messages that do not fit into the context window
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[n:]...), Tools: tools}); err != nil {
return "", nil, err
}
for _, m := range msgs[n:] {
for _, i := range m.Images {
images = append(images, llm.ImageData{
ID: len(images),
Data: i,
})
}
}
return b.String(), images, nil
return false
}
// formatTemplateForResponse formats the template AST to:
// 1. remove all nodes after the first .Response (if generate=true)
// 2. add a .Response node to the end if it doesn't exist
// TODO(jmorganca): this should recursively cut the template before the first .Response
func formatTemplateForResponse(tmpl *template.Template, generate bool) {
var found bool
for i, node := range tmpl.Tree.Root.Nodes {
if actionNode, ok := node.(*parse.ActionNode); ok {
if isResponseNode(actionNode) {
found = true
if generate {
tmpl.Tree.Root.Nodes = tmpl.Tree.Root.Nodes[:i+1]
break
}
}
}
}
if !found {
// add the response node if it doesn't exist
responseFieldNode := &parse.FieldNode{NodeType: parse.NodeField, Ident: []string{"Response"}}
responsePipeNode := &parse.PipeNode{NodeType: parse.NodePipe, Cmds: []*parse.CommandNode{{NodeType: parse.NodeCommand, Args: []parse.Node{responseFieldNode}}}}
responseActionNode := &parse.ActionNode{NodeType: parse.NodeAction, Pipe: responsePipeNode}
tmpl.Tree.Root.Nodes = append(tmpl.Tree.Root.Nodes, responseActionNode)
}
}
// Prompt renders a prompt from a template. If generate is set to true,
// the response and parts of the template following it are not rendered
func Prompt(tmpl *template.Template, system, prompt, response string, generate bool) (string, error) {
formatTemplateForResponse(tmpl, generate)
vars := map[string]any{
"System": system,
"Prompt": prompt,
"Response": response,
}
var sb strings.Builder
if err := tmpl.Execute(&sb, vars); err != nil {
return "", err
}
return sb.String(), nil
}
func countTokens(tmpl *template.Template, system string, prompt string, response string, encode func(string) ([]int, error)) (int, error) {
rendered, err := Prompt(tmpl, system, prompt, response, false)
if err != nil {
return 0, err
}
tokens, err := encode(rendered)
if err != nil {
slog.Error("failed to encode prompt", "err", err)
return 0, err
}
return len(tokens), err
}
// ChatPrompt builds up a prompt from a series of messages, truncating based on context window size
func ChatPrompt(tmpl *template.Template, messages []api.Message, window int, encode func(string) ([]int, error)) (string, error) {
type prompt struct {
System string
Prompt string
Response string
images []int
tokens int
}
var p prompt
// iterate through messages to build up {system,user,response} prompts
var imgId int
var prompts []prompt
for _, msg := range messages {
switch strings.ToLower(msg.Role) {
case "system":
if p.System != "" || p.Prompt != "" || p.Response != "" {
prompts = append(prompts, p)
p = prompt{}
}
p.System = msg.Content
case "user":
if p.Prompt != "" || p.Response != "" {
prompts = append(prompts, p)
p = prompt{}
}
var sb strings.Builder
for range msg.Images {
fmt.Fprintf(&sb, "[img-%d] ", imgId)
p.images = append(p.images, imgId)
imgId += 1
}
sb.WriteString(msg.Content)
p.Prompt = sb.String()
case "assistant":
if p.Response != "" {
prompts = append(prompts, p)
p = prompt{}
}
p.Response = msg.Content
default:
return "", fmt.Errorf("invalid role: %s, role must be one of [system, user, assistant]", msg.Role)
}
}
// add final prompt
if p.System != "" || p.Prompt != "" || p.Response != "" {
prompts = append(prompts, p)
}
// calculate token lengths for each prompt, estimating 768 tokens per images
for i, p := range prompts {
tokens, err := countTokens(tmpl, p.System, p.Prompt, p.Response, encode)
if err != nil {
return "", err
}
prompts[i].tokens = tokens + len(prompts[i].images)*768
}
// truncate images and prompts starting from the beginning of the list
// until either one prompt remains or the total tokens fits the context window
// TODO (jmorganca): this doesn't account for the context window room required for the response
for {
var required int
for _, p := range prompts {
required += p.tokens
}
required += 1 // for bos token
if required <= window {
slog.Debug("prompt now fits in context window", "required", required, "window", window)
break
}
prompt := &prompts[0]
if len(prompt.images) > 1 {
img := prompt.images[0]
slog.Debug("prompt longer than context window, removing image", "id", img, "required", required, "window", window)
prompt.images = prompt.images[1:]
prompt.Prompt = strings.Replace(prompt.Prompt, fmt.Sprintf(" [img-%d]", img), "", 1)
prompt.tokens -= 768
continue
}
if len(prompts) > 1 {
slog.Debug("required tokens longer than context window, removing first prompt", "prompt", prompts[0].tokens, "required", required, "window", window)
system := prompt.System
prompts = prompts[1:]
if system != "" && prompts[0].System == "" {
prompts[0].System = system
tokens, err := countTokens(tmpl, prompts[0].System, prompts[0].Prompt, prompts[0].Response, encode)
if err != nil {
return "", err
}
prompts[0].tokens = tokens + len(prompts[0].images)*768
}
continue
}
// stop truncating if there's only one prompt left
break
}
var sb strings.Builder
for i, p := range prompts {
// last prompt should leave the response unrendered (for completion)
rendered, err := Prompt(tmpl, p.System, p.Prompt, p.Response, i == len(prompts)-1)
if err != nil {
return "", err
}
sb.WriteString(rendered)
}
return sb.String(), nil
}

View File

@@ -1,209 +1,215 @@
package server
import (
"bytes"
"context"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/template"
)
func TestChatPrompt(t *testing.T) {
type expect struct {
prompt string
images [][]byte
}
cases := []struct {
name string
limit int
msgs []api.Message
expect
func TestPrompt(t *testing.T) {
tests := []struct {
name string
template string
system string
prompt string
response string
generate bool
want string
}{
{
name: "messages",
limit: 64,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
},
name: "simple prompt",
template: "[INST] {{ .System }} {{ .Prompt }} [/INST]",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST]",
},
{
name: "truncate messages",
limit: 1,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "A test. And a thumping good one at that, I'd wager. ",
},
name: "implicit response",
template: "[INST] {{ .System }} {{ .Prompt }} [/INST]",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST]I don't know.",
},
{
name: "truncate messages with image",
limit: 64,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("something")}},
},
expect: expect{
prompt: "[img-0] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
},
},
name: "response",
template: "[INST] {{ .System }} {{ .Prompt }} [/INST] {{ .Response }}",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST] I don't know.",
},
{
name: "truncate messages with images",
limit: 64,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
},
expect: expect{
prompt: "[img-0] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("somethingelse"),
},
},
name: "cut",
template: "<system>{{ .System }}</system><user>{{ .Prompt }}</user><assistant>{{ .Response }}</assistant>",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
generate: true,
want: "<system>You are a Wizard.</system><user>What are the potion ingredients?</user><assistant>I don't know.",
},
{
name: "messages with images",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
},
expect: expect{
prompt: "[img-0] You're a test, Harry! I-I'm a what? [img-1] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
[]byte("somethingelse"),
},
},
},
{
name: "message with image tag",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry! [img]", Images: []api.ImageData{[]byte("something")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
},
expect: expect{
prompt: "You're a test, Harry! [img-0] I-I'm a what? [img-1] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
[]byte("somethingelse"),
},
},
},
{
name: "messages with interleaved images",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "user", Images: []api.ImageData{[]byte("something")}},
{Role: "user", Images: []api.ImageData{[]byte("somethingelse")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You're a test, Harry!\n\n[img-0]\n\n[img-1] I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
[]byte("somethingelse"),
},
},
},
{
name: "truncate message with interleaved images",
limit: 1024,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "user", Images: []api.ImageData{[]byte("something")}},
{Role: "user", Images: []api.ImageData{[]byte("somethingelse")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "[img-0] I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("somethingelse"),
},
},
},
{
name: "message with system prompt",
limit: 2048,
msgs: []api.Message{
{Role: "system", Content: "You are the Test Who Lived."},
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You are the Test Who Lived. You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
},
},
{
name: "out of order system",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "system", Content: "You are the Test Who Lived."},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You're a test, Harry! I-I'm a what? You are the Test Who Lived. A test. And a thumping good one at that, I'd wager. ",
},
name: "nocut",
template: "<system>{{ .System }}</system><user>{{ .Prompt }}</user><assistant>{{ .Response }}</assistant>",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
want: "<system>You are a Wizard.</system><user>What are the potion ingredients?</user><assistant>I don't know.</assistant>",
},
}
tmpl, err := template.Parse(`
{{- if .System }}{{ .System }} {{ end }}
{{- if .Prompt }}{{ .Prompt }} {{ end }}
{{- if .Response }}{{ .Response }} {{ end }}`)
if err != nil {
t.Fatal(err)
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
model := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
opts := api.Options{Runner: api.Runner{NumCtx: tt.limit}}
prompt, images, err := chatPrompt(context.TODO(), &model, mockRunner{}.Tokenize, &opts, tt.msgs, nil)
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
tmpl, err := template.Parse(tc.template)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(prompt, tt.prompt); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
got, err := Prompt(tmpl, tc.system, tc.prompt, tc.response, tc.generate)
if err != nil {
t.Errorf("error = %v", err)
}
if len(images) != len(tt.images) {
t.Fatalf("expected %d images, got %d", len(tt.images), len(images))
}
for i := range images {
if images[i].ID != i {
t.Errorf("expected ID %d, got %d", i, images[i].ID)
}
if !bytes.Equal(images[i].Data, tt.images[i]) {
t.Errorf("expected %q, got %q", tt.images[i], images[i])
}
if got != tc.want {
t.Errorf("got = %v, want %v", got, tc.want)
}
})
}
}
func TestChatPrompt(t *testing.T) {
tests := []struct {
name string
template string
messages []api.Message
window int
want string
}{
{
name: "simple prompt",
template: "[INST] {{ .Prompt }} [/INST]",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
window: 1024,
want: "[INST] Hello [/INST]",
},
{
name: "with system message",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST]",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST]",
},
{
name: "with response",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }}",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "I am?"},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST] I am?",
},
{
name: "with implicit response",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST]",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "I am?"},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST]I am?",
},
{
name: "with conversation",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }} ",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "What are the potion ingredients?"},
{Role: "assistant", Content: "sugar"},
{Role: "user", Content: "Anything else?"},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> What are the potion ingredients? [/INST] sugar [INST] Anything else? [/INST] ",
},
{
name: "with truncation",
template: "{{ .System }} {{ .Prompt }} {{ .Response }} ",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "I am?"},
{Role: "user", Content: "Why is the sky blue?"},
{Role: "assistant", Content: "The sky is blue from rayleigh scattering"},
},
window: 10,
want: "You are a Wizard. Why is the sky blue? The sky is blue from rayleigh scattering",
},
{
name: "images",
template: "{{ .System }} {{ .Prompt }}",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello", Images: []api.ImageData{[]byte("base64")}},
},
window: 1024,
want: "You are a Wizard. [img-0] Hello",
},
{
name: "images truncated",
template: "{{ .System }} {{ .Prompt }}",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello", Images: []api.ImageData{[]byte("img1"), []byte("img2")}},
},
window: 1024,
want: "You are a Wizard. [img-0] [img-1] Hello",
},
{
name: "empty list",
template: "{{ .System }} {{ .Prompt }}",
messages: []api.Message{},
window: 1024,
want: "",
},
{
name: "empty prompt",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }} ",
messages: []api.Message{
{Role: "user", Content: ""},
},
window: 1024,
want: "",
},
}
encode := func(s string) ([]int, error) {
words := strings.Fields(s)
return make([]int, len(words)), nil
}
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
tmpl, err := template.Parse(tc.template)
if err != nil {
t.Fatal(err)
}
got, err := ChatPrompt(tmpl, tc.messages, tc.window, encode)
if err != nil {
t.Errorf("error = %v", err)
}
if got != tc.want {
t.Errorf("got: %q, want: %q", got, tc.want)
}
})
}

View File

@@ -1,15 +1,14 @@
package server
import (
"bytes"
"cmp"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"math"
"net"
"net/http"
"net/netip"
@@ -55,8 +54,6 @@ func init() {
gin.SetMode(mode)
}
var errRequired = errors.New("is required")
func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options, error) {
opts := api.DefaultOptions()
if err := opts.FromMap(model.Options); err != nil {
@@ -70,220 +67,250 @@ func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options
return opts, nil
}
// scheduleRunner schedules a runner after validating inputs such as capabilities and model options.
// It returns the allocated runner, model instance, and consolidated options if successful and error otherwise.
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
if name == "" {
return nil, nil, nil, fmt.Errorf("model %w", errRequired)
}
model, err := GetModel(name)
if err != nil {
return nil, nil, nil, err
}
if err := model.CheckCapabilities(caps...); err != nil {
return nil, nil, nil, fmt.Errorf("%s %w", name, err)
}
opts, err := modelOptions(model, requestOpts)
if err != nil {
return nil, nil, nil, err
}
runnerCh, errCh := s.sched.GetRunner(ctx, model, opts, keepAlive)
var runner *runnerRef
select {
case runner = <-runnerCh:
case err = <-errCh:
return nil, nil, nil, err
}
return runner.llama, model, &opts, nil
func isSupportedImageType(image []byte) bool {
contentType := http.DetectContentType(image)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
return slices.Contains(allowedTypes, contentType)
}
func (s *Server) GenerateHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.GenerateRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
case err != nil:
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
if req.Format != "" && req.Format != "json" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be empty or \"json\""})
// validate the request
switch {
case req.Model == "":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
} else if req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0) {
case len(req.Format) > 0 && req.Format != "json":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
return
case req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0):
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "raw mode does not support template, system, or context"})
return
}
caps := []Capability{CapabilityCompletion}
if req.Suffix != "" {
caps = append(caps, CapabilityInsert)
for _, img := range req.Images {
if !isSupportedImageType(img) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "unsupported image format"})
return
}
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support generate", req.Model)})
return
} else if err != nil {
handleScheduleError(c, req.Model, err)
model, err := GetModel(req.Model)
if err != nil {
var pErr *fs.PathError
if errors.As(err, &pErr) {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
checkpointLoaded := time.Now()
if !model.Has(CapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%s does not support generate", req.Model)})
return
}
if req.Prompt == "" {
opts, err := modelOptions(model, req.Options)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
var runner *runnerRef
select {
case runner = <-rCh:
case err = <-eCh:
handleErrorResponse(c, err)
return
}
// an empty request loads the model
// note: for a short while template was used in lieu
// of `raw` mode so we need to check for it too
if req.Prompt == "" && req.Template == "" && req.System == "" {
c.JSON(http.StatusOK, api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Model: req.Model,
Done: true,
DoneReason: "load",
})
return
}
images := make([]llm.ImageData, len(req.Images))
for i := range req.Images {
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
tmpl, err := template.Parse(req.Template)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
prompt := req.Prompt
if !req.Raw {
tmpl := m.Template
if req.Template != "" {
tmpl, err = template.Parse(req.Template)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
checkpointLoaded := time.Now()
var prompt string
switch {
case req.Raw:
prompt = req.Prompt
case req.Prompt != "":
if req.Template == "" {
tmpl = model.Template
}
var b bytes.Buffer
if req.Context != nil {
s, err := r.Detokenize(c.Request.Context(), req.Context)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
b.WriteString(s)
if req.System == "" {
req.System = model.System
}
var values template.Values
if req.Suffix != "" {
values.Prompt = prompt
values.Suffix = req.Suffix
} else {
var msgs []api.Message
if req.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: req.System})
} else if m.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: m.System})
}
slog.Debug("generate handler", "prompt", req.Prompt)
slog.Debug("generate handler", "template", req.Template)
slog.Debug("generate handler", "system", req.System)
for _, i := range images {
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
}
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
var sb strings.Builder
for i := range req.Images {
fmt.Fprintf(&sb, "[img-%d] ", i)
}
if err := tmpl.Execute(&b, values); err != nil {
sb.WriteString(req.Prompt)
p, err := Prompt(tmpl, req.System, sb.String(), "", true)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
prompt = b.String()
sb.Reset()
if req.Context != nil {
prev, err := runner.llama.Detokenize(c.Request.Context(), req.Context)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
sb.WriteString(prev)
}
sb.WriteString(p)
prompt = sb.String()
}
slog.Debug("generate request", "prompt", prompt, "images", images)
slog.Debug("generate handler", "prompt", prompt)
ch := make(chan any)
var generated strings.Builder
go func() {
// TODO (jmorganca): avoid building the response twice both here and below
var sb strings.Builder
defer close(ch)
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(cr llm.CompletionResponse) {
res := api.GenerateResponse{
fn := func(r llm.CompletionResponse) {
// Build up the full response
if _, err := generated.WriteString(r.Content); err != nil {
ch <- gin.H{"error": err.Error()}
return
}
resp := api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Response: cr.Content,
Done: cr.Done,
DoneReason: cr.DoneReason,
Done: r.Done,
Response: r.Content,
DoneReason: r.DoneReason,
Metrics: api.Metrics{
PromptEvalCount: cr.PromptEvalCount,
PromptEvalDuration: cr.PromptEvalDuration,
EvalCount: cr.EvalCount,
EvalDuration: cr.EvalDuration,
PromptEvalCount: r.PromptEvalCount,
PromptEvalDuration: r.PromptEvalDuration,
EvalCount: r.EvalCount,
EvalDuration: r.EvalDuration,
},
}
if _, err := sb.WriteString(cr.Content); err != nil {
ch <- gin.H{"error": err.Error()}
}
if cr.Done {
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
if r.Done {
resp.TotalDuration = time.Since(checkpointStart)
resp.LoadDuration = checkpointLoaded.Sub(checkpointStart)
if !req.Raw {
tokens, err := r.Tokenize(c.Request.Context(), prompt+sb.String())
p, err := Prompt(tmpl, req.System, req.Prompt, generated.String(), false)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
// TODO (jmorganca): encode() should not strip special tokens
tokens, err := runner.llama.Tokenize(c.Request.Context(), p)
if err != nil {
ch <- gin.H{"error": err.Error()}
return
}
res.Context = append(req.Context, tokens...)
resp.Context = append(req.Context, tokens...)
}
}
ch <- res
}); err != nil {
ch <- resp
}
var images []llm.ImageData
for i := range req.Images {
images = append(images, llm.ImageData{
ID: i,
Data: req.Images[i],
})
}
// Start prediction
req := llm.CompletionRequest{
Prompt: prompt,
Format: req.Format,
Images: images,
Options: opts,
}
if err := runner.llama.Completion(c.Request.Context(), req, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
if req.Stream != nil && !*req.Stream {
var r api.GenerateResponse
// Accumulate responses into the final response
var final api.GenerateResponse
var sb strings.Builder
for rr := range ch {
switch t := rr.(type) {
for resp := range ch {
switch r := resp.(type) {
case api.GenerateResponse:
sb.WriteString(t.Response)
r = t
sb.WriteString(r.Response)
final = r
case gin.H:
msg, ok := t["error"].(string)
if !ok {
msg = "unexpected error format in response"
if errorMsg, ok := r["error"].(string); ok {
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
return
} else {
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in response"})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": msg})
return
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected response"})
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error"})
return
}
}
r.Response = sb.String()
c.JSON(http.StatusOK, r)
final.Response = sb.String()
c.JSON(http.StatusOK, final)
return
}
streamResponse(c, ch)
}
func (s *Server) EmbedHandler(c *gin.Context) {
var req api.EmbedRequest
func (s *Server) EmbeddingsHandler(c *gin.Context) {
var req api.EmbeddingRequest
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
@@ -294,122 +321,34 @@ func (s *Server) EmbedHandler(c *gin.Context) {
return
}
truncate := true
if req.Truncate != nil && !*req.Truncate {
truncate = false
}
var input []string
switch i := req.Input.(type) {
case string:
if len(i) > 0 {
input = append(input, i)
}
case []any:
for _, v := range i {
if _, ok := v.(string); !ok {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
return
}
input = append(input, v.(string))
}
default:
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
if len(input) == 0 {
c.JSON(http.StatusOK, api.EmbedResponse{Model: req.Model, Embeddings: [][]float32{}})
return
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
model, err := GetModel(req.Model)
if err != nil {
handleScheduleError(c, req.Model, err)
var pErr *fs.PathError
if errors.As(err, &pErr) {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
kvData, err := getKVData(m.ModelPath, false)
opts, err := modelOptions(model, req.Options)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
for i, s := range input {
tokens, err := r.Tokenize(c.Request.Context(), s)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
ctxLen := min(opts.NumCtx, int(kvData.ContextLength()))
if len(tokens) > ctxLen {
if !truncate {
c.JSON(http.StatusBadRequest, gin.H{"error": "input length exceeds maximum context length"})
return
}
tokens = tokens[:ctxLen]
s, err = r.Detokenize(c.Request.Context(), tokens)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
}
input[i] = s
}
embeddings, err := r.Embed(c.Request.Context(), input)
if err != nil {
slog.Error("embedding generation failed", "error", err)
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return
}
for i, e := range embeddings {
embeddings[i] = normalize(e)
}
resp := api.EmbedResponse{
Model: req.Model,
Embeddings: embeddings,
}
c.JSON(http.StatusOK, resp)
}
func normalize(vec []float32) []float32 {
var sum float32
for _, v := range vec {
sum += v * v
}
norm := float32(0.0)
if sum > 0 {
norm = float32(1.0 / math.Sqrt(float64(sum)))
}
for i := range vec {
vec[i] *= norm
}
return vec
}
func (s *Server) EmbeddingsHandler(c *gin.Context) {
var req api.EmbeddingRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
r, _, _, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
var runner *runnerRef
select {
case runner = <-rCh:
case err = <-eCh:
handleErrorResponse(c, err)
return
}
@@ -419,20 +358,13 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return
}
embeddings, err := r.Embed(c.Request.Context(), []string{req.Prompt})
embedding, err := runner.llama.Embedding(c.Request.Context(), req.Prompt)
if err != nil {
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return
}
embedding := make([]float64, len(embeddings[0]))
for i, v := range embeddings[0] {
embedding[i] = float64(v)
}
resp := api.EmbeddingResponse{
Embedding: embedding,
}
@@ -710,9 +642,16 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
m.System = req.System
}
msgs := make([]api.Message, len(m.Messages))
for i, msg := range m.Messages {
msgs[i] = api.Message{Role: msg.Role, Content: msg.Content}
if req.Template != "" {
m.Template, err = template.Parse(req.Template)
if err != nil {
return nil, err
}
}
msgs := make([]api.Message, 0)
for _, msg := range m.Messages {
msgs = append(msgs, api.Message{Role: msg.Role, Content: msg.Content})
}
n := model.ParseName(req.Model)
@@ -1055,7 +994,6 @@ func (s *Server) GenerateRoutes() http.Handler {
r.POST("/api/pull", s.PullModelHandler)
r.POST("/api/generate", s.GenerateHandler)
r.POST("/api/chat", s.ChatHandler)
r.POST("/api/embed", s.EmbedHandler)
r.POST("/api/embeddings", s.EmbeddingsHandler)
r.POST("/api/create", s.CreateModelHandler)
r.POST("/api/push", s.PushModelHandler)
@@ -1069,7 +1007,6 @@ func (s *Server) GenerateRoutes() http.Handler {
// Compatibility endpoints
r.POST("/v1/chat/completions", openai.ChatMiddleware(), s.ChatHandler)
r.POST("/v1/completions", openai.CompletionsMiddleware(), s.GenerateHandler)
r.POST("/v1/embeddings", openai.EmbeddingsMiddleware(), s.EmbedHandler)
r.GET("/v1/models", openai.ListMiddleware(), s.ListModelsHandler)
r.GET("/v1/models/:model", openai.RetrieveMiddleware(), s.ShowModelHandler)
@@ -1277,67 +1214,132 @@ func (s *Server) ProcessHandler(c *gin.Context) {
c.JSON(http.StatusOK, api.ProcessResponse{Models: models})
}
// ChatPrompt builds up a prompt from a series of messages for the currently `loaded` model
func chatPrompt(ctx context.Context, runner *runnerRef, template *template.Template, messages []api.Message, numCtx int) (string, error) {
encode := func(s string) ([]int, error) {
return runner.llama.Tokenize(ctx, s)
}
prompt, err := ChatPrompt(template, messages, numCtx, encode)
if err != nil {
return "", err
}
return prompt, nil
}
func (s *Server) ChatHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.ChatRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
case err != nil:
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
caps := []Capability{CapabilityCompletion}
if len(req.Tools) > 0 {
caps = append(caps, CapabilityTools)
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support chat", req.Model)})
// validate the request
switch {
case req.Model == "":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
} else if err != nil {
handleScheduleError(c, req.Model, err)
case len(req.Format) > 0 && req.Format != "json":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
return
}
checkpointLoaded := time.Now()
if len(req.Messages) == 0 {
c.JSON(http.StatusOK, api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant"},
Done: true,
DoneReason: "load",
})
model, err := GetModel(req.Model)
if err != nil {
var pErr *fs.PathError
if errors.As(err, &pErr) {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if req.Messages[0].Role != "system" && m.System != "" {
req.Messages = append([]api.Message{{Role: "system", Content: m.System}}, req.Messages...)
if !model.Has(CapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%s does not support chat", req.Model)})
return
}
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, req.Messages, req.Tools)
opts, err := modelOptions(model, req.Options)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
slog.Debug("chat request", "images", len(images), "prompt", prompt)
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
var runner *runnerRef
select {
case runner = <-rCh:
case err = <-eCh:
handleErrorResponse(c, err)
return
}
checkpointLoaded := time.Now()
// if the first message is not a system message, then add the model's default system message
if len(req.Messages) > 0 && req.Messages[0].Role != "system" {
req.Messages = append([]api.Message{
{
Role: "system",
Content: model.System,
},
}, req.Messages...)
}
prompt, err := chatPrompt(c.Request.Context(), runner, model.Template, req.Messages, opts.NumCtx)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
// an empty request loads the model
if len(req.Messages) == 0 || prompt == "" {
resp := api.ChatResponse{
CreatedAt: time.Now().UTC(),
Model: req.Model,
Done: true,
DoneReason: "load",
Message: api.Message{Role: "assistant"},
}
c.JSON(http.StatusOK, resp)
return
}
// only send images that are in the prompt
var i int
var images []llm.ImageData
for _, m := range req.Messages {
for _, img := range m.Images {
if !isSupportedImageType(img) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "unsupported image format"})
return
}
if strings.Contains(prompt, fmt.Sprintf("[img-%d]", i)) {
images = append(images, llm.ImageData{Data: img, ID: i})
}
i += 1
}
}
slog.Debug("chat handler", "prompt", prompt, "images", len(images))
ch := make(chan any)
go func() {
defer close(ch)
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(r llm.CompletionResponse) {
res := api.ChatResponse{
fn := func(r llm.CompletionResponse) {
resp := api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant", Content: r.Content},
@@ -1352,65 +1354,62 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
if r.Done {
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
resp.TotalDuration = time.Since(checkpointStart)
resp.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
ch <- res
}); err != nil {
ch <- resp
}
if err := runner.llama.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Format: req.Format,
Images: images,
Options: opts,
}, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
if req.Stream != nil && !*req.Stream {
var resp api.ChatResponse
// Accumulate responses into the final response
var final api.ChatResponse
var sb strings.Builder
for rr := range ch {
switch t := rr.(type) {
for resp := range ch {
switch r := resp.(type) {
case api.ChatResponse:
sb.WriteString(t.Message.Content)
resp = t
sb.WriteString(r.Message.Content)
final = r
case gin.H:
msg, ok := t["error"].(string)
if !ok {
msg = "unexpected error format in response"
if errorMsg, ok := r["error"].(string); ok {
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
return
} else {
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in response"})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": msg})
return
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected response"})
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error"})
return
}
}
resp.Message.Content = sb.String()
if len(req.Tools) > 0 {
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
resp.Message.ToolCalls = toolCalls
resp.Message.Content = ""
}
}
c.JSON(http.StatusOK, resp)
final.Message = api.Message{Role: "assistant", Content: sb.String()}
c.JSON(http.StatusOK, final)
return
}
streamResponse(c, ch)
}
func handleScheduleError(c *gin.Context, name string, err error) {
switch {
case errors.Is(err, errCapabilities), errors.Is(err, errRequired):
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
case errors.Is(err, context.Canceled):
func handleErrorResponse(c *gin.Context, err error) {
if errors.Is(err, context.Canceled) {
c.JSON(499, gin.H{"error": "request canceled"})
case errors.Is(err, ErrMaxQueue):
c.JSON(http.StatusServiceUnavailable, gin.H{"error": err.Error()})
case errors.Is(err, os.ErrNotExist):
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model %q not found, try pulling it first", name)})
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if errors.Is(err, ErrMaxQueue) {
c.JSON(http.StatusServiceUnavailable, gin.H{"error": err.Error()})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}

View File

@@ -2,7 +2,6 @@ package server
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
@@ -21,7 +20,7 @@ import (
var stream bool = false
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
func createBinFile(t *testing.T, kv map[string]any, ti []*llm.Tensor) string {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "")
@@ -30,7 +29,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
}
defer f.Close()
if err := llm.NewGGUFV3(binary.LittleEndian).Encode(f, kv, ti); err != nil {
if err := llm.WriteGGUF(f, kv, ti); err != nil {
t.Fatal(err)
}
@@ -85,8 +84,6 @@ func checkFileExists(t *testing.T, p string, expect []string) {
}
func TestCreateFromBin(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -113,8 +110,6 @@ func TestCreateFromBin(t *testing.T) {
}
func TestCreateFromModel(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -156,8 +151,6 @@ func TestCreateFromModel(t *testing.T) {
}
func TestCreateRemovesLayers(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -205,8 +198,6 @@ func TestCreateRemovesLayers(t *testing.T) {
}
func TestCreateUnsetsSystem(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -263,8 +254,6 @@ func TestCreateUnsetsSystem(t *testing.T) {
}
func TestCreateMergeParameters(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -368,8 +357,6 @@ func TestCreateMergeParameters(t *testing.T) {
}
func TestCreateReplacesMessages(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -446,8 +433,6 @@ func TestCreateReplacesMessages(t *testing.T) {
}
func TestCreateTemplateSystem(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -494,8 +479,6 @@ func TestCreateTemplateSystem(t *testing.T) {
}
func TestCreateLicenses(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -542,8 +525,6 @@ func TestCreateLicenses(t *testing.T) {
}
func TestCreateDetectTemplate(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -563,9 +544,9 @@ func TestCreateDetectTemplate(t *testing.T) {
}
checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{
filepath.Join(p, "blobs", "sha256-2f8e594e6f34b1b4d36a246628eeb3365ce442303d656f1fcc69e821722acea0"),
filepath.Join(p, "blobs", "sha256-542b217f179c7825eeb5bca3c77d2b75ed05bafbd3451d9188891a60a85337c6"),
filepath.Join(p, "blobs", "sha256-553c4a3f747b3d22a4946875f1cc8ed011c2930d83f864a0c7265f9ec0a20413"),
filepath.Join(p, "blobs", "sha256-c608dc615584cd20d9d830363dabf8a4783ae5d34245c3d8c115edb3bc7b28e4"),
filepath.Join(p, "blobs", "sha256-f836ee110db21567f826332e4cedd746c06d10664fd5a9ea3659e3683a944510"),
})
})

View File

@@ -8,15 +8,12 @@ import (
"path/filepath"
"testing"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
func TestDelete(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
@@ -80,8 +77,6 @@ func TestDelete(t *testing.T) {
}
func TestDeleteDuplicateLayers(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
var s Server

View File

@@ -1,712 +0,0 @@
package server
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"testing"
"time"
"github.com/gin-gonic/gin"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/llm"
)
type mockRunner struct {
llm.LlamaServer
// CompletionRequest is only valid until the next call to Completion
llm.CompletionRequest
llm.CompletionResponse
}
func (m *mockRunner) Completion(_ context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
m.CompletionRequest = r
fn(m.CompletionResponse)
return nil
}
func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error) {
for range strings.Fields(s) {
tokens = append(tokens, len(tokens))
}
return
}
func newMockServer(mock *mockRunner) func(gpu.GpuInfoList, string, *llm.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
return func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return mock, nil
}
}
func TestGenerateChat(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: "stop",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: gpu.GetGPUInfo,
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
// add 10ms delay to simulate loading
time.Sleep(10 * time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
},
},
}
go s.sched.Run(context.TODO())
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test",
Modelfile: fmt.Sprintf(`FROM %s
TEMPLATE """
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("missing body", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, nil)
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing model", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing capabilities chat", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "bert",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []llm.Tensor{})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "bert",
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"\"bert\" does not support chat"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("load model", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var actual api.ChatResponse
if err := json.NewDecoder(w.Body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != "test" {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done true, got false")
}
if actual.DoneReason != "load" {
t.Errorf("expected done reason load, got %s", actual.DoneReason)
}
})
checkChatResponse := func(t *testing.T, body io.Reader, model, content string) {
t.Helper()
var actual api.ChatResponse
if err := json.NewDecoder(body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != model {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done false, got true")
}
if actual.DoneReason != "stop" {
t.Errorf("expected done reason stop, got %s", actual.DoneReason)
}
if diff := cmp.Diff(actual.Message, api.Message{
Role: "assistant",
Content: content,
}); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
if actual.PromptEvalCount == 0 {
t.Errorf("expected prompt eval count > 0, got 0")
}
if actual.PromptEvalDuration == 0 {
t.Errorf("expected prompt eval duration > 0, got 0")
}
if actual.EvalCount == 0 {
t.Errorf("expected eval count > 0, got 0")
}
if actual.EvalDuration == 0 {
t.Errorf("expected eval duration > 0, got 0")
}
if actual.LoadDuration == 0 {
t.Errorf("expected load duration > 0, got 0")
}
if actual.TotalDuration == 0 {
t.Errorf("expected total duration > 0, got 0")
}
}
mock.CompletionResponse.Content = "Hi!"
t.Run("messages", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test", "Hi!")
})
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test-system",
Modelfile: "FROM test\nSYSTEM You are a helpful assistant.",
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("messages with model system", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Hi!")
})
mock.CompletionResponse.Content = "Abra kadabra!"
t.Run("messages with system", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "system", Content: "You can perform magic tricks."},
{Role: "user", Content: "Hello!"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
})
t.Run("messages with interleaved system", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
{Role: "assistant", Content: "I can help you with that."},
{Role: "system", Content: "You can perform magic tricks."},
{Role: "user", Content: "Help me write tests."},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! Assistant: I can help you with that. System: You can perform magic tricks. User: Help me write tests. "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
})
}
func TestGenerate(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: "stop",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: gpu.GetGPUInfo,
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
req.successCh <- &runnerRef{
llama: &mock,
}
},
},
}
go s.sched.Run(context.TODO())
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test",
Modelfile: fmt.Sprintf(`FROM %s
TEMPLATE """
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("missing body", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, nil)
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing model", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing capabilities generate", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "bert",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []llm.Tensor{})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "bert",
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"\"bert\" does not support generate"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing capabilities suffix", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "def add(",
Suffix: " return c",
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"test does not support insert"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("load model", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var actual api.GenerateResponse
if err := json.NewDecoder(w.Body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != "test" {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done true, got false")
}
if actual.DoneReason != "load" {
t.Errorf("expected done reason load, got %s", actual.DoneReason)
}
})
checkGenerateResponse := func(t *testing.T, body io.Reader, model, content string) {
t.Helper()
var actual api.GenerateResponse
if err := json.NewDecoder(body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != model {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done false, got true")
}
if actual.DoneReason != "stop" {
t.Errorf("expected done reason stop, got %s", actual.DoneReason)
}
if actual.Response != content {
t.Errorf("expected response %s, got %s", content, actual.Response)
}
if actual.Context == nil {
t.Errorf("expected context not nil")
}
if actual.PromptEvalCount == 0 {
t.Errorf("expected prompt eval count > 0, got 0")
}
if actual.PromptEvalDuration == 0 {
t.Errorf("expected prompt eval duration > 0, got 0")
}
if actual.EvalCount == 0 {
t.Errorf("expected eval count > 0, got 0")
}
if actual.EvalDuration == 0 {
t.Errorf("expected eval duration > 0, got 0")
}
if actual.LoadDuration == 0 {
t.Errorf("expected load duration > 0, got 0")
}
if actual.TotalDuration == 0 {
t.Errorf("expected total duration > 0, got 0")
}
}
mock.CompletionResponse.Content = "Hi!"
t.Run("prompt", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Hello!",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test", "Hi!")
})
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test-system",
Modelfile: "FROM test\nSYSTEM You are a helpful assistant.",
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("prompt with model system", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Hello!",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test-system", "Hi!")
})
mock.CompletionResponse.Content = "Abra kadabra!"
t.Run("prompt with system", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Hello!",
System: "You can perform magic tricks.",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test-system", "Abra kadabra!")
})
t.Run("prompt with template", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Help me write tests.",
System: "You can perform magic tricks.",
Template: `{{- if .System }}{{ .System }} {{ end }}
{{- if .Prompt }}### USER {{ .Prompt }} {{ end }}
{{- if .Response }}### ASSISTANT {{ .Response }} {{ end }}`,
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "You can perform magic tricks. ### USER Help me write tests. "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test-system", "Abra kadabra!")
})
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test-suffix",
Modelfile: `FROM test
TEMPLATE """{{- if .Suffix }}<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
{{- else }}{{ .Prompt }}
{{- end }}"""`,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("prompt with suffix", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-suffix",
Prompt: "def add(",
Suffix: " return c",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "<PRE> def add( <SUF> return c <MID>"); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("prompt without suffix", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-suffix",
Prompt: "def add(",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "def add("); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("raw", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Help me write tests.",
Raw: true,
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "Help me write tests."); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}

View File

@@ -7,14 +7,11 @@ import (
"slices"
"testing"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
func TestList(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("OLLAMA_MODELS", t.TempDir())
envconfig.LoadConfig()

View File

@@ -7,7 +7,6 @@ import (
"encoding/json"
"fmt"
"io"
"math"
"net/http"
"net/http/httptest"
"os"
@@ -273,77 +272,6 @@ func Test_Routes(t *testing.T) {
assert.Equal(t, "library", retrieveResp.OwnedBy)
},
},
{
Name: "Embed Handler Empty Input",
Method: http.MethodPost,
Path: "/api/embed",
Setup: func(t *testing.T, req *http.Request) {
embedReq := api.EmbedRequest{
Model: "t-bone",
Input: "",
}
jsonData, err := json.Marshal(embedReq)
require.NoError(t, err)
req.Body = io.NopCloser(bytes.NewReader(jsonData))
},
Expected: func(t *testing.T, resp *http.Response) {
contentType := resp.Header.Get("Content-Type")
if contentType != "application/json; charset=utf-8" {
t.Fatalf("expected content type application/json; charset=utf-8, got %s", contentType)
}
body, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
var embedResp api.EmbedResponse
err = json.Unmarshal(body, &embedResp)
if err != nil {
t.Fatal(err)
}
if embedResp.Model != "t-bone" {
t.Fatalf("expected model t-bone, got %s", embedResp.Model)
}
if embedResp.Embeddings == nil {
t.Fatalf("expected embeddings to not be nil, got %v", embedResp.Embeddings)
}
if len(embedResp.Embeddings) != 0 {
t.Fatalf("expected embeddings to be empty, got %v", embedResp.Embeddings)
}
},
},
{
Name: "Embed Handler Invalid Input",
Method: http.MethodPost,
Path: "/api/embed",
Setup: func(t *testing.T, req *http.Request) {
embedReq := api.EmbedRequest{
Model: "t-bone",
Input: 2,
}
jsonData, err := json.Marshal(embedReq)
require.NoError(t, err)
req.Body = io.NopCloser(bytes.NewReader(jsonData))
},
Expected: func(t *testing.T, resp *http.Response) {
contentType := resp.Header.Get("Content-Type")
if contentType != "application/json; charset=utf-8" {
t.Fatalf("expected content type application/json; charset=utf-8, got %s", contentType)
}
_, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
if resp.StatusCode != http.StatusBadRequest {
t.Fatalf("expected status code 400, got %d", resp.StatusCode)
}
},
},
}
t.Setenv("OLLAMA_MODELS", t.TempDir())
@@ -492,38 +420,3 @@ func TestShow(t *testing.T) {
t.Fatal("Expected projector architecture to be 'clip', but got", resp.ProjectorInfo["general.architecture"])
}
}
func TestNormalize(t *testing.T) {
type testCase struct {
input []float32
}
testCases := []testCase{
{input: []float32{1}},
{input: []float32{0, 1, 2, 3}},
{input: []float32{0.1, 0.2, 0.3}},
{input: []float32{-0.1, 0.2, 0.3, -0.4}},
{input: []float32{0, 0, 0}},
}
isNormalized := func(vec []float32) (res bool) {
sum := 0.0
for _, v := range vec {
sum += float64(v * v)
}
if math.Abs(sum-1) > 1e-6 {
return sum == 0
} else {
return true
}
}
for _, tc := range testCases {
t.Run("", func(t *testing.T) {
normalized := normalize(tc.input)
if !isNormalized(normalized) {
t.Errorf("Vector %v is not normalized", tc.input)
}
})
}
}

View File

@@ -133,8 +133,17 @@ func (s *Scheduler) processPending(ctx context.Context) {
numParallel = 1
slog.Warn("multimodal models don't support parallel requests yet")
}
// Keep NumCtx and numParallel in sync
if numParallel > 1 {
pending.opts.NumCtx = pending.origNumCtx * numParallel
}
for {
cpus := s.getCpuFn()
var systemMem gpu.GpuInfo
if len(cpus) > 0 {
systemMem = cpus[0]
}
var runnerToExpire *runnerRef
s.loadedMu.Lock()
runner := s.loaded[pending.model.ModelPath]
@@ -188,15 +197,46 @@ func (s *Scheduler) processPending(ctx context.Context) {
break
}
estimate := llm.EstimateGPULayers(gpus, ggml, pending.model.ProjectorPaths, pending.opts)
maxSize := systemMem.FreeMemory
// Add available GPU memory to the total pool
// macOS hardware has unified memory so don't double count
if runtime.GOOS != "darwin" {
for _, gpu := range gpus {
if gpu.Library == "cpu" {
continue
}
if loadedCount == 0 {
// If no other models are loaded, set the limit based on what's available
maxSize += gpu.FreeMemory
} else {
// Other models could be unloaded, favor total memory for limit
maxSize += gpu.TotalMemory
}
}
}
// Block attempting to load a model larger than system memory + GPU memory
if estimate.TotalSize > maxSize {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(estimate.TotalSize), "system", format.HumanBytes2(maxSize))
// Linux will crash if over-allocating memory - return an error to the user.
// TODO (jmorganca): add reasonable upper limits for darwin and windows as well
if runtime.GOOS == "linux" {
pending.errCh <- fmt.Errorf("requested model (%s) is too large for this system (%s)", format.HumanBytes2(estimate.TotalSize), format.HumanBytes2(maxSize))
break
}
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode
if numParallel <= 0 {
numParallel = defaultParallel
pending.opts.NumCtx = pending.origNumCtx * numParallel
}
pending.opts.NumCtx = pending.origNumCtx * numParallel
if loadedCount == 0 {
slog.Debug("cpu mode with first model, loading")
s.loadFn(pending, ggml, gpus, numParallel)

View File

@@ -3,7 +3,6 @@ package server
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"log/slog"
"os"
@@ -115,8 +114,7 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
require.NoError(t, err)
defer f.Close()
gguf := llm.NewGGUFV3(binary.LittleEndian)
err = gguf.Encode(f, llm.KV{
require.NoError(t, llm.WriteGGUF(f, llm.KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
@@ -127,10 +125,10 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
}, []*llm.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
})
}))
require.NoError(t, err)
fname := f.Name()
@@ -642,8 +640,8 @@ type mockLlm struct {
pingResp error
waitResp error
completionResp error
embedResp [][]float32
embedRespErr error
embeddingResp []float64
embeddingRespErr error
tokenizeResp []int
tokenizeRespErr error
detokenizeResp string
@@ -660,8 +658,8 @@ func (s *mockLlm) WaitUntilRunning(ctx context.Context) error { return s.waitRes
func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
return s.completionResp
}
func (s *mockLlm) Embed(ctx context.Context, input []string) ([][]float32, error) {
return s.embedResp, s.embedRespErr
func (s *mockLlm) Embedding(ctx context.Context, prompt string) ([]float64, error) {
return s.embeddingResp, s.embeddingRespErr
}
func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) {
return s.tokenizeResp, s.tokenizeRespErr

View File

@@ -1,67 +0,0 @@
{{- if or .Tools .System }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
{{- if .Tools }}# Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
{{ if .System }}# User Preamble
{{ .System }}
{{- end }}
## Available Tools
Here is a list of tools that you have available to you:
{{- range .Tools }}
```python
def {{ .Function.Name }}(
{{- range $name, $property := .Function.Parameters.Properties }}{{ $name }}: {{ $property.Type }}, {{ end }}) -> List[Dict]:
"""{{ .Function.Description }}
{{- if .Function.Parameters.Properties }}
Args:
{{- range $name, $property := .Function.Parameters.Properties }}
{{ $name }} ({{ $property.Type }}): {{ $property.Description }}
{{- end }}
{{- end }}
"""
pass
```
{{- end }}
{{- else if .System }}{{ .System }}
{{- end }}<|END_OF_TURN_TOKEN|>
{{- end }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- continue }}
{{- end }}<|START_OF_TURN_TOKEN|>
{{- if eq .Role "user" }}<|USER_TOKEN|>{{ .Content }}
{{- else if eq .Role "assistant" }}<|CHATBOT_TOKEN|>
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }}
Action: ```json
[
{{- range .ToolCalls }}
{
"tool_name": "{{ .Function.Name }}",
"parameters": {{ .Function.Arguments }}
}
{{- end }}
]```
{{ continue }}
{{ end }}
{{- else if eq .Role "tool" }}<|SYSTEM_TOKEN|><results>
{{ .Content }}</results>
{{- end }}<|END_OF_TURN_TOKEN|>
{{- end }}
{{- if .Tools }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
```json
[
{
"tool_name": title of the tool in the specification,
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
}
]```
{{- end }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

View File

@@ -1,39 +0,0 @@
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
# User Preamble
You are a knowledgable assistant. You can answer questions and perform tasks.
## Available Tools
Here is a list of tools that you have available to you:
```python
def get_current_weather(format: string, location: string, ) -> List[Dict]:
"""Get the current weather
Args:
format (string): The temperature unit to use. Infer this from the users location.
location (string): The city and state, e.g. San Francisco, CA
"""
pass
```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>What's the weather like today in Paris?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
Action: ```json
[
{
"tool_name": "get_current_weather",
"parameters": {"format":"celsius","location":"Paris, France"}
}
]```
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results>
22</results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>The current temperature in Paris, France is 22 degrees Celsius.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>What's the weather like today in San Francisco and Toronto?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
```json
[
{
"tool_name": title of the tool in the specification,
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
}
]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

View File

@@ -1,31 +0,0 @@
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
{{- if .System }}
{{ .System }}
{{- end }}
In addition to plain text responses, you can chose to call one or more of the provided functions.
Use the following rule to decide when to call a function:
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
If you decide to call functions:
* prefix function calls with functools marker (no closing marker required)
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
* make sure you pick the right functions that match the user intent
Available functions as JSON spec:
{{- if .Tools }}
{{ .Tools }}
{{- end }}<|eot_id|>
{{- end }}
{{- range .Messages }}<|start_header_id|>
{{- if or (eq .Role "user") (eq .Role "assistant") (eq .Role "tool") }}{{ .Role }}
{{- end }}<|end_header_id|>
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }} functools[
{{- range .ToolCalls }}{{ "{" }}"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}{{ "}" }}
{{- end }}]
{{- end }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>

View File

@@ -1,17 +0,0 @@
<|start_header_id|>system<|end_header_id|>
You are a knowledgable assistant. You can answer questions and perform tasks.
In addition to plain text responses, you can chose to call one or more of the provided functions.
Use the following rule to decide when to call a function:
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
If you decide to call functions:
* prefix function calls with functools marker (no closing marker required)
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
* make sure you pick the right functions that match the user intent
Available functions as JSON spec:
[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}]<|eot_id|><|start_header_id|><|end_header_id|>You are a knowledgable assistant. You can answer questions and perform tasks.<|eot_id|><|start_header_id|>user<|end_header_id|>What's the weather like today in Paris?<|eot_id|><|start_header_id|>assistant<|end_header_id|> functools[{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]<|eot_id|><|start_header_id|>tool<|end_header_id|>22<|eot_id|><|start_header_id|>assistant<|end_header_id|>The current temperature in Paris, France is 22 degrees Celsius.<|eot_id|><|start_header_id|>user<|end_header_id|>What's the weather like today in San Francisco and Toronto?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

View File

@@ -1,43 +0,0 @@
{{- if .Messages }}
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
{{ .System }}
{{- if .Tools }} You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>,"arguments": <args-dict>}
</tool_call>
Here are the available tools:
<tools>
{{- range .Tools }} {{ .Function }}
{{- end }} </tools>
{{- end }}
{{- end }}<|eot_id|>
{{- range .Messages }}
{{- if ne .Role "system" }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ if eq .Role "user" }}{{ .Content }}
{{- else if eq .Role "assistant" }}
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}
</tool_call>
{{- end }}
{{- else if eq .Role "tool" }}<tool_response>
{{ .Content }}
</tool_response>
{{- end }}<|eot_id|>
{{- end }}
{{- end }}<|start_header_id|>assistant<|end_header_id|>
{{ else }}
{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}{{ .Response }}
{{- if .Response }}<|eot_id|>
{{- end }}

View File

@@ -1,24 +0,0 @@
<|start_header_id|>system<|end_header_id|>
You are a knowledgable assistant. You can answer questions and perform tasks. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>,"arguments": <args-dict>}
</tool_call>
Here are the available tools:
<tools> {"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}} </tools><|eot_id|><|start_header_id|>user<|end_header_id|>
What's the weather like today in Paris?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
<tool_call>
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}
</tool_call><|eot_id|><|start_header_id|>tool<|end_header_id|>
<tool_response>
22
</tool_response><|eot_id|><|start_header_id|>assistant<|end_header_id|>
The current temperature in Paris, France is 22 degrees Celsius.<|eot_id|><|start_header_id|>user<|end_header_id|>
What's the weather like today in San Francisco and Toronto?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

View File

@@ -1,39 +0,0 @@
[
{
"role": "system",
"content": "You are a knowledgable assistant. You can answer questions and perform tasks."
},
{
"role": "user",
"content": "What's the weather like today in Paris?"
},
{
"role": "assistant",
"tool_calls": [
{
"id": "89a1e453-0bce-4de3-a456-c54bed09c520",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": {
"location": "Paris, France",
"format": "celsius"
}
}
}
]
},
{
"role": "tool",
"tool_call_id": "89a1e453-0bce-4de3-a456-c54bed09c520",
"content": "22"
},
{
"role": "assistant",
"content": "The current temperature in Paris, France is 22 degrees Celsius."
},
{
"role": "user",
"content": "What's the weather like today in San Francisco and Toronto?"
}
]

View File

@@ -1,15 +0,0 @@
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (eq (len (slice $.Messages $index)) 1) $.Tools }}[AVAILABLE_TOOLS] {{ $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}</s>
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}]</s>
{{- end }}
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
{{- end }}
{{- end }}

View File

@@ -1,3 +0,0 @@
[INST] What's the weather like today in Paris?[/INST][TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]</s>[TOOL_RESULTS] {"content": 22}[/TOOL_RESULTS] The current temperature in Paris, France is 22 degrees Celsius.</s>[AVAILABLE_TOOLS] [{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}][/AVAILABLE_TOOLS][INST] You are a knowledgable assistant. You can answer questions and perform tasks.
What's the weather like today in San Francisco and Toronto?[/INST]

View File

@@ -1,30 +0,0 @@
[
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"format": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
],
"description": "The temperature unit to use. Infer this from the users location."
}
},
"required": [
"location",
"format"
]
}
}
}
]

View File

@@ -4,5 +4,4 @@
{{ .Prompt }}
{{ end }}### Response:
{{ .Response }}
{{ .Response }}

View File

@@ -3,4 +3,4 @@
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
{{ .Response }}<|im_end|>

View File

@@ -2,5 +2,4 @@
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
{{ end }}Assistant: {{ .Response }}
{{ end }}Assistant: <|begin_of_text|>{{ .Response }}

View File

@@ -1,10 +1,8 @@
{{ if .System }}Source: system
{{ if .System }} Source: system
{{ .System }} <step> {{ end }}Source: user
{{ .System }} <step>{{ end }} Source: user
{{ .Prompt }} <step> Source: assistant
{{- if not .Response }}
Destination: user
{{- end }}
{{ .Response }} <step>
{{ .Response }}<step>

View File

@@ -1,5 +1,3 @@
{{ if .System }}System: {{ .System }}
{{ end }}{{ if .Prompt }}User:
{{ .Prompt }}
{{ end }}Falcon:
{{ .Response }}
{{ if .System }}{{ .System }}
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
{{ end }}Assistant: {{ .Response }}

View File

@@ -1,5 +1,4 @@
<start_of_turn>user
{{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}<end_of_turn>
{{ if .System }}{{ .System }} {{ end }}{{ .Prompt }}<end_of_turn>
<start_of_turn>model
{{ .Response }}<end_of_turn>
{{ .Response }}<end_of_turn>

View File

@@ -1,9 +1,9 @@
{{ if .System }}System:
{{ if .System }}
System:
{{ .System }}
{{ end }}{{ if .Prompt }}Question:
{{ .Prompt }}
{{ end }}Answer:
{{ .Response }}
{{ .Response }}

View File

@@ -1,6 +1,3 @@
[INST] <<SYS>>
{{- if .System }}
{{ .System }}
{{ end }}<</SYS>>
[INST] <<SYS>>{{ .System }}<</SYS>>
{{ .Prompt }} [/INST] {{ .Response }}</s><s>
{{ .Prompt }} [/INST] {{ .Response }}

View File

@@ -4,5 +4,4 @@
{{ .Prompt }}
{{ end }}@@ Response
{{ .Response }}
{{ .Response }}

View File

@@ -1,3 +1,6 @@
[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}</s>
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>

View File

@@ -1 +1 @@
{{ if .System }}GPT4 Correct System: {{ .System }}<|end_of_turn|>{{ end }}GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>
{{ .System }}<|end_of_turn|>GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>

View File

@@ -3,4 +3,4 @@
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>
{{ .Response }}<|end|>

View File

@@ -5,5 +5,4 @@
{{ .Prompt }}
{{ end }}### Assistant:
{{ .Response }}</s>
{{ .Response }}

View File

@@ -3,6 +3,7 @@
{{ end }}{{ if .Prompt }}### Instruction
{{ .Prompt }}
{{ end }}### Response
{{ .Response }}<|endoftext|>

View File

@@ -5,7 +5,6 @@ import (
"embed"
"encoding/json"
"errors"
"fmt"
"io"
"math"
"slices"
@@ -15,7 +14,6 @@ import (
"text/template/parse"
"github.com/agnivade/levenshtein"
"github.com/ollama/ollama/api"
"golang.org/x/exp/maps"
)
@@ -76,66 +74,30 @@ func Named(s string) (*named, error) {
return nil, errors.New("no matching template found")
}
var DefaultTemplate, _ = Parse("{{ .Prompt }}")
type Template struct {
*template.Template
raw string
}
// response is a template node that can be added to templates that don't already have one
var response = parse.ActionNode{
NodeType: parse.NodeAction,
Pipe: &parse.PipeNode{
NodeType: parse.NodePipe,
Cmds: []*parse.CommandNode{
{
NodeType: parse.NodeCommand,
Args: []parse.Node{
&parse.FieldNode{
NodeType: parse.NodeField,
Ident: []string{"Response"},
},
},
},
},
},
}
var funcs = template.FuncMap{
"json": func(v any) string {
b, _ := json.Marshal(v)
return string(b)
},
}
func Parse(s string) (*Template, error) {
tmpl := template.New("").Option("missingkey=zero").Funcs(funcs)
tmpl, err := tmpl.Parse(s)
if err != nil {
return nil, err
}
t := Template{Template: tmpl, raw: s}
if vars := t.Vars(); !slices.Contains(vars, "messages") && !slices.Contains(vars, "response") {
// touch up the template and append {{ .Response }}
tmpl.Tree.Root.Nodes = append(tmpl.Tree.Root.Nodes, &response)
}
return &t, nil
}
func (t *Template) String() string {
return t.raw
}
var DefaultTemplate, _ = Parse("{{ .Prompt }}")
func Parse(s string) (*Template, error) {
t, err := template.New("").Option("missingkey=zero").Parse(s)
if err != nil {
return nil, err
}
return &Template{Template: t, raw: s}, nil
}
func (t *Template) Vars() []string {
var vars []string
for _, tt := range t.Templates() {
for _, n := range tt.Root.Nodes {
vars = append(vars, Identifiers(n)...)
}
for _, n := range t.Tree.Root.Nodes {
vars = append(vars, parseNode(n)...)
}
set := make(map[string]struct{})
@@ -148,284 +110,49 @@ func (t *Template) Vars() []string {
return vars
}
type Values struct {
Messages []api.Message
api.Tools
Prompt string
Suffix string
// forceLegacy is a flag used to test compatibility with legacy templates
forceLegacy bool
}
func (t *Template) Subtree(fn func(parse.Node) bool) *template.Template {
var walk func(parse.Node) parse.Node
walk = func(n parse.Node) parse.Node {
if fn(n) {
return n
}
switch t := n.(type) {
case *parse.ListNode:
for _, c := range t.Nodes {
if n := walk(c); n != nil {
return n
}
}
case *parse.BranchNode:
for _, n := range []*parse.ListNode{t.List, t.ElseList} {
if n != nil {
if n := walk(n); n != nil {
return n
}
}
}
case *parse.IfNode:
return walk(&t.BranchNode)
case *parse.WithNode:
return walk(&t.BranchNode)
case *parse.RangeNode:
return walk(&t.BranchNode)
}
return nil
}
if n := walk(t.Tree.Root); n != nil {
return (&template.Template{
Tree: &parse.Tree{
Root: &parse.ListNode{
Nodes: []parse.Node{n},
},
},
}).Funcs(funcs)
}
return nil
}
func (t *Template) Execute(w io.Writer, v Values) error {
system, messages := collate(v.Messages)
if v.Prompt != "" && v.Suffix != "" {
return t.Template.Execute(w, map[string]any{
"Prompt": v.Prompt,
"Suffix": v.Suffix,
"Response": "",
})
} else if !v.forceLegacy && slices.Contains(t.Vars(), "messages") {
return t.Template.Execute(w, map[string]any{
"System": system,
"Messages": messages,
"Tools": v.Tools,
"Response": "",
})
}
system = ""
var b bytes.Buffer
var prompt, response string
for _, m := range messages {
execute := func() error {
if err := t.Template.Execute(&b, map[string]any{
"System": system,
"Prompt": prompt,
"Response": response,
}); err != nil {
return err
}
system = ""
prompt = ""
response = ""
return nil
}
switch m.Role {
case "system":
if prompt != "" || response != "" {
if err := execute(); err != nil {
return err
}
}
system = m.Content
case "user":
if response != "" {
if err := execute(); err != nil {
return err
}
}
prompt = m.Content
case "assistant":
response = m.Content
}
}
var cut bool
nodes := deleteNode(t.Template.Root.Copy(), func(n parse.Node) bool {
if field, ok := n.(*parse.FieldNode); ok && slices.Contains(field.Ident, "Response") {
cut = true
}
return cut
})
tree := parse.Tree{Root: nodes.(*parse.ListNode)}
if err := template.Must(template.New("").AddParseTree("", &tree)).Execute(&b, map[string]any{
"System": system,
"Prompt": prompt,
"Response": "",
}); err != nil {
return err
}
_, err := io.Copy(w, &b)
return err
}
// collate messages based on role. consecutive messages of the same role are merged
// into a single message. collate also collects and returns all system messages.
// collate mutates message content adding image tags ([img-%d]) as needed
func collate(msgs []api.Message) (string, []*api.Message) {
var n int
var system []string
var collated []*api.Message
for i := range msgs {
msg := msgs[i]
for range msg.Images {
imageTag := fmt.Sprintf("[img-%d]", n)
if !strings.Contains(msg.Content, "[img]") {
msg.Content = strings.TrimSpace("[img] " + msg.Content)
}
msg.Content = strings.Replace(msg.Content, "[img]", imageTag, 1)
n++
}
if msg.Role == "system" {
system = append(system, msg.Content)
}
if len(collated) > 0 && collated[len(collated)-1].Role == msg.Role {
collated[len(collated)-1].Content += "\n\n" + msg.Content
} else {
collated = append(collated, &msg)
}
}
return strings.Join(system, "\n\n"), collated
}
// Identifiers walks the node tree returning any identifiers it finds along the way
func Identifiers(n parse.Node) []string {
func parseNode(n parse.Node) []string {
switch n := n.(type) {
case *parse.ListNode:
var names []string
for _, n := range n.Nodes {
names = append(names, Identifiers(n)...)
}
return names
case *parse.TemplateNode:
return Identifiers(n.Pipe)
case *parse.ActionNode:
return Identifiers(n.Pipe)
case *parse.BranchNode:
names := Identifiers(n.Pipe)
for _, n := range []*parse.ListNode{n.List, n.ElseList} {
if n != nil {
names = append(names, Identifiers(n)...)
}
return parseNode(n.Pipe)
case *parse.IfNode:
names := parseNode(n.Pipe)
names = append(names, parseNode(n.List)...)
if n.ElseList != nil {
names = append(names, parseNode(n.ElseList)...)
}
return names
case *parse.IfNode:
return Identifiers(&n.BranchNode)
case *parse.RangeNode:
return Identifiers(&n.BranchNode)
names := parseNode(n.Pipe)
names = append(names, parseNode(n.List)...)
if n.ElseList != nil {
names = append(names, parseNode(n.ElseList)...)
}
return names
case *parse.WithNode:
return Identifiers(&n.BranchNode)
names := parseNode(n.Pipe)
names = append(names, parseNode(n.List)...)
if n.ElseList != nil {
names = append(names, parseNode(n.ElseList)...)
}
return names
case *parse.PipeNode:
var names []string
for _, c := range n.Cmds {
for _, a := range c.Args {
names = append(names, Identifiers(a)...)
names = append(names, parseNode(a)...)
}
}
return names
case *parse.ListNode:
var names []string
for _, n := range n.Nodes {
names = append(names, parseNode(n)...)
}
return names
case *parse.FieldNode:
return n.Ident
case *parse.VariableNode:
return n.Ident
}
return nil
}
// deleteNode walks the node list and deletes nodes that match the predicate
// this is currently to remove the {{ .Response }} node from templates
func deleteNode(n parse.Node, fn func(parse.Node) bool) parse.Node {
var walk func(n parse.Node) parse.Node
walk = func(n parse.Node) parse.Node {
if fn(n) {
return nil
}
switch t := n.(type) {
case *parse.ListNode:
var nodes []parse.Node
for _, c := range t.Nodes {
if n := walk(c); n != nil {
nodes = append(nodes, n)
}
}
t.Nodes = nodes
return t
case *parse.IfNode:
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
case *parse.WithNode:
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
case *parse.RangeNode:
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
case *parse.BranchNode:
t.List = walk(t.List).(*parse.ListNode)
if t.ElseList != nil {
t.ElseList = walk(t.ElseList).(*parse.ListNode)
}
case *parse.ActionNode:
n := walk(t.Pipe)
if n == nil {
return nil
}
t.Pipe = n.(*parse.PipeNode)
case *parse.PipeNode:
var commands []*parse.CommandNode
for _, c := range t.Cmds {
var args []parse.Node
for _, a := range c.Args {
if n := walk(a); n != nil {
args = append(args, n)
}
}
if len(args) == 0 {
return nil
}
c.Args = args
commands = append(commands, c)
}
if len(commands) == 0 {
return nil
}
t.Cmds = commands
}
return n
}
return walk(n)
}

View File

@@ -8,11 +8,9 @@ import (
"os"
"path/filepath"
"slices"
"strings"
"testing"
"text/template"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
)
@@ -48,7 +46,7 @@ func TestNamed(t *testing.T) {
t.Fatal(err)
}
tmpl, err := Parse(b.String())
tmpl, err := template.New(s).Parse(b.String())
if err != nil {
t.Fatal(err)
}
@@ -61,125 +59,18 @@ func TestNamed(t *testing.T) {
}
}
func TestTemplate(t *testing.T) {
cases := make(map[string][]api.Message)
for _, mm := range [][]api.Message{
{
{Role: "user", Content: "Hello, how are you?"},
},
{
{Role: "user", Content: "Hello, how are you?"},
{Role: "assistant", Content: "I'm doing great. How can I help you today?"},
{Role: "user", Content: "I'd like to show off how chat templating works!"},
},
{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
{Role: "assistant", Content: "I'm doing great. How can I help you today?"},
{Role: "user", Content: "I'd like to show off how chat templating works!"},
},
} {
var roles []string
for _, m := range mm {
roles = append(roles, m.Role)
}
cases[strings.Join(roles, "-")] = mm
}
matches, err := filepath.Glob("*.gotmpl")
if err != nil {
t.Fatal(err)
}
for _, match := range matches {
t.Run(match, func(t *testing.T) {
bts, err := os.ReadFile(match)
if err != nil {
t.Fatal(err)
}
tmpl, err := Parse(string(bts))
if err != nil {
t.Fatal(err)
}
for n, tt := range cases {
var actual bytes.Buffer
t.Run(n, func(t *testing.T) {
if err := tmpl.Execute(&actual, Values{Messages: tt}); err != nil {
t.Fatal(err)
}
expect, err := os.ReadFile(filepath.Join("testdata", match, n))
if err != nil {
t.Fatal(err)
}
bts := actual.Bytes()
if slices.Contains([]string{"chatqa.gotmpl", "llama2-chat.gotmpl", "mistral-instruct.gotmpl", "openchat.gotmpl", "vicuna.gotmpl"}, match) && bts[len(bts)-1] == ' ' {
t.Log("removing trailing space from output")
bts = bts[:len(bts)-1]
}
if diff := cmp.Diff(bts, expect); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("legacy", func(t *testing.T) {
t.Skip("legacy outputs are currently default outputs")
var legacy bytes.Buffer
if err := tmpl.Execute(&legacy, Values{Messages: tt, forceLegacy: true}); err != nil {
t.Fatal(err)
}
legacyBytes := legacy.Bytes()
if slices.Contains([]string{"chatqa.gotmpl", "openchat.gotmpl", "vicuna.gotmpl"}, match) && legacyBytes[len(legacyBytes)-1] == ' ' {
t.Log("removing trailing space from legacy output")
legacyBytes = legacyBytes[:len(legacyBytes)-1]
} else if slices.Contains([]string{"codellama-70b-instruct.gotmpl", "llama2-chat.gotmpl", "mistral-instruct.gotmpl"}, match) {
t.Skip("legacy outputs cannot be compared to messages outputs")
}
if diff := cmp.Diff(legacyBytes, actual.Bytes()); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
})
}
}
func TestParse(t *testing.T) {
cases := []struct {
template string
vars []string
}{
{"{{ .Prompt }}", []string{"prompt", "response"}},
{"{{ .System }} {{ .Prompt }}", []string{"prompt", "response", "system"}},
{"{{ .Prompt }}", []string{"prompt"}},
{"{{ .System }} {{ .Prompt }}", []string{"prompt", "system"}},
{"{{ .System }} {{ .Prompt }} {{ .Response }}", []string{"prompt", "response", "system"}},
{"{{ with .Tools }}{{ . }}{{ end }} {{ .System }} {{ .Prompt }}", []string{"prompt", "response", "system", "tools"}},
{"{{ with .Tools }}{{ . }}{{ end }} {{ .System }} {{ .Prompt }}", []string{"prompt", "system", "tools"}},
{"{{ range .Messages }}{{ .Role }} {{ .Content }}{{ end }}", []string{"content", "messages", "role"}},
{`{{- range .Messages }}
{{- if eq .Role "system" }}SYSTEM:
{{- else if eq .Role "user" }}USER:
{{- else if eq .Role "assistant" }}ASSISTANT:
{{- end }} {{ .Content }}
{{- end }}`, []string{"content", "messages", "role"}},
{`{{- if .Messages }}
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ else -}}
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
{{- end -}}`, []string{"content", "messages", "prompt", "response", "role", "system"}},
{"{{ range .Messages }}{{ if eq .Role \"system\" }}SYSTEM: {{ .Content }}{{ else if eq .Role \"user\" }}USER: {{ .Content }}{{ else if eq .Role \"assistant\" }}ASSISTANT: {{ .Content }}{{ end }}{{ end }}", []string{"content", "messages", "role"}},
{"{{ .Prompt }} {{ .Suffix }}", []string{"prompt", "suffix"}},
}
for _, tt := range cases {
@@ -189,207 +80,9 @@ func TestParse(t *testing.T) {
t.Fatal(err)
}
if diff := cmp.Diff(tmpl.Vars(), tt.vars); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
}
func TestExecuteWithMessages(t *testing.T) {
type template struct {
name string
template string
}
cases := []struct {
name string
templates []template
values Values
expected string
}{
{
"mistral",
[]template{
{"no response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] `},
{"response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}`},
{"messages", `[INST] {{ if .System }}{{ .System }}
{{ end }}
{{- range .Messages }}
{{- if eq .Role "user" }}{{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}[INST] {{ end }}
{{- end }}`},
},
Values{
Messages: []api.Message{
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
},
},
`[INST] Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
},
{
"mistral system",
[]template{
{"no response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] `},
{"response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}`},
{"messages", `[INST] {{ if .System }}{{ .System }}
{{ end }}
{{- range .Messages }}
{{- if eq .Role "user" }}{{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}[INST] {{ end }}
{{- end }}`},
},
Values{
Messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant!"},
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
},
},
`[INST] You are a helpful assistant!
Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
},
{
"chatml",
[]template{
// this does not have a "no response" test because it's impossible to render the same output
{"response", `{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
`},
{"messages", `
{{- range $index, $_ := .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
`},
},
Values{
Messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant!"},
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
},
},
`<|im_start|>system
You are a helpful assistant!<|im_end|>
<|im_start|>user
Hello friend!<|im_end|>
<|im_start|>assistant
Hello human!<|im_end|>
<|im_start|>user
What is your name?<|im_end|>
<|im_start|>assistant
`,
},
{
"moondream",
[]template{
// this does not have a "no response" test because it's impossible to render the same output
{"response", `{{ if .Prompt }}Question: {{ .Prompt }}
{{ end }}Answer: {{ .Response }}
`},
{"messages", `
{{- range .Messages }}
{{- if eq .Role "user" }}Question: {{ .Content }}
{{ else if eq .Role "assistant" }}Answer: {{ .Content }}
{{ end }}
{{- end }}Answer: `},
},
Values{
Messages: []api.Message{
{Role: "user", Content: "What's in this image?", Images: []api.ImageData{[]byte("")}},
{Role: "assistant", Content: "It's a hot dog."},
{Role: "user", Content: "What's in _this_ image?"},
{Role: "user", Images: []api.ImageData{[]byte("")}},
{Role: "user", Content: "Is it a hot dog?"},
},
},
`Question: [img-0] What's in this image?
Answer: It's a hot dog.
Question: What's in _this_ image?
[img-1]
Is it a hot dog?
Answer: `,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
for _, ttt := range tt.templates {
t.Run(ttt.name, func(t *testing.T) {
tmpl, err := Parse(ttt.template)
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, tt.values); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(b.String(), tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
})
}
}
func TestExecuteWithSuffix(t *testing.T) {
tmpl, err := Parse(`{{- if .Suffix }}<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
{{- else }}{{ .Prompt }}
{{- end }}`)
if err != nil {
t.Fatal(err)
}
cases := []struct {
name string
values Values
expect string
}{
{
"message", Values{Messages: []api.Message{{Role: "user", Content: "hello"}}}, "hello",
},
{
"prompt suffix", Values{Prompt: "def add(", Suffix: "return x"}, "<PRE> def add( <SUF>return x <MID>",
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
var b bytes.Buffer
if err := tmpl.Execute(&b, tt.values); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(b.String(), tt.expect); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
vars := tmpl.Vars()
if !slices.Equal(tt.vars, vars) {
t.Errorf("expected %v, got %v", tt.vars, vars)
}
})
}

View File

@@ -1 +0,0 @@
<start_system>You are a helpful assistant.<end_message><start_user>Hello, how are you?<end_message><start_assistant>I'm doing great. How can I help you today?<end_message><start_user>I'd like to show off how chat templating works!<end_message><start_assistant>

Some files were not shown because too many files have changed in this diff Show More