Compare commits

..

1 Commits

Author SHA1 Message Date
Patrick Devine
3c0d043b79 pass the template to the /api/chat endpoint 2024-07-10 14:17:39 -07:00
165 changed files with 1584 additions and 5416 deletions

View File

@@ -31,7 +31,7 @@ jobs:
security set-keychain-settings -lut 3600 build.keychain
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- name: Build Darwin
env:
@@ -87,7 +87,7 @@ jobs:
write-host "plugin installed"
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
@@ -141,7 +141,7 @@ jobs:
write-host "plugin installed"
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- name: 'Install ROCm'
run: |
@@ -218,7 +218,7 @@ jobs:
write-host "plugin installed"
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
run: |
@@ -306,7 +306,7 @@ jobs:
write-host "plugin installed"
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- run: go get
- uses: actions/download-artifact@v4

View File

@@ -63,7 +63,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
@@ -126,7 +126,7 @@ jobs:
strategy:
matrix:
rocm-version:
- '6.1.2'
- '6.1.1'
runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps:
@@ -163,7 +163,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- name: 'Install ROCm'
run: |
@@ -200,7 +200,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
run: |
@@ -255,7 +255,7 @@ jobs:
submodules: recursive
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: false
- run: |
case ${{ matrix.arch }} in
@@ -297,7 +297,7 @@ jobs:
submodules: recursive
- uses: actions/setup-go@v5
with:
go-version: "stable"
go-version-file: go.mod
cache: true
- run: |
case ${{ matrix.arch }} in

View File

@@ -1,8 +1,8 @@
ARG GOLANG_VERSION=1.22.5
ARG GOLANG_VERSION=1.22.1
ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1
ARG ROCM_VERSION=6.1.2
ARG ROCM_VERSION=6.1.1
# Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code

View File

@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
To run and chat with [Llama 3](https://ollama.com/library/llama3):
```
ollama run llama3.1
ollama run llama3
```
## Model library
@@ -49,9 +49,8 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
@@ -65,8 +64,7 @@ Here are some example models that can be downloaded:
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Customize a model
@@ -98,16 +96,16 @@ See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
```
ollama pull llama3.1
ollama pull llama3
```
Create a `Modelfile`:
```
FROM llama3.1
FROM llama3
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -142,7 +140,7 @@ ollama create mymodel -f ./Modelfile
### Pull a model
```
ollama pull llama3.1
ollama pull llama3
```
> This command can also be used to update a local model. Only the diff will be pulled.
@@ -150,13 +148,13 @@ ollama pull llama3.1
### Remove a model
```
ollama rm llama3.1
ollama rm llama3
```
### Copy a model
```
ollama cp llama3.1 my-model
ollama cp llama3 my-model
```
### Multiline input
@@ -173,21 +171,21 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
### Multimodal models
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass the prompt as an argument
```
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
$ ollama run llama3 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```
ollama show llama3.1
ollama show llama3
```
### List models on your computer
@@ -215,7 +213,7 @@ Next, start the server:
Finally, in a separate shell, run a model:
```
./ollama run llama3.1
./ollama run llama3
```
## REST API
@@ -226,7 +224,7 @@ Ollama has a REST API for running and managing models.
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3",
"prompt":"Why is the sky blue?"
}'
```
@@ -235,7 +233,7 @@ curl http://localhost:11434/api/generate -d '{
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
@@ -295,11 +293,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
### Terminal
@@ -338,7 +331,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
@@ -392,7 +384,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)

View File

@@ -1,25 +0,0 @@
# Security
The Ollama maintainer team takes security seriously and will actively work to resolve security issues.
## Reporting a vulnerability
If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly.
Please include the following details in your report:
- A description of the vulnerability
- Steps to reproduce the issue
- Your assessment of the potential impact
- Any possible mitigations
## Security best practices
While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
- Regularly updating to the latest version of Ollama
- Securing access to hosted instances of Ollama
- Monitoring systems for unusual activity
## Contact
For any other questions or concerns related to security, please contact us at hello@ollama.com

View File

@@ -20,6 +20,7 @@ import (
"encoding/json"
"fmt"
"io"
"net"
"net/http"
"net/url"
"runtime"
@@ -62,8 +63,13 @@ func checkError(resp *http.Response, body []byte) error {
// If the variable is not specified, a default ollama host and port will be
// used.
func ClientFromEnvironment() (*Client, error) {
ollamaHost := envconfig.Host
return &Client{
base: envconfig.Host(),
base: &url.URL{
Scheme: ollamaHost.Scheme,
Host: net.JoinHostPort(ollamaHost.Host, ollamaHost.Port),
},
http: http.DefaultClient,
}, nil
}
@@ -341,16 +347,7 @@ func (c *Client) Heartbeat(ctx context.Context) error {
return nil
}
// Embed generates embeddings from a model.
func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) {
var resp EmbedResponse
if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
// Embeddings generates an embedding from a model.
// Embeddings generates embeddings from a model.
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
var resp EmbeddingResponse
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {

View File

@@ -2,6 +2,8 @@ package api
import (
"testing"
"github.com/ollama/ollama/envconfig"
)
func TestClientFromEnvironment(t *testing.T) {
@@ -31,6 +33,7 @@ func TestClientFromEnvironment(t *testing.T) {
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value)
envconfig.LoadConfig()
client, err := ClientFromEnvironment()
if err != v.err {

View File

@@ -47,9 +47,6 @@ type GenerateRequest struct {
// Prompt is the textual prompt to send to the model.
Prompt string `json:"prompt"`
// Suffix is the text that comes after the inserted text.
Suffix string `json:"suffix"`
// System overrides the model's default system message/prompt.
System string `json:"system"`
@@ -87,6 +84,9 @@ type ChatRequest struct {
// Model is the model name, as in [GenerateRequest].
Model string `json:"model"`
// Template overrides the model's default prompt template.
Template string `json:"template"`
// Messages is the messages of the chat - can be used to keep a chat memory.
Messages []Message `json:"messages"`
@@ -100,85 +100,17 @@ type ChatRequest struct {
// followin the request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
Tools `json:"tools,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
}
type Tools []Tool
func (t Tools) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
func (t Tool) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
// Message is a single message in a chat sequence. The message contains the
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
func (m *Message) UnmarshalJSON(b []byte) error {
type Alias Message
var a Alias
if err := json.Unmarshal(b, &a); err != nil {
return err
}
*m = Message(a)
m.Role = strings.ToLower(m.Role)
return nil
}
type ToolCall struct {
Function ToolCallFunction `json:"function"`
}
type ToolCallFunction struct {
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
type ToolCallFunctionArguments map[string]any
func (t *ToolCallFunctionArguments) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type Tool struct {
Type string `json:"type"`
Function ToolFunction `json:"function"`
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}
func (t *ToolFunction) String() string {
bts, _ := json.Marshal(t)
return string(bts)
Role string `json:"role"`
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
}
// ChatResponse is the response returned by [Client.Chat]. Its fields are
@@ -214,7 +146,6 @@ type Options struct {
NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
MinP float32 `json:"min_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
@@ -245,34 +176,6 @@ type Runner struct {
NumThread int `json:"num_thread,omitempty"`
}
// EmbedRequest is the request passed to [Client.Embed].
type EmbedRequest struct {
// Model is the model name.
Model string `json:"model"`
// Input is the input to embed.
Input any `json:"input"`
// KeepAlive controls how long the model will stay loaded in memory following
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
Truncate *bool `json:"truncate,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
}
// EmbedResponse is the response from [Client.Embed].
type EmbedResponse struct {
Model string `json:"model"`
Embeddings [][]float32 `json:"embeddings"`
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
}
// EmbeddingRequest is the request passed to [Client.Embeddings].
type EmbeddingRequest struct {
// Model is the model name.
@@ -319,10 +222,8 @@ type DeleteRequest struct {
// ShowRequest is the request passed to [Client.Show].
type ShowRequest struct {
Model string `json:"model"`
System string `json:"system"`
// Template is deprecated
Model string `json:"model"`
System string `json:"system"`
Template string `json:"template"`
Verbose bool `json:"verbose"`

View File

@@ -208,26 +208,3 @@ func TestUseMmapFormatParams(t *testing.T) {
})
}
}
func TestMessage_UnmarshalJSON(t *testing.T) {
tests := []struct {
input string
expected string
}{
{`{"role": "USER", "content": "Hello!"}`, "user"},
{`{"role": "System", "content": "Initialization complete."}`, "system"},
{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"},
{`{"role": "TOOl", "content": "Access granted."}`, "tool"},
}
for _, test := range tests {
var msg Message
if err := json.Unmarshal([]byte(test.input), &msg); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if msg.Role != test.expected {
t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected)
}
}
}

View File

@@ -14,7 +14,7 @@ import (
func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug() {
if envconfig.Debug {
level = slog.LevelDebug
}

View File

@@ -127,10 +127,6 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
[InstallDelete]
Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
[Messages]
WizardReady=Ollama Windows Preview
ReadyLabel1=%nLet's get you up and running with your own large language models.
@@ -138,7 +134,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
;FinishedHeadingLabel=Run your first model
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
;ClickFinish=%n
[Registry]

View File

@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
write-host ""
write-host "Run your first model:"
write-host ""
write-host "`tollama run llama3.1"
write-host "`tollama run llama3"
write-host ""

View File

@@ -362,24 +362,9 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.ParentModel = info.Details.ParentModel
opts.Messages = append(opts.Messages, info.Messages...)
if interactive {
if err := loadModel(cmd, &opts); err != nil {
return err
}
for _, msg := range info.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return generateInteractive(cmd, opts)
}
return generate(cmd, opts)
@@ -858,6 +843,7 @@ type runOptions struct {
WordWrap bool
Format string
System string
Template string
Images []api.ImageData
Options map[string]interface{}
MultiModal bool
@@ -961,6 +947,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
req := &api.ChatRequest{
Model: opts.Model,
Template: opts.Template,
Messages: opts.Messages,
Format: opts.Format,
Options: opts.Options,
@@ -1051,6 +1038,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
Images: opts.Images,
Format: opts.Format,
System: opts.System,
Template: opts.Template,
Options: opts.Options,
KeepAlive: opts.KeepAlive,
}
@@ -1091,7 +1079,7 @@ func RunServer(cmd *cobra.Command, _ []string) error {
return err
}
ln, err := net.Listen("tcp", envconfig.Host().Host)
ln, err := net.Listen("tcp", net.JoinHostPort(envconfig.Host.Host, envconfig.Host.Port))
if err != nil {
return err
}
@@ -1356,10 +1344,10 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NUM_PARALLEL"],
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"],
envVars["OLLAMA_MAX_VRAM"],
})
default:
appendEnvDocs(cmd, envs)

View File

@@ -1,7 +1,6 @@
package cmd
import (
"cmp"
"errors"
"fmt"
"io"
@@ -10,16 +9,16 @@ import (
"path/filepath"
"regexp"
"slices"
"sort"
"strings"
"github.com/spf13/cobra"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
)
@@ -29,6 +28,7 @@ const (
MultilineNone MultilineState = iota
MultilinePrompt
MultilineSystem
MultilineTemplate
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
@@ -48,10 +48,29 @@ func loadModel(cmd *cobra.Command, opts *runOptions) error {
KeepAlive: opts.KeepAlive,
}
return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil })
return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear()
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return nil
})
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
err := loadModel(cmd, &opts)
if err != nil {
return err
}
usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
@@ -76,6 +95,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
fmt.Fprintln(os.Stderr, " /set history Enable history")
fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
@@ -121,7 +141,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
@@ -141,7 +160,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
if envconfig.NoHistory() {
if envconfig.NoHistory {
scanner.HistoryDisable()
}
@@ -186,6 +205,18 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
fmt.Println("Set system message.")
sb.Reset()
case MultilineTemplate:
mTemplate := sb.String()
sb.Reset()
_, err := template.Parse(mTemplate)
if err != nil {
multiline = MultilineNone
scanner.Prompt.UseAlt = false
fmt.Println("The template is invalid.")
continue
}
opts.Template = mTemplate
fmt.Println("Set prompt template.")
}
multiline = MultilineNone
@@ -304,13 +335,17 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
opts.Options[args[2]] = fp[args[2]]
case "system":
case "system", "template":
if len(args) < 3 {
usageSet()
continue
}
multiline = MultilineSystem
if args[1] == "system" {
multiline = MultilineSystem
} else if args[1] == "template" {
multiline = MultilineTemplate
}
line := strings.Join(args[2:], " ")
line, ok := strings.CutPrefix(line, `"""`)
@@ -330,17 +365,29 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
continue
}
opts.System = sb.String() // for display in modelfile
newMessage := api.Message{Role: "system", Content: sb.String()}
// Check if the slice is not empty and the last message is from 'system'
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
// Replace the last message
opts.Messages[len(opts.Messages)-1] = newMessage
} else {
opts.Messages = append(opts.Messages, newMessage)
if args[1] == "system" {
opts.System = sb.String() // for display in modelfile
newMessage := api.Message{Role: "system", Content: sb.String()}
// Check if the slice is not empty and the last message is from 'system'
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
// Replace the last message
opts.Messages[len(opts.Messages)-1] = newMessage
} else {
opts.Messages = append(opts.Messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
} else if args[1] == "template" {
mTemplate := sb.String()
sb.Reset()
_, err := template.Parse(mTemplate)
if err != nil {
fmt.Println("The template is invalid.")
continue
}
opts.Template = mTemplate
fmt.Println("Set prompt template.")
}
fmt.Println("Set system message.")
sb.Reset()
sb.Reset()
continue
@@ -359,9 +406,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
req := &api.ShowRequest{
Name: opts.Model,
System: opts.System,
Options: opts.Options,
Name: opts.Model,
System: opts.System,
Template: opts.Template,
Options: opts.Options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
@@ -404,9 +452,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Println("No system message was specified for this model.")
}
case "template":
if resp.Template != "" {
switch {
case opts.Template != "":
fmt.Println(opts.Template + "\n")
case resp.Template != "":
fmt.Println(resp.Template)
} else {
default:
fmt.Println("No prompt template was specified for this model.")
}
default:
@@ -490,35 +541,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func buildModelfile(opts runOptions) string {
var f parser.File
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
var mf strings.Builder
model := opts.ParentModel
if model == "" {
model = opts.Model
}
fmt.Fprintf(&mf, "FROM %s\n", model)
if opts.System != "" {
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
}
keys := maps.Keys(opts.Options)
slices.Sort(keys)
if opts.Template != "" {
fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
v := opts.Options[k]
var cmds []parser.Command
switch t := v.(type) {
case []string:
for _, s := range t {
cmds = append(cmds, parser.Command{Name: k, Args: s})
}
default:
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
}
f.Commands = append(f.Commands, cmds...)
fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
}
fmt.Fprintln(&mf)
for _, msg := range opts.Messages {
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
}
return f.String()
return mf.String()
}
func normalizeFilePath(fp string) string {

View File

@@ -1,10 +1,12 @@
package cmd
import (
"bytes"
"testing"
"text/template"
"github.com/google/go-cmp/cmp"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
)
@@ -55,53 +57,61 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
func TestModelfileBuilder(t *testing.T) {
opts := runOptions{
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things",
Template: "This is a template.",
Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
},
Options: map[string]any{
"temperature": 0.9,
"seed": 42,
"penalize_newline": false,
"stop": []string{"hi", "there"},
},
Options: map[string]interface{}{},
}
t.Run("model", func(t *testing.T) {
expect := `FROM hork
SYSTEM You are part horse and part shark, but all hork. Do horklike things
opts.Options["temperature"] = 0.9
opts.Options["seed"] = 42
opts.Options["penalize_newline"] = false
opts.Options["stop"] = []string{"hi", "there"}
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop hi
PARAMETER stop there
PARAMETER stop [hi there]
PARAMETER temperature 0.9
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark.
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
`
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
tmpl, err := template.New("").Parse(expectedModelfile)
require.NoError(t, err)
t.Run("parent model", func(t *testing.T) {
opts.ParentModel = "horseshark"
expect := `FROM horseshark
SYSTEM You are part horse and part shark, but all hork. Do horklike things
var buf bytes.Buffer
err = tmpl.Execute(&buf, opts)
require.NoError(t, err)
assert.Equal(t, buf.String(), mf)
opts.ParentModel = "horseshark"
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false
PARAMETER seed 42
PARAMETER stop hi
PARAMETER stop there
PARAMETER stop [hi there]
PARAMETER temperature 0.9
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark.
MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
`
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
tmpl, err = template.New("").Parse(expectedModelfile)
require.NoError(t, err)
var parentBuf bytes.Buffer
err = tmpl.Execute(&parentBuf, opts)
require.NoError(t, err)
assert.Equal(t, parentBuf.String(), mf)
}

View File

@@ -71,11 +71,6 @@ func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.unknown_token_id": uint32(0),
}
if m.Params.HeadDimension > 0 {
kv["llama.attention.key_length"] = uint32(m.Params.HeadDimension)
kv["llama.attention.value_length"] = uint32(m.Params.HeadDimension)
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

View File

@@ -40,7 +40,6 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `model`: (required) the [model name](#model-names)
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
Advanced parameters (optional):
@@ -58,8 +57,7 @@ Advanced parameters (optional):
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below.
> [!IMPORTANT]
> It's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
### Examples
@@ -150,44 +148,8 @@ If `stream` is set to `false`, the response will be a single JSON object:
}
```
#### Request (with suffix)
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "codellama:code",
"prompt": "def compute_gcd(a, b):",
"suffix": " return result",
"options": {
"temperature": 0
},
"stream": false
}'
```
##### Response
```json
{
"model": "codellama:code",
"created_at": "2024-07-22T20:47:51.147561Z",
"response": "\n if a == 0:\n return b\n else:\n return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n result = (a * b) / compute_gcd(a, b)\n",
"done": true,
"done_reason": "stop",
"context": [...],
"total_duration": 1162761250,
"load_duration": 6683708,
"prompt_eval_count": 17,
"prompt_eval_duration": 201222000,
"eval_count": 63,
"eval_duration": 953997000
}
```
#### Request (JSON mode)
> [!IMPORTANT]
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
##### Request
@@ -336,7 +298,6 @@ curl http://localhost:11434/api/generate -d '{
"num_predict": 100,
"top_k": 20,
"top_p": 0.9,
"min_p": 0.0,
"tfs_z": 0.5,
"typical_p": 0.7,
"repeat_last_n": 33,
@@ -419,14 +380,12 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `role`: the role of the message, either `system`, `user` or `assistant`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools the model wants to use
Advanced parameters (optional):
@@ -587,7 +546,7 @@ Final response:
##### Request
Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64.
Send a chat message with a conversation history.
```shell
curl http://localhost:11434/api/chat -d '{
@@ -663,79 +622,6 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Chat request (with tools)
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "mistral",
"messages": [
{
"role": "user",
"content": "What is the weather today in Paris?"
}
],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for, e.g. San Francisco, CA"
},
"format": {
"type": "string",
"description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location", "format"]
}
}
}
]
}'
```
##### Response
```json
{
"model": "mistral:7b-instruct-v0.3-q4_K_M",
"created_at": "2024-07-22T20:33:28.123648Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_current_weather",
"arguments": {
"format": "celsius",
"location": "Paris, FR"
}
}
}
]
},
"done_reason": "stop",
"done": true,
"total_duration": 885095291,
"load_duration": 3753500,
"prompt_eval_count": 122,
"prompt_eval_duration": 328493000,
"eval_count": 33,
"eval_duration": 552222000
}
```
## Create a Model
```shell
@@ -1140,7 +1026,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```shell
POST /api/embed
POST /api/embeddings
```
Generate embeddings from a model
@@ -1148,11 +1034,10 @@ Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `input`: text or list of text to generate embeddings for
- `prompt`: text to generate embeddings for
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1161,9 +1046,9 @@ Advanced parameters:
#### Request
```shell
curl http://localhost:11434/api/embed -d '{
curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm",
"input": "Why is the sky blue?"
"prompt": "Here is an article about llamas..."
}'
```
@@ -1171,35 +1056,10 @@ curl http://localhost:11434/api/embed -d '{
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]]
}
```
#### Request (Multiple input)
```shell
curl http://localhost:11434/api/embed -d '{
"model": "all-minilm",
"input": ["Why is the sky blue?", "Why is the grass green?"]
}'
```
#### Response
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]]
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}
```
@@ -1246,45 +1106,3 @@ A single JSON object will be returned.
]
}
```
## Generate Embedding
> Note: this endpoint has been superseded by `/api/embed`
```shell
POST /api/embeddings
```
Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm",
"prompt": "Here is an article about llamas..."
}'
```
#### Response
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}
```

View File

@@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```
docker exec -it ollama ollama run llama3.1
docker exec -it ollama ollama run llama3
```
### Try different models

View File

@@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
To preload a model using the CLI, use the command:
```shell
ollama run llama3.1 ""
ollama run llama3 ""
```
## How do I keep a model loaded in memory or make it unload immediately?
@@ -272,8 +272,4 @@ The following server settings may be used to adjust how Ollama handles concurren
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.

View File

@@ -46,24 +46,13 @@ sudo modprobe nvidia_uvm`
## AMD Radeon
Ollama supports the following AMD GPUs:
### Linux Support
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
### Windows Support
With ROCm v6.1, the following GPUs are supported on Windows.
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
### Overrides on Linux
### Overrides
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
some cases you can force the system to try to use a similar LLVM target that is
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
@@ -74,7 +63,7 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below.
At this time, the known supported GPU types on linux are the following LLVM Targets.
At this time, the known supported GPU types are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets:
| **LLVM Target** | **An Example GPU** |
|-----------------|---------------------|

View File

@@ -1,7 +1,6 @@
# Ollama Model File
> [!NOTE]
> `Modelfile` syntax is in development
> Note: `Modelfile` syntax is in development
A model file is the blueprint to create and share models with Ollama.
@@ -141,7 +140,6 @@ PARAMETER <parameter> <parametervalue>
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
### TEMPLATE

View File

@@ -78,8 +78,8 @@ curl http://localhost:11434/v1/chat/completions \
- [x] Streaming
- [x] JSON mode
- [x] Reproducible outputs
- [x] Tools (streaming support coming soon)
- [ ] Vision
- [ ] Function calling
- [ ] Logprobs
#### Supported request fields
@@ -97,12 +97,16 @@ curl http://localhost:11434/v1/chat/completions \
- [x] `temperature`
- [x] `top_p`
- [x] `max_tokens`
- [x] `tools`
- [ ] `tool_choice`
- [ ] `logit_bias`
- [ ] `tools`
- [ ] `tool_choice`
- [ ] `user`
- [ ] `n`
#### Notes
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
## Models
Before using a model, pull it locally `ollama pull`:

View File

@@ -1,173 +0,0 @@
# Template
Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models.
## Basic Template Structure
A basic Go template consists of three main parts:
* **Layout**: The overall structure of the template.
* **Variables**: Placeholders for dynamic data that will be replaced with actual values when the template is rendered.
* **Functions**: Custom functions or logic that can be used to manipulate the template's content.
Here's an example of a simple chat template:
```gotmpl
{{- range .Messages }}
{{ .Role }}: {{ .Content }}
{{- end }}
```
In this example, we have:
* A basic messages structure (layout)
* Three variables: `Messages`, `Role`, and `Content` (variables)
* A custom function (action) that iterates over an array of items (`range .Messages`) and displays each item
## Adding templates to your model
By default, models imported into Ollama have a default template of `{{ .Prompt }}`, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models.
Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model.
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
```dockerfile
FROM llama3
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>
{{- end }}
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ .Content }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>
"""
```
## Variables
`System` (string): system prompt
`Prompt` (string): user prompt
`Response` (string): assistant response
`Suffix` (string): text inserted after the assistant's response
`Messages` (list): list of messages
`Messages[].Role` (string): role which can be one of `system`, `user`, `assistant`, or `tool`
`Messages[].Content` (string): message content
`Messages[].ToolCalls` (list): list of tools the model wants to call
`Messages[].ToolCalls[].Function` (object): function to call
`Messages[].ToolCalls[].Function.Name` (string): function name
`Messages[].ToolCalls[].Function.Arguments` (map): mapping of argument name to argument value
`Tools` (list): list of tools the model can access
`Tools[].Type` (string): schema type. `type` is always `function`
`Tools[].Function` (object): function definition
`Tools[].Function.Name` (string): function name
`Tools[].Function.Description` (string): function description
`Tools[].Function.Parameters` (object): function parameters
`Tools[].Function.Parameters.Type` (string): schema type. `type` is always `object`
`Tools[].Function.Parameters.Required` (list): list of required properties
`Tools[].Function.Parameters.Properties` (map): mapping of property name to property definition
`Tools[].Function.Parameters.Properties[].Type` (string): property type
`Tools[].Function.Parameters.Properties[].Description` (string): property description
`Tools[].Function.Parameters.Properties[].Enum` (list): list of valid values
## Tips and Best Practices
Keep the following tips and best practices in mind when working with Go templates:
* **Be mindful of dot**: Control flow structures like `range` and `with` changes the value `.`
* **Out-of-scope variables**: Use `$.` to reference variables not currently in scope, starting from the root
* **Whitespace control**: Use `-` to trim leading (`{{-`) and trailing (`-}}`) whitespace
## Examples
### Example Messages
#### ChatML
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
```gotmpl
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ else }}
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
```
### Example Tools
Tools support can be added to a model by adding a `{{ .Tools }}` node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks.
#### Mistral
Mistral v0.3 and Mixtral 8x22B supports tool calling.
```gotmpl
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}</s>
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}}
{{- end }}]</s>
{{- end }}
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
{{- end }}
{{- end }}
```
### Example Fill-in-Middle
Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models.
#### CodeLlama
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
```gotmpl
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
```
> [!NOTE]
> CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
#### Codestral
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
```gotmpl
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
```

View File

@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3.1",
model: "llama3",
});
const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio

View File

@@ -23,8 +23,6 @@ Logs will often be helpful in diagnosing the problem (see
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
## API Access
Here's a quick example showing API access from `powershell`

View File

@@ -1,11 +1,11 @@
package envconfig
import (
"errors"
"fmt"
"log/slog"
"math"
"net"
"net/url"
"os"
"path/filepath"
"runtime"
@@ -14,16 +14,309 @@ import (
"time"
)
// Host returns the scheme and host. Host can be configured via the OLLAMA_HOST environment variable.
// Default is scheme "http" and host "127.0.0.1:11434"
func Host() *url.URL {
type OllamaHost struct {
Scheme string
Host string
Port string
}
func (o OllamaHost) String() string {
return fmt.Sprintf("%s://%s:%s", o.Scheme, o.Host, o.Port)
}
var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST")
var (
// Set via OLLAMA_ORIGINS in the environment
AllowOrigins []string
// Set via OLLAMA_DEBUG in the environment
Debug bool
// Experimental flash attention
FlashAttention bool
// Set via OLLAMA_HOST in the environment
Host *OllamaHost
// Set via OLLAMA_KEEP_ALIVE in the environment
KeepAlive time.Duration
// Set via OLLAMA_LLM_LIBRARY in the environment
LLMLibrary string
// Set via OLLAMA_MAX_LOADED_MODELS in the environment
MaxRunners int
// Set via OLLAMA_MAX_QUEUE in the environment
MaxQueuedRequests int
// Set via OLLAMA_MAX_VRAM in the environment
MaxVRAM uint64
// Set via OLLAMA_MODELS in the environment
ModelsDir string
// Set via OLLAMA_NOHISTORY in the environment
NoHistory bool
// Set via OLLAMA_NOPRUNE in the environment
NoPrune bool
// Set via OLLAMA_NUM_PARALLEL in the environment
NumParallel int
// Set via OLLAMA_RUNNERS_DIR in the environment
RunnersDir string
// Set via OLLAMA_SCHED_SPREAD in the environment
SchedSpread bool
// Set via OLLAMA_TMPDIR in the environment
TmpDir string
// Set via OLLAMA_INTEL_GPU in the environment
IntelGpu bool
// Set via CUDA_VISIBLE_DEVICES in the environment
CudaVisibleDevices string
// Set via HIP_VISIBLE_DEVICES in the environment
HipVisibleDevices string
// Set via ROCR_VISIBLE_DEVICES in the environment
RocrVisibleDevices string
// Set via GPU_DEVICE_ORDINAL in the environment
GpuDeviceOrdinal string
// Set via HSA_OVERRIDE_GFX_VERSION in the environment
HsaOverrideGfxVersion string
)
type EnvVar struct {
Name string
Value any
Description string
}
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive, "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
"OLLAMA_MAX_VRAM": {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices, "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices, "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices, "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal, "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion, "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGpu, "Enable experimental Intel GPU detection"}
}
return ret
}
func Values() map[string]string {
vals := make(map[string]string)
for k, v := range AsMap() {
vals[k] = fmt.Sprintf("%v", v.Value)
}
return vals
}
var defaultAllowOrigins = []string{
"localhost",
"127.0.0.1",
"0.0.0.0",
}
// Clean quotes and spaces from the value
func clean(key string) string {
return strings.Trim(os.Getenv(key), "\"' ")
}
func init() {
// default values
NumParallel = 0 // Autoselect
MaxRunners = 0 // Autoselect
MaxQueuedRequests = 512
KeepAlive = 5 * time.Minute
LoadConfig()
}
func LoadConfig() {
if debug := clean("OLLAMA_DEBUG"); debug != "" {
d, err := strconv.ParseBool(debug)
if err == nil {
Debug = d
} else {
Debug = true
}
}
if fa := clean("OLLAMA_FLASH_ATTENTION"); fa != "" {
d, err := strconv.ParseBool(fa)
if err == nil {
FlashAttention = d
}
}
RunnersDir = clean("OLLAMA_RUNNERS_DIR")
if runtime.GOOS == "windows" && RunnersDir == "" {
// On Windows we do not carry the payloads inside the main executable
appExe, err := os.Executable()
if err != nil {
slog.Error("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Error("failed to lookup working directory", "error", err)
}
var paths []string
for _, root := range []string{filepath.Dir(appExe), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, p := range paths {
candidate := filepath.Join(p, "ollama_runners")
_, err := os.Stat(candidate)
if err == nil {
RunnersDir = candidate
break
}
}
if RunnersDir == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}
TmpDir = clean("OLLAMA_TMPDIR")
userLimit := clean("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseUint(userLimit, 10, 64)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
} else {
MaxVRAM = avail
}
}
LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
val, err := strconv.Atoi(onp)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_NUM_PARALLEL", onp, "error", err)
} else {
NumParallel = val
}
}
if nohistory := clean("OLLAMA_NOHISTORY"); nohistory != "" {
NoHistory = true
}
if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
s, err := strconv.ParseBool(spread)
if err == nil {
SchedSpread = s
} else {
SchedSpread = true
}
}
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
NoPrune = true
}
if origins := clean("OLLAMA_ORIGINS"); origins != "" {
AllowOrigins = strings.Split(origins, ",")
}
for _, allowOrigin := range defaultAllowOrigins {
AllowOrigins = append(AllowOrigins,
fmt.Sprintf("http://%s", allowOrigin),
fmt.Sprintf("https://%s", allowOrigin),
fmt.Sprintf("http://%s", net.JoinHostPort(allowOrigin, "*")),
fmt.Sprintf("https://%s", net.JoinHostPort(allowOrigin, "*")),
)
}
AllowOrigins = append(AllowOrigins,
"app://*",
"file://*",
"tauri://*",
)
maxRunners := clean("OLLAMA_MAX_LOADED_MODELS")
if maxRunners != "" {
m, err := strconv.Atoi(maxRunners)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
} else {
MaxRunners = m
}
}
if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
p, err := strconv.Atoi(onp)
if err != nil || p <= 0 {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_QUEUE", onp, "error", err)
} else {
MaxQueuedRequests = p
}
}
ka := clean("OLLAMA_KEEP_ALIVE")
if ka != "" {
loadKeepAlive(ka)
}
var err error
ModelsDir, err = getModelsDir()
if err != nil {
slog.Error("invalid setting", "OLLAMA_MODELS", ModelsDir, "error", err)
}
Host, err = getOllamaHost()
if err != nil {
slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port)
}
if set, err := strconv.ParseBool(clean("OLLAMA_INTEL_GPU")); err == nil {
IntelGpu = set
}
CudaVisibleDevices = clean("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = clean("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = clean("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = clean("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = clean("HSA_OVERRIDE_GFX_VERSION")
}
func getModelsDir() (string, error) {
if models, exists := os.LookupEnv("OLLAMA_MODELS"); exists {
return models, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "models"), nil
}
func getOllamaHost() (*OllamaHost, error) {
defaultPort := "11434"
s := strings.TrimSpace(Var("OLLAMA_HOST"))
scheme, hostport, ok := strings.Cut(s, "://")
hostVar := os.Getenv("OLLAMA_HOST")
hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'"))
scheme, hostport, ok := strings.Cut(hostVar, "://")
switch {
case !ok:
scheme, hostport = "http", s
scheme, hostport = "http", hostVar
case scheme == "http":
defaultPort = "80"
case scheme == "https":
@@ -43,242 +336,38 @@ func Host() *url.URL {
}
}
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
return &url.URL{
if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 {
return &OllamaHost{
Scheme: scheme,
Host: net.JoinHostPort(host, defaultPort),
}
Host: host,
Port: defaultPort,
}, ErrInvalidHostPort
}
return &url.URL{
return &OllamaHost{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
}
Host: host,
Port: port,
}, nil
}
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
func Origins() (origins []string) {
if s := Var("OLLAMA_ORIGINS"); s != "" {
origins = strings.Split(s, ",")
}
for _, origin := range []string{"localhost", "127.0.0.1", "0.0.0.0"} {
origins = append(origins,
fmt.Sprintf("http://%s", origin),
fmt.Sprintf("https://%s", origin),
fmt.Sprintf("http://%s", net.JoinHostPort(origin, "*")),
fmt.Sprintf("https://%s", net.JoinHostPort(origin, "*")),
)
}
origins = append(origins,
"app://*",
"file://*",
"tauri://*",
)
return origins
}
// Models returns the path to the models directory. Models directory can be configured via the OLLAMA_MODELS environment variable.
// Default is $HOME/.ollama/models
func Models() string {
if s := Var("OLLAMA_MODELS"); s != "" {
return s
}
home, err := os.UserHomeDir()
func loadKeepAlive(ka string) {
v, err := strconv.Atoi(ka)
if err != nil {
panic(err)
}
return filepath.Join(home, ".ollama", "models")
}
// KeepAlive returns the duration that models stay loaded in memory. KeepAlive can be configured via the OLLAMA_KEEP_ALIVE environment variable.
// Negative values are treated as infinite. Zero is treated as no keep alive.
// Default is 5 minutes.
func KeepAlive() (keepAlive time.Duration) {
keepAlive = 5 * time.Minute
if s := Var("OLLAMA_KEEP_ALIVE"); s != "" {
if d, err := time.ParseDuration(s); err == nil {
keepAlive = d
} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
keepAlive = time.Duration(n) * time.Second
}
}
if keepAlive < 0 {
return time.Duration(math.MaxInt64)
}
return keepAlive
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
b, err := strconv.ParseBool(s)
if err != nil {
return true
}
return b
}
return false
}
}
var (
// Debug enabled additional debug information.
Debug = Bool("OLLAMA_DEBUG")
// FlashAttention enables the experimental flash attention feature.
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
// NoHistory disables readline history.
NoHistory = Bool("OLLAMA_NOHISTORY")
// NoPrune disables pruning of model blobs on startup.
NoPrune = Bool("OLLAMA_NOPRUNE")
// SchedSpread allows scheduling models across all GPUs.
SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
// IntelGPU enables experimental Intel GPU detection.
IntelGPU = Bool("OLLAMA_INTEL_GPU")
)
func String(s string) func() string {
return func() string {
return Var(s)
}
}
var (
LLMLibrary = String("OLLAMA_LLM_LIBRARY")
TmpDir = String("OLLAMA_TMPDIR")
CudaVisibleDevices = String("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = String("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = String("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = String("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
)
func RunnersDir() (p string) {
if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
return p
}
if runtime.GOOS != "windows" {
return
}
defer func() {
if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}()
// On Windows we do not carry the payloads inside the main executable
exe, err := os.Executable()
if err != nil {
return
}
cwd, err := os.Getwd()
if err != nil {
return
}
var paths []string
for _, root := range []string{filepath.Dir(exe), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "ollama_runners")
if _, err := os.Stat(candidate); err == nil {
p = candidate
break
}
}
return p
}
func Uint(key string, defaultValue uint) func() uint {
return func() uint {
if s := Var(key); s != "" {
if n, err := strconv.ParseUint(s, 10, 64); err != nil {
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
d, err := time.ParseDuration(ka)
if err == nil {
if d < 0 {
KeepAlive = time.Duration(math.MaxInt64)
} else {
return uint(n)
KeepAlive = d
}
}
return defaultValue
} else {
d := time.Duration(v) * time.Second
if d < 0 {
KeepAlive = time.Duration(math.MaxInt64)
} else {
KeepAlive = d
}
}
}
var (
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
type EnvVar struct {
Name string
Value any
Description string
}
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}
return ret
}
func Values() map[string]string {
vals := make(map[string]string)
for k, v := range AsMap() {
vals[k] = fmt.Sprintf("%v", v.Value)
}
return vals
}
// Var returns an environment variable stripped of leading and trailing quotes or spaces
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}

View File

@@ -1,234 +1,87 @@
package envconfig
import (
"fmt"
"math"
"net"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestHost(t *testing.T) {
cases := map[string]struct {
func TestConfig(t *testing.T) {
Debug = false // Reset whatever was loaded in init()
t.Setenv("OLLAMA_DEBUG", "")
LoadConfig()
require.False(t, Debug)
t.Setenv("OLLAMA_DEBUG", "false")
LoadConfig()
require.False(t, Debug)
t.Setenv("OLLAMA_DEBUG", "1")
LoadConfig()
require.True(t, Debug)
t.Setenv("OLLAMA_FLASH_ATTENTION", "1")
LoadConfig()
require.True(t, FlashAttention)
t.Setenv("OLLAMA_KEEP_ALIVE", "")
LoadConfig()
require.Equal(t, 5*time.Minute, KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "3")
LoadConfig()
require.Equal(t, 3*time.Second, KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "1h")
LoadConfig()
require.Equal(t, 1*time.Hour, KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "-1s")
LoadConfig()
require.Equal(t, time.Duration(math.MaxInt64), KeepAlive)
t.Setenv("OLLAMA_KEEP_ALIVE", "-1")
LoadConfig()
require.Equal(t, time.Duration(math.MaxInt64), KeepAlive)
}
func TestClientFromEnvironment(t *testing.T) {
type testCase struct {
value string
expect string
}{
"empty": {"", "127.0.0.1:11434"},
"only address": {"1.2.3.4", "1.2.3.4:11434"},
"only port": {":1234", ":1234"},
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
"hostname": {"example.com", "example.com:11434"},
"hostname and port": {"example.com:1234", "example.com:1234"},
"zero port": {":0", ":0"},
"too large port": {":66000", ":11434"},
"too small port": {":-1", ":11434"},
"ipv6 localhost": {"[::1]", "[::1]:11434"},
"ipv6 world open": {"[::]", "[::]:11434"},
"ipv6 no brackets": {"::1", "[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
"http": {"http://1.2.3.4", "1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
"https": {"https://1.2.3.4", "1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
err error
}
for name, tt := range cases {
t.Run(name, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", tt.value)
if host := Host(); host.Host != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
}
})
}
}
func TestOrigins(t *testing.T) {
cases := []struct {
value string
expect []string
}{
{"", []string{
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
"https://192.168.0.1",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
"http://definitely.legit",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
t.Setenv("OLLAMA_ORIGINS", tt.value)
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
}
})
}
}
func TestBool(t *testing.T) {
cases := map[string]bool{
"": false,
"true": true,
"false": false,
"1": true,
"0": false,
// invalid values
"random": true,
"something": true,
hostTestCases := map[string]*testCase{
"empty": {value: "", expect: "127.0.0.1:11434"},
"only address": {value: "1.2.3.4", expect: "1.2.3.4:11434"},
"only port": {value: ":1234", expect: ":1234"},
"address and port": {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"},
"hostname": {value: "example.com", expect: "example.com:11434"},
"hostname and port": {value: "example.com:1234", expect: "example.com:1234"},
"zero port": {value: ":0", expect: ":0"},
"too large port": {value: ":66000", err: ErrInvalidHostPort},
"too small port": {value: ":-1", err: ErrInvalidHostPort},
"ipv6 localhost": {value: "[::1]", expect: "[::1]:11434"},
"ipv6 world open": {value: "[::]", expect: "[::]:11434"},
"ipv6 no brackets": {value: "::1", expect: "[::1]:11434"},
"ipv6 + port": {value: "[::1]:1337", expect: "[::1]:1337"},
"extra space": {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"},
"extra quotes": {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"},
"extra space+quotes": {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"},
"extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"},
}
for k, v := range cases {
for k, v := range hostTestCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_BOOL", k)
if b := Bool("OLLAMA_BOOL")(); b != v {
t.Errorf("%s: expected %t, got %t", k, v, b)
}
})
}
}
func TestUint(t *testing.T) {
cases := map[string]uint{
"0": 0,
"1": 1,
"1337": 1337,
// default values
"": 11434,
"-1": 11434,
"0o10": 11434,
"0x10": 11434,
"string": 11434,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_UINT", k)
if i := Uint("OLLAMA_UINT", 11434)(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}
func TestKeepAlive(t *testing.T) {
cases := map[string]time.Duration{
"": 5 * time.Minute,
"1s": time.Second,
"1m": time.Minute,
"1h": time.Hour,
"5m0s": 5 * time.Minute,
"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
"0": time.Duration(0),
"60": 60 * time.Second,
"120": 2 * time.Minute,
"3600": time.Hour,
"-0": time.Duration(0),
"-1": time.Duration(math.MaxInt64),
"-1m": time.Duration(math.MaxInt64),
// invalid values
" ": 5 * time.Minute,
"???": 5 * time.Minute,
"1d": 5 * time.Minute,
"1y": 5 * time.Minute,
"1w": 5 * time.Minute,
}
for tt, expect := range cases {
t.Run(tt, func(t *testing.T) {
t.Setenv("OLLAMA_KEEP_ALIVE", tt)
if actual := KeepAlive(); actual != expect {
t.Errorf("%s: expected %s, got %s", tt, expect, actual)
}
})
}
}
func TestVar(t *testing.T) {
cases := map[string]string{
"value": "value",
" value ": "value",
" 'value' ": "value",
` "value" `: "value",
" ' value ' ": " value ",
` " value " `: " value ",
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_VAR", k)
if s := Var("OLLAMA_VAR"); s != v {
t.Errorf("%s: expected %q, got %q", k, v, s)
t.Setenv("OLLAMA_HOST", v.value)
LoadConfig()
oh, err := getOllamaHost()
if err != v.err {
t.Fatalf("expected %s, got %s", v.err, err)
}
if err == nil {
host := net.JoinHostPort(oh.Host, oh.Port)
assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host))
}
})
}

View File

@@ -35,7 +35,7 @@ func main() {
ctx := context.Background()
req := &api.ChatRequest{
Model: "llama3.1",
Model: "llama3",
Messages: messages,
}

View File

@@ -16,7 +16,7 @@ func main() {
// By default, GenerateRequest is streaming.
req := &api.GenerateRequest{
Model: "gemma2",
Model: "gemma",
Prompt: "how many planets are there?",
}

View File

@@ -15,7 +15,7 @@ func main() {
}
req := &api.GenerateRequest{
Model: "gemma2",
Model: "gemma",
Prompt: "how many planets are there?",
// set streaming to false

View File

View File

@@ -4,14 +4,6 @@ This example provides an interface for asking questions to a PDF document.
## Setup
1. Ensure you have the `llama3.1` model installed:
```
ollama pull llama3.1
```
2. Install the Python Requirements.
```
pip install -r requirements.txt
```

View File

@@ -51,7 +51,7 @@ while True:
template=template,
)
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),

View File

@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama3.1
ollama pull llama2
```
2. Install the Python Requirements.

View File

@@ -5,8 +5,8 @@ from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama3.1")
llm = Ollama(model="llama3")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.invoke(docs)
result = chain.invoke(docs)
print(result)

View File

@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3` model installed:
```bash
ollama pull llama3.1
ollama pull llama3
```
2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
llm = Ollama(model="llama3.1")
llm = Ollama(model="llama3")
res = llm.predict(input)
print (res)

View File

@@ -1,4 +1,4 @@
FROM llama3.1
FROM llama3
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.

View File

@@ -2,12 +2,12 @@
# Example character: Mario
This example shows how to create a basic character using Llama3.1 as the base model.
This example shows how to create a basic character using Llama3 as the base model.
To run this example:
1. Download the Modelfile
2. `ollama pull llama3.1` to get the base model used in the model file.
2. `ollama pull llama3` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like:
```
FROM llama3.1
FROM llama3
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.

View File

@@ -4,7 +4,7 @@ imageName = input("Enter the name of the image: ")
client = docker.from_env()
s = requests.Session()
output=""
with s.post('http://localhost:11434/api/generate', json={'model': 'mattw/dockerit', 'prompt': inputDescription}, stream=True) as r:
with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
for line in r.iter_lines():
if line:
j = json.loads(line)

View File

@@ -2,7 +2,7 @@ import requests
import json
import random
model = "llama3.1"
model = "llama3"
template = {
"firstName": "",
"lastName": "",

View File

@@ -12,7 +12,7 @@ countries = [
"France",
]
country = random.choice(countries)
model = "llama3.1"
model = "llama3"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."

View File

@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3` model installed:
```bash
ollama pull llama3.1
ollama pull llama3
```
2. Install the Python Requirements.

View File

@@ -2,7 +2,7 @@ import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3.1" # TODO: update this for whatever model you wish to use
model = "llama3" # TODO: update this for whatever model you wish to use
def chat(messages):

View File

@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3` model installed:
```bash
ollama pull llama3.1
ollama pull llama3
```
2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
import * as readline from "readline";
const model = "llama3.1";
const model = "llama3";
type Message = {
role: "assistant" | "user" | "system";
content: string;

View File

@@ -33,10 +33,9 @@ type HipLib struct {
}
func NewHipLib() (*HipLib, error) {
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
h, err := windows.LoadLibrary("amdhip64.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
return nil, fmt.Errorf("unable to load amdhip64.dll: %w", err)
}
hl := &HipLib{}
hl.dll = h

View File

@@ -10,7 +10,6 @@ import (
"path/filepath"
"regexp"
"slices"
"sort"
"strconv"
"strings"
@@ -61,9 +60,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
hipVD := envconfig.HipVisibleDevices // zero based index only
rocrVD := envconfig.RocrVisibleDevices // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := envconfig.GpuDeviceOrdinal // zero based index
switch {
// TODO is this priorty order right?
case hipVD != "":
@@ -76,27 +75,13 @@ func AMDGetGPUInfo() []RocmGPUInfo {
visibleDevices = strings.Split(gpuDO, ",")
}
gfxOverride := envconfig.HsaOverrideGfxVersion()
gfxOverride := envconfig.HsaOverrideGfxVersion
var supported []string
libDir := ""
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
cpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)

View File

@@ -53,7 +53,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
}
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
gfxOverride := envconfig.HsaOverrideGfxVersion
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
@@ -92,8 +92,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
continue
}
if gfxOverride == "" {
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")

View File

@@ -26,7 +26,7 @@ func PayloadsDir() (string, error) {
defer lock.Unlock()
var err error
if payloadsDir == "" {
runnersDir := envconfig.RunnersDir()
runnersDir := envconfig.RunnersDir
if runnersDir != "" {
payloadsDir = runnersDir
@@ -35,7 +35,7 @@ func PayloadsDir() (string, error) {
// The remainder only applies on non-windows where we still carry payloads in the main executable
cleanupTmpDirs()
tmpDir := envconfig.TmpDir()
tmpDir := envconfig.TmpDir
if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil {
@@ -105,7 +105,7 @@ func cleanupTmpDirs() {
func Cleanup() {
lock.Lock()
defer lock.Unlock()
runnersDir := envconfig.RunnersDir()
runnersDir := envconfig.RunnersDir
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
// We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))

View File

@@ -230,8 +230,8 @@ func GetGPUInfo() GpuInfoList {
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "cuda")
}
// Load ALL libraries
@@ -302,12 +302,12 @@ func GetGPUInfo() GpuInfoList {
}
// Intel
if envconfig.IntelGPU() {
if envconfig.IntelGpu {
oHandles = initOneAPIHandles()
// On windows we bundle the oneapi library one level above the runner dir
depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "oneapi")
}
for d := range oHandles.oneapi.num_drivers {
@@ -360,17 +360,14 @@ func GetGPUInfo() GpuInfoList {
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
@@ -611,7 +608,7 @@ func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
}
func getVerboseState() C.uint16_t {
if envconfig.Debug() {
if envconfig.Debug {
return C.uint16_t(1)
}
return C.uint16_t(0)

View File

@@ -57,7 +57,6 @@ func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
FreeMemory: uint64(C.getFreeMemory()),
// FreeSwap omitted as Darwin uses dynamic paging
}, nil
}

View File

@@ -50,7 +50,7 @@ var OneapiMgmtName = "libze_intel_gpu.so"
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
var total, available, free, buffers, cached uint64
f, err := os.Open("/proc/meminfo")
if err != nil {
return mem, err
@@ -70,21 +70,20 @@ func GetCPUMem() (memInfo, error) {
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
case strings.HasPrefix(line, "SwapFree:"):
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
default:
continue
}
if err != nil {
return mem, err
}
if total > 0 && available > 0 {
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = available * format.KibiByte
return mem, nil
}
}
mem.TotalMemory = total * format.KibiByte
mem.FreeSwap = freeSwap * format.KibiByte
if available > 0 {
mem.FreeMemory = available * format.KibiByte
} else {
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
}
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
return mem, nil
}

View File

@@ -51,5 +51,5 @@ func GetCPUMem() (memInfo, error) {
if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
}
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
}

View File

@@ -10,7 +10,6 @@ import (
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"`
}
// Beginning of an `ollama info` command

View File

@@ -45,7 +45,14 @@ func TestUnicodeModelDir(t *testing.T) {
defer os.RemoveAll(modelDir)
slog.Info("unicode", "OLLAMA_MODELS", modelDir)
t.Setenv("OLLAMA_MODELS", modelDir)
oldModelsDir := os.Getenv("OLLAMA_MODELS")
if oldModelsDir == "" {
defer os.Unsetenv("OLLAMA_MODELS")
} else {
defer os.Setenv("OLLAMA_MODELS", oldModelsDir)
}
err = os.Setenv("OLLAMA_MODELS", modelDir)
require.NoError(t, err)
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()

View File

@@ -5,16 +5,14 @@ package integration
import (
"context"
"log/slog"
"os"
"strconv"
"sync"
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/stretchr/testify/require"
)
func TestMultiModelConcurrency(t *testing.T) {
@@ -71,7 +69,7 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
reqLimit := len(req)
iterLimit := 5
vram := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
vram := os.Getenv("OLLAMA_MAX_VRAM")
if vram != "" {
max, err := strconv.ParseUint(vram, 10, 64)
require.NoError(t, err)
@@ -108,16 +106,13 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
func TestMultiModelStress(t *testing.T) {
s := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
if s == "" {
vram := os.Getenv("OLLAMA_MAX_VRAM")
if vram == "" {
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
}
maxVram, err := strconv.ParseUint(s, 10, 64)
if err != nil {
t.Fatal(err)
}
max, err := strconv.ParseUint(vram, 10, 64)
require.NoError(t, err)
const MB = uint64(1024 * 1024)
type model struct {
name string
size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
@@ -126,82 +121,83 @@ func TestMultiModelStress(t *testing.T) {
smallModels := []model{
{
name: "orca-mini",
size: 2992 * format.MebiByte,
size: 2992 * MB,
},
{
name: "phi",
size: 2616 * format.MebiByte,
size: 2616 * MB,
},
{
name: "gemma:2b",
size: 2364 * format.MebiByte,
size: 2364 * MB,
},
{
name: "stable-code:3b",
size: 2608 * format.MebiByte,
size: 2608 * MB,
},
{
name: "starcoder2:3b",
size: 2166 * format.MebiByte,
size: 2166 * MB,
},
}
mediumModels := []model{
{
name: "llama2",
size: 5118 * format.MebiByte,
size: 5118 * MB,
},
{
name: "mistral",
size: 4620 * format.MebiByte,
size: 4620 * MB,
},
{
name: "orca-mini:7b",
size: 5118 * format.MebiByte,
size: 5118 * MB,
},
{
name: "dolphin-mistral",
size: 4620 * format.MebiByte,
size: 4620 * MB,
},
{
name: "gemma:7b",
size: 5000 * format.MebiByte,
},
{
name: "codellama:7b",
size: 5118 * format.MebiByte,
size: 5000 * MB,
},
// TODO - uncomment this once #3565 is merged and this is rebased on it
// {
// name: "codellama:7b",
// size: 5118 * MB,
// },
}
// These seem to be too slow to be useful...
// largeModels := []model{
// {
// name: "llama2:13b",
// size: 7400 * format.MebiByte,
// size: 7400 * MB,
// },
// {
// name: "codellama:13b",
// size: 7400 * format.MebiByte,
// size: 7400 * MB,
// },
// {
// name: "orca-mini:13b",
// size: 7400 * format.MebiByte,
// size: 7400 * MB,
// },
// {
// name: "gemma:7b",
// size: 5000 * format.MebiByte,
// size: 5000 * MB,
// },
// {
// name: "starcoder2:15b",
// size: 9100 * format.MebiByte,
// size: 9100 * MB,
// },
// }
var chosenModels []model
switch {
case maxVram < 10000*format.MebiByte:
case max < 10000*MB:
slog.Info("selecting small models")
chosenModels = smallModels
// case maxVram < 30000*format.MebiByte:
// case max < 30000*MB:
default:
slog.Info("selecting medium models")
chosenModels = mediumModels
@@ -230,15 +226,15 @@ func TestMultiModelStress(t *testing.T) {
}
var wg sync.WaitGroup
consumed := uint64(256 * format.MebiByte) // Assume some baseline usage
consumed := uint64(256 * MB) // Assume some baseline usage
for i := 0; i < len(req); i++ {
// Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long
if i > 1 && consumed > vram {
slog.Info("achieved target vram exhaustion", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed))
if i > 1 && consumed > max {
slog.Info("achieved target vram exhaustion", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
break
}
consumed += chosenModels[i].size
slog.Info("target vram", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed))
slog.Info("target vram", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
wg.Add(1)
go func(i int) {

View File

@@ -12,7 +12,7 @@ import (
func TestContextExhaustion(t *testing.T) {
// Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
defer cancel()
// Set up the test data
req := api.GenerateRequest{
@@ -25,10 +25,5 @@ func TestContextExhaustion(t *testing.T) {
"num_ctx": 128,
},
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
GenerateTestHelper(ctx, t, req, []string{"once", "upon", "lived"})
}

View File

@@ -1,209 +0,0 @@
//go:build integration
package integration
import (
"context"
"math"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func floatsEqual32(a, b float32) bool {
return math.Abs(float64(a-b)) <= 1e-4
}
func floatsEqual64(a, b float64) bool {
return math.Abs(a-b) <= 1e-4
}
func TestAllMiniLMEmbeddings(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
}
res, err := embeddingTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embedding) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embedding))
}
if !floatsEqual64(res.Embedding[0], 0.06642947345972061) {
t.Fatalf("expected 0.06642947345972061, got %.16f", res.Embedding[0])
}
}
func TestAllMiniLMEmbed(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
}
res, err := embedTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
}
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
}
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
func TestAllMiniLMBatchEmbed(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbedRequest{
Model: "all-minilm",
Input: []string{"why is the sky blue?", "why is the grass green?"},
}
res, err := embedTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 2 {
t.Fatalf("expected 2 embeddings, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
}
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) || !floatsEqual32(res.Embeddings[1][0], -0.009802706) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
}
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}
func TestAllMiniLMEmbedTruncate(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
truncTrue, truncFalse := true, false
type testReq struct {
Name string
Request api.EmbedRequest
}
reqs := []testReq{
{
Name: "Target Truncation",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
},
{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 1},
},
},
{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
},
}
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
}
}
func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
response, err := client.Embeddings(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}

View File

@@ -5,6 +5,7 @@ package integration
import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"strconv"
@@ -13,10 +14,8 @@ import (
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/stretchr/testify/require"
)
func TestMaxQueue(t *testing.T) {
@@ -28,10 +27,13 @@ func TestMaxQueue(t *testing.T) {
// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
threadCount := 32
if maxQueue := envconfig.MaxQueue(); maxQueue != 0 {
threadCount = maxQueue
mq := os.Getenv("OLLAMA_MAX_QUEUE")
if mq != "" {
var err error
threadCount, err = strconv.Atoi(mq)
require.NoError(t, err)
} else {
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
os.Setenv("OLLAMA_MAX_QUEUE", fmt.Sprintf("%d", threadCount))
}
req := api.GenerateRequest{

View File

@@ -41,7 +41,6 @@
#if defined(_WIN32)
#include <windows.h>
#include <errhandlingapi.h>
#endif
#include <cstddef>
@@ -1221,7 +1220,6 @@ struct llama_server_context
res.result_json = json
{
{"embedding", std::vector<float>(embd, embd + n_embd)},
{"timings", slot.get_formated_timings()},
};
}
}
@@ -2439,6 +2437,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
}
else if (arg == "--lora-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_base = argv[i];
}
else if (arg == "-v" || arg == "--verbose")
{
server_verbose = true;
@@ -2730,9 +2737,6 @@ int wmain(int argc, wchar_t **wargv) {
for (int i = 0; i < argc; ++i) {
argv[i] = wchar_to_char(wargv[i]);
}
// Adjust error mode to avoid error dialog after we start.
SetErrorMode(SEM_FAILCRITICALERRORS);
#else
int main(int argc, char **argv) {
#endif
@@ -3184,37 +3188,26 @@ int main(int argc, char **argv) {
prompt = "";
}
if (prompt.size() == 1) {
prompt = prompt[0];
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
// create and queue the task
json responses;
{
const int id_task = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(id_task);
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1);
// get the result
task_result result = llama.queue_results.recv(id_task);
llama.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
}
// get the result
task_result result = llama.queue_results.recv(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
responses = result.result_json.value("results", std::vector<json>{result.result_json});
json embeddings = json::array();
int prompt_n = 0;
for (auto & elem : responses) {
embeddings.push_back(elem.at("embedding"));
prompt_n += elem.at("timings").at("prompt_n").get<int>();
}
// send the result
json embedding_res = json{{"embedding", embeddings}, {"prompt_n", prompt_n}};
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
}
// send the result
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
});
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?

View File

@@ -178,7 +178,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DGGML_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} -DCMAKE_LIBRARY_PATH=/usr/local/cuda/compat"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"

View File

@@ -7,8 +7,8 @@ function amdGPUs {
return $env:AMDGPU_TARGETS
}
# Current supported rocblas list from ROCm v6.1.2 on windows
# https://rocm.docs.amd.com/projects/install-on-windows/en/latest/reference/system-requirements.html#windows-supported-gpus
$GPU_LIST = @(
"gfx906:xnack-"
"gfx1030"
"gfx1100"
"gfx1101"

View File

@@ -424,32 +424,6 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
case "chatglm":
fullOffload = 4 * batch * (embedding + vocab)
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
fullOffload = max(
fullOffload,
4*batch*(2+
2*embedding+
context+
context*heads+
embeddingHeadsK*heads+
qkvBias.Shape[0]),
)
partialOffload = max(
partialOffload,
4*batch*(1+
2*embedding+
embeddingHeadsK*heads+
context+
context*heads)+
4*embeddingHeadsK*context+
4*context*embeddingHeadsK+
4*qkvBias.Shape[0],
)
}
}
return

View File

@@ -537,7 +537,6 @@ var ggufKVOrder = map[string][]string{
"tokenizer.ggml.add_bos_token",
"tokenizer.ggml.add_eos_token",
"tokenizer.chat_template",
"bert.pooling_type",
},
}

View File

@@ -33,7 +33,7 @@ func Quantize(infile, outfile string, ftype fileType) error {
params.ftype = ftype.Value()
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version")
return fmt.Errorf("llama_model_quantize: %d", rc)
}
return nil

View File

@@ -2,10 +2,7 @@ package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/x86_64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -2,10 +2,7 @@ package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/arm64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,11 +1,6 @@
package llm
import (
"embed"
"syscall"
)
import "embed"
//go:embed build/linux/*/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,20 +1,6 @@
package llm
import (
"embed"
"syscall"
)
import "embed"
// unused on windows
var libEmbed embed.FS
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
var LlamaServerSysProcAttr = &syscall.SysProcAttr{
// Wire up the default error handling logic If for some reason a DLL is
// missing in the path this will pop up a GUI Dialog explaining the fault so
// the user can either fix their PATH, or report a bug. Without this
// setting, the process exits immediately with a generic exit status but no
// way to (easily) figure out what the actual missing DLL was.
CreationFlags: CREATE_DEFAULT_ERROR_MODE,
}

View File

@@ -8,14 +8,14 @@ import (
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/gpu"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestEstimateGPULayers(t *testing.T) {
t.Setenv("OLLAMA_DEBUG", "1")
envconfig.Debug = true
modelName := "dummy"
f, err := os.CreateTemp(t.TempDir(), modelName)
require.NoError(t, err)

View File

@@ -1,8 +1,8 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..2ddf431d 100644
index 2b9ace28..172640e2 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
@@ -5357,16 +5357,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
@@ -20,9 +20,9 @@ index a207451f..2ddf431d 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
tokenizer_pre == "codeshell") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
@@ -5439,7 +5430,8 @@ static void llm_load_vocab(
tokenizer_pre == "jais") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);

13
llm/patches/06-qwen2.diff Normal file
View File

@@ -0,0 +1,13 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 40d2ec2c..f34eb79a 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -6943,7 +6943,7 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
+ if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

View File

@@ -1,358 +0,0 @@
diff --git a/common/common.cpp b/common/common.cpp
index dbb724fb..c26fe6ee 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2087,14 +2087,27 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
+
+ // try to load as gguf
auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
if (adapter == nullptr) {
- fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
- llama_free(lctx);
- llama_free_model(model);
- return std::make_tuple(nullptr, nullptr);
+ fprintf(stderr, "%s: error: failed to apply lora adapter, trying ggla\n", __func__);
+
+ // if that fails, try loading as ggla for compatibility
+ int err = llama_model_apply_lora_from_file(model,
+ lora_adapter.c_str(),
+ lora_scale,
+ nullptr,
+ params.n_threads);
+ if (err != 0) {
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
+ llama_free(lctx);
+ llama_free_model(model);
+ return std::make_tuple(nullptr, nullptr);
+ }
+ } else {
+ llama_lora_adapter_set(lctx, adapter, lora_scale);
}
- llama_lora_adapter_set(lctx, adapter, lora_scale);
}
if (params.ignore_eos) {
diff --git a/include/llama.h b/include/llama.h
index 93fd77ca..b0fb37a6 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -1160,6 +1160,20 @@ extern "C" {
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
+ // Apply a LoRA adapter to a loaded model
+ // path_base_model is the path to a higher quality model to use as a base for
+ // the layers modified by the adapter. Can be NULL to use the current loaded model.
+ // The model needs to be reloaded before applying a new adapter, otherwise the adapter
+ // will be applied on top of the previous one
+ // Returns 0 on success
+ LLAMA_API int32_t llama_model_apply_lora_from_file(
+ const struct llama_model * model,
+ const char * path_lora,
+ float scale,
+ const char * path_base_model,
+ int32_t n_threads);
+
+
#ifdef __cplusplus
}
#endif
diff --git a/src/llama.cpp b/src/llama.cpp
index 80a0dd0f..9d7b0e17 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
fputs(text, stderr);
fflush(stderr);
}
+
+static int llama_apply_lora_from_file_internal(
+ const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
+) {
+ LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
+
+ const int64_t t_start_lora_us = ggml_time_us();
+
+ llama_file fin(path_lora, "rb");
+
+ // verify magic and version
+ {
+ uint32_t magic = fin.read_u32();
+ if (magic != LLAMA_FILE_MAGIC_GGLA) {
+ LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
+ return 1;
+ }
+
+ uint32_t format_version = fin.read_u32();
+ if (format_version != 1) {
+ LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
+ return 1;
+ }
+ }
+
+ int32_t lora_r = fin.read_u32();
+ int32_t lora_alpha = fin.read_u32();
+ float scaling = scale * (float)lora_alpha / (float)lora_r;
+
+ LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
+
+ // load base model
+ std::unique_ptr<llama_model_loader> ml;
+ if (path_base_model) {
+ LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
+ ml->init_mappings(/*prefetch*/ false); // no prefetching
+ }
+
+ struct tensor_meta {
+ std::string name;
+ ggml_type type;
+ int32_t ne[2];
+ size_t offset;
+ };
+ std::map<std::string, tensor_meta> tensor_meta_map;
+
+ // load all tensor meta
+ while (true) {
+ if (fin.tell() == fin.size) {
+ // eof
+ break;
+ }
+
+ int32_t n_dims;
+ int32_t name_len;
+ int32_t ftype;
+
+ fin.read_raw(&n_dims, sizeof(n_dims));
+ fin.read_raw(&name_len, sizeof(name_len));
+ fin.read_raw(&ftype, sizeof(ftype));
+
+ if (n_dims != 1 && n_dims != 2) {
+ LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
+ return 1;
+ }
+
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read_raw(&ne[i], sizeof(ne[i]));
+ }
+
+ std::string name;
+ {
+ GGML_ASSERT(name_len < GGML_MAX_NAME);
+ char buf[GGML_MAX_NAME];
+ fin.read_raw(buf, name_len);
+ name = std::string(buf, name_len);
+ }
+
+ // check for lora suffix
+ std::string lora_suffix;
+ if (name.length() > 6) {
+ lora_suffix = name.substr(name.length() - 6);
+ }
+ if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
+ LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
+ return 1;
+ }
+
+ // tensor type
+ ggml_type wtype;
+ switch (ftype) {
+ case 0: wtype = GGML_TYPE_F32; break;
+ case 1: wtype = GGML_TYPE_F16; break;
+ default:
+ {
+ LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
+ __func__, ftype);
+ return 1;
+ }
+ }
+
+ // data offset
+ size_t offset = fin.tell();
+ offset = (offset + 31) & -32;
+
+ // skip tensor data
+ fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
+
+ tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
+ }
+
+ bool warned = false;
+ int n_tensors = 0;
+
+ // apply
+ ggml_backend_t backend_cpu = ggml_backend_cpu_init();
+ if (backend_cpu == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
+ return 1;
+ }
+ ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
+
+ std::vector<no_init<uint8_t>> read_buf;
+ for (const auto & it : model.tensors_by_name) {
+ const std::string & base_name = it.first;
+ ggml_tensor * model_t = it.second;
+
+ if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
+ tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
+ continue;
+ }
+
+ tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
+ tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
+
+ ggml_init_params lora_init_params = {
+ /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
+ /* .mem_buffer */ nullptr,
+ /* .no_alloc */ true,
+ };
+ ggml_context * lora_ctx = ggml_init(lora_init_params);
+ if (lora_ctx == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ // create tensors
+ ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
+ ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
+ ggml_set_name(loraA, metaA.name.c_str());
+ ggml_set_name(loraB, metaB.name.c_str());
+
+ ggml_tensor * base_t;
+ if (ml) {
+ if (!ml->get_tensor_meta(base_name.c_str())) {
+ LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
+ return 1;
+ }
+ base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
+ } else {
+ base_t = ggml_dup_tensor(lora_ctx, model_t);
+ }
+ ggml_set_name(base_t, base_name.c_str());
+
+ // allocate in backend buffer
+ ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (lora_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
+ return 1;
+ }
+
+ // load tensor data
+ auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
+ read_buf.resize(ggml_nbytes(tensor));
+ fin.seek(tensor_meta.offset, SEEK_SET);
+ fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
+ ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
+ };
+ load_tensor(metaA, loraA);
+ load_tensor(metaB, loraB);
+
+ // load base model tensor data
+ if (ml) {
+ ml->load_data_for(base_t);
+ } else {
+ ggml_backend_tensor_copy(model_t, base_t);
+ }
+
+ if (ggml_is_quantized(base_t->type) && !warned) {
+ LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
+ "use a f16 or f32 base model with --lora-base\n", __func__);
+ warned = true;
+ }
+
+ if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
+ LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
+ " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ auto build_lora_graph = [&]() {
+ // w = w + BA*s
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
+ ggml_set_name(BA, "BA");
+
+ if (scaling != 1.0f) {
+ BA = ggml_scale(lora_ctx, BA, scaling);
+ ggml_set_name(BA, "BA_scaled");
+ }
+
+ ggml_tensor * r;
+ r = ggml_add_inplace(lora_ctx, base_t, BA);
+ ggml_set_name(r, "r_add");
+
+ if (base_t->type != model_t->type) {
+ // convert the result to the model type
+ r = ggml_cast(lora_ctx, r, model_t->type);
+ ggml_set_name(r, "r_cast");
+ }
+
+ return r;
+ };
+
+ ggml_cgraph * gf = ggml_new_graph(lora_ctx);
+ ggml_tensor * r = build_lora_graph();
+ ggml_build_forward_expand(gf, r);
+
+ ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (graph_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ ggml_backend_graph_compute(backend_cpu, gf);
+
+ ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
+
+#if 0
+ // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
+ //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
+
+ // sched compute
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_init_measure(sched, gf);
+
+ // create the graph again, since the previous one was destroyed by the measure
+ ggml_graph_clear(gf);
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_graph_compute(sched, gf);
+ ggml_backend_sched_free(sched);
+#endif
+
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_buffer_free(graph_buf);
+ ggml_free(lora_ctx);
+
+ n_tensors++;
+ if (n_tensors % 4 == 0) {
+ LLAMA_LOG_INFO(".");
+ }
+ }
+
+ ggml_backend_free(backend_cpu);
+
+ const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
+ LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
+
+ return 0;
+}
+
+int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
+ try {
+ return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
+ return 1;
+ }
+}
\ No newline at end of file

View File

@@ -1,20 +0,0 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..fba6b175 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -4969,6 +4969,7 @@ static void llm_load_hparams(
hparams.attn_soft_cap = true;
switch (hparams.n_layer) {
+ case 26: model.type = e_model::MODEL_2B; break;
case 42: model.type = e_model::MODEL_9B; break;
case 46: model.type = e_model::MODEL_27B; break;
default: model.type = e_model::MODEL_UNKNOWN;
@@ -11736,6 +11737,7 @@ struct llm_build_context {
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
switch (model.type) {
+ case e_model::MODEL_2B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
default: GGML_ABORT("fatal error");

View File

@@ -1,43 +0,0 @@
From 6eedae4cf2fcc8015dac79cb3f28f61fcabacab2 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Wed, 31 Jul 2024 14:57:04 -0700
Subject: [PATCH] phi3 sliding window
---
src/llama.cpp | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..f2872d4e 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -4893,7 +4893,7 @@ static void llm_load_hparams(
} break;
case LLM_ARCH_PHI3:
{
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
@@ -10762,7 +10762,7 @@ struct llm_build_context {
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
+ struct ggml_tensor * KQ_mask = hparams.n_swa > 0 ? build_inp_KQ_mask_swa() : build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
auto residual = inpL;
@@ -10820,7 +10820,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
}
if (il == n_layer - 1) {
--
2.45.2

View File

@@ -33,7 +33,7 @@ type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embed(ctx context.Context, input []string) (*EmbedResponse, error)
Embedding(ctx context.Context, prompt string) ([]float64, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
@@ -88,7 +88,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
var estimate MemoryEstimate
var systemTotalMemory uint64
var systemFreeMemory uint64
var systemSwapFreeMemory uint64
systemMemInfo, err := gpu.GetCPUMem()
if err != nil {
@@ -96,8 +95,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else {
systemTotalMemory = systemMemInfo.TotalMemory
systemFreeMemory = systemMemInfo.FreeMemory
systemSwapFreeMemory = systemMemInfo.FreeSwap
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
}
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
@@ -124,16 +122,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
}
// On linux, over-allocating CPU memory will almost always result in an error
if runtime.GOOS == "linux" {
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
available := systemFreeMemory + systemSwapFreeMemory
if systemMemoryRequired > available {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
}
}
estimate.log()
// Loop through potential servers
@@ -163,7 +151,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else {
servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
}
demandLib := envconfig.LLMLibrary()
demandLib := envconfig.LLMLibrary
if demandLib != "" {
serverPath := availableServers[demandLib]
if serverPath == "" {
@@ -195,7 +183,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
}
if envconfig.Debug() {
if envconfig.Debug {
params = append(params, "--verbose")
}
@@ -221,7 +209,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--memory-f32")
}
flashAttnEnabled := envconfig.FlashAttention()
flashAttnEnabled := envconfig.FlashAttention
for _, g := range gpus {
// only cuda (compute capability 7+) and metal support flash attention
@@ -346,7 +334,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
@@ -382,14 +369,12 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
if envconfig.Debug {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
@@ -418,17 +403,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Debug("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- fmt.Errorf(s.status.LastErrMsg)
} else {
s.done <- err
}
s.done <- s.cmd.Wait()
}()
return s, nil
@@ -591,7 +566,14 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
slog.Warn("client connection closed before server finished loading, aborting load")
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
case err := <-s.done:
return fmt.Errorf("llama runner process has terminated: %w", err)
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
if strings.Contains(msg, "unknown model") {
return fmt.Errorf("this model is not supported by your version of Ollama. You may need to upgrade")
}
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
default:
}
if time.Now().After(stallTimer) {
@@ -727,7 +709,6 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
"temperature": req.Options.Temperature,
"top_k": req.Options.TopK,
"top_p": req.Options.TopP,
"min_p": req.Options.MinP,
"tfs_z": req.Options.TFSZ,
"typical_p": req.Options.TypicalP,
"repeat_last_n": req.Options.RepeatLastN,
@@ -874,16 +855,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
return nil
}
type EmbedRequest struct {
Content []string `json:"content"`
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbedResponse struct {
Embedding [][]float32 `json:"embedding"`
PromptEvalCount int `json:"prompt_n"`
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse, error) {
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
return nil, err
@@ -898,7 +878,7 @@ func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse,
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(EmbedRequest{Content: input})
data, err := json.Marshal(TokenizeRequest{Content: prompt})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
@@ -925,12 +905,12 @@ func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse,
return nil, fmt.Errorf("%s", body)
}
var e EmbedResponse
if err := json.Unmarshal(body, &e); err != nil {
var embedding EmbeddingResponse
if err := json.Unmarshal(body, &embedding); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return &e, nil
return embedding.Embedding, nil
}
type TokenizeRequest struct {

View File

@@ -19,7 +19,7 @@ export default function () {
const [step, setStep] = useState<Step>(Step.WELCOME)
const [commandCopied, setCommandCopied] = useState<boolean>(false)
const command = 'ollama run llama3.1'
const command = 'ollama run llama3'
return (
<div className='drag'>

View File

@@ -3,14 +3,11 @@ package openai
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"log/slog"
"math/rand"
"net/http"
"strings"
"time"
"github.com/gin-gonic/gin"
@@ -30,9 +27,8 @@ type ErrorResponse struct {
}
type Message struct {
Role string `json:"role"`
Content any `json:"content"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
Role string `json:"role"`
Content string `json:"content"`
}
type Choice struct {
@@ -63,11 +59,6 @@ type ResponseFormat struct {
Type string `json:"type"`
}
type EmbedRequest struct {
Input any `json:"input"`
Model string `json:"model"`
}
type ChatCompletionRequest struct {
Model string `json:"model"`
Messages []Message `json:"messages"`
@@ -80,7 +71,6 @@ type ChatCompletionRequest struct {
PresencePenalty *float64 `json:"presence_penalty_penalty"`
TopP *float64 `json:"top_p"`
ResponseFormat *ResponseFormat `json:"response_format"`
Tools []api.Tool `json:"tools"`
}
type ChatCompletion struct {
@@ -114,7 +104,6 @@ type CompletionRequest struct {
Stream bool `json:"stream"`
Temperature *float32 `json:"temperature"`
TopP float32 `json:"top_p"`
Suffix string `json:"suffix"`
}
type Completion struct {
@@ -136,15 +125,6 @@ type CompletionChunk struct {
SystemFingerprint string `json:"system_fingerprint"`
}
type ToolCall struct {
ID string `json:"id"`
Type string `json:"type"`
Function struct {
Name string `json:"name"`
Arguments string `json:"arguments"`
} `json:"function"`
}
type Model struct {
Id string `json:"id"`
Object string `json:"object"`
@@ -152,23 +132,11 @@ type Model struct {
OwnedBy string `json:"owned_by"`
}
type Embedding struct {
Object string `json:"object"`
Embedding []float32 `json:"embedding"`
Index int `json:"index"`
}
type ListCompletion struct {
Object string `json:"object"`
Data []Model `json:"data"`
}
type EmbeddingList struct {
Object string `json:"object"`
Data []Embedding `json:"data"`
Model string `json:"model"`
}
func NewError(code int, message string) ErrorResponse {
var etype string
switch code {
@@ -183,31 +151,7 @@ func NewError(code int, message string) ErrorResponse {
return ErrorResponse{Error{Type: etype, Message: message}}
}
func toolCallId() string {
const letterBytes = "abcdefghijklmnopqrstuvwxyz0123456789"
b := make([]byte, 8)
for i := range b {
b[i] = letterBytes[rand.Intn(len(letterBytes))]
}
return "call_" + strings.ToLower(string(b))
}
func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
toolCalls := make([]ToolCall, len(r.Message.ToolCalls))
for i, tc := range r.Message.ToolCalls {
toolCalls[i].ID = toolCallId()
toolCalls[i].Type = "function"
toolCalls[i].Function.Name = tc.Function.Name
args, err := json.Marshal(tc.Function.Arguments)
if err != nil {
slog.Error("could not marshall function arguments to json", "error", err)
continue
}
toolCalls[i].Function.Arguments = string(args)
}
return ChatCompletion{
Id: id,
Object: "chat.completion",
@@ -216,11 +160,8 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
SystemFingerprint: "fp_ollama",
Choices: []Choice{{
Index: 0,
Message: Message{Role: r.Message.Role, Content: r.Message.Content, ToolCalls: toolCalls},
Message: Message{Role: r.Message.Role, Content: r.Message.Content},
FinishReason: func(reason string) *string {
if len(toolCalls) > 0 {
reason = "tool_calls"
}
if len(reason) > 0 {
return &reason
}
@@ -228,6 +169,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
}(r.DoneReason),
}},
Usage: Usage{
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
PromptTokens: r.PromptEvalCount,
CompletionTokens: r.EvalCount,
TotalTokens: r.PromptEvalCount + r.EvalCount,
@@ -273,6 +215,7 @@ func toCompletion(id string, r api.GenerateResponse) Completion {
}(r.DoneReason),
}},
Usage: Usage{
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
PromptTokens: r.PromptEvalCount,
CompletionTokens: r.EvalCount,
TotalTokens: r.PromptEvalCount + r.EvalCount,
@@ -317,27 +260,6 @@ func toListCompletion(r api.ListResponse) ListCompletion {
}
}
func toEmbeddingList(model string, r api.EmbedResponse) EmbeddingList {
if r.Embeddings != nil {
var data []Embedding
for i, e := range r.Embeddings {
data = append(data, Embedding{
Object: "embedding",
Embedding: e,
Index: i,
})
}
return EmbeddingList{
Object: "list",
Data: data,
Model: model,
}
}
return EmbeddingList{}
}
func toModel(r api.ShowResponse, m string) Model {
return Model{
Id: m,
@@ -347,77 +269,10 @@ func toModel(r api.ShowResponse, m string) Model {
}
}
func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
func fromChatRequest(r ChatCompletionRequest) api.ChatRequest {
var messages []api.Message
for _, msg := range r.Messages {
switch content := msg.Content.(type) {
case string:
messages = append(messages, api.Message{Role: msg.Role, Content: content})
case []any:
for _, c := range content {
data, ok := c.(map[string]any)
if !ok {
return nil, fmt.Errorf("invalid message format")
}
switch data["type"] {
case "text":
text, ok := data["text"].(string)
if !ok {
return nil, fmt.Errorf("invalid message format")
}
messages = append(messages, api.Message{Role: msg.Role, Content: text})
case "image_url":
var url string
if urlMap, ok := data["image_url"].(map[string]any); ok {
if url, ok = urlMap["url"].(string); !ok {
return nil, fmt.Errorf("invalid message format")
}
} else {
if url, ok = data["image_url"].(string); !ok {
return nil, fmt.Errorf("invalid message format")
}
}
types := []string{"jpeg", "jpg", "png"}
valid := false
for _, t := range types {
prefix := "data:image/" + t + ";base64,"
if strings.HasPrefix(url, prefix) {
url = strings.TrimPrefix(url, prefix)
valid = true
break
}
}
if !valid {
return nil, fmt.Errorf("invalid image input")
}
img, err := base64.StdEncoding.DecodeString(url)
if err != nil {
return nil, fmt.Errorf("invalid message format")
}
messages = append(messages, api.Message{Role: msg.Role, Images: []api.ImageData{img}})
default:
return nil, fmt.Errorf("invalid message format")
}
}
default:
if msg.ToolCalls == nil {
return nil, fmt.Errorf("invalid message content type: %T", content)
}
toolCalls := make([]api.ToolCall, len(msg.ToolCalls))
for i, tc := range msg.ToolCalls {
toolCalls[i].Function.Name = tc.Function.Name
err := json.Unmarshal([]byte(tc.Function.Arguments), &toolCalls[i].Function.Arguments)
if err != nil {
return nil, fmt.Errorf("invalid tool call arguments")
}
}
messages = append(messages, api.Message{Role: msg.Role, ToolCalls: toolCalls})
}
messages = append(messages, api.Message{Role: msg.Role, Content: msg.Content})
}
options := make(map[string]interface{})
@@ -468,14 +323,13 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
format = "json"
}
return &api.ChatRequest{
return api.ChatRequest{
Model: r.Model,
Messages: messages,
Format: format,
Options: options,
Stream: &r.Stream,
Tools: r.Tools,
}, nil
}
}
func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
@@ -525,7 +379,6 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
Prompt: r.Prompt,
Options: options,
Stream: &r.Stream,
Suffix: r.Suffix,
}, nil
}
@@ -554,11 +407,6 @@ type RetrieveWriter struct {
model string
}
type EmbedWriter struct {
BaseWriter
model string
}
func (w *BaseWriter) writeError(code int, data []byte) (int, error) {
var serr api.StatusError
err := json.Unmarshal(data, &serr)
@@ -724,33 +572,6 @@ func (w *RetrieveWriter) Write(data []byte) (int, error) {
return w.writeResponse(data)
}
func (w *EmbedWriter) writeResponse(data []byte) (int, error) {
var embedResponse api.EmbedResponse
err := json.Unmarshal(data, &embedResponse)
if err != nil {
return 0, err
}
w.ResponseWriter.Header().Set("Content-Type", "application/json")
err = json.NewEncoder(w.ResponseWriter).Encode(toEmbeddingList(w.model, embedResponse))
if err != nil {
return 0, err
}
return len(data), nil
}
func (w *EmbedWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(code, data)
}
return w.writeResponse(data)
}
func ListMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
w := &ListWriter{
@@ -814,47 +635,6 @@ func CompletionsMiddleware() gin.HandlerFunc {
id: fmt.Sprintf("cmpl-%d", rand.Intn(999)),
}
c.Writer = w
c.Next()
}
}
func EmbeddingsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req EmbedRequest
err := c.ShouldBindJSON(&req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Input == "" {
req.Input = []string{""}
}
if req.Input == nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
return
}
if v, ok := req.Input.([]any); ok && len(v) == 0 {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, "invalid input"))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &EmbedWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
model: req.Model,
}
c.Writer = w
c.Next()
@@ -876,14 +656,7 @@ func ChatMiddleware() gin.HandlerFunc {
}
var b bytes.Buffer
chatReq, err := fromChatRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, NewError(http.StatusBadRequest, err.Error()))
return
}
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
if err := json.NewEncoder(&b).Encode(fromChatRequest(req)); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
return
}

View File

@@ -2,7 +2,6 @@ package openai
import (
"bytes"
"encoding/base64"
"encoding/json"
"io"
"net/http"
@@ -16,199 +15,64 @@ import (
"github.com/stretchr/testify/assert"
)
const prefix = `data:image/jpeg;base64,`
const image = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
const imageURL = prefix + image
func prepareRequest(req *http.Request, body any) {
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
}
func captureRequestMiddleware(capturedRequest any) gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
err := json.Unmarshal(bodyBytes, capturedRequest)
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, "failed to unmarshal request")
}
c.Next()
}
}
func TestChatMiddleware(t *testing.T) {
func TestMiddlewareRequests(t *testing.T) {
type testCase struct {
Name string
Method string
Path string
Handler func() gin.HandlerFunc
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder)
Expected func(t *testing.T, req *http.Request)
}
var capturedRequest *api.ChatRequest
var capturedRequest *http.Request
captureRequestMiddleware := func() gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
capturedRequest = c.Request
c.Next()
}
}
testCases := []testCase{
{
Name: "chat handler",
Name: "chat handler",
Method: http.MethodPost,
Path: "/api/chat",
Handler: ChatMiddleware,
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: "Hello"}},
}
prepareRequest(req, body)
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusOK {
t.Fatalf("expected 200, got %d", resp.Code)
Expected: func(t *testing.T, req *http.Request) {
var chatReq api.ChatRequest
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
t.Fatal(err)
}
if req.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
if chatReq.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
}
if req.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
if chatReq.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
}
},
},
{
Name: "chat handler with image content",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{
{
Role: "user", Content: []map[string]any{
{"type": "text", "text": "Hello"},
{"type": "image_url", "image_url": map[string]string{"url": imageURL}},
},
},
},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusOK {
t.Fatalf("expected 200, got %d", resp.Code)
}
if req.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[0].Role)
}
if req.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Messages[0].Content)
}
img, _ := base64.StdEncoding.DecodeString(imageURL[len(prefix):])
if req.Messages[1].Role != "user" {
t.Fatalf("expected 'user', got %s", req.Messages[1].Role)
}
if !bytes.Equal(req.Messages[1].Images[0], img) {
t.Fatalf("expected image encoding, got %s", req.Messages[1].Images[0])
}
},
},
{
Name: "chat handler with tools",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{
{Role: "user", Content: "What's the weather like in Paris Today?"},
{Role: "assistant", ToolCalls: []ToolCall{{
ID: "id",
Type: "function",
Function: struct {
Name string `json:"name"`
Arguments string `json:"arguments"`
}{
Name: "get_current_weather",
Arguments: "{\"location\": \"Paris, France\", \"format\": \"celsius\"}",
},
}}},
},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != 200 {
t.Fatalf("expected 200, got %d", resp.Code)
}
if req.Messages[0].Content != "What's the weather like in Paris Today?" {
t.Fatalf("expected What's the weather like in Paris Today?, got %s", req.Messages[0].Content)
}
if req.Messages[1].ToolCalls[0].Function.Arguments["location"] != "Paris, France" {
t.Fatalf("expected 'Paris, France', got %v", req.Messages[1].ToolCalls[0].Function.Arguments["location"])
}
if req.Messages[1].ToolCalls[0].Function.Arguments["format"] != "celsius" {
t.Fatalf("expected celsius, got %v", req.Messages[1].ToolCalls[0].Function.Arguments["format"])
}
},
},
{
Name: "chat handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: 2}},
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.ChatRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid message content type") {
t.Fatalf("error was not forwarded")
}
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ChatMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/chat", endpoint)
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/chat", nil)
tc.Setup(t, req)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp)
capturedRequest = nil
})
}
}
func TestCompletionsMiddleware(t *testing.T) {
type testCase struct {
Name string
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder)
}
var capturedRequest *api.GenerateRequest
testCases := []testCase{
{
Name: "completions handler",
Name: "completions handler",
Method: http.MethodPost,
Path: "/api/generate",
Handler: CompletionsMiddleware,
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
@@ -216,20 +80,28 @@ func TestCompletionsMiddleware(t *testing.T) {
Prompt: "Hello",
Temperature: &temp,
Stop: []string{"\n", "stop"},
Suffix: "suffix",
}
prepareRequest(req, body)
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) {
if req.Prompt != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Prompt)
Expected: func(t *testing.T, req *http.Request) {
var genReq api.GenerateRequest
if err := json.NewDecoder(req.Body).Decode(&genReq); err != nil {
t.Fatal(err)
}
if req.Options["temperature"] != 1.6 {
t.Fatalf("expected 1.6, got %f", req.Options["temperature"])
if genReq.Prompt != "Hello" {
t.Fatalf("expected 'Hello', got %s", genReq.Prompt)
}
stopTokens, ok := req.Options["stop"].([]any)
if genReq.Options["temperature"] != 1.6 {
t.Fatalf("expected 1.6, got %f", genReq.Options["temperature"])
}
stopTokens, ok := genReq.Options["stop"].([]any)
if !ok {
t.Fatalf("expected stop tokens to be a list")
@@ -238,160 +110,33 @@ func TestCompletionsMiddleware(t *testing.T) {
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
}
if req.Suffix != "suffix" {
t.Fatalf("expected 'suffix', got %s", req.Suffix)
}
},
},
{
Name: "completions handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: nil,
Stop: []int{1, 2},
Suffix: "suffix",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.GenerateRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid type for 'stop' field") {
t.Fatalf("error was not forwarded")
}
},
},
}
gin.SetMode(gin.TestMode)
router := gin.New()
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(CompletionsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", nil)
router = gin.New()
router.Use(captureRequestMiddleware())
router.Use(tc.Handler())
router.Handle(tc.Method, tc.Path, endpoint)
req, _ := http.NewRequest(tc.Method, tc.Path, nil)
tc.Setup(t, req)
if tc.Setup != nil {
tc.Setup(t, req)
}
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp)
capturedRequest = nil
})
}
}
func TestEmbeddingsMiddleware(t *testing.T) {
type testCase struct {
Name string
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder)
}
var capturedRequest *api.EmbedRequest
testCases := []testCase{
{
Name: "embed handler single input",
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Input: "Hello",
Model: "test-model",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
if req.Input != "Hello" {
t.Fatalf("expected 'Hello', got %s", req.Input)
}
if req.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", req.Model)
}
},
},
{
Name: "embed handler batch input",
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Input: []string{"Hello", "World"},
Model: "test-model",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
input, ok := req.Input.([]any)
if !ok {
t.Fatalf("expected input to be a list")
}
if input[0].(string) != "Hello" {
t.Fatalf("expected 'Hello', got %s", input[0])
}
if input[1].(string) != "World" {
t.Fatalf("expected 'World', got %s", input[1])
}
if req.Model != "test-model" {
t.Fatalf("expected 'test-model', got %s", req.Model)
}
},
},
{
Name: "embed handler error forwarding",
Setup: func(t *testing.T, req *http.Request) {
body := EmbedRequest{
Model: "test-model",
}
prepareRequest(req, body)
},
Expected: func(t *testing.T, req *api.EmbedRequest, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), "invalid input") {
t.Fatalf("error was not forwarded")
}
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(EmbeddingsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/embed", endpoint)
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/embed", nil)
tc.Setup(t, req)
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest, resp)
capturedRequest = nil
tc.Expected(t, capturedRequest)
})
}
}
@@ -409,6 +154,36 @@ func TestMiddlewareResponses(t *testing.T) {
}
testCases := []testCase{
{
Name: "completions handler error forwarding",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",
Handler: CompletionsMiddleware,
Endpoint: func(c *gin.Context) {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
},
Setup: func(t *testing.T, req *http.Request) {
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
if resp.Code != http.StatusBadRequest {
t.Fatalf("expected 400, got %d", resp.Code)
}
if !strings.Contains(resp.Body.String(), `"invalid request"`) {
t.Fatalf("error was not forwarded")
}
},
},
{
Name: "list handler",
Method: http.MethodGet,
@@ -425,6 +200,8 @@ func TestMiddlewareResponses(t *testing.T) {
})
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var listResp ListCompletion
if err := json.NewDecoder(resp.Body).Decode(&listResp); err != nil {
t.Fatal(err)
@@ -488,8 +265,6 @@ func TestMiddlewareResponses(t *testing.T) {
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
assert.Equal(t, http.StatusOK, resp.Code)
tc.Expected(t, resp)
})
}

View File

@@ -451,7 +451,6 @@ func TestParseFileParameters(t *testing.T) {
"num_predict 1": {"num_predict", "1"},
"top_k 1": {"top_k", "1"},
"top_p 1.0": {"top_p", "1.0"},
"min_p 0.05": {"min_p", "0.05"},
"tfs_z 1.0": {"tfs_z", "1.0"},
"typical_p 1.0": {"typical_p", "1.0"},
"repeat_last_n 1": {"repeat_last_n", "1"},

View File

@@ -198,29 +198,19 @@ if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
exit 0
fi
CUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA. Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/"
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
install_cuda_driver_yum() {
status 'Installing NVIDIA repository...'
case $PACKAGE_MANAGER in
yum)
$SUDO $PACKAGE_MANAGER -y install yum-utils
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
else
error $CUDA_REPO_ERR_MSG
fi
$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
;;
dnf)
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo" >/dev/null ; then
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
else
error $CUDA_REPO_ERR_MSG
fi
$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-$1$2.repo
;;
esac
@@ -245,11 +235,7 @@ install_cuda_driver_yum() {
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
install_cuda_driver_apt() {
status 'Installing NVIDIA repository...'
if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb" >/dev/null ; then
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
else
error $CUDA_REPO_ERR_MSG
fi
curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m)/cuda-keyring_1.1-1_all.deb
case $1 in
debian)

View File

@@ -67,7 +67,7 @@ func getAuthorizationToken(ctx context.Context, challenge registryChallenge) (st
headers.Add("Authorization", signature)
response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, &registryOptions{})
response, err := makeRequest(ctx, http.MethodGet, redirectURL, headers, nil, nil)
if err != nil {
return "", err
}

View File

@@ -8,7 +8,6 @@ import (
"io"
"log/slog"
"math"
"math/rand/v2"
"net/http"
"net/url"
"os"
@@ -44,53 +43,21 @@ type blobDownload struct {
context.CancelFunc
done chan struct{}
done bool
err error
references atomic.Int32
}
type blobDownloadPart struct {
N int
Offset int64
Size int64
Completed atomic.Int64
lastUpdatedMu sync.Mutex
lastUpdated time.Time
N int
Offset int64
Size int64
Completed int64
lastUpdated time.Time
*blobDownload `json:"-"`
}
type jsonBlobDownloadPart struct {
N int
Offset int64
Size int64
Completed int64
}
func (p *blobDownloadPart) MarshalJSON() ([]byte, error) {
return json.Marshal(jsonBlobDownloadPart{
N: p.N,
Offset: p.Offset,
Size: p.Size,
Completed: p.Completed.Load(),
})
}
func (p *blobDownloadPart) UnmarshalJSON(b []byte) error {
var j jsonBlobDownloadPart
if err := json.Unmarshal(b, &j); err != nil {
return err
}
*p = blobDownloadPart{
N: j.N,
Offset: j.Offset,
Size: j.Size,
}
p.Completed.Store(j.Completed)
return nil
}
const (
numDownloadParts = 64
minDownloadPartSize int64 = 100 * format.MegaByte
@@ -104,7 +71,7 @@ func (p *blobDownloadPart) Name() string {
}
func (p *blobDownloadPart) StartsAt() int64 {
return p.Offset + p.Completed.Load()
return p.Offset + p.Completed
}
func (p *blobDownloadPart) StopsAt() int64 {
@@ -114,9 +81,7 @@ func (p *blobDownloadPart) StopsAt() int64 {
func (p *blobDownloadPart) Write(b []byte) (n int, err error) {
n = len(b)
p.blobDownload.Completed.Add(int64(n))
p.lastUpdatedMu.Lock()
p.lastUpdated = time.Now()
p.lastUpdatedMu.Unlock()
return n, nil
}
@@ -126,8 +91,6 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
return err
}
b.done = make(chan struct{})
for _, partFilePath := range partFilePaths {
part, err := b.readPart(partFilePath)
if err != nil {
@@ -135,7 +98,7 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
}
b.Total += part.Size
b.Completed.Add(part.Completed.Load())
b.Completed.Add(part.Completed)
b.Parts = append(b.Parts, part)
}
@@ -175,36 +138,9 @@ func (b *blobDownload) Prepare(ctx context.Context, requestURL *url.URL, opts *r
}
func (b *blobDownload) Run(ctx context.Context, requestURL *url.URL, opts *registryOptions) {
defer close(b.done)
b.err = b.run(ctx, requestURL, opts)
}
func newBackoff(maxBackoff time.Duration) func(ctx context.Context) error {
var n int
return func(ctx context.Context) error {
if ctx.Err() != nil {
return ctx.Err()
}
n++
// n^2 backoff timer is a little smoother than the
// common choice of 2^n.
d := min(time.Duration(n*n)*10*time.Millisecond, maxBackoff)
// Randomize the delay between 0.5-1.5 x msec, in order
// to prevent accidental "thundering herd" problems.
d = time.Duration(float64(d) * (rand.Float64() + 0.5))
t := time.NewTimer(d)
defer t.Stop()
select {
case <-ctx.Done():
return ctx.Err()
case <-t.C:
return nil
}
}
}
func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *registryOptions) error {
defer blobDownloadManager.Delete(b.Digest)
ctx, b.CancelFunc = context.WithCancel(ctx)
@@ -217,57 +153,11 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
_ = file.Truncate(b.Total)
directURL, err := func() (*url.URL, error) {
ctx, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel()
backoff := newBackoff(10 * time.Second)
for {
// shallow clone opts to be used in the closure
// without affecting the outer opts.
newOpts := new(registryOptions)
*newOpts = *opts
newOpts.CheckRedirect = func(req *http.Request, via []*http.Request) error {
if len(via) > 10 {
return errors.New("maxium redirects exceeded (10) for directURL")
}
// if the hostname is the same, allow the redirect
if req.URL.Hostname() == requestURL.Hostname() {
return nil
}
// stop at the first redirect that is not
// the same hostname as the original
// request.
return http.ErrUseLastResponse
}
resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, nil, nil, newOpts)
if err != nil {
slog.Warn("failed to get direct URL; backing off and retrying", "err", err)
if err := backoff(ctx); err != nil {
return nil, err
}
continue
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusTemporaryRedirect {
return nil, fmt.Errorf("unexpected status code %d", resp.StatusCode)
}
return resp.Location()
}
}()
if err != nil {
return err
}
g, inner := errgroup.WithContext(ctx)
g.SetLimit(numDownloadParts)
for i := range b.Parts {
part := b.Parts[i]
if part.Completed.Load() == part.Size {
if part.Completed == part.Size {
continue
}
@@ -275,7 +165,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
var err error
for try := 0; try < maxRetries; try++ {
w := io.NewOffsetWriter(file, part.StartsAt())
err = b.downloadChunk(inner, directURL, w, part)
err = b.downloadChunk(inner, requestURL, w, part, opts)
switch {
case errors.Is(err, context.Canceled), errors.Is(err, syscall.ENOSPC):
// return immediately if the context is canceled or the device is out of space
@@ -316,31 +206,29 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
return err
}
b.done = true
return nil
}
func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart) error {
func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w io.Writer, part *blobDownloadPart, opts *registryOptions) error {
g, ctx := errgroup.WithContext(ctx)
g.Go(func() error {
req, err := http.NewRequestWithContext(ctx, http.MethodGet, requestURL.String(), nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1))
resp, err := http.DefaultClient.Do(req)
headers := make(http.Header)
headers.Set("Range", fmt.Sprintf("bytes=%d-%d", part.StartsAt(), part.StopsAt()-1))
resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, headers, nil, opts)
if err != nil {
return err
}
defer resp.Body.Close()
n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed.Load())
n, err := io.CopyN(w, io.TeeReader(resp.Body, part), part.Size-part.Completed)
if err != nil && !errors.Is(err, context.Canceled) && !errors.Is(err, io.ErrUnexpectedEOF) {
// rollback progress
b.Completed.Add(-n)
return err
}
part.Completed.Add(n)
part.Completed += n
if err := b.writePart(part.Name(), part); err != nil {
return err
}
@@ -354,21 +242,15 @@ func (b *blobDownload) downloadChunk(ctx context.Context, requestURL *url.URL, w
for {
select {
case <-ticker.C:
if part.Completed.Load() >= part.Size {
if part.Completed >= part.Size {
return nil
}
part.lastUpdatedMu.Lock()
lastUpdated := part.lastUpdated
part.lastUpdatedMu.Unlock()
if !lastUpdated.IsZero() && time.Since(lastUpdated) > 5*time.Second {
if !part.lastUpdated.IsZero() && time.Since(part.lastUpdated) > 5*time.Second {
const msg = "%s part %d stalled; retrying. If this persists, press ctrl-c to exit, then 'ollama pull' to find a faster connection."
slog.Info(fmt.Sprintf(msg, b.Digest[7:19], part.N))
// reset last updated
part.lastUpdatedMu.Lock()
part.lastUpdated = time.Time{}
part.lastUpdatedMu.Unlock()
return errPartStalled
}
case <-ctx.Done():
@@ -433,8 +315,6 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
ticker := time.NewTicker(60 * time.Millisecond)
for {
select {
case <-b.done:
return b.err
case <-ticker.C:
fn(api.ProgressResponse{
Status: fmt.Sprintf("pulling %s", b.Digest[7:19]),
@@ -442,6 +322,10 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
Total: b.Total,
Completed: b.Completed.Load(),
})
if b.done || b.err != nil {
return b.err
}
case <-ctx.Done():
return ctx.Err()
}

View File

@@ -34,28 +34,17 @@ import (
"github.com/ollama/ollama/version"
)
var (
errCapabilities = errors.New("does not support")
errCapabilityCompletion = errors.New("completion")
errCapabilityTools = errors.New("tools")
errCapabilityInsert = errors.New("insert")
)
var errCapabilityCompletion = errors.New("completion")
type Capability string
const (
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
)
const CapabilityCompletion = Capability("completion")
type registryOptions struct {
Insecure bool
Username string
Password string
Token string
CheckRedirect func(req *http.Request, via []*http.Request) error
}
type Model struct {
@@ -70,7 +59,7 @@ type Model struct {
License []string
Digest string
Options map[string]interface{}
Messages []api.Message
Messages []Message
Template *template.Template
}
@@ -99,15 +88,6 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
errs = append(errs, errCapabilityCompletion)
}
case CapabilityTools:
if !slices.Contains(m.Template.Vars(), "tools") {
errs = append(errs, errCapabilityTools)
}
case CapabilityInsert:
vars := m.Template.Vars()
if !slices.Contains(vars, "suffix") {
errs = append(errs, errCapabilityInsert)
}
default:
slog.Error("unknown capability", "capability", cap)
return fmt.Errorf("unknown capability: %s", cap)
@@ -115,7 +95,7 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
}
if err := errors.Join(errs...); err != nil {
return fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
return fmt.Errorf("missing capabilities: %w", errors.Join(errs...))
}
return nil
@@ -191,6 +171,11 @@ func (m *Model) String() string {
return modelfile.String()
}
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
}
type ConfigV2 struct {
ModelFormat string `json:"model_format"`
ModelFamily string `json:"model_family"`
@@ -489,12 +474,6 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
layers = append(layers, baseLayer.Layer)
}
case "license", "template", "system":
if c.Name == "template" {
if _, err := template.Parse(c.Args); err != nil {
return fmt.Errorf("%w: %s", errBadTemplate, err)
}
}
if c.Name != "license" {
// replace
layers = slices.DeleteFunc(layers, func(layer *Layer) bool {
@@ -641,7 +620,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
return err
}
if !envconfig.NoPrune() && old != nil {
if !envconfig.NoPrune && old != nil {
if err := old.RemoveLayers(); err != nil {
return err
}
@@ -880,7 +859,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
// build deleteMap to prune unused layers
deleteMap := make(map[string]struct{})
if !envconfig.NoPrune() {
if !envconfig.NoPrune {
manifest, _, err = GetManifest(mp)
if err != nil && !errors.Is(err, os.ErrNotExist) {
return err
@@ -1128,9 +1107,7 @@ func makeRequest(ctx context.Context, method string, requestURL *url.URL, header
req.ContentLength = contentLength
}
resp, err := (&http.Client{
CheckRedirect: regOpts.CheckRedirect,
}).Do(req)
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, err
}

View File

@@ -7,6 +7,7 @@ import (
"slices"
"testing"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
@@ -107,6 +108,7 @@ func TestManifests(t *testing.T) {
t.Run(n, func(t *testing.T) {
d := t.TempDir()
t.Setenv("OLLAMA_MODELS", d)
envconfig.LoadConfig()
for _, p := range wants.ps {
createManifest(t, d, p)

View File

@@ -4,7 +4,6 @@ import (
"archive/zip"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
@@ -12,9 +11,6 @@ import (
"net/http"
"os"
"path/filepath"
"slices"
"strings"
"text/template/parse"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
@@ -263,27 +259,13 @@ func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) {
if t, err := template.Named(s); err != nil {
slog.Debug("template detection", "error", err)
} else {
layer, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template")
tmpl, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template")
if err != nil {
return nil, err
}
layer.status = fmt.Sprintf("using autodetected template %s", t.Name)
layers = append(layers, &layerGGML{layer, nil})
if t.Parameters != nil {
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(t.Parameters); err != nil {
return nil, err
}
layer, err := NewLayer(&b, "application/vnd.ollama.image.params")
if err != nil {
return nil, err
}
layers = append(layers, &layerGGML{layer, nil})
}
tmpl.status = fmt.Sprintf("using autodetected template %s", t.Name)
layers = append(layers, &layerGGML{tmpl, nil})
}
}
}
@@ -307,113 +289,3 @@ func detectContentType(r io.Reader) (string, error) {
return "unknown", nil
}
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
// mxyng: this only really works if the input contains tool calls in some JSON format
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
// create a subtree from the node that ranges over .ToolCalls
tmpl := m.Template.Subtree(func(n parse.Node) bool {
if t, ok := n.(*parse.RangeNode); ok {
return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls")
}
return false
})
if tmpl == nil {
return nil, false
}
var b bytes.Buffer
if err := tmpl.Execute(&b, map[string][]api.ToolCall{
"ToolCalls": {
{
Function: api.ToolCallFunction{
Name: "@@name@@",
Arguments: api.ToolCallFunctionArguments{
"@@argument@@": 1,
},
},
},
},
}); err != nil {
return nil, false
}
var kv map[string]any
// execute the subtree with placeholders to identify the keys
// trim any commands that might exist in the template
if err := json.Unmarshal(bytes.TrimSuffix(b.Bytes(), []byte(",")), &kv); err != nil {
return nil, false
}
// find the keys that correspond to the name and arguments fields
var name, arguments string
for k, v := range kv {
switch v.(type) {
case string:
name = k
case map[string]any:
arguments = k
}
}
if name == "" || arguments == "" {
return nil, false
}
var objs []map[string]any
for offset := 0; offset < len(s); {
var obj map[string]any
decoder := json.NewDecoder(strings.NewReader(s[offset:]))
if err := decoder.Decode(&obj); errors.Is(err, io.EOF) || errors.Is(err, io.ErrUnexpectedEOF) {
break
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
// skip over any syntax errors
offset += int(syntax.Offset)
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
// skip over any unmarshalable types
offset += int(unmarshalType.Offset)
} else if err != nil {
slog.Error("parseToolCalls", "error", err)
return nil, false
} else {
offset += int(decoder.InputOffset())
// collect all nested objects
var collect func(any) []map[string]any
collect = func(obj any) (all []map[string]any) {
switch o := obj.(type) {
case map[string]any:
all = append(all, o)
for _, v := range o {
all = append(all, collect(v)...)
}
case []any:
for _, v := range o {
all = append(all, collect(v)...)
}
}
return all
}
objs = append(objs, collect(obj)...)
}
}
var toolCalls []api.ToolCall
for _, kv := range objs {
n, nok := kv[name].(string)
a, aok := kv[arguments].(map[string]any)
if nok && aok {
toolCalls = append(toolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: n,
Arguments: a,
},
})
}
}
return toolCalls, len(toolCalls) > 0
}

View File

@@ -3,9 +3,7 @@ package server
import (
"archive/zip"
"bytes"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"path/filepath"
@@ -13,9 +11,7 @@ import (
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/template"
)
func createZipFile(t *testing.T, name string) *os.File {
@@ -114,123 +110,3 @@ func TestExtractFromZipFile(t *testing.T) {
})
}
}
func readFile(t *testing.T, base, name string) *bytes.Buffer {
t.Helper()
bts, err := os.ReadFile(filepath.Join(base, name))
if err != nil {
t.Fatal(err)
}
return bytes.NewBuffer(bts)
}
func TestExecuteWithTools(t *testing.T) {
p := filepath.Join("testdata", "tools")
cases := []struct {
model string
output string
ok bool
}{
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true},
{"mistral", `I'm not aware of that information. However, I can suggest searching for the weather using the "get_current_weather" function:
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"command-r-plus", "Action: ```json" + `
[
{
"tool_name": "get_current_weather",
"parameters": {
"format": "fahrenheit",
"location": "San Francisco, CA"
}
},
{
"tool_name": "get_current_weather",
"parameters": {
"format": "celsius",
"location": "Toronto, Canada"
}
}
]
` + "```", true},
{"command-r-plus", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"firefunction", ` functools[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"firefunction", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"llama3-groq-tool-use", `<tool_call>
{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}}
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
</tool_call>`, true},
{"xlam", `{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true},
}
var tools []api.Tool
if err := json.Unmarshal(readFile(t, p, "tools.json").Bytes(), &tools); err != nil {
t.Fatal(err)
}
var messages []api.Message
if err := json.Unmarshal(readFile(t, p, "messages.json").Bytes(), &messages); err != nil {
t.Fatal(err)
}
calls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: api.ToolCallFunctionArguments{
"format": "fahrenheit",
"location": "San Francisco, CA",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: api.ToolCallFunctionArguments{
"format": "celsius",
"location": "Toronto, Canada",
},
},
},
}
for _, tt := range cases {
t.Run(tt.model, func(t *testing.T) {
tmpl, err := template.Parse(readFile(t, p, fmt.Sprintf("%s.gotmpl", tt.model)).String())
if err != nil {
t.Fatal(err)
}
t.Run("template", func(t *testing.T) {
var actual bytes.Buffer
if err := tmpl.Execute(&actual, template.Values{Tools: tools, Messages: messages}); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(actual.String(), readFile(t, p, fmt.Sprintf("%s.out", tt.model)).String()); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("parse", func(t *testing.T) {
m := &Model{Template: tmpl}
actual, ok := m.parseToolCalls(tt.output)
if ok != tt.ok {
t.Fatalf("expected %t, got %t", tt.ok, ok)
}
if tt.ok {
if diff := cmp.Diff(actual, calls); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
})
})
}
}

View File

@@ -105,7 +105,9 @@ func (mp ModelPath) GetShortTagname() string {
// GetManifestPath returns the path to the manifest file for the given model path, it is up to the caller to create the directory if it does not exist.
func (mp ModelPath) GetManifestPath() (string, error) {
return filepath.Join(envconfig.Models(), "manifests", mp.Registry, mp.Namespace, mp.Repository, mp.Tag), nil
dir := envconfig.ModelsDir
return filepath.Join(dir, "manifests", mp.Registry, mp.Namespace, mp.Repository, mp.Tag), nil
}
func (mp ModelPath) BaseURL() *url.URL {
@@ -116,7 +118,9 @@ func (mp ModelPath) BaseURL() *url.URL {
}
func GetManifestPath() (string, error) {
path := filepath.Join(envconfig.Models(), "manifests")
dir := envconfig.ModelsDir
path := filepath.Join(dir, "manifests")
if err := os.MkdirAll(path, 0o755); err != nil {
return "", err
}
@@ -125,6 +129,8 @@ func GetManifestPath() (string, error) {
}
func GetBlobsPath(digest string) (string, error) {
dir := envconfig.ModelsDir
// only accept actual sha256 digests
pattern := "^sha256[:-][0-9a-fA-F]{64}$"
re := regexp.MustCompile(pattern)
@@ -134,7 +140,7 @@ func GetBlobsPath(digest string) (string, error) {
}
digest = strings.ReplaceAll(digest, ":", "-")
path := filepath.Join(envconfig.Models(), "blobs", digest)
path := filepath.Join(dir, "blobs", digest)
dirPath := filepath.Dir(path)
if digest == "" {
dirPath = path

View File

@@ -7,6 +7,8 @@ import (
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/envconfig"
)
func TestGetBlobsPath(t *testing.T) {
@@ -61,6 +63,7 @@ func TestGetBlobsPath(t *testing.T) {
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
t.Setenv("OLLAMA_MODELS", dir)
envconfig.LoadConfig()
got, err := GetBlobsPath(tc.digest)

View File

@@ -4,6 +4,7 @@ import (
"bytes"
"context"
"log/slog"
"slices"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
@@ -15,21 +16,29 @@ type tokenizeFunc func(context.Context, string) ([]int, error)
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
// latest message and 2) system messages
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message) (prompt string, images []llm.ImageData, _ error) {
// pull out any system messages which should always be included in the prompt
var system []api.Message
msgs = slices.DeleteFunc(msgs, func(m api.Message) bool {
if m.Role == "system" {
system = append(system, m)
return true
}
return false
})
if len(system) == 0 && m.System != "" {
// add model system prompt since it wasn't provided
system = append(system, api.Message{Role: "system", Content: m.System})
}
// always include the last message
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n - 1; i >= 0; i-- {
system = make([]api.Message, 0)
for j := range i {
if msgs[j].Role == "system" {
system = append(system, msgs[j])
}
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools}); err != nil {
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...)}); err != nil {
return "", nil, err
}
@@ -57,7 +66,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
// truncate any messages that do not fit into the context window
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[n:]...), Tools: tools}); err != nil {
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[n:]...)}); err != nil {
return "", nil, err
}

View File

@@ -3,13 +3,21 @@ package server
import (
"bytes"
"context"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/template"
)
func tokenize(_ context.Context, s string) (tokens []int, err error) {
for range strings.Fields(s) {
tokens = append(tokens, len(tokens))
}
return
}
func TestChatPrompt(t *testing.T) {
type expect struct {
prompt string
@@ -152,19 +160,6 @@ func TestChatPrompt(t *testing.T) {
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You are the Test Who Lived. You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
},
},
{
name: "out of order system",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "system", Content: "You are the Test Who Lived."},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You're a test, Harry! I-I'm a what? You are the Test Who Lived. A test. And a thumping good one at that, I'd wager. ",
},
@@ -183,13 +178,13 @@ func TestChatPrompt(t *testing.T) {
t.Run(tt.name, func(t *testing.T) {
model := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
opts := api.Options{Runner: api.Runner{NumCtx: tt.limit}}
prompt, images, err := chatPrompt(context.TODO(), &model, mockRunner{}.Tokenize, &opts, tt.msgs, nil)
prompt, images, err := chatPrompt(context.TODO(), &model, tokenize, &opts, tt.msgs)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(prompt, tt.prompt); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
if tt.prompt != prompt {
t.Errorf("expected %q, got %q", tt.prompt, prompt)
}
if len(images) != len(tt.images) {

View File

@@ -9,7 +9,6 @@ import (
"fmt"
"io"
"log/slog"
"math"
"net"
"net/http"
"net/netip"
@@ -56,7 +55,6 @@ func init() {
}
var errRequired = errors.New("is required")
var errBadTemplate = errors.New("template error")
func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options, error) {
opts := api.DefaultOptions()
@@ -73,7 +71,7 @@ func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options
// scheduleRunner schedules a runner after validating inputs such as capabilities and model options.
// It returns the allocated runner, model instance, and consolidated options if successful and error otherwise.
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
func (s *Server) scheduleRunner(ctx context.Context, name string, mTemplate string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
if name == "" {
return nil, nil, nil, fmt.Errorf("model %w", errRequired)
}
@@ -83,6 +81,13 @@ func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capabil
return nil, nil, nil, err
}
if mTemplate != "" {
model.Template, err = template.Parse(mTemplate)
if err != nil {
return nil, nil, nil, err
}
}
if err := model.CheckCapabilities(caps...); err != nil {
return nil, nil, nil, fmt.Errorf("%s %w", name, err)
}
@@ -104,7 +109,6 @@ func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capabil
}
func (s *Server) GenerateHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.GenerateRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
@@ -123,11 +127,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
caps := []Capability{CapabilityCompletion}
if req.Suffix != "" {
caps = append(caps, CapabilityInsert)
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, "", caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support generate", req.Model)})
return
@@ -136,8 +136,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
checkpointLoaded := time.Now()
if req.Prompt == "" {
c.JSON(http.StatusOK, api.GenerateResponse{
Model: req.Model,
@@ -155,6 +153,19 @@ func (s *Server) GenerateHandler(c *gin.Context) {
prompt := req.Prompt
if !req.Raw {
var msgs []api.Message
if req.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: req.System})
} else if m.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: m.System})
}
for _, i := range images {
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
}
msgs = append(msgs, api.Message{Role: "user", Content: req.Prompt})
tmpl := m.Template
if req.Template != "" {
tmpl, err = template.Parse(req.Template)
@@ -164,35 +175,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
}
var values template.Values
if req.Suffix != "" {
values.Prompt = prompt
values.Suffix = req.Suffix
} else {
var msgs []api.Message
if req.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: req.System})
} else if m.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: m.System})
}
if req.Context == nil {
msgs = append(msgs, m.Messages...)
}
for _, i := range images {
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
}
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
}
var b bytes.Buffer
if err := tmpl.Execute(&b, values); err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if req.Context != nil {
s, err := r.Detokenize(c.Request.Context(), req.Context)
if err != nil {
@@ -203,6 +186,11 @@ func (s *Server) GenerateHandler(c *gin.Context) {
b.WriteString(s)
}
if err := tmpl.Execute(&b, template.Values{Messages: msgs}); err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
prompt = b.String()
}
@@ -210,48 +198,26 @@ func (s *Server) GenerateHandler(c *gin.Context) {
ch := make(chan any)
go func() {
// TODO (jmorganca): avoid building the response twice both here and below
var sb strings.Builder
defer close(ch)
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(cr llm.CompletionResponse) {
res := api.GenerateResponse{
}, func(r llm.CompletionResponse) {
ch <- api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Response: cr.Content,
Done: cr.Done,
DoneReason: cr.DoneReason,
Response: r.Content,
Done: r.Done,
DoneReason: r.DoneReason,
Metrics: api.Metrics{
PromptEvalCount: cr.PromptEvalCount,
PromptEvalDuration: cr.PromptEvalDuration,
EvalCount: cr.EvalCount,
EvalDuration: cr.EvalDuration,
PromptEvalCount: r.PromptEvalCount,
PromptEvalDuration: r.PromptEvalDuration,
EvalCount: r.EvalCount,
EvalDuration: r.EvalDuration,
},
}
if _, err := sb.WriteString(cr.Content); err != nil {
ch <- gin.H{"error": err.Error()}
}
if cr.Done {
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
if !req.Raw {
tokens, err := r.Tokenize(c.Request.Context(), prompt+sb.String())
if err != nil {
ch <- gin.H{"error": err.Error()}
return
}
res.Context = append(req.Context, tokens...)
}
}
ch <- res
}); err != nil {
ch <- gin.H{"error": err.Error()}
}
@@ -287,127 +253,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
streamResponse(c, ch)
}
func (s *Server) EmbedHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.EmbedRequest
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
case err != nil:
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
truncate := true
if req.Truncate != nil && !*req.Truncate {
truncate = false
}
var input []string
switch i := req.Input.(type) {
case string:
if len(i) > 0 {
input = append(input, i)
}
case []any:
for _, v := range i {
if _, ok := v.(string); !ok {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
return
}
input = append(input, v.(string))
}
default:
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "invalid input type"})
return
}
if len(input) == 0 {
c.JSON(http.StatusOK, api.EmbedResponse{Model: req.Model, Embeddings: [][]float32{}})
return
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
return
}
checkpointLoaded := time.Now()
kvData, err := getKVData(m.ModelPath, false)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
for i, s := range input {
tokens, err := r.Tokenize(c.Request.Context(), s)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
ctxLen := min(opts.NumCtx, int(kvData.ContextLength()))
if len(tokens) > ctxLen {
if !truncate {
c.JSON(http.StatusBadRequest, gin.H{"error": "input length exceeds maximum context length"})
return
}
tokens = tokens[:ctxLen]
s, err = r.Detokenize(c.Request.Context(), tokens)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
}
input[i] = s
}
embeddings, err := r.Embed(c.Request.Context(), input)
if err != nil {
slog.Error("embedding generation failed", "error", err)
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return
}
for i, e := range embeddings.Embedding {
embeddings.Embedding[i] = normalize(e)
}
resp := api.EmbedResponse{
Model: req.Model,
Embeddings: embeddings.Embedding,
TotalDuration: time.Since(checkpointStart),
LoadDuration: checkpointLoaded.Sub(checkpointStart),
PromptEvalCount: embeddings.PromptEvalCount,
}
c.JSON(http.StatusOK, resp)
}
func normalize(vec []float32) []float32 {
var sum float32
for _, v := range vec {
sum += v * v
}
norm := float32(0.0)
if sum > 0 {
norm = float32(1.0 / math.Sqrt(float64(sum)))
}
for i := range vec {
vec[i] *= norm
}
return vec
}
func (s *Server) EmbeddingsHandler(c *gin.Context) {
var req api.EmbeddingRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
@@ -418,7 +263,7 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return
}
r, _, _, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
r, _, _, err := s.scheduleRunner(c.Request.Context(), req.Model, "", []Capability{}, req.Options, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
return
@@ -430,24 +275,14 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return
}
embeddings, err := r.Embed(c.Request.Context(), []string{req.Prompt})
embedding, err := r.Embedding(c.Request.Context(), req.Prompt)
if err != nil {
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return
}
embedding := make([]float64, len(embeddings.Embedding[0]))
for i, v := range embeddings.Embedding[0] {
embedding[i] = float64(v)
}
resp := api.EmbeddingResponse{
Embedding: embedding,
}
c.JSON(http.StatusOK, resp)
c.JSON(http.StatusOK, api.EmbeddingResponse{Embedding: embedding})
}
func (s *Server) PullModelHandler(c *gin.Context) {
@@ -619,9 +454,7 @@ func (s *Server) CreateModelHandler(c *gin.Context) {
defer cancel()
quantization := cmp.Or(r.Quantize, r.Quantization)
if err := CreateModel(ctx, name, filepath.Dir(r.Path), strings.ToUpper(quantization), f, fn); errors.Is(err, errBadTemplate) {
ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest}
} else if err != nil {
if err := CreateModel(ctx, name, filepath.Dir(r.Path), strings.ToUpper(quantization), f, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
@@ -723,6 +556,13 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
m.System = req.System
}
if req.Template != "" {
m.Template, err = template.Parse(req.Template)
if err != nil {
return nil, err
}
}
msgs := make([]api.Message, len(m.Messages))
for i, msg := range m.Messages {
msgs[i] = api.Message{Role: msg.Role, Content: msg.Content}
@@ -1057,7 +897,7 @@ func (s *Server) GenerateRoutes() http.Handler {
for _, prop := range openAIProperties {
config.AllowHeaders = append(config.AllowHeaders, "x-stainless-"+prop)
}
config.AllowOrigins = envconfig.Origins()
config.AllowOrigins = envconfig.AllowOrigins
r := gin.Default()
r.Use(
@@ -1068,7 +908,6 @@ func (s *Server) GenerateRoutes() http.Handler {
r.POST("/api/pull", s.PullModelHandler)
r.POST("/api/generate", s.GenerateHandler)
r.POST("/api/chat", s.ChatHandler)
r.POST("/api/embed", s.EmbedHandler)
r.POST("/api/embeddings", s.EmbeddingsHandler)
r.POST("/api/create", s.CreateModelHandler)
r.POST("/api/push", s.PushModelHandler)
@@ -1082,7 +921,6 @@ func (s *Server) GenerateRoutes() http.Handler {
// Compatibility endpoints
r.POST("/v1/chat/completions", openai.ChatMiddleware(), s.ChatHandler)
r.POST("/v1/completions", openai.CompletionsMiddleware(), s.GenerateHandler)
r.POST("/v1/embeddings", openai.EmbeddingsMiddleware(), s.EmbedHandler)
r.GET("/v1/models", openai.ListMiddleware(), s.ListModelsHandler)
r.GET("/v1/models/:model", openai.RetrieveMiddleware(), s.ShowModelHandler)
@@ -1102,7 +940,7 @@ func (s *Server) GenerateRoutes() http.Handler {
func Serve(ln net.Listener) error {
level := slog.LevelInfo
if envconfig.Debug() {
if envconfig.Debug {
level = slog.LevelDebug
}
@@ -1130,7 +968,7 @@ func Serve(ln net.Listener) error {
return err
}
if !envconfig.NoPrune() {
if !envconfig.NoPrune {
// clean up unused layers and manifests
if err := PruneLayers(); err != nil {
return err
@@ -1209,15 +1047,11 @@ func waitForStream(c *gin.Context, ch chan interface{}) {
return
}
case gin.H:
status, ok := r["status"].(int)
if !ok {
status = http.StatusInternalServerError
}
if errorMsg, ok := r["error"].(string); ok {
c.JSON(status, gin.H{"error": errorMsg})
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
return
} else {
c.JSON(status, gin.H{"error": "unexpected error format in progress response"})
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in progress response"})
return
}
default:
@@ -1295,8 +1129,6 @@ func (s *Server) ProcessHandler(c *gin.Context) {
}
func (s *Server) ChatHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.ChatRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
@@ -1307,11 +1139,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
caps := []Capability{CapabilityCompletion}
if len(req.Tools) > 0 {
caps = append(caps, CapabilityTools)
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, req.Template, caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support chat", req.Model)})
return
@@ -1320,8 +1148,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
checkpointLoaded := time.Now()
if len(req.Messages) == 0 {
c.JSON(http.StatusOK, api.ChatResponse{
Model: req.Model,
@@ -1333,12 +1159,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
msgs := append(m.Messages, req.Messages...)
if req.Messages[0].Role != "system" && m.System != "" {
msgs = append([]api.Message{{Role: "system", Content: m.System}}, msgs...)
}
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, req.Tools)
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, req.Messages)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
@@ -1355,7 +1176,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
Format: req.Format,
Options: opts,
}, func(r llm.CompletionResponse) {
res := api.ChatResponse{
ch <- api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant", Content: r.Content},
@@ -1368,26 +1189,19 @@ func (s *Server) ChatHandler(c *gin.Context) {
EvalDuration: r.EvalDuration,
},
}
if r.Done {
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
ch <- res
}); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
if req.Stream != nil && !*req.Stream {
var resp api.ChatResponse
var r api.ChatResponse
var sb strings.Builder
for rr := range ch {
switch t := rr.(type) {
case api.ChatResponse:
sb.WriteString(t.Message.Content)
resp = t
r = t
case gin.H:
msg, ok := t["error"].(string)
if !ok {
@@ -1402,16 +1216,8 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
}
resp.Message.Content = sb.String()
if len(req.Tools) > 0 {
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
resp.Message.ToolCalls = toolCalls
resp.Message.Content = ""
}
}
c.JSON(http.StatusOK, resp)
r.Message.Content = sb.String()
c.JSON(http.StatusOK, r)
return
}
@@ -1420,7 +1226,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
func handleScheduleError(c *gin.Context, name string, err error) {
switch {
case errors.Is(err, errCapabilities), errors.Is(err, errRequired):
case errors.Is(err, errRequired):
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
case errors.Is(err, context.Canceled):
c.JSON(499, gin.H{"error": "request canceled"})

View File

@@ -15,6 +15,7 @@ import (
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
)
@@ -84,10 +85,9 @@ func checkFileExists(t *testing.T, p string, expect []string) {
}
func TestCreateFromBin(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -111,10 +111,9 @@ func TestCreateFromBin(t *testing.T) {
}
func TestCreateFromModel(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -153,10 +152,9 @@ func TestCreateFromModel(t *testing.T) {
}
func TestCreateRemovesLayers(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -201,10 +199,9 @@ func TestCreateRemovesLayers(t *testing.T) {
}
func TestCreateUnsetsSystem(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -258,10 +255,9 @@ func TestCreateUnsetsSystem(t *testing.T) {
}
func TestCreateMergeParameters(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -362,10 +358,9 @@ func TestCreateMergeParameters(t *testing.T) {
}
func TestCreateReplacesMessages(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -439,10 +434,9 @@ func TestCreateReplacesMessages(t *testing.T) {
}
func TestCreateTemplateSystem(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -483,49 +477,12 @@ func TestCreateTemplateSystem(t *testing.T) {
if string(system) != "Say bye!" {
t.Errorf("expected \"Say bye!\", actual %s", system)
}
t.Run("incomplete template", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s\nTEMPLATE {{ .Prompt", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status code 400, actual %d", w.Code)
}
})
t.Run("template with unclosed if", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s\nTEMPLATE {{ if .Prompt }}", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status code 400, actual %d", w.Code)
}
})
t.Run("template with undefined function", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "test",
Modelfile: fmt.Sprintf("FROM %s\nTEMPLATE {{ Prompt }}", createBinFile(t, nil, nil)),
Stream: &stream,
})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status code 400, actual %d", w.Code)
}
})
}
func TestCreateLicenses(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
@@ -569,10 +526,9 @@ func TestCreateLicenses(t *testing.T) {
}
func TestCreateDetectTemplate(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
t.Run("matched", func(t *testing.T) {
@@ -589,10 +545,9 @@ func TestCreateDetectTemplate(t *testing.T) {
}
checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{
filepath.Join(p, "blobs", "sha256-0d79f567714c62c048378f2107fb332dabee0135d080c302d884317da9433cc5"),
filepath.Join(p, "blobs", "sha256-553c4a3f747b3d22a4946875f1cc8ed011c2930d83f864a0c7265f9ec0a20413"),
filepath.Join(p, "blobs", "sha256-c608dc615584cd20d9d830363dabf8a4783ae5d34245c3d8c115edb3bc7b28e4"),
filepath.Join(p, "blobs", "sha256-ea34c57ba5b78b740aafe2aeb74dc6507fc3ad14170b64c26a04fb9e36c88d75"),
filepath.Join(p, "blobs", "sha256-9512c372dfc7d84d6065b8dd2b601aeed8cc1a78e7a7aa784a42fff37f5524b7"),
filepath.Join(p, "blobs", "sha256-b8b78cb8c6eefd14c06f1af042e6161255bf87bbf2dd14fce57cdac893db8139"),
})
})

View File

@@ -8,16 +8,15 @@ import (
"path/filepath"
"testing"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
func TestDelete(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
envconfig.LoadConfig()
var s Server
@@ -78,8 +77,6 @@ func TestDelete(t *testing.T) {
}
func TestDeleteDuplicateLayers(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
var s Server

View File

@@ -1,714 +0,0 @@
package server
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"testing"
"time"
"github.com/gin-gonic/gin"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/llm"
)
type mockRunner struct {
llm.LlamaServer
// CompletionRequest is only valid until the next call to Completion
llm.CompletionRequest
llm.CompletionResponse
}
func (m *mockRunner) Completion(_ context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
m.CompletionRequest = r
fn(m.CompletionResponse)
return nil
}
func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error) {
for range strings.Fields(s) {
tokens = append(tokens, len(tokens))
}
return
}
func newMockServer(mock *mockRunner) func(gpu.GpuInfoList, string, *llm.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
return func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return mock, nil
}
}
func TestGenerateChat(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: "stop",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: gpu.GetGPUInfo,
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
},
},
}
go s.sched.Run(context.TODO())
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test",
Modelfile: fmt.Sprintf(`FROM %s
TEMPLATE """
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("missing body", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, nil)
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing model", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing capabilities chat", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "bert",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []llm.Tensor{})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "bert",
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"\"bert\" does not support chat"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("load model", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var actual api.ChatResponse
if err := json.NewDecoder(w.Body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != "test" {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done true, got false")
}
if actual.DoneReason != "load" {
t.Errorf("expected done reason load, got %s", actual.DoneReason)
}
})
checkChatResponse := func(t *testing.T, body io.Reader, model, content string) {
t.Helper()
var actual api.ChatResponse
if err := json.NewDecoder(body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != model {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done false, got true")
}
if actual.DoneReason != "stop" {
t.Errorf("expected done reason stop, got %s", actual.DoneReason)
}
if diff := cmp.Diff(actual.Message, api.Message{
Role: "assistant",
Content: content,
}); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
if actual.PromptEvalCount == 0 {
t.Errorf("expected prompt eval count > 0, got 0")
}
if actual.PromptEvalDuration == 0 {
t.Errorf("expected prompt eval duration > 0, got 0")
}
if actual.EvalCount == 0 {
t.Errorf("expected eval count > 0, got 0")
}
if actual.EvalDuration == 0 {
t.Errorf("expected eval duration > 0, got 0")
}
if actual.LoadDuration == 0 {
t.Errorf("expected load duration > 0, got 0")
}
if actual.TotalDuration == 0 {
t.Errorf("expected total duration > 0, got 0")
}
}
mock.CompletionResponse.Content = "Hi!"
t.Run("messages", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test", "Hi!")
})
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test-system",
Modelfile: "FROM test\nSYSTEM You are a helpful assistant.",
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("messages with model system", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Hi!")
})
mock.CompletionResponse.Content = "Abra kadabra!"
t.Run("messages with system", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "system", Content: "You can perform magic tricks."},
{Role: "user", Content: "Hello!"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
})
t.Run("messages with interleaved system", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-system",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
{Role: "assistant", Content: "I can help you with that."},
{Role: "system", Content: "You can perform magic tricks."},
{Role: "user", Content: "Help me write tests."},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! Assistant: I can help you with that. System: You can perform magic tricks. User: Help me write tests. "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkChatResponse(t, w.Body, "test-system", "Abra kadabra!")
})
}
func TestGenerate(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: "stop",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: gpu.GetGPUInfo,
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
},
},
}
go s.sched.Run(context.TODO())
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test",
Modelfile: fmt.Sprintf(`FROM %s
TEMPLATE """
{{- if .System }}System: {{ .System }} {{ end }}
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
`, createBinFile(t, llm.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("missing body", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, nil)
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing model", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"model is required"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing capabilities generate", func(t *testing.T) {
w := createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "bert",
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []llm.Tensor{})),
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "bert",
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"\"bert\" does not support generate"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing capabilities suffix", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "def add(",
Suffix: " return c",
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"test does not support insert"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("load model", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var actual api.GenerateResponse
if err := json.NewDecoder(w.Body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != "test" {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done true, got false")
}
if actual.DoneReason != "load" {
t.Errorf("expected done reason load, got %s", actual.DoneReason)
}
})
checkGenerateResponse := func(t *testing.T, body io.Reader, model, content string) {
t.Helper()
var actual api.GenerateResponse
if err := json.NewDecoder(body).Decode(&actual); err != nil {
t.Fatal(err)
}
if actual.Model != model {
t.Errorf("expected model test, got %s", actual.Model)
}
if !actual.Done {
t.Errorf("expected done false, got true")
}
if actual.DoneReason != "stop" {
t.Errorf("expected done reason stop, got %s", actual.DoneReason)
}
if actual.Response != content {
t.Errorf("expected response %s, got %s", content, actual.Response)
}
if actual.Context == nil {
t.Errorf("expected context not nil")
}
if actual.PromptEvalCount == 0 {
t.Errorf("expected prompt eval count > 0, got 0")
}
if actual.PromptEvalDuration == 0 {
t.Errorf("expected prompt eval duration > 0, got 0")
}
if actual.EvalCount == 0 {
t.Errorf("expected eval count > 0, got 0")
}
if actual.EvalDuration == 0 {
t.Errorf("expected eval duration > 0, got 0")
}
if actual.LoadDuration == 0 {
t.Errorf("expected load duration > 0, got 0")
}
if actual.TotalDuration == 0 {
t.Errorf("expected total duration > 0, got 0")
}
}
mock.CompletionResponse.Content = "Hi!"
t.Run("prompt", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Hello!",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test", "Hi!")
})
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test-system",
Modelfile: "FROM test\nSYSTEM You are a helpful assistant.",
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("prompt with model system", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Hello!",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You are a helpful assistant. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test-system", "Hi!")
})
mock.CompletionResponse.Content = "Abra kadabra!"
t.Run("prompt with system", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Hello!",
System: "You can perform magic tricks.",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "System: You can perform magic tricks. User: Hello! "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test-system", "Abra kadabra!")
})
t.Run("prompt with template", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Help me write tests.",
System: "You can perform magic tricks.",
Template: `{{- if .System }}{{ .System }} {{ end }}
{{- if .Prompt }}### USER {{ .Prompt }} {{ end }}
{{- if .Response }}### ASSISTANT {{ .Response }} {{ end }}`,
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "You can perform magic tricks. ### USER Help me write tests. "); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
checkGenerateResponse(t, w.Body, "test-system", "Abra kadabra!")
})
w = createRequest(t, s.CreateModelHandler, api.CreateRequest{
Model: "test-suffix",
Modelfile: `FROM test
TEMPLATE """{{- if .Suffix }}<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
{{- else }}{{ .Prompt }}
{{- end }}"""`,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("prompt with suffix", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-suffix",
Prompt: "def add(",
Suffix: " return c",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "<PRE> def add( <SUF> return c <MID>"); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("prompt without suffix", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-suffix",
Prompt: "def add(",
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "def add("); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("raw", func(t *testing.T) {
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-system",
Prompt: "Help me write tests.",
Raw: true,
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
if diff := cmp.Diff(mock.CompletionRequest.Prompt, "Help me write tests."); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}

Some files were not shown because too many files have changed in this diff Show More