mirror of
https://github.com/ollama/ollama.git
synced 2026-01-06 06:31:14 -05:00
Compare commits
10 Commits
v0.2.7
...
pdevine/gg
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e32de893ec | ||
|
|
c37ab3b9f2 | ||
|
|
6367b7449e | ||
|
|
8ba3f38f82 | ||
|
|
a3058002c4 | ||
|
|
a451611761 | ||
|
|
5d4a331de3 | ||
|
|
2e055e3af8 | ||
|
|
9f32c634ae | ||
|
|
a4978a94b5 |
7
.github/workflows/release.yaml
vendored
7
.github/workflows/release.yaml
vendored
@@ -147,7 +147,7 @@ jobs:
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
@@ -304,6 +304,11 @@ jobs:
|
||||
write-host "Installing plugin"
|
||||
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
|
||||
write-host "plugin installed"
|
||||
- name: remove unwanted mingw dll.a files
|
||||
run: |
|
||||
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libpthread.dll.a" -File | Remove-Item -Force
|
||||
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libwinpthread.dll.a" -File | Remove-Item -Force
|
||||
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libstdc++.dll.a" -File | Remove-Item -Force
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
|
||||
4
.github/workflows/test.yaml
vendored
4
.github/workflows/test.yaml
vendored
@@ -126,7 +126,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
rocm-version:
|
||||
- '6.1.2'
|
||||
- '6.1.1'
|
||||
runs-on: linux
|
||||
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
||||
steps:
|
||||
@@ -169,7 +169,7 @@ jobs:
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
|
||||
@@ -2,7 +2,7 @@ ARG GOLANG_VERSION=1.22.1
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
|
||||
ARG CUDA_VERSION=11.3.1
|
||||
ARG ROCM_VERSION=6.1.2
|
||||
ARG ROCM_VERSION=6.1.1
|
||||
|
||||
# Copy the minimal context we need to run the generate scripts
|
||||
FROM scratch AS llm-code
|
||||
|
||||
@@ -293,9 +293,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
|
||||
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
|
||||
|
||||
### Terminal
|
||||
|
||||
|
||||
@@ -347,16 +347,7 @@ func (c *Client) Heartbeat(ctx context.Context) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Embed generates embeddings from a model.
|
||||
func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) {
|
||||
var resp EmbedResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
// Embeddings generates an embedding from a model.
|
||||
// Embeddings generates embeddings from a model.
|
||||
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
|
||||
var resp EmbeddingResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
|
||||
|
||||
102
api/types.go
102
api/types.go
@@ -47,9 +47,6 @@ type GenerateRequest struct {
|
||||
// Prompt is the textual prompt to send to the model.
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
// Suffix is the text that comes after the inserted text.
|
||||
Suffix string `json:"suffix"`
|
||||
|
||||
// System overrides the model's default system message/prompt.
|
||||
System string `json:"system"`
|
||||
|
||||
@@ -100,80 +97,17 @@ type ChatRequest struct {
|
||||
// followin the request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Tools is an optional list of tools the model has access to.
|
||||
Tools `json:"tools,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
|
||||
func (t Tools) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
// Message is a single message in a chat sequence. The message contains the
|
||||
// role ("system", "user", or "assistant"), the content and an optional list
|
||||
// of images.
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
}
|
||||
|
||||
func (m *Message) UnmarshalJSON(b []byte) error {
|
||||
type Alias Message
|
||||
var a Alias
|
||||
if err := json.Unmarshal(b, &a); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
*m = Message(a)
|
||||
m.Role = strings.ToLower(m.Role)
|
||||
return nil
|
||||
}
|
||||
|
||||
type ToolCall struct {
|
||||
Function ToolCallFunction `json:"function"`
|
||||
}
|
||||
|
||||
type ToolCallFunction struct {
|
||||
Name string `json:"name"`
|
||||
Arguments ToolCallFunctionArguments `json:"arguments"`
|
||||
}
|
||||
|
||||
type ToolCallFunctionArguments map[string]any
|
||||
|
||||
func (t *ToolCallFunctionArguments) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Function ToolFunction `json:"function"`
|
||||
}
|
||||
|
||||
type ToolFunction struct {
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description"`
|
||||
Parameters struct {
|
||||
Type string `json:"type"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
} `json:"parameters"`
|
||||
}
|
||||
|
||||
func (t *ToolFunction) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
}
|
||||
|
||||
// ChatResponse is the response returned by [Client.Chat]. Its fields are
|
||||
@@ -239,30 +173,6 @@ type Runner struct {
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
// EmbedRequest is the request passed to [Client.Embed].
|
||||
type EmbedRequest struct {
|
||||
// Model is the model name.
|
||||
Model string `json:"model"`
|
||||
|
||||
// Input is the input to embed.
|
||||
Input any `json:"input"`
|
||||
|
||||
// KeepAlive controls how long the model will stay loaded in memory following
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
// EmbedResponse is the response from [Client.Embed].
|
||||
type EmbedResponse struct {
|
||||
Model string `json:"model"`
|
||||
Embeddings [][]float32 `json:"embeddings"`
|
||||
}
|
||||
|
||||
// EmbeddingRequest is the request passed to [Client.Embeddings].
|
||||
type EmbeddingRequest struct {
|
||||
// Model is the model name.
|
||||
@@ -309,10 +219,8 @@ type DeleteRequest struct {
|
||||
|
||||
// ShowRequest is the request passed to [Client.Show].
|
||||
type ShowRequest struct {
|
||||
Model string `json:"model"`
|
||||
System string `json:"system"`
|
||||
|
||||
// Template is deprecated
|
||||
Model string `json:"model"`
|
||||
System string `json:"system"`
|
||||
Template string `json:"template"`
|
||||
Verbose bool `json:"verbose"`
|
||||
|
||||
|
||||
@@ -208,26 +208,3 @@ func TestUseMmapFormatParams(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
input string
|
||||
expected string
|
||||
}{
|
||||
{`{"role": "USER", "content": "Hello!"}`, "user"},
|
||||
{`{"role": "System", "content": "Initialization complete."}`, "system"},
|
||||
{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"},
|
||||
{`{"role": "TOOl", "content": "Access granted."}`, "tool"},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
var msg Message
|
||||
if err := json.Unmarshal([]byte(test.input), &msg); err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if msg.Role != test.expected {
|
||||
t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -127,10 +127,6 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
|
||||
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
|
||||
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
|
||||
|
||||
[InstallDelete]
|
||||
Type: filesandordirs; Name: "{%TEMP}\ollama*"
|
||||
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
|
||||
|
||||
[Messages]
|
||||
WizardReady=Ollama Windows Preview
|
||||
ReadyLabel1=%nLet's get you up and running with your own large language models.
|
||||
|
||||
@@ -843,6 +843,7 @@ type runOptions struct {
|
||||
WordWrap bool
|
||||
Format string
|
||||
System string
|
||||
Template string
|
||||
Images []api.ImageData
|
||||
Options map[string]interface{}
|
||||
MultiModal bool
|
||||
@@ -1036,6 +1037,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
Images: opts.Images,
|
||||
Format: opts.Format,
|
||||
System: opts.System,
|
||||
Template: opts.Template,
|
||||
Options: opts.Options,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
}
|
||||
|
||||
@@ -27,6 +27,7 @@ const (
|
||||
MultilineNone MultilineState = iota
|
||||
MultilinePrompt
|
||||
MultilineSystem
|
||||
MultilineTemplate
|
||||
)
|
||||
|
||||
func loadModel(cmd *cobra.Command, opts *runOptions) error {
|
||||
@@ -93,6 +94,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, "Available Commands:")
|
||||
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
|
||||
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
|
||||
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
|
||||
fmt.Fprintln(os.Stderr, " /set history Enable history")
|
||||
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
|
||||
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
|
||||
@@ -202,6 +204,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
case MultilineTemplate:
|
||||
opts.Template = sb.String()
|
||||
fmt.Println("Set prompt template.")
|
||||
sb.Reset()
|
||||
}
|
||||
|
||||
multiline = MultilineNone
|
||||
@@ -320,13 +326,17 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
|
||||
opts.Options[args[2]] = fp[args[2]]
|
||||
case "system":
|
||||
case "system", "template":
|
||||
if len(args) < 3 {
|
||||
usageSet()
|
||||
continue
|
||||
}
|
||||
|
||||
multiline = MultilineSystem
|
||||
if args[1] == "system" {
|
||||
multiline = MultilineSystem
|
||||
} else if args[1] == "template" {
|
||||
multiline = MultilineTemplate
|
||||
}
|
||||
|
||||
line := strings.Join(args[2:], " ")
|
||||
line, ok := strings.CutPrefix(line, `"""`)
|
||||
@@ -346,17 +356,23 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
continue
|
||||
}
|
||||
|
||||
opts.System = sb.String() // for display in modelfile
|
||||
newMessage := api.Message{Role: "system", Content: sb.String()}
|
||||
// Check if the slice is not empty and the last message is from 'system'
|
||||
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
|
||||
// Replace the last message
|
||||
opts.Messages[len(opts.Messages)-1] = newMessage
|
||||
} else {
|
||||
opts.Messages = append(opts.Messages, newMessage)
|
||||
if args[1] == "system" {
|
||||
opts.System = sb.String() // for display in modelfile
|
||||
newMessage := api.Message{Role: "system", Content: sb.String()}
|
||||
// Check if the slice is not empty and the last message is from 'system'
|
||||
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
|
||||
// Replace the last message
|
||||
opts.Messages[len(opts.Messages)-1] = newMessage
|
||||
} else {
|
||||
opts.Messages = append(opts.Messages, newMessage)
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
} else if args[1] == "template" {
|
||||
opts.Template = sb.String()
|
||||
fmt.Println("Set prompt template.")
|
||||
sb.Reset()
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
|
||||
sb.Reset()
|
||||
continue
|
||||
@@ -377,6 +393,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
req := &api.ShowRequest{
|
||||
Name: opts.Model,
|
||||
System: opts.System,
|
||||
Template: opts.Template,
|
||||
Options: opts.Options,
|
||||
}
|
||||
resp, err := client.Show(cmd.Context(), req)
|
||||
@@ -420,9 +437,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Println("No system message was specified for this model.")
|
||||
}
|
||||
case "template":
|
||||
if resp.Template != "" {
|
||||
switch {
|
||||
case opts.Template != "":
|
||||
fmt.Println(opts.Template + "\n")
|
||||
case resp.Template != "":
|
||||
fmt.Println(resp.Template)
|
||||
} else {
|
||||
default:
|
||||
fmt.Println("No prompt template was specified for this model.")
|
||||
}
|
||||
default:
|
||||
@@ -516,6 +536,10 @@ func buildModelfile(opts runOptions) string {
|
||||
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
|
||||
}
|
||||
|
||||
if opts.Template != "" {
|
||||
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
|
||||
}
|
||||
|
||||
keys := make([]string, 0)
|
||||
for k := range opts.Options {
|
||||
keys = append(keys, k)
|
||||
|
||||
@@ -59,6 +59,7 @@ func TestModelfileBuilder(t *testing.T) {
|
||||
opts := runOptions{
|
||||
Model: "hork",
|
||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
||||
Template: "This is a template.",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hey there hork!"},
|
||||
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
||||
@@ -74,6 +75,7 @@ func TestModelfileBuilder(t *testing.T) {
|
||||
mf := buildModelfile(opts)
|
||||
expectedModelfile := `FROM {{.Model}}
|
||||
SYSTEM """{{.System}}"""
|
||||
TEMPLATE """{{.Template}}"""
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop [hi there]
|
||||
@@ -95,6 +97,7 @@ MESSAGE assistant """Yes it is true, I am half horse, half shark."""
|
||||
mf = buildModelfile(opts)
|
||||
expectedModelfile = `FROM {{.ParentModel}}
|
||||
SYSTEM """{{.System}}"""
|
||||
TEMPLATE """{{.Template}}"""
|
||||
PARAMETER penalize_newline false
|
||||
PARAMETER seed 42
|
||||
PARAMETER stop [hi there]
|
||||
|
||||
@@ -1,200 +1,134 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
|
||||
"github.com/ollama/ollama/convert/sentencepiece"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
const (
|
||||
_ int32 = iota
|
||||
tokenTypeNormal
|
||||
tokenTypeUnknown
|
||||
tokenTypeControl
|
||||
tokenTypeUserDefined
|
||||
tokenTypeUnused
|
||||
tokenTypeByte
|
||||
)
|
||||
|
||||
type Params struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize int `json:"vocab_size"`
|
||||
HiddenSize int `json:"hidden_size"` // n_embd
|
||||
HiddenLayers int `json:"num_hidden_layers"` // n_layer
|
||||
ContextSize int `json:"max_position_embeddings"`
|
||||
IntermediateSize int `json:"intermediate_size"`
|
||||
AttentionHeads int `json:"num_attention_heads"` // n_head
|
||||
KeyValHeads int `json:"num_key_value_heads"`
|
||||
NormEPS float64 `json:"rms_norm_eps"`
|
||||
BoSTokenID int `json:"bos_token_id"`
|
||||
EoSTokenID int `json:"eos_token_id"`
|
||||
HeadDimension int `json:"head_dim"`
|
||||
PaddingTokenID int `json:"pad_token_id"`
|
||||
RopeFrequencyBase float64 `json:"rope_theta"`
|
||||
|
||||
Experts int `json:"num_local_experts"`
|
||||
ExpertsUsed int `json:"num_experts_per_tok"`
|
||||
|
||||
PreTokenizer string
|
||||
|
||||
ByteOrder
|
||||
type Parameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
type ByteOrder interface {
|
||||
binary.ByteOrder
|
||||
binary.AppendByteOrder
|
||||
func (Parameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
"tokenizer.ggml.pre": t.Pre,
|
||||
"tokenizer.ggml.model": t.Vocabulary.Model,
|
||||
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
|
||||
"tokenizer.ggml.scores": t.Vocabulary.Scores,
|
||||
"tokenizer.ggml.token_type": t.Vocabulary.Types,
|
||||
}
|
||||
|
||||
if t.Template != "" {
|
||||
kv["tokenizer.chat_template"] = t.Template
|
||||
}
|
||||
|
||||
for _, sv := range t.SpecialVocabulary {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
type ModelArch interface {
|
||||
GetTensors() error
|
||||
LoadVocab() error
|
||||
WriteGGUF(io.WriteSeeker) error
|
||||
func (Parameters) specialTypes() []string {
|
||||
return []string{
|
||||
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
|
||||
}
|
||||
}
|
||||
|
||||
type ModelFormat interface {
|
||||
GetLayerName(string) (string, error)
|
||||
GetTensors(string, *Params) ([]llm.Tensor, error)
|
||||
GetParams(string) (*Params, error)
|
||||
GetModelArch(string, string, *Params) (ModelArch, error)
|
||||
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelData struct {
|
||||
Path string
|
||||
Name string
|
||||
Params *Params
|
||||
Vocab *Vocab
|
||||
Tensors []llm.Tensor
|
||||
Format ModelFormat
|
||||
type Converter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []*llm.Tensor
|
||||
|
||||
// tensorName returns the LLM tensor name for a specific input name
|
||||
tensorName(string) string
|
||||
// specialTypes returns any special token types the model uses
|
||||
specialTypes() []string
|
||||
writeFile(io.WriteSeeker, llm.KV, []*llm.Tensor) error
|
||||
}
|
||||
|
||||
func GetModelFormat(dirname string) (ModelFormat, error) {
|
||||
files, err := filepath.Glob(filepath.Join(dirname, "*"))
|
||||
func ConvertAdapter(d string, ws io.WriteSeeker) error {
|
||||
c := &adapter{}
|
||||
|
||||
ts, err := parseNPZ(d)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
|
||||
for _, fn := range files {
|
||||
if strings.HasSuffix(fn, ".safetensors") {
|
||||
return &SafetensorFormat{}, nil
|
||||
} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
|
||||
slog.Debug("model is torch")
|
||||
return &TorchFormat{}, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("couldn't determine model format")
|
||||
return c.writeFile(ws, c.KV(nil), c.Tensors(ts))
|
||||
}
|
||||
|
||||
// Details on gguf's tokenizer can be found at:
|
||||
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
|
||||
type Vocab struct {
|
||||
Tokens []string
|
||||
Scores []float32
|
||||
Types []int32
|
||||
Merges []string
|
||||
}
|
||||
|
||||
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
|
||||
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
|
||||
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
|
||||
func Convert(d string, ws io.WriteSeeker) error {
|
||||
f, err := os.Open(filepath.Join(d, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var p Parameters
|
||||
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// To regenerate sentencepiece from the protobufs use:
|
||||
// protoc -I=./ --go_out=./ sentencepiece_model.proto
|
||||
modelProto := &sentencepiece.ModelProto{}
|
||||
if err := proto.Unmarshal(in, modelProto); err != nil {
|
||||
return nil, err
|
||||
if len(p.Architectures) < 1 {
|
||||
return errors.New("unknown architecture")
|
||||
}
|
||||
|
||||
v := &Vocab{
|
||||
Tokens: make([]string, 0),
|
||||
Scores: make([]float32, 0),
|
||||
Types: make([]int32, 0),
|
||||
var c Converter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
c = &llama{}
|
||||
case "MixtralForCausalLM":
|
||||
c = &mixtral{}
|
||||
case "GemmaForCausalLM":
|
||||
c = &gemma{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
|
||||
pieces := modelProto.GetPieces()
|
||||
for _, p := range pieces {
|
||||
v.Tokens = append(v.Tokens, p.GetPiece())
|
||||
v.Scores = append(v.Scores, p.GetScore())
|
||||
t := p.GetType()
|
||||
switch t {
|
||||
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
|
||||
case sentencepiece.ModelProto_SentencePiece_CONTROL:
|
||||
case sentencepiece.ModelProto_SentencePiece_UNUSED:
|
||||
case sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||
default:
|
||||
t = sentencepiece.ModelProto_SentencePiece_NORMAL
|
||||
}
|
||||
v.Types = append(v.Types, int32(t))
|
||||
bts, err := os.ReadFile(filepath.Join(d, "config.json"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))
|
||||
|
||||
// add any additional tokens
|
||||
addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
|
||||
if os.IsNotExist(err) {
|
||||
return v, nil
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
if err := json.Unmarshal(bts, c); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Info("reading user defined tokens")
|
||||
|
||||
var extraTokenData map[string]int
|
||||
if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
|
||||
return nil, err
|
||||
t, err := parseTokenizer(d, c.specialTypes())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
type token struct {
|
||||
key string
|
||||
pos int
|
||||
}
|
||||
|
||||
extraTokens := make([]token, 0)
|
||||
for k, id := range extraTokenData {
|
||||
extraTokens = append(extraTokens, token{k, id})
|
||||
}
|
||||
|
||||
slices.SortFunc(extraTokens, func(a, b token) int {
|
||||
return cmp.Compare(a.pos, b.pos)
|
||||
})
|
||||
|
||||
numToks := len(v.Tokens)
|
||||
|
||||
for cnt, t := range extraTokens {
|
||||
// the token id should match the specific index for the total number of tokens
|
||||
if t.pos != cnt+numToks {
|
||||
return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
|
||||
}
|
||||
v.Tokens = append(v.Tokens, t.key)
|
||||
v.Scores = append(v.Scores, -1000.0)
|
||||
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
|
||||
|
||||
if params.VocabSize > len(v.Tokens) {
|
||||
missingTokens := params.VocabSize - len(v.Tokens)
|
||||
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
|
||||
for cnt := range missingTokens {
|
||||
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
|
||||
v.Scores = append(v.Scores, -1)
|
||||
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||
}
|
||||
}
|
||||
|
||||
return v, nil
|
||||
ts, err := parseTensors(d)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.writeFile(ws, c.KV(t), c.Tensors(ts))
|
||||
}
|
||||
|
||||
56
convert/convert_adapter.go
Normal file
56
convert/convert_adapter.go
Normal file
@@ -0,0 +1,56 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"io"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type adapter struct {
|
||||
Parameters
|
||||
}
|
||||
|
||||
var _ Converter = (*adapter)(nil)
|
||||
|
||||
func (p *adapter) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
|
||||
return llm.WriteGGLA(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (p *adapter) KV(t *Tokenizer) llm.KV {
|
||||
// todo - need a way to pass these in
|
||||
kv := llm.KV{
|
||||
"r": uint32(8),
|
||||
"alpha": uint32(160),
|
||||
}
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *adapter) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
var out []*llm.Tensor
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
|
||||
out = append(out, &llm.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *adapter) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
"model.layers", "blk",
|
||||
"self_attn.q_proj", "attn_q.weight",
|
||||
"self_attn.k_proj", "attn_k.weight",
|
||||
"self_attn.v_proj", "attn_v.weight",
|
||||
"self_attn.o_proj", "attn_output.weight",
|
||||
"lora_a", "loraA",
|
||||
"lora_b", "loraB",
|
||||
".npy", "",
|
||||
).Replace(n)
|
||||
}
|
||||
103
convert/convert_gemma.go
Normal file
103
convert/convert_gemma.go
Normal file
@@ -0,0 +1,103 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type gemma struct {
|
||||
Parameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
}
|
||||
|
||||
var _ Converter = (*gemma)(nil)
|
||||
|
||||
func (p *gemma) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["general.name"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma.embedding_length"] = p.HiddenSize
|
||||
kv["gemma.block_count"] = p.HiddenLayers
|
||||
kv["gemma.feed_forward_length"] = p.IntermediateSize
|
||||
kv["gemma.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma.attention.key_length"] = p.HeadDim
|
||||
kv["gemma.attention.value_length"] = p.HeadDim
|
||||
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
|
||||
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
|
||||
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
|
||||
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
var out []*llm.Tensor
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, &llm.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *gemma) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"block_sparse_moe.gate", "ffn_inp",
|
||||
).Replace(n)
|
||||
}
|
||||
|
||||
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
|
||||
ones := tensor.Ones(tensor.Float32, int(shape[0]))
|
||||
|
||||
n, err := n.Add(ones)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
176
convert/convert_llama.go
Normal file
176
convert/convert_llama.go
Normal file
@@ -0,0 +1,176 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
type llama struct {
|
||||
Parameters
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayer uint32 `json:"n_layer"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NEmbd uint32 `json:"n_embd"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NInner uint32 `json:"n_inner"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NHead uint32 `json:"n_head"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
Factor float32 `json:"factor"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
}
|
||||
|
||||
var _ Converter = (*llama)(nil)
|
||||
|
||||
func (p *llama) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.Parameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["general.name"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
|
||||
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
|
||||
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
||||
kv["llama.context_length"] = contextLength
|
||||
}
|
||||
|
||||
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
||||
kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||
}
|
||||
|
||||
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
||||
kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
||||
}
|
||||
|
||||
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
|
||||
kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
||||
}
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["llama.rope.freq_base"] = p.RopeTheta
|
||||
}
|
||||
|
||||
if p.RopeScaling.Type == "linear" {
|
||||
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
|
||||
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
}
|
||||
|
||||
if p.NumKeyValueHeads > 0 {
|
||||
kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
}
|
||||
|
||||
if p.RMSNormEPS > 0 {
|
||||
kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
}
|
||||
|
||||
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
||||
kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||
}
|
||||
|
||||
if len(t.Merges) > 0 {
|
||||
kv["tokenizer.ggml.merges"] = t.Merges
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llama) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
var out []*llm.Tensor
|
||||
for _, t := range ts {
|
||||
name := p.tensorName(t.Name())
|
||||
if strings.HasSuffix(name, "attn_q.weight") ||
|
||||
strings.HasSuffix(name, "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, &llm.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llama) tensorName(n string) string {
|
||||
return strings.NewReplacer(
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
// mixtral
|
||||
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||
).Replace(n)
|
||||
}
|
||||
|
||||
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "q_proj.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "k_proj.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
89
convert/convert_mixtral.go
Normal file
89
convert/convert_mixtral.go
Normal file
@@ -0,0 +1,89 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type mixtral struct {
|
||||
llama
|
||||
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
var _ Converter = (*mixtral)(nil)
|
||||
|
||||
func (p *mixtral) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.llama.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
kv["llama.expert_count"] = p.NumLocalExperts
|
||||
}
|
||||
|
||||
if p.NumExpertsPerToken > 0 {
|
||||
kv["llama.expert_used_count"] = p.NumExpertsPerToken
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtral) Tensors(ts []Tensor) []*llm.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
"w2", "ffn_down_exps",
|
||||
"w3", "ffn_up_exps",
|
||||
}
|
||||
|
||||
for i := range p.NumLocalExperts {
|
||||
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
|
||||
}
|
||||
|
||||
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
|
||||
namer := strings.NewReplacer(oldnew...)
|
||||
experts := make(map[string]experts)
|
||||
|
||||
// merge experts into a single tensor while removing them from ts
|
||||
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
|
||||
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
|
||||
return false
|
||||
}
|
||||
|
||||
name := namer.Replace(t.Name())
|
||||
experts[name] = append(experts[name], t)
|
||||
return true
|
||||
})
|
||||
|
||||
var out []*llm.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, &llm.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
WriterTo: e,
|
||||
})
|
||||
}
|
||||
|
||||
return append(out, p.llama.Tensors(ts)...)
|
||||
}
|
||||
|
||||
type experts []Tensor
|
||||
|
||||
func (e experts) WriteTo(w io.Writer) (int64, error) {
|
||||
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
|
||||
for _, t := range e {
|
||||
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
|
||||
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
|
||||
// this accomplishes the same thing by writing each expert tensor in sequence
|
||||
if _, err := t.WriteTo(w); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
return 0, nil
|
||||
}
|
||||
@@ -1,48 +1,34 @@
|
||||
//go:build slow
|
||||
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/sha256"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"flag"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
|
||||
func convertFull(t *testing.T, d string) (*os.File, llm.KV, llm.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
mf, err := GetModelFormat(p)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
params, err := mf.GetParams(p)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
arch, err := mf.GetModelArch("", p, params)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if err := arch.LoadVocab(); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if err := arch.GetTensors(); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if err := arch.WriteGGUF(f); err != nil {
|
||||
if err := Convert(d, f); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -50,54 +36,200 @@ func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer r.Close()
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, _, err := llm.DecodeGGML(r)
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
return m.KV(), m.Tensors()
|
||||
if _, err := r.Seek(0, io.SeekStart); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func TestMain(m *testing.M) {
|
||||
var level slog.Level
|
||||
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
|
||||
flag.Parse()
|
||||
slog.SetLogLoggerLevel(level)
|
||||
os.Exit(m.Run())
|
||||
}
|
||||
|
||||
func TestConvertFull(t *testing.T) {
|
||||
cases := []struct {
|
||||
path string
|
||||
arch string
|
||||
tensors int
|
||||
layers int
|
||||
}{
|
||||
{"Meta-Llama-3-8B-Instruct", "llama", 291, 35},
|
||||
{"Mistral-7B-Instruct-v0.2", "llama", 291, 35},
|
||||
{"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35},
|
||||
{"gemma-2b-it", "gemma", 164, 20},
|
||||
cases := []string{
|
||||
"Meta-Llama-3-8B-Instruct",
|
||||
"Mistral-7B-Instruct-v0.2",
|
||||
"Mixtral-8x7B-Instruct-v0.1",
|
||||
"gemma-2b-it",
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.path, func(t *testing.T) {
|
||||
p := filepath.Join("testdata", tt.path)
|
||||
if _, err := os.Stat(p); err != nil {
|
||||
for i := range cases {
|
||||
tt := cases[i]
|
||||
t.Run(tt, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
p := filepath.Join("testdata", tt)
|
||||
if testing.Short() {
|
||||
t.Skip("skipping in short mode")
|
||||
} else if _, err := os.Stat(p); err != nil {
|
||||
t.Skipf("%s not found", p)
|
||||
}
|
||||
|
||||
kv, tensors := convertFull(t, p)
|
||||
f, kv, tensors := convertFull(t, p)
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
actual[k] = fmt.Sprintf("%v", v)
|
||||
} else {
|
||||
bts, err := json.Marshal(s)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if kv.Architecture() != tt.arch {
|
||||
t.Fatalf("expected llama, got %s", kv.Architecture())
|
||||
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
|
||||
}
|
||||
}
|
||||
|
||||
if kv.FileType().String() != "F16" {
|
||||
t.Fatalf("expected F16, got %s", kv.FileType())
|
||||
for _, tensor := range tensors.Items {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
actual[tensor.Name] = fmt.Sprintf("%x", sha256sum.Sum(nil))
|
||||
}
|
||||
|
||||
if len(tensors) != tt.tensors {
|
||||
t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors))
|
||||
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
layers := tensors.Layers()
|
||||
if len(layers) != tt.layers {
|
||||
t.Fatalf("expected %d layers, got %d", tt.layers, len(layers))
|
||||
var expect map[string]string
|
||||
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
keys := maps.Keys(expect)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
if v, ok := actual[k]; !ok {
|
||||
t.Errorf("missing %s", k)
|
||||
} else if v != expect[k] {
|
||||
t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestConvertNPZ(t *testing.T) {
|
||||
cases := []string{
|
||||
"adapters.npz",
|
||||
}
|
||||
|
||||
for _, fn := range cases {
|
||||
ts, err := parseNPZ(filepath.Join("testdata", fn))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if len(ts) != 16*2*2 {
|
||||
t.Errorf("got: %d want: %d total layers", len(ts), 16*2*2)
|
||||
}
|
||||
|
||||
a := adapter{}
|
||||
|
||||
for _, m := range ts {
|
||||
at := m.(adapterTensor)
|
||||
if at.path != filepath.Join("testdata", fn) {
|
||||
t.Errorf("got: %s want: %s", at.path, filepath.Join("testdata", fn))
|
||||
}
|
||||
if at.dtype != "F32" {
|
||||
t.Errorf("got: %s but only F32s are currently supported", at.dtype)
|
||||
}
|
||||
if len(at.tensorBase.shape) != 2 {
|
||||
t.Errorf("got: %d want: %d tensor shape", at.tensorBase.shape, 2)
|
||||
}
|
||||
}
|
||||
|
||||
var ws io.WriteSeeker = &memWriter{}
|
||||
err = llm.WriteGGLA(ws, a.KV(nil), a.Tensors(ts))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
mw := ws.(*memWriter)
|
||||
slog.Info(fmt.Sprintf("buffer len = %d", len(mw.buf)))
|
||||
if len(mw.buf) == 0 {
|
||||
t.Errorf("ggla layer not written correctly")
|
||||
}
|
||||
rs := bytes.NewReader(mw.buf)
|
||||
ggml, _, err := llm.DecodeGGML(rs, len(mw.buf))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if ggml == nil {
|
||||
t.Fatalf("ggla didn't convert to ggml correctly")
|
||||
}
|
||||
|
||||
kv := ggml.KV()
|
||||
if kv == nil {
|
||||
t.Fatalf("no lora KVs were set")
|
||||
}
|
||||
|
||||
r, ok := kv["r"]
|
||||
if !ok || r != uint32(8) {
|
||||
t.Errorf("lora rank was not set correctly")
|
||||
}
|
||||
|
||||
alpha, ok := kv["alpha"]
|
||||
if !ok || alpha != uint32(160) {
|
||||
t.Errorf("lora alpha was not set correctly")
|
||||
}
|
||||
|
||||
gts := ggml.Tensors()
|
||||
if len(ts) != len(gts.Items) {
|
||||
t.Fatalf("got: %d want: %d tensors in ggla", len(gts.Items), len(ts))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type memWriter struct {
|
||||
buf []byte
|
||||
pos int
|
||||
}
|
||||
|
||||
func (m *memWriter) Write(p []byte) (n int, err error) {
|
||||
minCap := m.pos + len(p)
|
||||
if minCap > cap(m.buf) {
|
||||
buf2 := make([]byte, len(m.buf), minCap+len(p)) // add some extra
|
||||
copy(buf2, m.buf)
|
||||
m.buf = buf2
|
||||
}
|
||||
if minCap > len(m.buf) {
|
||||
m.buf = m.buf[:minCap]
|
||||
}
|
||||
copy(m.buf[m.pos:], p)
|
||||
m.pos += len(p)
|
||||
return len(p), nil
|
||||
}
|
||||
|
||||
func (m *memWriter) Seek(offset int64, whence int) (int64, error) {
|
||||
newPos, offs := 0, int(offset)
|
||||
switch whence {
|
||||
case io.SeekStart:
|
||||
newPos = offs
|
||||
case io.SeekCurrent:
|
||||
newPos = m.pos + offs
|
||||
case io.SeekEnd:
|
||||
newPos = len(m.buf) + offs
|
||||
}
|
||||
if newPos < 0 {
|
||||
return 0, errors.New("negative result pos")
|
||||
}
|
||||
m.pos = newPos
|
||||
return int64(newPos), nil
|
||||
}
|
||||
|
||||
102
convert/gemma.go
102
convert/gemma.go
@@ -1,102 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type GemmaModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func addOnes(data []float32, vectorSize int) ([]float32, error) {
|
||||
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
|
||||
ones := tensor.Ones(tensor.Float32, vectorSize)
|
||||
|
||||
n, err := n.Add(ones)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
|
||||
func (m *GemmaModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
|
||||
for _, l := range t {
|
||||
if strings.HasSuffix(l.Name, "norm.weight") {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.repacker = m.Repack
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *GemmaModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
return addOnes(data, int(shape[0]))
|
||||
}
|
||||
|
||||
func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "gemma",
|
||||
"general.name": m.Name,
|
||||
"gemma.context_length": uint32(m.Params.ContextSize),
|
||||
"gemma.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"gemma.block_count": uint32(m.Params.HiddenLayers),
|
||||
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
|
||||
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(3),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
}
|
||||
|
||||
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
||||
}
|
||||
159
convert/llama.go
159
convert/llama.go
@@ -1,159 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type LlamaModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func (m *LlamaModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
switch m.Format.(type) {
|
||||
case *TorchFormat:
|
||||
wt := l.WriterTo.(torchWriterTo)
|
||||
wt.repacker = m.Repack
|
||||
l.WriterTo = wt
|
||||
case *SafetensorFormat:
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.repacker = m.Repack
|
||||
l.WriterTo = wt
|
||||
}
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) LoadVocab() (err error) {
|
||||
pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.Vocab = &Vocab{}
|
||||
for _, t := range ts {
|
||||
m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
|
||||
m.Vocab.Types = append(m.Vocab.Types, t.Type())
|
||||
}
|
||||
|
||||
m.Vocab.Merges = merges
|
||||
m.Params.PreTokenizer = pre
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "gpt2",
|
||||
|
||||
"tokenizer.ggml.pre": m.Params.PreTokenizer,
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
}
|
||||
|
||||
if len(m.Vocab.Merges) > 0 {
|
||||
kv["tokenizer.ggml.merges"] = m.Vocab.Merges
|
||||
} else {
|
||||
kv["tokenizer.ggml.scores"] = m.Vocab.Scores
|
||||
}
|
||||
|
||||
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
||||
}
|
||||
|
||||
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
return llamaRepack(name, m.Params, data, shape)
|
||||
}
|
||||
|
||||
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
if dim != 0 {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
}
|
||||
|
||||
var heads int
|
||||
switch {
|
||||
case strings.HasSuffix(name, "attn_q.weight"):
|
||||
heads = params.AttentionHeads
|
||||
case strings.HasSuffix(name, "attn_k.weight"):
|
||||
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
|
||||
default:
|
||||
return nil, fmt.Errorf("unknown tensor name: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -1,79 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"io"
|
||||
"regexp"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type MistralModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func (m *MistralModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.repacker = m.Repack
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MistralModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
}
|
||||
|
||||
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
||||
}
|
||||
|
||||
func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
return llamaRepack(name, m.Params, data, shape)
|
||||
}
|
||||
@@ -1,87 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"io"
|
||||
"regexp"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type MixtralModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func (m *MixtralModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.repacker = m.Repack
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MixtralModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
|
||||
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
|
||||
"llama.expert_count": uint32(m.Params.Experts),
|
||||
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
|
||||
|
||||
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
}
|
||||
|
||||
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
||||
}
|
||||
|
||||
func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
return llamaRepack(name, m.Params, data, shape)
|
||||
}
|
||||
74
convert/reader.go
Normal file
74
convert/reader.go
Normal file
@@ -0,0 +1,74 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"io"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type Tensor interface {
|
||||
Name() string
|
||||
Shape() []uint64
|
||||
Kind() uint32
|
||||
SetRepacker(repacker)
|
||||
WriteTo(io.Writer) (int64, error)
|
||||
}
|
||||
|
||||
type tensorBase struct {
|
||||
name string
|
||||
shape []uint64
|
||||
repacker
|
||||
}
|
||||
|
||||
func (t tensorBase) Name() string {
|
||||
return t.name
|
||||
}
|
||||
|
||||
func (t tensorBase) Shape() []uint64 {
|
||||
return t.shape
|
||||
}
|
||||
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
|
||||
return 0
|
||||
}
|
||||
|
||||
switch len(t.shape) {
|
||||
case 0:
|
||||
panic("invalid tensor shape")
|
||||
case 1:
|
||||
return 0
|
||||
default:
|
||||
return 1
|
||||
}
|
||||
}
|
||||
|
||||
func (t *tensorBase) SetRepacker(fn repacker) {
|
||||
t.repacker = fn
|
||||
}
|
||||
|
||||
type repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
|
||||
func parseTensors(d string) ([]Tensor, error) {
|
||||
patterns := map[string]func(...string) ([]Tensor, error){
|
||||
"model-*-of-*.safetensors": parseSafetensors,
|
||||
"model.safetensors": parseSafetensors,
|
||||
"pytorch_model-*-of-*.bin": parseTorch,
|
||||
"pytorch_model.bin": parseTorch,
|
||||
"consolidated.*.pth": parseTorch,
|
||||
}
|
||||
|
||||
for pattern, parseFn := range patterns {
|
||||
matches, err := filepath.Glob(filepath.Join(d, pattern))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(matches) > 0 {
|
||||
return parseFn(matches...)
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("unknown tensor format")
|
||||
}
|
||||
140
convert/reader_npz.go
Normal file
140
convert/reader_npz.go
Normal file
@@ -0,0 +1,140 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"github.com/sbinet/npyio/npz"
|
||||
)
|
||||
|
||||
type adapterTensor struct {
|
||||
path string
|
||||
dtype string
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func DetectNPZ(fn string) (bool, error) {
|
||||
f, err := npz.Open(fn)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if len(f.Keys()) > 0 && strings.HasSuffix(f.Keys()[0], ".npy") {
|
||||
return true, nil
|
||||
}
|
||||
|
||||
return false, nil
|
||||
}
|
||||
|
||||
func parseNPZ(fn string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
|
||||
f, err := npz.Open(fn)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
for _, name := range f.Keys() {
|
||||
slog.Info(fmt.Sprintf("reading layer '%s'", name))
|
||||
h := f.Header(name)
|
||||
|
||||
shape := make([]uint64, 2)
|
||||
for cnt, v := range h.Descr.Shape {
|
||||
// llamacpp expects the loraB layer to be reversed
|
||||
if strings.Contains(name, "lora_b") {
|
||||
shape[len(shape)-cnt-1] = uint64(v)
|
||||
} else {
|
||||
shape[cnt] = uint64(v)
|
||||
}
|
||||
}
|
||||
|
||||
dtypeMap := map[string]string{
|
||||
"<f2": "F16",
|
||||
"<f4": "F32",
|
||||
}
|
||||
dtype, ok := dtypeMap[h.Descr.Type]
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("Unknown type '%s' for '%s'", h.Descr.Type, name)
|
||||
}
|
||||
|
||||
ts = append(ts, adapterTensor{
|
||||
path: fn,
|
||||
dtype: dtype,
|
||||
tensorBase: &tensorBase{
|
||||
name: name,
|
||||
shape: shape,
|
||||
},
|
||||
})
|
||||
}
|
||||
return ts, nil
|
||||
}
|
||||
|
||||
func (t adapterTensor) Kind() uint32 {
|
||||
switch t.dtype {
|
||||
case "F32":
|
||||
return 0
|
||||
case "F16":
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
func (t adapterTensor) WriteTo(w io.Writer) (int64, error) {
|
||||
f, err := npz.Open(t.path)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
switch t.dtype {
|
||||
case "F32":
|
||||
var f32s []float32
|
||||
err = f.Read(t.tensorBase.name, &f32s)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// ggla expects the loraB to be transposed
|
||||
if strings.Contains(t.tensorBase.name, "lora_b") {
|
||||
f32s, err = transpose(f32s, t.tensorBase.shape)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
return 0, binary.Write(w, binary.LittleEndian, f32s)
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("unknown data type: %s", t.dtype)
|
||||
}
|
||||
|
||||
func transpose(f32s []float32, shape []uint64) ([]float32, error) {
|
||||
if len(shape) != 2 {
|
||||
return nil, fmt.Errorf("only 2 dimensions supported for transpose")
|
||||
}
|
||||
|
||||
// the shape is already backward
|
||||
n := tensor.New(tensor.WithShape(int(shape[1]), int(shape[0])), tensor.WithBacking(f32s))
|
||||
if err := n.T(1, 0); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
f32s = make([]float32, 0)
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
return f32s, nil
|
||||
}
|
||||
140
convert/reader_safetensors.go
Normal file
140
convert/reader_safetensors.go
Normal file
@@ -0,0 +1,140 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"slices"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/x448/float16"
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
type safetensorMetadata struct {
|
||||
Type string `json:"dtype"`
|
||||
Shape []uint64 `json:"shape"`
|
||||
Offsets []int64 `json:"data_offsets"`
|
||||
}
|
||||
|
||||
func parseSafetensors(ps ...string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
for _, p := range ps {
|
||||
f, err := os.Open(p)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var n int64
|
||||
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
b := bytes.NewBuffer(make([]byte, 0, n))
|
||||
if _, err = io.CopyN(b, f, n); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var headers map[string]safetensorMetadata
|
||||
if err := json.NewDecoder(b).Decode(&headers); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
keys := maps.Keys(headers)
|
||||
slices.Sort(keys)
|
||||
|
||||
for _, key := range keys {
|
||||
if value := headers[key]; value.Type != "" {
|
||||
ts = append(ts, safetensor{
|
||||
path: p,
|
||||
dtype: value.Type,
|
||||
offset: safetensorsPad(n, value.Offsets[0]),
|
||||
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
|
||||
tensorBase: &tensorBase{
|
||||
name: key,
|
||||
shape: value.Shape,
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ts, nil
|
||||
}
|
||||
|
||||
func safetensorsPad(n, s int64) int64 {
|
||||
return 8 + n + s
|
||||
}
|
||||
|
||||
type safetensor struct {
|
||||
path string
|
||||
dtype string
|
||||
offset int64
|
||||
size int64
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||
f, err := os.Open(st.path)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err = f.Seek(st.offset, io.SeekStart); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
switch st.dtype {
|
||||
case "F32":
|
||||
f32s = make([]float32, st.size/4)
|
||||
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case "F16":
|
||||
u16s := make([]uint16, st.size/2)
|
||||
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
for _, b := range u16s {
|
||||
f32s = append(f32s, float16.Frombits(b).Float32())
|
||||
}
|
||||
|
||||
case "BF16":
|
||||
u8s := make([]uint8, st.size)
|
||||
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
f32s = bfloat16.DecodeFloat32(u8s)
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown data type: %s", st.dtype)
|
||||
}
|
||||
|
||||
if st.repacker != nil {
|
||||
f32s, err = st.repacker(st.Name(), f32s, st.Shape())
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
switch st.Kind() {
|
||||
case 0:
|
||||
return 0, binary.Write(w, binary.LittleEndian, f32s)
|
||||
case 1:
|
||||
f16s := make([]uint16, len(f32s))
|
||||
for i := range f32s {
|
||||
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
||||
}
|
||||
|
||||
return 0, binary.Write(w, binary.LittleEndian, f16s)
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
|
||||
}
|
||||
}
|
||||
46
convert/reader_torch.go
Normal file
46
convert/reader_torch.go
Normal file
@@ -0,0 +1,46 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"io"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/nlpodyssey/gopickle/types"
|
||||
)
|
||||
|
||||
func parseTorch(ps ...string) ([]Tensor, error) {
|
||||
var ts []Tensor
|
||||
for _, p := range ps {
|
||||
pt, err := pytorch.Load(p)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, k := range pt.(*types.Dict).Keys() {
|
||||
t := pt.(*types.Dict).MustGet(k)
|
||||
|
||||
var shape []uint64
|
||||
for dim := range t.(*pytorch.Tensor).Size {
|
||||
shape = append(shape, uint64(dim))
|
||||
}
|
||||
|
||||
ts = append(ts, torch{
|
||||
storage: t.(*pytorch.Tensor).Source,
|
||||
tensorBase: &tensorBase{
|
||||
name: k.(string),
|
||||
shape: shape,
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return ts, nil
|
||||
}
|
||||
|
||||
type torch struct {
|
||||
storage pytorch.StorageInterface
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
||||
return 0, nil
|
||||
}
|
||||
@@ -1,309 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type safetensorWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
filename string
|
||||
dtype string
|
||||
|
||||
offset, size int64
|
||||
repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
}
|
||||
|
||||
type safetensorMetadata struct {
|
||||
Type string `json:"dtype"`
|
||||
Shape []uint64 `json:"shape"`
|
||||
Offsets []int64 `json:"data_offsets"`
|
||||
}
|
||||
|
||||
type SafetensorFormat struct{}
|
||||
|
||||
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
var tensors []llm.Tensor
|
||||
matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
for _, f := range matches {
|
||||
var t []llm.Tensor
|
||||
var err error
|
||||
t, offset, err = m.readTensors(f, offset, params)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tensors = append(tensors, t...)
|
||||
}
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
|
||||
f, err := os.Open(fn)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var n int64
|
||||
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
b := bytes.NewBuffer(make([]byte, 0, n))
|
||||
if _, err = io.CopyN(b, f, n); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var headers map[string]safetensorMetadata
|
||||
if err := json.NewDecoder(b).Decode(&headers); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var keys []string
|
||||
for key := range headers {
|
||||
if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") {
|
||||
keys = append(keys, key)
|
||||
}
|
||||
}
|
||||
|
||||
slices.Sort(keys)
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, key := range keys {
|
||||
value := headers[key]
|
||||
|
||||
var kind uint32
|
||||
switch len(value.Shape) {
|
||||
case 0:
|
||||
// valuedata
|
||||
continue
|
||||
case 2:
|
||||
kind = 1
|
||||
}
|
||||
|
||||
name, err := m.GetLayerName(key)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
shape := make([]uint64, len(value.Shape))
|
||||
copy(shape, value.Shape)
|
||||
|
||||
pad := func(s int64) int64 {
|
||||
return 8 + n + s
|
||||
}
|
||||
|
||||
t := llm.Tensor{
|
||||
Name: name,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape,
|
||||
}
|
||||
|
||||
t.WriterTo = safetensorWriterTo{
|
||||
t: &t,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
filename: fn,
|
||||
dtype: value.Type,
|
||||
offset: pad(value.Offsets[0]),
|
||||
size: pad(value.Offsets[1]) - pad(value.Offsets[0]),
|
||||
}
|
||||
|
||||
offset += t.Size()
|
||||
tensors = append(tensors, t)
|
||||
}
|
||||
|
||||
return tensors, offset, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var params Params
|
||||
|
||||
if err := json.NewDecoder(f).Decode(¶ms); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
|
||||
directMap := map[string]string{
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
tMap := map[string]string{
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
|
||||
}
|
||||
|
||||
v, ok := directMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range tMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
f, err := os.Open(r.filename)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err = f.Seek(r.offset, io.SeekStart); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
switch r.dtype {
|
||||
case "F32":
|
||||
f32s = make([]float32, r.size/4)
|
||||
if err = binary.Read(f, r.bo, f32s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case "F16":
|
||||
u16s := make([]uint16, r.size/2)
|
||||
if err = binary.Read(f, r.bo, u16s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
for _, b := range u16s {
|
||||
f32s = append(f32s, float16.Frombits(b).Float32())
|
||||
}
|
||||
|
||||
case "BF16":
|
||||
u8s := make([]uint8, r.size)
|
||||
if err = binary.Read(f, r.bo, u8s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
f32s = bfloat16.DecodeFloat32(u8s)
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown data type: %s", r.dtype)
|
||||
}
|
||||
|
||||
if r.repacker != nil {
|
||||
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
return 0, binary.Write(w, r.bo, f32s)
|
||||
case 1:
|
||||
f16s := make([]uint16, len(f32s))
|
||||
for i := range f32s {
|
||||
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
||||
}
|
||||
|
||||
return 0, binary.Write(w, r.bo, f16s)
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
|
||||
}
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "LlamaForCausalLM":
|
||||
return &LlamaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
case "MistralForCausalLM":
|
||||
return &MistralModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
case "MixtralForCausalLM":
|
||||
return &MixtralModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
case "GemmaForCausalLM":
|
||||
return &GemmaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
313
convert/testdata/Meta-Llama-3-8B-Instruct.json
vendored
Normal file
313
convert/testdata/Meta-Llama-3-8B-Instruct.json
vendored
Normal file
@@ -0,0 +1,313 @@
|
||||
{
|
||||
"general.architecture": "llama",
|
||||
"general.file_type": "1",
|
||||
"general.quantization_version": "2",
|
||||
"llama.block_count": "32",
|
||||
"llama.context_length": "8192",
|
||||
"llama.embedding_length": "4096",
|
||||
"llama.feed_forward_length": "14336",
|
||||
"llama.rope.dimension_count": "128",
|
||||
"llama.rope.freq_base": "500000",
|
||||
"llama.vocab_size": "128256",
|
||||
"llama.attention.head_count": "32",
|
||||
"llama.attention.head_count_kv": "8",
|
||||
"llama.attention.layer_norm_rms_epsilon": "1e-05",
|
||||
"tokenizer.ggml.model": "gpt2",
|
||||
"tokenizer.ggml.pre": "llama-bpe",
|
||||
"tokenizer.ggml.bos_token_id": "128000",
|
||||
"tokenizer.ggml.eos_token_id": "128009",
|
||||
"tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b",
|
||||
"tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978",
|
||||
"tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a",
|
||||
"token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698",
|
||||
"blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee",
|
||||
"blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900",
|
||||
"blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd",
|
||||
"blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516",
|
||||
"blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb",
|
||||
"blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e",
|
||||
"blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc",
|
||||
"blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1",
|
||||
"blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8",
|
||||
"blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff",
|
||||
"blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0",
|
||||
"blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40",
|
||||
"blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f",
|
||||
"blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862",
|
||||
"blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d",
|
||||
"blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3",
|
||||
"blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c",
|
||||
"blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40",
|
||||
"blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539",
|
||||
"blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662",
|
||||
"blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718",
|
||||
"blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84",
|
||||
"blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe",
|
||||
"blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5",
|
||||
"blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343",
|
||||
"blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d",
|
||||
"blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02",
|
||||
"blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a",
|
||||
"blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4",
|
||||
"blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f",
|
||||
"blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e",
|
||||
"blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b",
|
||||
"blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291",
|
||||
"blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3",
|
||||
"blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8",
|
||||
"blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767",
|
||||
"blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217",
|
||||
"blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68",
|
||||
"blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee",
|
||||
"blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22",
|
||||
"blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9",
|
||||
"blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853",
|
||||
"blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b",
|
||||
"blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04",
|
||||
"blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d",
|
||||
"blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156",
|
||||
"blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9",
|
||||
"blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4",
|
||||
"blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0",
|
||||
"blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406",
|
||||
"blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb",
|
||||
"blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73",
|
||||
"blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409",
|
||||
"blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27",
|
||||
"blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942",
|
||||
"blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1",
|
||||
"blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04",
|
||||
"blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94",
|
||||
"blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8",
|
||||
"blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960",
|
||||
"blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3",
|
||||
"blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6",
|
||||
"blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36",
|
||||
"blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf",
|
||||
"blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f",
|
||||
"blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f",
|
||||
"blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e",
|
||||
"blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e",
|
||||
"blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44",
|
||||
"blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2",
|
||||
"blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff",
|
||||
"blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f",
|
||||
"blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec",
|
||||
"blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1",
|
||||
"blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc",
|
||||
"blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30",
|
||||
"blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e",
|
||||
"blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5",
|
||||
"blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4",
|
||||
"blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6",
|
||||
"blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e",
|
||||
"blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593",
|
||||
"blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9",
|
||||
"blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542",
|
||||
"blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e",
|
||||
"blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f",
|
||||
"blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f",
|
||||
"blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b",
|
||||
"blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476",
|
||||
"blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3",
|
||||
"blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94",
|
||||
"blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a",
|
||||
"blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226",
|
||||
"blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a",
|
||||
"blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3",
|
||||
"blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187",
|
||||
"blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a",
|
||||
"blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4",
|
||||
"blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2",
|
||||
"blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc",
|
||||
"blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898",
|
||||
"blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f",
|
||||
"blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be",
|
||||
"blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3",
|
||||
"blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855",
|
||||
"blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b",
|
||||
"blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f",
|
||||
"blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7",
|
||||
"blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6",
|
||||
"blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200",
|
||||
"blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f",
|
||||
"blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df",
|
||||
"blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6",
|
||||
"blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6",
|
||||
"blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238",
|
||||
"blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb",
|
||||
"blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc",
|
||||
"blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82",
|
||||
"blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3",
|
||||
"blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4",
|
||||
"blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943",
|
||||
"blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2",
|
||||
"blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360",
|
||||
"blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3",
|
||||
"blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9",
|
||||
"blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706",
|
||||
"blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093",
|
||||
"blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5",
|
||||
"blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1",
|
||||
"blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae",
|
||||
"blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003",
|
||||
"blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8",
|
||||
"blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514",
|
||||
"blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b",
|
||||
"blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687",
|
||||
"blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4",
|
||||
"blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801",
|
||||
"blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76",
|
||||
"blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d",
|
||||
"blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500",
|
||||
"blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751",
|
||||
"blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429",
|
||||
"blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e",
|
||||
"blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec",
|
||||
"blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0",
|
||||
"blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333",
|
||||
"blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e",
|
||||
"blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e",
|
||||
"blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651",
|
||||
"blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439",
|
||||
"blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0",
|
||||
"blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925",
|
||||
"blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25",
|
||||
"blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80",
|
||||
"blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05",
|
||||
"blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d",
|
||||
"blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09",
|
||||
"blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9",
|
||||
"blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02",
|
||||
"blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4",
|
||||
"blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7",
|
||||
"blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a",
|
||||
"blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835",
|
||||
"blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c",
|
||||
"blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb",
|
||||
"blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7",
|
||||
"blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960",
|
||||
"blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4",
|
||||
"blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2",
|
||||
"blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164",
|
||||
"blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c",
|
||||
"blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72",
|
||||
"blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04",
|
||||
"blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf",
|
||||
"blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17",
|
||||
"blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa",
|
||||
"blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5",
|
||||
"blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f",
|
||||
"blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60",
|
||||
"blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84",
|
||||
"blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba",
|
||||
"blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790",
|
||||
"blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6",
|
||||
"blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e",
|
||||
"blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17",
|
||||
"blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a",
|
||||
"blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204",
|
||||
"blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c",
|
||||
"blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2",
|
||||
"blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298",
|
||||
"blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53",
|
||||
"blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f",
|
||||
"blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789",
|
||||
"blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9",
|
||||
"blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a",
|
||||
"blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac",
|
||||
"blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee",
|
||||
"blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864",
|
||||
"blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a",
|
||||
"blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3",
|
||||
"blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e",
|
||||
"blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296",
|
||||
"blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28",
|
||||
"blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12",
|
||||
"blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de",
|
||||
"blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6",
|
||||
"blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703",
|
||||
"blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c",
|
||||
"blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7",
|
||||
"blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8",
|
||||
"blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf",
|
||||
"blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9",
|
||||
"blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe",
|
||||
"blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df",
|
||||
"blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965",
|
||||
"blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c",
|
||||
"blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850",
|
||||
"blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5",
|
||||
"blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117",
|
||||
"blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa",
|
||||
"blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b",
|
||||
"blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e",
|
||||
"blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac",
|
||||
"blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb",
|
||||
"blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2",
|
||||
"blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b",
|
||||
"blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f",
|
||||
"blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0",
|
||||
"blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5",
|
||||
"blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346",
|
||||
"blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4",
|
||||
"blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666",
|
||||
"blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10",
|
||||
"blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371",
|
||||
"blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee",
|
||||
"blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833",
|
||||
"blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62",
|
||||
"blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b",
|
||||
"blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8",
|
||||
"blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a",
|
||||
"blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84",
|
||||
"blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604",
|
||||
"blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4",
|
||||
"blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2",
|
||||
"blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0",
|
||||
"blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64",
|
||||
"blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a",
|
||||
"blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0",
|
||||
"blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925",
|
||||
"blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a",
|
||||
"blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3",
|
||||
"blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6",
|
||||
"blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40",
|
||||
"blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45",
|
||||
"blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a",
|
||||
"blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b",
|
||||
"blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e",
|
||||
"blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8",
|
||||
"blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9",
|
||||
"blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f",
|
||||
"blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3",
|
||||
"blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d",
|
||||
"blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f",
|
||||
"blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967",
|
||||
"blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642",
|
||||
"blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc",
|
||||
"blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa",
|
||||
"blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48",
|
||||
"blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada",
|
||||
"blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c",
|
||||
"blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af",
|
||||
"blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b",
|
||||
"blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638",
|
||||
"blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0",
|
||||
"blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03",
|
||||
"blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa",
|
||||
"blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc",
|
||||
"blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1",
|
||||
"blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81",
|
||||
"blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566",
|
||||
"blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a",
|
||||
"blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f",
|
||||
"blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a",
|
||||
"blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f",
|
||||
"blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56",
|
||||
"blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d",
|
||||
"blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2",
|
||||
"blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b",
|
||||
"output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892",
|
||||
"output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e"
|
||||
}
|
||||
313
convert/testdata/Mistral-7B-Instruct-v0.2.json
vendored
Normal file
313
convert/testdata/Mistral-7B-Instruct-v0.2.json
vendored
Normal file
@@ -0,0 +1,313 @@
|
||||
{
|
||||
"general.architecture": "llama",
|
||||
"general.file_type": "1",
|
||||
"general.quantization_version": "2",
|
||||
"llama.block_count": "32",
|
||||
"llama.context_length": "32768",
|
||||
"llama.embedding_length": "4096",
|
||||
"llama.feed_forward_length": "14336",
|
||||
"llama.attention.head_count": "32",
|
||||
"llama.attention.head_count_kv": "8",
|
||||
"llama.attention.layer_norm_rms_epsilon": "1e-05",
|
||||
"llama.rope.dimension_count": "128",
|
||||
"tokenizer.ggml.model": "llama",
|
||||
"tokenizer.ggml.add_bos_token": "true",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.bos_token_id": "1",
|
||||
"tokenizer.ggml.eos_token_id": "2",
|
||||
"tokenizer.ggml.unknown_token_id": "0",
|
||||
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
|
||||
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
|
||||
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
|
||||
"token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81",
|
||||
"blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be",
|
||||
"blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b",
|
||||
"blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373",
|
||||
"blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25",
|
||||
"blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd",
|
||||
"blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d",
|
||||
"blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e",
|
||||
"blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287",
|
||||
"blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987",
|
||||
"blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712",
|
||||
"blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357",
|
||||
"blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740",
|
||||
"blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b",
|
||||
"blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e",
|
||||
"blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db",
|
||||
"blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346",
|
||||
"blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed",
|
||||
"blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2",
|
||||
"blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153",
|
||||
"blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24",
|
||||
"blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348",
|
||||
"blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a",
|
||||
"blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567",
|
||||
"blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397",
|
||||
"blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd",
|
||||
"blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1",
|
||||
"blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c",
|
||||
"blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075",
|
||||
"blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b",
|
||||
"blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610",
|
||||
"blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948",
|
||||
"blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38",
|
||||
"blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf",
|
||||
"blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432",
|
||||
"blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c",
|
||||
"blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88",
|
||||
"blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b",
|
||||
"blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd",
|
||||
"blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de",
|
||||
"blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa",
|
||||
"blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8",
|
||||
"blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf",
|
||||
"blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6",
|
||||
"blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65",
|
||||
"blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642",
|
||||
"blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316",
|
||||
"blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443",
|
||||
"blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d",
|
||||
"blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d",
|
||||
"blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e",
|
||||
"blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e",
|
||||
"blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5",
|
||||
"blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b",
|
||||
"blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f",
|
||||
"blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932",
|
||||
"blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085",
|
||||
"blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075",
|
||||
"blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90",
|
||||
"blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555",
|
||||
"blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1",
|
||||
"blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f",
|
||||
"blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392",
|
||||
"blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab",
|
||||
"blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a",
|
||||
"blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f",
|
||||
"blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe",
|
||||
"blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c",
|
||||
"blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8",
|
||||
"blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387",
|
||||
"blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0",
|
||||
"blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff",
|
||||
"blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5",
|
||||
"blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5",
|
||||
"blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d",
|
||||
"blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff",
|
||||
"blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369",
|
||||
"blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f",
|
||||
"blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa",
|
||||
"blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a",
|
||||
"blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f",
|
||||
"blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89",
|
||||
"blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645",
|
||||
"blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d",
|
||||
"blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995",
|
||||
"blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006",
|
||||
"blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e",
|
||||
"blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75",
|
||||
"blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57",
|
||||
"blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97",
|
||||
"blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a",
|
||||
"blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d",
|
||||
"blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f",
|
||||
"blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c",
|
||||
"blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278",
|
||||
"blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93",
|
||||
"blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08",
|
||||
"blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3",
|
||||
"blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6",
|
||||
"blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5",
|
||||
"blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677",
|
||||
"blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4",
|
||||
"blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950",
|
||||
"blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be",
|
||||
"blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403",
|
||||
"blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87",
|
||||
"blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60",
|
||||
"blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb",
|
||||
"blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42",
|
||||
"blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec",
|
||||
"blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761",
|
||||
"blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04",
|
||||
"blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66",
|
||||
"blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10",
|
||||
"blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a",
|
||||
"blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d",
|
||||
"blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0",
|
||||
"blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04",
|
||||
"blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3",
|
||||
"blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be",
|
||||
"blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a",
|
||||
"blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b",
|
||||
"blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd",
|
||||
"blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5",
|
||||
"blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0",
|
||||
"blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683",
|
||||
"blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba",
|
||||
"blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be",
|
||||
"blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54",
|
||||
"blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a",
|
||||
"blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd",
|
||||
"blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9",
|
||||
"blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11",
|
||||
"blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c",
|
||||
"blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca",
|
||||
"blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38",
|
||||
"blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522",
|
||||
"blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313",
|
||||
"blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a",
|
||||
"blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626",
|
||||
"blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6",
|
||||
"blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19",
|
||||
"blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9",
|
||||
"blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623",
|
||||
"blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15",
|
||||
"blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e",
|
||||
"blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad",
|
||||
"blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4",
|
||||
"blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048",
|
||||
"blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b",
|
||||
"blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee",
|
||||
"blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15",
|
||||
"blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9",
|
||||
"blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c",
|
||||
"blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07",
|
||||
"blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1",
|
||||
"blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece",
|
||||
"blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed",
|
||||
"blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18",
|
||||
"blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196",
|
||||
"blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392",
|
||||
"blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e",
|
||||
"blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de",
|
||||
"blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b",
|
||||
"blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995",
|
||||
"blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa",
|
||||
"blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899",
|
||||
"blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156",
|
||||
"blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d",
|
||||
"blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb",
|
||||
"blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a",
|
||||
"blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd",
|
||||
"blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c",
|
||||
"blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4",
|
||||
"blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe",
|
||||
"blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724",
|
||||
"blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd",
|
||||
"blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd",
|
||||
"blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9",
|
||||
"blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881",
|
||||
"blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd",
|
||||
"blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0",
|
||||
"blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308",
|
||||
"blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b",
|
||||
"blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185",
|
||||
"blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7",
|
||||
"blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8",
|
||||
"blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2",
|
||||
"blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d",
|
||||
"blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101",
|
||||
"blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e",
|
||||
"blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276",
|
||||
"blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e",
|
||||
"blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f",
|
||||
"blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca",
|
||||
"blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30",
|
||||
"blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4",
|
||||
"blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462",
|
||||
"blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c",
|
||||
"blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87",
|
||||
"blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76",
|
||||
"blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0",
|
||||
"blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842",
|
||||
"blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73",
|
||||
"blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5",
|
||||
"blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8",
|
||||
"blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9",
|
||||
"blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7",
|
||||
"blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2",
|
||||
"blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4",
|
||||
"blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831",
|
||||
"blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795",
|
||||
"blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101",
|
||||
"blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf",
|
||||
"blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061",
|
||||
"blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10",
|
||||
"blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801",
|
||||
"blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66",
|
||||
"blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb",
|
||||
"blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8",
|
||||
"blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9",
|
||||
"blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590",
|
||||
"blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf",
|
||||
"blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e",
|
||||
"blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab",
|
||||
"blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d",
|
||||
"blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6",
|
||||
"blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97",
|
||||
"blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b",
|
||||
"blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f",
|
||||
"blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074",
|
||||
"blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6",
|
||||
"blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4",
|
||||
"blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75",
|
||||
"blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3",
|
||||
"blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9",
|
||||
"blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc",
|
||||
"blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509",
|
||||
"blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581",
|
||||
"blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e",
|
||||
"blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31",
|
||||
"blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6",
|
||||
"blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af",
|
||||
"blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287",
|
||||
"blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b",
|
||||
"blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c",
|
||||
"blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840",
|
||||
"blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54",
|
||||
"blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add",
|
||||
"blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e",
|
||||
"blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb",
|
||||
"blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8",
|
||||
"blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1",
|
||||
"blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba",
|
||||
"blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794",
|
||||
"blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d",
|
||||
"blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1",
|
||||
"blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c",
|
||||
"blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83",
|
||||
"blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83",
|
||||
"blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80",
|
||||
"blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05",
|
||||
"blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae",
|
||||
"blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859",
|
||||
"blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b",
|
||||
"blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53",
|
||||
"blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36",
|
||||
"blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89",
|
||||
"blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036",
|
||||
"blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2",
|
||||
"blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c",
|
||||
"blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743",
|
||||
"blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65",
|
||||
"blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3",
|
||||
"blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e",
|
||||
"blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267",
|
||||
"blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993",
|
||||
"blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46",
|
||||
"blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04",
|
||||
"blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6",
|
||||
"blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8",
|
||||
"blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101",
|
||||
"blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd",
|
||||
"blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda",
|
||||
"blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba",
|
||||
"blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec",
|
||||
"blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf",
|
||||
"blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268",
|
||||
"blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb",
|
||||
"output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330",
|
||||
"output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3"
|
||||
}
|
||||
348
convert/testdata/Mixtral-8x7B-Instruct-v0.1.json
vendored
Normal file
348
convert/testdata/Mixtral-8x7B-Instruct-v0.1.json
vendored
Normal file
@@ -0,0 +1,348 @@
|
||||
{
|
||||
"general.architecture": "llama",
|
||||
"general.file_type": "1",
|
||||
"general.quantization_version": "2",
|
||||
"llama.block_count": "32",
|
||||
"llama.context_length": "32768",
|
||||
"llama.embedding_length": "4096",
|
||||
"llama.feed_forward_length": "14336",
|
||||
"llama.rope.dimension_count": "128",
|
||||
"llama.rope.freq_base": "1e+06",
|
||||
"llama.attention.head_count": "32",
|
||||
"llama.attention.head_count_kv": "8",
|
||||
"llama.attention.layer_norm_rms_epsilon": "1e-05",
|
||||
"llama.expert_count": "8",
|
||||
"llama.expert_used_count": "2",
|
||||
"tokenizer.ggml.model": "llama",
|
||||
"tokenizer.ggml.add_bos_token": "true",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.bos_token_id": "1",
|
||||
"tokenizer.ggml.eos_token_id": "2",
|
||||
"tokenizer.ggml.unknown_token_id": "0",
|
||||
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
|
||||
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
|
||||
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
|
||||
"token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4",
|
||||
"blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa",
|
||||
"blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5",
|
||||
"blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3",
|
||||
"blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314",
|
||||
"blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c",
|
||||
"blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2",
|
||||
"blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67",
|
||||
"blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227",
|
||||
"blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b",
|
||||
"blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366",
|
||||
"blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809",
|
||||
"blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd",
|
||||
"blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c",
|
||||
"blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33",
|
||||
"blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f",
|
||||
"blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a",
|
||||
"blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793",
|
||||
"blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1",
|
||||
"blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd",
|
||||
"blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c",
|
||||
"blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964",
|
||||
"blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c",
|
||||
"blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e",
|
||||
"blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2",
|
||||
"blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c",
|
||||
"blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6",
|
||||
"blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e",
|
||||
"blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9",
|
||||
"blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3",
|
||||
"blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1",
|
||||
"blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c",
|
||||
"blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497",
|
||||
"blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086",
|
||||
"blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210",
|
||||
"blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1",
|
||||
"blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86",
|
||||
"blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625",
|
||||
"blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75",
|
||||
"blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555",
|
||||
"blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e",
|
||||
"blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd",
|
||||
"blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4",
|
||||
"blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164",
|
||||
"blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6",
|
||||
"blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758",
|
||||
"blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790",
|
||||
"blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9",
|
||||
"blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12",
|
||||
"blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d",
|
||||
"blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb",
|
||||
"blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d",
|
||||
"blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff",
|
||||
"blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481",
|
||||
"blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e",
|
||||
"blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece",
|
||||
"blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd",
|
||||
"blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13",
|
||||
"blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba",
|
||||
"blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a",
|
||||
"blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca",
|
||||
"blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66",
|
||||
"blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470",
|
||||
"blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c",
|
||||
"blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b",
|
||||
"blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c",
|
||||
"blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424",
|
||||
"blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6",
|
||||
"blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84",
|
||||
"blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb",
|
||||
"blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1",
|
||||
"blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948",
|
||||
"blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc",
|
||||
"blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5",
|
||||
"blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a",
|
||||
"blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0",
|
||||
"blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0",
|
||||
"blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187",
|
||||
"blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948",
|
||||
"blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e",
|
||||
"blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2",
|
||||
"blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17",
|
||||
"blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983",
|
||||
"blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699",
|
||||
"blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0",
|
||||
"blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db",
|
||||
"blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7",
|
||||
"blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90",
|
||||
"blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5",
|
||||
"blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e",
|
||||
"blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b",
|
||||
"blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f",
|
||||
"blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333",
|
||||
"blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce",
|
||||
"blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0",
|
||||
"blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b",
|
||||
"blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c",
|
||||
"blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf",
|
||||
"blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351",
|
||||
"blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5",
|
||||
"blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99",
|
||||
"blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702",
|
||||
"blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39",
|
||||
"blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a",
|
||||
"blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5",
|
||||
"blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad",
|
||||
"blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd",
|
||||
"blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3",
|
||||
"blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac",
|
||||
"blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95",
|
||||
"blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482",
|
||||
"blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6",
|
||||
"blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea",
|
||||
"blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6",
|
||||
"blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325",
|
||||
"blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512",
|
||||
"blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47",
|
||||
"blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e",
|
||||
"blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89",
|
||||
"blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada",
|
||||
"blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee",
|
||||
"blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49",
|
||||
"blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829",
|
||||
"blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e",
|
||||
"blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a",
|
||||
"blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154",
|
||||
"blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97",
|
||||
"blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374",
|
||||
"blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5",
|
||||
"blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5",
|
||||
"blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52",
|
||||
"blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05",
|
||||
"blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace",
|
||||
"blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069",
|
||||
"blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc",
|
||||
"blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337",
|
||||
"blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899",
|
||||
"blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d",
|
||||
"blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec",
|
||||
"blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c",
|
||||
"blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d",
|
||||
"blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9",
|
||||
"blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78",
|
||||
"blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41",
|
||||
"blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4",
|
||||
"blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06",
|
||||
"blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8",
|
||||
"blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599",
|
||||
"blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab",
|
||||
"blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241",
|
||||
"blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211",
|
||||
"blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb",
|
||||
"blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98",
|
||||
"blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf",
|
||||
"blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e",
|
||||
"blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73",
|
||||
"blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef",
|
||||
"blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a",
|
||||
"blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c",
|
||||
"blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0",
|
||||
"blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c",
|
||||
"blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5",
|
||||
"blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa",
|
||||
"blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4",
|
||||
"blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6",
|
||||
"blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b",
|
||||
"blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62",
|
||||
"blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d",
|
||||
"blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc",
|
||||
"blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125",
|
||||
"blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248",
|
||||
"blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd",
|
||||
"blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5",
|
||||
"blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d",
|
||||
"blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940",
|
||||
"blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561",
|
||||
"blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac",
|
||||
"blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec",
|
||||
"blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3",
|
||||
"blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047",
|
||||
"blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298",
|
||||
"blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e",
|
||||
"blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8",
|
||||
"blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75",
|
||||
"blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f",
|
||||
"blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb",
|
||||
"blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4",
|
||||
"blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae",
|
||||
"blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78",
|
||||
"blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5",
|
||||
"blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057",
|
||||
"blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff",
|
||||
"blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8",
|
||||
"blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60",
|
||||
"blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd",
|
||||
"blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b",
|
||||
"blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0",
|
||||
"blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813",
|
||||
"blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226",
|
||||
"blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7",
|
||||
"blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39",
|
||||
"blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc",
|
||||
"blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4",
|
||||
"blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b",
|
||||
"blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5",
|
||||
"blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57",
|
||||
"blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765",
|
||||
"blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb",
|
||||
"blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2",
|
||||
"blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820",
|
||||
"blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6",
|
||||
"blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660",
|
||||
"blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c",
|
||||
"blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a",
|
||||
"blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93",
|
||||
"blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209",
|
||||
"blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa",
|
||||
"blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d",
|
||||
"blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12",
|
||||
"blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36",
|
||||
"blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369",
|
||||
"blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179",
|
||||
"blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb",
|
||||
"blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206",
|
||||
"blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237",
|
||||
"blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4",
|
||||
"blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a",
|
||||
"blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f",
|
||||
"blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32",
|
||||
"blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8",
|
||||
"blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2",
|
||||
"blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5",
|
||||
"blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779",
|
||||
"blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b",
|
||||
"blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd",
|
||||
"blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1",
|
||||
"blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e",
|
||||
"blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d",
|
||||
"blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c",
|
||||
"blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6",
|
||||
"blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8",
|
||||
"blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1",
|
||||
"blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192",
|
||||
"blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a",
|
||||
"blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79",
|
||||
"blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1",
|
||||
"blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33",
|
||||
"blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa",
|
||||
"blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643",
|
||||
"blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0",
|
||||
"blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61",
|
||||
"blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c",
|
||||
"blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c",
|
||||
"blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb",
|
||||
"blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7",
|
||||
"blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431",
|
||||
"blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b",
|
||||
"blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a",
|
||||
"blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7",
|
||||
"blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64",
|
||||
"blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e",
|
||||
"blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6",
|
||||
"blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781",
|
||||
"blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6",
|
||||
"blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff",
|
||||
"blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54",
|
||||
"blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82",
|
||||
"blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8",
|
||||
"blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765",
|
||||
"blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16",
|
||||
"blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd",
|
||||
"blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e",
|
||||
"blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2",
|
||||
"blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7",
|
||||
"blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61",
|
||||
"blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca",
|
||||
"blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4",
|
||||
"blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2",
|
||||
"blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1",
|
||||
"blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a",
|
||||
"blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4",
|
||||
"blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea",
|
||||
"blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b",
|
||||
"blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778",
|
||||
"blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74",
|
||||
"blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd",
|
||||
"blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2",
|
||||
"blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8",
|
||||
"blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc",
|
||||
"blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64",
|
||||
"blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805",
|
||||
"blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298",
|
||||
"blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e",
|
||||
"blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b",
|
||||
"blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78",
|
||||
"blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71",
|
||||
"blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7",
|
||||
"blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a",
|
||||
"blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705",
|
||||
"blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea",
|
||||
"blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9",
|
||||
"blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c",
|
||||
"blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb",
|
||||
"blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd",
|
||||
"blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044",
|
||||
"blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1",
|
||||
"blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70",
|
||||
"blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e",
|
||||
"blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646",
|
||||
"blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273",
|
||||
"blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e",
|
||||
"blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786",
|
||||
"blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40",
|
||||
"blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a",
|
||||
"blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b",
|
||||
"blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172",
|
||||
"blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7",
|
||||
"blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628",
|
||||
"blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802",
|
||||
"blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0",
|
||||
"blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8",
|
||||
"output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13",
|
||||
"output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564"
|
||||
}
|
||||
BIN
convert/testdata/adapters.npz
vendored
Normal file
BIN
convert/testdata/adapters.npz
vendored
Normal file
Binary file not shown.
188
convert/testdata/gemma-2b-it.json
vendored
Normal file
188
convert/testdata/gemma-2b-it.json
vendored
Normal file
@@ -0,0 +1,188 @@
|
||||
{
|
||||
"general.architecture": "gemma",
|
||||
"general.file_type": "1",
|
||||
"general.quantization_version": "2",
|
||||
"gemma.block_count": "18",
|
||||
"gemma.context_length": "8192",
|
||||
"gemma.embedding_length": "2048",
|
||||
"gemma.feed_forward_length": "16384",
|
||||
"gemma.attention.head_count": "8",
|
||||
"gemma.attention.head_count_kv": "1",
|
||||
"gemma.attention.key_length": "256",
|
||||
"gemma.attention.value_length": "256",
|
||||
"gemma.attention.layer_norm_rms_epsilon": "1e-06",
|
||||
"tokenizer.ggml.model": "llama",
|
||||
"tokenizer.ggml.add_bos_token": "true",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.bos_token_id": "2",
|
||||
"tokenizer.ggml.eos_token_id": "1",
|
||||
"tokenizer.ggml.padding_token_id": "0",
|
||||
"tokenizer.ggml.unknown_token_id": "3",
|
||||
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
|
||||
"tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d",
|
||||
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
|
||||
"token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07",
|
||||
"blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f",
|
||||
"blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb",
|
||||
"blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265",
|
||||
"blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791",
|
||||
"blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13",
|
||||
"blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7",
|
||||
"blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf",
|
||||
"blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448",
|
||||
"blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4",
|
||||
"blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406",
|
||||
"blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626",
|
||||
"blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee",
|
||||
"blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a",
|
||||
"blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00",
|
||||
"blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79",
|
||||
"blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33",
|
||||
"blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22",
|
||||
"blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315",
|
||||
"blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044",
|
||||
"blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455",
|
||||
"blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5",
|
||||
"blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5",
|
||||
"blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4",
|
||||
"blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f",
|
||||
"blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061",
|
||||
"blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687",
|
||||
"blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1",
|
||||
"blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21",
|
||||
"blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20",
|
||||
"blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce",
|
||||
"blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991",
|
||||
"blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68",
|
||||
"blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e",
|
||||
"blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2",
|
||||
"blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2",
|
||||
"blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee",
|
||||
"blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db",
|
||||
"blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065",
|
||||
"blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0",
|
||||
"blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde",
|
||||
"blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa",
|
||||
"blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec",
|
||||
"blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1",
|
||||
"blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3",
|
||||
"blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e",
|
||||
"blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5",
|
||||
"blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded",
|
||||
"blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536",
|
||||
"blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8",
|
||||
"blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9",
|
||||
"blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653",
|
||||
"blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557",
|
||||
"blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49",
|
||||
"blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14",
|
||||
"blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4",
|
||||
"blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a",
|
||||
"blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b",
|
||||
"blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003",
|
||||
"blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a",
|
||||
"blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd",
|
||||
"blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168",
|
||||
"blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb",
|
||||
"blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f",
|
||||
"blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7",
|
||||
"blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d",
|
||||
"blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb",
|
||||
"blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f",
|
||||
"blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774",
|
||||
"blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10",
|
||||
"blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b",
|
||||
"blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2",
|
||||
"blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe",
|
||||
"blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69",
|
||||
"blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f",
|
||||
"blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6",
|
||||
"blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c",
|
||||
"blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c",
|
||||
"blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef",
|
||||
"blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908",
|
||||
"blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73",
|
||||
"blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211",
|
||||
"blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183",
|
||||
"blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee",
|
||||
"blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7",
|
||||
"blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7",
|
||||
"blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054",
|
||||
"blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764",
|
||||
"blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57",
|
||||
"blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923",
|
||||
"blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb",
|
||||
"blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa",
|
||||
"blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010",
|
||||
"blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff",
|
||||
"blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763",
|
||||
"blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf",
|
||||
"blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b",
|
||||
"blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34",
|
||||
"blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f",
|
||||
"blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492",
|
||||
"blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df",
|
||||
"blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754",
|
||||
"blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea",
|
||||
"blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce",
|
||||
"blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789",
|
||||
"blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709",
|
||||
"blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e",
|
||||
"blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474",
|
||||
"blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0",
|
||||
"blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1",
|
||||
"blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b",
|
||||
"blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509",
|
||||
"blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae",
|
||||
"blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e",
|
||||
"blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7",
|
||||
"blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104",
|
||||
"blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456",
|
||||
"blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d",
|
||||
"blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3",
|
||||
"blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5",
|
||||
"blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f",
|
||||
"blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7",
|
||||
"blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9",
|
||||
"blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd",
|
||||
"blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1",
|
||||
"blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7",
|
||||
"blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd",
|
||||
"blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86",
|
||||
"blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0",
|
||||
"blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d",
|
||||
"blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8",
|
||||
"blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52",
|
||||
"blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c",
|
||||
"blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19",
|
||||
"blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d",
|
||||
"blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e",
|
||||
"blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c",
|
||||
"blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec",
|
||||
"blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca",
|
||||
"blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91",
|
||||
"blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6",
|
||||
"blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b",
|
||||
"blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f",
|
||||
"blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767",
|
||||
"blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5",
|
||||
"blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b",
|
||||
"blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93",
|
||||
"blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec",
|
||||
"blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74",
|
||||
"blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f",
|
||||
"blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948",
|
||||
"blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca",
|
||||
"blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672",
|
||||
"blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9",
|
||||
"blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c",
|
||||
"blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465",
|
||||
"blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555",
|
||||
"blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d",
|
||||
"blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94",
|
||||
"blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3",
|
||||
"blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c",
|
||||
"blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab",
|
||||
"blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf",
|
||||
"output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4"
|
||||
}
|
||||
@@ -3,19 +3,148 @@ package convert
|
||||
import (
|
||||
"cmp"
|
||||
"crypto/sha256"
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
)
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
const (
|
||||
_ int32 = iota
|
||||
tokenTypeNormal
|
||||
tokenTypeUnknown
|
||||
tokenTypeControl
|
||||
tokenTypeUserDefined
|
||||
tokenTypeUnused
|
||||
tokenTypeByte
|
||||
)
|
||||
|
||||
type Tokenizer struct {
|
||||
Version string `json:"version"`
|
||||
AddedTokens []Token `json:"added_tokens"`
|
||||
Model TokenizerModel `json:"model"`
|
||||
*Vocabulary
|
||||
SpecialVocabulary []*SpecialVocabulary
|
||||
Merges []string
|
||||
|
||||
Pre string
|
||||
Template string
|
||||
}
|
||||
|
||||
func parseTokenizer(d string, specialTypes []string) (*Tokenizer, error) {
|
||||
v, err := parseVocabulary(d)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t := &Tokenizer{
|
||||
Vocabulary: v,
|
||||
Pre: "default",
|
||||
}
|
||||
|
||||
addedTokens := make(map[string]token)
|
||||
if f, err := os.Open(filepath.Join(d, "tokenizer.json")); errors.Is(err, os.ErrNotExist) {
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
defer f.Close()
|
||||
|
||||
var tt tokenizer
|
||||
if err := json.NewDecoder(f).Decode(&tt); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, t := range tt.AddedTokens {
|
||||
addedTokens[t.Content] = t
|
||||
}
|
||||
|
||||
t.Merges = tt.Model.Merges
|
||||
|
||||
sha256sum := sha256.New()
|
||||
for _, pt := range tt.PreTokenizer.PreTokenizers {
|
||||
switch pt.Type {
|
||||
case "Split":
|
||||
if pt.Pattern.Regex != "" {
|
||||
sha256sum.Write([]byte(pt.Pattern.Regex))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest {
|
||||
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
|
||||
t.Pre = "llama-bpe"
|
||||
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
|
||||
t.Pre = "deepseek-llm"
|
||||
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||
t.Pre = "deepseek-coder"
|
||||
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
||||
// noop, empty pretokenizer
|
||||
default:
|
||||
slog.Warn("unknown pretokenizer, using default", "digest", digest)
|
||||
}
|
||||
}
|
||||
|
||||
if f, err := os.Open(filepath.Join(d, "tokenizer_config.json")); errors.Is(err, os.ErrNotExist) {
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
defer f.Close()
|
||||
|
||||
var p map[string]json.RawMessage
|
||||
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if template, ok := p["chat_template"]; ok {
|
||||
if err := json.Unmarshal(template, &t.Template); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
for _, st := range specialTypes {
|
||||
sv := SpecialVocabulary{Type: st}
|
||||
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
|
||||
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok {
|
||||
var content string
|
||||
if err := json.Unmarshal(bts, &content); err != nil {
|
||||
var mm map[string]any
|
||||
if err := json.Unmarshal(bts, &mm); err != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
content, ok = mm["content"].(string)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
sv.Content = content
|
||||
}
|
||||
|
||||
if id, ok := addedTokens[sv.Content]; ok {
|
||||
sv.ID = id.ID
|
||||
t.SpecialVocabulary = append(t.SpecialVocabulary, &sv)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
||||
type tokenizer struct {
|
||||
Version string `json:"version"`
|
||||
AddedTokens []token `json:"added_tokens"`
|
||||
Model struct {
|
||||
Type string `json:"type"`
|
||||
Vocab map[string]int `json:"vocab"`
|
||||
Merges []string `json:"merges"`
|
||||
} `json:"model"`
|
||||
|
||||
PreTokenizer struct {
|
||||
PreTokenizers []struct {
|
||||
@@ -27,80 +156,106 @@ type Tokenizer struct {
|
||||
} `json:"pre_tokenizer"`
|
||||
}
|
||||
|
||||
type TokenizerModel struct {
|
||||
Type string `json:"type"`
|
||||
Vocab map[string]int `json:"vocab"`
|
||||
Merges []string `json:"merges"`
|
||||
Tokens []Token
|
||||
}
|
||||
|
||||
type Token struct {
|
||||
type token struct {
|
||||
ID int `json:"id"`
|
||||
Content string `json:"content"`
|
||||
Special bool `json:"special"`
|
||||
UserDefined bool
|
||||
}
|
||||
|
||||
func (t *Token) Type() int32 {
|
||||
switch {
|
||||
case t.Special:
|
||||
return tokenTypeControl
|
||||
case t.UserDefined:
|
||||
return tokenTypeUserDefined
|
||||
default:
|
||||
return tokenTypeNormal
|
||||
}
|
||||
type Vocabulary struct {
|
||||
Model string
|
||||
Tokens []string
|
||||
Scores []float32
|
||||
Types []int32
|
||||
}
|
||||
|
||||
func (t *Tokenizer) maxID() int {
|
||||
return max(
|
||||
slices.Max(maps.Values(t.Model.Vocab)),
|
||||
slices.MaxFunc(t.AddedTokens, func(a, b Token) int {
|
||||
return cmp.Compare(a.ID, b.ID)
|
||||
}).ID,
|
||||
)
|
||||
}
|
||||
|
||||
func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) {
|
||||
f, err := os.Open(dirpath)
|
||||
func parseVocabularyFromTokenizer(p string) (*Vocabulary, error) {
|
||||
f, err := os.Open(filepath.Join(p, "tokenizer.json"))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var t Tokenizer
|
||||
var t tokenizer
|
||||
if err := json.NewDecoder(f).Decode(&t); err != nil {
|
||||
return "", nil, nil, err
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tokens = make([]Token, t.maxID()+1)
|
||||
var tokens []token
|
||||
for k, v := range t.Model.Vocab {
|
||||
tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false}
|
||||
tokens = append(tokens, token{
|
||||
ID: v,
|
||||
Content: k,
|
||||
})
|
||||
}
|
||||
|
||||
for _, v := range t.AddedTokens {
|
||||
v.UserDefined = true
|
||||
tokens[v.ID] = v
|
||||
for _, t := range t.AddedTokens {
|
||||
t.UserDefined = true
|
||||
tokens = append(tokens, t)
|
||||
}
|
||||
|
||||
sha256sum := sha256.New()
|
||||
for _, pt := range t.PreTokenizer.PreTokenizers {
|
||||
if pt.Type == "Split" && pt.Pattern.Regex != "" {
|
||||
sha256sum.Write([]byte(pt.Pattern.Regex))
|
||||
slices.SortFunc(tokens, func(i, j token) int {
|
||||
return cmp.Compare(i.ID, j.ID)
|
||||
})
|
||||
|
||||
v := Vocabulary{Model: "gpt2"}
|
||||
for _, t := range tokens {
|
||||
v.Tokens = append(v.Tokens, t.Content)
|
||||
v.Scores = append(v.Scores, float32(t.ID))
|
||||
|
||||
switch {
|
||||
case t.Special:
|
||||
v.Types = append(v.Types, tokenTypeControl)
|
||||
case t.UserDefined:
|
||||
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||
default:
|
||||
v.Types = append(v.Types, tokenTypeNormal)
|
||||
}
|
||||
}
|
||||
|
||||
switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest {
|
||||
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
|
||||
pre = "llama-bpe"
|
||||
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
|
||||
pre = "deepseek-llm"
|
||||
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||
pre = "deepseek-coder"
|
||||
default:
|
||||
slog.Warn("unknown pretokenizer, using default", "digest", digest)
|
||||
pre = "default"
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseVocabulary(d string) (*Vocabulary, error) {
|
||||
patterns := map[string]func(string) (*Vocabulary, error){
|
||||
"tokenizer.model": parseSentencePiece,
|
||||
"tokenizer.json": parseVocabularyFromTokenizer,
|
||||
}
|
||||
|
||||
return pre, tokens, t.Model.Merges, nil
|
||||
for pattern, parseFn := range patterns {
|
||||
matches, err := filepath.Glob(filepath.Join(d, pattern))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(matches) > 0 {
|
||||
return parseFn(d)
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("unknown tensor format")
|
||||
}
|
||||
|
||||
type SpecialVocabulary struct {
|
||||
Type string
|
||||
ID int
|
||||
Content string
|
||||
AddToken bool
|
||||
}
|
||||
|
||||
func (sv SpecialVocabulary) Key() string {
|
||||
switch t := sv.Type; t {
|
||||
case "bos", "eos", "cls", "mask":
|
||||
return t
|
||||
case "unk":
|
||||
return "unknown"
|
||||
case "sep":
|
||||
//nolint:misspell // this is an upstream typo
|
||||
return "seperator"
|
||||
case "pad":
|
||||
return "padding"
|
||||
}
|
||||
|
||||
panic("unknown special vocabulary type")
|
||||
}
|
||||
|
||||
83
convert/tokenizer_spm.go
Normal file
83
convert/tokenizer_spm.go
Normal file
@@ -0,0 +1,83 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
|
||||
"github.com/ollama/ollama/convert/sentencepiece"
|
||||
)
|
||||
|
||||
func parseSentencePiece(d string) (*Vocabulary, error) {
|
||||
bts, err := os.ReadFile(filepath.Join(d, "tokenizer.model"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var spm sentencepiece.ModelProto
|
||||
if err := proto.Unmarshal(bts, &spm); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
v := Vocabulary{Model: "llama"}
|
||||
for _, piece := range spm.GetPieces() {
|
||||
v.Tokens = append(v.Tokens, piece.GetPiece())
|
||||
v.Scores = append(v.Scores, piece.GetScore())
|
||||
|
||||
switch t := piece.GetType(); t {
|
||||
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
|
||||
sentencepiece.ModelProto_SentencePiece_CONTROL,
|
||||
sentencepiece.ModelProto_SentencePiece_UNUSED,
|
||||
sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
|
||||
}
|
||||
}
|
||||
|
||||
f, err := os.Open(filepath.Join(d, "added_tokens.json"))
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return &v, nil
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var atm map[string]int
|
||||
if err := json.NewDecoder(f).Decode(&atm); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
type t struct {
|
||||
id int
|
||||
content string
|
||||
}
|
||||
|
||||
var ts []t
|
||||
for content, id := range atm {
|
||||
ts = append(ts, t{id, content})
|
||||
}
|
||||
|
||||
slices.SortFunc(ts, func(i, j t) int {
|
||||
return cmp.Compare(i.id, j.id)
|
||||
})
|
||||
|
||||
n := len(v.Tokens)
|
||||
for i, t := range ts {
|
||||
if t.id != i+n {
|
||||
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
||||
}
|
||||
|
||||
v.Tokens = append(v.Tokens, t.content)
|
||||
v.Scores = append(v.Scores, -1000.0)
|
||||
v.Types = append(v.Types, tokenTypeUserDefined)
|
||||
}
|
||||
|
||||
return &v, nil
|
||||
}
|
||||
287
convert/torch.go
287
convert/torch.go
@@ -1,287 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/nlpodyssey/gopickle/types"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type torchWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
storage pytorch.StorageInterface
|
||||
repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
}
|
||||
|
||||
type TorchFormat struct{}
|
||||
|
||||
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
slog.Debug("getting torch tensors")
|
||||
|
||||
var files []string
|
||||
if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 {
|
||||
files = append(files, pt...)
|
||||
} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 {
|
||||
files = append(files, pt...)
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
var tensors []llm.Tensor
|
||||
for _, fn := range files {
|
||||
m, err := pytorch.Load(fn)
|
||||
if err != nil {
|
||||
slog.Error(fmt.Sprintf("error unpickling: %q", err))
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
|
||||
for _, k := range m.(*types.Dict).Keys() {
|
||||
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
|
||||
continue
|
||||
}
|
||||
|
||||
t, _ := m.(*types.Dict).Get(k)
|
||||
tshape := t.(*pytorch.Tensor).Size
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(tshape) {
|
||||
case 0:
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(tshape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(tshape[0] * tshape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := tf.GetLayerName(k.(string))
|
||||
if err != nil {
|
||||
slog.Error(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range tshape {
|
||||
shape[i] = uint64(tshape[i])
|
||||
}
|
||||
|
||||
tensor := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset, // calculate the offset
|
||||
Shape: shape,
|
||||
}
|
||||
|
||||
tensor.WriterTo = torchWriterTo{
|
||||
t: &tensor,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
storage: t.(*pytorch.Tensor).Source,
|
||||
}
|
||||
|
||||
tensors = append(tensors, tensor)
|
||||
offset += size
|
||||
}
|
||||
}
|
||||
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
func getAltParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "params.json"))
|
||||
if err != nil {
|
||||
slog.Error("no params.json")
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
type TorchParams struct {
|
||||
HiddenSize int `json:"dim"`
|
||||
AttentionHeads int `json:"n_heads"`
|
||||
KeyValHeads int `json:"n_kv_heads"`
|
||||
HiddenLayers int `json:"n_layers"`
|
||||
RopeTheta float64 `json:"rope_theta"`
|
||||
NormEPS float64 `json:"norm_eps"`
|
||||
}
|
||||
|
||||
var tparams TorchParams
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(&tparams)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params := &Params{
|
||||
Architectures: []string{"LlamaForCausalLM"},
|
||||
HiddenSize: tparams.HiddenSize,
|
||||
AttentionHeads: tparams.AttentionHeads,
|
||||
KeyValHeads: tparams.KeyValHeads,
|
||||
HiddenLayers: tparams.HiddenLayers,
|
||||
NormEPS: tparams.NormEPS,
|
||||
}
|
||||
|
||||
switch {
|
||||
case tparams.RopeTheta == 1000000:
|
||||
// Codellama
|
||||
params.ContextSize = 16384
|
||||
case tparams.NormEPS == 1e-06:
|
||||
// llama2
|
||||
slog.Debug("Found llama2 - setting context size to 4096")
|
||||
params.ContextSize = 4096
|
||||
default:
|
||||
params.ContextSize = 2048
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return params, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
// try params.json instead
|
||||
return getAltParams(dirpath)
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
var params Params
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetLayerName(n string) (string, error) {
|
||||
directMap := map[string]string{
|
||||
"tok_embeddings.weight": "token_embd.weight",
|
||||
"output.weight": "output.weight",
|
||||
"norm.weight": "output_norm.weight",
|
||||
"rope.freqs": "rope_freqs.weight",
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
lMap := map[string]string{
|
||||
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
|
||||
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
|
||||
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
|
||||
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
|
||||
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
|
||||
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
|
||||
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
|
||||
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
|
||||
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
|
||||
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
}
|
||||
|
||||
v, ok := directMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range lMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
var f32s []float32
|
||||
switch s := r.storage.(type) {
|
||||
case *pytorch.FloatStorage:
|
||||
f32s = s.Data
|
||||
case *pytorch.HalfStorage:
|
||||
f32s = s.Data
|
||||
case *pytorch.BFloat16Storage:
|
||||
f32s = s.Data
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown data type: %T", s)
|
||||
}
|
||||
|
||||
if r.repacker != nil {
|
||||
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
return 0, binary.Write(w, r.bo, f32s)
|
||||
case 1:
|
||||
f16s := make([]uint16, len(f32s))
|
||||
for i := range f32s {
|
||||
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
||||
}
|
||||
|
||||
return 0, binary.Write(w, r.bo, f16s)
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
|
||||
}
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "LlamaForCausalLM":
|
||||
return &LlamaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
@@ -272,4 +272,4 @@ The following server settings may be used to adjust how Ollama handles concurren
|
||||
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
|
||||
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
|
||||
|
||||
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
|
||||
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
|
||||
@@ -103,6 +103,10 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
- [ ] `user`
|
||||
- [ ] `n`
|
||||
|
||||
#### Notes
|
||||
|
||||
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
|
||||
|
||||
## Models
|
||||
|
||||
Before using a model, pull it locally `ollama pull`:
|
||||
|
||||
2
go.mod
2
go.mod
@@ -18,10 +18,10 @@ require (
|
||||
require (
|
||||
github.com/agnivade/levenshtein v1.1.1
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
|
||||
github.com/google/go-cmp v0.6.0
|
||||
github.com/mattn/go-runewidth v0.0.14
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
github.com/sbinet/npyio v0.9.0
|
||||
)
|
||||
|
||||
require (
|
||||
|
||||
2
go.sum
2
go.sum
@@ -171,6 +171,8 @@ github.com/rogpeppe/go-internal v1.8.0 h1:FCbCCtXNOY3UtUuHUYaghJg4y7Fd14rXifAYUA
|
||||
github.com/rogpeppe/go-internal v1.8.0/go.mod h1:WmiCO8CzOY8rg0OYDC4/i/2WRWAB6poM+XZ2dLUbcbE=
|
||||
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
|
||||
github.com/ruudk/golang-pdf417 v0.0.0-20181029194003-1af4ab5afa58/go.mod h1:6lfFZQK844Gfx8o5WFuvpxWRwnSoipWe/p622j1v06w=
|
||||
github.com/sbinet/npyio v0.9.0 h1:A7h8OyYsOsc+NPRtynRMSf70xSgATZNpamNp8nQ8Tjc=
|
||||
github.com/sbinet/npyio v0.9.0/go.mod h1:vgjQEMRTS9aMS9GdXhr+5jounCmGqjDO2JI+IpSokns=
|
||||
github.com/spf13/cobra v1.7.0 h1:hyqWnYt1ZQShIddO5kBpj3vu05/++x6tJ6dg8EC572I=
|
||||
github.com/spf13/cobra v1.7.0/go.mod h1:uLxZILRyS/50WlhOIKD7W6V5bgeIt+4sICxh6uRMrb0=
|
||||
github.com/spf13/pflag v1.0.5 h1:iy+VFUOCP1a+8yFto/drg2CJ5u0yRoB7fZw3DKv/JXA=
|
||||
|
||||
@@ -49,17 +49,9 @@ func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
}
|
||||
|
||||
func commonAMDValidateLibDir() (string, error) {
|
||||
// Favor our bundled version
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
}
|
||||
// We try to favor system paths first, so that we can wire up the subprocess to use
|
||||
// the system version. Only use our bundled version if the system version doesn't work
|
||||
// This gives users a more recovery options if versions have subtle problems at runtime
|
||||
|
||||
// Prefer explicit HIP env var
|
||||
hipPath := os.Getenv("HIP_PATH")
|
||||
@@ -95,5 +87,14 @@ func commonAMDValidateLibDir() (string, error) {
|
||||
}
|
||||
}
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
}
|
||||
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
|
||||
}
|
||||
|
||||
@@ -84,8 +84,9 @@ func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
|
||||
}
|
||||
|
||||
slog.Debug("hipDriverGetVersion", "version", version)
|
||||
driverMajor = version / 10000000
|
||||
driverMinor = (version - (driverMajor * 10000000)) / 100000
|
||||
// TODO - this isn't actually right, but the docs claim hipDriverGetVersion isn't accurate anyway...
|
||||
driverMajor = version / 1000
|
||||
driverMinor = (version - (driverMajor * 1000)) / 10
|
||||
|
||||
return driverMajor, driverMinor, nil
|
||||
}
|
||||
|
||||
@@ -22,8 +22,8 @@ const (
|
||||
|
||||
var (
|
||||
// Used to validate if the given ROCm lib is usable
|
||||
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
|
||||
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
|
||||
)
|
||||
|
||||
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
@@ -35,11 +35,12 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
driverMajor, driverMinor, err := hl.AMDDriverVersion()
|
||||
if err != nil {
|
||||
// For now this is benign, but we may eventually need to fail compatibility checks
|
||||
slog.Debug("error looking up amd driver version", "error", err)
|
||||
}
|
||||
// TODO - this reports incorrect version information, so omitting for now
|
||||
// driverMajor, driverMinor, err := hl.AMDDriverVersion()
|
||||
// if err != nil {
|
||||
// // For now this is benign, but we may eventually need to fail compatibility checks
|
||||
// slog.Debug("error looking up amd driver version", "error", err)
|
||||
// }
|
||||
|
||||
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
@@ -131,8 +132,10 @@ func AMDGetGPUInfo() []RocmGPUInfo {
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
Name: name,
|
||||
Compute: gfx,
|
||||
DriverMajor: driverMajor,
|
||||
DriverMinor: driverMinor,
|
||||
|
||||
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
|
||||
// DriverMajor: driverMajor,
|
||||
// DriverMinor: driverMinor,
|
||||
},
|
||||
index: i,
|
||||
}
|
||||
|
||||
30
gpu/gpu.go
30
gpu/gpu.go
@@ -274,28 +274,6 @@ func GetGPUInfo() GpuInfoList {
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
// which represents overhead on the GPU we must set aside on subsequent updates
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
if memInfo.err != nil {
|
||||
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
} else {
|
||||
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
|
||||
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
|
||||
slog.Info("detected OS VRAM overhead",
|
||||
"id", gpuInfo.ID,
|
||||
"library", gpuInfo.Library,
|
||||
"compute", gpuInfo.Compute,
|
||||
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
|
||||
"name", gpuInfo.Name,
|
||||
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
||||
cudaGPUs = append(cudaGPUs, gpuInfo)
|
||||
}
|
||||
@@ -360,17 +338,14 @@ func GetGPUInfo() GpuInfoList {
|
||||
"before",
|
||||
"total", format.HumanBytes2(cpus[0].TotalMemory),
|
||||
"free", format.HumanBytes2(cpus[0].FreeMemory),
|
||||
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
|
||||
),
|
||||
slog.Group(
|
||||
"now",
|
||||
"total", format.HumanBytes2(mem.TotalMemory),
|
||||
"free", format.HumanBytes2(mem.FreeMemory),
|
||||
"free_swap", format.HumanBytes2(mem.FreeSwap),
|
||||
),
|
||||
)
|
||||
cpus[0].FreeMemory = mem.FreeMemory
|
||||
cpus[0].FreeSwap = mem.FreeSwap
|
||||
}
|
||||
|
||||
var memInfo C.mem_info_t
|
||||
@@ -399,14 +374,9 @@ func GetGPUInfo() GpuInfoList {
|
||||
slog.Warn("error looking up nvidia GPU memory")
|
||||
continue
|
||||
}
|
||||
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
|
||||
// When using the management library update based on recorded overhead
|
||||
memInfo.free -= C.uint64_t(gpu.OSOverhead)
|
||||
}
|
||||
slog.Debug("updating cuda memory data",
|
||||
"gpu", gpu.ID,
|
||||
"name", gpu.Name,
|
||||
"overhead", format.HumanBytes2(gpu.OSOverhead),
|
||||
slog.Group(
|
||||
"before",
|
||||
"total", format.HumanBytes2(gpu.TotalMemory),
|
||||
|
||||
@@ -57,7 +57,6 @@ func GetCPUMem() (memInfo, error) {
|
||||
return memInfo{
|
||||
TotalMemory: uint64(C.getPhysicalMemory()),
|
||||
FreeMemory: uint64(C.getFreeMemory()),
|
||||
// FreeSwap omitted as Darwin uses dynamic paging
|
||||
}, nil
|
||||
}
|
||||
|
||||
|
||||
@@ -50,7 +50,7 @@ var OneapiMgmtName = "libze_intel_gpu.so"
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
var total, available, free, buffers, cached uint64
|
||||
f, err := os.Open("/proc/meminfo")
|
||||
if err != nil {
|
||||
return mem, err
|
||||
@@ -70,21 +70,20 @@ func GetCPUMem() (memInfo, error) {
|
||||
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
|
||||
case strings.HasPrefix(line, "Cached:"):
|
||||
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
|
||||
case strings.HasPrefix(line, "SwapFree:"):
|
||||
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if err != nil {
|
||||
return mem, err
|
||||
}
|
||||
|
||||
if total > 0 && available > 0 {
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
return mem, nil
|
||||
}
|
||||
}
|
||||
mem.TotalMemory = total * format.KibiByte
|
||||
mem.FreeSwap = freeSwap * format.KibiByte
|
||||
if available > 0 {
|
||||
mem.FreeMemory = available * format.KibiByte
|
||||
} else {
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
}
|
||||
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||
return mem, nil
|
||||
}
|
||||
|
||||
@@ -51,5 +51,5 @@ func GetCPUMem() (memInfo, error) {
|
||||
if r1 == 0 {
|
||||
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
|
||||
}
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
|
||||
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
|
||||
}
|
||||
|
||||
@@ -10,7 +10,6 @@ import (
|
||||
type memInfo struct {
|
||||
TotalMemory uint64 `json:"total_memory,omitempty"`
|
||||
FreeMemory uint64 `json:"free_memory,omitempty"`
|
||||
FreeSwap uint64 `json:"free_swap,omitempty"`
|
||||
}
|
||||
|
||||
// Beginning of an `ollama info` command
|
||||
@@ -53,8 +52,7 @@ type CPUInfo struct {
|
||||
|
||||
type CudaGPUInfo struct {
|
||||
GpuInfo
|
||||
OSOverhead uint64 // Memory overhead between the driver library and management library
|
||||
index int //nolint:unused,nolintlint
|
||||
index int //nolint:unused,nolintlint
|
||||
}
|
||||
type CudaGPUInfoList []CudaGPUInfo
|
||||
|
||||
|
||||
@@ -1,152 +0,0 @@
|
||||
//go:build integration
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestAllMiniLMEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
|
||||
if len(res.Embeddings) != 1 {
|
||||
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
|
||||
}
|
||||
|
||||
if len(res.Embeddings[0]) != 384 {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
|
||||
}
|
||||
|
||||
if res.Embeddings[0][0] != 0.010071031 {
|
||||
t.Fatalf("expected 0.010071031, got %f", res.Embeddings[0][0])
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: []string{"why is the sky blue?", "why is the grass green?"},
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
|
||||
if len(res.Embeddings) != 2 {
|
||||
t.Fatalf("expected 2 embeddings, got %d", len(res.Embeddings))
|
||||
}
|
||||
|
||||
if len(res.Embeddings[0]) != 384 {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
|
||||
}
|
||||
|
||||
if res.Embeddings[0][0] != 0.010071031 || res.Embeddings[1][0] != -0.009802706 {
|
||||
t.Fatalf("expected 0.010071031 and -0.009802706, got %f and %f", res.Embeddings[0][0], res.Embeddings[1][0])
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLmEmbedTruncate(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
truncTrue, truncFalse := true, false
|
||||
|
||||
type testReq struct {
|
||||
Name string
|
||||
Request api.EmbedRequest
|
||||
}
|
||||
|
||||
reqs := []testReq{
|
||||
{
|
||||
Name: "Target Truncation",
|
||||
Request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why",
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "Default Truncate",
|
||||
Request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "Explicit Truncate",
|
||||
Request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncTrue,
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
res := make(map[string]*api.EmbedResponse)
|
||||
|
||||
for _, req := range reqs {
|
||||
response, err := embedTestHelper(ctx, t, req.Request)
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
res[req.Name] = response
|
||||
}
|
||||
|
||||
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
|
||||
t.Fatal("expected default request to truncate correctly")
|
||||
}
|
||||
|
||||
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
|
||||
t.Fatal("expected default request and truncate true request to be the same")
|
||||
}
|
||||
|
||||
// check that truncate set to false returns an error if context length is exceeded
|
||||
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncFalse,
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
})
|
||||
|
||||
if err == nil {
|
||||
t.Fatal("expected error, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
|
||||
response, err := client.Embed(ctx, &req)
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return response, nil
|
||||
}
|
||||
37
llm/ext_server/server.cpp
vendored
37
llm/ext_server/server.cpp
vendored
@@ -3188,33 +3188,26 @@ int main(int argc, char **argv) {
|
||||
prompt = "";
|
||||
}
|
||||
|
||||
if (prompt.size() == 1) {
|
||||
prompt = prompt[0];
|
||||
json image_data;
|
||||
if (body.count("image_data") != 0) {
|
||||
image_data = body["image_data"];
|
||||
}
|
||||
else
|
||||
{
|
||||
image_data = "";
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
json responses;
|
||||
{
|
||||
const int id_task = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(id_task);
|
||||
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(id_task);
|
||||
llama.queue_results.remove_waiting_task_id(id_task);
|
||||
if (result.error) {
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
|
||||
responses = result.result_json.value("results", std::vector<json>{result.result_json});
|
||||
json embeddings = json::array();
|
||||
for (auto & elem : responses) {
|
||||
embeddings.push_back(elem.at("embedding"));
|
||||
}
|
||||
// send the result
|
||||
json embedding_res = json{{"embedding", embeddings}};
|
||||
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
// send the result
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
||||
|
||||
@@ -178,7 +178,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
|
||||
echo "Building custom CUDA GPU"
|
||||
else
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
|
||||
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DGGML_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} -DCMAKE_LIBRARY_PATH=/usr/local/cuda/compat"
|
||||
fi
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
|
||||
@@ -254,7 +254,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
|
||||
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
|
||||
fi
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
|
||||
|
||||
@@ -6,9 +6,18 @@ function amdGPUs {
|
||||
if ($env:AMDGPU_TARGETS) {
|
||||
return $env:AMDGPU_TARGETS
|
||||
}
|
||||
# Current supported rocblas list from ROCm v6.1.2 on windows
|
||||
# TODO - load from some common data file for linux + windows build consistency
|
||||
$GPU_LIST = @(
|
||||
"gfx900"
|
||||
"gfx906:xnack-"
|
||||
"gfx908:xnack-"
|
||||
"gfx90a:xnack+"
|
||||
"gfx90a:xnack-"
|
||||
"gfx940"
|
||||
"gfx941"
|
||||
"gfx942"
|
||||
"gfx1010"
|
||||
"gfx1012"
|
||||
"gfx1030"
|
||||
"gfx1100"
|
||||
"gfx1101"
|
||||
@@ -357,7 +366,6 @@ function build_rocm() {
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DGGML_HIPBLAS=on",
|
||||
"-DLLAMA_CUDA_NO_PEER_COPY=on",
|
||||
"-DHIP_PLATFORM=amd",
|
||||
"-DGGML_AVX=on",
|
||||
"-DGGML_AVX2=off",
|
||||
@@ -386,6 +394,7 @@ function build_rocm() {
|
||||
sign
|
||||
install
|
||||
|
||||
# Assumes v5.7, may need adjustments for v6
|
||||
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
|
||||
114
llm/ggla.go
114
llm/ggla.go
@@ -1,9 +1,12 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"slices"
|
||||
)
|
||||
|
||||
@@ -16,6 +19,7 @@ func (c *containerGGLA) Name() string {
|
||||
}
|
||||
|
||||
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
|
||||
slog.Info("decoding ggla")
|
||||
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -36,6 +40,8 @@ type ggla struct {
|
||||
|
||||
kv KV
|
||||
tensors []*Tensor
|
||||
|
||||
tensorOffset uint64
|
||||
}
|
||||
|
||||
func newGGLA(container *containerGGLA) *ggla {
|
||||
@@ -50,10 +56,13 @@ func (llm *ggla) KV() KV {
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() Tensors {
|
||||
return llm.tensors
|
||||
return Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
|
||||
func (llm *ggla) decode(rs io.ReadSeeker) error {
|
||||
var r uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
|
||||
return err
|
||||
@@ -66,21 +75,22 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
|
||||
}
|
||||
llm.kv["alpha"] = alpha
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
llm.tensorOffset = uint64(offset)
|
||||
|
||||
for {
|
||||
var dims uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
|
||||
if errors.Is(err, io.EOF) {
|
||||
return nil
|
||||
break
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
defer func() {
|
||||
if errors.Is(retErr, io.EOF) {
|
||||
retErr = io.ErrUnexpectedEOF
|
||||
}
|
||||
}()
|
||||
|
||||
var namesize uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
|
||||
return err
|
||||
@@ -111,13 +121,14 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
|
||||
}
|
||||
|
||||
t.Name = string(name)
|
||||
slog.Info(fmt.Sprintf("%s: [%d, %d] k=%d", t.Name, t.Shape[0], t.Shape[1], t.Kind))
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
|
||||
if _, err := rs.Seek((offset+31)&-32, io.SeekStart); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -134,4 +145,87 @@ func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
|
||||
|
||||
llm.tensors = append(llm.tensors, &t)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func WriteGGLA(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
|
||||
slog.Debug("writing ggla")
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("algg")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(1)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var r uint32
|
||||
var alpha uint32
|
||||
var ok bool
|
||||
|
||||
if r, ok = kv["r"].(uint32); !ok {
|
||||
r = 8
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, r); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if alpha, ok = kv["alpha"].(uint32); !ok {
|
||||
alpha = 16
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, alpha); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
dims := 0
|
||||
for cnt := range len(t.Shape) {
|
||||
if t.Shape[cnt] > 0 {
|
||||
dims++
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(dims)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Name))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for cnt := range dims {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(t.Shape[dims-1-cnt])); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var alignment int32 = 32
|
||||
pad := gglaPadding(int32(offset), alignment)
|
||||
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(pad))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err := t.WriteTo(ws); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func gglaPadding(offset, align int32) int32 {
|
||||
return (align - offset%align) % align
|
||||
}
|
||||
|
||||
33
llm/ggml.go
33
llm/ggml.go
@@ -112,11 +112,14 @@ func (kv KV) ChatTemplate() string {
|
||||
return s
|
||||
}
|
||||
|
||||
type Tensors []*Tensor
|
||||
type Tensors struct {
|
||||
Items []*Tensor
|
||||
Offset uint64
|
||||
}
|
||||
|
||||
func (ts Tensors) Layers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts {
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if parts[0] == "blk" {
|
||||
// join first and second part, e.g. blk.%d
|
||||
@@ -424,32 +427,6 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
||||
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
||||
)
|
||||
case "chatglm":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
||||
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
||||
fullOffload = max(
|
||||
fullOffload,
|
||||
4*batch*(2+
|
||||
2*embedding+
|
||||
context+
|
||||
context*heads+
|
||||
embeddingHeadsK*heads+
|
||||
qkvBias.Shape[0]),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
partialOffload,
|
||||
4*batch*(1+
|
||||
2*embedding+
|
||||
embeddingHeadsK*heads+
|
||||
context+
|
||||
context*heads)+
|
||||
4*embeddingHeadsK*context+
|
||||
4*context*embeddingHeadsK+
|
||||
4*qkvBias.Shape[0],
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
|
||||
337
llm/gguf.go
337
llm/gguf.go
@@ -2,11 +2,16 @@ package llm
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
type containerGGUF struct {
|
||||
@@ -89,6 +94,7 @@ type gguf struct {
|
||||
tensors []*Tensor
|
||||
|
||||
parameters uint64
|
||||
tensorOffset uint64
|
||||
|
||||
scratch [16 << 10]byte
|
||||
}
|
||||
@@ -100,16 +106,15 @@ func newGGUF(container *containerGGUF) *gguf {
|
||||
}
|
||||
}
|
||||
|
||||
func NewGGUFV3(bo binary.ByteOrder) *gguf {
|
||||
return newGGUF(&containerGGUF{ByteOrder: bo, Version: 3})
|
||||
}
|
||||
|
||||
func (llm *gguf) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() Tensors {
|
||||
return llm.tensors
|
||||
return Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *gguf) numTensor() uint64 {
|
||||
@@ -199,7 +204,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
|
||||
return fmt.Errorf("failed to read tensor dimensions: %w", err)
|
||||
}
|
||||
|
||||
shape := [4]uint64{1, 1, 1, 1}
|
||||
shape := make([]uint64, dims)
|
||||
for i := 0; uint32(i) < dims; i++ {
|
||||
shape[i], err = readGGUF[uint64](llm, rs)
|
||||
if err != nil {
|
||||
@@ -236,13 +241,21 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
|
||||
alignment = 32
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
padding := ggufPadding(offset, int64(alignment))
|
||||
llm.tensorOffset = uint64(offset + padding)
|
||||
|
||||
for _, tensor := range llm.tensors {
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to get current offset: %w", err)
|
||||
}
|
||||
|
||||
padding := llm.padding(offset, int64(alignment))
|
||||
padding := ggufPadding(offset, int64(alignment))
|
||||
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
|
||||
return fmt.Errorf("failed to seek to init padding: %w", err)
|
||||
}
|
||||
@@ -261,12 +274,12 @@ func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
|
||||
return t, err
|
||||
}
|
||||
|
||||
func writeGGUF[V any](llm *gguf, w io.Writer, t uint32, v V) error {
|
||||
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
|
||||
func writeGGUF[V any](w io.Writer, t uint32, v V) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return binary.Write(w, llm.ByteOrder, v)
|
||||
return binary.Write(w, binary.LittleEndian, v)
|
||||
}
|
||||
|
||||
func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
|
||||
@@ -330,12 +343,12 @@ func readGGUFString(llm *gguf, r io.Reader) (string, error) {
|
||||
return string(buf), nil
|
||||
}
|
||||
|
||||
func writeGGUFString(llm *gguf, w io.Writer, s string) error {
|
||||
if err := binary.Write(w, llm.ByteOrder, ggufTypeString); err != nil {
|
||||
func writeGGUFString(w io.Writer, s string) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -476,21 +489,21 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {
|
||||
if err := binary.Write(w, llm.ByteOrder, ggufTypeArray); err != nil {
|
||||
func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
|
||||
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range s {
|
||||
if err := binary.Write(w, llm.ByteOrder, e); err != nil {
|
||||
if err := binary.Write(w, binary.LittleEndian, e); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
@@ -498,194 +511,55 @@ func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error
|
||||
return nil
|
||||
}
|
||||
|
||||
var ggufKVOrder = map[string][]string{
|
||||
"llama": {
|
||||
"general.architecture",
|
||||
"general.name",
|
||||
"llama.vocab_size",
|
||||
"llama.context_length",
|
||||
"llama.embedding_length",
|
||||
"llama.block_count",
|
||||
"llama.feed_forward_length",
|
||||
"llama.attention.head_count",
|
||||
"llama.attention.head_count_kv",
|
||||
"llama.attention.layer_norm_rms_epsilon",
|
||||
"llama.rope.freq_base",
|
||||
"llama.rope.dimension_count",
|
||||
"llama.expert_count",
|
||||
"llama.expert_used_count",
|
||||
"gemma.context_length",
|
||||
"gemma.embedding_length",
|
||||
"gemma.block_count",
|
||||
"gemma.feed_forward_length",
|
||||
"gemma.attention.head_count",
|
||||
"gemma.attention.head_count_kv",
|
||||
"gemma.attention.layer_norm_rms_epsilon",
|
||||
"gemma.attention.key_length",
|
||||
"gemma.attention.value_length",
|
||||
"general.file_type",
|
||||
"tokenizer.ggml.pre",
|
||||
"tokenizer.ggml.model",
|
||||
"tokenizer.ggml.tokens",
|
||||
"tokenizer.ggml.scores",
|
||||
"tokenizer.ggml.merges",
|
||||
"tokenizer.ggml.token_type",
|
||||
"tokenizer.ggml.bos_token_id",
|
||||
"tokenizer.ggml.eos_token_id",
|
||||
"tokenizer.ggml.unknown_token_id",
|
||||
"tokenizer.ggml.padding_token_id",
|
||||
"tokenizer.ggml.add_bos_token",
|
||||
"tokenizer.ggml.add_eos_token",
|
||||
"tokenizer.chat_template",
|
||||
"bert.pooling_type",
|
||||
},
|
||||
}
|
||||
|
||||
func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
|
||||
switch llm.Version {
|
||||
case 3:
|
||||
llm.V3.NumTensor = uint64(len(tensors))
|
||||
llm.V3.NumKV = uint64(len(kv))
|
||||
default:
|
||||
return fmt.Errorf("not implemented: ggufv%d", llm.Version)
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, []byte("GGUF")); err != nil {
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, llm.Version); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, llm.numTensor()); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, llm.numKV()); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
kvCheck := make(map[string]bool)
|
||||
for k := range kv {
|
||||
kvCheck[k] = false
|
||||
}
|
||||
keys := maps.Keys(kv)
|
||||
slices.Sort(keys)
|
||||
|
||||
for _, k := range ggufKVOrder["llama"] {
|
||||
v, ok := kv[k]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
kvCheck[k] = true
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, uint64(len(k))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, []byte(k)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case uint32:
|
||||
err = writeGGUF(llm, ws, ggufTypeUint32, v)
|
||||
case float32:
|
||||
err = writeGGUF(llm, ws, ggufTypeFloat32, v)
|
||||
case bool:
|
||||
err = writeGGUF(llm, ws, ggufTypeBool, v)
|
||||
case string:
|
||||
err = writeGGUFString(llm, ws, v)
|
||||
case []int32:
|
||||
err = writeGGUFArray(llm, ws, ggufTypeInt32, v)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(llm, ws, ggufTypeUint32, v)
|
||||
case []float32:
|
||||
err = writeGGUFArray(llm, ws, ggufTypeFloat32, v)
|
||||
case []string:
|
||||
if err := binary.Write(ws, llm.ByteOrder, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, uint64(len(v))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range v {
|
||||
if err := binary.Write(ws, llm.ByteOrder, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
default:
|
||||
return fmt.Errorf("improper type for '%s'", k)
|
||||
}
|
||||
if err != nil {
|
||||
for _, key := range keys {
|
||||
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
for k, v := range kvCheck {
|
||||
if !v {
|
||||
return fmt.Errorf("Didn't know how to write kv %s", k)
|
||||
slices.SortFunc(ts, func(a, b *Tensor) int {
|
||||
var i, j int
|
||||
if n, err := fmt.Sscanf(a.Name, "blk.%d", &i); err != nil || n != 1 {
|
||||
return cmp.Compare(a.Name, b.Name)
|
||||
} else if n, err := fmt.Sscanf(b.Name, "blk.%d", &j); err != nil || n != 1 {
|
||||
return cmp.Compare(a.Name, b.Name)
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors {
|
||||
if err := binary.Write(ws, llm.ByteOrder, uint64(len(tensor.Name))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, []byte(tensor.Name)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var dims int
|
||||
for cnt := range len(tensor.Shape) {
|
||||
if tensor.Shape[cnt] > 0 {
|
||||
dims++
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, uint32(dims)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for i := range dims {
|
||||
if err := binary.Write(ws, llm.ByteOrder, tensor.Shape[dims-1-i]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, tensor.Kind); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, llm.ByteOrder, tensor.Offset); err != nil {
|
||||
return cmp.Compare(i, j)
|
||||
})
|
||||
|
||||
var s uint64
|
||||
for _, t := range ts {
|
||||
t.Offset = s
|
||||
if err := ggufWriteTensorInfo(ws, t); err != nil {
|
||||
return err
|
||||
}
|
||||
s += t.Size()
|
||||
}
|
||||
|
||||
var alignment int64 = 32
|
||||
for _, tensor := range tensors {
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
padding := llm.padding(offset, alignment)
|
||||
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err := tensor.WriteTo(ws); err != nil {
|
||||
for _, t := range ts {
|
||||
if err := ggufWriteTensor(ws, t, alignment); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
@@ -693,6 +567,103 @@ func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (gguf) padding(offset, align int64) int64 {
|
||||
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
slog.Debug(k, "type", fmt.Sprintf("%T", v))
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(k)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case uint32:
|
||||
err = writeGGUF(ws, ggufTypeUint32, v)
|
||||
case float32:
|
||||
err = writeGGUF(ws, ggufTypeFloat32, v)
|
||||
case bool:
|
||||
err = writeGGUF(ws, ggufTypeBool, v)
|
||||
case string:
|
||||
err = writeGGUFString(ws, v)
|
||||
case []int32:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v)
|
||||
case []float32:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v)
|
||||
case []string:
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range v {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
default:
|
||||
return fmt.Errorf("improper type for '%s'", k)
|
||||
}
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Shape))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for i := range len(t.Shape) {
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return binary.Write(ws, binary.LittleEndian, t.Offset)
|
||||
}
|
||||
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t *Tensor, alignment int64) error {
|
||||
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
|
||||
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = t.WriteTo(ws)
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufPadding(offset, align int64) int64 {
|
||||
return (align - offset%align) % align
|
||||
}
|
||||
|
||||
@@ -4,8 +4,8 @@ package llm
|
||||
// #cgo LDFLAGS: -lllama -lggml -lstdc++ -lpthread
|
||||
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
|
||||
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
|
||||
// #cgo windows,amd64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
|
||||
// #cgo windows,arm64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
|
||||
// #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
|
||||
// #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
|
||||
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
|
||||
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
|
||||
// #include <stdlib.h>
|
||||
@@ -33,7 +33,7 @@ func Quantize(infile, outfile string, ftype fileType) error {
|
||||
params.ftype = ftype.Value()
|
||||
|
||||
if rc := C.llama_model_quantize(cinfile, coutfile, ¶ms); rc != 0 {
|
||||
return fmt.Errorf("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version")
|
||||
return fmt.Errorf("llama_model_quantize: %d", rc)
|
||||
}
|
||||
|
||||
return nil
|
||||
|
||||
@@ -2,7 +2,6 @@ package llm
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"os"
|
||||
"testing"
|
||||
@@ -20,10 +19,9 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
f, err := os.CreateTemp(t.TempDir(), modelName)
|
||||
require.NoError(t, err)
|
||||
defer f.Close()
|
||||
gguf := NewGGUFV3(binary.LittleEndian)
|
||||
inputLayerCount := 5
|
||||
|
||||
tensors := []Tensor{
|
||||
tensors := []*Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
@@ -32,7 +30,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
}
|
||||
assert.Len(t, tensors, inputLayerCount+1)
|
||||
err = gguf.Encode(f, KV{
|
||||
err = WriteGGUF(f, KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
|
||||
78
llm/patches/10-lora.diff
Normal file
78
llm/patches/10-lora.diff
Normal file
@@ -0,0 +1,78 @@
|
||||
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||||
index 4f6cd687..b8c6896b 100644
|
||||
--- a/CMakeLists.txt
|
||||
+++ b/CMakeLists.txt
|
||||
@@ -189,3 +189,4 @@ if (LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
+add_subdirectory(../ext_server ext_server) # ollama
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 2b9ace28..b0151571 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -18609,6 +18609,20 @@ static int llama_apply_lora_from_file_internal(
|
||||
return 1;
|
||||
}
|
||||
|
||||
+ // show tensor data
|
||||
+ auto show_tensor = [](std::string name, ggml_tensor *t) {
|
||||
+ LLAMA_LOG_INFO("%s\n", name.c_str());
|
||||
+
|
||||
+ for(int i=0; i<3; i++) {
|
||||
+ for(int j=0; j<3; j++) {
|
||||
+ float v = ggml_get_f32_nd(t, i, j, 0, 0);
|
||||
+ LLAMA_LOG_INFO("%.8f ", v);
|
||||
+ }
|
||||
+ LLAMA_LOG_INFO(" ...\n");
|
||||
+ }
|
||||
+ LLAMA_LOG_INFO(" ...\n");
|
||||
+ };
|
||||
+
|
||||
// load tensor data
|
||||
auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
|
||||
read_buf.resize(ggml_nbytes(tensor));
|
||||
@@ -18619,6 +18633,9 @@ static int llama_apply_lora_from_file_internal(
|
||||
load_tensor(metaA, loraA);
|
||||
load_tensor(metaB, loraB);
|
||||
|
||||
+ show_tensor(base_name + ".loraA", loraA);
|
||||
+ show_tensor(base_name + ".loraB", loraB);
|
||||
+
|
||||
// load base model tensor data
|
||||
if (ml) {
|
||||
ml->load_data_for(base_t);
|
||||
@@ -18633,8 +18650,10 @@ static int llama_apply_lora_from_file_internal(
|
||||
}
|
||||
|
||||
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
||||
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
||||
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
|
||||
+ LLAMA_LOG_ERROR("%s: incompatible tensors: base [%lld, %lld] loraA [%lld, %lld] loraB [%lld, %lld]\n", __func__,
|
||||
+ base_t->ne[0], base_t->ne[1],
|
||||
+ loraA->ne[0], loraA->ne[1],
|
||||
+ loraB->ne[0], loraB->ne[1]);
|
||||
ggml_free(lora_ctx);
|
||||
ggml_backend_buffer_free(lora_buf);
|
||||
ggml_backend_free(backend_cpu);
|
||||
@@ -18643,14 +18662,18 @@ static int llama_apply_lora_from_file_internal(
|
||||
|
||||
auto build_lora_graph = [&]() {
|
||||
// w = w + BA*s
|
||||
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
|
||||
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraB, loraA);
|
||||
ggml_set_name(BA, "BA");
|
||||
|
||||
if (scaling != 1.0f) {
|
||||
- BA = ggml_scale(lora_ctx, BA, scaling);
|
||||
+ //BA = ggml_scale(lora_ctx, BA, scaling);
|
||||
+ BA = ggml_scale(lora_ctx, BA, 20.0);
|
||||
ggml_set_name(BA, "BA_scaled");
|
||||
}
|
||||
|
||||
+ // transpose matrix before we add
|
||||
+ BA = ggml_cont(lora_ctx, ggml_transpose(lora_ctx, BA));
|
||||
+
|
||||
ggml_tensor * r;
|
||||
r = ggml_add_inplace(lora_ctx, base_t, BA);
|
||||
ggml_set_name(r, "r_add");
|
||||
@@ -33,7 +33,7 @@ type LlamaServer interface {
|
||||
Ping(ctx context.Context) error
|
||||
WaitUntilRunning(ctx context.Context) error
|
||||
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
||||
Embed(ctx context.Context, input []string) ([][]float32, error)
|
||||
Embedding(ctx context.Context, prompt string) ([]float64, error)
|
||||
Tokenize(ctx context.Context, content string) ([]int, error)
|
||||
Detokenize(ctx context.Context, tokens []int) (string, error)
|
||||
Close() error
|
||||
@@ -88,7 +88,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
var estimate MemoryEstimate
|
||||
var systemTotalMemory uint64
|
||||
var systemFreeMemory uint64
|
||||
var systemSwapFreeMemory uint64
|
||||
|
||||
systemMemInfo, err := gpu.GetCPUMem()
|
||||
if err != nil {
|
||||
@@ -96,8 +95,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
} else {
|
||||
systemTotalMemory = systemMemInfo.TotalMemory
|
||||
systemFreeMemory = systemMemInfo.FreeMemory
|
||||
systemSwapFreeMemory = systemMemInfo.FreeSwap
|
||||
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
|
||||
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
|
||||
}
|
||||
|
||||
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
|
||||
@@ -124,16 +122,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
}
|
||||
}
|
||||
|
||||
// On linux, over-allocating CPU memory will almost always result in an error
|
||||
if runtime.GOOS == "linux" {
|
||||
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
|
||||
available := systemFreeMemory + systemSwapFreeMemory
|
||||
if systemMemoryRequired > available {
|
||||
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
|
||||
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
|
||||
}
|
||||
}
|
||||
|
||||
estimate.log()
|
||||
|
||||
// Loop through potential servers
|
||||
@@ -266,6 +254,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||
}
|
||||
|
||||
if estimate.TensorSplit != "" {
|
||||
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||
}
|
||||
|
||||
for i := range len(servers) {
|
||||
dir := availableServers[servers[i]]
|
||||
if dir == "" {
|
||||
@@ -687,7 +679,7 @@ type CompletionRequest struct {
|
||||
Prompt string
|
||||
Format string
|
||||
Images []ImageData
|
||||
Options *api.Options
|
||||
Options api.Options
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
@@ -867,15 +859,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
return nil
|
||||
}
|
||||
|
||||
type EmbedRequest struct {
|
||||
Content []string `json:"content"`
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbedResponse struct {
|
||||
Embedding [][]float32 `json:"embedding"`
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
}
|
||||
|
||||
func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, error) {
|
||||
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
slog.Error("Failed to acquire semaphore", "error", err)
|
||||
return nil, err
|
||||
@@ -890,7 +882,7 @@ func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, err
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
}
|
||||
|
||||
data, err := json.Marshal(EmbedRequest{Content: input})
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
@@ -917,7 +909,7 @@ func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, err
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var embedding EmbedResponse
|
||||
var embedding EmbeddingResponse
|
||||
if err := json.Unmarshal(body, &embedding); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
258
openai/openai.go
258
openai/openai.go
@@ -3,14 +3,11 @@ package openai
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math/rand"
|
||||
"net/http"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
@@ -30,9 +27,8 @@ type ErrorResponse struct {
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content any `json:"content"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
@@ -63,11 +59,6 @@ type ResponseFormat struct {
|
||||
Type string `json:"type"`
|
||||
}
|
||||
|
||||
type EmbedRequest struct {
|
||||
Input any `json:"input"`
|
||||
Model string `json:"model"`
|
||||
}
|
||||
|
||||
type ChatCompletionRequest struct {
|
||||
Model string `json:"model"`
|
||||
Messages []Message `json:"messages"`
|
||||
@@ -80,7 +71,6 @@ type ChatCompletionRequest struct {
|
||||
PresencePenalty *float64 `json:"presence_penalty_penalty"`
|
||||
TopP *float64 `json:"top_p"`
|
||||
ResponseFormat *ResponseFormat `json:"response_format"`
|
||||
Tools []api.Tool `json:"tools"`
|
||||
}
|
||||
|
||||
type ChatCompletion struct {
|
||||
@@ -114,7 +104,6 @@ type CompletionRequest struct {
|
||||
Stream bool `json:"stream"`
|
||||
Temperature *float32 `json:"temperature"`
|
||||
TopP float32 `json:"top_p"`
|
||||
Suffix string `json:"suffix"`
|
||||
}
|
||||
|
||||
type Completion struct {
|
||||
@@ -136,15 +125,6 @@ type CompletionChunk struct {
|
||||
SystemFingerprint string `json:"system_fingerprint"`
|
||||
}
|
||||
|
||||
type ToolCall struct {
|
||||
ID string `json:"id"`
|
||||
Type string `json:"type"`
|
||||
Function struct {
|
||||
Name string `json:"name"`
|
||||
Arguments string `json:"arguments"`
|
||||
} `json:"function"`
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
@@ -152,23 +132,11 @@ type Model struct {
|
||||
OwnedBy string `json:"owned_by"`
|
||||
}
|
||||
|
||||
type Embedding struct {
|
||||
Object string `json:"object"`
|
||||
Embedding []float32 `json:"embedding"`
|
||||
Index int `json:"index"`
|
||||
}
|
||||
|
||||
type ListCompletion struct {
|
||||
Object string `json:"object"`
|
||||
Data []Model `json:"data"`
|
||||
}
|
||||
|
||||
type EmbeddingList struct {
|
||||
Object string `json:"object"`
|
||||
Data []Embedding `json:"data"`
|
||||
Model string `json:"model"`
|
||||
}
|
||||
|
||||
func NewError(code int, message string) ErrorResponse {
|
||||
var etype string
|
||||
switch code {
|
||||
@@ -183,31 +151,7 @@ func NewError(code int, message string) ErrorResponse {
|
||||
return ErrorResponse{Error{Type: etype, Message: message}}
|
||||
}
|
||||
|
||||
func toolCallId() string {
|
||||
const letterBytes = "abcdefghijklmnopqrstuvwxyz0123456789"
|
||||
b := make([]byte, 8)
|
||||
for i := range b {
|
||||
b[i] = letterBytes[rand.Intn(len(letterBytes))]
|
||||
}
|
||||
return "call_" + strings.ToLower(string(b))
|
||||
}
|
||||
|
||||
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
toolCalls := make([]ToolCall, len(r.Message.ToolCalls))
|
||||
for i, tc := range r.Message.ToolCalls {
|
||||
toolCalls[i].ID = toolCallId()
|
||||
toolCalls[i].Type = "function"
|
||||
toolCalls[i].Function.Name = tc.Function.Name
|
||||
|
||||
args, err := json.Marshal(tc.Function.Arguments)
|
||||
if err != nil {
|
||||
slog.Error("could not marshall function arguments to json", "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
toolCalls[i].Function.Arguments = string(args)
|
||||
}
|
||||
|
||||
return ChatCompletion{
|
||||
Id: id,
|
||||
Object: "chat.completion",
|
||||
@@ -216,7 +160,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
SystemFingerprint: "fp_ollama",
|
||||
Choices: []Choice{{
|
||||
Index: 0,
|
||||
Message: Message{Role: r.Message.Role, Content: r.Message.Content, ToolCalls: toolCalls},
|
||||
Message: Message{Role: r.Message.Role, Content: r.Message.Content},
|
||||
FinishReason: func(reason string) *string {
|
||||
if len(reason) > 0 {
|
||||
return &reason
|
||||
@@ -225,6 +169,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
|
||||
}(r.DoneReason),
|
||||
}},
|
||||
Usage: Usage{
|
||||
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
|
||||
PromptTokens: r.PromptEvalCount,
|
||||
CompletionTokens: r.EvalCount,
|
||||
TotalTokens: r.PromptEvalCount + r.EvalCount,
|
||||
@@ -270,6 +215,7 @@ func toCompletion(id string, r api.GenerateResponse) Completion {
|
||||
}(r.DoneReason),
|
||||
}},
|
||||
Usage: Usage{
|
||||
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
|
||||
PromptTokens: r.PromptEvalCount,
|
||||
CompletionTokens: r.EvalCount,
|
||||
TotalTokens: r.PromptEvalCount + r.EvalCount,
|
||||
@@ -314,27 +260,6 @@ func toListCompletion(r api.ListResponse) ListCompletion {
|
||||
}
|
||||
}
|
||||
|
||||
func toEmbeddingList(model string, r api.EmbedResponse) EmbeddingList {
|
||||
if r.Embeddings != nil {
|
||||
var data []Embedding
|
||||
for i, e := range r.Embeddings {
|
||||
data = append(data, Embedding{
|
||||
Object: "embedding",
|
||||
Embedding: e,
|
||||
Index: i,
|
||||
})
|
||||
}
|
||||
|
||||
return EmbeddingList{
|
||||
Object: "list",
|
||||
Data: data,
|
||||
Model: model,
|
||||
}
|
||||
}
|
||||
|
||||
return EmbeddingList{}
|
||||
}
|
||||
|
||||
func toModel(r api.ShowResponse, m string) Model {
|
||||
return Model{
|
||||
Id: m,
|
||||
@@ -344,78 +269,10 @@ func toModel(r api.ShowResponse, m string) Model {
|
||||
}
|
||||
}
|
||||
|
||||
func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
|
||||
func fromChatRequest(r ChatCompletionRequest) api.ChatRequest {
|
||||
var messages []api.Message
|
||||
for _, msg := range r.Messages {
|
||||
switch content := msg.Content.(type) {
|
||||
case string:
|
||||
messages = append(messages, api.Message{Role: msg.Role, Content: content})
|
||||
case []any:
|
||||
message := api.Message{Role: msg.Role}
|
||||
for _, c := range content {
|
||||
data, ok := c.(map[string]any)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
switch data["type"] {
|
||||
case "text":
|
||||
text, ok := data["text"].(string)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
message.Content = text
|
||||
case "image_url":
|
||||
var url string
|
||||
if urlMap, ok := data["image_url"].(map[string]any); ok {
|
||||
if url, ok = urlMap["url"].(string); !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
} else {
|
||||
if url, ok = data["image_url"].(string); !ok {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
}
|
||||
|
||||
types := []string{"jpeg", "jpg", "png"}
|
||||
valid := false
|
||||
for _, t := range types {
|
||||
prefix := "data:image/" + t + ";base64,"
|
||||
if strings.HasPrefix(url, prefix) {
|
||||
url = strings.TrimPrefix(url, prefix)
|
||||
valid = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if !valid {
|
||||
return nil, fmt.Errorf("invalid image input")
|
||||
}
|
||||
|
||||
img, err := base64.StdEncoding.DecodeString(url)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
message.Images = append(message.Images, img)
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid message format")
|
||||
}
|
||||
}
|
||||
messages = append(messages, message)
|
||||
default:
|
||||
if msg.ToolCalls == nil {
|
||||
return nil, fmt.Errorf("invalid message content type: %T", content)
|
||||
}
|
||||
|
||||
toolCalls := make([]api.ToolCall, len(msg.ToolCalls))
|
||||
for i, tc := range msg.ToolCalls {
|
||||
toolCalls[i].Function.Name = tc.Function.Name
|
||||
err := json.Unmarshal([]byte(tc.Function.Arguments), &toolCalls[i].Function.Arguments)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid tool call arguments")
|
||||
}
|
||||
}
|
||||
messages = append(messages, api.Message{Role: msg.Role, ToolCalls: toolCalls})
|
||||
}
|
||||
messages = append(messages, api.Message{Role: msg.Role, Content: msg.Content})
|
||||
}
|
||||
|
||||
options := make(map[string]interface{})
|
||||
@@ -466,14 +323,13 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
|
||||
format = "json"
|
||||
}
|
||||
|
||||
return &api.ChatRequest{
|
||||
return api.ChatRequest{
|
||||
Model: r.Model,
|
||||
Messages: messages,
|
||||
Format: format,
|
||||
Options: options,
|
||||
Stream: &r.Stream,
|
||||
Tools: r.Tools,
|
||||
}, nil
|
||||
}
|
||||
}
|
||||
|
||||
func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
|
||||
@@ -482,16 +338,12 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
|
||||
switch stop := r.Stop.(type) {
|
||||
case string:
|
||||
options["stop"] = []string{stop}
|
||||
case []any:
|
||||
var stops []string
|
||||
for _, s := range stop {
|
||||
if str, ok := s.(string); ok {
|
||||
stops = append(stops, str)
|
||||
} else {
|
||||
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", s)
|
||||
}
|
||||
case []string:
|
||||
options["stop"] = stop
|
||||
default:
|
||||
if r.Stop != nil {
|
||||
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", r.Stop)
|
||||
}
|
||||
options["stop"] = stops
|
||||
}
|
||||
|
||||
if r.MaxTokens != nil {
|
||||
@@ -523,7 +375,6 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
|
||||
Prompt: r.Prompt,
|
||||
Options: options,
|
||||
Stream: &r.Stream,
|
||||
Suffix: r.Suffix,
|
||||
}, nil
|
||||
}
|
||||
|
||||
@@ -552,11 +403,6 @@ type RetrieveWriter struct {
|
||||
model string
|
||||
}
|
||||
|
||||
type EmbedWriter struct {
|
||||
BaseWriter
|
||||
model string
|
||||
}
|
||||
|
||||
func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
|
||||
var serr api.StatusError
|
||||
err := json.Unmarshal(data, &serr)
|
||||
@@ -722,33 +568,6 @@ func (w *RetrieveWriter) Write(data []byte) (int, error) {
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func (w *EmbedWriter) writeResponse(data []byte) (int, error) {
|
||||
var embedResponse api.EmbedResponse
|
||||
err := json.Unmarshal(data, &embedResponse)
|
||||
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
w.ResponseWriter.Header().Set("Content-Type", "application/json")
|
||||
err = json.NewEncoder(w.ResponseWriter).Encode(toEmbeddingList(w.model, embedResponse))
|
||||
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return len(data), nil
|
||||
}
|
||||
|
||||
func (w *EmbedWriter) Write(data []byte) (int, error) {
|
||||
code := w.ResponseWriter.Status()
|
||||
if code != http.StatusOK {
|
||||
return w.writeError(code, data)
|
||||
}
|
||||
|
||||
return w.writeResponse(data)
|
||||
}
|
||||
|
||||
func ListMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
w := &ListWriter{
|
||||
@@ -812,47 +631,6 @@ func CompletionsMiddleware() gin.HandlerFunc {
|
||||
id: fmt.Sprintf("cmpl-%d", rand.Intn(999)),
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
func EmbeddingsMiddleware() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
var req EmbedRequest
|
||||
err := c.ShouldBindJSON(&req)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
if req.Input == "" {
|
||||
req.Input = []string{""}
|
||||
}
|
||||
|
||||
if req.Input == nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
|
||||
return
|
||||
}
|
||||
|
||||
if v, ok := req.Input.([]any); ok && len(v) == 0 {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
|
||||
return
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
c.Request.Body = io.NopCloser(&b)
|
||||
|
||||
w := &EmbedWriter{
|
||||
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
|
||||
model: req.Model,
|
||||
}
|
||||
|
||||
c.Writer = w
|
||||
|
||||
c.Next()
|
||||
@@ -874,13 +652,7 @@ func ChatMiddleware() gin.HandlerFunc {
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
|
||||
chatReq, err := fromChatRequest(req)
|
||||
if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
|
||||
if err := json.NewEncoder(&b).Encode(fromChatRequest(req)); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
||||
@@ -2,8 +2,8 @@ package openai
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
@@ -16,258 +16,7 @@ import (
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
const prefix = `data:image/jpeg;base64,`
|
||||
const image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
|
||||
const imageURL = prefix + image
|
||||
|
||||
func TestMiddlewareRequests(t *testing.T) {
|
||||
type testCase struct {
|
||||
Name string
|
||||
Method string
|
||||
Path string
|
||||
Handler func() gin.HandlerFunc
|
||||
Setup func(t *testing.T, req *http.Request)
|
||||
Expected func(t *testing.T, req *http.Request)
|
||||
}
|
||||
|
||||
var capturedRequest *http.Request
|
||||
|
||||
captureRequestMiddleware := func() gin.HandlerFunc {
|
||||
return func(c *gin.Context) {
|
||||
bodyBytes, _ := io.ReadAll(c.Request.Body)
|
||||
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
capturedRequest = c.Request
|
||||
c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
testCases := []testCase{
|
||||
{
|
||||
Name: "chat handler",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/chat",
|
||||
Handler: ChatMiddleware,
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{{Role: "user", Content: "Hello"}},
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, req *http.Request) {
|
||||
var chatReq api.ChatRequest
|
||||
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if chatReq.Messages[0].Role != "user" {
|
||||
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
|
||||
}
|
||||
|
||||
if chatReq.Messages[0].Content != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "completions handler",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/generate",
|
||||
Handler: CompletionsMiddleware,
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
temp := float32(0.8)
|
||||
body := CompletionRequest{
|
||||
Model: "test-model",
|
||||
Prompt: "Hello",
|
||||
Temperature: &temp,
|
||||
Stop: []string{"\n", "stop"},
|
||||
Suffix: "suffix",
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, req *http.Request) {
|
||||
var genReq api.GenerateRequest
|
||||
if err := json.NewDecoder(req.Body).Decode(&genReq); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if genReq.Prompt != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", genReq.Prompt)
|
||||
}
|
||||
|
||||
if genReq.Options["temperature"] != 1.6 {
|
||||
t.Fatalf("expected 1.6, got %f", genReq.Options["temperature"])
|
||||
}
|
||||
|
||||
stopTokens, ok := genReq.Options["stop"].([]any)
|
||||
|
||||
if !ok {
|
||||
t.Fatalf("expected stop tokens to be a list")
|
||||
}
|
||||
|
||||
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
|
||||
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
|
||||
}
|
||||
|
||||
if genReq.Suffix != "suffix" {
|
||||
t.Fatalf("expected 'suffix', got %s", genReq.Suffix)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "chat handler with image content",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/chat",
|
||||
Handler: ChatMiddleware,
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{
|
||||
{
|
||||
Role: "user", Content: []map[string]any{
|
||||
{"type": "text", "text": "Hello"},
|
||||
{"type": "image_url", "image_url": map[string]string{"url": imageURL}},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, req *http.Request) {
|
||||
var chatReq api.ChatRequest
|
||||
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if chatReq.Messages[0].Role != "user" {
|
||||
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
|
||||
}
|
||||
|
||||
if chatReq.Messages[0].Content != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
|
||||
}
|
||||
|
||||
img, _ := base64.StdEncoding.DecodeString(imageURL[len(prefix):])
|
||||
|
||||
if !bytes.Equal(chatReq.Messages[0].Images[0], img) {
|
||||
t.Fatalf("expected image encoding, got %s", chatReq.Messages[0].Images[0])
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "embed handler single input",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/embed",
|
||||
Handler: EmbeddingsMiddleware,
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := EmbedRequest{
|
||||
Input: "Hello",
|
||||
Model: "test-model",
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, req *http.Request) {
|
||||
var embedReq api.EmbedRequest
|
||||
if err := json.NewDecoder(req.Body).Decode(&embedReq); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if embedReq.Input != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", embedReq.Input)
|
||||
}
|
||||
|
||||
if embedReq.Model != "test-model" {
|
||||
t.Fatalf("expected 'test-model', got %s", embedReq.Model)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "embed handler batch input",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/embed",
|
||||
Handler: EmbeddingsMiddleware,
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := EmbedRequest{
|
||||
Input: []string{"Hello", "World"},
|
||||
Model: "test-model",
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, req *http.Request) {
|
||||
var embedReq api.EmbedRequest
|
||||
if err := json.NewDecoder(req.Body).Decode(&embedReq); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
input, ok := embedReq.Input.([]any)
|
||||
|
||||
if !ok {
|
||||
t.Fatalf("expected input to be a list")
|
||||
}
|
||||
|
||||
if input[0].(string) != "Hello" {
|
||||
t.Fatalf("expected 'Hello', got %s", input[0])
|
||||
}
|
||||
|
||||
if input[1].(string) != "World" {
|
||||
t.Fatalf("expected 'World', got %s", input[1])
|
||||
}
|
||||
|
||||
if embedReq.Model != "test-model" {
|
||||
t.Fatalf("expected 'test-model', got %s", embedReq.Model)
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
gin.SetMode(gin.TestMode)
|
||||
router := gin.New()
|
||||
|
||||
endpoint := func(c *gin.Context) {
|
||||
c.Status(http.StatusOK)
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.Name, func(t *testing.T) {
|
||||
router = gin.New()
|
||||
router.Use(captureRequestMiddleware())
|
||||
router.Use(tc.Handler())
|
||||
router.Handle(tc.Method, tc.Path, endpoint)
|
||||
req, _ := http.NewRequest(tc.Method, tc.Path, nil)
|
||||
|
||||
if tc.Setup != nil {
|
||||
tc.Setup(t, req)
|
||||
}
|
||||
|
||||
resp := httptest.NewRecorder()
|
||||
router.ServeHTTP(resp, req)
|
||||
|
||||
tc.Expected(t, capturedRequest)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestMiddlewareResponses(t *testing.T) {
|
||||
func TestMiddleware(t *testing.T) {
|
||||
type testCase struct {
|
||||
Name string
|
||||
Method string
|
||||
@@ -281,7 +30,159 @@ func TestMiddlewareResponses(t *testing.T) {
|
||||
|
||||
testCases := []testCase{
|
||||
{
|
||||
Name: "completions handler error forwarding",
|
||||
Name: "chat handler",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/chat",
|
||||
TestPath: "/api/chat",
|
||||
Handler: ChatMiddleware,
|
||||
Endpoint: func(c *gin.Context) {
|
||||
var chatReq api.ChatRequest
|
||||
if err := c.ShouldBindJSON(&chatReq); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
|
||||
return
|
||||
}
|
||||
|
||||
userMessage := chatReq.Messages[0].Content
|
||||
var assistantMessage string
|
||||
|
||||
switch userMessage {
|
||||
case "Hello":
|
||||
assistantMessage = "Hello!"
|
||||
default:
|
||||
assistantMessage = "I'm not sure how to respond to that."
|
||||
}
|
||||
|
||||
c.JSON(http.StatusOK, api.ChatResponse{
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: assistantMessage,
|
||||
},
|
||||
})
|
||||
},
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := ChatCompletionRequest{
|
||||
Model: "test-model",
|
||||
Messages: []Message{{Role: "user", Content: "Hello"}},
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
|
||||
assert.Equal(t, http.StatusOK, resp.Code)
|
||||
|
||||
var chatResp ChatCompletion
|
||||
if err := json.NewDecoder(resp.Body).Decode(&chatResp); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if chatResp.Object != "chat.completion" {
|
||||
t.Fatalf("expected chat.completion, got %s", chatResp.Object)
|
||||
}
|
||||
|
||||
if chatResp.Choices[0].Message.Content != "Hello!" {
|
||||
t.Fatalf("expected Hello!, got %s", chatResp.Choices[0].Message.Content)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "completions handler",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/generate",
|
||||
TestPath: "/api/generate",
|
||||
Handler: CompletionsMiddleware,
|
||||
Endpoint: func(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.GenerateResponse{
|
||||
Response: "Hello!",
|
||||
})
|
||||
},
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
body := CompletionRequest{
|
||||
Model: "test-model",
|
||||
Prompt: "Hello",
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
|
||||
assert.Equal(t, http.StatusOK, resp.Code)
|
||||
var completionResp Completion
|
||||
if err := json.NewDecoder(resp.Body).Decode(&completionResp); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if completionResp.Object != "text_completion" {
|
||||
t.Fatalf("expected text_completion, got %s", completionResp.Object)
|
||||
}
|
||||
|
||||
if completionResp.Choices[0].Text != "Hello!" {
|
||||
t.Fatalf("expected Hello!, got %s", completionResp.Choices[0].Text)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "completions handler with params",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/generate",
|
||||
TestPath: "/api/generate",
|
||||
Handler: CompletionsMiddleware,
|
||||
Endpoint: func(c *gin.Context) {
|
||||
var generateReq api.GenerateRequest
|
||||
if err := c.ShouldBindJSON(&generateReq); err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
|
||||
return
|
||||
}
|
||||
|
||||
temperature := generateReq.Options["temperature"].(float64)
|
||||
var assistantMessage string
|
||||
|
||||
switch temperature {
|
||||
case 1.6:
|
||||
assistantMessage = "Received temperature of 1.6"
|
||||
default:
|
||||
assistantMessage = fmt.Sprintf("Received temperature of %f", temperature)
|
||||
}
|
||||
|
||||
c.JSON(http.StatusOK, api.GenerateResponse{
|
||||
Response: assistantMessage,
|
||||
})
|
||||
},
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
temp := float32(0.8)
|
||||
body := CompletionRequest{
|
||||
Model: "test-model",
|
||||
Prompt: "Hello",
|
||||
Temperature: &temp,
|
||||
}
|
||||
|
||||
bodyBytes, _ := json.Marshal(body)
|
||||
|
||||
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
},
|
||||
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
|
||||
assert.Equal(t, http.StatusOK, resp.Code)
|
||||
var completionResp Completion
|
||||
if err := json.NewDecoder(resp.Body).Decode(&completionResp); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if completionResp.Object != "text_completion" {
|
||||
t.Fatalf("expected text_completion, got %s", completionResp.Object)
|
||||
}
|
||||
|
||||
if completionResp.Choices[0].Text != "Received temperature of 1.6" {
|
||||
t.Fatalf("expected Received temperature of 1.6, got %s", completionResp.Choices[0].Text)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "completions handler with error",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/generate",
|
||||
TestPath: "/api/generate",
|
||||
|
||||
@@ -107,12 +107,9 @@ function gatherDependencies() {
|
||||
|
||||
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output
|
||||
# currently works for Win11 + MSVC 2019 + Cuda V11
|
||||
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\ollama_runners\"
|
||||
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\ollama_runners\"
|
||||
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\"
|
||||
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\"
|
||||
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
|
||||
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\ollama_runners\"
|
||||
}
|
||||
|
||||
|
||||
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
|
||||
|
||||
@@ -34,20 +34,9 @@ import (
|
||||
"github.com/ollama/ollama/version"
|
||||
)
|
||||
|
||||
var (
|
||||
errCapabilities = errors.New("does not support")
|
||||
errCapabilityCompletion = errors.New("completion")
|
||||
errCapabilityTools = errors.New("tools")
|
||||
errCapabilityInsert = errors.New("insert")
|
||||
)
|
||||
|
||||
type Capability string
|
||||
|
||||
const (
|
||||
CapabilityCompletion = Capability("completion")
|
||||
CapabilityTools = Capability("tools")
|
||||
CapabilityInsert = Capability("insert")
|
||||
)
|
||||
const CapabilityCompletion = Capability("completion")
|
||||
|
||||
type registryOptions struct {
|
||||
Insecure bool
|
||||
@@ -73,10 +62,7 @@ type Model struct {
|
||||
Template *template.Template
|
||||
}
|
||||
|
||||
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
|
||||
// any missing or unknown capabilities
|
||||
func (m *Model) CheckCapabilities(caps ...Capability) error {
|
||||
var errs []error
|
||||
func (m *Model) Has(caps ...Capability) bool {
|
||||
for _, cap := range caps {
|
||||
switch cap {
|
||||
case CapabilityCompletion:
|
||||
@@ -95,28 +81,15 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
|
||||
}
|
||||
|
||||
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
|
||||
errs = append(errs, errCapabilityCompletion)
|
||||
}
|
||||
case CapabilityTools:
|
||||
if !slices.Contains(m.Template.Vars(), "tools") {
|
||||
errs = append(errs, errCapabilityTools)
|
||||
}
|
||||
case CapabilityInsert:
|
||||
vars := m.Template.Vars()
|
||||
if !slices.Contains(vars, "suffix") {
|
||||
errs = append(errs, errCapabilityInsert)
|
||||
return false
|
||||
}
|
||||
default:
|
||||
slog.Error("unknown capability", "capability", cap)
|
||||
return fmt.Errorf("unknown capability: %s", cap)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
if err := errors.Join(errs...); err != nil {
|
||||
return fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
|
||||
}
|
||||
|
||||
return nil
|
||||
return true
|
||||
}
|
||||
|
||||
func (m *Model) String() string {
|
||||
|
||||
150
server/model.go
150
server/model.go
@@ -4,7 +4,6 @@ import (
|
||||
"archive/zip"
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
@@ -12,9 +11,6 @@ import (
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
"text/template/parse"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/convert"
|
||||
@@ -133,38 +129,24 @@ func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse))
|
||||
}
|
||||
|
||||
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
layerType := "application/vnd.ollama.image.model"
|
||||
convertAdapter, err := convert.DetectNPZ(file.Name())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer os.RemoveAll(tempDir)
|
||||
|
||||
if err := extractFromZipFile(tempDir, file, fn); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
mf, err := convert.GetModelFormat(tempDir)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params, err := mf.GetParams(tempDir)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
mArch, err := mf.GetModelArch("", tempDir, params)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
fn(api.ProgressResponse{Status: "processing tensors"})
|
||||
if err := mArch.GetTensors(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := mArch.LoadVocab(); err != nil {
|
||||
return nil, err
|
||||
if !convertAdapter {
|
||||
if err := extractFromZipFile(tempDir, file, fn); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
layerType = "application/vnd.ollama.image.adapter"
|
||||
}
|
||||
|
||||
fn(api.ProgressResponse{Status: "converting model"})
|
||||
@@ -178,15 +160,22 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
|
||||
defer temp.Close()
|
||||
defer os.Remove(temp.Name())
|
||||
|
||||
if err = mArch.WriteGGUF(temp); err != nil {
|
||||
return nil, err
|
||||
if convertAdapter {
|
||||
slog.Info("convert adapter")
|
||||
if err := convert.ConvertAdapter(file.Name(), temp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
if err := convert.Convert(tempDir, temp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if _, err := temp.Seek(0, io.SeekStart); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
layer, err := NewLayer(temp, "application/vnd.ollama.image.model")
|
||||
layer, err := NewLayer(temp, layerType)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -205,7 +194,11 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
|
||||
layers = append(layers, &layerGGML{layer, ggml})
|
||||
|
||||
intermediateBlobs[digest] = layer.Digest
|
||||
return detectChatTemplate(layers)
|
||||
if !convertAdapter {
|
||||
return detectChatTemplate(layers)
|
||||
}
|
||||
|
||||
return layers, nil
|
||||
}
|
||||
|
||||
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
@@ -293,92 +286,3 @@ func detectContentType(r io.Reader) (string, error) {
|
||||
|
||||
return "unknown", nil
|
||||
}
|
||||
|
||||
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
|
||||
// mxyng: this only really works if the input contains tool calls in some JSON format
|
||||
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
|
||||
// create a subtree from the node that ranges over .ToolCalls
|
||||
tmpl := m.Template.Subtree(func(n parse.Node) bool {
|
||||
if t, ok := n.(*parse.RangeNode); ok {
|
||||
return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls")
|
||||
}
|
||||
|
||||
return false
|
||||
})
|
||||
|
||||
if tmpl == nil {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := tmpl.Execute(&b, map[string][]api.ToolCall{
|
||||
"ToolCalls": {
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "@@name@@",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"@@argument@@": 1,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}); err != nil {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
var kv map[string]any
|
||||
// execute the subtree with placeholders to identify the keys
|
||||
// trim any commands that might exist in the template
|
||||
if err := json.Unmarshal(bytes.TrimSuffix(b.Bytes(), []byte(",")), &kv); err != nil {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// find the keys that correspond to the name and arguments fields
|
||||
var name, arguments string
|
||||
for k, v := range kv {
|
||||
switch v.(type) {
|
||||
case string:
|
||||
name = k
|
||||
case map[string]any:
|
||||
arguments = k
|
||||
}
|
||||
}
|
||||
|
||||
var objs []map[string]any
|
||||
for offset := 0; offset < len(s); {
|
||||
var obj map[string]any
|
||||
decoder := json.NewDecoder(strings.NewReader(s[offset:]))
|
||||
if err := decoder.Decode(&obj); errors.Is(err, io.EOF) || errors.Is(err, io.ErrUnexpectedEOF) {
|
||||
break
|
||||
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
|
||||
// skip over any syntax errors
|
||||
offset += int(syntax.Offset)
|
||||
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
|
||||
// skip over any unmarshalable types
|
||||
offset += int(unmarshalType.Offset)
|
||||
} else if err != nil {
|
||||
slog.Error("parseToolCalls", "error", err)
|
||||
return nil, false
|
||||
} else {
|
||||
offset += int(decoder.InputOffset())
|
||||
objs = append(objs, obj)
|
||||
}
|
||||
}
|
||||
|
||||
var toolCalls []api.ToolCall
|
||||
for _, kv := range objs {
|
||||
var call api.ToolCall
|
||||
for k, v := range kv {
|
||||
switch k {
|
||||
case name:
|
||||
call.Function.Name = v.(string)
|
||||
case arguments:
|
||||
call.Function.Arguments = v.(map[string]any)
|
||||
}
|
||||
}
|
||||
|
||||
toolCalls = append(toolCalls, call)
|
||||
}
|
||||
|
||||
return toolCalls, len(toolCalls) > 0
|
||||
}
|
||||
|
||||
@@ -3,9 +3,7 @@ package server
|
||||
import (
|
||||
"archive/zip"
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
@@ -13,9 +11,7 @@ import (
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/template"
|
||||
)
|
||||
|
||||
func createZipFile(t *testing.T, name string) *os.File {
|
||||
@@ -114,122 +110,3 @@ func TestExtractFromZipFile(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func readFile(t *testing.T, base, name string) *bytes.Buffer {
|
||||
t.Helper()
|
||||
|
||||
bts, err := os.ReadFile(filepath.Join(base, name))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
return bytes.NewBuffer(bts)
|
||||
}
|
||||
|
||||
func TestExecuteWithTools(t *testing.T) {
|
||||
p := filepath.Join("testdata", "tools")
|
||||
cases := []struct {
|
||||
model string
|
||||
output string
|
||||
ok bool
|
||||
}{
|
||||
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
|
||||
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
|
||||
|
||||
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true},
|
||||
{"mistral", `I'm not aware of that information. However, I can suggest searching for the weather using the "get_current_weather" function:
|
||||
|
||||
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
|
||||
{"mistral", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
|
||||
{"command-r-plus", "Action: ```json" + `
|
||||
[
|
||||
{
|
||||
"tool_name": "get_current_weather",
|
||||
"parameters": {
|
||||
"format": "fahrenheit",
|
||||
"location": "San Francisco, CA"
|
||||
}
|
||||
},
|
||||
{
|
||||
"tool_name": "get_current_weather",
|
||||
"parameters": {
|
||||
"format": "celsius",
|
||||
"location": "Toronto, Canada"
|
||||
}
|
||||
}
|
||||
]
|
||||
` + "```", true},
|
||||
{"command-r-plus", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
|
||||
{"firefunction", ` functools[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
|
||||
{"firefunction", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
|
||||
{"llama3-groq-tool-use", `<tool_call>
|
||||
{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}}
|
||||
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
|
||||
</tool_call>`, true},
|
||||
}
|
||||
|
||||
var tools []api.Tool
|
||||
if err := json.Unmarshal(readFile(t, p, "tools.json").Bytes(), &tools); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var messages []api.Message
|
||||
if err := json.Unmarshal(readFile(t, p, "messages.json").Bytes(), &messages); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
calls := []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_current_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"format": "fahrenheit",
|
||||
"location": "San Francisco, CA",
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_current_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"format": "celsius",
|
||||
"location": "Toronto, Canada",
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.model, func(t *testing.T) {
|
||||
tmpl, err := template.Parse(readFile(t, p, fmt.Sprintf("%s.gotmpl", tt.model)).String())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
t.Run("template", func(t *testing.T) {
|
||||
var actual bytes.Buffer
|
||||
if err := tmpl.Execute(&actual, template.Values{Tools: tools, Messages: messages}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(actual.String(), readFile(t, p, fmt.Sprintf("%s.out", tt.model)).String()); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("parse", func(t *testing.T) {
|
||||
m := &Model{Template: tmpl}
|
||||
actual, ok := m.parseToolCalls(tt.output)
|
||||
if ok != tt.ok {
|
||||
t.Fatalf("expected %t, got %t", tt.ok, ok)
|
||||
}
|
||||
|
||||
if tt.ok {
|
||||
if diff := cmp.Diff(actual, calls); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
265
server/prompt.go
265
server/prompt.go
@@ -1,74 +1,217 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"text/template/parse"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/template"
|
||||
)
|
||||
|
||||
type tokenizeFunc func(context.Context, string) ([]int, error)
|
||||
|
||||
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
|
||||
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
|
||||
// latest message and 2) system messages
|
||||
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
|
||||
var system []api.Message
|
||||
// always include the last message
|
||||
n := len(msgs) - 1
|
||||
// in reverse, find all messages that fit into context window
|
||||
for i := n - 1; i >= 0; i-- {
|
||||
system = make([]api.Message, 0)
|
||||
for j := range i {
|
||||
if msgs[j].Role == "system" {
|
||||
system = append(system, msgs[j])
|
||||
// isResponseNode checks if the node contains .Response
|
||||
func isResponseNode(node *parse.ActionNode) bool {
|
||||
for _, cmd := range node.Pipe.Cmds {
|
||||
for _, arg := range cmd.Args {
|
||||
if fieldNode, ok := arg.(*parse.FieldNode); ok && len(fieldNode.Ident) > 0 {
|
||||
if fieldNode.Ident[0] == "Response" {
|
||||
return true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools}); err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
s, err := tokenize(ctx, b.String())
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
c := len(s)
|
||||
if m.ProjectorPaths != nil {
|
||||
for _, m := range msgs[i:] {
|
||||
// images are represented as 768 sized embeddings
|
||||
// TODO: get embedding length from project metadata
|
||||
c += 768 * len(m.Images)
|
||||
}
|
||||
}
|
||||
|
||||
if c > opts.NumCtx {
|
||||
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
|
||||
break
|
||||
} else {
|
||||
n = i
|
||||
}
|
||||
}
|
||||
|
||||
// truncate any messages that do not fit into the context window
|
||||
var b bytes.Buffer
|
||||
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[n:]...), Tools: tools}); err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
for _, m := range msgs[n:] {
|
||||
for _, i := range m.Images {
|
||||
images = append(images, llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return b.String(), images, nil
|
||||
return false
|
||||
}
|
||||
|
||||
// formatTemplateForResponse formats the template AST to:
|
||||
// 1. remove all nodes after the first .Response (if generate=true)
|
||||
// 2. add a .Response node to the end if it doesn't exist
|
||||
// TODO(jmorganca): this should recursively cut the template before the first .Response
|
||||
func formatTemplateForResponse(tmpl *template.Template, generate bool) {
|
||||
var found bool
|
||||
for i, node := range tmpl.Tree.Root.Nodes {
|
||||
if actionNode, ok := node.(*parse.ActionNode); ok {
|
||||
if isResponseNode(actionNode) {
|
||||
found = true
|
||||
if generate {
|
||||
tmpl.Tree.Root.Nodes = tmpl.Tree.Root.Nodes[:i+1]
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !found {
|
||||
// add the response node if it doesn't exist
|
||||
responseFieldNode := &parse.FieldNode{NodeType: parse.NodeField, Ident: []string{"Response"}}
|
||||
responsePipeNode := &parse.PipeNode{NodeType: parse.NodePipe, Cmds: []*parse.CommandNode{{NodeType: parse.NodeCommand, Args: []parse.Node{responseFieldNode}}}}
|
||||
responseActionNode := &parse.ActionNode{NodeType: parse.NodeAction, Pipe: responsePipeNode}
|
||||
tmpl.Tree.Root.Nodes = append(tmpl.Tree.Root.Nodes, responseActionNode)
|
||||
}
|
||||
}
|
||||
|
||||
// Prompt renders a prompt from a template. If generate is set to true,
|
||||
// the response and parts of the template following it are not rendered
|
||||
func Prompt(tmpl *template.Template, system, prompt, response string, generate bool) (string, error) {
|
||||
formatTemplateForResponse(tmpl, generate)
|
||||
|
||||
vars := map[string]any{
|
||||
"System": system,
|
||||
"Prompt": prompt,
|
||||
"Response": response,
|
||||
}
|
||||
|
||||
var sb strings.Builder
|
||||
if err := tmpl.Execute(&sb, vars); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return sb.String(), nil
|
||||
}
|
||||
|
||||
func countTokens(tmpl *template.Template, system string, prompt string, response string, encode func(string) ([]int, error)) (int, error) {
|
||||
rendered, err := Prompt(tmpl, system, prompt, response, false)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
tokens, err := encode(rendered)
|
||||
if err != nil {
|
||||
slog.Error("failed to encode prompt", "err", err)
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return len(tokens), err
|
||||
}
|
||||
|
||||
// ChatPrompt builds up a prompt from a series of messages, truncating based on context window size
|
||||
func ChatPrompt(tmpl *template.Template, messages []api.Message, window int, encode func(string) ([]int, error)) (string, error) {
|
||||
type prompt struct {
|
||||
System string
|
||||
Prompt string
|
||||
Response string
|
||||
|
||||
images []int
|
||||
tokens int
|
||||
}
|
||||
|
||||
var p prompt
|
||||
|
||||
// iterate through messages to build up {system,user,response} prompts
|
||||
var imgId int
|
||||
var prompts []prompt
|
||||
for _, msg := range messages {
|
||||
switch strings.ToLower(msg.Role) {
|
||||
case "system":
|
||||
if p.System != "" || p.Prompt != "" || p.Response != "" {
|
||||
prompts = append(prompts, p)
|
||||
p = prompt{}
|
||||
}
|
||||
|
||||
p.System = msg.Content
|
||||
case "user":
|
||||
if p.Prompt != "" || p.Response != "" {
|
||||
prompts = append(prompts, p)
|
||||
p = prompt{}
|
||||
}
|
||||
|
||||
var sb strings.Builder
|
||||
for range msg.Images {
|
||||
fmt.Fprintf(&sb, "[img-%d] ", imgId)
|
||||
p.images = append(p.images, imgId)
|
||||
imgId += 1
|
||||
}
|
||||
|
||||
sb.WriteString(msg.Content)
|
||||
p.Prompt = sb.String()
|
||||
case "assistant":
|
||||
if p.Response != "" {
|
||||
prompts = append(prompts, p)
|
||||
p = prompt{}
|
||||
}
|
||||
|
||||
p.Response = msg.Content
|
||||
default:
|
||||
return "", fmt.Errorf("invalid role: %s, role must be one of [system, user, assistant]", msg.Role)
|
||||
}
|
||||
}
|
||||
|
||||
// add final prompt
|
||||
if p.System != "" || p.Prompt != "" || p.Response != "" {
|
||||
prompts = append(prompts, p)
|
||||
}
|
||||
|
||||
// calculate token lengths for each prompt, estimating 768 tokens per images
|
||||
for i, p := range prompts {
|
||||
tokens, err := countTokens(tmpl, p.System, p.Prompt, p.Response, encode)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
prompts[i].tokens = tokens + len(prompts[i].images)*768
|
||||
}
|
||||
|
||||
// truncate images and prompts starting from the beginning of the list
|
||||
// until either one prompt remains or the total tokens fits the context window
|
||||
// TODO (jmorganca): this doesn't account for the context window room required for the response
|
||||
for {
|
||||
var required int
|
||||
for _, p := range prompts {
|
||||
required += p.tokens
|
||||
}
|
||||
|
||||
required += 1 // for bos token
|
||||
|
||||
if required <= window {
|
||||
slog.Debug("prompt now fits in context window", "required", required, "window", window)
|
||||
break
|
||||
}
|
||||
|
||||
prompt := &prompts[0]
|
||||
|
||||
if len(prompt.images) > 1 {
|
||||
img := prompt.images[0]
|
||||
slog.Debug("prompt longer than context window, removing image", "id", img, "required", required, "window", window)
|
||||
prompt.images = prompt.images[1:]
|
||||
prompt.Prompt = strings.Replace(prompt.Prompt, fmt.Sprintf(" [img-%d]", img), "", 1)
|
||||
prompt.tokens -= 768
|
||||
continue
|
||||
}
|
||||
|
||||
if len(prompts) > 1 {
|
||||
slog.Debug("required tokens longer than context window, removing first prompt", "prompt", prompts[0].tokens, "required", required, "window", window)
|
||||
system := prompt.System
|
||||
prompts = prompts[1:]
|
||||
|
||||
if system != "" && prompts[0].System == "" {
|
||||
prompts[0].System = system
|
||||
|
||||
tokens, err := countTokens(tmpl, prompts[0].System, prompts[0].Prompt, prompts[0].Response, encode)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
prompts[0].tokens = tokens + len(prompts[0].images)*768
|
||||
}
|
||||
|
||||
continue
|
||||
}
|
||||
|
||||
// stop truncating if there's only one prompt left
|
||||
break
|
||||
}
|
||||
|
||||
var sb strings.Builder
|
||||
for i, p := range prompts {
|
||||
// last prompt should leave the response unrendered (for completion)
|
||||
rendered, err := Prompt(tmpl, p.System, p.Prompt, p.Response, i == len(prompts)-1)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
sb.WriteString(rendered)
|
||||
}
|
||||
|
||||
return sb.String(), nil
|
||||
}
|
||||
|
||||
@@ -1,209 +1,215 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/template"
|
||||
)
|
||||
|
||||
func TestChatPrompt(t *testing.T) {
|
||||
type expect struct {
|
||||
prompt string
|
||||
images [][]byte
|
||||
}
|
||||
|
||||
cases := []struct {
|
||||
name string
|
||||
limit int
|
||||
msgs []api.Message
|
||||
expect
|
||||
func TestPrompt(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
template string
|
||||
system string
|
||||
prompt string
|
||||
response string
|
||||
generate bool
|
||||
want string
|
||||
}{
|
||||
{
|
||||
name: "messages",
|
||||
limit: 64,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
name: "simple prompt",
|
||||
template: "[INST] {{ .System }} {{ .Prompt }} [/INST]",
|
||||
system: "You are a Wizard.",
|
||||
prompt: "What are the potion ingredients?",
|
||||
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST]",
|
||||
},
|
||||
{
|
||||
name: "truncate messages",
|
||||
limit: 1,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
name: "implicit response",
|
||||
template: "[INST] {{ .System }} {{ .Prompt }} [/INST]",
|
||||
system: "You are a Wizard.",
|
||||
prompt: "What are the potion ingredients?",
|
||||
response: "I don't know.",
|
||||
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST]I don't know.",
|
||||
},
|
||||
{
|
||||
name: "truncate messages with image",
|
||||
limit: 64,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("something")}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0] A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{
|
||||
[]byte("something"),
|
||||
},
|
||||
},
|
||||
name: "response",
|
||||
template: "[INST] {{ .System }} {{ .Prompt }} [/INST] {{ .Response }}",
|
||||
system: "You are a Wizard.",
|
||||
prompt: "What are the potion ingredients?",
|
||||
response: "I don't know.",
|
||||
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST] I don't know.",
|
||||
},
|
||||
{
|
||||
name: "truncate messages with images",
|
||||
limit: 64,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0] A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{
|
||||
[]byte("somethingelse"),
|
||||
},
|
||||
},
|
||||
name: "cut",
|
||||
template: "<system>{{ .System }}</system><user>{{ .Prompt }}</user><assistant>{{ .Response }}</assistant>",
|
||||
system: "You are a Wizard.",
|
||||
prompt: "What are the potion ingredients?",
|
||||
response: "I don't know.",
|
||||
generate: true,
|
||||
want: "<system>You are a Wizard.</system><user>What are the potion ingredients?</user><assistant>I don't know.",
|
||||
},
|
||||
{
|
||||
name: "messages with images",
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0] You're a test, Harry! I-I'm a what? [img-1] A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{
|
||||
[]byte("something"),
|
||||
[]byte("somethingelse"),
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "message with image tag",
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry! [img]", Images: []api.ImageData{[]byte("something")}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! [img-0] I-I'm a what? [img-1] A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{
|
||||
[]byte("something"),
|
||||
[]byte("somethingelse"),
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "messages with interleaved images",
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "user", Images: []api.ImageData{[]byte("something")}},
|
||||
{Role: "user", Images: []api.ImageData{[]byte("somethingelse")}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry!\n\n[img-0]\n\n[img-1] I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{
|
||||
[]byte("something"),
|
||||
[]byte("somethingelse"),
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "truncate message with interleaved images",
|
||||
limit: 1024,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "user", Images: []api.ImageData{[]byte("something")}},
|
||||
{Role: "user", Images: []api.ImageData{[]byte("somethingelse")}},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "[img-0] I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{
|
||||
[]byte("somethingelse"),
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "message with system prompt",
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "system", Content: "You are the Test Who Lived."},
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You are the Test Who Lived. You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "out of order system",
|
||||
limit: 2048,
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "You're a test, Harry!"},
|
||||
{Role: "assistant", Content: "I-I'm a what?"},
|
||||
{Role: "system", Content: "You are the Test Who Lived."},
|
||||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? You are the Test Who Lived. A test. And a thumping good one at that, I'd wager. ",
|
||||
},
|
||||
name: "nocut",
|
||||
template: "<system>{{ .System }}</system><user>{{ .Prompt }}</user><assistant>{{ .Response }}</assistant>",
|
||||
system: "You are a Wizard.",
|
||||
prompt: "What are the potion ingredients?",
|
||||
response: "I don't know.",
|
||||
want: "<system>You are a Wizard.</system><user>What are the potion ingredients?</user><assistant>I don't know.</assistant>",
|
||||
},
|
||||
}
|
||||
|
||||
tmpl, err := template.Parse(`
|
||||
{{- if .System }}{{ .System }} {{ end }}
|
||||
{{- if .Prompt }}{{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}{{ .Response }} {{ end }}`)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
model := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
|
||||
opts := api.Options{Runner: api.Runner{NumCtx: tt.limit}}
|
||||
prompt, images, err := chatPrompt(context.TODO(), &model, mockRunner{}.Tokenize, &opts, tt.msgs, nil)
|
||||
for _, tc := range tests {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
tmpl, err := template.Parse(tc.template)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(prompt, tt.prompt); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
got, err := Prompt(tmpl, tc.system, tc.prompt, tc.response, tc.generate)
|
||||
if err != nil {
|
||||
t.Errorf("error = %v", err)
|
||||
}
|
||||
|
||||
if len(images) != len(tt.images) {
|
||||
t.Fatalf("expected %d images, got %d", len(tt.images), len(images))
|
||||
}
|
||||
|
||||
for i := range images {
|
||||
if images[i].ID != i {
|
||||
t.Errorf("expected ID %d, got %d", i, images[i].ID)
|
||||
}
|
||||
|
||||
if !bytes.Equal(images[i].Data, tt.images[i]) {
|
||||
t.Errorf("expected %q, got %q", tt.images[i], images[i])
|
||||
}
|
||||
if got != tc.want {
|
||||
t.Errorf("got = %v, want %v", got, tc.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestChatPrompt(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
template string
|
||||
messages []api.Message
|
||||
window int
|
||||
want string
|
||||
}{
|
||||
{
|
||||
name: "simple prompt",
|
||||
template: "[INST] {{ .Prompt }} [/INST]",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Hello"},
|
||||
},
|
||||
window: 1024,
|
||||
want: "[INST] Hello [/INST]",
|
||||
},
|
||||
{
|
||||
name: "with system message",
|
||||
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST]",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "Hello"},
|
||||
},
|
||||
window: 1024,
|
||||
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST]",
|
||||
},
|
||||
{
|
||||
name: "with response",
|
||||
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }}",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "Hello"},
|
||||
{Role: "assistant", Content: "I am?"},
|
||||
},
|
||||
window: 1024,
|
||||
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST] I am?",
|
||||
},
|
||||
{
|
||||
name: "with implicit response",
|
||||
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST]",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "Hello"},
|
||||
{Role: "assistant", Content: "I am?"},
|
||||
},
|
||||
window: 1024,
|
||||
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST]I am?",
|
||||
},
|
||||
{
|
||||
name: "with conversation",
|
||||
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }} ",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "What are the potion ingredients?"},
|
||||
{Role: "assistant", Content: "sugar"},
|
||||
{Role: "user", Content: "Anything else?"},
|
||||
},
|
||||
window: 1024,
|
||||
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> What are the potion ingredients? [/INST] sugar [INST] Anything else? [/INST] ",
|
||||
},
|
||||
{
|
||||
name: "with truncation",
|
||||
template: "{{ .System }} {{ .Prompt }} {{ .Response }} ",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "Hello"},
|
||||
{Role: "assistant", Content: "I am?"},
|
||||
{Role: "user", Content: "Why is the sky blue?"},
|
||||
{Role: "assistant", Content: "The sky is blue from rayleigh scattering"},
|
||||
},
|
||||
window: 10,
|
||||
want: "You are a Wizard. Why is the sky blue? The sky is blue from rayleigh scattering",
|
||||
},
|
||||
{
|
||||
name: "images",
|
||||
template: "{{ .System }} {{ .Prompt }}",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "Hello", Images: []api.ImageData{[]byte("base64")}},
|
||||
},
|
||||
window: 1024,
|
||||
want: "You are a Wizard. [img-0] Hello",
|
||||
},
|
||||
{
|
||||
name: "images truncated",
|
||||
template: "{{ .System }} {{ .Prompt }}",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a Wizard."},
|
||||
{Role: "user", Content: "Hello", Images: []api.ImageData{[]byte("img1"), []byte("img2")}},
|
||||
},
|
||||
window: 1024,
|
||||
want: "You are a Wizard. [img-0] [img-1] Hello",
|
||||
},
|
||||
{
|
||||
name: "empty list",
|
||||
template: "{{ .System }} {{ .Prompt }}",
|
||||
messages: []api.Message{},
|
||||
window: 1024,
|
||||
want: "",
|
||||
},
|
||||
{
|
||||
name: "empty prompt",
|
||||
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }} ",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: ""},
|
||||
},
|
||||
window: 1024,
|
||||
want: "",
|
||||
},
|
||||
}
|
||||
|
||||
encode := func(s string) ([]int, error) {
|
||||
words := strings.Fields(s)
|
||||
return make([]int, len(words)), nil
|
||||
}
|
||||
|
||||
for _, tc := range tests {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
tmpl, err := template.Parse(tc.template)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
got, err := ChatPrompt(tmpl, tc.messages, tc.window, encode)
|
||||
if err != nil {
|
||||
t.Errorf("error = %v", err)
|
||||
}
|
||||
|
||||
if got != tc.want {
|
||||
t.Errorf("got: %q, want: %q", got, tc.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
641
server/routes.go
641
server/routes.go
@@ -1,15 +1,14 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"math"
|
||||
"net"
|
||||
"net/http"
|
||||
"net/netip"
|
||||
@@ -55,8 +54,6 @@ func init() {
|
||||
gin.SetMode(mode)
|
||||
}
|
||||
|
||||
var errRequired = errors.New("is required")
|
||||
|
||||
func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options, error) {
|
||||
opts := api.DefaultOptions()
|
||||
if err := opts.FromMap(model.Options); err != nil {
|
||||
@@ -70,220 +67,250 @@ func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options
|
||||
return opts, nil
|
||||
}
|
||||
|
||||
// scheduleRunner schedules a runner after validating inputs such as capabilities and model options.
|
||||
// It returns the allocated runner, model instance, and consolidated options if successful and error otherwise.
|
||||
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
|
||||
if name == "" {
|
||||
return nil, nil, nil, fmt.Errorf("model %w", errRequired)
|
||||
}
|
||||
|
||||
model, err := GetModel(name)
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
|
||||
if err := model.CheckCapabilities(caps...); err != nil {
|
||||
return nil, nil, nil, fmt.Errorf("%s %w", name, err)
|
||||
}
|
||||
|
||||
opts, err := modelOptions(model, requestOpts)
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
|
||||
runnerCh, errCh := s.sched.GetRunner(ctx, model, opts, keepAlive)
|
||||
var runner *runnerRef
|
||||
select {
|
||||
case runner = <-runnerCh:
|
||||
case err = <-errCh:
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
|
||||
return runner.llama, model, &opts, nil
|
||||
func isSupportedImageType(image []byte) bool {
|
||||
contentType := http.DetectContentType(image)
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
|
||||
return slices.Contains(allowedTypes, contentType)
|
||||
}
|
||||
|
||||
func (s *Server) GenerateHandler(c *gin.Context) {
|
||||
checkpointStart := time.Now()
|
||||
var req api.GenerateRequest
|
||||
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
|
||||
err := c.ShouldBindJSON(&req)
|
||||
|
||||
switch {
|
||||
case errors.Is(err, io.EOF):
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
|
||||
return
|
||||
} else if err != nil {
|
||||
case err != nil:
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
if req.Format != "" && req.Format != "json" {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be empty or \"json\""})
|
||||
// validate the request
|
||||
switch {
|
||||
case req.Model == "":
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
|
||||
return
|
||||
} else if req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0) {
|
||||
case len(req.Format) > 0 && req.Format != "json":
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
|
||||
return
|
||||
case req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0):
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "raw mode does not support template, system, or context"})
|
||||
return
|
||||
}
|
||||
|
||||
caps := []Capability{CapabilityCompletion}
|
||||
if req.Suffix != "" {
|
||||
caps = append(caps, CapabilityInsert)
|
||||
for _, img := range req.Images {
|
||||
if !isSupportedImageType(img) {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "unsupported image format"})
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
|
||||
if errors.Is(err, errCapabilityCompletion) {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support generate", req.Model)})
|
||||
return
|
||||
} else if err != nil {
|
||||
handleScheduleError(c, req.Model, err)
|
||||
model, err := GetModel(req.Model)
|
||||
if err != nil {
|
||||
var pErr *fs.PathError
|
||||
if errors.As(err, &pErr) {
|
||||
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
|
||||
return
|
||||
}
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
checkpointLoaded := time.Now()
|
||||
if !model.Has(CapabilityCompletion) {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%s does not support generate", req.Model)})
|
||||
return
|
||||
}
|
||||
|
||||
if req.Prompt == "" {
|
||||
opts, err := modelOptions(model, req.Options)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
|
||||
var runner *runnerRef
|
||||
select {
|
||||
case runner = <-rCh:
|
||||
case err = <-eCh:
|
||||
handleErrorResponse(c, err)
|
||||
return
|
||||
}
|
||||
|
||||
// an empty request loads the model
|
||||
// note: for a short while template was used in lieu
|
||||
// of `raw` mode so we need to check for it too
|
||||
if req.Prompt == "" && req.Template == "" && req.System == "" {
|
||||
c.JSON(http.StatusOK, api.GenerateResponse{
|
||||
Model: req.Model,
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Model: req.Model,
|
||||
Done: true,
|
||||
DoneReason: "load",
|
||||
})
|
||||
return
|
||||
}
|
||||
|
||||
images := make([]llm.ImageData, len(req.Images))
|
||||
for i := range req.Images {
|
||||
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
|
||||
tmpl, err := template.Parse(req.Template)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
prompt := req.Prompt
|
||||
if !req.Raw {
|
||||
tmpl := m.Template
|
||||
if req.Template != "" {
|
||||
tmpl, err = template.Parse(req.Template)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
checkpointLoaded := time.Now()
|
||||
|
||||
var prompt string
|
||||
switch {
|
||||
case req.Raw:
|
||||
prompt = req.Prompt
|
||||
case req.Prompt != "":
|
||||
if req.Template == "" {
|
||||
tmpl = model.Template
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if req.Context != nil {
|
||||
s, err := r.Detokenize(c.Request.Context(), req.Context)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
b.WriteString(s)
|
||||
if req.System == "" {
|
||||
req.System = model.System
|
||||
}
|
||||
|
||||
var values template.Values
|
||||
if req.Suffix != "" {
|
||||
values.Prompt = prompt
|
||||
values.Suffix = req.Suffix
|
||||
} else {
|
||||
var msgs []api.Message
|
||||
if req.System != "" {
|
||||
msgs = append(msgs, api.Message{Role: "system", Content: req.System})
|
||||
} else if m.System != "" {
|
||||
msgs = append(msgs, api.Message{Role: "system", Content: m.System})
|
||||
}
|
||||
slog.Debug("generate handler", "prompt", req.Prompt)
|
||||
slog.Debug("generate handler", "template", req.Template)
|
||||
slog.Debug("generate handler", "system", req.System)
|
||||
|
||||
for _, i := range images {
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
|
||||
}
|
||||
|
||||
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
|
||||
var sb strings.Builder
|
||||
for i := range req.Images {
|
||||
fmt.Fprintf(&sb, "[img-%d] ", i)
|
||||
}
|
||||
|
||||
if err := tmpl.Execute(&b, values); err != nil {
|
||||
sb.WriteString(req.Prompt)
|
||||
|
||||
p, err := Prompt(tmpl, req.System, sb.String(), "", true)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
prompt = b.String()
|
||||
sb.Reset()
|
||||
if req.Context != nil {
|
||||
prev, err := runner.llama.Detokenize(c.Request.Context(), req.Context)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
sb.WriteString(prev)
|
||||
}
|
||||
|
||||
sb.WriteString(p)
|
||||
|
||||
prompt = sb.String()
|
||||
}
|
||||
|
||||
slog.Debug("generate request", "prompt", prompt, "images", images)
|
||||
slog.Debug("generate handler", "prompt", prompt)
|
||||
|
||||
ch := make(chan any)
|
||||
var generated strings.Builder
|
||||
go func() {
|
||||
// TODO (jmorganca): avoid building the response twice both here and below
|
||||
var sb strings.Builder
|
||||
defer close(ch)
|
||||
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
|
||||
Prompt: prompt,
|
||||
Images: images,
|
||||
Format: req.Format,
|
||||
Options: opts,
|
||||
}, func(cr llm.CompletionResponse) {
|
||||
res := api.GenerateResponse{
|
||||
|
||||
fn := func(r llm.CompletionResponse) {
|
||||
// Build up the full response
|
||||
if _, err := generated.WriteString(r.Content); err != nil {
|
||||
ch <- gin.H{"error": err.Error()}
|
||||
return
|
||||
}
|
||||
|
||||
resp := api.GenerateResponse{
|
||||
Model: req.Model,
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Response: cr.Content,
|
||||
Done: cr.Done,
|
||||
DoneReason: cr.DoneReason,
|
||||
Done: r.Done,
|
||||
Response: r.Content,
|
||||
DoneReason: r.DoneReason,
|
||||
Metrics: api.Metrics{
|
||||
PromptEvalCount: cr.PromptEvalCount,
|
||||
PromptEvalDuration: cr.PromptEvalDuration,
|
||||
EvalCount: cr.EvalCount,
|
||||
EvalDuration: cr.EvalDuration,
|
||||
PromptEvalCount: r.PromptEvalCount,
|
||||
PromptEvalDuration: r.PromptEvalDuration,
|
||||
EvalCount: r.EvalCount,
|
||||
EvalDuration: r.EvalDuration,
|
||||
},
|
||||
}
|
||||
|
||||
if _, err := sb.WriteString(cr.Content); err != nil {
|
||||
ch <- gin.H{"error": err.Error()}
|
||||
}
|
||||
|
||||
if cr.Done {
|
||||
res.TotalDuration = time.Since(checkpointStart)
|
||||
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
|
||||
if r.Done {
|
||||
resp.TotalDuration = time.Since(checkpointStart)
|
||||
resp.LoadDuration = checkpointLoaded.Sub(checkpointStart)
|
||||
|
||||
if !req.Raw {
|
||||
tokens, err := r.Tokenize(c.Request.Context(), prompt+sb.String())
|
||||
p, err := Prompt(tmpl, req.System, req.Prompt, generated.String(), false)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
// TODO (jmorganca): encode() should not strip special tokens
|
||||
tokens, err := runner.llama.Tokenize(c.Request.Context(), p)
|
||||
if err != nil {
|
||||
ch <- gin.H{"error": err.Error()}
|
||||
return
|
||||
}
|
||||
res.Context = append(req.Context, tokens...)
|
||||
|
||||
resp.Context = append(req.Context, tokens...)
|
||||
}
|
||||
}
|
||||
|
||||
ch <- res
|
||||
}); err != nil {
|
||||
ch <- resp
|
||||
}
|
||||
|
||||
var images []llm.ImageData
|
||||
for i := range req.Images {
|
||||
images = append(images, llm.ImageData{
|
||||
ID: i,
|
||||
Data: req.Images[i],
|
||||
})
|
||||
}
|
||||
|
||||
// Start prediction
|
||||
req := llm.CompletionRequest{
|
||||
Prompt: prompt,
|
||||
Format: req.Format,
|
||||
Images: images,
|
||||
Options: opts,
|
||||
}
|
||||
if err := runner.llama.Completion(c.Request.Context(), req, fn); err != nil {
|
||||
ch <- gin.H{"error": err.Error()}
|
||||
}
|
||||
}()
|
||||
|
||||
if req.Stream != nil && !*req.Stream {
|
||||
var r api.GenerateResponse
|
||||
// Accumulate responses into the final response
|
||||
var final api.GenerateResponse
|
||||
var sb strings.Builder
|
||||
for rr := range ch {
|
||||
switch t := rr.(type) {
|
||||
for resp := range ch {
|
||||
switch r := resp.(type) {
|
||||
case api.GenerateResponse:
|
||||
sb.WriteString(t.Response)
|
||||
r = t
|
||||
sb.WriteString(r.Response)
|
||||
final = r
|
||||
case gin.H:
|
||||
msg, ok := t["error"].(string)
|
||||
if !ok {
|
||||
msg = "unexpected error format in response"
|
||||
if errorMsg, ok := r["error"].(string); ok {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
|
||||
return
|
||||
} else {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in response"})
|
||||
return
|
||||
}
|
||||
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": msg})
|
||||
return
|
||||
default:
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected response"})
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error"})
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
r.Response = sb.String()
|
||||
c.JSON(http.StatusOK, r)
|
||||
final.Response = sb.String()
|
||||
c.JSON(http.StatusOK, final)
|
||||
return
|
||||
}
|
||||
|
||||
streamResponse(c, ch)
|
||||
}
|
||||
|
||||
func (s *Server) EmbedHandler(c *gin.Context) {
|
||||
var req api.EmbedRequest
|
||||
func (s *Server) EmbeddingsHandler(c *gin.Context) {
|
||||
var req api.EmbeddingRequest
|
||||
err := c.ShouldBindJSON(&req)
|
||||
switch {
|
||||
case errors.Is(err, io.EOF):
|
||||
@@ -294,122 +321,34 @@ func (s *Server) EmbedHandler(c *gin.Context) {
|
||||
return
|
||||
}
|
||||
|
||||
truncate := true
|
||||
|
||||
if req.Truncate != nil && !*req.Truncate {
|
||||
truncate = false
|
||||
}
|
||||
|
||||
var input []string
|
||||
|
||||
switch i := req.Input.(type) {
|
||||
case string:
|
||||
if len(i) > 0 {
|
||||
input = append(input, i)
|
||||
}
|
||||
case []any:
|
||||
for _, v := range i {
|
||||
if _, ok := v.(string); !ok {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
|
||||
return
|
||||
}
|
||||
input = append(input, v.(string))
|
||||
}
|
||||
default:
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
|
||||
if req.Model == "" {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
|
||||
return
|
||||
}
|
||||
|
||||
if len(input) == 0 {
|
||||
c.JSON(http.StatusOK, api.EmbedResponse{Model: req.Model, Embeddings: [][]float32{}})
|
||||
return
|
||||
}
|
||||
|
||||
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
|
||||
model, err := GetModel(req.Model)
|
||||
if err != nil {
|
||||
handleScheduleError(c, req.Model, err)
|
||||
var pErr *fs.PathError
|
||||
if errors.As(err, &pErr) {
|
||||
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
|
||||
return
|
||||
}
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
kvData, err := getKVData(m.ModelPath, false)
|
||||
opts, err := modelOptions(model, req.Options)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
for i, s := range input {
|
||||
tokens, err := r.Tokenize(c.Request.Context(), s)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
ctxLen := min(opts.NumCtx, int(kvData.ContextLength()))
|
||||
if len(tokens) > ctxLen {
|
||||
if !truncate {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": "input length exceeds maximum context length"})
|
||||
return
|
||||
}
|
||||
|
||||
tokens = tokens[:ctxLen]
|
||||
s, err = r.Detokenize(c.Request.Context(), tokens)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
input[i] = s
|
||||
}
|
||||
embeddings, err := r.Embed(c.Request.Context(), input)
|
||||
|
||||
if err != nil {
|
||||
slog.Error("embedding generation failed", "error", err)
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
|
||||
return
|
||||
}
|
||||
|
||||
for i, e := range embeddings {
|
||||
embeddings[i] = normalize(e)
|
||||
}
|
||||
|
||||
resp := api.EmbedResponse{
|
||||
Model: req.Model,
|
||||
Embeddings: embeddings,
|
||||
}
|
||||
c.JSON(http.StatusOK, resp)
|
||||
}
|
||||
|
||||
func normalize(vec []float32) []float32 {
|
||||
var sum float32
|
||||
for _, v := range vec {
|
||||
sum += v * v
|
||||
}
|
||||
|
||||
norm := float32(0.0)
|
||||
if sum > 0 {
|
||||
norm = float32(1.0 / math.Sqrt(float64(sum)))
|
||||
}
|
||||
|
||||
for i := range vec {
|
||||
vec[i] *= norm
|
||||
}
|
||||
return vec
|
||||
}
|
||||
|
||||
func (s *Server) EmbeddingsHandler(c *gin.Context) {
|
||||
var req api.EmbeddingRequest
|
||||
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
|
||||
return
|
||||
} else if err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
r, _, _, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
|
||||
if err != nil {
|
||||
handleScheduleError(c, req.Model, err)
|
||||
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
|
||||
var runner *runnerRef
|
||||
select {
|
||||
case runner = <-rCh:
|
||||
case err = <-eCh:
|
||||
handleErrorResponse(c, err)
|
||||
return
|
||||
}
|
||||
|
||||
@@ -419,20 +358,13 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := r.Embed(c.Request.Context(), []string{req.Prompt})
|
||||
|
||||
embedding, err := runner.llama.Embedding(c.Request.Context(), req.Prompt)
|
||||
if err != nil {
|
||||
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
|
||||
return
|
||||
}
|
||||
|
||||
embedding := make([]float64, len(embeddings[0]))
|
||||
|
||||
for i, v := range embeddings[0] {
|
||||
embedding[i] = float64(v)
|
||||
}
|
||||
|
||||
resp := api.EmbeddingResponse{
|
||||
Embedding: embedding,
|
||||
}
|
||||
@@ -710,9 +642,16 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
|
||||
m.System = req.System
|
||||
}
|
||||
|
||||
msgs := make([]api.Message, len(m.Messages))
|
||||
for i, msg := range m.Messages {
|
||||
msgs[i] = api.Message{Role: msg.Role, Content: msg.Content}
|
||||
if req.Template != "" {
|
||||
m.Template, err = template.Parse(req.Template)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
msgs := make([]api.Message, 0)
|
||||
for _, msg := range m.Messages {
|
||||
msgs = append(msgs, api.Message{Role: msg.Role, Content: msg.Content})
|
||||
}
|
||||
|
||||
n := model.ParseName(req.Model)
|
||||
@@ -1055,7 +994,6 @@ func (s *Server) GenerateRoutes() http.Handler {
|
||||
r.POST("/api/pull", s.PullModelHandler)
|
||||
r.POST("/api/generate", s.GenerateHandler)
|
||||
r.POST("/api/chat", s.ChatHandler)
|
||||
r.POST("/api/embed", s.EmbedHandler)
|
||||
r.POST("/api/embeddings", s.EmbeddingsHandler)
|
||||
r.POST("/api/create", s.CreateModelHandler)
|
||||
r.POST("/api/push", s.PushModelHandler)
|
||||
@@ -1069,7 +1007,6 @@ func (s *Server) GenerateRoutes() http.Handler {
|
||||
// Compatibility endpoints
|
||||
r.POST("/v1/chat/completions", openai.ChatMiddleware(), s.ChatHandler)
|
||||
r.POST("/v1/completions", openai.CompletionsMiddleware(), s.GenerateHandler)
|
||||
r.POST("/v1/embeddings", openai.EmbeddingsMiddleware(), s.EmbedHandler)
|
||||
r.GET("/v1/models", openai.ListMiddleware(), s.ListModelsHandler)
|
||||
r.GET("/v1/models/:model", openai.RetrieveMiddleware(), s.ShowModelHandler)
|
||||
|
||||
@@ -1277,67 +1214,132 @@ func (s *Server) ProcessHandler(c *gin.Context) {
|
||||
c.JSON(http.StatusOK, api.ProcessResponse{Models: models})
|
||||
}
|
||||
|
||||
// ChatPrompt builds up a prompt from a series of messages for the currently `loaded` model
|
||||
func chatPrompt(ctx context.Context, runner *runnerRef, template *template.Template, messages []api.Message, numCtx int) (string, error) {
|
||||
encode := func(s string) ([]int, error) {
|
||||
return runner.llama.Tokenize(ctx, s)
|
||||
}
|
||||
|
||||
prompt, err := ChatPrompt(template, messages, numCtx, encode)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return prompt, nil
|
||||
}
|
||||
|
||||
func (s *Server) ChatHandler(c *gin.Context) {
|
||||
checkpointStart := time.Now()
|
||||
|
||||
var req api.ChatRequest
|
||||
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
|
||||
err := c.ShouldBindJSON(&req)
|
||||
switch {
|
||||
case errors.Is(err, io.EOF):
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
|
||||
return
|
||||
} else if err != nil {
|
||||
case err != nil:
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
caps := []Capability{CapabilityCompletion}
|
||||
if len(req.Tools) > 0 {
|
||||
caps = append(caps, CapabilityTools)
|
||||
}
|
||||
|
||||
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
|
||||
if errors.Is(err, errCapabilityCompletion) {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support chat", req.Model)})
|
||||
// validate the request
|
||||
switch {
|
||||
case req.Model == "":
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
|
||||
return
|
||||
} else if err != nil {
|
||||
handleScheduleError(c, req.Model, err)
|
||||
case len(req.Format) > 0 && req.Format != "json":
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
|
||||
return
|
||||
}
|
||||
|
||||
checkpointLoaded := time.Now()
|
||||
|
||||
if len(req.Messages) == 0 {
|
||||
c.JSON(http.StatusOK, api.ChatResponse{
|
||||
Model: req.Model,
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Message: api.Message{Role: "assistant"},
|
||||
Done: true,
|
||||
DoneReason: "load",
|
||||
})
|
||||
model, err := GetModel(req.Model)
|
||||
if err != nil {
|
||||
var pErr *fs.PathError
|
||||
if errors.As(err, &pErr) {
|
||||
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
|
||||
return
|
||||
}
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
if req.Messages[0].Role != "system" && m.System != "" {
|
||||
req.Messages = append([]api.Message{{Role: "system", Content: m.System}}, req.Messages...)
|
||||
if !model.Has(CapabilityCompletion) {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%s does not support chat", req.Model)})
|
||||
return
|
||||
}
|
||||
|
||||
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, req.Messages, req.Tools)
|
||||
opts, err := modelOptions(model, req.Options)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
slog.Debug("chat request", "images", len(images), "prompt", prompt)
|
||||
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
|
||||
var runner *runnerRef
|
||||
select {
|
||||
case runner = <-rCh:
|
||||
case err = <-eCh:
|
||||
handleErrorResponse(c, err)
|
||||
return
|
||||
}
|
||||
|
||||
checkpointLoaded := time.Now()
|
||||
|
||||
// if the first message is not a system message, then add the model's default system message
|
||||
if len(req.Messages) > 0 && req.Messages[0].Role != "system" {
|
||||
req.Messages = append([]api.Message{
|
||||
{
|
||||
Role: "system",
|
||||
Content: model.System,
|
||||
},
|
||||
}, req.Messages...)
|
||||
}
|
||||
|
||||
prompt, err := chatPrompt(c.Request.Context(), runner, model.Template, req.Messages, opts.NumCtx)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
// an empty request loads the model
|
||||
if len(req.Messages) == 0 || prompt == "" {
|
||||
resp := api.ChatResponse{
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Model: req.Model,
|
||||
Done: true,
|
||||
DoneReason: "load",
|
||||
Message: api.Message{Role: "assistant"},
|
||||
}
|
||||
c.JSON(http.StatusOK, resp)
|
||||
return
|
||||
}
|
||||
|
||||
// only send images that are in the prompt
|
||||
var i int
|
||||
var images []llm.ImageData
|
||||
for _, m := range req.Messages {
|
||||
for _, img := range m.Images {
|
||||
if !isSupportedImageType(img) {
|
||||
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "unsupported image format"})
|
||||
return
|
||||
}
|
||||
|
||||
if strings.Contains(prompt, fmt.Sprintf("[img-%d]", i)) {
|
||||
images = append(images, llm.ImageData{Data: img, ID: i})
|
||||
}
|
||||
i += 1
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("chat handler", "prompt", prompt, "images", len(images))
|
||||
|
||||
ch := make(chan any)
|
||||
|
||||
go func() {
|
||||
defer close(ch)
|
||||
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
|
||||
Prompt: prompt,
|
||||
Images: images,
|
||||
Format: req.Format,
|
||||
Options: opts,
|
||||
}, func(r llm.CompletionResponse) {
|
||||
res := api.ChatResponse{
|
||||
|
||||
fn := func(r llm.CompletionResponse) {
|
||||
resp := api.ChatResponse{
|
||||
Model: req.Model,
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Message: api.Message{Role: "assistant", Content: r.Content},
|
||||
@@ -1352,65 +1354,62 @@ func (s *Server) ChatHandler(c *gin.Context) {
|
||||
}
|
||||
|
||||
if r.Done {
|
||||
res.TotalDuration = time.Since(checkpointStart)
|
||||
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
|
||||
resp.TotalDuration = time.Since(checkpointStart)
|
||||
resp.LoadDuration = checkpointLoaded.Sub(checkpointStart)
|
||||
}
|
||||
|
||||
ch <- res
|
||||
}); err != nil {
|
||||
ch <- resp
|
||||
}
|
||||
|
||||
if err := runner.llama.Completion(c.Request.Context(), llm.CompletionRequest{
|
||||
Prompt: prompt,
|
||||
Format: req.Format,
|
||||
Images: images,
|
||||
Options: opts,
|
||||
}, fn); err != nil {
|
||||
ch <- gin.H{"error": err.Error()}
|
||||
}
|
||||
}()
|
||||
|
||||
if req.Stream != nil && !*req.Stream {
|
||||
var resp api.ChatResponse
|
||||
// Accumulate responses into the final response
|
||||
var final api.ChatResponse
|
||||
var sb strings.Builder
|
||||
for rr := range ch {
|
||||
switch t := rr.(type) {
|
||||
for resp := range ch {
|
||||
switch r := resp.(type) {
|
||||
case api.ChatResponse:
|
||||
sb.WriteString(t.Message.Content)
|
||||
resp = t
|
||||
sb.WriteString(r.Message.Content)
|
||||
final = r
|
||||
case gin.H:
|
||||
msg, ok := t["error"].(string)
|
||||
if !ok {
|
||||
msg = "unexpected error format in response"
|
||||
if errorMsg, ok := r["error"].(string); ok {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
|
||||
return
|
||||
} else {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in response"})
|
||||
return
|
||||
}
|
||||
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": msg})
|
||||
return
|
||||
default:
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected response"})
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error"})
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
resp.Message.Content = sb.String()
|
||||
|
||||
if len(req.Tools) > 0 {
|
||||
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
|
||||
resp.Message.ToolCalls = toolCalls
|
||||
resp.Message.Content = ""
|
||||
}
|
||||
}
|
||||
|
||||
c.JSON(http.StatusOK, resp)
|
||||
final.Message = api.Message{Role: "assistant", Content: sb.String()}
|
||||
c.JSON(http.StatusOK, final)
|
||||
return
|
||||
}
|
||||
|
||||
streamResponse(c, ch)
|
||||
}
|
||||
|
||||
func handleScheduleError(c *gin.Context, name string, err error) {
|
||||
switch {
|
||||
case errors.Is(err, errCapabilities), errors.Is(err, errRequired):
|
||||
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
|
||||
case errors.Is(err, context.Canceled):
|
||||
func handleErrorResponse(c *gin.Context, err error) {
|
||||
if errors.Is(err, context.Canceled) {
|
||||
c.JSON(499, gin.H{"error": "request canceled"})
|
||||
case errors.Is(err, ErrMaxQueue):
|
||||
c.JSON(http.StatusServiceUnavailable, gin.H{"error": err.Error()})
|
||||
case errors.Is(err, os.ErrNotExist):
|
||||
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model %q not found, try pulling it first", name)})
|
||||
default:
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
if errors.Is(err, ErrMaxQueue) {
|
||||
c.JSON(http.StatusServiceUnavailable, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
}
|
||||
|
||||
@@ -2,7 +2,6 @@ package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
@@ -21,7 +20,7 @@ import (
|
||||
|
||||
var stream bool = false
|
||||
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []*llm.Tensor) string {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "")
|
||||
@@ -30,7 +29,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if err := llm.NewGGUFV3(binary.LittleEndian).Encode(f, kv, ti); err != nil {
|
||||
if err := llm.WriteGGUF(f, kv, ti); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -85,8 +84,6 @@ func checkFileExists(t *testing.T, p string, expect []string) {
|
||||
}
|
||||
|
||||
func TestCreateFromBin(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -113,8 +110,6 @@ func TestCreateFromBin(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateFromModel(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -156,8 +151,6 @@ func TestCreateFromModel(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateRemovesLayers(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -205,8 +198,6 @@ func TestCreateRemovesLayers(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateUnsetsSystem(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -263,8 +254,6 @@ func TestCreateUnsetsSystem(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateMergeParameters(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -368,8 +357,6 @@ func TestCreateMergeParameters(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateReplacesMessages(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -446,8 +433,6 @@ func TestCreateReplacesMessages(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateTemplateSystem(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -494,8 +479,6 @@ func TestCreateTemplateSystem(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateLicenses(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -542,8 +525,6 @@ func TestCreateLicenses(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCreateDetectTemplate(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -563,9 +544,9 @@ func TestCreateDetectTemplate(t *testing.T) {
|
||||
}
|
||||
|
||||
checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{
|
||||
filepath.Join(p, "blobs", "sha256-2f8e594e6f34b1b4d36a246628eeb3365ce442303d656f1fcc69e821722acea0"),
|
||||
filepath.Join(p, "blobs", "sha256-542b217f179c7825eeb5bca3c77d2b75ed05bafbd3451d9188891a60a85337c6"),
|
||||
filepath.Join(p, "blobs", "sha256-553c4a3f747b3d22a4946875f1cc8ed011c2930d83f864a0c7265f9ec0a20413"),
|
||||
filepath.Join(p, "blobs", "sha256-c608dc615584cd20d9d830363dabf8a4783ae5d34245c3d8c115edb3bc7b28e4"),
|
||||
filepath.Join(p, "blobs", "sha256-f836ee110db21567f826332e4cedd746c06d10664fd5a9ea3659e3683a944510"),
|
||||
})
|
||||
})
|
||||
|
||||
|
||||
@@ -8,15 +8,12 @@ import (
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
func TestDelete(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
envconfig.LoadConfig()
|
||||
@@ -80,8 +77,6 @@ func TestDelete(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestDeleteDuplicateLayers(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
var s Server
|
||||
|
||||
@@ -1,712 +0,0 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type mockRunner struct {
|
||||
llm.LlamaServer
|
||||
|
||||
// CompletionRequest is only valid until the next call to Completion
|
||||
llm.CompletionRequest
|
||||
llm.CompletionResponse
|
||||
}
|
||||
|
||||
func (m *mockRunner) Completion(_ context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
|
||||
m.CompletionRequest = r
|
||||
fn(m.CompletionResponse)
|
||||
return nil
|
||||
}
|
||||
|
||||
func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error) {
|
||||
for range strings.Fields(s) {
|
||||
tokens = append(tokens, len(tokens))
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func newMockServer(mock *mockRunner) func(gpu.GpuInfoList, string, *llm.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
|
||||
return func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return mock, nil
|
||||
}
|
||||
}
|
||||
|
||||
func TestGenerateChat(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
mock := mockRunner{
|
||||
CompletionResponse: llm.CompletionResponse{
|
||||
Done: true,
|
||||
DoneReason: "stop",
|
||||
PromptEvalCount: 1,
|
||||
PromptEvalDuration: 1,
|
||||
EvalCount: 1,
|
||||
EvalDuration: 1,
|
||||
},
|
||||
}
|
||||
|
||||
s := Server{
|
||||
sched: &Scheduler{
|
||||
pendingReqCh: make(chan *LlmRequest, 1),
|
||||
finishedReqCh: make(chan *LlmRequest, 1),
|
||||
expiredCh: make(chan *runnerRef, 1),
|
||||
unloadedCh: make(chan any, 1),
|
||||
loaded: make(map[string]*runnerRef),
|
||||
newServerFn: newMockServer(&mock),
|
||||
getGpuFn: gpu.GetGPUInfo,
|
||||
getCpuFn: gpu.GetCPUInfo,
|
||||
reschedDelay: 250 * time.Millisecond,
|
||||
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
|
||||
// add 10ms delay to simulate loading
|
||||
time.Sleep(10 * time.Millisecond)
|
||||
req.successCh <- &runnerRef{
|
||||
llama: &mock,
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
go s.sched.Run(context.TODO())
|
||||
|
||||
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "test",
|
||||
Modelfile: fmt.Sprintf(`FROM %s
|
||||
TEMPLATE """
|
||||
{{- if .System }}System: {{ .System }} {{ end }}
|
||||
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
|
||||
`, createBinFile(t, llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.block_count": uint32(1),
|
||||
"llama.context_length": uint32(8192),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.attention.head_count": uint32(32),
|
||||
"llama.attention.head_count_kv": uint32(8),
|
||||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
t.Run("missing body", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, nil)
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("missing model", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, api.ChatRequest{})
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("missing capabilities chat", func(t *testing.T) {
|
||||
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "bert",
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []llm.Tensor{})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
w = createRequest(t, s.ChatHandler, api.ChatRequest{
|
||||
Model: "bert",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"\"bert\" does not support chat"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("load model", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, api.ChatRequest{
|
||||
Model: "test",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
var actual api.ChatResponse
|
||||
if err := json.NewDecoder(w.Body).Decode(&actual); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if actual.Model != "test" {
|
||||
t.Errorf("expected model test, got %s", actual.Model)
|
||||
}
|
||||
|
||||
if !actual.Done {
|
||||
t.Errorf("expected done true, got false")
|
||||
}
|
||||
|
||||
if actual.DoneReason != "load" {
|
||||
t.Errorf("expected done reason load, got %s", actual.DoneReason)
|
||||
}
|
||||
})
|
||||
|
||||
checkChatResponse := func(t *testing.T, body io.Reader, model, content string) {
|
||||
t.Helper()
|
||||
|
||||
var actual api.ChatResponse
|
||||
if err := json.NewDecoder(body).Decode(&actual); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if actual.Model != model {
|
||||
t.Errorf("expected model test, got %s", actual.Model)
|
||||
}
|
||||
|
||||
if !actual.Done {
|
||||
t.Errorf("expected done false, got true")
|
||||
}
|
||||
|
||||
if actual.DoneReason != "stop" {
|
||||
t.Errorf("expected done reason stop, got %s", actual.DoneReason)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(actual.Message, api.Message{
|
||||
Role: "assistant",
|
||||
Content: content,
|
||||
}); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if actual.PromptEvalCount == 0 {
|
||||
t.Errorf("expected prompt eval count > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.PromptEvalDuration == 0 {
|
||||
t.Errorf("expected prompt eval duration > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.EvalCount == 0 {
|
||||
t.Errorf("expected eval count > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.EvalDuration == 0 {
|
||||
t.Errorf("expected eval duration > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.LoadDuration == 0 {
|
||||
t.Errorf("expected load duration > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.TotalDuration == 0 {
|
||||
t.Errorf("expected total duration > 0, got 0")
|
||||
}
|
||||
}
|
||||
|
||||
mock.CompletionResponse.Content = "Hi!"
|
||||
t.Run("messages", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, api.ChatRequest{
|
||||
Model: "test",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkChatResponse(t, w.Body, "test", "Hi!")
|
||||
})
|
||||
|
||||
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "test-system",
|
||||
Modelfile: "FROM test\nSYSTEM You are a helpful assistant.",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
t.Run("messages with model system", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, api.ChatRequest{
|
||||
Model: "test-system",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkChatResponse(t, w.Body, "test-system", "Hi!")
|
||||
})
|
||||
|
||||
mock.CompletionResponse.Content = "Abra kadabra!"
|
||||
t.Run("messages with system", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, api.ChatRequest{
|
||||
Model: "test-system",
|
||||
Messages: []api.Message{
|
||||
{Role: "system", Content: "You can perform magic tricks."},
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
|
||||
})
|
||||
|
||||
t.Run("messages with interleaved system", func(t *testing.T) {
|
||||
w := createRequest(t, s.ChatHandler, api.ChatRequest{
|
||||
Model: "test-system",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hello!"},
|
||||
{Role: "assistant", Content: "I can help you with that."},
|
||||
{Role: "system", Content: "You can perform magic tricks."},
|
||||
{Role: "user", Content: "Help me write tests."},
|
||||
},
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! Assistant: I can help you with that. System: You can perform magic tricks. User: Help me write tests. "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
|
||||
})
|
||||
}
|
||||
|
||||
func TestGenerate(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
mock := mockRunner{
|
||||
CompletionResponse: llm.CompletionResponse{
|
||||
Done: true,
|
||||
DoneReason: "stop",
|
||||
PromptEvalCount: 1,
|
||||
PromptEvalDuration: 1,
|
||||
EvalCount: 1,
|
||||
EvalDuration: 1,
|
||||
},
|
||||
}
|
||||
|
||||
s := Server{
|
||||
sched: &Scheduler{
|
||||
pendingReqCh: make(chan *LlmRequest, 1),
|
||||
finishedReqCh: make(chan *LlmRequest, 1),
|
||||
expiredCh: make(chan *runnerRef, 1),
|
||||
unloadedCh: make(chan any, 1),
|
||||
loaded: make(map[string]*runnerRef),
|
||||
newServerFn: newMockServer(&mock),
|
||||
getGpuFn: gpu.GetGPUInfo,
|
||||
getCpuFn: gpu.GetCPUInfo,
|
||||
reschedDelay: 250 * time.Millisecond,
|
||||
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
|
||||
req.successCh <- &runnerRef{
|
||||
llama: &mock,
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
go s.sched.Run(context.TODO())
|
||||
|
||||
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "test",
|
||||
Modelfile: fmt.Sprintf(`FROM %s
|
||||
TEMPLATE """
|
||||
{{- if .System }}System: {{ .System }} {{ end }}
|
||||
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
|
||||
`, createBinFile(t, llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.block_count": uint32(1),
|
||||
"llama.context_length": uint32(8192),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
"llama.attention.head_count": uint32(32),
|
||||
"llama.attention.head_count_kv": uint32(8),
|
||||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
t.Run("missing body", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, nil)
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("missing model", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{})
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("missing capabilities generate", func(t *testing.T) {
|
||||
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "bert",
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []llm.Tensor{})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
w = createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "bert",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"\"bert\" does not support generate"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("missing capabilities suffix", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test",
|
||||
Prompt: "def add(",
|
||||
Suffix: " return c",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusBadRequest {
|
||||
t.Errorf("expected status 400, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(w.Body.String(), `{"error":"test does not support insert"}`); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("load model", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
var actual api.GenerateResponse
|
||||
if err := json.NewDecoder(w.Body).Decode(&actual); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if actual.Model != "test" {
|
||||
t.Errorf("expected model test, got %s", actual.Model)
|
||||
}
|
||||
|
||||
if !actual.Done {
|
||||
t.Errorf("expected done true, got false")
|
||||
}
|
||||
|
||||
if actual.DoneReason != "load" {
|
||||
t.Errorf("expected done reason load, got %s", actual.DoneReason)
|
||||
}
|
||||
})
|
||||
|
||||
checkGenerateResponse := func(t *testing.T, body io.Reader, model, content string) {
|
||||
t.Helper()
|
||||
|
||||
var actual api.GenerateResponse
|
||||
if err := json.NewDecoder(body).Decode(&actual); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if actual.Model != model {
|
||||
t.Errorf("expected model test, got %s", actual.Model)
|
||||
}
|
||||
|
||||
if !actual.Done {
|
||||
t.Errorf("expected done false, got true")
|
||||
}
|
||||
|
||||
if actual.DoneReason != "stop" {
|
||||
t.Errorf("expected done reason stop, got %s", actual.DoneReason)
|
||||
}
|
||||
|
||||
if actual.Response != content {
|
||||
t.Errorf("expected response %s, got %s", content, actual.Response)
|
||||
}
|
||||
|
||||
if actual.Context == nil {
|
||||
t.Errorf("expected context not nil")
|
||||
}
|
||||
|
||||
if actual.PromptEvalCount == 0 {
|
||||
t.Errorf("expected prompt eval count > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.PromptEvalDuration == 0 {
|
||||
t.Errorf("expected prompt eval duration > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.EvalCount == 0 {
|
||||
t.Errorf("expected eval count > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.EvalDuration == 0 {
|
||||
t.Errorf("expected eval duration > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.LoadDuration == 0 {
|
||||
t.Errorf("expected load duration > 0, got 0")
|
||||
}
|
||||
|
||||
if actual.TotalDuration == 0 {
|
||||
t.Errorf("expected total duration > 0, got 0")
|
||||
}
|
||||
}
|
||||
|
||||
mock.CompletionResponse.Content = "Hi!"
|
||||
t.Run("prompt", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test",
|
||||
Prompt: "Hello!",
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkGenerateResponse(t, w.Body, "test", "Hi!")
|
||||
})
|
||||
|
||||
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "test-system",
|
||||
Modelfile: "FROM test\nSYSTEM You are a helpful assistant.",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
t.Run("prompt with model system", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test-system",
|
||||
Prompt: "Hello!",
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkGenerateResponse(t, w.Body, "test-system", "Hi!")
|
||||
})
|
||||
|
||||
mock.CompletionResponse.Content = "Abra kadabra!"
|
||||
t.Run("prompt with system", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test-system",
|
||||
Prompt: "Hello!",
|
||||
System: "You can perform magic tricks.",
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkGenerateResponse(t, w.Body, "test-system", "Abra kadabra!")
|
||||
})
|
||||
|
||||
t.Run("prompt with template", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test-system",
|
||||
Prompt: "Help me write tests.",
|
||||
System: "You can perform magic tricks.",
|
||||
Template: `{{- if .System }}{{ .System }} {{ end }}
|
||||
{{- if .Prompt }}### USER {{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}### ASSISTANT {{ .Response }} {{ end }}`,
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "You can perform magic tricks. ### USER Help me write tests. "); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
checkGenerateResponse(t, w.Body, "test-system", "Abra kadabra!")
|
||||
})
|
||||
|
||||
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
|
||||
Model: "test-suffix",
|
||||
Modelfile: `FROM test
|
||||
TEMPLATE """{{- if .Suffix }}<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
|
||||
{{- else }}{{ .Prompt }}
|
||||
{{- end }}"""`,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Fatalf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
t.Run("prompt with suffix", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test-suffix",
|
||||
Prompt: "def add(",
|
||||
Suffix: " return c",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "<PRE> def add( <SUF> return c <MID>"); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("prompt without suffix", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test-suffix",
|
||||
Prompt: "def add(",
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "def add("); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("raw", func(t *testing.T) {
|
||||
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
|
||||
Model: "test-system",
|
||||
Prompt: "Help me write tests.",
|
||||
Raw: true,
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status 200, got %d", w.Code)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "Help me write tests."); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -7,14 +7,11 @@ import (
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
)
|
||||
|
||||
func TestList(t *testing.T) {
|
||||
gin.SetMode(gin.TestMode)
|
||||
|
||||
t.Setenv("OLLAMA_MODELS", t.TempDir())
|
||||
envconfig.LoadConfig()
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"math"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
@@ -273,77 +272,6 @@ func Test_Routes(t *testing.T) {
|
||||
assert.Equal(t, "library", retrieveResp.OwnedBy)
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "Embed Handler Empty Input",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/embed",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
embedReq := api.EmbedRequest{
|
||||
Model: "t-bone",
|
||||
Input: "",
|
||||
}
|
||||
jsonData, err := json.Marshal(embedReq)
|
||||
require.NoError(t, err)
|
||||
req.Body = io.NopCloser(bytes.NewReader(jsonData))
|
||||
},
|
||||
Expected: func(t *testing.T, resp *http.Response) {
|
||||
contentType := resp.Header.Get("Content-Type")
|
||||
if contentType != "application/json; charset=utf-8" {
|
||||
t.Fatalf("expected content type application/json; charset=utf-8, got %s", contentType)
|
||||
}
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var embedResp api.EmbedResponse
|
||||
err = json.Unmarshal(body, &embedResp)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if embedResp.Model != "t-bone" {
|
||||
t.Fatalf("expected model t-bone, got %s", embedResp.Model)
|
||||
}
|
||||
|
||||
if embedResp.Embeddings == nil {
|
||||
t.Fatalf("expected embeddings to not be nil, got %v", embedResp.Embeddings)
|
||||
}
|
||||
|
||||
if len(embedResp.Embeddings) != 0 {
|
||||
t.Fatalf("expected embeddings to be empty, got %v", embedResp.Embeddings)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
Name: "Embed Handler Invalid Input",
|
||||
Method: http.MethodPost,
|
||||
Path: "/api/embed",
|
||||
Setup: func(t *testing.T, req *http.Request) {
|
||||
embedReq := api.EmbedRequest{
|
||||
Model: "t-bone",
|
||||
Input: 2,
|
||||
}
|
||||
jsonData, err := json.Marshal(embedReq)
|
||||
require.NoError(t, err)
|
||||
req.Body = io.NopCloser(bytes.NewReader(jsonData))
|
||||
},
|
||||
Expected: func(t *testing.T, resp *http.Response) {
|
||||
contentType := resp.Header.Get("Content-Type")
|
||||
if contentType != "application/json; charset=utf-8" {
|
||||
t.Fatalf("expected content type application/json; charset=utf-8, got %s", contentType)
|
||||
}
|
||||
_, err := io.ReadAll(resp.Body)
|
||||
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if resp.StatusCode != http.StatusBadRequest {
|
||||
t.Fatalf("expected status code 400, got %d", resp.StatusCode)
|
||||
}
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
t.Setenv("OLLAMA_MODELS", t.TempDir())
|
||||
@@ -492,38 +420,3 @@ func TestShow(t *testing.T) {
|
||||
t.Fatal("Expected projector architecture to be 'clip', but got", resp.ProjectorInfo["general.architecture"])
|
||||
}
|
||||
}
|
||||
|
||||
func TestNormalize(t *testing.T) {
|
||||
type testCase struct {
|
||||
input []float32
|
||||
}
|
||||
|
||||
testCases := []testCase{
|
||||
{input: []float32{1}},
|
||||
{input: []float32{0, 1, 2, 3}},
|
||||
{input: []float32{0.1, 0.2, 0.3}},
|
||||
{input: []float32{-0.1, 0.2, 0.3, -0.4}},
|
||||
{input: []float32{0, 0, 0}},
|
||||
}
|
||||
|
||||
isNormalized := func(vec []float32) (res bool) {
|
||||
sum := 0.0
|
||||
for _, v := range vec {
|
||||
sum += float64(v * v)
|
||||
}
|
||||
if math.Abs(sum-1) > 1e-6 {
|
||||
return sum == 0
|
||||
} else {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run("", func(t *testing.T) {
|
||||
normalized := normalize(tc.input)
|
||||
if !isNormalized(normalized) {
|
||||
t.Errorf("Vector %v is not normalized", tc.input)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -133,8 +133,17 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
numParallel = 1
|
||||
slog.Warn("multimodal models don't support parallel requests yet")
|
||||
}
|
||||
// Keep NumCtx and numParallel in sync
|
||||
if numParallel > 1 {
|
||||
pending.opts.NumCtx = pending.origNumCtx * numParallel
|
||||
}
|
||||
|
||||
for {
|
||||
cpus := s.getCpuFn()
|
||||
var systemMem gpu.GpuInfo
|
||||
if len(cpus) > 0 {
|
||||
systemMem = cpus[0]
|
||||
}
|
||||
var runnerToExpire *runnerRef
|
||||
s.loadedMu.Lock()
|
||||
runner := s.loaded[pending.model.ModelPath]
|
||||
@@ -188,15 +197,46 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
break
|
||||
}
|
||||
|
||||
estimate := llm.EstimateGPULayers(gpus, ggml, pending.model.ProjectorPaths, pending.opts)
|
||||
maxSize := systemMem.FreeMemory
|
||||
|
||||
// Add available GPU memory to the total pool
|
||||
// macOS hardware has unified memory so don't double count
|
||||
if runtime.GOOS != "darwin" {
|
||||
for _, gpu := range gpus {
|
||||
if gpu.Library == "cpu" {
|
||||
continue
|
||||
}
|
||||
if loadedCount == 0 {
|
||||
// If no other models are loaded, set the limit based on what's available
|
||||
maxSize += gpu.FreeMemory
|
||||
} else {
|
||||
// Other models could be unloaded, favor total memory for limit
|
||||
maxSize += gpu.TotalMemory
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Block attempting to load a model larger than system memory + GPU memory
|
||||
if estimate.TotalSize > maxSize {
|
||||
slog.Warn("model request too large for system", "requested", format.HumanBytes2(estimate.TotalSize), "system", format.HumanBytes2(maxSize))
|
||||
|
||||
// Linux will crash if over-allocating memory - return an error to the user.
|
||||
// TODO (jmorganca): add reasonable upper limits for darwin and windows as well
|
||||
if runtime.GOOS == "linux" {
|
||||
pending.errCh <- fmt.Errorf("requested model (%s) is too large for this system (%s)", format.HumanBytes2(estimate.TotalSize), format.HumanBytes2(maxSize))
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
// simplifying assumption of defaultParallel when in CPU mode
|
||||
if numParallel <= 0 {
|
||||
numParallel = defaultParallel
|
||||
pending.opts.NumCtx = pending.origNumCtx * numParallel
|
||||
}
|
||||
|
||||
pending.opts.NumCtx = pending.origNumCtx * numParallel
|
||||
|
||||
if loadedCount == 0 {
|
||||
slog.Debug("cpu mode with first model, loading")
|
||||
s.loadFn(pending, ggml, gpus, numParallel)
|
||||
|
||||
@@ -3,7 +3,6 @@ package server
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
@@ -115,8 +114,7 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
|
||||
require.NoError(t, err)
|
||||
defer f.Close()
|
||||
|
||||
gguf := llm.NewGGUFV3(binary.LittleEndian)
|
||||
err = gguf.Encode(f, llm.KV{
|
||||
require.NoError(t, llm.WriteGGUF(f, llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": "name",
|
||||
"llama.context_length": uint32(32),
|
||||
@@ -127,10 +125,10 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
|
||||
"tokenizer.ggml.tokens": []string{" "},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
}, []*llm.Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
})
|
||||
}))
|
||||
require.NoError(t, err)
|
||||
|
||||
fname := f.Name()
|
||||
@@ -642,8 +640,8 @@ type mockLlm struct {
|
||||
pingResp error
|
||||
waitResp error
|
||||
completionResp error
|
||||
embedResp [][]float32
|
||||
embedRespErr error
|
||||
embeddingResp []float64
|
||||
embeddingRespErr error
|
||||
tokenizeResp []int
|
||||
tokenizeRespErr error
|
||||
detokenizeResp string
|
||||
@@ -660,8 +658,8 @@ func (s *mockLlm) WaitUntilRunning(ctx context.Context) error { return s.waitRes
|
||||
func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
|
||||
return s.completionResp
|
||||
}
|
||||
func (s *mockLlm) Embed(ctx context.Context, input []string) ([][]float32, error) {
|
||||
return s.embedResp, s.embedRespErr
|
||||
func (s *mockLlm) Embedding(ctx context.Context, prompt string) ([]float64, error) {
|
||||
return s.embeddingResp, s.embeddingRespErr
|
||||
}
|
||||
func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) {
|
||||
return s.tokenizeResp, s.tokenizeRespErr
|
||||
|
||||
67
server/testdata/tools/command-r-plus.gotmpl
vendored
67
server/testdata/tools/command-r-plus.gotmpl
vendored
@@ -1,67 +0,0 @@
|
||||
{{- if or .Tools .System }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
|
||||
{{- if .Tools }}# Safety Preamble
|
||||
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
|
||||
|
||||
# System Preamble
|
||||
## Basic Rules
|
||||
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
|
||||
|
||||
{{ if .System }}# User Preamble
|
||||
{{ .System }}
|
||||
{{- end }}
|
||||
|
||||
## Available Tools
|
||||
Here is a list of tools that you have available to you:
|
||||
{{- range .Tools }}
|
||||
|
||||
```python
|
||||
def {{ .Function.Name }}(
|
||||
{{- range $name, $property := .Function.Parameters.Properties }}{{ $name }}: {{ $property.Type }}, {{ end }}) -> List[Dict]:
|
||||
"""{{ .Function.Description }}
|
||||
|
||||
{{- if .Function.Parameters.Properties }}
|
||||
|
||||
Args:
|
||||
{{- range $name, $property := .Function.Parameters.Properties }}
|
||||
{{ $name }} ({{ $property.Type }}): {{ $property.Description }}
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
"""
|
||||
pass
|
||||
```
|
||||
{{- end }}
|
||||
{{- else if .System }}{{ .System }}
|
||||
{{- end }}<|END_OF_TURN_TOKEN|>
|
||||
{{- end }}
|
||||
{{- range .Messages }}
|
||||
{{- if eq .Role "system" }}
|
||||
{{- continue }}
|
||||
{{- end }}<|START_OF_TURN_TOKEN|>
|
||||
{{- if eq .Role "user" }}<|USER_TOKEN|>{{ .Content }}
|
||||
{{- else if eq .Role "assistant" }}<|CHATBOT_TOKEN|>
|
||||
{{- if .Content }}{{ .Content }}
|
||||
{{- else if .ToolCalls }}
|
||||
Action: ```json
|
||||
[
|
||||
{{- range .ToolCalls }}
|
||||
{
|
||||
"tool_name": "{{ .Function.Name }}",
|
||||
"parameters": {{ .Function.Arguments }}
|
||||
}
|
||||
{{- end }}
|
||||
]```
|
||||
{{ continue }}
|
||||
{{ end }}
|
||||
{{- else if eq .Role "tool" }}<|SYSTEM_TOKEN|><results>
|
||||
{{ .Content }}</results>
|
||||
{{- end }}<|END_OF_TURN_TOKEN|>
|
||||
{{- end }}
|
||||
{{- if .Tools }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
|
||||
```json
|
||||
[
|
||||
{
|
||||
"tool_name": title of the tool in the specification,
|
||||
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
|
||||
}
|
||||
]```
|
||||
{{- end }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
39
server/testdata/tools/command-r-plus.out
vendored
39
server/testdata/tools/command-r-plus.out
vendored
@@ -1,39 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
|
||||
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
|
||||
|
||||
# System Preamble
|
||||
## Basic Rules
|
||||
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
|
||||
|
||||
# User Preamble
|
||||
You are a knowledgable assistant. You can answer questions and perform tasks.
|
||||
|
||||
## Available Tools
|
||||
Here is a list of tools that you have available to you:
|
||||
|
||||
```python
|
||||
def get_current_weather(format: string, location: string, ) -> List[Dict]:
|
||||
"""Get the current weather
|
||||
|
||||
Args:
|
||||
format (string): The temperature unit to use. Infer this from the users location.
|
||||
location (string): The city and state, e.g. San Francisco, CA
|
||||
"""
|
||||
pass
|
||||
```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>What's the weather like today in Paris?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
Action: ```json
|
||||
[
|
||||
{
|
||||
"tool_name": "get_current_weather",
|
||||
"parameters": {"format":"celsius","location":"Paris, France"}
|
||||
}
|
||||
]```
|
||||
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results>
|
||||
22</results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>The current temperature in Paris, France is 22 degrees Celsius.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>What's the weather like today in San Francisco and Toronto?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
|
||||
```json
|
||||
[
|
||||
{
|
||||
"tool_name": title of the tool in the specification,
|
||||
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
|
||||
}
|
||||
]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
31
server/testdata/tools/firefunction.gotmpl
vendored
31
server/testdata/tools/firefunction.gotmpl
vendored
@@ -1,31 +0,0 @@
|
||||
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
|
||||
{{- if .System }}
|
||||
{{ .System }}
|
||||
{{- end }}
|
||||
In addition to plain text responses, you can chose to call one or more of the provided functions.
|
||||
|
||||
Use the following rule to decide when to call a function:
|
||||
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
|
||||
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
|
||||
|
||||
If you decide to call functions:
|
||||
* prefix function calls with functools marker (no closing marker required)
|
||||
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
|
||||
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
|
||||
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
|
||||
* make sure you pick the right functions that match the user intent
|
||||
|
||||
Available functions as JSON spec:
|
||||
{{- if .Tools }}
|
||||
{{ .Tools }}
|
||||
{{- end }}<|eot_id|>
|
||||
{{- end }}
|
||||
{{- range .Messages }}<|start_header_id|>
|
||||
{{- if or (eq .Role "user") (eq .Role "assistant") (eq .Role "tool") }}{{ .Role }}
|
||||
{{- end }}<|end_header_id|>
|
||||
{{- if .Content }}{{ .Content }}
|
||||
{{- else if .ToolCalls }} functools[
|
||||
{{- range .ToolCalls }}{{ "{" }}"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}{{ "}" }}
|
||||
{{- end }}]
|
||||
{{- end }}<|eot_id|>
|
||||
{{- end }}<|start_header_id|>assistant<|end_header_id|>
|
||||
17
server/testdata/tools/firefunction.out
vendored
17
server/testdata/tools/firefunction.out
vendored
@@ -1,17 +0,0 @@
|
||||
<|start_header_id|>system<|end_header_id|>
|
||||
You are a knowledgable assistant. You can answer questions and perform tasks.
|
||||
In addition to plain text responses, you can chose to call one or more of the provided functions.
|
||||
|
||||
Use the following rule to decide when to call a function:
|
||||
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
|
||||
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
|
||||
|
||||
If you decide to call functions:
|
||||
* prefix function calls with functools marker (no closing marker required)
|
||||
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
|
||||
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
|
||||
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
|
||||
* make sure you pick the right functions that match the user intent
|
||||
|
||||
Available functions as JSON spec:
|
||||
[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}]<|eot_id|><|start_header_id|><|end_header_id|>You are a knowledgable assistant. You can answer questions and perform tasks.<|eot_id|><|start_header_id|>user<|end_header_id|>What's the weather like today in Paris?<|eot_id|><|start_header_id|>assistant<|end_header_id|> functools[{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]<|eot_id|><|start_header_id|>tool<|end_header_id|>22<|eot_id|><|start_header_id|>assistant<|end_header_id|>The current temperature in Paris, France is 22 degrees Celsius.<|eot_id|><|start_header_id|>user<|end_header_id|>What's the weather like today in San Francisco and Toronto?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
||||
@@ -1,43 +0,0 @@
|
||||
{{- if .Messages }}
|
||||
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
{{ .System }}
|
||||
{{- if .Tools }} You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{"name": <function-name>,"arguments": <args-dict>}
|
||||
</tool_call>
|
||||
|
||||
Here are the available tools:
|
||||
<tools>
|
||||
{{- range .Tools }} {{ .Function }}
|
||||
{{- end }} </tools>
|
||||
{{- end }}
|
||||
{{- end }}<|eot_id|>
|
||||
{{- range .Messages }}
|
||||
{{- if ne .Role "system" }}<|start_header_id|>{{ .Role }}<|end_header_id|>
|
||||
|
||||
{{ if eq .Role "user" }}{{ .Content }}
|
||||
{{- else if eq .Role "assistant" }}
|
||||
{{- if .Content }}{{ .Content }}
|
||||
{{- else if .ToolCalls }}<tool_call>
|
||||
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
|
||||
{{- end }}
|
||||
</tool_call>
|
||||
{{- end }}
|
||||
{{- else if eq .Role "tool" }}<tool_response>
|
||||
{{ .Content }}
|
||||
</tool_response>
|
||||
{{- end }}<|eot_id|>
|
||||
{{- end }}
|
||||
{{- end }}<|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
{{ else }}
|
||||
{{ if .System }}<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
|
||||
|
||||
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
{{ end }}{{ .Response }}
|
||||
{{- if .Response }}<|eot_id|>
|
||||
{{- end }}
|
||||
24
server/testdata/tools/llama3-groq-tool-use.out
vendored
24
server/testdata/tools/llama3-groq-tool-use.out
vendored
@@ -1,24 +0,0 @@
|
||||
<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
You are a knowledgable assistant. You can answer questions and perform tasks. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{"name": <function-name>,"arguments": <args-dict>}
|
||||
</tool_call>
|
||||
|
||||
Here are the available tools:
|
||||
<tools> {"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}} </tools><|eot_id|><|start_header_id|>user<|end_header_id|>
|
||||
|
||||
What's the weather like today in Paris?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
<tool_call>
|
||||
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}
|
||||
</tool_call><|eot_id|><|start_header_id|>tool<|end_header_id|>
|
||||
|
||||
<tool_response>
|
||||
22
|
||||
</tool_response><|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
The current temperature in Paris, France is 22 degrees Celsius.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
||||
|
||||
What's the weather like today in San Francisco and Toronto?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
39
server/testdata/tools/messages.json
vendored
39
server/testdata/tools/messages.json
vendored
@@ -1,39 +0,0 @@
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a knowledgable assistant. You can answer questions and perform tasks."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like today in Paris?"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "89a1e453-0bce-4de3-a456-c54bed09c520",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"arguments": {
|
||||
"location": "Paris, France",
|
||||
"format": "celsius"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "tool",
|
||||
"tool_call_id": "89a1e453-0bce-4de3-a456-c54bed09c520",
|
||||
"content": "22"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "The current temperature in Paris, France is 22 degrees Celsius."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like today in San Francisco and Toronto?"
|
||||
}
|
||||
]
|
||||
15
server/testdata/tools/mistral.gotmpl
vendored
15
server/testdata/tools/mistral.gotmpl
vendored
@@ -1,15 +0,0 @@
|
||||
{{- range $index, $_ := .Messages }}
|
||||
{{- if eq .Role "user" }}
|
||||
{{- if and (eq (len (slice $.Messages $index)) 1) $.Tools }}[AVAILABLE_TOOLS] {{ $.Tools }}[/AVAILABLE_TOOLS]
|
||||
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
|
||||
|
||||
{{ end }}{{ .Content }}[/INST]
|
||||
{{- else if eq .Role "assistant" }}
|
||||
{{- if .Content }} {{ .Content }}</s>
|
||||
{{- else if .ToolCalls }}[TOOL_CALLS] [
|
||||
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
|
||||
{{- end }}]</s>
|
||||
{{- end }}
|
||||
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
3
server/testdata/tools/mistral.out
vendored
3
server/testdata/tools/mistral.out
vendored
@@ -1,3 +0,0 @@
|
||||
[INST] What's the weather like today in Paris?[/INST][TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]</s>[TOOL_RESULTS] {"content": 22}[/TOOL_RESULTS] The current temperature in Paris, France is 22 degrees Celsius.</s>[AVAILABLE_TOOLS] [{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}][/AVAILABLE_TOOLS][INST] You are a knowledgable assistant. You can answer questions and perform tasks.
|
||||
|
||||
What's the weather like today in San Francisco and Toronto?[/INST]
|
||||
30
server/testdata/tools/tools.json
vendored
30
server/testdata/tools/tools.json
vendored
@@ -1,30 +0,0 @@
|
||||
[
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA"
|
||||
},
|
||||
"format": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"celsius",
|
||||
"fahrenheit"
|
||||
],
|
||||
"description": "The temperature unit to use. Infer this from the users location."
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"location",
|
||||
"format"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
@@ -4,5 +4,4 @@
|
||||
{{ .Prompt }}
|
||||
|
||||
{{ end }}### Response:
|
||||
{{ .Response }}
|
||||
|
||||
{{ .Response }}
|
||||
@@ -3,4 +3,4 @@
|
||||
{{ end }}{{ if .Prompt }}<|im_start|>user
|
||||
{{ .Prompt }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ .Response }}<|im_end|>
|
||||
{{ .Response }}<|im_end|>
|
||||
@@ -2,5 +2,4 @@
|
||||
|
||||
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
|
||||
|
||||
{{ end }}Assistant: {{ .Response }}
|
||||
|
||||
{{ end }}Assistant: <|begin_of_text|>{{ .Response }}
|
||||
@@ -1,10 +1,8 @@
|
||||
{{ if .System }}Source: system
|
||||
{{ if .System }} Source: system
|
||||
|
||||
{{ .System }} <step> {{ end }}Source: user
|
||||
{{ .System }} <step>{{ end }} Source: user
|
||||
|
||||
{{ .Prompt }} <step> Source: assistant
|
||||
{{- if not .Response }}
|
||||
Destination: user
|
||||
{{- end }}
|
||||
|
||||
{{ .Response }} <step>
|
||||
{{ .Response }}<step>
|
||||
@@ -1,5 +1,3 @@
|
||||
{{ if .System }}System: {{ .System }}
|
||||
{{ end }}{{ if .Prompt }}User:
|
||||
{{ .Prompt }}
|
||||
{{ end }}Falcon:
|
||||
{{ .Response }}
|
||||
{{ if .System }}{{ .System }}
|
||||
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
|
||||
{{ end }}Assistant: {{ .Response }}
|
||||
@@ -1,5 +1,4 @@
|
||||
<start_of_turn>user
|
||||
{{ if .System }}{{ .System }}
|
||||
{{ end }}{{ .Prompt }}<end_of_turn>
|
||||
{{ if .System }}{{ .System }} {{ end }}{{ .Prompt }}<end_of_turn>
|
||||
<start_of_turn>model
|
||||
{{ .Response }}<end_of_turn>
|
||||
{{ .Response }}<end_of_turn>
|
||||
@@ -1,9 +1,9 @@
|
||||
{{ if .System }}System:
|
||||
{{ if .System }}
|
||||
System:
|
||||
{{ .System }}
|
||||
|
||||
{{ end }}{{ if .Prompt }}Question:
|
||||
{{ .Prompt }}
|
||||
|
||||
{{ end }}Answer:
|
||||
{{ .Response }}
|
||||
|
||||
{{ .Response }}
|
||||
@@ -1,6 +1,3 @@
|
||||
[INST] <<SYS>>
|
||||
{{- if .System }}
|
||||
{{ .System }}
|
||||
{{ end }}<</SYS>>
|
||||
[INST] <<SYS>>{{ .System }}<</SYS>>
|
||||
|
||||
{{ .Prompt }} [/INST] {{ .Response }}</s><s>
|
||||
{{ .Prompt }} [/INST] {{ .Response }}
|
||||
@@ -4,5 +4,4 @@
|
||||
{{ .Prompt }}
|
||||
|
||||
{{ end }}@@ Response
|
||||
{{ .Response }}
|
||||
|
||||
{{ .Response }}
|
||||
@@ -1,3 +1,6 @@
|
||||
[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}</s>
|
||||
{{ if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
{{ end }}{{ if .Prompt }}<|im_start|>user
|
||||
{{ .Prompt }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ .Response }}<|im_end|>
|
||||
@@ -1 +1 @@
|
||||
{{ if .System }}GPT4 Correct System: {{ .System }}<|end_of_turn|>{{ end }}GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>
|
||||
{{ .System }}<|end_of_turn|>GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>
|
||||
@@ -3,4 +3,4 @@
|
||||
{{ end }}{{ if .Prompt }}<|user|>
|
||||
{{ .Prompt }}<|end|>
|
||||
{{ end }}<|assistant|>
|
||||
{{ .Response }}<|end|>
|
||||
{{ .Response }}<|end|>
|
||||
@@ -5,5 +5,4 @@
|
||||
{{ .Prompt }}
|
||||
|
||||
{{ end }}### Assistant:
|
||||
{{ .Response }}</s>
|
||||
|
||||
{{ .Response }}
|
||||
@@ -3,6 +3,7 @@
|
||||
{{ end }}{{ if .Prompt }}### Instruction
|
||||
{{ .Prompt }}
|
||||
|
||||
|
||||
{{ end }}### Response
|
||||
{{ .Response }}<|endoftext|>
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@ import (
|
||||
"embed"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"math"
|
||||
"slices"
|
||||
@@ -15,7 +14,6 @@ import (
|
||||
"text/template/parse"
|
||||
|
||||
"github.com/agnivade/levenshtein"
|
||||
"github.com/ollama/ollama/api"
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
@@ -76,66 +74,30 @@ func Named(s string) (*named, error) {
|
||||
return nil, errors.New("no matching template found")
|
||||
}
|
||||
|
||||
var DefaultTemplate, _ = Parse("{{ .Prompt }}")
|
||||
|
||||
type Template struct {
|
||||
*template.Template
|
||||
raw string
|
||||
}
|
||||
|
||||
// response is a template node that can be added to templates that don't already have one
|
||||
var response = parse.ActionNode{
|
||||
NodeType: parse.NodeAction,
|
||||
Pipe: &parse.PipeNode{
|
||||
NodeType: parse.NodePipe,
|
||||
Cmds: []*parse.CommandNode{
|
||||
{
|
||||
NodeType: parse.NodeCommand,
|
||||
Args: []parse.Node{
|
||||
&parse.FieldNode{
|
||||
NodeType: parse.NodeField,
|
||||
Ident: []string{"Response"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
var funcs = template.FuncMap{
|
||||
"json": func(v any) string {
|
||||
b, _ := json.Marshal(v)
|
||||
return string(b)
|
||||
},
|
||||
}
|
||||
|
||||
func Parse(s string) (*Template, error) {
|
||||
tmpl := template.New("").Option("missingkey=zero").Funcs(funcs)
|
||||
|
||||
tmpl, err := tmpl.Parse(s)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t := Template{Template: tmpl, raw: s}
|
||||
if vars := t.Vars(); !slices.Contains(vars, "messages") && !slices.Contains(vars, "response") {
|
||||
// touch up the template and append {{ .Response }}
|
||||
tmpl.Tree.Root.Nodes = append(tmpl.Tree.Root.Nodes, &response)
|
||||
}
|
||||
|
||||
return &t, nil
|
||||
}
|
||||
|
||||
func (t *Template) String() string {
|
||||
return t.raw
|
||||
}
|
||||
|
||||
var DefaultTemplate, _ = Parse("{{ .Prompt }}")
|
||||
|
||||
func Parse(s string) (*Template, error) {
|
||||
t, err := template.New("").Option("missingkey=zero").Parse(s)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &Template{Template: t, raw: s}, nil
|
||||
}
|
||||
|
||||
func (t *Template) Vars() []string {
|
||||
var vars []string
|
||||
for _, tt := range t.Templates() {
|
||||
for _, n := range tt.Root.Nodes {
|
||||
vars = append(vars, Identifiers(n)...)
|
||||
}
|
||||
for _, n := range t.Tree.Root.Nodes {
|
||||
vars = append(vars, parseNode(n)...)
|
||||
}
|
||||
|
||||
set := make(map[string]struct{})
|
||||
@@ -148,284 +110,49 @@ func (t *Template) Vars() []string {
|
||||
return vars
|
||||
}
|
||||
|
||||
type Values struct {
|
||||
Messages []api.Message
|
||||
api.Tools
|
||||
Prompt string
|
||||
Suffix string
|
||||
|
||||
// forceLegacy is a flag used to test compatibility with legacy templates
|
||||
forceLegacy bool
|
||||
}
|
||||
|
||||
func (t *Template) Subtree(fn func(parse.Node) bool) *template.Template {
|
||||
var walk func(parse.Node) parse.Node
|
||||
walk = func(n parse.Node) parse.Node {
|
||||
if fn(n) {
|
||||
return n
|
||||
}
|
||||
|
||||
switch t := n.(type) {
|
||||
case *parse.ListNode:
|
||||
for _, c := range t.Nodes {
|
||||
if n := walk(c); n != nil {
|
||||
return n
|
||||
}
|
||||
}
|
||||
case *parse.BranchNode:
|
||||
for _, n := range []*parse.ListNode{t.List, t.ElseList} {
|
||||
if n != nil {
|
||||
if n := walk(n); n != nil {
|
||||
return n
|
||||
}
|
||||
}
|
||||
}
|
||||
case *parse.IfNode:
|
||||
return walk(&t.BranchNode)
|
||||
case *parse.WithNode:
|
||||
return walk(&t.BranchNode)
|
||||
case *parse.RangeNode:
|
||||
return walk(&t.BranchNode)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
if n := walk(t.Tree.Root); n != nil {
|
||||
return (&template.Template{
|
||||
Tree: &parse.Tree{
|
||||
Root: &parse.ListNode{
|
||||
Nodes: []parse.Node{n},
|
||||
},
|
||||
},
|
||||
}).Funcs(funcs)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *Template) Execute(w io.Writer, v Values) error {
|
||||
system, messages := collate(v.Messages)
|
||||
if v.Prompt != "" && v.Suffix != "" {
|
||||
return t.Template.Execute(w, map[string]any{
|
||||
"Prompt": v.Prompt,
|
||||
"Suffix": v.Suffix,
|
||||
"Response": "",
|
||||
})
|
||||
} else if !v.forceLegacy && slices.Contains(t.Vars(), "messages") {
|
||||
return t.Template.Execute(w, map[string]any{
|
||||
"System": system,
|
||||
"Messages": messages,
|
||||
"Tools": v.Tools,
|
||||
"Response": "",
|
||||
})
|
||||
}
|
||||
|
||||
system = ""
|
||||
var b bytes.Buffer
|
||||
var prompt, response string
|
||||
for _, m := range messages {
|
||||
execute := func() error {
|
||||
if err := t.Template.Execute(&b, map[string]any{
|
||||
"System": system,
|
||||
"Prompt": prompt,
|
||||
"Response": response,
|
||||
}); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
system = ""
|
||||
prompt = ""
|
||||
response = ""
|
||||
return nil
|
||||
}
|
||||
|
||||
switch m.Role {
|
||||
case "system":
|
||||
if prompt != "" || response != "" {
|
||||
if err := execute(); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
system = m.Content
|
||||
case "user":
|
||||
if response != "" {
|
||||
if err := execute(); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
prompt = m.Content
|
||||
case "assistant":
|
||||
response = m.Content
|
||||
}
|
||||
}
|
||||
|
||||
var cut bool
|
||||
nodes := deleteNode(t.Template.Root.Copy(), func(n parse.Node) bool {
|
||||
if field, ok := n.(*parse.FieldNode); ok && slices.Contains(field.Ident, "Response") {
|
||||
cut = true
|
||||
}
|
||||
|
||||
return cut
|
||||
})
|
||||
|
||||
tree := parse.Tree{Root: nodes.(*parse.ListNode)}
|
||||
if err := template.Must(template.New("").AddParseTree("", &tree)).Execute(&b, map[string]any{
|
||||
"System": system,
|
||||
"Prompt": prompt,
|
||||
"Response": "",
|
||||
}); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err := io.Copy(w, &b)
|
||||
return err
|
||||
}
|
||||
|
||||
// collate messages based on role. consecutive messages of the same role are merged
|
||||
// into a single message. collate also collects and returns all system messages.
|
||||
// collate mutates message content adding image tags ([img-%d]) as needed
|
||||
func collate(msgs []api.Message) (string, []*api.Message) {
|
||||
var n int
|
||||
|
||||
var system []string
|
||||
var collated []*api.Message
|
||||
for i := range msgs {
|
||||
msg := msgs[i]
|
||||
for range msg.Images {
|
||||
imageTag := fmt.Sprintf("[img-%d]", n)
|
||||
if !strings.Contains(msg.Content, "[img]") {
|
||||
msg.Content = strings.TrimSpace("[img] " + msg.Content)
|
||||
}
|
||||
|
||||
msg.Content = strings.Replace(msg.Content, "[img]", imageTag, 1)
|
||||
n++
|
||||
}
|
||||
|
||||
if msg.Role == "system" {
|
||||
system = append(system, msg.Content)
|
||||
}
|
||||
|
||||
if len(collated) > 0 && collated[len(collated)-1].Role == msg.Role {
|
||||
collated[len(collated)-1].Content += "\n\n" + msg.Content
|
||||
} else {
|
||||
collated = append(collated, &msg)
|
||||
}
|
||||
}
|
||||
|
||||
return strings.Join(system, "\n\n"), collated
|
||||
}
|
||||
|
||||
// Identifiers walks the node tree returning any identifiers it finds along the way
|
||||
func Identifiers(n parse.Node) []string {
|
||||
func parseNode(n parse.Node) []string {
|
||||
switch n := n.(type) {
|
||||
case *parse.ListNode:
|
||||
var names []string
|
||||
for _, n := range n.Nodes {
|
||||
names = append(names, Identifiers(n)...)
|
||||
}
|
||||
|
||||
return names
|
||||
case *parse.TemplateNode:
|
||||
return Identifiers(n.Pipe)
|
||||
case *parse.ActionNode:
|
||||
return Identifiers(n.Pipe)
|
||||
case *parse.BranchNode:
|
||||
names := Identifiers(n.Pipe)
|
||||
for _, n := range []*parse.ListNode{n.List, n.ElseList} {
|
||||
if n != nil {
|
||||
names = append(names, Identifiers(n)...)
|
||||
}
|
||||
return parseNode(n.Pipe)
|
||||
case *parse.IfNode:
|
||||
names := parseNode(n.Pipe)
|
||||
names = append(names, parseNode(n.List)...)
|
||||
if n.ElseList != nil {
|
||||
names = append(names, parseNode(n.ElseList)...)
|
||||
}
|
||||
return names
|
||||
case *parse.IfNode:
|
||||
return Identifiers(&n.BranchNode)
|
||||
case *parse.RangeNode:
|
||||
return Identifiers(&n.BranchNode)
|
||||
names := parseNode(n.Pipe)
|
||||
names = append(names, parseNode(n.List)...)
|
||||
if n.ElseList != nil {
|
||||
names = append(names, parseNode(n.ElseList)...)
|
||||
}
|
||||
return names
|
||||
case *parse.WithNode:
|
||||
return Identifiers(&n.BranchNode)
|
||||
names := parseNode(n.Pipe)
|
||||
names = append(names, parseNode(n.List)...)
|
||||
if n.ElseList != nil {
|
||||
names = append(names, parseNode(n.ElseList)...)
|
||||
}
|
||||
return names
|
||||
case *parse.PipeNode:
|
||||
var names []string
|
||||
for _, c := range n.Cmds {
|
||||
for _, a := range c.Args {
|
||||
names = append(names, Identifiers(a)...)
|
||||
names = append(names, parseNode(a)...)
|
||||
}
|
||||
}
|
||||
return names
|
||||
case *parse.ListNode:
|
||||
var names []string
|
||||
for _, n := range n.Nodes {
|
||||
names = append(names, parseNode(n)...)
|
||||
}
|
||||
|
||||
return names
|
||||
case *parse.FieldNode:
|
||||
return n.Ident
|
||||
case *parse.VariableNode:
|
||||
return n.Ident
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// deleteNode walks the node list and deletes nodes that match the predicate
|
||||
// this is currently to remove the {{ .Response }} node from templates
|
||||
func deleteNode(n parse.Node, fn func(parse.Node) bool) parse.Node {
|
||||
var walk func(n parse.Node) parse.Node
|
||||
walk = func(n parse.Node) parse.Node {
|
||||
if fn(n) {
|
||||
return nil
|
||||
}
|
||||
|
||||
switch t := n.(type) {
|
||||
case *parse.ListNode:
|
||||
var nodes []parse.Node
|
||||
for _, c := range t.Nodes {
|
||||
if n := walk(c); n != nil {
|
||||
nodes = append(nodes, n)
|
||||
}
|
||||
}
|
||||
|
||||
t.Nodes = nodes
|
||||
return t
|
||||
case *parse.IfNode:
|
||||
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
|
||||
case *parse.WithNode:
|
||||
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
|
||||
case *parse.RangeNode:
|
||||
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
|
||||
case *parse.BranchNode:
|
||||
t.List = walk(t.List).(*parse.ListNode)
|
||||
if t.ElseList != nil {
|
||||
t.ElseList = walk(t.ElseList).(*parse.ListNode)
|
||||
}
|
||||
case *parse.ActionNode:
|
||||
n := walk(t.Pipe)
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
t.Pipe = n.(*parse.PipeNode)
|
||||
case *parse.PipeNode:
|
||||
var commands []*parse.CommandNode
|
||||
for _, c := range t.Cmds {
|
||||
var args []parse.Node
|
||||
for _, a := range c.Args {
|
||||
if n := walk(a); n != nil {
|
||||
args = append(args, n)
|
||||
}
|
||||
}
|
||||
|
||||
if len(args) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
c.Args = args
|
||||
commands = append(commands, c)
|
||||
}
|
||||
|
||||
if len(commands) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
t.Cmds = commands
|
||||
}
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
return walk(n)
|
||||
}
|
||||
|
||||
@@ -8,11 +8,9 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
"text/template"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
@@ -48,7 +46,7 @@ func TestNamed(t *testing.T) {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
tmpl, err := Parse(b.String())
|
||||
tmpl, err := template.New(s).Parse(b.String())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -61,125 +59,18 @@ func TestNamed(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestTemplate(t *testing.T) {
|
||||
cases := make(map[string][]api.Message)
|
||||
for _, mm := range [][]api.Message{
|
||||
{
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
},
|
||||
{
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
{Role: "assistant", Content: "I'm doing great. How can I help you today?"},
|
||||
{Role: "user", Content: "I'd like to show off how chat templating works!"},
|
||||
},
|
||||
{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
{Role: "assistant", Content: "I'm doing great. How can I help you today?"},
|
||||
{Role: "user", Content: "I'd like to show off how chat templating works!"},
|
||||
},
|
||||
} {
|
||||
var roles []string
|
||||
for _, m := range mm {
|
||||
roles = append(roles, m.Role)
|
||||
}
|
||||
|
||||
cases[strings.Join(roles, "-")] = mm
|
||||
}
|
||||
|
||||
matches, err := filepath.Glob("*.gotmpl")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
for _, match := range matches {
|
||||
t.Run(match, func(t *testing.T) {
|
||||
bts, err := os.ReadFile(match)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
tmpl, err := Parse(string(bts))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
for n, tt := range cases {
|
||||
var actual bytes.Buffer
|
||||
t.Run(n, func(t *testing.T) {
|
||||
if err := tmpl.Execute(&actual, Values{Messages: tt}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect, err := os.ReadFile(filepath.Join("testdata", match, n))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
bts := actual.Bytes()
|
||||
|
||||
if slices.Contains([]string{"chatqa.gotmpl", "llama2-chat.gotmpl", "mistral-instruct.gotmpl", "openchat.gotmpl", "vicuna.gotmpl"}, match) && bts[len(bts)-1] == ' ' {
|
||||
t.Log("removing trailing space from output")
|
||||
bts = bts[:len(bts)-1]
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(bts, expect); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("legacy", func(t *testing.T) {
|
||||
t.Skip("legacy outputs are currently default outputs")
|
||||
var legacy bytes.Buffer
|
||||
if err := tmpl.Execute(&legacy, Values{Messages: tt, forceLegacy: true}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
legacyBytes := legacy.Bytes()
|
||||
if slices.Contains([]string{"chatqa.gotmpl", "openchat.gotmpl", "vicuna.gotmpl"}, match) && legacyBytes[len(legacyBytes)-1] == ' ' {
|
||||
t.Log("removing trailing space from legacy output")
|
||||
legacyBytes = legacyBytes[:len(legacyBytes)-1]
|
||||
} else if slices.Contains([]string{"codellama-70b-instruct.gotmpl", "llama2-chat.gotmpl", "mistral-instruct.gotmpl"}, match) {
|
||||
t.Skip("legacy outputs cannot be compared to messages outputs")
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(legacyBytes, actual.Bytes()); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestParse(t *testing.T) {
|
||||
cases := []struct {
|
||||
template string
|
||||
vars []string
|
||||
}{
|
||||
{"{{ .Prompt }}", []string{"prompt", "response"}},
|
||||
{"{{ .System }} {{ .Prompt }}", []string{"prompt", "response", "system"}},
|
||||
{"{{ .Prompt }}", []string{"prompt"}},
|
||||
{"{{ .System }} {{ .Prompt }}", []string{"prompt", "system"}},
|
||||
{"{{ .System }} {{ .Prompt }} {{ .Response }}", []string{"prompt", "response", "system"}},
|
||||
{"{{ with .Tools }}{{ . }}{{ end }} {{ .System }} {{ .Prompt }}", []string{"prompt", "response", "system", "tools"}},
|
||||
{"{{ with .Tools }}{{ . }}{{ end }} {{ .System }} {{ .Prompt }}", []string{"prompt", "system", "tools"}},
|
||||
{"{{ range .Messages }}{{ .Role }} {{ .Content }}{{ end }}", []string{"content", "messages", "role"}},
|
||||
{`{{- range .Messages }}
|
||||
{{- if eq .Role "system" }}SYSTEM:
|
||||
{{- else if eq .Role "user" }}USER:
|
||||
{{- else if eq .Role "assistant" }}ASSISTANT:
|
||||
{{- end }} {{ .Content }}
|
||||
{{- end }}`, []string{"content", "messages", "role"}},
|
||||
{`{{- if .Messages }}
|
||||
{{- range .Messages }}<|im_start|>{{ .Role }}
|
||||
{{ .Content }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ else -}}
|
||||
{{ if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
{{ end }}{{ if .Prompt }}<|im_start|>user
|
||||
{{ .Prompt }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ .Response }}<|im_end|>
|
||||
{{- end -}}`, []string{"content", "messages", "prompt", "response", "role", "system"}},
|
||||
{"{{ range .Messages }}{{ if eq .Role \"system\" }}SYSTEM: {{ .Content }}{{ else if eq .Role \"user\" }}USER: {{ .Content }}{{ else if eq .Role \"assistant\" }}ASSISTANT: {{ .Content }}{{ end }}{{ end }}", []string{"content", "messages", "role"}},
|
||||
{"{{ .Prompt }} {{ .Suffix }}", []string{"prompt", "suffix"}},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
@@ -189,207 +80,9 @@ func TestParse(t *testing.T) {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tmpl.Vars(), tt.vars); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestExecuteWithMessages(t *testing.T) {
|
||||
type template struct {
|
||||
name string
|
||||
template string
|
||||
}
|
||||
cases := []struct {
|
||||
name string
|
||||
templates []template
|
||||
values Values
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
"mistral",
|
||||
[]template{
|
||||
{"no response", `[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}{{ .Prompt }}[/INST] `},
|
||||
{"response", `[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}`},
|
||||
{"messages", `[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}
|
||||
{{- range .Messages }}
|
||||
{{- if eq .Role "user" }}{{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}[INST] {{ end }}
|
||||
{{- end }}`},
|
||||
},
|
||||
Values{
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Hello friend!"},
|
||||
{Role: "assistant", Content: "Hello human!"},
|
||||
{Role: "user", Content: "What is your name?"},
|
||||
},
|
||||
},
|
||||
`[INST] Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
|
||||
},
|
||||
{
|
||||
"mistral system",
|
||||
[]template{
|
||||
{"no response", `[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}{{ .Prompt }}[/INST] `},
|
||||
{"response", `[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}`},
|
||||
{"messages", `[INST] {{ if .System }}{{ .System }}
|
||||
|
||||
{{ end }}
|
||||
{{- range .Messages }}
|
||||
{{- if eq .Role "user" }}{{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}[INST] {{ end }}
|
||||
{{- end }}`},
|
||||
},
|
||||
Values{
|
||||
Messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant!"},
|
||||
{Role: "user", Content: "Hello friend!"},
|
||||
{Role: "assistant", Content: "Hello human!"},
|
||||
{Role: "user", Content: "What is your name?"},
|
||||
},
|
||||
},
|
||||
`[INST] You are a helpful assistant!
|
||||
|
||||
Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
|
||||
},
|
||||
{
|
||||
"chatml",
|
||||
[]template{
|
||||
// this does not have a "no response" test because it's impossible to render the same output
|
||||
{"response", `{{ if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
{{ end }}{{ if .Prompt }}<|im_start|>user
|
||||
{{ .Prompt }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ .Response }}<|im_end|>
|
||||
`},
|
||||
{"messages", `
|
||||
{{- range $index, $_ := .Messages }}<|im_start|>{{ .Role }}
|
||||
{{ .Content }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
`},
|
||||
},
|
||||
Values{
|
||||
Messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant!"},
|
||||
{Role: "user", Content: "Hello friend!"},
|
||||
{Role: "assistant", Content: "Hello human!"},
|
||||
{Role: "user", Content: "What is your name?"},
|
||||
},
|
||||
},
|
||||
`<|im_start|>system
|
||||
You are a helpful assistant!<|im_end|>
|
||||
<|im_start|>user
|
||||
Hello friend!<|im_end|>
|
||||
<|im_start|>assistant
|
||||
Hello human!<|im_end|>
|
||||
<|im_start|>user
|
||||
What is your name?<|im_end|>
|
||||
<|im_start|>assistant
|
||||
`,
|
||||
},
|
||||
{
|
||||
"moondream",
|
||||
[]template{
|
||||
// this does not have a "no response" test because it's impossible to render the same output
|
||||
{"response", `{{ if .Prompt }}Question: {{ .Prompt }}
|
||||
|
||||
{{ end }}Answer: {{ .Response }}
|
||||
|
||||
`},
|
||||
{"messages", `
|
||||
{{- range .Messages }}
|
||||
{{- if eq .Role "user" }}Question: {{ .Content }}
|
||||
|
||||
{{ else if eq .Role "assistant" }}Answer: {{ .Content }}
|
||||
|
||||
{{ end }}
|
||||
{{- end }}Answer: `},
|
||||
},
|
||||
Values{
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "What's in this image?", Images: []api.ImageData{[]byte("")}},
|
||||
{Role: "assistant", Content: "It's a hot dog."},
|
||||
{Role: "user", Content: "What's in _this_ image?"},
|
||||
{Role: "user", Images: []api.ImageData{[]byte("")}},
|
||||
{Role: "user", Content: "Is it a hot dog?"},
|
||||
},
|
||||
},
|
||||
`Question: [img-0] What's in this image?
|
||||
|
||||
Answer: It's a hot dog.
|
||||
|
||||
Question: What's in _this_ image?
|
||||
|
||||
[img-1]
|
||||
|
||||
Is it a hot dog?
|
||||
|
||||
Answer: `,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
for _, ttt := range tt.templates {
|
||||
t.Run(ttt.name, func(t *testing.T) {
|
||||
tmpl, err := Parse(ttt.template)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := tmpl.Execute(&b, tt.values); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(b.String(), tt.expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestExecuteWithSuffix(t *testing.T) {
|
||||
tmpl, err := Parse(`{{- if .Suffix }}<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
|
||||
{{- else }}{{ .Prompt }}
|
||||
{{- end }}`)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
cases := []struct {
|
||||
name string
|
||||
values Values
|
||||
expect string
|
||||
}{
|
||||
{
|
||||
"message", Values{Messages: []api.Message{{Role: "user", Content: "hello"}}}, "hello",
|
||||
},
|
||||
{
|
||||
"prompt suffix", Values{Prompt: "def add(", Suffix: "return x"}, "<PRE> def add( <SUF>return x <MID>",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := tmpl.Execute(&b, tt.values); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(b.String(), tt.expect); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
vars := tmpl.Vars()
|
||||
if !slices.Equal(tt.vars, vars) {
|
||||
t.Errorf("expected %v, got %v", tt.vars, vars)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
<start_system>You are a helpful assistant.<end_message><start_user>Hello, how are you?<end_message><start_assistant>I'm doing great. How can I help you today?<end_message><start_user>I'd like to show off how chat templating works!<end_message><start_assistant>
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user