mirror of
https://github.com/ollama/ollama.git
synced 2025-12-31 19:50:04 -05:00
Compare commits
232 Commits
v0.5.13-rc
...
parth/pyth
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b4cd1118ab | ||
|
|
128c90d3ac | ||
|
|
f5872a097c | ||
|
|
3ac5e0f102 | ||
|
|
ef65174df2 | ||
|
|
42ecb9f138 | ||
|
|
5c0331fd83 | ||
|
|
e7019c9455 | ||
|
|
d98bfe7e70 | ||
|
|
6747099d71 | ||
|
|
ccc8c6777b | ||
|
|
dbb149e6f7 | ||
|
|
a807985e59 | ||
|
|
8643c4d5bf | ||
|
|
b0c3aba590 | ||
|
|
19c0c25de8 | ||
|
|
2f723ac2d6 | ||
|
|
249fbbe52f | ||
|
|
c38680b8a1 | ||
|
|
16fca86c4a | ||
|
|
0f3f9e353d | ||
|
|
6bd0a983cd | ||
|
|
1861fbdeb5 | ||
|
|
3b96a93672 | ||
|
|
e53b3cbd0c | ||
|
|
b51e0f397c | ||
|
|
b42970063d | ||
|
|
493385eb3e | ||
|
|
9876c9faa4 | ||
|
|
4e415029b3 | ||
|
|
e172f095ba | ||
|
|
c001b98087 | ||
|
|
23fc8e92eb | ||
|
|
4059a297a6 | ||
|
|
66b2539238 | ||
|
|
ef27d52e79 | ||
|
|
b2a465296d | ||
|
|
5d097277ef | ||
|
|
071a9872cb | ||
|
|
0bd0454ea7 | ||
|
|
01aa788722 | ||
|
|
ead27aa9fe | ||
|
|
b816ff86c9 | ||
|
|
e5d84fb90b | ||
|
|
dd66712e31 | ||
|
|
f66216e399 | ||
|
|
f4f0992b6e | ||
|
|
1feff61977 | ||
|
|
5e0b904e88 | ||
|
|
131f0355a5 | ||
|
|
ce929984a3 | ||
|
|
4b34930a31 | ||
|
|
74bd09652d | ||
|
|
fb6252d786 | ||
|
|
c794fef2f2 | ||
|
|
00ebda8cc4 | ||
|
|
d14ce75b95 | ||
|
|
2d6eac9084 | ||
|
|
3ed7ad3ab3 | ||
|
|
6d1103048e | ||
|
|
0ff28758b3 | ||
|
|
d3e9ca3eda | ||
|
|
0fbfcf3c9c | ||
|
|
0c220935bd | ||
|
|
ffbfe833da | ||
|
|
42a14f7f63 | ||
|
|
f8c3dbe5b5 | ||
|
|
b078dd157c | ||
|
|
2ddacd7516 | ||
|
|
da0e345200 | ||
|
|
df94175a0f | ||
|
|
61a8825216 | ||
|
|
021dcf089d | ||
|
|
bf24498b1e | ||
|
|
95e271d98f | ||
|
|
364629b8d6 | ||
|
|
108fe02165 | ||
|
|
4561fff36e | ||
|
|
50b5962042 | ||
|
|
e27e4a3c1b | ||
|
|
088514bbd4 | ||
|
|
2c8b484643 | ||
|
|
8294676150 | ||
|
|
ef378ad673 | ||
|
|
2d2247e59e | ||
|
|
7bf793a600 | ||
|
|
282bfaaa95 | ||
|
|
9679f40146 | ||
|
|
3892c3a703 | ||
|
|
4e320b8b90 | ||
|
|
eb2b22b042 | ||
|
|
4ea4d2b189 | ||
|
|
8d76fa23ef | ||
|
|
74b44fdf8f | ||
|
|
65b88c544f | ||
|
|
a422ba39c9 | ||
|
|
d2ec22371e | ||
|
|
033cec232a | ||
|
|
543240fb5f | ||
|
|
4bed739259 | ||
|
|
80c7ce381b | ||
|
|
ccfd41c4f0 | ||
|
|
3e102b7dad | ||
|
|
ec46f3286c | ||
|
|
5e2e0b46b1 | ||
|
|
45a13b1dec | ||
|
|
5c0b663969 | ||
|
|
30d7a59ba8 | ||
|
|
4aeb67ef4c | ||
|
|
3ba91634c1 | ||
|
|
1b7433b71e | ||
|
|
a70820daa0 | ||
|
|
6b45b1d6b4 | ||
|
|
85ab552028 | ||
|
|
b3af953a55 | ||
|
|
ad4e0bf3be | ||
|
|
aee28501b5 | ||
|
|
83f0ec8269 | ||
|
|
c6b6938b3a | ||
|
|
fb4664fcec | ||
|
|
20e3593863 | ||
|
|
63a394068c | ||
|
|
ab39e08eb9 | ||
|
|
11bfa62796 | ||
|
|
f63e62e546 | ||
|
|
65b0f329d1 | ||
|
|
06007c0a18 | ||
|
|
a8e83a7654 | ||
|
|
475005504e | ||
|
|
2c40c4d35e | ||
|
|
e95278932b | ||
|
|
9d2a20a763 | ||
|
|
2e54d72fc3 | ||
|
|
6b32a2d549 | ||
|
|
c5cbe4fc2a | ||
|
|
f888912870 | ||
|
|
9e4642e9b3 | ||
|
|
6b0486c216 | ||
|
|
d368c039f0 | ||
|
|
9b54267e69 | ||
|
|
46bb0169c4 | ||
|
|
8934324b72 | ||
|
|
0e886595bf | ||
|
|
c62861f4fa | ||
|
|
0df1800436 | ||
|
|
631fecc6d9 | ||
|
|
4346c2409d | ||
|
|
4b037a97dc | ||
|
|
5f74d1fd47 | ||
|
|
4dcf80167a | ||
|
|
26a26998fb | ||
|
|
9926eae015 | ||
|
|
8585b7b151 | ||
|
|
7e34f4fbfa | ||
|
|
fe776293f7 | ||
|
|
d8a5d96b98 | ||
|
|
757668c42f | ||
|
|
96ec8afd09 | ||
|
|
e093db92c4 | ||
|
|
a1cda80bcb | ||
|
|
4614fafae0 | ||
|
|
4100ed7bdd | ||
|
|
f52b2615ef | ||
|
|
25f9b152f9 | ||
|
|
6da8b6a879 | ||
|
|
0daaaef8c9 | ||
|
|
98272fbd58 | ||
|
|
b27e8f3f10 | ||
|
|
45df786f09 | ||
|
|
daaf42e4a4 | ||
|
|
2dc60d4620 | ||
|
|
b5312f30e8 | ||
|
|
26c2e0bd35 | ||
|
|
bf920883d5 | ||
|
|
58b9ec1f6b | ||
|
|
7bae7fa5ce | ||
|
|
764e199d67 | ||
|
|
bfce55db3d | ||
|
|
bab6f34dc0 | ||
|
|
0682dae027 | ||
|
|
1f6986e919 | ||
|
|
4289c74359 | ||
|
|
25248f4bd5 | ||
|
|
a7e63b82be | ||
|
|
b70fc4d51e | ||
|
|
e2252d0fc6 | ||
|
|
cae5d4d4ea | ||
|
|
05a01fdecb | ||
|
|
8fe6f69f28 | ||
|
|
1fdb351c37 | ||
|
|
7a01ad7614 | ||
|
|
55ab9f371a | ||
|
|
fefbf8f74b | ||
|
|
b428ddd796 | ||
|
|
ba7d31240e | ||
|
|
d25efe3954 | ||
|
|
36dfb906bb | ||
|
|
a6f0f908b9 | ||
|
|
3b1ddb2b3a | ||
|
|
1579c4f06d | ||
|
|
3519dd1c6e | ||
|
|
e41c4cbea7 | ||
|
|
ee048b76d4 | ||
|
|
af68d60a58 | ||
|
|
21aa666a1e | ||
|
|
ee141cc821 | ||
|
|
55e5776c44 | ||
|
|
854a9195f3 | ||
|
|
96a97adf9b | ||
|
|
e75c6126e9 | ||
|
|
cda6f5c66c | ||
|
|
bebb6823c0 | ||
|
|
31e472baa4 | ||
|
|
657685e85d | ||
|
|
a14912858e | ||
|
|
eed11ded30 | ||
|
|
b42aba40ed | ||
|
|
25885e5335 | ||
|
|
98d44fa39d | ||
|
|
2099e2d267 | ||
|
|
0c1041ad85 | ||
|
|
c245b0406f | ||
|
|
8b194b7520 | ||
|
|
3e8b8a1933 | ||
|
|
41dc280491 | ||
|
|
53d2990d9b | ||
|
|
e185c08ad9 | ||
|
|
2412adf42b | ||
|
|
be2ac1ed93 | ||
|
|
dc13813a03 | ||
|
|
d6af13efed | ||
|
|
a59f665235 |
@@ -23,6 +23,7 @@ set(GGML_SCHED_MAX_COPIES 4)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||
set(GGML_CUDA_GRAPHS ON)
|
||||
set(GGML_CUDA_FA ON)
|
||||
|
||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||
@@ -85,9 +86,9 @@ if(CMAKE_CUDA_COMPILER)
|
||||
)
|
||||
endif()
|
||||
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
|
||||
CACHE STRING
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
|
||||
)
|
||||
|
||||
check_language(HIP)
|
||||
@@ -96,7 +97,7 @@ if(CMAKE_HIP_COMPILER)
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
if(NOT AMDGPU_TARGETS)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
|
||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||
endif()
|
||||
@@ -105,9 +106,11 @@ if(CMAKE_HIP_COMPILER)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||
|
||||
if (WIN32)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||
|
||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||
install(TARGETS ggml-hip
|
||||
RUNTIME_DEPENDENCIES
|
||||
|
||||
@@ -28,7 +28,7 @@
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;100"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120"
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -56,7 +56,7 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
||||
|
||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||
|
||||
## Pull requests
|
||||
|
||||
### Ideal issues
|
||||
|
||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
|
||||
* Changes that add significant friction to the user experience
|
||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||
|
||||
### Best practices
|
||||
## Proposing a (non-trivial) change
|
||||
|
||||
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
||||
* Tests: please add test coverage to changes where possible.
|
||||
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
||||
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||
> documentation update. If you are unsure, please ask us on our [Discord
|
||||
> server](https://discord.gg/ollama).
|
||||
|
||||
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||
get feedback from the maintainers. This helps us understand the context of the
|
||||
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||
work or you from spending time on a change that we may not be able to accept.
|
||||
|
||||
Tips for proposals:
|
||||
|
||||
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||
* Explain why the change is important.
|
||||
* Explain how the change will be used.
|
||||
* Explain how the change will be tested.
|
||||
|
||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||
see if the change were accepted.
|
||||
|
||||
## Pull requests
|
||||
|
||||
**Commit messages**
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
file in the root directory may use the file name.
|
||||
|
||||
The short description should start with a lowercase letter and be a
|
||||
continuation of the sentence:
|
||||
|
||||
"This changes Ollama to..."
|
||||
|
||||
Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||
|
||||
Bad Examples:
|
||||
|
||||
feat: add more emoji
|
||||
fix: was not using famous web framework
|
||||
chore: generify code
|
||||
|
||||
**Tests**
|
||||
|
||||
Please include tests. Strive to test behavior, not implementation.
|
||||
|
||||
**New dependencies**
|
||||
|
||||
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||
please explain why it is necessary and what other ways you attempted that
|
||||
did not work without it.
|
||||
|
||||
## Need help?
|
||||
|
||||
|
||||
13
Dockerfile
13
Dockerfile
@@ -12,7 +12,7 @@ FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base
|
||||
RUN yum install -y yum-utils \
|
||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
|
||||
@@ -86,10 +86,11 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS build
|
||||
ARG GOVERSION=1.23.4
|
||||
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY go.mod go.sum .
|
||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
RUN go mod download
|
||||
COPY . .
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
@@ -103,8 +104,8 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
FROM --platform=linux/arm64 scratch AS arm64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
|
||||
|
||||
FROM scratch AS rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||
|
||||
38
README.md
38
README.md
@@ -1,5 +1,5 @@
|
||||
<div align="center">
|
||||
<a href="https://ollama.com" />
|
||||
<a href="https://ollama.com">
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</a>
|
||||
</div>
|
||||
@@ -54,6 +54,11 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
|
||||
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
|
||||
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
|
||||
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
|
||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
@@ -64,10 +69,7 @@ Here are some example models that can be downloaded:
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
@@ -75,7 +77,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -275,6 +277,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Web & Desktop
|
||||
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [Hollama](https://github.com/fmaclen/hollama)
|
||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||
@@ -282,12 +285,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI)
|
||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||
- [Amica](https://github.com/semperai/amica)
|
||||
- [chatd](https://github.com/BruceMacD/chatd)
|
||||
@@ -321,6 +325,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support and multiple large language models.)
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||
@@ -343,7 +348,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
@@ -386,6 +391,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -425,10 +437,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
|
||||
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
|
||||
### Database
|
||||
@@ -503,13 +519,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||
- [Ollama for D](https://github.com/kassane/ollama-d)
|
||||
|
||||
### Mobile
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
@@ -555,12 +575,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
|
||||
### Supported backends
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
// repository].
|
||||
//
|
||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||
package api
|
||||
|
||||
import (
|
||||
|
||||
110
api/types.go
110
api/types.go
@@ -12,6 +12,7 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
@@ -81,7 +82,7 @@ type GenerateRequest struct {
|
||||
|
||||
// Options lists model-specific options. For example, temperature can be
|
||||
// set through this field, if the model supports it.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
@@ -106,7 +107,7 @@ type ChatRequest struct {
|
||||
Tools `json:"tools,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
@@ -162,19 +163,65 @@ func (t *ToolCallFunctionArguments) String() string {
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Function ToolFunction `json:"function"`
|
||||
}
|
||||
|
||||
// PropertyType can be either a string or an array of strings
|
||||
type PropertyType []string
|
||||
|
||||
// UnmarshalJSON implements the json.Unmarshaler interface
|
||||
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
||||
// Try to unmarshal as a string first
|
||||
var s string
|
||||
if err := json.Unmarshal(data, &s); err == nil {
|
||||
*pt = []string{s}
|
||||
return nil
|
||||
}
|
||||
|
||||
// If that fails, try to unmarshal as an array of strings
|
||||
var a []string
|
||||
if err := json.Unmarshal(data, &a); err != nil {
|
||||
return err
|
||||
}
|
||||
*pt = a
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarshalJSON implements the json.Marshaler interface
|
||||
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
||||
if len(pt) == 1 {
|
||||
// If there's only one type, marshal as a string
|
||||
return json.Marshal(pt[0])
|
||||
}
|
||||
// Otherwise marshal as an array
|
||||
return json.Marshal([]string(pt))
|
||||
}
|
||||
|
||||
// String returns a string representation of the PropertyType
|
||||
func (pt PropertyType) String() string {
|
||||
if len(pt) == 0 {
|
||||
return ""
|
||||
}
|
||||
if len(pt) == 1 {
|
||||
return pt[0]
|
||||
}
|
||||
return fmt.Sprintf("%v", []string(pt))
|
||||
}
|
||||
|
||||
type ToolFunction struct {
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description"`
|
||||
Parameters struct {
|
||||
Type string `json:"type"`
|
||||
Defs any `json:"$defs,omitempty"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
Type PropertyType `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Description string `json:"description"`
|
||||
Enum []any `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
} `json:"parameters"`
|
||||
}
|
||||
@@ -260,7 +307,7 @@ type EmbedRequest struct {
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbedResponse is the response from [Client.Embed].
|
||||
@@ -286,7 +333,7 @@ type EmbeddingRequest struct {
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||
@@ -332,7 +379,7 @@ type ShowRequest struct {
|
||||
Template string `json:"template"`
|
||||
Verbose bool `json:"verbose"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
Name string `json:"name"`
|
||||
@@ -340,16 +387,18 @@ type ShowRequest struct {
|
||||
|
||||
// ShowResponse is the response returned from [Client.Show].
|
||||
type ShowResponse struct {
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
Tensors []Tensor `json:"tensors,omitempty"`
|
||||
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
}
|
||||
|
||||
// CopyRequest is the request passed to [Client.Copy].
|
||||
@@ -361,9 +410,9 @@ type CopyRequest struct {
|
||||
// PullRequest is the request passed to [Client.Pull].
|
||||
type PullRequest struct {
|
||||
Model string `json:"model"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||
Username string `json:"username"` // Deprecated: ignored
|
||||
Password string `json:"password"` // Deprecated: ignored
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
@@ -467,6 +516,13 @@ type ModelDetails struct {
|
||||
QuantizationLevel string `json:"quantization_level"`
|
||||
}
|
||||
|
||||
// Tensor describes the metadata for a given tensor.
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Type string `json:"type"`
|
||||
Shape []uint64 `json:"shape"`
|
||||
}
|
||||
|
||||
func (m *Metrics) Summary() {
|
||||
if m.TotalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||
@@ -495,7 +551,7 @@ func (m *Metrics) Summary() {
|
||||
}
|
||||
}
|
||||
|
||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
func (opts *Options) FromMap(m map[string]any) error {
|
||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||
|
||||
@@ -552,12 +608,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
}
|
||||
field.SetString(val)
|
||||
case reflect.Slice:
|
||||
// JSON unmarshals to []interface{}, not []string
|
||||
val, ok := val.([]interface{})
|
||||
// JSON unmarshals to []any, not []string
|
||||
val, ok := val.([]any)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type array", key)
|
||||
}
|
||||
// convert []interface{} to []string
|
||||
// convert []any to []string
|
||||
slice := make([]string, len(val))
|
||||
for i, item := range val {
|
||||
str, ok := item.(string)
|
||||
@@ -664,7 +720,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||
}
|
||||
|
||||
// FormatParams converts specified parameter options to their correct types
|
||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
func FormatParams(params map[string][]string) (map[string]any, error) {
|
||||
opts := Options{}
|
||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||
@@ -678,7 +734,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
}
|
||||
}
|
||||
|
||||
out := make(map[string]interface{})
|
||||
out := make(map[string]any)
|
||||
// iterate params and set values based on json struct tags
|
||||
for key, vals := range params {
|
||||
if opt, ok := jsonOpts[key]; !ok {
|
||||
|
||||
@@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var oMap map[string]interface{}
|
||||
var oMap map[string]any
|
||||
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||
require.NoError(t, err)
|
||||
opts := DefaultOptions()
|
||||
@@ -231,3 +231,144 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "valid enum with same types",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": ["a", "b", "c"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
{
|
||||
name: "empty enum array",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": []
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var tf ToolFunction
|
||||
err := json.Unmarshal([]byte(tt.input), &tf)
|
||||
|
||||
if tt.wantErr != "" {
|
||||
require.Error(t, err)
|
||||
assert.Contains(t, err.Error(), tt.wantErr)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expected PropertyType
|
||||
}{
|
||||
{
|
||||
name: "string type",
|
||||
input: `"string"`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
{
|
||||
name: "array of types",
|
||||
input: `["string", "number"]`,
|
||||
expected: PropertyType{"string", "number"},
|
||||
},
|
||||
{
|
||||
name: "array with single type",
|
||||
input: `["string"]`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var pt PropertyType
|
||||
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if len(pt) != len(test.expected) {
|
||||
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
||||
}
|
||||
|
||||
for i, v := range pt {
|
||||
if v != test.expected[i] {
|
||||
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input PropertyType
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "single type",
|
||||
input: PropertyType{"string"},
|
||||
expected: `"string"`,
|
||||
},
|
||||
{
|
||||
name: "multiple types",
|
||||
input: PropertyType{"string", "number"},
|
||||
expected: `["string","number"]`,
|
||||
},
|
||||
{
|
||||
name: "empty type",
|
||||
input: PropertyType{},
|
||||
expected: `[]`,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
data, err := json.Marshal(test.input)
|
||||
if err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if string(data) != test.expected {
|
||||
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
178
benchmark/server_benchmark_test.go
Normal file
178
benchmark/server_benchmark_test.go
Normal file
@@ -0,0 +1,178 @@
|
||||
package benchmark
|
||||
|
||||
import (
|
||||
"context"
|
||||
"flag"
|
||||
"fmt"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
// Command line flags
|
||||
var modelFlag string
|
||||
|
||||
func init() {
|
||||
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
|
||||
flag.Lookup("m").DefValue = "model"
|
||||
}
|
||||
|
||||
// modelName returns the model name from flags, failing the test if not set
|
||||
func modelName(b *testing.B) string {
|
||||
if modelFlag == "" {
|
||||
b.Fatal("Error: -m flag is required for benchmark tests")
|
||||
}
|
||||
return modelFlag
|
||||
}
|
||||
|
||||
type TestCase struct {
|
||||
name string
|
||||
prompt string
|
||||
maxTokens int
|
||||
}
|
||||
|
||||
// runGenerateBenchmark contains the common generate and metrics logic
|
||||
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
|
||||
start := time.Now()
|
||||
var ttft time.Duration
|
||||
var metrics api.Metrics
|
||||
|
||||
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
|
||||
if ttft == 0 && resp.Response != "" {
|
||||
ttft = time.Since(start)
|
||||
}
|
||||
if resp.Done {
|
||||
metrics = resp.Metrics
|
||||
}
|
||||
return nil
|
||||
})
|
||||
|
||||
// Report custom metrics as part of the benchmark results
|
||||
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
|
||||
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
|
||||
|
||||
// Token throughput metrics
|
||||
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
|
||||
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
|
||||
b.ReportMetric(promptThroughput, "prompt_tok/s")
|
||||
b.ReportMetric(genThroughput, "gen_tok/s")
|
||||
|
||||
// Token counts
|
||||
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
|
||||
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkColdStart runs benchmarks with model loading from cold state
|
||||
func BenchmarkColdStart(b *testing.B) {
|
||||
client := setup(b)
|
||||
tests := []TestCase{
|
||||
{"short_prompt", "Write a long story", 100},
|
||||
{"medium_prompt", "Write a detailed economic analysis", 500},
|
||||
{"long_prompt", "Write a comprehensive AI research paper", 1000},
|
||||
}
|
||||
m := modelName(b)
|
||||
|
||||
for _, tt := range tests {
|
||||
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
|
||||
ctx := context.Background()
|
||||
|
||||
// Set number of tokens as our throughput metric
|
||||
b.SetBytes(int64(tt.maxTokens))
|
||||
|
||||
for b.Loop() {
|
||||
b.StopTimer()
|
||||
// Ensure model is unloaded before each iteration
|
||||
unload(client, m, b)
|
||||
b.StartTimer()
|
||||
|
||||
req := &api.GenerateRequest{
|
||||
Model: m,
|
||||
Prompt: tt.prompt,
|
||||
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
||||
}
|
||||
|
||||
runGenerateBenchmark(b, ctx, client, req)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkWarmStart runs benchmarks with pre-loaded model
|
||||
func BenchmarkWarmStart(b *testing.B) {
|
||||
client := setup(b)
|
||||
tests := []TestCase{
|
||||
{"short_prompt", "Write a long story", 100},
|
||||
{"medium_prompt", "Write a detailed economic analysis", 500},
|
||||
{"long_prompt", "Write a comprehensive AI research paper", 1000},
|
||||
}
|
||||
m := modelName(b)
|
||||
|
||||
for _, tt := range tests {
|
||||
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
|
||||
ctx := context.Background()
|
||||
|
||||
// Pre-warm the model
|
||||
warmup(client, m, tt.prompt, b)
|
||||
|
||||
// Set number of tokens as our throughput metric
|
||||
b.SetBytes(int64(tt.maxTokens))
|
||||
|
||||
for b.Loop() {
|
||||
req := &api.GenerateRequest{
|
||||
Model: m,
|
||||
Prompt: tt.prompt,
|
||||
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
||||
}
|
||||
|
||||
runGenerateBenchmark(b, ctx, client, req)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// setup verifies server and model availability
|
||||
func setup(b *testing.B) *api.Client {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
|
||||
b.Fatalf("Model unavailable: %v", err)
|
||||
}
|
||||
|
||||
return client
|
||||
}
|
||||
|
||||
// warmup ensures the model is loaded and warmed up
|
||||
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
|
||||
for range 3 {
|
||||
err := client.Generate(
|
||||
context.Background(),
|
||||
&api.GenerateRequest{
|
||||
Model: model,
|
||||
Prompt: prompt,
|
||||
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
|
||||
},
|
||||
func(api.GenerateResponse) error { return nil },
|
||||
)
|
||||
if err != nil {
|
||||
b.Logf("Error during model warm-up: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// unload forces model unloading using KeepAlive: 0 parameter
|
||||
func unload(client *api.Client, model string, b *testing.B) {
|
||||
req := &api.GenerateRequest{
|
||||
Model: model,
|
||||
KeepAlive: &api.Duration{Duration: 0},
|
||||
}
|
||||
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
|
||||
b.Logf("Unload error: %v", err)
|
||||
}
|
||||
time.Sleep(1 * time.Second)
|
||||
}
|
||||
89
cmd/cmd.go
89
cmd/cmd.go
@@ -18,6 +18,8 @@ import (
|
||||
"os/signal"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
@@ -34,7 +36,6 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/runner"
|
||||
@@ -256,6 +257,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||
}
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -266,7 +268,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
opts := runOptions{
|
||||
Model: args[0],
|
||||
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
||||
Options: map[string]interface{}{},
|
||||
Options: map[string]any{},
|
||||
}
|
||||
|
||||
format, err := cmd.Flags().GetString("format")
|
||||
@@ -338,10 +340,21 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO(jessegross): We should either find another way to know if this is
|
||||
// a vision model or remove the logic. Also consider that other modalities will
|
||||
// need different behavior anyways.
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
|
||||
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
|
||||
|
||||
// TODO: remove the projector info and vision info checks below,
|
||||
// these are left in for backwards compatibility with older servers
|
||||
// that don't have the capabilities field in the model info
|
||||
if len(info.ProjectorInfo) != 0 {
|
||||
opts.MultiModal = true
|
||||
}
|
||||
for k := range info.ModelInfo {
|
||||
if strings.Contains(k, ".vision.") {
|
||||
opts.MultiModal = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@@ -562,8 +575,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
parameters, errParams := cmd.Flags().GetBool("parameters")
|
||||
system, errSystem := cmd.Flags().GetBool("system")
|
||||
template, errTemplate := cmd.Flags().GetBool("template")
|
||||
verbose, errVerbose := cmd.Flags().GetBool("verbose")
|
||||
|
||||
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
|
||||
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate, errVerbose} {
|
||||
if boolErr != nil {
|
||||
return errors.New("error retrieving flags")
|
||||
}
|
||||
@@ -601,7 +615,7 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
|
||||
}
|
||||
|
||||
req := api.ShowRequest{Name: args[0]}
|
||||
req := api.ShowRequest{Name: args[0], Verbose: verbose}
|
||||
resp, err := client.Show(cmd.Context(), &req)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -624,10 +638,10 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
return showInfo(resp, os.Stdout)
|
||||
return showInfo(resp, verbose, os.Stdout)
|
||||
}
|
||||
|
||||
func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||
func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
||||
tableRender := func(header string, rows func() [][]string) {
|
||||
fmt.Fprintln(w, " ", header)
|
||||
table := tablewriter.NewWriter(w)
|
||||
@@ -661,6 +675,15 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||
return
|
||||
})
|
||||
|
||||
if len(resp.Capabilities) > 0 {
|
||||
tableRender("Capabilities", func() (rows [][]string) {
|
||||
for _, capability := range resp.Capabilities {
|
||||
rows = append(rows, []string{"", capability.String()})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
if resp.ProjectorInfo != nil {
|
||||
tableRender("Projector", func() (rows [][]string) {
|
||||
arch := resp.ProjectorInfo["general.architecture"].(string)
|
||||
@@ -684,6 +707,47 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||
})
|
||||
}
|
||||
|
||||
if resp.ModelInfo != nil && verbose {
|
||||
tableRender("Metadata", func() (rows [][]string) {
|
||||
keys := make([]string, 0, len(resp.ModelInfo))
|
||||
for k := range resp.ModelInfo {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
|
||||
for _, k := range keys {
|
||||
var v string
|
||||
switch vData := resp.ModelInfo[k].(type) {
|
||||
case bool:
|
||||
v = fmt.Sprintf("%t", vData)
|
||||
case string:
|
||||
v = vData
|
||||
case float64:
|
||||
v = fmt.Sprintf("%g", vData)
|
||||
case []any:
|
||||
n := 3
|
||||
if len(vData) < n {
|
||||
n = len(vData)
|
||||
}
|
||||
v = fmt.Sprintf("%v", vData[:n])
|
||||
default:
|
||||
v = fmt.Sprintf("%T", vData)
|
||||
}
|
||||
rows = append(rows, []string{"", k, v})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
if len(resp.Tensors) > 0 && verbose {
|
||||
tableRender("Tensors", func() (rows [][]string) {
|
||||
for _, t := range resp.Tensors {
|
||||
rows = append(rows, []string{"", t.Name, t.Type, fmt.Sprint(t.Shape)})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
head := func(s string, n int) (rows [][]string) {
|
||||
scanner := bufio.NewScanner(strings.NewReader(s))
|
||||
for scanner.Scan() && (len(rows) < n || n < 0) {
|
||||
@@ -788,7 +852,7 @@ type runOptions struct {
|
||||
Format string
|
||||
System string
|
||||
Images []api.ImageData
|
||||
Options map[string]interface{}
|
||||
Options map[string]any
|
||||
MultiModal bool
|
||||
KeepAlive *api.Duration
|
||||
}
|
||||
@@ -1190,6 +1254,7 @@ func NewCLI() *cobra.Command {
|
||||
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
|
||||
showCmd.Flags().Bool("template", false, "Show template of a model")
|
||||
showCmd.Flags().Bool("system", false, "Show system message of a model")
|
||||
showCmd.Flags().BoolP("verbose", "v", false, "Show detailed model information")
|
||||
|
||||
runCmd := &cobra.Command{
|
||||
Use: "run MODEL [PROMPT]",
|
||||
@@ -1274,7 +1339,6 @@ func NewCLI() *cobra.Command {
|
||||
|
||||
runnerCmd := &cobra.Command{
|
||||
Use: "runner",
|
||||
Short: llama.PrintSystemInfo(),
|
||||
Hidden: true,
|
||||
RunE: func(cmd *cobra.Command, args []string) error {
|
||||
return runner.Execute(os.Args[1:])
|
||||
@@ -1317,7 +1381,6 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_NOPRUNE"],
|
||||
envVars["OLLAMA_ORIGINS"],
|
||||
envVars["OLLAMA_SCHED_SPREAD"],
|
||||
envVars["OLLAMA_TMPDIR"],
|
||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||
envVars["OLLAMA_KV_CACHE_TYPE"],
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
|
||||
224
cmd/cmd_test.go
224
cmd/cmd_test.go
@@ -16,6 +16,7 @@ import (
|
||||
"github.com/spf13/cobra"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
func TestShowInfo(t *testing.T) {
|
||||
@@ -27,7 +28,7 @@ func TestShowInfo(t *testing.T) {
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -57,7 +58,7 @@ func TestShowInfo(t *testing.T) {
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -68,6 +69,60 @@ func TestShowInfo(t *testing.T) {
|
||||
embedding length 0
|
||||
quantization FP16
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("verbose model", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "8B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Parameters: `
|
||||
stop up`,
|
||||
ModelInfo: map[string]any{
|
||||
"general.architecture": "test",
|
||||
"general.parameter_count": float64(8_000_000_000),
|
||||
"some.true_bool": true,
|
||||
"some.false_bool": false,
|
||||
"test.context_length": float64(1000),
|
||||
"test.embedding_length": float64(11434),
|
||||
},
|
||||
Tensors: []api.Tensor{
|
||||
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
|
||||
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
|
||||
},
|
||||
}, true, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := ` Model
|
||||
architecture test
|
||||
parameters 8B
|
||||
context length 1000
|
||||
embedding length 11434
|
||||
quantization FP16
|
||||
|
||||
Parameters
|
||||
stop up
|
||||
|
||||
Metadata
|
||||
general.architecture test
|
||||
general.parameter_count 8e+09
|
||||
some.false_bool false
|
||||
some.true_bool true
|
||||
test.context_length 1000
|
||||
test.embedding_length 11434
|
||||
|
||||
Tensors
|
||||
blk.0.attn_k.weight BF16 [42 3117]
|
||||
blk.0.attn_q.weight FP16 [3117 42]
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
@@ -89,7 +144,7 @@ func TestShowInfo(t *testing.T) {
|
||||
stop you
|
||||
stop up
|
||||
temperature 99`,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -126,7 +181,7 @@ func TestShowInfo(t *testing.T) {
|
||||
"clip.vision.embedding_length": float64(0),
|
||||
"clip.vision.projection_dim": float64(0),
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -159,7 +214,7 @@ func TestShowInfo(t *testing.T) {
|
||||
Ahoy, matey!
|
||||
Weigh anchor!
|
||||
`,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -188,7 +243,7 @@ Weigh anchor!
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
License: license,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -206,6 +261,34 @@ Weigh anchor!
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("capabilities", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := " Model\n" +
|
||||
" architecture test \n" +
|
||||
" parameters 7B \n" +
|
||||
" quantization FP16 \n" +
|
||||
"\n" +
|
||||
" Capabilities\n" +
|
||||
" vision \n" +
|
||||
" tools \n" +
|
||||
"\n"
|
||||
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestDeleteHandler(t *testing.T) {
|
||||
@@ -707,3 +790,132 @@ func TestCreateHandler(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestNewCreateRequest(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
from string
|
||||
opts runOptions
|
||||
expected *api.CreateRequest
|
||||
}{
|
||||
{
|
||||
"basic test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "",
|
||||
Prompt: "You are a fun AI agent",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "/some/file/like/etc/passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as windows filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"options test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Options: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
Parameters: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"messages test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
actual := NewCreateRequest(tt.from, tt.opts)
|
||||
if !cmp.Equal(actual, tt.expected) {
|
||||
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -18,6 +18,7 @@ import (
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
type MultilineState int
|
||||
@@ -195,6 +196,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.Messages = []api.Message{}
|
||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
continue
|
||||
@@ -343,7 +348,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
switch args[1] {
|
||||
case "info":
|
||||
_ = showInfo(resp, os.Stderr)
|
||||
_ = showInfo(resp, false, os.Stderr)
|
||||
case "license":
|
||||
if resp.License == "" {
|
||||
fmt.Println("No license was specified for this model.")
|
||||
@@ -455,9 +460,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
|
||||
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||
parentModel := opts.ParentModel
|
||||
|
||||
modelName := model.ParseName(parentModel)
|
||||
if !modelName.IsValid() {
|
||||
parentModel = ""
|
||||
}
|
||||
|
||||
req := &api.CreateRequest{
|
||||
Name: name,
|
||||
From: cmp.Or(opts.ParentModel, opts.Model),
|
||||
Model: name,
|
||||
From: cmp.Or(parentModel, opts.Model),
|
||||
}
|
||||
|
||||
if opts.System != "" {
|
||||
|
||||
@@ -13,8 +13,13 @@ import (
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
TextModel TextParameters `json:"text_config"`
|
||||
}
|
||||
|
||||
type TextParameters struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
@@ -177,14 +182,18 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
conv = &mistral3Model{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
@@ -194,7 +203,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
case "CohereForCausalLM":
|
||||
conv = &commandrModel{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, conv); err != nil {
|
||||
@@ -213,7 +222,14 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
}
|
||||
|
||||
vocabSize := int(p.VocabSize)
|
||||
if vocabSize == 0 {
|
||||
tVocabSize := int(p.TextModel.VocabSize)
|
||||
vocabSize = tVocabSize
|
||||
}
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
|
||||
@@ -45,7 +45,7 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
|
||||
142
convert/convert_gemma3.go
Normal file
142
convert/convert_gemma3.go
Normal file
@@ -0,0 +1,142 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma3Model struct {
|
||||
gemmaModel
|
||||
Architecture string
|
||||
TextModel struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
||||
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
||||
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
||||
ImageSize uint32 `json:"image_size"` // image_size 560
|
||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||
} `json:"vision_config"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||
}
|
||||
|
||||
const (
|
||||
gemma4BLayerCount = 34
|
||||
gemma12BLayerCount = 48
|
||||
gemma27BLayerCount = 62
|
||||
)
|
||||
|
||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3"
|
||||
|
||||
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||
kv["gemma3.block_count"] = numBlocks
|
||||
|
||||
var (
|
||||
numHeads uint32
|
||||
numKVHeads uint32
|
||||
)
|
||||
|
||||
switch numBlocks {
|
||||
case gemma4BLayerCount:
|
||||
numHeads = 8
|
||||
numKVHeads = 4
|
||||
case gemma12BLayerCount:
|
||||
numHeads = 16
|
||||
numKVHeads = 8
|
||||
case gemma27BLayerCount:
|
||||
numHeads = 32
|
||||
numKVHeads = 16
|
||||
default:
|
||||
numHeads = p.NumAttentionHeads
|
||||
numKVHeads = p.NumKeyValueHeads
|
||||
}
|
||||
|
||||
kv["gemma3.attention.head_count"] = numHeads
|
||||
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||
|
||||
switch p.Architecture {
|
||||
case "Gemma3ForCausalLM":
|
||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||
default:
|
||||
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
}
|
||||
|
||||
if p.MultiModalTokensPerImage > 0 {
|
||||
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma3Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"vision_tower.vision_model.embeddings", "v",
|
||||
"vision_tower.vision_model", "v",
|
||||
"vision_model.vision_model.embeddings", "v",
|
||||
"vision_model.vision_model", "v",
|
||||
"language_model.", "",
|
||||
"model.layers", "blk",
|
||||
"encoder.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.out_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"input_projection_weight", "input_projection.weight",
|
||||
"multi_modal_projector", "mm",
|
||||
}
|
||||
}
|
||||
190
convert/convert_mistral.go
Normal file
190
convert/convert_mistral.go
Normal file
@@ -0,0 +1,190 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mistral3Model struct {
|
||||
ModelParameters
|
||||
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||
TextModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
SlidingWindow *uint32 `json:"sliding_window"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"vision_config"`
|
||||
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||
}
|
||||
|
||||
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mistral3"
|
||||
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||
|
||||
// Text configuration
|
||||
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||
|
||||
// Vision configuration
|
||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
|
||||
// Multimodal configuration
|
||||
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||
|
||||
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||
|
||||
if p.ProjectorHiddenAct != "" {
|
||||
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") {
|
||||
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Replacements() []string {
|
||||
return []string{
|
||||
"language_model.model.norm", "output_norm",
|
||||
"language_model.model.", "",
|
||||
"language_model.", "",
|
||||
"layers", "blk",
|
||||
"transformer.layers", "blk",
|
||||
"vision_tower", "v",
|
||||
"ln_pre", "encoder_norm",
|
||||
"input_layernorm", "attn_norm",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"embed_tokens", "token_embd",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"attention.q_proj", "attn_q",
|
||||
"attention.k_proj", "attn_k",
|
||||
"attention.v_proj", "attn_v",
|
||||
"attention.o_proj", "attn_output",
|
||||
"attention_norm", "attn_norm",
|
||||
"feed_forward.gate_proj", "ffn_gate",
|
||||
"feed_forward.down_proj", "ffn_down",
|
||||
"feed_forward.up_proj", "ffn_up",
|
||||
"multi_modal_projector", "mm",
|
||||
"ffn_norm", "ffn_norm",
|
||||
"lm_head", "output",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, ".attn_q.weight") {
|
||||
heads = p.TextModel.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
||||
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -62,10 +62,7 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"*.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
|
||||
@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
|
||||
|
||||
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
||||
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
||||
var file_sentencepiece_model_proto_goTypes = []interface{}{
|
||||
var file_sentencepiece_model_proto_goTypes = []any{
|
||||
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
||||
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
||||
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
||||
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return
|
||||
}
|
||||
if !protoimpl.UnsafeEnabled {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*TrainerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*NormalizerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData_Sample); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto_SentencePiece); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
|
||||
@@ -6,7 +6,9 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"reflect"
|
||||
"slices"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
@@ -15,6 +17,8 @@ import (
|
||||
)
|
||||
|
||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
slog.Debug("using spm vocabulary")
|
||||
|
||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
if slices.Contains(ast, piece.GetPiece()) {
|
||||
|
||||
// temporary fix to handle gemma3 broken configs
|
||||
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
}
|
||||
|
||||
for _, t := range ast {
|
||||
if t.Content == piece.GetPiece() {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
v.Types = append(v.Types, tt)
|
||||
}
|
||||
}
|
||||
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return cmp.Compare(i.id, j.id)
|
||||
})
|
||||
|
||||
n := len(v.Tokens)
|
||||
for i, t := range ts {
|
||||
if t.id != i+n {
|
||||
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
||||
for _, t := range ts {
|
||||
if t.id < len(v.Tokens) {
|
||||
if v.Tokens[t.id] == t.content {
|
||||
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
||||
continue
|
||||
}
|
||||
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
||||
}
|
||||
if t.id != len(v.Tokens) {
|
||||
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
||||
}
|
||||
|
||||
v.Tokens = append(v.Tokens, t.content)
|
||||
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
type specialToken struct {
|
||||
Content string `json:"content"`
|
||||
Lstrip bool `json:"lstrip"`
|
||||
Normalized bool `json:"normalized"`
|
||||
Rstrip bool `json:"rstrip"`
|
||||
SingleWord bool `json:"single_word"`
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
||||
f, err := fsys.Open("special_tokens_map.json")
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil, nil
|
||||
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
defer f.Close()
|
||||
|
||||
var m struct {
|
||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
||||
}
|
||||
|
||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.AdditionalSpecialTokens, nil
|
||||
var ast []specialToken
|
||||
|
||||
switch st := m.AdditionalSpecialTokens.(type) {
|
||||
case []string:
|
||||
for _, s := range st {
|
||||
ast = append(ast, specialToken{Content: s})
|
||||
}
|
||||
case []any:
|
||||
for _, s := range st {
|
||||
// marshal and unmarshal the object to get the special token
|
||||
tMap := s.(map[string]any)
|
||||
data, err := json.Marshal(tMap)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var token specialToken
|
||||
err = json.Unmarshal(data, &token)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ast = append(ast, token)
|
||||
}
|
||||
|
||||
default:
|
||||
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
||||
}
|
||||
|
||||
slog.Debug("spm tokenizer", "additional tokens", ast)
|
||||
|
||||
return ast, nil
|
||||
}
|
||||
|
||||
@@ -12,7 +12,7 @@ func IsNUMA() bool {
|
||||
// numa support in llama.cpp is linux only
|
||||
return false
|
||||
}
|
||||
ids := map[string]interface{}{}
|
||||
ids := map[string]any{}
|
||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||
for _, packageId := range packageIds {
|
||||
id, err := os.ReadFile(packageId)
|
||||
|
||||
@@ -111,6 +111,7 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer file.Close()
|
||||
return linuxCPUDetails(file)
|
||||
}
|
||||
|
||||
@@ -168,13 +169,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
for id, s := range socketByID {
|
||||
s.CoreCount = len(coreBySocket[id])
|
||||
s.ThreadCount = 0
|
||||
for _, tc := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += tc
|
||||
}
|
||||
|
||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||
efficiencyCoreCount := 0
|
||||
for _, threads := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += threads
|
||||
if threads == 1 {
|
||||
efficiencyCoreCount++
|
||||
}
|
||||
|
||||
12
docs/api.md
12
docs/api.md
@@ -558,6 +558,10 @@ Final response:
|
||||
{
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": ""
|
||||
},
|
||||
"done": true,
|
||||
"total_duration": 4883583458,
|
||||
"load_duration": 1334875,
|
||||
@@ -1213,7 +1217,7 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"model": "llama3.2"
|
||||
"model": "llava"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1256,7 +1260,11 @@ curl http://localhost:11434/api/show -d '{
|
||||
"tokenizer.ggml.pre": "llama-bpe",
|
||||
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
||||
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
||||
}
|
||||
},
|
||||
"capabilities": [
|
||||
"completion",
|
||||
"vision"
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
59
docs/benchmark.md
Normal file
59
docs/benchmark.md
Normal file
@@ -0,0 +1,59 @@
|
||||
# Benchmark
|
||||
|
||||
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
|
||||
|
||||
## When to use
|
||||
|
||||
Run these benchmarks when:
|
||||
- Making changes to the model inference engine
|
||||
- Modifying model loading/unloading logic
|
||||
- Changing prompt processing or token generation code
|
||||
- Implementing a new model architecture
|
||||
- Testing performance across different hardware setups
|
||||
|
||||
## Prerequisites
|
||||
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
|
||||
## Usage and Examples
|
||||
|
||||
>[!NOTE]
|
||||
>All commands must be run from the root directory of the Ollama project.
|
||||
|
||||
Basic syntax:
|
||||
```bash
|
||||
go test -bench=. ./benchmark/... -m $MODEL_NAME
|
||||
```
|
||||
|
||||
Required flags:
|
||||
- `-bench=.`: Run all benchmarks
|
||||
- `-m`: Model name to benchmark
|
||||
|
||||
Optional flags:
|
||||
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
|
||||
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
|
||||
|
||||
Common usage patterns:
|
||||
|
||||
Single benchmark run with a model specified:
|
||||
```bash
|
||||
go test -bench=. ./benchmark/... -m llama3.3
|
||||
```
|
||||
|
||||
## Output metrics
|
||||
|
||||
The benchmark reports several key metrics:
|
||||
|
||||
- `gen_tok/s`: Generated tokens per second
|
||||
- `prompt_tok/s`: Prompt processing tokens per second
|
||||
- `ttft_ms`: Time to first token in milliseconds
|
||||
- `load_ms`: Model load time in milliseconds
|
||||
- `gen_tokens`: Total tokens generated
|
||||
- `prompt_tokens`: Total prompt tokens processed
|
||||
|
||||
Each benchmark runs two scenarios:
|
||||
- Cold start: Model is loaded from disk for each test
|
||||
- Warm start: Model is pre-loaded in memory
|
||||
|
||||
Three prompt lengths are tested for each scenario:
|
||||
- Short prompt (100 tokens)
|
||||
- Medium prompt (500 tokens)
|
||||
- Long prompt (1000 tokens)
|
||||
@@ -118,6 +118,35 @@ To run tests, use `go test`:
|
||||
go test ./...
|
||||
```
|
||||
|
||||
> NOTE: In rare cirumstances, you may nedd to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
> test failures resulting from your change(s), if any, locally, but CI will
|
||||
> break.
|
||||
>
|
||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||
> failures before pushing.
|
||||
>
|
||||
> To enable the "synctest" package for testing, run the following command:
|
||||
>
|
||||
> ```shell
|
||||
> GOEXPERIMENT=synctest go test ./...
|
||||
> ```
|
||||
>
|
||||
> If you wish to enable synctest for all go commands, you can set the
|
||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||
>
|
||||
> ```shell
|
||||
> go env -w GOEXPERIMENT=synctest
|
||||
> ```
|
||||
>
|
||||
> Which will enable the "synctest" package for all go commands without needing
|
||||
> to set it for all shell sessions.
|
||||
>
|
||||
> The synctest package is not required for production builds.
|
||||
|
||||
## Library detection
|
||||
|
||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||
|
||||
15
docs/faq.md
15
docs/faq.md
@@ -20,7 +20,13 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
|
||||
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||
|
||||
```shell
|
||||
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
||||
```
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
@@ -187,6 +193,13 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
|
||||
|
||||
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
||||
|
||||
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
|
||||
|
||||
```
|
||||
# Allow all Chrome, Firefox, and Safari extensions
|
||||
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
|
||||
```
|
||||
|
||||
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
||||
|
||||
## Where are models stored?
|
||||
|
||||
@@ -75,7 +75,7 @@ RestartSec=3
|
||||
Environment="PATH=$PATH"
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
WantedBy=multi-user.target
|
||||
```
|
||||
|
||||
Then start the service:
|
||||
|
||||
@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
|
||||
On **Linux** systems with systemd, the logs can be found with this command:
|
||||
|
||||
```shell
|
||||
journalctl -u ollama --no-pager
|
||||
journalctl -u ollama --no-pager --follow --pager-end
|
||||
```
|
||||
|
||||
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
|
||||
@@ -26,7 +26,6 @@ When you run Ollama on **Windows**, there are a few different locations. You can
|
||||
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
|
||||
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
|
||||
|
||||
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
|
||||
|
||||
@@ -69,10 +68,6 @@ If you run into problems on Linux and want to install an older version, or you'd
|
||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
||||
```
|
||||
|
||||
## Linux tmp noexec
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
|
||||
## Linux docker
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
@@ -62,7 +62,6 @@ the explorer window by hitting `<Ctrl>+R` and type in:
|
||||
- *upgrade.log* contains log output for upgrades
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` contains models and configuration
|
||||
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
|
||||
|
||||
## Uninstall
|
||||
|
||||
@@ -81,9 +80,11 @@ help you keep up to date.
|
||||
|
||||
If you'd like to install or integrate Ollama as a service, a standalone
|
||||
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
||||
and GPU library dependencies for Nvidia and AMD. This allows for embedding
|
||||
Ollama in existing applications, or running it as a system service via `ollama
|
||||
serve` with tools such as [NSSM](https://nssm.cc/).
|
||||
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
|
||||
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
|
||||
same directory. This allows for embedding Ollama in existing applications, or
|
||||
running it as a system service via `ollama serve` with tools such as
|
||||
[NSSM](https://nssm.cc/).
|
||||
|
||||
> [!NOTE]
|
||||
> If you are upgrading from a prior version, you should remove the old directories first.
|
||||
|
||||
@@ -73,6 +73,7 @@ func AllowedOrigins() (origins []string) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
)
|
||||
|
||||
return origins
|
||||
|
||||
@@ -69,6 +69,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://10.0.0.1", []string{
|
||||
"http://10.0.0.1",
|
||||
@@ -88,6 +89,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||
"http://172.16.0.1",
|
||||
@@ -108,6 +110,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://totally.safe,http://definitely.legit", []string{
|
||||
"http://totally.safe",
|
||||
@@ -128,6 +131,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
func assertEqual(t *testing.T, a interface{}, b interface{}) {
|
||||
func assertEqual(t *testing.T, a any, b any) {
|
||||
if a != b {
|
||||
t.Errorf("Assert failed, expected %v, got %v", b, a)
|
||||
}
|
||||
|
||||
13
fs/config.go
Normal file
13
fs/config.go
Normal file
@@ -0,0 +1,13 @@
|
||||
package fs
|
||||
|
||||
type Config interface {
|
||||
Architecture() string
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
Bool(string, ...bool) bool
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Uints(string, ...[]uint32) []uint32
|
||||
Floats(string, ...[]float32) []float32
|
||||
}
|
||||
117
fs/ggml/ggml.go
117
fs/ggml/ggml.go
@@ -100,6 +100,10 @@ func (kv KV) Float(key string, defaultValue ...float32) float32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
}
|
||||
|
||||
func (kv KV) Bool(key string, defaultValue ...bool) bool {
|
||||
return keyValue(kv, key, append(defaultValue, false)...)
|
||||
}
|
||||
|
||||
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]string, r.size)
|
||||
@@ -120,7 +124,23 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
||||
return s
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
|
||||
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]float32, r.size)
|
||||
for i := range r.size {
|
||||
s[i] = float32(r.values[i].(float32))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (kv KV) OllamaEngineRequired() bool {
|
||||
return slices.Contains([]string{
|
||||
"gemma3",
|
||||
"mistral3",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
|
||||
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
||||
key = kv.Architecture() + "." + key
|
||||
}
|
||||
@@ -310,6 +330,10 @@ func (t Tensor) Size() uint64 {
|
||||
return t.parameters() * t.typeSize() / t.blockSize()
|
||||
}
|
||||
|
||||
func (t Tensor) Type() string {
|
||||
return fileType(t.Kind).String()
|
||||
}
|
||||
|
||||
type container interface {
|
||||
Name() string
|
||||
Decode(io.ReadSeeker) (model, error)
|
||||
@@ -392,7 +416,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
|
||||
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
|
||||
embedding := f.KV().EmbeddingLength()
|
||||
heads := f.KV().HeadCount()
|
||||
headsKV := f.KV().HeadCountKV()
|
||||
@@ -405,7 +429,10 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
layers := f.Tensors().GroupLayers()
|
||||
|
||||
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
||||
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
kv = make([]uint64, f.KV().BlockCount())
|
||||
for i := range kv {
|
||||
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
|
||||
switch f.KV().Architecture() {
|
||||
case "llama":
|
||||
@@ -439,16 +466,14 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
|
||||
kv = headsKV *
|
||||
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
|
||||
(2* // sizeof(float16)
|
||||
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
|
||||
context +
|
||||
4* // sizeof(float32)
|
||||
uint64(crossAttentionLayers.size)* // num cross attention layers
|
||||
visionTokens*
|
||||
tiles)
|
||||
crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
|
||||
for i := range kv {
|
||||
if slices.Contains(crossAttentionLayers, uint32(i)) {
|
||||
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
|
||||
4 * // sizeof(float32)
|
||||
visionTokens *
|
||||
tiles
|
||||
}
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
@@ -472,7 +497,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2":
|
||||
case "gemma", "gemma2", "gemma3":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
||||
@@ -484,6 +509,20 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
4*embeddingHeadsK*context*8+
|
||||
embedding*embeddingHeadsK*heads*9/16,
|
||||
)
|
||||
|
||||
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
|
||||
// engine. Gemma3 always uses the Ollama engine.
|
||||
if f.KV().Architecture() == "gemma3" {
|
||||
const gemma3GlobalCacheCount = 6
|
||||
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
|
||||
for i := range kv {
|
||||
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
|
||||
// layers are the smaller local (sliding) layers.
|
||||
if (i+1)%gemma3GlobalCacheCount != 0 {
|
||||
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
}
|
||||
}
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
@@ -561,6 +600,56 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
return
|
||||
}
|
||||
|
||||
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
if llm.KV().Uint("vision.block_count") == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
for name, layer := range llm.Tensors().GroupLayers() {
|
||||
if name == "v" || strings.HasPrefix(name, "v.") {
|
||||
for _, tensor := range layer {
|
||||
weights += tensor.Size()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
imageSize := uint64(llm.KV().Uint("vision.image_size"))
|
||||
patchSize := uint64(llm.KV().Uint("vision.patch_size"))
|
||||
if patchSize == 0 {
|
||||
slog.Warn("unknown patch size for vision model")
|
||||
return
|
||||
}
|
||||
|
||||
numChannels := uint64(llm.KV().Uint("vision.num_channels"))
|
||||
|
||||
numPatches := (imageSize / patchSize) * (imageSize / patchSize)
|
||||
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
|
||||
embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "mllama":
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*numChannels*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
case "gemma3", "mistral3":
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
||||
|
||||
19
go.mod
19
go.mod
@@ -1,6 +1,6 @@
|
||||
module github.com/ollama/ollama
|
||||
|
||||
go 1.24
|
||||
go 1.24.0
|
||||
|
||||
require (
|
||||
github.com/containerd/console v1.0.3
|
||||
@@ -11,7 +11,7 @@ require (
|
||||
github.com/spf13/cobra v1.7.0
|
||||
github.com/stretchr/testify v1.9.0
|
||||
github.com/x448/float16 v0.8.4
|
||||
golang.org/x/sync v0.10.0
|
||||
golang.org/x/sync v0.11.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -24,7 +24,7 @@ require (
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.22.0
|
||||
gonum.org/v1/gonum v0.15.0
|
||||
golang.org/x/tools v0.30.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -44,6 +44,7 @@ require (
|
||||
github.com/xtgo/set v1.0.0 // indirect
|
||||
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
|
||||
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
|
||||
gonum.org/v1/gonum v0.15.0 // indirect
|
||||
gorgonia.org/vecf32 v0.9.0 // indirect
|
||||
gorgonia.org/vecf64 v0.9.0 // indirect
|
||||
)
|
||||
@@ -69,12 +70,12 @@ require (
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
|
||||
github.com/ugorji/go/codec v1.2.12 // indirect
|
||||
golang.org/x/arch v0.8.0 // indirect
|
||||
golang.org/x/crypto v0.31.0
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
|
||||
golang.org/x/net v0.25.0 // indirect
|
||||
golang.org/x/sys v0.28.0
|
||||
golang.org/x/term v0.27.0
|
||||
golang.org/x/text v0.21.0
|
||||
golang.org/x/crypto v0.33.0
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
|
||||
golang.org/x/net v0.35.0 // indirect
|
||||
golang.org/x/sys v0.30.0
|
||||
golang.org/x/term v0.29.0
|
||||
golang.org/x/text v0.22.0
|
||||
google.golang.org/protobuf v1.34.1
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
||||
30
go.sum
30
go.sum
@@ -214,16 +214,16 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
|
||||
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.31.0 h1:ihbySMvVjLAeSH1IbfcRTkD/iNscyz8rGzjF/E5hV6U=
|
||||
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
|
||||
golang.org/x/crypto v0.33.0 h1:IOBPskki6Lysi0lo9qQvbxiQ+FvsCC/YWOecCHAixus=
|
||||
golang.org/x/crypto v0.33.0/go.mod h1:bVdXmD7IV/4GdElGPozy6U7lWdRXA4qyRVGJV57uQ5M=
|
||||
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa h1:FRnLl4eNAQl8hwxVVC17teOw8kdjVDVAiFMtgUdTSRQ=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa/go.mod h1:zk2irFbV9DP96SEBUUAy67IdHUaZuSnrz1n472HUCLE=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa h1:t2QcU6V556bFjYgu4L6C+6VrCPyJZ+eyRsABUPs1mz4=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa/go.mod h1:BHOTPb3L19zxehTsLoJXVaTktb06DFgmdW6Wb9s8jqk=
|
||||
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
|
||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
||||
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
|
||||
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
||||
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
|
||||
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
|
||||
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
|
||||
golang.org/x/net v0.35.0 h1:T5GQRQb2y08kTAByq9L4/bz8cipCdA8FbRTXewonqY8=
|
||||
golang.org/x/net v0.35.0/go.mod h1:EglIi67kWsHKlRzzVMUD93VMSWGFOMSZgxFjparz1Qk=
|
||||
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
|
||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
|
||||
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
|
||||
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
|
||||
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sync v0.11.0 h1:GGz8+XQP4FvTTrjZPzNKTMFtSXH80RAzG+5ghFPgK9w=
|
||||
golang.org/x/sync v0.11.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
|
||||
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.28.0 h1:Fksou7UEQUWlKvIdsqzJmUmCX3cZuD2+P3XyyzwMhlA=
|
||||
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/sys v0.30.0 h1:QjkSwP/36a20jFYWkSue1YwXzLmsV5Gfq7Eiy72C1uc=
|
||||
golang.org/x/sys v0.30.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.27.0 h1:WP60Sv1nlK1T6SupCHbXzSaN0b9wUmsPoRS9b61A23Q=
|
||||
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
|
||||
golang.org/x/term v0.29.0 h1:L6pJp37ocefwRRtYPKSWOWzOtWSxVajvz2ldH/xi3iU=
|
||||
golang.org/x/term v0.29.0/go.mod h1:6bl4lRlvVuDgSf3179VpIxBF0o10JUpXWOnI7nErv7s=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
|
||||
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
|
||||
golang.org/x/text v0.22.0 h1:bofq7m3/HAFvbF51jz3Q9wLg3jkvSPuiZu/pD1XwgtM=
|
||||
golang.org/x/text v0.22.0/go.mod h1:YRoo4H8PVmsu+E3Ou7cqLVH8oXWIHVoX0jqUWALQhfY=
|
||||
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
@@ -309,6 +309,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
|
||||
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
|
||||
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
|
||||
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
|
||||
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
|
||||
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
|
||||
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
|
||||
@@ -22,7 +22,7 @@ func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
@@ -39,7 +39,7 @@ func TestUnicode(t *testing.T) {
|
||||
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
|
||||
Prompt: "天空为什么是蓝色的?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
// Workaround deepseek context shifting bug
|
||||
@@ -61,7 +61,7 @@ func TestExtendedUnicodeOutput(t *testing.T) {
|
||||
Model: "gemma2:2b",
|
||||
Prompt: "Output some smily face emoji",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
@@ -96,7 +96,7 @@ func TestUnicodeModelDir(t *testing.T) {
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
|
||||
@@ -25,7 +25,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -34,7 +34,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -23,7 +23,7 @@ func TestLongInputContext(t *testing.T) {
|
||||
Model: "llama2",
|
||||
Prompt: "Oh, don’t speak to me of Austria. Perhaps I don’t understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexander’s loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I don’t believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
@@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
|
||||
Model: "llama2",
|
||||
Prompt: "Write me a story with a ton of emojis?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
|
||||
@@ -19,7 +19,7 @@ func TestIntegrationLlava(t *testing.T) {
|
||||
Model: "llava:7b",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -47,7 +47,7 @@ func TestIntegrationMllama(t *testing.T) {
|
||||
Model: "x/llama3.2-vision",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -66,6 +66,35 @@ func TestIntegrationMllama(t *testing.T) {
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
func TestIntegrationSplitBatch(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
Model: "gemma3:4b",
|
||||
// Fill up a chunk of the batch so the image will partially spill over into the next one
|
||||
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
}
|
||||
|
||||
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
|
||||
resp := "the ollam"
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
// llava models on CPU can be quite slow to start,
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
||||
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
|
||||
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6
|
||||
|
||||
@@ -20,7 +20,7 @@ var (
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -28,7 +28,7 @@ var (
|
||||
Model: "orca-mini",
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -32,7 +32,7 @@ func TestMaxQueue(t *testing.T) {
|
||||
req := api.GenerateRequest{
|
||||
Model: "orca-mini",
|
||||
Prompt: "write a long historical fiction story about christopher columbus. use at least 10 facts from his actual journey",
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -52,8 +52,8 @@ func TestMaxQueue(t *testing.T) {
|
||||
embedCtx := ctx
|
||||
|
||||
var genwg sync.WaitGroup
|
||||
genwg.Add(1)
|
||||
go func() {
|
||||
genwg.Add(1)
|
||||
defer genwg.Done()
|
||||
slog.Info("Starting generate request")
|
||||
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
|
||||
@@ -71,8 +71,8 @@ func TestMaxQueue(t *testing.T) {
|
||||
counterMu := sync.Mutex{}
|
||||
var embedwg sync.WaitGroup
|
||||
for i := 0; i < threadCount; i++ {
|
||||
embedwg.Add(1)
|
||||
go func(i int) {
|
||||
embedwg.Add(1)
|
||||
defer embedwg.Done()
|
||||
slog.Info("embed started", "id", i)
|
||||
embedReq := api.EmbeddingRequest{
|
||||
|
||||
@@ -291,7 +291,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -300,7 +300,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "why is the color of dirt brown?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -309,7 +309,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -318,7 +318,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "what is the origin of independence day?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -327,7 +327,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "what is the composition of air?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"errors"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -29,22 +30,44 @@ type Cache interface {
|
||||
// cache implementation used.
|
||||
Put(ctx ml.Context, key, value ml.Tensor)
|
||||
|
||||
// SetConfig controls optimizations (mostly backend-specific) that may transform
|
||||
// the output of the cache to work better with specific kernels. If not called,
|
||||
// the backend settings will be used. This works well when calling Attention.
|
||||
//
|
||||
// The config can be overridden by models, especially if they require vanilla
|
||||
// output when implementing their own version of attention. To do this, pass
|
||||
// an empty ml.CacheConfig.
|
||||
//
|
||||
// Most models will not need to use this.
|
||||
SetConfig(ml.CacheConfig)
|
||||
|
||||
// ** cache management **
|
||||
|
||||
// Init sets up runtime parameters
|
||||
Init(backend ml.Backend, dtype ml.DType, capacity int32)
|
||||
// Init sets up runtime parameters.
|
||||
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
|
||||
// dtype: The data type for storing cache entries
|
||||
// maxSequences: The maximum number of sequences stored in the cache - across all batches
|
||||
// capacity: The number of cache entries to store, per sequence
|
||||
// maxBatch: The maximum number of tokens that can occur in a single batch
|
||||
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
|
||||
|
||||
// Close closes the cache and frees resources associated with it
|
||||
Close()
|
||||
|
||||
// StartForward is called before the start of the model's forward pass.
|
||||
// For each token in the coming batch, there must be a corresponding
|
||||
// entry in positions and seqs.
|
||||
StartForward(ctx ml.Context, positions []int32, seqs []int) error
|
||||
// entry in positions and seqs. reserve is to preallocate memory
|
||||
// without actually storing data in the cache.
|
||||
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
|
||||
|
||||
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
|
||||
CopyPrefix(srcSeq, dstSeq int, len int32)
|
||||
|
||||
// CanResume returns true if the cache can continue with the next token at
|
||||
// the given position and sequence. Assumes that the caller has already
|
||||
// verified the contents of the cache.
|
||||
CanResume(seq int, pos int32) bool
|
||||
|
||||
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
|
||||
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
|
||||
//
|
||||
|
||||
@@ -8,6 +8,7 @@ import (
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
|
||||
@@ -19,9 +20,13 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
|
||||
// The mask is of shape history size, batch size
|
||||
type Causal struct {
|
||||
DType ml.DType
|
||||
Capacity int32
|
||||
windowSize int32
|
||||
|
||||
opts CausalOptions
|
||||
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
@@ -39,6 +44,12 @@ type Causal struct {
|
||||
// locations in the cache that are needed for this batch
|
||||
curCellRange cellRange
|
||||
|
||||
// curSequences is the sequences corresponding to this pass's entries in the cache
|
||||
curSequences []int
|
||||
|
||||
// curPositions is the positions corresponding to this pass's entries in the cache
|
||||
curPositions []int32
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// for each possible location in the cache, stores the position and set of sequences
|
||||
@@ -52,8 +63,8 @@ type Causal struct {
|
||||
|
||||
shiftFn shiftFn
|
||||
backend ml.Backend
|
||||
cacheCtx ml.Context
|
||||
keys, values []ml.Tensor
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
type cacheCell struct {
|
||||
@@ -67,67 +78,129 @@ type cellRange struct {
|
||||
}
|
||||
|
||||
func NewCausalCache(shift shiftFn) *Causal {
|
||||
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
|
||||
return &Causal{
|
||||
windowSize: math.MaxInt32,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
|
||||
return &Causal{windowSize: windowSize, shiftFn: shift}
|
||||
return &Causal{
|
||||
windowSize: windowSize,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if c.config.CachePadding == 0 {
|
||||
c.config.CachePadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskBatchPadding == 0 {
|
||||
c.config.MaskBatchPadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskDType == ml.DTypeOther {
|
||||
c.config.MaskDType = ml.DTypeF32
|
||||
}
|
||||
|
||||
var cacheSize int
|
||||
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
|
||||
cacheSize = maxSequences * capacity
|
||||
} else {
|
||||
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
|
||||
}
|
||||
cacheSize = roundUp(cacheSize, c.config.CachePadding)
|
||||
c.cells = make([]cacheCell, cacheSize)
|
||||
|
||||
c.DType = dtype
|
||||
c.Capacity = capacity
|
||||
c.cells = make([]cacheCell, capacity)
|
||||
c.cellRanges = make(map[int]cellRange)
|
||||
c.backend = backend
|
||||
c.cacheCtx = backend.NewContext()
|
||||
}
|
||||
|
||||
func (c *Causal) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *Causal) Close() {
|
||||
c.cacheCtx.Close()
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
c.curBatchSize = len(positions)
|
||||
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
c.curBatchSize = len(batch.Positions)
|
||||
c.curSequences = batch.Sequences
|
||||
c.curPositions = batch.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
if !reserve {
|
||||
c.updateSlidingWindow()
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
if errors.Is(err, ErrKvCacheFull) {
|
||||
c.defrag()
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range batch.Positions {
|
||||
seq := batch.Sequences[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
seqRange = newRange()
|
||||
}
|
||||
|
||||
if c.curLoc+i > seqRange.max {
|
||||
seqRange.max = c.curLoc + i
|
||||
}
|
||||
if seqRange.max > c.curCellRange.max {
|
||||
c.curCellRange.max = seqRange.max
|
||||
}
|
||||
|
||||
if c.curLoc+i < seqRange.min {
|
||||
seqRange.min = c.curLoc + i
|
||||
}
|
||||
if seqRange.min < c.curCellRange.min {
|
||||
c.curCellRange.min = seqRange.min
|
||||
}
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
} else {
|
||||
// If we are reserving memory, don't update any of the cache metadata but set the size
|
||||
// to the worst case.
|
||||
c.curLoc = 0
|
||||
c.curCellRange.min = 0
|
||||
c.curCellRange.max = len(c.cells) - 1
|
||||
}
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
if errors.Is(err, ErrKvCacheFull) {
|
||||
c.defrag()
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range positions {
|
||||
seq := seqs[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
seqRange = newRange()
|
||||
}
|
||||
|
||||
if c.curLoc+i > seqRange.max {
|
||||
seqRange.max = c.curLoc + i
|
||||
}
|
||||
if seqRange.max > c.curCellRange.max {
|
||||
c.curCellRange.max = seqRange.max
|
||||
}
|
||||
|
||||
if c.curLoc+i < seqRange.min {
|
||||
seqRange.min = c.curLoc + i
|
||||
}
|
||||
if seqRange.min < c.curCellRange.min {
|
||||
c.curCellRange.min = seqRange.min
|
||||
}
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
|
||||
c.curMask, err = c.buildMask(ctx, positions, seqs)
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
|
||||
return err
|
||||
}
|
||||
@@ -154,39 +227,138 @@ func (c *Causal) findStartLoc() (int, error) {
|
||||
}
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
|
||||
}
|
||||
|
||||
func (c *Causal) updateSlidingWindow() {
|
||||
if c.windowSize == math.MaxInt32 {
|
||||
return
|
||||
}
|
||||
|
||||
// create a map of unique sequences to the lowest position in that sequence
|
||||
lowestPos := make(map[int]int32)
|
||||
for i := range c.curPositions {
|
||||
seq := c.curSequences[i]
|
||||
|
||||
pos, ok := lowestPos[seq]
|
||||
if !ok {
|
||||
pos = c.curPositions[i]
|
||||
} else if c.curPositions[i] < pos {
|
||||
pos = c.curPositions[i]
|
||||
}
|
||||
|
||||
lowestPos[seq] = pos
|
||||
}
|
||||
|
||||
// delete any entries that are beyond the window of the oldest position in the sequence
|
||||
for seq, pos := range lowestPos {
|
||||
oldRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
|
||||
newRange := newRange()
|
||||
|
||||
for i := oldRange.min; i <= oldRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
if c.cells[i].pos < pos-c.windowSize {
|
||||
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
|
||||
} else {
|
||||
newRange.min = min(newRange.min, i)
|
||||
newRange.max = max(newRange.max, i)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
c.cellRanges[seq] = newRange
|
||||
}
|
||||
}
|
||||
|
||||
func roundDown(length, pad int) int {
|
||||
return (length / pad) * pad
|
||||
}
|
||||
|
||||
func roundUp(length, pad int) int {
|
||||
return ((length + pad - 1) / pad) * pad
|
||||
}
|
||||
|
||||
// Builds a mask of history x batch indicating whether for each token in the batch the
|
||||
// token in the history should apply. This is based on both the sequence and causality (the
|
||||
// position of the history is not ahead of the token in the batch).
|
||||
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
|
||||
// TODO(jessegross): This does not do padding, which is required for flash attention
|
||||
len := c.curCellRange.max - c.curCellRange.min + 1
|
||||
mask := make([]float32, c.curBatchSize*len)
|
||||
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
|
||||
// Align and pad the two dimensions as required by the backend
|
||||
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
|
||||
|
||||
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
|
||||
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
|
||||
|
||||
length := c.curCellRange.max - c.curCellRange.min + 1
|
||||
mask := make([]float32, batchSize*length)
|
||||
|
||||
for i := range c.curBatchSize {
|
||||
enabled := !slices.Contains(c.opts.Except, i)
|
||||
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
|
||||
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
|
||||
c.cells[j].pos < positions[i]-c.windowSize {
|
||||
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
|
||||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
|
||||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
|
||||
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
|
||||
// Mask out any padding tokens we added. For padding that we added to the cache history, this
|
||||
// has already been masked out because the sequence doesn't match.
|
||||
for i := c.curBatchSize * length; i < len(mask); i++ {
|
||||
mask[i] = float32(math.Inf(-1))
|
||||
}
|
||||
|
||||
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if c.config.MaskDType != ml.DTypeF32 {
|
||||
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
|
||||
ctx.Forward(maskTensor.Copy(ctx, out))
|
||||
maskTensor = out
|
||||
}
|
||||
|
||||
return maskTensor, nil
|
||||
}
|
||||
|
||||
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
|
||||
for _, obj := range objs {
|
||||
if obj == nil {
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
|
||||
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
ctx.Forward(srcView.Copy(ctx, dstView))
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
|
||||
|
||||
value := c.values[i]
|
||||
var vSrcView, vDstView ml.Tensor
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
kSrcView.Copy(ctx, kDstView),
|
||||
vSrcView.Copy(ctx, vDstView),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -210,7 +382,8 @@ func (c *Causal) defrag() {
|
||||
ctx := c.backend.NewContext()
|
||||
|
||||
// For every move, 6 tensors are required per layer (2 views and a
|
||||
// copy for each of k and v).
|
||||
// copy for each of k and v). We also need to refer to the original
|
||||
// k and v cache tensors - once per layer, not per move.
|
||||
layers := 0
|
||||
for _, key := range c.keys {
|
||||
if key == nil {
|
||||
@@ -219,7 +392,7 @@ func (c *Causal) defrag() {
|
||||
layers++
|
||||
}
|
||||
|
||||
maxMoves := ctx.MaxTensors() / (6 * layers)
|
||||
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
|
||||
moves := 0
|
||||
|
||||
var pendingSrc, pendingDst, pendingLen int
|
||||
@@ -238,8 +411,7 @@ func (c *Causal) defrag() {
|
||||
pendingLen++
|
||||
break
|
||||
} else {
|
||||
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
|
||||
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
}
|
||||
@@ -263,8 +435,7 @@ func (c *Causal) defrag() {
|
||||
}
|
||||
|
||||
if pendingLen > 0 {
|
||||
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
|
||||
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
|
||||
@@ -293,45 +464,107 @@ func (c *Causal) defrag() {
|
||||
}
|
||||
|
||||
func (c *Causal) SetLayer(layer int) {
|
||||
if layer >= len(c.keys) {
|
||||
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
|
||||
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
|
||||
}
|
||||
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
type CausalOptions struct {
|
||||
// Enabled controls whether the causal mask is generated for a particular index in a batch
|
||||
Except []int
|
||||
}
|
||||
|
||||
// SetCausal disables causal mask generation for a particular range of indicies in
|
||||
// the current batch for subsequent calls to Get. The state resets for the next forward pass.
|
||||
func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
|
||||
if !slices.Equal(c.opts.Except, opts.Except) {
|
||||
c.opts = opts
|
||||
if ctx != nil {
|
||||
var err error
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
if err != nil {
|
||||
// This error should never occur because we have previously built a mask with the same shape
|
||||
panic(fmt.Errorf("SetCausal: %w", err))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
key := c.keys[c.curLayer]
|
||||
value := c.values[c.curLayer]
|
||||
|
||||
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
|
||||
key.Dim(0), key.Stride(1),
|
||||
key.Dim(1), key.Stride(2),
|
||||
c.curMask.Dim(0),
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
cachedSize := c.curMask.Dim(0)
|
||||
|
||||
key = key.View(ctx, rowSize*c.curCellRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
|
||||
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
|
||||
value.Dim(0), value.Stride(1),
|
||||
value.Dim(1), value.Stride(2),
|
||||
c.curMask.Dim(0),
|
||||
)
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
value = value.View(ctx, elemSize*c.curCellRange.min,
|
||||
cachedSize, value.Stride(1),
|
||||
vHeadDim, value.Stride(2),
|
||||
numKVHeads,
|
||||
)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
value = value.View(ctx, rowSize*c.curCellRange.min,
|
||||
vHeadDim, value.Stride(1),
|
||||
numKVHeads, value.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
}
|
||||
|
||||
return key, value, c.curMask
|
||||
}
|
||||
|
||||
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
if c.curBatchSize != key.Dim(2) {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
|
||||
kHeadDim := key.Dim(0)
|
||||
vHeadDim := value.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
batchSize := key.Dim(2)
|
||||
|
||||
if c.curBatchSize != batchSize {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
|
||||
}
|
||||
|
||||
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
|
||||
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
|
||||
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
if c.config.PermutedV {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
|
||||
} else {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
|
||||
}
|
||||
}
|
||||
|
||||
rowSize := c.keys[c.curLayer].Stride(2)
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
|
||||
|
||||
if c.config.PermutedV {
|
||||
elemSize := c.values[c.curLayer].Stride(0)
|
||||
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
|
||||
} else {
|
||||
rowSize := c.values[c.curLayer].Stride(2)
|
||||
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
@@ -357,6 +590,35 @@ func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
c.cellRanges[dstSeq] = seqRange
|
||||
}
|
||||
|
||||
func (c *Causal) CanResume(seq int, pos int32) bool {
|
||||
if c.windowSize == math.MaxInt32 {
|
||||
return true
|
||||
}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
|
||||
// for sliding window, check that the window of the new sequence is contained in
|
||||
// the window of what we are storing
|
||||
var last int32 = -1
|
||||
for i := seqRange.min; i <= seqRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
last = max(last, c.cells[i].pos)
|
||||
}
|
||||
}
|
||||
|
||||
if last == -1 {
|
||||
return false
|
||||
}
|
||||
|
||||
lastWindowStart := max(0, last-c.windowSize)
|
||||
posWindowStart := max(0, pos-c.windowSize)
|
||||
|
||||
return posWindowStart >= lastWindowStart
|
||||
}
|
||||
|
||||
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
if c.shiftFn == nil {
|
||||
return ErrNotSupported
|
||||
@@ -377,7 +639,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
}
|
||||
}
|
||||
|
||||
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
|
||||
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -387,9 +649,13 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
continue
|
||||
}
|
||||
|
||||
key = key.View(ctx, key.Stride(2)*seqRange.min,
|
||||
key.Dim(0), key.Stride(1),
|
||||
key.Dim(1), key.Stride(2),
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
key = key.View(ctx, rowSize*seqRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
size,
|
||||
)
|
||||
|
||||
@@ -407,6 +673,12 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
}
|
||||
|
||||
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
// TODO(jessegross): We should check to see if removing the middle of the sequence will
|
||||
// cause the sliding window to encompass tokens that we no longer have. If so, then we
|
||||
// should return an error, which will trigger the runner to evaluate the full history and
|
||||
// rebuild the window. However, if we have multimodal inputs in our history, this reuse
|
||||
// results in use after free, so we don't do it for now.
|
||||
|
||||
var offset int32
|
||||
if endIndex != math.MaxInt32 {
|
||||
offset = beginIndex - endIndex
|
||||
@@ -421,8 +693,7 @@ func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
} else {
|
||||
if c.cells[i].pos >= endIndex {
|
||||
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
|
||||
// TODO(jessegross): Need to be careful about data shared between sequences
|
||||
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
|
||||
return errors.New("shifting cells shared by multiple sequences not supported")
|
||||
}
|
||||
|
||||
c.cells[i].pos += offset
|
||||
|
||||
@@ -6,6 +6,7 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type testCase struct {
|
||||
@@ -24,7 +25,7 @@ func TestStore(t *testing.T) {
|
||||
cache := NewCausalCache(nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@@ -57,11 +58,11 @@ func TestSWA(t *testing.T) {
|
||||
cache := NewSWACache(1, nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF32, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "SlidingWindow",
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4},
|
||||
inShape: []int{1, 1, 4},
|
||||
seqs: []int{0, 0, 0, 0},
|
||||
@@ -70,6 +71,16 @@ func TestSWA(t *testing.T) {
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
||||
},
|
||||
{
|
||||
name: "SecondBatch",
|
||||
in: []float32{5, 6},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{0, 0},
|
||||
pos: []int32{4, 5},
|
||||
expected: []float32{5, 6, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
@@ -80,7 +91,7 @@ func TestSequences(t *testing.T) {
|
||||
cache := NewCausalCache(nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@@ -115,7 +126,7 @@ func TestRemove(t *testing.T) {
|
||||
})
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@@ -180,7 +191,7 @@ func TestDefrag(t *testing.T) {
|
||||
})
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@@ -228,7 +239,7 @@ func TestCopy(t *testing.T) {
|
||||
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@@ -269,7 +280,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, test.pos, test.seqs)
|
||||
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
@@ -280,9 +291,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
|
||||
out, _, mask := cache.Get(context)
|
||||
|
||||
context.Forward(out)
|
||||
context.Forward(mask)
|
||||
context.Compute(out, mask)
|
||||
context.Forward(out, mask).Compute(out, mask)
|
||||
|
||||
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
|
||||
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
|
||||
@@ -291,27 +300,94 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
}
|
||||
}
|
||||
|
||||
type testBackend struct{}
|
||||
func TestCanResume(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
windowSize := int32(4)
|
||||
cache := NewSWACache(windowSize, nil)
|
||||
defer cache.Close()
|
||||
|
||||
func (b *testBackend) Config() ml.Config {
|
||||
panic("not implemented")
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, input.Batch{
|
||||
Positions: []int32{0, 1, 2, 3},
|
||||
Sequences: []int{0, 0, 0, 0},
|
||||
}, false)
|
||||
if err != nil {
|
||||
t.Fatalf("StartForward failed: %v", err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// with window size 4, nothing has slid out of the window yet
|
||||
if !cache.CanResume(0, 0) {
|
||||
t.Errorf("CanResume(0, 0) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 1) {
|
||||
t.Errorf("CanResume(0, 1) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 2) {
|
||||
t.Errorf("CanResume(0, 2) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 3) {
|
||||
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
|
||||
}
|
||||
|
||||
// shift window by adding position 4
|
||||
err = cache.StartForward(context, input.Batch{
|
||||
Positions: []int32{4, 5},
|
||||
Sequences: []int{0, 0},
|
||||
}, false)
|
||||
if err != nil {
|
||||
t.Fatalf("StartForward failed: %v", err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// only the latest position has overlapping windows
|
||||
if cache.CanResume(0, 0) {
|
||||
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 1) {
|
||||
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 2) {
|
||||
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 3) {
|
||||
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 4) {
|
||||
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
|
||||
}
|
||||
if !cache.CanResume(0, 5) {
|
||||
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
|
||||
}
|
||||
}
|
||||
|
||||
func (b *testBackend) Get(name string) ml.Tensor {
|
||||
panic("not implemented")
|
||||
type testBackend struct {
|
||||
ml.Backend
|
||||
}
|
||||
|
||||
func (b *testBackend) NewContext() ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) SystemInfo() string {
|
||||
return "not implemented"
|
||||
func (b *testBackend) NewContextSize(int) ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
type testContext struct{}
|
||||
type testContext struct {
|
||||
ml.Context
|
||||
}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
total := 0
|
||||
|
||||
if len(shape) > 0 {
|
||||
@@ -324,8 +400,12 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
|
||||
}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return c.Empty(dtype, shape...)
|
||||
}
|
||||
|
||||
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
|
||||
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
|
||||
|
||||
copy(t.data, s)
|
||||
|
||||
@@ -344,17 +424,24 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *testContext) Forward(ml.Tensor) {}
|
||||
func (c *testContext) Input() ml.Context { return c }
|
||||
func (c *testContext) Layer(int) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Compute(...ml.Tensor) {}
|
||||
|
||||
func (c *testContext) MaxTensors() int {
|
||||
func (c *testContext) Reserve() error { return nil }
|
||||
|
||||
func (c *testContext) MaxGraphNodes() int {
|
||||
return 10
|
||||
}
|
||||
|
||||
func (c *testContext) Close() {}
|
||||
|
||||
type testTensor struct {
|
||||
ml.Tensor
|
||||
|
||||
dtype ml.DType
|
||||
elementSize int
|
||||
data []float32
|
||||
@@ -382,18 +469,22 @@ func (t *testTensor) DType() ml.DType {
|
||||
return t.dtype
|
||||
}
|
||||
|
||||
func (t *testTensor) Bytes() []byte {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Floats() []float32 {
|
||||
out := make([]float32, len(t.data))
|
||||
copy(out, t.data)
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
for i := range out.data {
|
||||
out.data[i] = -t.data[i]
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
|
||||
for i := range out.data {
|
||||
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
|
||||
@@ -402,58 +493,6 @@ func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
offset /= t.elementSize
|
||||
|
||||
@@ -470,40 +509,12 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
|
||||
context := &testContext{}
|
||||
|
||||
view := context.Zeros(t.dtype, s...).(*testTensor)
|
||||
view := context.Empty(t.dtype, s...).(*testTensor)
|
||||
view.data = t.data[offset : offset+len(view.data)]
|
||||
|
||||
return view
|
||||
}
|
||||
|
||||
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
copy(t2.(*testTensor).data, t.data)
|
||||
return nil
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Encoder cache stores K and V tensors that are position independent
|
||||
@@ -11,6 +14,9 @@ import (
|
||||
//
|
||||
// Not currently safe for multiple sequences
|
||||
type EncoderCache struct {
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
@@ -21,6 +27,11 @@ type EncoderCache struct {
|
||||
// anything will be stored)
|
||||
curPos int32
|
||||
|
||||
// curReserve indicates that this forward pass is only for
|
||||
// memory reservation and we should not update our metadata
|
||||
// based on it.
|
||||
curReserve bool
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// was something stored in the cache?
|
||||
@@ -30,36 +41,65 @@ type EncoderCache struct {
|
||||
encoderPos int32
|
||||
|
||||
// ** cache data storage **
|
||||
|
||||
cacheCtx ml.Context
|
||||
keys, values []ml.Tensor
|
||||
backend ml.Backend
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
func NewEncoderCache() *EncoderCache {
|
||||
return &EncoderCache{}
|
||||
return &EncoderCache{
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
c.cacheCtx = backend.NewContext()
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if maxSequences > 1 {
|
||||
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
|
||||
}
|
||||
|
||||
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
|
||||
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
|
||||
}
|
||||
|
||||
c.backend = backend
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Close() {
|
||||
c.cacheCtx.Close()
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
// The image is always in the first position
|
||||
c.curPos = positions[0]
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
// We work with the most recent image
|
||||
if len(batch.Multimodal) > 0 {
|
||||
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
|
||||
}
|
||||
|
||||
c.curReserve = reserve
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetLayer(layer int) {
|
||||
if layer >= len(c.keys) {
|
||||
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
|
||||
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
|
||||
}
|
||||
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
@@ -72,22 +112,41 @@ func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
|
||||
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
|
||||
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
|
||||
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
|
||||
if !c.curReserve {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
}
|
||||
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
|
||||
if c.config.PermutedV {
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
}
|
||||
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
key.Copy(ctx, c.keys[c.curLayer]),
|
||||
value.Copy(ctx, c.values[c.curLayer]),
|
||||
)
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
panic("encoder cache does not support multiple sequences")
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CanResume(seq int, pos int32) bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
|
||||
c.encoderCached = false
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Wrapper cache is a container for multiple types of caches,
|
||||
@@ -22,9 +23,15 @@ func NewWrapperCache(caches ...Cache) *WrapperCache {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
for _, cache := range c.caches {
|
||||
cache.Init(backend, dtype, capacity)
|
||||
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
|
||||
for _, cache := range c.caches {
|
||||
cache.SetConfig(config)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -34,14 +41,14 @@ func (c *WrapperCache) Close() {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
for i, cache := range c.caches {
|
||||
err := cache.StartForward(ctx, positions, seqs)
|
||||
err := cache.StartForward(ctx, batch, reserve)
|
||||
if err != nil {
|
||||
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
|
||||
for j := i - 1; j >= 0; j-- {
|
||||
for k := range positions {
|
||||
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
|
||||
for k := range batch.Positions {
|
||||
_ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
|
||||
}
|
||||
}
|
||||
return err
|
||||
@@ -80,6 +87,16 @@ func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) CanResume(seq int, pos int32) bool {
|
||||
for _, cache := range c.caches {
|
||||
if !cache.CanResume(seq, pos) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
|
||||
for _, cache := range c.caches {
|
||||
|
||||
1
llama/llama.cpp/include/llama.h
vendored
1
llama/llama.cpp/include/llama.h
vendored
@@ -105,6 +105,7 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
|
||||
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
|
||||
36
llama/llama.cpp/src/llama-arch.cpp
vendored
36
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_MINICPM3, "minicpm3" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
{ LLM_ARCH_GEMMA2, "gemma2" },
|
||||
{ LLM_ARCH_GEMMA3, "gemma3" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -64,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
{ LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -804,6 +806,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GEMMA3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
@@ -1352,6 +1372,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MISTRAL3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
}
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
||||
2
llama/llama.cpp/src/llama-arch.h
vendored
2
llama/llama.cpp/src/llama-arch.h
vendored
@@ -41,6 +41,7 @@ enum llm_arch {
|
||||
LLM_ARCH_MINICPM3,
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_GEMMA3,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
@@ -68,6 +69,7 @@ enum llm_arch {
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
20
llama/llama.cpp/src/llama-model.cpp
vendored
20
llama/llama.cpp/src/llama-model.cpp
vendored
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -1274,6 +1277,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
|
||||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3: break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
@@ -2283,7 +2287,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
@@ -2298,8 +2306,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
|
||||
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHIMOE:
|
||||
@@ -2533,6 +2541,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -3527,6 +3538,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
|
||||
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3: break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@@ -4005,6 +4017,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_SOLAR:
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
@@ -4025,6 +4038,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_GEMMA3:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
|
||||
4
llama/llama.cpp/src/llama-quant.cpp
vendored
4
llama/llama.cpp/src/llama-quant.cpp
vendored
@@ -737,6 +737,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||||
|
||||
// don't quantize vision stuff
|
||||
quantize &= name.find("v.") == std::string::npos;
|
||||
quantize &= name.find("mm.") == std::string::npos;
|
||||
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||||
|
||||
|
||||
13
llama/llama.cpp/src/llama-vocab.cpp
vendored
13
llama/llama.cpp/src/llama-vocab.cpp
vendored
@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
|
||||
// original regex from tokenizer.json
|
||||
// [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
|
||||
regex_exprs = {
|
||||
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
};
|
||||
break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
regex_exprs = {
|
||||
@@ -1436,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
||||
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
|
||||
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
||||
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
||||
#ifdef IS_BIG_ENDIAN
|
||||
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
} else if (
|
||||
tokenizer_pre == "megrez") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
} else if (
|
||||
tokenizer_pre == "gpt-4o") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
||||
148
llama/llama.go
148
llama/llama.go
@@ -21,77 +21,45 @@ package llama
|
||||
|
||||
extern bool llamaProgressCallback(float progress, void *user_data);
|
||||
extern void llamaLog(int level, char* text, void* user_data);
|
||||
|
||||
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
|
||||
COMPILER inline get_compiler() {
|
||||
#if defined(__clang__)
|
||||
return COMP_CLANG;
|
||||
#elif defined(__GNUC__)
|
||||
return COMP_GCC;
|
||||
#else
|
||||
return UNKNOWN_COMPILER;
|
||||
#endif
|
||||
}
|
||||
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"context"
|
||||
_ "embed"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"runtime"
|
||||
"runtime/cgo"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
"unsafe"
|
||||
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/common"
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
|
||||
_ "github.com/ollama/ollama/llama/llama.cpp/src"
|
||||
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
)
|
||||
|
||||
func init() {
|
||||
C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
|
||||
}
|
||||
|
||||
//export llamaLog
|
||||
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
|
||||
// slog levels zeros INFO and are multiples of 4
|
||||
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
}
|
||||
|
||||
func BackendInit() {
|
||||
ggml.OnceLoad()
|
||||
C.llama_backend_init()
|
||||
}
|
||||
|
||||
func PrintSystemInfo() string {
|
||||
var compiler string
|
||||
switch C.get_compiler() {
|
||||
case C.COMP_UNKNOWN:
|
||||
compiler = "cgo(unknown_compiler)"
|
||||
case C.COMP_GCC:
|
||||
compiler = "cgo(gcc)"
|
||||
case C.COMP_CLANG:
|
||||
compiler = "cgo(clang)"
|
||||
}
|
||||
return C.GoString(C.llama_print_system_info()) + compiler
|
||||
}
|
||||
|
||||
var logLevel atomic.Int32
|
||||
|
||||
func init() {
|
||||
logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
|
||||
C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
|
||||
}
|
||||
|
||||
func EnableDebug() {
|
||||
logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
|
||||
}
|
||||
|
||||
//export llamaLog
|
||||
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
|
||||
if level < logLevel.Load() {
|
||||
return
|
||||
}
|
||||
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
|
||||
func GetModelArch(modelPath string) (string, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
@@ -198,6 +166,10 @@ func (c *Context) KvCacheDefrag() {
|
||||
C.llama_kv_cache_defrag(c.c)
|
||||
}
|
||||
|
||||
func (c *Context) KvCacheCanShift() bool {
|
||||
return bool(C.llama_kv_cache_can_shift(c.c))
|
||||
}
|
||||
|
||||
// Get the embeddings for a sequence id
|
||||
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
|
||||
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
|
||||
@@ -269,7 +241,7 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
cparams.progress_callback_user_data = unsafe.Pointer(&handle)
|
||||
}
|
||||
|
||||
m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
|
||||
m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
|
||||
if m.c == nil {
|
||||
return nil, fmt.Errorf("unable to load model: %s", modelPath)
|
||||
}
|
||||
@@ -277,13 +249,27 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func LoadVocabFromFile(path string) (*Vocab, error) {
|
||||
mp := C.CString(path)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
v := Vocab{c: C.llama_load_vocab_from_file(mp)}
|
||||
if v.c == nil {
|
||||
return nil, fmt.Errorf("unable to load vocab: %s", path)
|
||||
}
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func FreeVocab(vocab *Vocab) {
|
||||
C.llama_free_vocab(vocab.c)
|
||||
}
|
||||
|
||||
func FreeModel(model *Model) {
|
||||
C.llama_free_model(model.c)
|
||||
C.llama_model_free(model.c)
|
||||
}
|
||||
|
||||
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
c := Context{
|
||||
c: C.llama_new_context_with_model(model.c, params.c),
|
||||
c: C.llama_init_from_model(model.c, params.c),
|
||||
numThreads: int(params.c.n_threads),
|
||||
}
|
||||
if c.c == nil {
|
||||
@@ -294,15 +280,15 @@ func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
|
||||
}
|
||||
|
||||
func (m *Model) NumVocab() int {
|
||||
return int(C.llama_n_vocab(m.Vocab()))
|
||||
return int(C.llama_vocab_n_tokens(m.Vocab()))
|
||||
}
|
||||
|
||||
func (m *Model) TokenIsEog(token int) bool {
|
||||
return bool(C.llama_token_is_eog(m.Vocab(), C.llama_token(token)))
|
||||
return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
|
||||
}
|
||||
|
||||
func (m *Model) AddBOSToken() bool {
|
||||
return bool(C.llama_add_bos_token(m.Vocab()))
|
||||
return bool(C.llama_vocab_get_add_bos(m.Vocab()))
|
||||
}
|
||||
|
||||
func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
|
||||
@@ -325,6 +311,10 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
|
||||
return nil
|
||||
}
|
||||
|
||||
type Vocab struct {
|
||||
c *C.struct_llama_vocab
|
||||
}
|
||||
|
||||
func (m *Model) Vocab() *C.struct_llama_vocab {
|
||||
return C.llama_model_get_vocab(m.c)
|
||||
}
|
||||
@@ -485,7 +475,7 @@ func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int
|
||||
}
|
||||
|
||||
func (m *Model) NEmbd() int {
|
||||
return int(C.llama_n_embd(m.c))
|
||||
return int(C.llama_model_n_embd(m.c))
|
||||
}
|
||||
|
||||
func Quantize(infile, outfile string, ftype uint32) error {
|
||||
@@ -701,3 +691,53 @@ func SchemaToGrammar(schema []byte) []byte {
|
||||
}
|
||||
return buf[:n]
|
||||
}
|
||||
|
||||
type Sampler struct {
|
||||
c *C.struct_llama_sampler
|
||||
}
|
||||
|
||||
func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
|
||||
cGrammar := C.CString(grammar)
|
||||
cRoot := C.CString("root")
|
||||
defer C.free(unsafe.Pointer(cGrammar))
|
||||
defer C.free(unsafe.Pointer(cRoot))
|
||||
|
||||
sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
|
||||
|
||||
return sampler
|
||||
}
|
||||
|
||||
func (s *Sampler) Accept(token int32) {
|
||||
C.llama_sampler_accept(s.c, C.llama_token(token))
|
||||
}
|
||||
|
||||
type TokenData struct {
|
||||
Id int32
|
||||
Logit float32
|
||||
}
|
||||
|
||||
func (s *Sampler) Apply(tokens []TokenData) {
|
||||
tds := make([]C.struct_llama_token_data, len(tokens))
|
||||
for i, token := range tokens {
|
||||
tds[i] = C.struct_llama_token_data{
|
||||
id: C.int32_t(token.Id),
|
||||
logit: C.float(token.Logit),
|
||||
p: C.float(0.0),
|
||||
}
|
||||
}
|
||||
tda := &C.llama_token_data_array{
|
||||
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
|
||||
size: C.size_t(len(tokens)),
|
||||
selected: C.int64_t(-1),
|
||||
sorted: C.bool(false),
|
||||
}
|
||||
|
||||
var pinner runtime.Pinner
|
||||
pinner.Pin(&tds[0])
|
||||
defer pinner.Unpin()
|
||||
|
||||
C.llama_sampler_apply(s.c, tda)
|
||||
for i := range tokens {
|
||||
tokens[i].Logit = float32(tds[i].logit)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,69 +0,0 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Tue, 11 Feb 2025 14:06:36 -0800
|
||||
Subject: [PATCH] try/catch backend load
|
||||
|
||||
---
|
||||
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
|
||||
1 file changed, 23 insertions(+), 22 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 98d5e14d..1c19129a 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
- if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
- if (!handle && !silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
- if (handle) {
|
||||
+ try {
|
||||
+ if (entry.is_regular_file()) {
|
||||
+ std::wstring filename = entry.path().filename().wstring();
|
||||
+ std::wstring ext = entry.path().extension().wstring();
|
||||
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
+ if (!handle) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
- if (score_fn) {
|
||||
- int s = score_fn();
|
||||
-#ifndef NDEBUG
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
-#endif
|
||||
- if (s > best_score) {
|
||||
- best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
- }
|
||||
- } else {
|
||||
- if (!silent) {
|
||||
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
+ if (!score_fn) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ int s = score_fn();
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
+ if (s > best_score) {
|
||||
+ best_score = s;
|
||||
+ best_path = entry.path().wstring();
|
||||
}
|
||||
}
|
||||
}
|
||||
+ } catch (const std::exception & e) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -4,11 +4,11 @@ Date: Sun, 16 Feb 2025 20:00:22 -0500
|
||||
Subject: [PATCH] use std::filesystem::path instead of wstring
|
||||
|
||||
---
|
||||
ggml/src/ggml-backend-reg.cpp | 144 ++++++++++++++--------------------
|
||||
1 file changed, 58 insertions(+), 86 deletions(-)
|
||||
ggml/src/ggml-backend-reg.cpp | 199 +++++++++++++++-------------------
|
||||
1 file changed, 88 insertions(+), 111 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 1c19129a..c854e6bb 100644
|
||||
index 98d5e14d..799af5f3 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -66,26 +66,6 @@
|
||||
@@ -264,47 +264,55 @@ index 1c19129a..c854e6bb 100644
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
continue;
|
||||
@@ -514,31 +486,31 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
@@ -513,29 +485,26 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
try {
|
||||
if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
+ std::string filename = entry.path().filename().string();
|
||||
+ std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
if (!handle) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (!score_fn) {
|
||||
- GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
int s = score_fn();
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
+ best_path = entry.path();
|
||||
}
|
||||
if (entry.is_regular_file()) {
|
||||
- std::wstring filename = entry.path().filename().wstring();
|
||||
- std::wstring ext = entry.path().extension().wstring();
|
||||
+ std::string filename = entry.path().filename().string();
|
||||
+ std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
- if (!handle && !silent) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
+ if (!handle) {
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
+ continue;
|
||||
}
|
||||
- if (handle) {
|
||||
- auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
- if (score_fn) {
|
||||
- int s = score_fn();
|
||||
-#ifndef NDEBUG
|
||||
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
-#endif
|
||||
- if (s > best_score) {
|
||||
- best_score = s;
|
||||
- best_path = entry.path().wstring();
|
||||
- }
|
||||
- } else {
|
||||
- if (!silent) {
|
||||
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
- }
|
||||
- }
|
||||
+
|
||||
+ auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
+ if (!score_fn) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
+ int s = score_fn();
|
||||
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
+ if (s > best_score) {
|
||||
+ best_score = s;
|
||||
+ best_path = entry.path();
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
- GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
|
||||
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -546,7 +518,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
@@ -545,7 +514,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
if (best_score == 0) {
|
||||
// try to load the base backend
|
||||
for (const auto & search_path : search_paths) {
|
||||
@@ -313,3 +321,49 @@ index 1c19129a..c854e6bb 100644
|
||||
if (fs::exists(path)) {
|
||||
return get_reg().load_backend(path, silent);
|
||||
}
|
||||
@@ -560,6 +529,14 @@ void ggml_backend_load_all() {
|
||||
ggml_backend_load_all_from_path(nullptr);
|
||||
}
|
||||
|
||||
+static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
+ try {
|
||||
+ ggml_backend_load_best(name, silent, user_search_path);
|
||||
+ } catch (const std::exception & e) {
|
||||
+ GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
@@ -567,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
- ggml_backend_load_best("blas", silent, dir_path);
|
||||
- ggml_backend_load_best("cann", silent, dir_path);
|
||||
- ggml_backend_load_best("cuda", silent, dir_path);
|
||||
- ggml_backend_load_best("hip", silent, dir_path);
|
||||
- ggml_backend_load_best("kompute", silent, dir_path);
|
||||
- ggml_backend_load_best("metal", silent, dir_path);
|
||||
- ggml_backend_load_best("rpc", silent, dir_path);
|
||||
- ggml_backend_load_best("sycl", silent, dir_path);
|
||||
- ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
- ggml_backend_load_best("opencl", silent, dir_path);
|
||||
- ggml_backend_load_best("musa", silent, dir_path);
|
||||
- ggml_backend_load_best("cpu", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("blas", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cann", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cuda", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("hip", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("kompute", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("metal", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("rpc", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("sycl", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("vulkan", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("opencl", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("musa", silent, dir_path);
|
||||
+ ggml_backend_try_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
|
||||
if (backend_path) {
|
||||
80
llama/patches/0018-add-phi4-support.patch
Normal file
80
llama/patches/0018-add-phi4-support.patch
Normal file
@@ -0,0 +1,80 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 27 Feb 2025 15:12:26 -0800
|
||||
Subject: [PATCH] add phi4 support
|
||||
|
||||
---
|
||||
include/llama.h | 1 +
|
||||
src/llama-model.cpp | 10 +++++++---
|
||||
src/llama-vocab.cpp | 11 +++++++++++
|
||||
3 files changed, 19 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index cc948005..16774711 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -105,6 +105,7 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
|
||||
+ LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 21819080..ab1a07d1 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -2283,7 +2283,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
|
||||
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
+ // if output is NULL, init from the input tok embed
|
||||
+ if (output == NULL) {
|
||||
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
+ }
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
@@ -2298,8 +2302,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
|
||||
|
||||
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHIMOE:
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 1ca827eb..c7ff28be 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -392,6 +392,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
+ case LLAMA_VOCAB_PRE_TYPE_GPT4O:
|
||||
+ // original regex from tokenizer.json
|
||||
+ // [^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+
|
||||
+ regex_exprs = {
|
||||
+ "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
+ };
|
||||
+ break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
regex_exprs = {
|
||||
@@ -1583,6 +1590,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
} else if (
|
||||
tokenizer_pre == "megrez") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
+ } else if (
|
||||
+ tokenizer_pre == "gpt-4o") {
|
||||
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
|
||||
+ clean_spaces = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
64
llama/patches/0019-fix-string-arr-kv-loading.patch
Normal file
64
llama/patches/0019-fix-string-arr-kv-loading.patch
Normal file
@@ -0,0 +1,64 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Wed, 5 Mar 2025 17:41:07 -0800
|
||||
Subject: [PATCH] fix string arr kv loading
|
||||
|
||||
---
|
||||
ggml/include/gguf.h | 1 +
|
||||
ggml/src/gguf.cpp | 7 +++++--
|
||||
src/llama-vocab.cpp | 2 +-
|
||||
3 files changed, 7 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
|
||||
index 79ee2020..3efb22f0 100644
|
||||
--- a/ggml/include/gguf.h
|
||||
+++ b/ggml/include/gguf.h
|
||||
@@ -114,6 +114,7 @@ extern "C" {
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
+ GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
|
||||
index ab13669c..f75b923f 100644
|
||||
--- a/ggml/src/gguf.cpp
|
||||
+++ b/ggml/src/gguf.cpp
|
||||
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
+size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
|
||||
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
+ return ctx->kv[key_id].data.size();
|
||||
+}
|
||||
+
|
||||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||||
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||||
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index c7ff28be..7a185443 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
- size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
||||
+ size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
|
||||
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
||||
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
||||
#ifdef IS_BIG_ENDIAN
|
||||
33
llama/patches/0020-ollama-debug-tensor.patch
Normal file
33
llama/patches/0020-ollama-debug-tensor.patch
Normal file
@@ -0,0 +1,33 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <mxyng@pm.me>
|
||||
Date: Sun, 9 Mar 2025 14:44:16 -0700
|
||||
Subject: [PATCH] ollama debug tensor
|
||||
|
||||
---
|
||||
ggml/src/ggml-cpu/ggml-cpu.c | 6 ++++++
|
||||
1 file changed, 6 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index 2f606d82..ec60e8fc 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -11,6 +11,8 @@
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml.h"
|
||||
|
||||
+#include "ollama-debug.h"
|
||||
+
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
+#ifdef OLLAMA_DEBUG
|
||||
+ ollama_debug(node, true);
|
||||
+#endif
|
||||
+
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
|
||||
173
llama/patches/0021-add-model-quantizations.patch
Normal file
173
llama/patches/0021-add-model-quantizations.patch
Normal file
@@ -0,0 +1,173 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Patrick Devine <patrick@infrahq.com>
|
||||
Date: Fri, 14 Mar 2025 16:33:23 -0700
|
||||
Subject: [PATCH] add model quantizations
|
||||
|
||||
- gemma3
|
||||
- mistral3
|
||||
---
|
||||
src/llama-arch.cpp | 36 ++++++++++++++++++++++++++++++++++++
|
||||
src/llama-arch.h | 2 ++
|
||||
src/llama-model.cpp | 10 ++++++++++
|
||||
src/llama-quant.cpp | 4 ++++
|
||||
4 files changed, 52 insertions(+)
|
||||
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index b6f20286..13a0a988 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_MINICPM3, "minicpm3" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
{ LLM_ARCH_GEMMA2, "gemma2" },
|
||||
+ { LLM_ARCH_GEMMA3, "gemma3" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -64,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
{ LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
+ { LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -804,6 +806,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_GEMMA3,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
@@ -1352,6 +1372,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_MISTRAL3,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ }
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index ec742224..8476ae0a 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -41,6 +41,7 @@ enum llm_arch {
|
||||
LLM_ARCH_MINICPM3,
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_GEMMA2,
|
||||
+ LLM_ARCH_GEMMA3,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
@@ -68,6 +69,7 @@ enum llm_arch {
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
+ LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index ab1a07d1..db4f2685 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA3:
|
||||
+ {
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -1274,6 +1277,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
|
||||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||||
} break;
|
||||
+ case LLM_ARCH_MISTRAL3: break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
@@ -2537,6 +2541,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA3:
|
||||
+ {
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -3531,6 +3538,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
|
||||
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
|
||||
} break;
|
||||
+ case LLM_ARCH_MISTRAL3: break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@@ -4009,6 +4017,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_SOLAR:
|
||||
+ case LLM_ARCH_MISTRAL3:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
@@ -4029,6 +4038,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
+ case LLM_ARCH_GEMMA3:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
|
||||
index 6eb1da08..ebcbafa1 100644
|
||||
--- a/src/llama-quant.cpp
|
||||
+++ b/src/llama-quant.cpp
|
||||
@@ -737,6 +737,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||||
|
||||
+ // don't quantize vision stuff
|
||||
+ quantize &= name.find("v.") == std::string::npos;
|
||||
+ quantize &= name.find("mm.") == std::string::npos;
|
||||
+
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||||
|
||||
103
llama/patches/0022-add-rdna4-support.patch
Normal file
103
llama/patches/0022-add-rdna4-support.patch
Normal file
@@ -0,0 +1,103 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Saman <saman.khatir@amd.com>
|
||||
Date: Wed, 19 Mar 2025 14:02:26 -0700
|
||||
Subject: [PATCH] add rdna4 support
|
||||
|
||||
---
|
||||
ggml/src/ggml-cuda/common.cuh | 6 ++++--
|
||||
ggml/src/ggml-cuda/mmq.cu | 2 +-
|
||||
ggml/src/ggml-cuda/mmq.cuh | 4 ++--
|
||||
ggml/src/ggml-cuda/mmvq.cu | 4 ++--
|
||||
ggml/src/ggml-cuda/vendors/hip.h | 4 ++++
|
||||
5 files changed, 13 insertions(+), 7 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
|
||||
index adf0d3ec..b24593fc 100644
|
||||
--- a/ggml/src/ggml-cuda/common.cuh
|
||||
+++ b/ggml/src/ggml-cuda/common.cuh
|
||||
@@ -61,11 +61,13 @@
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
+#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
|
||||
|
||||
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
||||
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
||||
-#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
|
||||
+#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
|
||||
+#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
|
||||
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
|
||||
|
||||
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
-#elif defined(RDNA3)
|
||||
+#elif defined(RDNA3) || defined(RDNA4)
|
||||
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||
int tmp1;
|
||||
diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu
|
||||
index 10f2ebb1..933d945c 100644
|
||||
--- a/ggml/src/ggml-cuda/mmq.cu
|
||||
+++ b/ggml/src/ggml-cuda/mmq.cu
|
||||
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
- return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
+ return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh
|
||||
index 0451c65f..66ce2bc9 100644
|
||||
--- a/ggml/src/ggml-cuda/mmq.cuh
|
||||
+++ b/ggml/src/ggml-cuda/mmq.cuh
|
||||
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
-#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
+#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
-#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
+#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
|
||||
index 4fb466ca..23ae7abc 100644
|
||||
--- a/ggml/src/ggml-cuda/mmvq.cu
|
||||
+++ b/ggml/src/ggml-cuda/mmvq.cu
|
||||
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
||||
|
||||
-#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
+#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
|
||||
constexpr int nwarps = 1;
|
||||
constexpr int rows_per_cuda_block = 1;
|
||||
#else
|
||||
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||
-#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
+#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
|
||||
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
|
||||
index 81964611..a62544b5 100644
|
||||
--- a/ggml/src/ggml-cuda/vendors/hip.h
|
||||
+++ b/ggml/src/ggml-cuda/vendors/hip.h
|
||||
@@ -150,6 +150,10 @@
|
||||
#define CDNA
|
||||
#endif
|
||||
|
||||
+#if defined(__gfx1200__) || defined(__gfx1201__)
|
||||
+#define RDNA4
|
||||
+#endif
|
||||
+
|
||||
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__)
|
||||
#define RDNA3
|
||||
75
llama/patches/0022-metal-add-op_neg.patch
Normal file
75
llama/patches/0022-metal-add-op_neg.patch
Normal file
@@ -0,0 +1,75 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <git@mxy.ng>
|
||||
Date: Wed, 2 Apr 2025 15:26:15 -0700
|
||||
Subject: [PATCH] metal: add op_neg
|
||||
|
||||
---
|
||||
ggml/src/ggml-metal/ggml-metal.m | 15 +++++++++++++++
|
||||
ggml/src/ggml-metal/ggml-metal.metal | 7 +++++++
|
||||
2 files changed, 22 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index e4c093f9..d8422f1b 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -423,6 +423,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_SQRT,
|
||||
GGML_METAL_KERNEL_TYPE_SIN,
|
||||
GGML_METAL_KERNEL_TYPE_COS,
|
||||
+ GGML_METAL_KERNEL_TYPE_NEG,
|
||||
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
|
||||
@@ -1039,6 +1040,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
||||
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
|
||||
@@ -1202,6 +1204,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
+ case GGML_UNARY_OP_NEG:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
@@ -1873,6 +1876,18 @@ static void ggml_metal_encode_node(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
+ case GGML_UNARY_OP_NEG:
|
||||
+ {
|
||||
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
|
||||
+
|
||||
+ [encoder setComputePipelineState:pipeline];
|
||||
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
+
|
||||
+ const int64_t n = ggml_nelements(dst);
|
||||
+
|
||||
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
+ } break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index f38909d0..bb0ff668 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -945,6 +945,13 @@ kernel void kernel_cos(
|
||||
dst[tpig] = cos(src0[tpig]);
|
||||
}
|
||||
|
||||
+kernel void kernel_neg(
|
||||
+ device const float * src0,
|
||||
+ device float * dst,
|
||||
+ uint tpig[[thread_position_in_grid]]) {
|
||||
+ dst[tpig] = -src0[tpig];
|
||||
+}
|
||||
+
|
||||
kernel void kernel_sum_rows(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
22
llama/sampling_ext.cpp
vendored
22
llama/sampling_ext.cpp
vendored
@@ -2,6 +2,9 @@
|
||||
#include "sampling.h"
|
||||
#include "sampling_ext.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "llama-model.h"
|
||||
#include "llama-model-loader.h"
|
||||
|
||||
struct common_sampler *common_sampler_cinit(const struct llama_model *model, struct common_sampler_cparams *params) {
|
||||
try {
|
||||
@@ -64,3 +67,22 @@ int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len)
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_vocab * llama_load_vocab_from_file(const char * fname) {
|
||||
llama_vocab * vocab = new llama_vocab();
|
||||
try {
|
||||
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
std::vector<std::string> splits = {};
|
||||
llama_model_loader ml(std::string(fname), splits, false, false, nullptr);
|
||||
vocab->load(ml, kv);
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return vocab;
|
||||
}
|
||||
|
||||
void llama_free_vocab(struct llama_vocab * vocab) {
|
||||
delete vocab;
|
||||
}
|
||||
|
||||
3
llama/sampling_ext.h
vendored
3
llama/sampling_ext.h
vendored
@@ -35,6 +35,9 @@ extern "C"
|
||||
|
||||
int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len);
|
||||
|
||||
struct llama_vocab * llama_load_vocab_from_file(const char * fname);
|
||||
void llama_free_vocab(struct llama_vocab * vocab);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -15,12 +15,12 @@ import (
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
|
||||
// Split up the GPUs by type and try them
|
||||
var estimatedVRAM uint64
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
|
||||
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
|
||||
@@ -71,7 +71,7 @@ type MemoryEstimate struct {
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
|
||||
// Graph size for a partial offload, applies to all GPUs
|
||||
var graphPartialOffload uint64
|
||||
|
||||
@@ -115,6 +115,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
if projectorWeights == 0 && projectorGraph == 0 {
|
||||
projectorWeights, projectorGraph = f.VisionGraphSize()
|
||||
}
|
||||
|
||||
layers := f.Tensors().GroupLayers()
|
||||
// add one layer worth of memory as a buffer
|
||||
@@ -134,13 +137,19 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
}
|
||||
}
|
||||
|
||||
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
|
||||
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
if len(kv) > 0 {
|
||||
layerSize += kv[0]
|
||||
}
|
||||
|
||||
var kvTotal uint64
|
||||
for _, kvLayer := range kv {
|
||||
kvTotal += kvLayer
|
||||
}
|
||||
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = f.KV().GQA() * kv / 6
|
||||
graphPartialOffload = f.KV().GQA() * kvTotal / 6
|
||||
}
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
@@ -214,9 +223,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
// Some models have inconsistent layer sizes
|
||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
||||
layerSize = blk.Size()
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
layerSize += kv[i]
|
||||
memoryWeights += blk.Size()
|
||||
}
|
||||
memoryWeights += layerSize
|
||||
|
||||
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
|
||||
// Stop allocating on GPU(s) once we hit the users target NumGPU
|
||||
@@ -312,7 +321,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
layersRequested: opts.NumGPU,
|
||||
layersModel: int(f.KV().BlockCount()) + 1,
|
||||
availableList: availableList,
|
||||
kv: kv,
|
||||
kv: kvTotal,
|
||||
allocationsList: allocationsList,
|
||||
memoryWeights: memoryWeights,
|
||||
memoryLayerOutput: memoryLayerOutput,
|
||||
@@ -371,9 +380,9 @@ func (m MemoryEstimate) LogValue() slog.Value {
|
||||
slog.Group(
|
||||
"weights",
|
||||
// memory of the weights
|
||||
"total", format.HumanBytes2(m.memoryWeights),
|
||||
"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
|
||||
// memory of repeating layers
|
||||
"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
|
||||
"repeating", format.HumanBytes2(m.memoryWeights),
|
||||
// memory of non-repeating layers
|
||||
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
|
||||
),
|
||||
|
||||
@@ -61,7 +61,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
projectors := []string{}
|
||||
opts := api.DefaultOptions()
|
||||
t.Run("cpu", func(t *testing.T) {
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
|
||||
assert.Equal(t, 0, estimate.Layers)
|
||||
assert.Equal(t, uint64(0), estimate.Graph)
|
||||
})
|
||||
@@ -112,7 +112,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
|
||||
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
|
||||
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
|
||||
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
|
||||
var layerSums uint64
|
||||
|
||||
403
llm/server.go
403
llm/server.go
@@ -30,6 +30,7 @@ import (
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/model"
|
||||
)
|
||||
|
||||
type LlamaServer interface {
|
||||
@@ -54,8 +55,15 @@ type llmServer struct {
|
||||
options api.Options
|
||||
numParallel int
|
||||
modelPath string
|
||||
modelLock sync.Mutex // Temporary until we switch fully to Go server
|
||||
model *llama.Model // If non-nil, the runner is a new Go server
|
||||
|
||||
// llamaModel is an instance of the cgo llama.cpp model definition
|
||||
// nil if this server is running the new engine
|
||||
llamaModel *llama.Model
|
||||
llamaModelLock sync.Mutex
|
||||
|
||||
// textProcessor handles text encoding/decoding for the model in the Ollama engine
|
||||
// nil if this server is running the llama.cpp based engine
|
||||
textProcessor model.TextProcessor
|
||||
|
||||
estimate MemoryEstimate
|
||||
totalLayers uint64
|
||||
@@ -89,7 +97,7 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
|
||||
|
||||
// NewLlamaServer will run a server for the given GPUs
|
||||
// The gpu list must be a single family.
|
||||
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
systemInfo := discover.GetSystemInfo()
|
||||
systemTotalMemory := systemInfo.System.TotalMemory
|
||||
systemFreeMemory := systemInfo.System.FreeMemory
|
||||
@@ -101,7 +109,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
gpus = discover.GetCPUInfo()
|
||||
}
|
||||
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
|
||||
if len(gpus) > 1 || gpus[0].Library != "cpu" {
|
||||
switch {
|
||||
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
|
||||
@@ -130,7 +138,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
slog.Info("offload", "", estimate)
|
||||
|
||||
params := []string{
|
||||
"--model", model,
|
||||
"--model", modelPath,
|
||||
"--ctx-size", strconv.Itoa(opts.NumCtx),
|
||||
"--batch-size", strconv.Itoa(opts.NumBatch),
|
||||
}
|
||||
@@ -153,11 +161,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
}
|
||||
}
|
||||
|
||||
if len(projectors) > 0 {
|
||||
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
||||
params = append(params, "--mmproj", projectors[0])
|
||||
}
|
||||
|
||||
defaultThreads := systemInfo.GetOptimalThreadCount()
|
||||
if opts.NumThread > 0 {
|
||||
params = append(params, "--threads", strconv.Itoa(opts.NumThread))
|
||||
@@ -257,6 +260,34 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
}
|
||||
}
|
||||
slog.Debug("compatible gpu libraries", "compatible", compatible)
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
|
||||
}
|
||||
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
|
||||
var llamaModel *llama.Model
|
||||
var textProcessor model.TextProcessor
|
||||
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
|
||||
textProcessor, err = model.NewTextProcessor(modelPath)
|
||||
if err != nil {
|
||||
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
|
||||
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
|
||||
}
|
||||
}
|
||||
if textProcessor == nil {
|
||||
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if len(projectors) > 0 && llamaModel != nil {
|
||||
params = append(params, "--mmproj", projectors[0])
|
||||
}
|
||||
|
||||
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
|
||||
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
|
||||
@@ -275,7 +306,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
||||
}
|
||||
finalParams := []string{"runner"}
|
||||
if envconfig.NewEngine() {
|
||||
if textProcessor != nil {
|
||||
// New engine
|
||||
// TODO - if we have failure to load scenarios, add logic to retry with the old runner
|
||||
finalParams = append(finalParams, "--ollama-engine")
|
||||
}
|
||||
finalParams = append(finalParams, params...)
|
||||
@@ -315,28 +348,20 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
// finally, add the root library path
|
||||
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
|
||||
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
|
||||
}
|
||||
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
|
||||
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
|
||||
s := &llmServer{
|
||||
port: port,
|
||||
cmd: exec.Command(exe, finalParams...),
|
||||
status: NewStatusWriter(os.Stderr),
|
||||
options: opts,
|
||||
modelPath: model,
|
||||
estimate: estimate,
|
||||
numParallel: numParallel,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: f.KV().BlockCount() + 1,
|
||||
gpus: gpus,
|
||||
done: make(chan error, 1),
|
||||
port: port,
|
||||
cmd: exec.Command(exe, finalParams...),
|
||||
status: NewStatusWriter(os.Stderr),
|
||||
options: opts,
|
||||
modelPath: modelPath,
|
||||
llamaModel: llamaModel,
|
||||
textProcessor: textProcessor,
|
||||
estimate: estimate,
|
||||
numParallel: numParallel,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: f.KV().BlockCount() + 1,
|
||||
gpus: gpus,
|
||||
done: make(chan error, 1),
|
||||
}
|
||||
|
||||
s.cmd.Env = os.Environ()
|
||||
@@ -377,7 +402,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
|
||||
}
|
||||
|
||||
slog.Info("starting llama server", "cmd", s.cmd.String())
|
||||
slog.Info("starting llama server", "cmd", s.cmd)
|
||||
if envconfig.Debug() {
|
||||
filteredEnv := []string{}
|
||||
for _, ev := range s.cmd.Env {
|
||||
@@ -405,6 +430,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
|
||||
}
|
||||
err := fmt.Errorf("error starting runner: %v %s", err, msg)
|
||||
if len(compatible) == 0 {
|
||||
if llamaModel != nil {
|
||||
llama.FreeModel(llamaModel)
|
||||
}
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@@ -442,7 +470,7 @@ const ( // iota is reset to 0
|
||||
ServerStatusError
|
||||
)
|
||||
|
||||
func (s ServerStatus) ToString() string {
|
||||
func (s ServerStatus) String() string {
|
||||
switch s {
|
||||
case ServerStatusReady:
|
||||
return "llm server ready"
|
||||
@@ -457,12 +485,9 @@ func (s ServerStatus) ToString() string {
|
||||
}
|
||||
}
|
||||
|
||||
type ServerStatusResp struct {
|
||||
Status string `json:"status"`
|
||||
SlotsIdle int `json:"slots_idle"`
|
||||
SlotsProcessing int `json:"slots_processing"`
|
||||
Error string `json:"error"`
|
||||
Progress float32 `json:"progress"`
|
||||
type ServerStatusResponse struct {
|
||||
Status ServerStatus `json:"status"`
|
||||
Progress float32 `json:"progress"`
|
||||
}
|
||||
|
||||
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
||||
@@ -474,7 +499,7 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
||||
}
|
||||
if s.cmd.ProcessState.ExitCode() == -1 {
|
||||
// Most likely a signal killed it, log some more details to try to help troubleshoot
|
||||
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
|
||||
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
|
||||
}
|
||||
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
||||
}
|
||||
@@ -499,21 +524,19 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
||||
return ServerStatusError, fmt.Errorf("read health request: %w", err)
|
||||
}
|
||||
|
||||
var status ServerStatusResp
|
||||
if err := json.Unmarshal(body, &status); err != nil {
|
||||
var ssr ServerStatusResponse
|
||||
if err := json.Unmarshal(body, &ssr); err != nil {
|
||||
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
switch status.Status {
|
||||
case "ok":
|
||||
return ServerStatusReady, nil
|
||||
case "no slot available":
|
||||
return ServerStatusNoSlotsAvailable, nil
|
||||
case "loading model":
|
||||
s.loadProgress = status.Progress
|
||||
return ServerStatusLoadingModel, nil
|
||||
switch ssr.Status {
|
||||
case ServerStatusLoadingModel:
|
||||
s.loadProgress = ssr.Progress
|
||||
return ssr.Status, nil
|
||||
case ServerStatusReady, ServerStatusNoSlotsAvailable:
|
||||
return ssr.Status, nil
|
||||
default:
|
||||
return ServerStatusError, fmt.Errorf("server error: %+v", status)
|
||||
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -588,7 +611,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
||||
status, _ := s.getServerStatus(ctx)
|
||||
if lastStatus != status && status != ServerStatusReady {
|
||||
// Only log on status changes
|
||||
slog.Info("waiting for server to become available", "status", status.ToString())
|
||||
slog.Info("waiting for server to become available", "status", status)
|
||||
}
|
||||
switch status {
|
||||
case ServerStatusReady:
|
||||
@@ -602,7 +625,7 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
||||
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
|
||||
stallTimer = time.Now().Add(stallDuration)
|
||||
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
|
||||
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
|
||||
slog.Debug("model load completed, waiting for server to become available", "status", status)
|
||||
stallTimer = time.Now().Add(stallDuration)
|
||||
fullyLoaded = true
|
||||
}
|
||||
@@ -643,63 +666,49 @@ type ImageData struct {
|
||||
AspectRatioID int `json:"aspect_ratio_id"`
|
||||
}
|
||||
|
||||
type completion struct {
|
||||
Content string `json:"content"`
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
Stop bool `json:"stop"`
|
||||
StoppedLimit bool `json:"stopped_limit"`
|
||||
|
||||
Timings struct {
|
||||
PredictedN int `json:"predicted_n"`
|
||||
PredictedMS float64 `json:"predicted_ms"`
|
||||
PromptN int `json:"prompt_n"`
|
||||
PromptMS float64 `json:"prompt_ms"`
|
||||
}
|
||||
}
|
||||
|
||||
type CompletionRequest struct {
|
||||
Prompt string
|
||||
Format json.RawMessage
|
||||
Images []ImageData
|
||||
Options *api.Options
|
||||
|
||||
Grammar string // set before sending the request to the subprocess
|
||||
}
|
||||
|
||||
// DoneReason represents the reason why a completion response is done
|
||||
type DoneReason int
|
||||
|
||||
const (
|
||||
// DoneReasonStop indicates the completion stopped naturally
|
||||
DoneReasonStop DoneReason = iota
|
||||
// DoneReasonLength indicates the completion stopped due to length limits
|
||||
DoneReasonLength
|
||||
// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
|
||||
DoneReasonConnectionClosed
|
||||
)
|
||||
|
||||
func (d DoneReason) String() string {
|
||||
switch d {
|
||||
case DoneReasonLength:
|
||||
return "length"
|
||||
case DoneReasonStop:
|
||||
return "stop"
|
||||
default:
|
||||
return "" // closed
|
||||
}
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
Content string
|
||||
DoneReason string
|
||||
Done bool
|
||||
PromptEvalCount int
|
||||
PromptEvalDuration time.Duration
|
||||
EvalCount int
|
||||
EvalDuration time.Duration
|
||||
Content string `json:"content"`
|
||||
DoneReason DoneReason `json:"done_reason"`
|
||||
Done bool `json:"done"`
|
||||
PromptEvalCount int `json:"prompt_eval_count"`
|
||||
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
|
||||
EvalCount int `json:"eval_count"`
|
||||
EvalDuration time.Duration `json:"eval_duration"`
|
||||
}
|
||||
|
||||
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
|
||||
request := map[string]any{
|
||||
"prompt": req.Prompt,
|
||||
"stream": true,
|
||||
"n_predict": req.Options.NumPredict,
|
||||
"n_keep": req.Options.NumKeep,
|
||||
"main_gpu": req.Options.MainGPU,
|
||||
"temperature": req.Options.Temperature,
|
||||
"top_k": req.Options.TopK,
|
||||
"top_p": req.Options.TopP,
|
||||
"min_p": req.Options.MinP,
|
||||
"typical_p": req.Options.TypicalP,
|
||||
"repeat_last_n": req.Options.RepeatLastN,
|
||||
"repeat_penalty": req.Options.RepeatPenalty,
|
||||
"presence_penalty": req.Options.PresencePenalty,
|
||||
"frequency_penalty": req.Options.FrequencyPenalty,
|
||||
"mirostat": req.Options.Mirostat,
|
||||
"mirostat_tau": req.Options.MirostatTau,
|
||||
"mirostat_eta": req.Options.MirostatEta,
|
||||
"seed": req.Options.Seed,
|
||||
"stop": req.Options.Stop,
|
||||
"image_data": req.Images,
|
||||
"cache_prompt": true,
|
||||
}
|
||||
|
||||
if len(req.Format) > 0 {
|
||||
switch string(req.Format) {
|
||||
case `null`, `""`:
|
||||
@@ -707,7 +716,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
// these as "not set".
|
||||
break
|
||||
case `"json"`:
|
||||
request["grammar"] = grammarJSON
|
||||
req.Grammar = grammarJSON
|
||||
default:
|
||||
if req.Format[0] != '{' {
|
||||
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
|
||||
@@ -718,10 +727,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
if g == nil {
|
||||
return fmt.Errorf("invalid JSON schema in format")
|
||||
}
|
||||
request["grammar"] = string(g)
|
||||
req.Grammar = string(g)
|
||||
}
|
||||
}
|
||||
|
||||
if req.Options == nil {
|
||||
opts := api.DefaultOptions()
|
||||
req.Options = &opts
|
||||
}
|
||||
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
if errors.Is(err, context.Canceled) {
|
||||
slog.Info("aborting completion request due to client closing the connection")
|
||||
@@ -742,7 +756,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
if err != nil {
|
||||
return err
|
||||
} else if status != ServerStatusReady {
|
||||
return fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
return fmt.Errorf("unexpected server status: %s", status)
|
||||
}
|
||||
|
||||
// Handling JSON marshaling with special characters unescaped.
|
||||
@@ -750,7 +764,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
enc := json.NewEncoder(buffer)
|
||||
enc.SetEscapeHTML(false)
|
||||
|
||||
if err := enc.Encode(request); err != nil {
|
||||
if err := enc.Encode(req); err != nil {
|
||||
return fmt.Errorf("failed to marshal data: %v", err)
|
||||
}
|
||||
|
||||
@@ -795,13 +809,12 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
continue
|
||||
}
|
||||
|
||||
// slog.Debug("got line", "line", string(line))
|
||||
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
||||
if !ok {
|
||||
evt = line
|
||||
}
|
||||
|
||||
var c completion
|
||||
var c CompletionResponse
|
||||
if err := json.Unmarshal(evt, &c); err != nil {
|
||||
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
|
||||
}
|
||||
@@ -825,20 +838,8 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
})
|
||||
}
|
||||
|
||||
if c.Stop {
|
||||
doneReason := "stop"
|
||||
if c.StoppedLimit {
|
||||
doneReason = "length"
|
||||
}
|
||||
|
||||
fn(CompletionResponse{
|
||||
Done: true,
|
||||
DoneReason: doneReason,
|
||||
PromptEvalCount: c.Timings.PromptN,
|
||||
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
|
||||
EvalCount: c.Timings.PredictedN,
|
||||
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
|
||||
})
|
||||
if c.Done {
|
||||
fn(c)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
@@ -886,7 +887,7 @@ func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, err
|
||||
if err != nil {
|
||||
return nil, err
|
||||
} else if status != ServerStatusReady {
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status)
|
||||
}
|
||||
|
||||
data, err := json.Marshal(EmbeddingRequest{Content: input})
|
||||
@@ -933,64 +934,25 @@ type TokenizeResponse struct {
|
||||
}
|
||||
|
||||
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
||||
s.modelLock.Lock()
|
||||
defer s.modelLock.Unlock()
|
||||
if s.model != nil {
|
||||
return s.model.Tokenize(content, false, true)
|
||||
}
|
||||
s.llamaModelLock.Lock()
|
||||
defer s.llamaModelLock.Unlock()
|
||||
|
||||
// Make sure the server is ready
|
||||
status, err := s.getServerStatus(ctx)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
if s.llamaModel != nil {
|
||||
return s.llamaModel.Tokenize(content, false, true)
|
||||
}
|
||||
|
||||
data, err := json.Marshal(TokenizeRequest{Content: content})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("do encode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
if resp.StatusCode == http.StatusNotFound {
|
||||
if s.model == nil {
|
||||
slog.Debug("new runner detected, loading model for cgo tokenization")
|
||||
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
s.model = m
|
||||
if s.textProcessor != nil {
|
||||
tokens, err := s.textProcessor.Encode(content, false)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return s.model.Tokenize(content, false, true)
|
||||
toks := make([]int, len(tokens))
|
||||
for i, t := range tokens {
|
||||
toks[i] = int(t)
|
||||
}
|
||||
return toks, nil
|
||||
}
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("read encode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm encode error: %s", body)
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var encoded TokenizeResponse
|
||||
if err := json.Unmarshal(body, &encoded); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return encoded.Tokens, nil
|
||||
// not reached
|
||||
return nil, fmt.Errorf("no tokenizer configured")
|
||||
}
|
||||
|
||||
type DetokenizeRequest struct {
|
||||
@@ -1002,80 +964,38 @@ type DetokenizeResponse struct {
|
||||
}
|
||||
|
||||
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
||||
s.modelLock.Lock()
|
||||
defer s.modelLock.Unlock()
|
||||
if s.model != nil {
|
||||
s.llamaModelLock.Lock()
|
||||
defer s.llamaModelLock.Unlock()
|
||||
|
||||
if s.llamaModel != nil {
|
||||
var resp string
|
||||
for _, token := range tokens {
|
||||
resp += s.model.TokenToPiece(token)
|
||||
resp += s.llamaModel.TokenToPiece(token)
|
||||
}
|
||||
return resp, nil
|
||||
}
|
||||
// Make sure the server is ready
|
||||
status, err := s.getServerStatus(ctx)
|
||||
if err != nil {
|
||||
return "", err
|
||||
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
|
||||
return "", fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
}
|
||||
|
||||
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("marshaling decode data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/detokenize", s.port), bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("decode request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("do decode request: %w", err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
if resp.StatusCode == http.StatusNotFound {
|
||||
if s.model == nil {
|
||||
slog.Debug("new runner detected, loading model for cgo tokenization")
|
||||
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
s.model = m
|
||||
if s.textProcessor != nil {
|
||||
toks := make([]int32, len(tokens))
|
||||
for i, t := range tokens {
|
||||
toks[i] = int32(t)
|
||||
}
|
||||
var resp string
|
||||
for _, token := range tokens {
|
||||
resp += s.model.TokenToPiece(token)
|
||||
content, err := s.textProcessor.Decode(toks)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return resp, nil
|
||||
return content, nil
|
||||
}
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("read decode request: %w", err)
|
||||
}
|
||||
|
||||
if resp.StatusCode >= 400 {
|
||||
log.Printf("llm decode error: %s", body)
|
||||
return "", fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var decoded DetokenizeResponse
|
||||
if err := json.Unmarshal(body, &decoded); err != nil {
|
||||
return "", fmt.Errorf("unmarshal encode response: %w", err)
|
||||
}
|
||||
|
||||
return decoded.Content, nil
|
||||
// not reached
|
||||
return "", fmt.Errorf("no tokenizer configured")
|
||||
}
|
||||
|
||||
func (s *llmServer) Close() error {
|
||||
s.modelLock.Lock()
|
||||
if s.model != nil {
|
||||
llama.FreeModel(s.model)
|
||||
s.model = nil
|
||||
s.llamaModelLock.Lock()
|
||||
if s.llamaModel != nil {
|
||||
llama.FreeModel(s.llamaModel)
|
||||
s.llamaModel = nil
|
||||
}
|
||||
s.modelLock.Unlock()
|
||||
s.llamaModelLock.Unlock()
|
||||
|
||||
if s.cmd != nil {
|
||||
slog.Debug("stopping llama server")
|
||||
@@ -1112,12 +1032,3 @@ func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
func parseDurationMs(ms float64) time.Duration {
|
||||
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return dur
|
||||
}
|
||||
|
||||
123
ml/backend.go
123
ml/backend.go
@@ -2,32 +2,59 @@ package ml
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"os"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
)
|
||||
|
||||
type Config interface {
|
||||
Architecture() string
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Uints(string, ...[]uint32) []uint32
|
||||
}
|
||||
|
||||
type Backend interface {
|
||||
Config() Config
|
||||
Config() fs.Config
|
||||
Get(name string) Tensor
|
||||
NewContext() Context
|
||||
SystemInfo() string
|
||||
NewContextSize(size int) Context
|
||||
}
|
||||
|
||||
// BackendCacheConfig should be implemented by backends that need special output
|
||||
// from the cache to meet specific requirements. It is frequently implemented in
|
||||
// conjunction with ScaledDotProductAttention.
|
||||
type BackendCacheConfig interface {
|
||||
CacheConfig() CacheConfig
|
||||
}
|
||||
|
||||
// CacheConfig controls optimizations (mostly backend-specific) that may transform
|
||||
// the output the cache to work better with specific kernels.
|
||||
type CacheConfig struct {
|
||||
// CachePadding specifies the multiple for the number of tokens of cache history
|
||||
// that will be returned from cache Get for k, v and mask. The capacity of the
|
||||
// cache itself will also be increased to a multiple of this size if needed.
|
||||
CachePadding int
|
||||
|
||||
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
|
||||
// and return the permuted version via Get. This uses the cache copy operation
|
||||
// to avoid a Contiguous call on the permuted tensor.
|
||||
PermutedV bool
|
||||
|
||||
// MaskDType specifies the data type for generating the mask. If unset it will
|
||||
// default to DTypeF32.
|
||||
MaskDType DType
|
||||
|
||||
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
|
||||
// Any position that does not correspond to an actual token will be filled with -Inf.
|
||||
MaskBatchPadding int
|
||||
}
|
||||
|
||||
// BackendParams controls how the backend loads and executes models
|
||||
type BackendParams struct {
|
||||
// Progress is a callback function that allows reporting percentage completion
|
||||
// of model loading
|
||||
Progress func(float32)
|
||||
|
||||
// NumThreads sets the number of threads to use if running on the CPU
|
||||
NumThreads int
|
||||
|
||||
@@ -39,11 +66,14 @@ type BackendParams struct {
|
||||
|
||||
// TensorSplit is the fraction of the model to offload to each GPU
|
||||
TensorSplit []float32
|
||||
|
||||
// FlashAttention indicates that we should use a fused flash attention kernel
|
||||
FlashAttention bool
|
||||
}
|
||||
|
||||
var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))
|
||||
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
|
||||
|
||||
func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, error)) {
|
||||
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
|
||||
if _, ok := backends[name]; ok {
|
||||
panic("backend: backend already registered")
|
||||
}
|
||||
@@ -51,23 +81,38 @@ func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, erro
|
||||
backends[name] = f
|
||||
}
|
||||
|
||||
func NewBackend(f *os.File, params BackendParams) (Backend, error) {
|
||||
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
|
||||
if backend, ok := backends["ggml"]; ok {
|
||||
return backend(f, params)
|
||||
return backend(ctx, f, params)
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("unsupported backend")
|
||||
}
|
||||
|
||||
type Context interface {
|
||||
Empty(dtype DType, shape ...int) Tensor
|
||||
Zeros(dtype DType, shape ...int) Tensor
|
||||
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
|
||||
FromIntSlice(s []int32, shape ...int) (Tensor, error)
|
||||
|
||||
Forward(Tensor)
|
||||
Forward(...Tensor) Context
|
||||
Compute(...Tensor)
|
||||
MaxTensors() int
|
||||
|
||||
// Reserve is analogous to Compute but rather than executing a
|
||||
// graph, simply preallocates memory. Typically called with a
|
||||
// worst case graph to ensure all resources are available for
|
||||
// for future inference.
|
||||
Reserve() error
|
||||
|
||||
MaxGraphNodes() int
|
||||
Close()
|
||||
|
||||
// Input returns a context appropriate for creating tensors that are
|
||||
// inputs to the model (which includes things like output locations)
|
||||
Input() Context
|
||||
|
||||
// Layer returns a context appropriate for creating intermediate tensors
|
||||
Layer(int) Context
|
||||
}
|
||||
|
||||
type Tensor interface {
|
||||
@@ -80,6 +125,7 @@ type Tensor interface {
|
||||
Bytes() []byte
|
||||
Floats() []float32
|
||||
|
||||
Neg(ctx Context) Tensor
|
||||
Add(ctx Context, t2 Tensor) Tensor
|
||||
Mul(ctx Context, t2 Tensor) Tensor
|
||||
Mulmat(ctx Context, t2 Tensor) Tensor
|
||||
@@ -90,9 +136,14 @@ type Tensor interface {
|
||||
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
|
||||
Scale(ctx Context, s float64) Tensor
|
||||
|
||||
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
|
||||
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
Sin(ctx Context) Tensor
|
||||
Cos(ctx Context) Tensor
|
||||
Tanh(ctx Context) Tensor
|
||||
GELU(ctx Context) Tensor
|
||||
SILU(ctx Context) Tensor
|
||||
@@ -101,20 +152,29 @@ type Tensor interface {
|
||||
View(ctx Context, offset int, shape ...int) Tensor
|
||||
Permute(ctx Context, shape ...int) Tensor
|
||||
Contiguous(ctx Context) Tensor
|
||||
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
|
||||
|
||||
Pad(ctx Context, shape ...int) Tensor
|
||||
Unpad(ctx Context, shape ...int) Tensor
|
||||
|
||||
Stack(ctx Context, dim int, s ...Tensor) Tensor
|
||||
|
||||
// Repeat repeats the tensor n times along dimension dim
|
||||
Repeat(ctx Context, dim, n int) Tensor
|
||||
Concat(ctx Context, t2 Tensor, dim int) Tensor
|
||||
Rows(ctx Context, t2 Tensor) Tensor
|
||||
Copy(ctx Context, t2 Tensor) Tensor
|
||||
Duplicate(ctx Context) Tensor
|
||||
}
|
||||
|
||||
// ScaledDotProductAttention implements a fused attention
|
||||
// operation equivalent to following code on a tensor named
|
||||
// query:
|
||||
//
|
||||
// query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
// key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
//
|
||||
// kq := key.MulmatFullPrec(ctx, query)
|
||||
//
|
||||
// kq = kq.Scale(ctx, scale)
|
||||
@@ -168,8 +228,8 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
|
||||
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
|
||||
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
|
||||
})
|
||||
case DTypeF16:
|
||||
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
|
||||
case DTypeF16, DTypeQ80, DTypeQ40:
|
||||
f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
|
||||
f32 = t.Copy(ctx, f32)
|
||||
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
|
||||
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
|
||||
@@ -185,8 +245,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
|
||||
|
||||
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
|
||||
if t.Bytes() == nil {
|
||||
ctx.Forward(t)
|
||||
ctx.Compute(t)
|
||||
ctx.Forward(t).Compute(t)
|
||||
}
|
||||
|
||||
s := make(S, mul(t.Shape()...))
|
||||
@@ -195,16 +254,17 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
|
||||
}
|
||||
|
||||
shape := t.Shape()
|
||||
slices.Reverse(shape)
|
||||
|
||||
var sb strings.Builder
|
||||
var f func([]int, int)
|
||||
f = func(dims []int, stride int) {
|
||||
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
|
||||
fmt.Fprint(&sb, "[")
|
||||
defer func() { fmt.Fprint(&sb, "]") }()
|
||||
sb.WriteString("[")
|
||||
defer func() { sb.WriteString("]") }()
|
||||
for i := 0; i < dims[0]; i++ {
|
||||
if i >= items && i < dims[0]-items {
|
||||
fmt.Fprint(&sb, "..., ")
|
||||
sb.WriteString("..., ")
|
||||
// skip to next printable element
|
||||
skip := dims[0] - 2*items
|
||||
if len(dims) > 1 {
|
||||
@@ -219,9 +279,14 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
|
||||
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
|
||||
}
|
||||
} else {
|
||||
fmt.Fprint(&sb, fn(s[stride+i]))
|
||||
text := fn(s[stride+i])
|
||||
if len(text) > 0 && text[0] != '-' {
|
||||
sb.WriteString(" ")
|
||||
}
|
||||
|
||||
sb.WriteString(text)
|
||||
if i < dims[0]-1 {
|
||||
fmt.Fprint(&sb, ", ")
|
||||
sb.WriteString(", ")
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -237,5 +302,7 @@ const (
|
||||
DTypeOther DType = iota
|
||||
DTypeF32
|
||||
DTypeF16
|
||||
DTypeQ80
|
||||
DTypeQ40
|
||||
DTypeI32
|
||||
)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
1
ml/backend/ggml/ggml/include/gguf.h
vendored
1
ml/backend/ggml/ggml/include/gguf.h
vendored
@@ -114,6 +114,7 @@ extern "C" {
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
|
||||
11
ml/backend/ggml/ggml/include/ollama-debug.h
vendored
Normal file
11
ml/backend/ggml/ggml/include/ollama-debug.h
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ollama_debug(const struct ggml_tensor *tensor, bool verbose);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
74
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
74
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
@@ -484,33 +484,29 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
try {
|
||||
if (entry.is_regular_file()) {
|
||||
std::string filename = entry.path().filename().string();
|
||||
std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
if (!handle) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
if (entry.is_regular_file()) {
|
||||
std::string filename = entry.path().filename().string();
|
||||
std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
dl_handle_ptr handle { dl_load_library(entry.path()) };
|
||||
if (!handle) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (!score_fn) {
|
||||
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (!score_fn) {
|
||||
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
int s = score_fn();
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path();
|
||||
}
|
||||
int s = score_fn();
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path();
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -533,6 +529,14 @@ void ggml_backend_load_all() {
|
||||
ggml_backend_load_all_from_path(nullptr);
|
||||
}
|
||||
|
||||
static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
try {
|
||||
ggml_backend_load_best(name, silent, user_search_path);
|
||||
} catch (const std::exception & e) {
|
||||
GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
@@ -540,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
ggml_backend_load_best("blas", silent, dir_path);
|
||||
ggml_backend_load_best("cann", silent, dir_path);
|
||||
ggml_backend_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_load_best("hip", silent, dir_path);
|
||||
ggml_backend_load_best("kompute", silent, dir_path);
|
||||
ggml_backend_load_best("metal", silent, dir_path);
|
||||
ggml_backend_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_load_best("musa", silent, dir_path);
|
||||
ggml_backend_load_best("cpu", silent, dir_path);
|
||||
ggml_backend_try_load_best("blas", silent, dir_path);
|
||||
ggml_backend_try_load_best("cann", silent, dir_path);
|
||||
ggml_backend_try_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_try_load_best("hip", silent, dir_path);
|
||||
ggml_backend_try_load_best("kompute", silent, dir_path);
|
||||
ggml_backend_try_load_best("metal", silent, dir_path);
|
||||
ggml_backend_try_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_try_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_try_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_try_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_try_load_best("musa", silent, dir_path);
|
||||
ggml_backend_try_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
|
||||
if (backend_path) {
|
||||
|
||||
6
ml/backend/ggml/ggml/src/ggml-cpu/cpu_debug.go
Normal file
6
ml/backend/ggml/ggml/src/ggml-cpu/cpu_debug.go
Normal file
@@ -0,0 +1,6 @@
|
||||
//go:build debug
|
||||
|
||||
package cpu
|
||||
|
||||
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
|
||||
import "C"
|
||||
6
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
6
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
@@ -11,6 +11,8 @@
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include "ollama-debug.h"
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
#ifdef OLLAMA_DEBUG
|
||||
ollama_debug(node, true);
|
||||
#endif
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
|
||||
|
||||
@@ -61,11 +61,13 @@
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
|
||||
|
||||
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
||||
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
||||
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
|
||||
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
|
||||
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
|
||||
|
||||
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
#elif defined(RDNA3)
|
||||
#elif defined(RDNA3) || defined(RDNA4)
|
||||
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||
int tmp1;
|
||||
|
||||
2
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cu
vendored
2
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cu
vendored
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
4
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cuh
vendored
4
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cuh
vendored
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
|
||||
4
ml/backend/ggml/ggml/src/ggml-cuda/mmvq.cu
vendored
4
ml/backend/ggml/ggml/src/ggml-cuda/mmvq.cu
vendored
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
|
||||
constexpr int nwarps = 1;
|
||||
constexpr int rows_per_cuda_block = 1;
|
||||
#else
|
||||
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
|
||||
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||
|
||||
@@ -150,6 +150,10 @@
|
||||
#define CDNA
|
||||
#endif
|
||||
|
||||
#if defined(__gfx1200__) || defined(__gfx1201__)
|
||||
#define RDNA4
|
||||
#endif
|
||||
|
||||
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__)
|
||||
#define RDNA3
|
||||
|
||||
@@ -3083,6 +3083,13 @@ kernel void kernel_cos(
|
||||
dst[tpig] = cos(src0[tpig]);
|
||||
}
|
||||
|
||||
kernel void kernel_neg(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = -src0[tpig];
|
||||
}
|
||||
|
||||
kernel void kernel_sum_rows(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
||||
15
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal.m
vendored
15
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal.m
vendored
@@ -423,6 +423,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_SQRT,
|
||||
GGML_METAL_KERNEL_TYPE_SIN,
|
||||
GGML_METAL_KERNEL_TYPE_COS,
|
||||
GGML_METAL_KERNEL_TYPE_NEG,
|
||||
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
|
||||
@@ -1039,6 +1040,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
|
||||
@@ -1202,6 +1204,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_NEG:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
@@ -1873,6 +1876,18 @@ static void ggml_metal_encode_node(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_NEG:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
|
||||
|
||||
@@ -945,6 +945,13 @@ kernel void kernel_cos(
|
||||
dst[tpig] = cos(src0[tpig]);
|
||||
}
|
||||
|
||||
kernel void kernel_neg(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = -src0[tpig];
|
||||
}
|
||||
|
||||
kernel void kernel_sum_rows(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
||||
@@ -7,13 +7,30 @@ package ggml
|
||||
// #include <stdlib.h>
|
||||
// #include "ggml-backend.h"
|
||||
// extern void sink(int level, char *text, void *user_data);
|
||||
// static struct ggml_backend_feature * first_feature(ggml_backend_get_features_t fp, ggml_backend_reg_t reg) { return fp(reg); }
|
||||
// static struct ggml_backend_feature * next_feature(struct ggml_backend_feature * feature) { return &feature[1]; }
|
||||
/*
|
||||
typedef enum { COMPILER_CLANG, COMPILER_GNUC, COMPILER_UNKNOWN } COMPILER;
|
||||
static COMPILER compiler_name(void) {
|
||||
#if defined(__clang__)
|
||||
return COMPILER_CLANG;
|
||||
#elif defined(__GNUC__)
|
||||
return COMPILER_GNUC;
|
||||
#else
|
||||
return COMPILER_UNKNOWN;
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"unsafe"
|
||||
@@ -22,21 +39,14 @@ import (
|
||||
)
|
||||
|
||||
func init() {
|
||||
C.ggml_log_set((C.ggml_log_callback)(C.sink), nil)
|
||||
C.ggml_log_set(C.ggml_log_callback(C.sink), nil)
|
||||
}
|
||||
|
||||
//export sink
|
||||
func sink(level C.int, text *C.char, _ unsafe.Pointer) {
|
||||
msg := strings.TrimSpace(C.GoString(text))
|
||||
switch level {
|
||||
case C.GGML_LOG_LEVEL_DEBUG:
|
||||
slog.Debug(msg)
|
||||
case C.GGML_LOG_LEVEL_INFO:
|
||||
slog.Info(msg)
|
||||
case C.GGML_LOG_LEVEL_WARN:
|
||||
slog.Warn(msg)
|
||||
case C.GGML_LOG_LEVEL_ERROR:
|
||||
slog.Error(msg)
|
||||
// slog levels zeros INFO and are multiples of 4
|
||||
if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
|
||||
fmt.Fprint(os.Stderr, C.GoString(text))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,4 +105,43 @@ var OnceLoad = sync.OnceFunc(func() {
|
||||
visited[abspath] = struct{}{}
|
||||
}
|
||||
}
|
||||
|
||||
slog.Info("system", "", system{})
|
||||
})
|
||||
|
||||
type system struct{}
|
||||
|
||||
func (system) LogValue() slog.Value {
|
||||
var attrs []slog.Attr
|
||||
names := make(map[string]int)
|
||||
for i := range C.ggml_backend_dev_count() {
|
||||
r := C.ggml_backend_dev_backend_reg(C.ggml_backend_dev_get(i))
|
||||
|
||||
func() {
|
||||
fName := C.CString("ggml_backend_get_features")
|
||||
defer C.free(unsafe.Pointer(fName))
|
||||
|
||||
if fn := C.ggml_backend_reg_get_proc_address(r, fName); fn != nil {
|
||||
var features []any
|
||||
for f := C.first_feature(C.ggml_backend_get_features_t(fn), r); f.name != nil; f = C.next_feature(f) {
|
||||
features = append(features, C.GoString(f.name), C.GoString(f.value))
|
||||
}
|
||||
|
||||
name := C.GoString(C.ggml_backend_reg_name(r))
|
||||
attrs = append(attrs, slog.Group(name+"."+strconv.Itoa(names[name]), features...))
|
||||
names[name] += 1
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
switch C.compiler_name() {
|
||||
case C.COMPILER_CLANG:
|
||||
attrs = append(attrs, slog.String("compiler", "cgo(clang)"))
|
||||
case C.COMPILER_GNUC:
|
||||
attrs = append(attrs, slog.String("compiler", "cgo(gcc)"))
|
||||
default:
|
||||
attrs = append(attrs, slog.String("compiler", "cgo(unknown)"))
|
||||
}
|
||||
|
||||
return slog.GroupValue(attrs...)
|
||||
}
|
||||
|
||||
7
ml/backend/ggml/ggml/src/gguf.cpp
vendored
7
ml/backend/ggml/ggml/src/gguf.cpp
vendored
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
return ctx->kv[key_id].data.size();
|
||||
}
|
||||
|
||||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||||
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||||
return ctx->kv[key_id].data.data();
|
||||
}
|
||||
|
||||
|
||||
116
ml/backend/ggml/ggml/src/ollama-debug.c
vendored
Normal file
116
ml/backend/ggml/ggml/src/ollama-debug.c
vendored
Normal file
@@ -0,0 +1,116 @@
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "ollama-debug.h"
|
||||
|
||||
static int mul(int64_t *dims, int ndims) {
|
||||
int result = 1;
|
||||
for (int i = 0; i < ndims; i++) {
|
||||
result *= dims[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void repeat(char c, int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
fprintf(stderr, "%c", c);
|
||||
}
|
||||
}
|
||||
|
||||
static void print_tensor(const void *tensor, void (*cb)(const void *, int),
|
||||
int shape,
|
||||
int64_t *dims, int ndims, int stride,
|
||||
int nitems, int pad) {
|
||||
fprintf(stderr, "[");
|
||||
for (int i = 0; i < dims[0]; i++) {
|
||||
if (i >= nitems && i < dims[0] - nitems) {
|
||||
fprintf(stderr, "... (%" PRIi64 " more), ", dims[0] - 2 * nitems);
|
||||
int skip = dims[0] - 2 * nitems;
|
||||
if (ndims > 1) {
|
||||
stride += mul(dims + 1, ndims - 1) * skip;
|
||||
repeat('\n', ndims - 1);
|
||||
repeat(' ', shape - ndims + 1 + pad);
|
||||
}
|
||||
i += skip - 1;
|
||||
} else if (ndims > 1) {
|
||||
print_tensor(tensor, cb, shape, dims + 1, ndims - 1, stride,
|
||||
nitems, pad);
|
||||
stride += mul(dims + 1, ndims - 1);
|
||||
if (i < dims[0] - 1) {
|
||||
fprintf(stderr, ", ");
|
||||
repeat('\n', ndims - 1);
|
||||
repeat(' ', shape - ndims + 1 + pad);
|
||||
}
|
||||
} else {
|
||||
cb(tensor, stride + i);
|
||||
if (i < dims[0] - 1) {
|
||||
fprintf(stderr, ", ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "]");
|
||||
}
|
||||
|
||||
static void print_tensor_f16(const void *tensor, int i) {
|
||||
float value = ggml_fp16_to_fp32(((const ggml_fp16_t *)tensor)[i]);
|
||||
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
|
||||
}
|
||||
|
||||
static void print_tensor_f32(const void *tensor, int i) {
|
||||
float value = ((const float *)tensor)[i];
|
||||
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
|
||||
}
|
||||
|
||||
static void print_tensor_i32(const void *tensor, int i) {
|
||||
int32_t value = ((const int32_t *)tensor)[i];
|
||||
fprintf(stderr, "%s%d", value < 0 ? "" : " ", value);
|
||||
}
|
||||
|
||||
static void ollama_debug_tensor(const struct ggml_tensor *tensor, bool verbose, const char *prefix, int indent) {
|
||||
fprintf(stderr, "%s%s %s (%s): [%" PRIi64 " %" PRIi64 " %" PRIi64 " %" PRIi64 "]\n", prefix, tensor->name,
|
||||
ggml_op_name(tensor->op), ggml_type_name(tensor->type), tensor->ne[0],
|
||||
tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
|
||||
if (!verbose) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < indent; i++) {
|
||||
fprintf(stderr, " ");
|
||||
}
|
||||
|
||||
switch (tensor->type) {
|
||||
case GGML_TYPE_F16:
|
||||
print_tensor(ggml_get_data(tensor), print_tensor_f16, ggml_n_dims(tensor),
|
||||
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
print_tensor(ggml_get_data(tensor), print_tensor_f32, ggml_n_dims(tensor),
|
||||
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
|
||||
break;
|
||||
case GGML_TYPE_I32:
|
||||
print_tensor(ggml_get_data(tensor), print_tensor_i32, ggml_n_dims(tensor),
|
||||
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "<unsupported type>\n");
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
void ollama_debug(const struct ggml_tensor *tensor, bool verbose) {
|
||||
ollama_debug_tensor(tensor, verbose, ">>> ", 4);
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC && tensor->src[i] != NULL; ++i) {
|
||||
char src[8];
|
||||
const int n = snprintf(src, sizeof(src), " src%d ", i);
|
||||
if (n >= sizeof(src)) {
|
||||
src[sizeof(src) - 1] = '\0';
|
||||
}
|
||||
|
||||
ollama_debug_tensor(tensor->src[i], verbose, src, 4);
|
||||
}
|
||||
}
|
||||
7
ml/backend/ggml/threads.go
Normal file
7
ml/backend/ggml/threads.go
Normal file
@@ -0,0 +1,7 @@
|
||||
//go:build !debug
|
||||
|
||||
package ggml
|
||||
|
||||
func Threads(n int) int {
|
||||
return n
|
||||
}
|
||||
7
ml/backend/ggml/threads_debug.go
Normal file
7
ml/backend/ggml/threads_debug.go
Normal file
@@ -0,0 +1,7 @@
|
||||
//go:build debug
|
||||
|
||||
package ggml
|
||||
|
||||
func Threads(_ int) int {
|
||||
return 1
|
||||
}
|
||||
@@ -3,6 +3,7 @@ package nn
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
)
|
||||
|
||||
@@ -11,40 +12,50 @@ import (
|
||||
//
|
||||
// Parameters:
|
||||
// - ctx: Context for tensor operations
|
||||
// - query: Query tensor (Q) with shape [d_k, seq_len_q, heads]
|
||||
// - key: Key tensor (K) with shape [d_k, seq_len_k, kv_heads]
|
||||
// - value: Value tensor (V) with shape [seq_len_k, d_v, kv_heads]
|
||||
// - mask: Optional attention mask that is added to the attention score. If
|
||||
// provided, should broadcast to [seq_len_k, seq_len_q, heads]
|
||||
// - query: Query tensor (Q) with shape [d_k, heads, seq_len_q]
|
||||
// - key: Key tensor (K) with shape [d_k, kv_heads, seq_len_k], can be nil to read from cache only
|
||||
// - value: Value tensor (V) with shape [d_v, kv_heads, seq_len_k], can be nil to read from cache only
|
||||
// - scale: Scaling factor, typically 1/√d_k where d_k is the key dimension
|
||||
// - cache: KV cache to store key/value and get past history, can be nil to only use provided key/value
|
||||
//
|
||||
// Returns:
|
||||
//
|
||||
// Attention output with shape [d_v, heads, seq_len_q]
|
||||
func Attention(ctx ml.Context, query, key, value, mask ml.Tensor, scale float64) ml.Tensor {
|
||||
if query.Dim(0) != key.Dim(0) {
|
||||
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
|
||||
func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
|
||||
if key != nil && value != nil {
|
||||
if query.Dim(0) != key.Dim(0) {
|
||||
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
|
||||
}
|
||||
|
||||
if key.Dim(1) != value.Dim(1) {
|
||||
panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(1)))
|
||||
}
|
||||
|
||||
if key.Dim(2) != value.Dim(2) {
|
||||
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
|
||||
}
|
||||
|
||||
if cache != nil {
|
||||
cache.Put(ctx, key, value)
|
||||
}
|
||||
} else if cache == nil {
|
||||
panic("key & value tensors must be provided if cache is nil")
|
||||
}
|
||||
|
||||
if mask != nil && query.Dim(1) != mask.Dim(1) {
|
||||
panic(fmt.Errorf("seq_len_q in attention operation does not match between query(%v) and mask(%v)", query.Dim(1), mask.Dim(1)))
|
||||
var mask ml.Tensor
|
||||
if cache != nil {
|
||||
key, value, mask = cache.Get(ctx)
|
||||
}
|
||||
|
||||
if key.Dim(1) != value.Dim(0) {
|
||||
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(0)))
|
||||
}
|
||||
|
||||
if mask != nil && key.Dim(1) != mask.Dim(0) {
|
||||
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and mask(%v)", key.Dim(1), mask.Dim(0)))
|
||||
}
|
||||
|
||||
if key.Dim(2) != value.Dim(2) {
|
||||
panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
|
||||
}
|
||||
|
||||
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok {
|
||||
// Only use the fast SDPA implementation if we have a cache, since that's what
|
||||
// will do any expected backend-specific transformations for us
|
||||
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil {
|
||||
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale)
|
||||
} else {
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
kq := key.MulmatFullPrec(ctx, query)
|
||||
|
||||
kq = kq.Scale(ctx, scale)
|
||||
|
||||
58
model/input/input.go
Normal file
58
model/input/input.go
Normal file
@@ -0,0 +1,58 @@
|
||||
package input
|
||||
|
||||
import "github.com/ollama/ollama/ml"
|
||||
|
||||
// Input represents one token in the input stream
|
||||
type Input struct {
|
||||
// Token is a single element of text.
|
||||
Token int32
|
||||
|
||||
// Multimodal is opaque data representing a non-text
|
||||
// element such as an image (or part of one if the image
|
||||
// can be processed in pieces). It may be either together
|
||||
// with Token or on its own.
|
||||
Multimodal any
|
||||
|
||||
// MultimodalHash is a unique representation of the data
|
||||
// stored in Multimodal, used for caching and comparing
|
||||
// equality.
|
||||
MultimodalHash uint64
|
||||
|
||||
// SameBatch forces the following number of tokens to be processed
|
||||
// in a single batch, breaking and extending batches as needed.
|
||||
// Useful for things like images that must be processed in one
|
||||
// shot.
|
||||
SameBatch int
|
||||
}
|
||||
|
||||
// MultimodalIndex is a multimodal element (such as an image)
|
||||
// together with an index into the slice of Inputs with the
|
||||
// corresponding token. Note that the index is not the same
|
||||
// as the position - to find that use the index with the
|
||||
// Positions slice.
|
||||
type MultimodalIndex struct {
|
||||
Index int
|
||||
Multimodal any
|
||||
}
|
||||
|
||||
// Batch contains the inputs for a model forward pass
|
||||
type Batch struct {
|
||||
// Inputs is the input tokens, including placeholders for multimodal inputs.
|
||||
Inputs ml.Tensor
|
||||
|
||||
// Multimodal is a set of multimodal embeddings previously created by
|
||||
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
|
||||
// models or for batches without multimodal elements.
|
||||
Multimodal []MultimodalIndex
|
||||
|
||||
// Positions is the position for each Input, relative to its sequence. Equal
|
||||
// in length to Inputs.
|
||||
Positions []int32
|
||||
|
||||
// Sequences is the sequence for each Input. Equal in length to Inputs.
|
||||
Sequences []int
|
||||
|
||||
// Outputs are the set of indicies into Inputs for which output data should
|
||||
// be returned.
|
||||
Outputs []int32
|
||||
}
|
||||
121
model/model.go
121
model/model.go
@@ -1,9 +1,9 @@
|
||||
package model
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"log/slog"
|
||||
@@ -16,23 +16,53 @@ import (
|
||||
_ "golang.org/x/image/tiff"
|
||||
_ "golang.org/x/image/webp"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
_ "github.com/ollama/ollama/ml/backend"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Options contains the inputs for a model forward pass
|
||||
type Options struct {
|
||||
Inputs []int32
|
||||
Positions []int32
|
||||
Sequences []int
|
||||
Outputs []int32
|
||||
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
|
||||
|
||||
Images []image.Image
|
||||
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
||||
type Model interface {
|
||||
Forward(ml.Context, input.Batch) (ml.Tensor, error)
|
||||
|
||||
Backend() ml.Backend
|
||||
Config() config
|
||||
}
|
||||
|
||||
type config struct {
|
||||
Cache kvcache.Cache
|
||||
// MultimodalProcessor must be implemented by multimodal models.
|
||||
type MultimodalProcessor interface {
|
||||
// EncodeMultimodal processes a single input (such as an image) and
|
||||
// generates an output (typically an embedding) that can be used by the model.
|
||||
//
|
||||
// The return value is most typically an ml.Tensor, however, different
|
||||
// type are possible, such as an object containing a tensor plus
|
||||
// additional metadata, a slice of tensors or even just the original input.
|
||||
//
|
||||
// The result may be cached by the runner.
|
||||
EncodeMultimodal(ml.Context, []byte) (any, error)
|
||||
|
||||
// PostTokenize is called after tokenization to allow the model to edit the
|
||||
// input stream to correctly arrange multimodal elements.
|
||||
//
|
||||
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
|
||||
// in the order that the user provided them. Each element of the slice will be
|
||||
// either a single token or single multimodal object.
|
||||
//
|
||||
// The model must ensure that inputs are stored according to how they will be
|
||||
// processed and stored in the cache. For example, Llava-style models should insert
|
||||
// placeholder tokens equal to the feature size of the corresponding image with
|
||||
// the image itself attached to and split across these tokens. When Forward is called
|
||||
// a partial subset of these tokens may be submitted according to the batch size.
|
||||
//
|
||||
// This function is also responsible for updating MultimodalHash for any Multimodal
|
||||
// that is modified to ensure that there is a unique hash value that accurately
|
||||
// represents the contents.
|
||||
PostTokenize([]input.Input) ([]input.Input, error)
|
||||
}
|
||||
|
||||
// Base implements the common fields and methods for all models
|
||||
@@ -41,6 +71,10 @@ type Base struct {
|
||||
config
|
||||
}
|
||||
|
||||
type config struct {
|
||||
Cache kvcache.Cache
|
||||
}
|
||||
|
||||
// Backend returns the underlying backend that will run the model
|
||||
func (m *Base) Backend() ml.Backend {
|
||||
return m.b
|
||||
@@ -50,18 +84,10 @@ func (m *Base) Config() config {
|
||||
return m.config
|
||||
}
|
||||
|
||||
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
||||
type Model interface {
|
||||
Forward(ml.Context, Options) (ml.Tensor, error)
|
||||
|
||||
Backend() ml.Backend
|
||||
Config() config
|
||||
}
|
||||
|
||||
var models = make(map[string]func(ml.Config) (Model, error))
|
||||
var models = make(map[string]func(fs.Config) (Model, error))
|
||||
|
||||
// Register registers a model constructor for the given architecture
|
||||
func Register(name string, f func(ml.Config) (Model, error)) {
|
||||
func Register(name string, f func(fs.Config) (Model, error)) {
|
||||
if _, ok := models[name]; ok {
|
||||
panic("model: model already registered")
|
||||
}
|
||||
@@ -70,14 +96,14 @@ func Register(name string, f func(ml.Config) (Model, error)) {
|
||||
}
|
||||
|
||||
// New initializes a new model instance with the provided configuration based on the metadata in the model file
|
||||
func New(modelPath string, params ml.BackendParams) (Model, error) {
|
||||
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
|
||||
r, err := os.Open(modelPath)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
b, err := ml.NewBackend(r, params)
|
||||
b, err := ml.NewBackend(ctx, r, params)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -100,6 +126,36 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func NewTextProcessor(s string) (TextProcessor, error) {
|
||||
r, err := os.Open(s)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
meta, _, err := fsggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return getTextProcessor(meta.KV())
|
||||
}
|
||||
|
||||
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
|
||||
arch := kv.Architecture()
|
||||
f, ok := models[arch]
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
||||
}
|
||||
m, err := f(kv)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
tp, ok := m.(TextProcessor)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("%v is not a TextProcessor", m)
|
||||
}
|
||||
return tp, nil
|
||||
}
|
||||
|
||||
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
|
||||
t := v.Type()
|
||||
|
||||
@@ -226,30 +282,35 @@ func canNil(t reflect.Type) bool {
|
||||
t.Kind() == reflect.Slice
|
||||
}
|
||||
|
||||
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
|
||||
if len(opts.Positions) != len(opts.Sequences) {
|
||||
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
|
||||
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
|
||||
if len(batch.Positions) != len(batch.Sequences) {
|
||||
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
|
||||
}
|
||||
|
||||
if len(opts.Positions) < 1 {
|
||||
if len(batch.Positions) < 1 {
|
||||
return nil, errors.New("batch size cannot be less than 1")
|
||||
}
|
||||
|
||||
var err error
|
||||
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
cache := m.Config().Cache
|
||||
if cache != nil {
|
||||
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
|
||||
err := cache.StartForward(ctx, batch, false)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
t, err := m.Forward(ctx, opts)
|
||||
t, err := m.Forward(ctx, batch)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ctx.Forward(t)
|
||||
ctx.Compute(t)
|
||||
ctx.Forward(t).Compute(t)
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
||||
@@ -3,12 +3,16 @@ package model
|
||||
import (
|
||||
"reflect"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/fs"
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/backend/ggml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
func TestParseTags(t *testing.T) {
|
||||
@@ -134,3 +138,40 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
|
||||
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetTextProcessor(t *testing.T) {
|
||||
tp, err := getTextProcessor(fsggml.KV{})
|
||||
if err == nil {
|
||||
t.Error("expected error")
|
||||
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
} else if tp != nil {
|
||||
t.Error("expected nil tp")
|
||||
}
|
||||
|
||||
models["dummy"] = func(fs.Config) (Model, error) {
|
||||
return notTextProcessorModel{}, nil
|
||||
}
|
||||
tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
|
||||
if err == nil {
|
||||
t.Error("expected error")
|
||||
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
} else if tp != nil {
|
||||
t.Error("expected nil tp")
|
||||
}
|
||||
}
|
||||
|
||||
type notTextProcessorModel struct{}
|
||||
|
||||
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
|
||||
panic("unimplemented")
|
||||
}
|
||||
|
||||
func (notTextProcessorModel) Backend() ml.Backend {
|
||||
panic("unimplemented")
|
||||
}
|
||||
|
||||
func (notTextProcessorModel) Config() config {
|
||||
panic("unimplemented")
|
||||
}
|
||||
|
||||
214
model/models/gemma2/model.go
Normal file
214
model/models/gemma2/model.go
Normal file
@@ -0,0 +1,214 @@
|
||||
package gemma2
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeBase, ropeScale float32
|
||||
attnLogitSoftcap float32
|
||||
finalLogitSoftcap float32
|
||||
largeModelScaling bool
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
|
||||
|
||||
*Options
|
||||
}
|
||||
|
||||
const (
|
||||
gemma27BLayerCount = 46
|
||||
)
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := Model{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
Options: &Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length")),
|
||||
attnValLen: int(c.Uint("attention.value_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base", 10000.0),
|
||||
ropeScale: c.Float("rope.freq_scale", 1.0),
|
||||
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
|
||||
finalLogitSoftcap: c.Float("final_logit_softcapping"),
|
||||
},
|
||||
}
|
||||
|
||||
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
||||
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
||||
m.Cache.SetConfig(ml.CacheConfig{})
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
} else {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
|
||||
}
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
|
||||
cache.Put(ctx, k, v)
|
||||
k, v, mask := cache.Get(ctx)
|
||||
|
||||
q = q.Permute(ctx, 0, 2, 1, 3)
|
||||
k = k.Permute(ctx, 0, 2, 1, 3)
|
||||
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
kq := k.Mulmat(ctx, q)
|
||||
|
||||
// logit softcap
|
||||
kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
|
||||
kq = kq.Tanh(ctx)
|
||||
kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
|
||||
|
||||
kq = kq.Add(ctx, mask)
|
||||
kq = kq.Softmax(ctx)
|
||||
|
||||
kqv := v.Mulmat(ctx, kq)
|
||||
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
|
||||
|
||||
if len(m.Layers) == gemma27BLayerCount {
|
||||
m.Options.largeModelScaling = true
|
||||
}
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
cacheType := i % 2
|
||||
m.Cache.SetLayer(i)
|
||||
wc := m.Cache.(*kvcache.WrapperCache)
|
||||
wc.SetLayerType(cacheType)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
hiddenState = m.Output.Forward(ctx, hiddenState)
|
||||
|
||||
// final logit softcap
|
||||
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
|
||||
hiddenState = hiddenState.Tanh(ctx)
|
||||
return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gemma2", New)
|
||||
}
|
||||
158
model/models/gemma3/model.go
Normal file
158
model/models/gemma3/model.go
Normal file
@@ -0,0 +1,158 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
*VisionModel `gguf:"v,vision"`
|
||||
*TextModel
|
||||
|
||||
*MultiModalProjector `gguf:"mm"`
|
||||
|
||||
ImageProcessor
|
||||
}
|
||||
|
||||
var _ model.MultimodalProcessor = (*Model)(nil)
|
||||
|
||||
type MultiModalProjector struct {
|
||||
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
|
||||
InputProjection *nn.Linear `gguf:"mm_input_projection"`
|
||||
|
||||
tokensPerImage int
|
||||
}
|
||||
|
||||
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
|
||||
l := visionOutputs.Dim(0)
|
||||
|
||||
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
patchesPerImage := imageSize / patchSize
|
||||
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
|
||||
|
||||
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
|
||||
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
|
||||
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
|
||||
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
|
||||
|
||||
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
|
||||
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
|
||||
return visionOutputs
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := Model{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(1),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOT: int32(106),
|
||||
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
|
||||
},
|
||||
),
|
||||
ImageProcessor: newImageProcessor(c),
|
||||
VisionModel: newVisionModel(c),
|
||||
TextModel: newTextModel(c),
|
||||
MultiModalProjector: &MultiModalProjector{
|
||||
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
|
||||
},
|
||||
}
|
||||
|
||||
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
||||
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
|
||||
return visionOutputs, nil
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
result = append(result,
|
||||
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
|
||||
input.Input{Token: 255999}, // "<start_of_image>""
|
||||
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
|
||||
)
|
||||
|
||||
// add image token placeholders
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
|
||||
|
||||
result = append(result,
|
||||
input.Input{Token: 256000}, // <end_of_image>
|
||||
input.Input{Token: 108}, // "\n\n"
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gemma3", New)
|
||||
}
|
||||
214
model/models/gemma3/model_text.go
Normal file
214
model/models/gemma3/model_text.go
Normal file
@@ -0,0 +1,214 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextConfig struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeScale float32
|
||||
ropeLocalBase, ropeGlobalBase float32
|
||||
largeModelScaling bool
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []TextLayer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextConfig
|
||||
}
|
||||
|
||||
const (
|
||||
gemmaGlobalCacheCount = 6
|
||||
gemma27BLayerCount = 62
|
||||
)
|
||||
|
||||
const (
|
||||
cacheTypeSWA = iota
|
||||
cacheTypeCausal
|
||||
)
|
||||
|
||||
func newTextModel(c fs.Config) *TextModel {
|
||||
numBlocks := int(c.Uint("block_count"))
|
||||
|
||||
m := TextModel{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
},
|
||||
),
|
||||
Layers: make([]TextLayer, numBlocks),
|
||||
TextConfig: &TextConfig{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
|
||||
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
|
||||
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
|
||||
ropeScale: c.Float("rope.freq_scale", 1.0),
|
||||
},
|
||||
}
|
||||
|
||||
if numBlocks == gemma27BLayerCount {
|
||||
m.largeModelScaling = true
|
||||
}
|
||||
|
||||
return &m
|
||||
}
|
||||
|
||||
type TextSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
ropeBase := opts.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = opts.ropeGlobalBase
|
||||
}
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
} else {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
|
||||
}
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
|
||||
scaleFactor := 1.0
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeBase := m.TextConfig.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = m.TextConfig.ropeGlobalBase
|
||||
}
|
||||
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type TextLayer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *TextSelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *TextMLP
|
||||
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, layer, hiddenState, positionIDs, cache, opts)
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
|
||||
|
||||
// set image embeddings
|
||||
var except []int
|
||||
for _, image := range batch.Multimodal {
|
||||
visionOutputs := image.Multimodal.(ml.Tensor)
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
|
||||
|
||||
for i := range visionOutputs.Dim(1) {
|
||||
except = append(except, image.Index+i)
|
||||
}
|
||||
}
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
// gemma alternates between the sliding window (local) and causal (global)
|
||||
// kv cache every 6 layers
|
||||
cacheType := cacheTypeSWA
|
||||
if (i+1)%gemmaGlobalCacheCount == 0 {
|
||||
cacheType = cacheTypeCausal
|
||||
}
|
||||
cache.SetLayer(i)
|
||||
wc := cache.(*kvcache.WrapperCache)
|
||||
wc.SetLayerType(cacheType)
|
||||
|
||||
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
|
||||
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
|
||||
}
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState)
|
||||
}
|
||||
128
model/models/gemma3/model_vision.go
Normal file
128
model/models/gemma3/model_vision.go
Normal file
@@ -0,0 +1,128 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
var batchSize int = 1
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
|
||||
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), nil)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
|
||||
hiddenState = sa.Output.Forward(ctx, attention)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionMLP struct {
|
||||
FC1 *nn.Linear `gguf:"fc1"`
|
||||
FC2 *nn.Linear `gguf:"fc2"`
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
hiddenState = mlp.FC1.Forward(ctx, hiddenState).GELU(ctx)
|
||||
hiddenState = mlp.FC2.Forward(ctx, hiddenState)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
type VisionEncoderLayer struct {
|
||||
LayerNorm1 *nn.LayerNorm `gguf:"layer_norm1"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
|
||||
LayerNorm2 *nn.LayerNorm `gguf:"layer_norm2"`
|
||||
MLP *VisionMLP `gguf:"mlp"`
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
// self attention
|
||||
hiddenState = e.LayerNorm1.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
// feed forward
|
||||
hiddenState = e.LayerNorm2.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize, numHeads int
|
||||
imageSize, patchSize int
|
||||
eps float32
|
||||
}
|
||||
|
||||
type VisionModel struct {
|
||||
PatchEmbedding *nn.Conv2D `gguf:"patch_embedding"`
|
||||
PositionEmbedding *nn.Embedding `gguf:"position_embedding"`
|
||||
PostLayerNorm *nn.LayerNorm `gguf:"post_layernorm"`
|
||||
|
||||
Layers []VisionEncoderLayer `gguf:"blk"`
|
||||
|
||||
*VisionModelOptions
|
||||
}
|
||||
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
|
||||
|
||||
hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
||||
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
|
||||
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
positions := make([]int32, numPatches)
|
||||
for i := range positions {
|
||||
positions[i] = int32(i)
|
||||
}
|
||||
|
||||
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positionIDs))
|
||||
|
||||
for _, layer := range m.Layers {
|
||||
hiddenState = layer.Forward(ctx, hiddenState, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
return &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: int(c.Uint("vision.embedding_length")),
|
||||
numHeads: int(c.Uint("vision.attention.head_count")),
|
||||
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
patchSize: int(c.Uint("vision.patch_size")),
|
||||
|
||||
eps: c.Float("vision.attention.layer_norm_epsilon"),
|
||||
},
|
||||
}
|
||||
}
|
||||
58
model/models/gemma3/process_image.go
Normal file
58
model/models/gemma3/process_image.go
Normal file
@@ -0,0 +1,58 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"image"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize, patchSize, numChannels int
|
||||
}
|
||||
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
patchSize: int(c.Uint("vision.patch_size")),
|
||||
numChannels: int(c.Uint("vision.num_channels")),
|
||||
}
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) pack(img image.Image, mean, std [3]float32) []float32 {
|
||||
var pixelVals, rVals, gVals, bVals []float32
|
||||
|
||||
bounds := img.Bounds()
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
||||
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
||||
c := img.At(x, y)
|
||||
r, g, b, _ := c.RGBA()
|
||||
rVal := float32(r>>8) / 255.0
|
||||
gVal := float32(g>>8) / 255.0
|
||||
bVal := float32(b>>8) / 255.0
|
||||
|
||||
rVal = (rVal - mean[0]) / std[0]
|
||||
gVal = (gVal - mean[1]) / std[1]
|
||||
bVal = (bVal - mean[2]) / std[2]
|
||||
|
||||
rVals = append(rVals, rVal)
|
||||
gVals = append(gVals, gVal)
|
||||
bVals = append(bVals, bVal)
|
||||
}
|
||||
}
|
||||
|
||||
pixelVals = append(pixelVals, rVals...)
|
||||
pixelVals = append(pixelVals, gVals...)
|
||||
pixelVals = append(pixelVals, bVals...)
|
||||
|
||||
return pixelVals
|
||||
}
|
||||
|
||||
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
|
||||
outputSize := image.Point{p.imageSize, p.imageSize}
|
||||
newImage := imageproc.Composite(img)
|
||||
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
|
||||
|
||||
data := p.pack(newImage, imageproc.ImageNetStandardMean, imageproc.ImageNetStandardSTD)
|
||||
return data, nil
|
||||
}
|
||||
@@ -1,16 +1,19 @@
|
||||
package llama
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
@@ -28,7 +31,11 @@ type Model struct {
|
||||
*Options
|
||||
}
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
||||
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
||||
}
|
||||
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
@@ -37,7 +44,9 @@ func New(c ml.Config) (model.Model, error) {
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
@@ -58,43 +67,38 @@ func New(c ml.Config) (model.Model, error) {
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
cache.Put(ctx, k, v)
|
||||
k, v, mask := cache.Get(ctx)
|
||||
|
||||
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, mask, scaleFactor)
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
@@ -136,23 +140,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
|
||||
56
model/models/mistral3/imageproc.go
Normal file
56
model/models/mistral3/imageproc.go
Normal file
@@ -0,0 +1,56 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize int
|
||||
patchSize int
|
||||
numChannels int
|
||||
longestEdge int
|
||||
}
|
||||
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size", 1540)),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)),
|
||||
longestEdge: int(c.Uint("vision.longest_edge", 1540)),
|
||||
}
|
||||
}
|
||||
|
||||
// ProcessImage prepares an image for the vision model by:
|
||||
// 1. Compositing transparent images
|
||||
// 2. Resizing to fit model constraints while preserving aspect ratio
|
||||
// 3. Normalizing pixel values
|
||||
// Returns normalized image data and the final size in pixels
|
||||
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, image.Point, error) {
|
||||
img = imageproc.Composite(img)
|
||||
|
||||
size := img.Bounds().Size()
|
||||
ratio := max(float64(size.Y)/float64(p.longestEdge), float64(size.X)/float64(p.longestEdge))
|
||||
if ratio > 1.0 {
|
||||
size = image.Point{
|
||||
int(math.Floor(float64(size.X) / ratio)),
|
||||
int(math.Floor(float64(size.Y) / ratio)),
|
||||
}
|
||||
}
|
||||
|
||||
patchesX := (size.X-1)/p.patchSize + 1
|
||||
patchesY := (size.Y-1)/p.patchSize + 1
|
||||
size = image.Point{
|
||||
patchesX * p.patchSize,
|
||||
patchesY * p.patchSize,
|
||||
}
|
||||
|
||||
img = imageproc.Resize(img, size, imageproc.ResizeBilinear)
|
||||
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
return data, size, nil
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user