Compare commits

..

70 Commits

Author SHA1 Message Date
ParthSareen
f257f1fd04 sample: do all sorting in topK 2025-03-12 14:20:18 -04:00
ParthSareen
8b1ae03302 sample: simplify top_k=0 sorting 2025-03-12 14:20:18 -04:00
ParthSareen
db10a7da88 sample: use container/heap for top_k 2025-03-12 14:20:11 -04:00
Michael Yang
aee28501b5 Merge pull request #9661 from ollama/gemma
engine: add gemma support
2025-03-11 15:07:50 -07:00
jmorganca
83f0ec8269 all: address linter errors 2025-03-11 14:49:20 -07:00
jmorganca
c6b6938b3a kvcache: fix tests by adding AvgPool2D stub 2025-03-11 14:49:20 -07:00
jmorganca
fb4664fcec model: add more spm tokenizer tests 2025-03-11 14:49:20 -07:00
jmorganca
20e3593863 model: validate left and right pairs before merging them 2025-03-11 14:49:20 -07:00
Michael Yang
63a394068c use 2d pooling 2025-03-11 14:49:20 -07:00
Daniel Hiltgen
ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 2025-03-11 14:49:20 -07:00
jmorganca
11bfa62796 add trailing \n\n after <end_of_image> to match reference implementation 2025-03-11 14:49:20 -07:00
jmorganca
f63e62e546 reduce kernel size, add TODO for loading from config 2025-03-11 14:49:20 -07:00
jmorganca
65b0f329d1 Revert "Allow models to force a new batch"
This reverts commit c7eae586b899083acebcd9b3847b89ea78c2850c.
2025-03-11 14:49:20 -07:00
Jesse Gross
06007c0a18 Allow models to force a new batch
This is useful for a few things:
 - Work around bugs, such as having 2 images in one batch
 - Keep the image in a single batch for fully connected attention
 - Improve performance by not evaluating embeddings multiple times
2025-03-11 14:49:20 -07:00
Jesse Gross
a8e83a7654 Disable causal attention based on batch index
Currently we are using positions, which are relative to a
sequence and may not be unique.
2025-03-11 14:49:20 -07:00
Jesse Gross
475005504e Restrict Gemma to a single image per request 2025-03-11 14:49:20 -07:00
Jesse Gross
2c40c4d35e Fix follow up images and images split across batches 2025-03-11 14:49:19 -07:00
Michael Yang
e95278932b use non-causal mask only for image positions 2025-03-11 14:49:19 -07:00
Michael Yang
9d2a20a763 use non-causal mask for inputs with images 2025-03-11 14:49:19 -07:00
Patrick Devine
2e54d72fc3 fix gemma3 1b conversion 2025-03-11 14:49:19 -07:00
Michael Yang
6b32a2d549 compat with upstream gguf 2025-03-11 14:49:19 -07:00
Michael Yang
c5cbe4fc2a fallback to cpu 2025-03-11 14:49:19 -07:00
Michael Yang
f888912870 fix vision encoder 2025-03-11 14:49:19 -07:00
Michael Yang
9e4642e9b3 ollama debug tensor 2025-03-11 14:49:19 -07:00
Michael Yang
6b0486c216 duplicate token_embd to output 2025-03-11 14:49:19 -07:00
Michael Yang
d368c039f0 skip repacking vision tensors 2025-03-11 14:49:19 -07:00
Patrick Devine
9b54267e69 fix configs 2025-03-11 14:49:19 -07:00
Michael Yang
46bb0169c4 update model 2025-03-11 14:49:19 -07:00
Michael Yang
8934324b72 use fast attention 2025-03-11 14:49:18 -07:00
Jesse Gross
0e886595bf Fix tests and drift from main 2025-03-11 14:49:18 -07:00
Patrick Devine
c62861f4fa fix conversion 2025-03-11 14:49:18 -07:00
Michael Yang
0df1800436 set non-causal attention 2025-03-11 14:49:18 -07:00
Patrick Devine
631fecc6d9 temporary work around for converting spm 2025-03-11 14:49:18 -07:00
Jesse Gross
4346c2409d fix drift from main 2025-03-11 14:49:18 -07:00
Michael Yang
4b037a97dc add gemma vision encoder 2025-03-11 14:49:17 -07:00
Patrick Devine
5f74d1fd47 gemma2 impl 2025-03-11 14:35:08 -07:00
Daniel Hiltgen
4dcf80167a Build release for windows with local script (#9636) 2025-03-11 08:34:20 -07:00
Michael Yang
26a26998fb Merge pull request #9590 from ollama/mxyng/dump-pad
fix: pad tensor item if ge zero
2025-03-10 16:34:55 -07:00
Michael Yang
9926eae015 fix: pad tensor item if ge zero
this produces a nicer output since both positive and negative values
produces the same width
2025-03-10 16:18:12 -07:00
Vincent Koc
8585b7b151 docs: add opik to observability integrations (#9626) 2025-03-10 16:15:10 -07:00
Parth Sareen
7e34f4fbfa sample: add numerical stability to temperature/softmax transform (#9631) 2025-03-10 14:43:53 -07:00
Michael Yang
fe776293f7 Merge pull request #9569 from dwt/patch-1
Better WantedBy declaration
2025-03-10 14:09:37 -07:00
frob
d8a5d96b98 docs: Add OLLAMA_CONTEXT_LENGTH to FAQ. (#9545) 2025-03-10 11:02:54 -07:00
Xiaowei Zhu
757668c42f docs: add SwiftChat (#9540) 2025-03-10 11:01:09 -07:00
Sam
96ec8afd09 docs(tool): add mcp-llm (#9537) 2025-03-10 09:52:02 -07:00
Jeffrey Morgan
e093db92c4 sample: temporarily use grammars for constrained generation in new engine (#9586) 2025-03-10 16:17:39 +01:00
Jesse Gross
a1cda80bcb model: Update encoder cache to use multimodal input processing handler
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.

Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.

Most of this is simply moving the input data structures to a new
package to avoid import cycles.
2025-03-09 17:05:26 -07:00
Jesse Gross
4614fafae0 ollamarunner: Don't panic for unimplemented features at runtime.
It's ok to fail on startup but we shouldn't panic during runtime
based on user input. Downgrade the panic to a warning.
2025-03-08 18:58:18 -08:00
Jesse Gross
4100ed7bdd ml: Add support for quantized KV cache
Similar to the llama engine, quantizing the KV cache requires
flash attention to be enabled through the Ollama server.
2025-03-07 18:43:39 -08:00
Jesse Gross
f52b2615ef kvcache: Set context for shift offsets 2025-03-07 18:43:39 -08:00
Jesse Gross
25f9b152f9 ggml-backend: Ensure allocation meet backend requirements
Backends can impose additional alignment requirements on buffer sizes.
We should ensure that we meet these or allocations can fail.
2025-03-07 18:43:39 -08:00
Jesse Gross
6da8b6a879 kvcache: Support non-causal attention
Models can disable causality for all or part of their processing
while continuing to store data in the KV cache.
2025-03-07 18:39:27 -08:00
Jesse Gross
0daaaef8c9 ollamarunner: Quiet debug logging and panic on unimplemented features
Debug logging of every token has previously caused test timeouts
on slower machines.
2025-03-07 18:38:02 -08:00
Jesse Gross
98272fbd58 additional review comments 2025-03-07 14:08:21 -08:00
Michael Yang
b27e8f3f10 ml/backend/ggml: use backend buffer type
this ensures the tensor is created on the right buffer type for backends
such as cpu
2025-03-07 14:08:21 -08:00
Michael Yang
45df786f09 comments 2025-03-07 14:08:21 -08:00
Michael Yang
daaf42e4a4 ml/backend/ggml: clean up 2025-03-07 14:08:21 -08:00
Michael Yang
2dc60d4620 ml/backend/ggml: offload vision to cpu
temporary until tensor loading can accurately account for vision models
2025-03-07 14:08:21 -08:00
Michael Yang
b5312f30e8 ml/backend/ggml: handle tensor split 2025-03-07 14:08:21 -08:00
Michael Yang
26c2e0bd35 ml/backend/ggml: handle user specified cpu offloading 2025-03-07 14:08:21 -08:00
Michael Yang
bf920883d5 ml/backend/ggml: set cpu n_threads 2025-03-07 14:08:21 -08:00
Michael Yang
58b9ec1f6b kvcache: update tests 2025-03-07 14:08:21 -08:00
Michael Yang
7bae7fa5ce ml/backend/ggml: create tensor on specific backend
some tensors should be created on specific backends to reduce number of
copies and improve performance
2025-03-07 14:08:21 -08:00
Michael Yang
764e199d67 kvcache: create cache ctx per layer
each cache layer creates and maintains its own context instead of using
a large context for all layers
2025-03-07 14:08:21 -08:00
Michael Yang
bfce55db3d model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not
themselves repeated. this change copies these tensors into the same
backends as their repeating counterparts to minimize copying tensors
between backends
2025-03-07 14:08:21 -08:00
Michael Yang
bab6f34dc0 ml/backend/ggml: update model loading for hybrid/multi backends
use a similar strategy as llama.cpp for deciding where tensors should be
allocated. this will be improved later to be aware of usable memory
before assigning the tensor
2025-03-07 14:08:21 -08:00
Parth Sareen
0682dae027 sample: improve ollama engine sampler performance (#9374)
This change bring in various interface cleanups along with greatly improving the performance of the sampler.

Tested with llama3.2 on local machine.
Improves performance from ~ 70 tokens/s -> 135 tokens/s with topK(40) enabled.
Without topK performance is ~ 110 tokens/s
2025-03-07 12:37:48 -08:00
Breaker
1f6986e919 readme: add QwQ to the supported models list (#9565) 2025-03-07 09:30:07 -08:00
Jeffrey Morgan
4289c74359 llama: fix kv loading on snowflake-arctic-embed models (#9536) 2025-03-07 09:25:34 -08:00
‮rekcäH nitraM‮
25248f4bd5 Better WantedBy declaration
The problem with default.target is that it always points to the target that is currently started. So if you boot into single user mode or the rescue mode still Ollama tries to start.

I noticed this because either tried (and failed) to start all the time during a system update, where Ollama definitely is not wanted.
2025-03-07 10:26:31 +01:00
58 changed files with 3265 additions and 902 deletions

View File

@@ -54,6 +54,7 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
@@ -275,6 +276,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
@@ -432,6 +434,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -509,6 +512,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
@@ -560,12 +564,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@@ -13,8 +13,13 @@ import (
)
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
TextModel TextParameters `json:"text_config"`
}
type TextParameters struct {
VocabSize uint32 `json:"vocab_size"`
}
type AdapterParameters struct {
@@ -185,6 +190,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":
@@ -213,7 +220,14 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
}
vocabSize := int(p.VocabSize)
if vocabSize == 0 {
tVocabSize := int(p.TextModel.VocabSize)
vocabSize = tVocabSize
}
switch {
case vocabSize == 0:
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {

View File

@@ -45,7 +45,7 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}

142
convert/convert_gemma3.go Normal file
View File

@@ -0,0 +1,142 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type gemma3Model struct {
gemmaModel
Architecture string
TextModel struct {
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
SlidingWindow uint32 `json:"sliding_window"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
ImageSize uint32 `json:"image_size"` // image_size 560
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
}
const (
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3"
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
kv["gemma3.block_count"] = numBlocks
var (
numHeads uint32
numKVHeads uint32
)
switch numBlocks {
case gemma4BLayerCount:
numHeads = 8
numKVHeads = 4
case gemma12BLayerCount:
numHeads = 16
numKVHeads = 8
case gemma27BLayerCount:
numHeads = 32
numKVHeads = 16
default:
numHeads = p.NumAttentionHeads
numKVHeads = p.NumKeyValueHeads
}
kv["gemma3.attention.head_count"] = numHeads
kv["gemma3.attention.head_count_kv"] = numKVHeads
switch p.Architecture {
case "Gemma3ForCausalLM":
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 8192)
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
}
if p.MultiModalTokensPerImage > 0 {
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
}
return kv
}
func (p *gemma3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"vision_tower.vision_model.embeddings", "v",
"vision_tower.vision_model", "v",
"vision_model.vision_model.embeddings", "v",
"vision_model.vision_model", "v",
"language_model.", "",
"model.layers", "blk",
"encoder.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.out_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"input_projection_weight", "input_projection.weight",
"multi_modal_projector", "mm",
}
}

View File

@@ -6,7 +6,9 @@ import (
"errors"
"fmt"
"io/fs"
"log/slog"
"os"
"reflect"
"slices"
"google.golang.org/protobuf/proto"
@@ -15,6 +17,8 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
slog.Debug("using spm vocabulary")
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
v.Types = append(v.Types, int32(t))
default:
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
for _, t := range ast {
if t.Content == piece.GetPiece() {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
break
}
}
v.Types = append(v.Types, tt)
}
}
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
for _, t := range ts {
if t.id < len(v.Tokens) {
if v.Tokens[t.id] == t.content {
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
continue
}
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
}
if t.id != len(v.Tokens) {
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
}
v.Tokens = append(v.Tokens, t.content)
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
type specialToken struct {
Content string `json:"content"`
Lstrip bool `json:"lstrip"`
Normalized bool `json:"normalized"`
Rstrip bool `json:"rstrip"`
SingleWord bool `json:"single_word"`
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
AdditionalSpecialTokens any `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
var ast []specialToken
switch st := m.AdditionalSpecialTokens.(type) {
case []string:
for _, s := range st {
ast = append(ast, specialToken{Content: s})
}
case []any:
for _, s := range st {
// marshal and unmarshal the object to get the special token
tMap := s.(map[string]any)
data, err := json.Marshal(tMap)
if err != nil {
return nil, err
}
var token specialToken
err = json.Unmarshal(data, &token)
if err != nil {
return nil, err
}
ast = append(ast, token)
}
default:
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
}
slog.Debug("spm tokenizer", "additional tokens", ast)
return ast, nil
}

View File

@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
To change this when using `ollama run`, use `/set parameter`:

View File

@@ -75,7 +75,7 @@ RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
WantedBy=multi-user.target
```
Then start the service:

View File

@@ -124,6 +124,19 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
return s
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
r := keyValue(kv, key, &array{})
s := make([]float32, r.size)
for i := range r.size {
s[i] = float32(r.values[i].(float32))
}
return s
}
func (kv KV) OllamaEngineRequired() bool {
return kv.Architecture() == "gemma3"
}
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
@@ -476,7 +489,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2":
case "gemma", "gemma2", "gemma3":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),

2
go.mod
View File

@@ -25,7 +25,6 @@ require (
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
golang.org/x/tools v0.30.0
gonum.org/v1/gonum v0.15.0
)
require (
@@ -45,6 +44,7 @@ require (
github.com/xtgo/set v1.0.0 // indirect
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.15.0 // indirect
gorgonia.org/vecf32 v0.9.0 // indirect
gorgonia.org/vecf64 v0.9.0 // indirect
)

View File

@@ -4,6 +4,7 @@ import (
"errors"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var (
@@ -51,7 +52,7 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
StartForward(ctx ml.Context, opts input.Options) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@@ -8,6 +8,7 @@ import (
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
@@ -22,6 +23,8 @@ type Causal struct {
Capacity int32
windowSize int32
opts CausalOptions
// config controls mostly backend-specific optimizations
config *ml.CacheConfig
@@ -42,6 +45,12 @@ type Causal struct {
// locations in the cache that are needed for this batch
curCellRange cellRange
// curSequences is the sequences corresponding to this pass's entries in the cache
curSequences []int
// curPositions is the positions corresponding to this pass's entries in the cache
curPositions []int32
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
@@ -55,8 +64,8 @@ type Causal struct {
shiftFn shiftFn
backend ml.Backend
cacheCtx ml.Context
keys, values []ml.Tensor
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
}
type cacheCell struct {
@@ -70,11 +79,23 @@ type cellRange struct {
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
return &Causal{
windowSize: math.MaxInt32,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{windowSize: windowSize, shiftFn: shift}
return &Causal{
windowSize: windowSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
@@ -103,7 +124,6 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.cells = make([]cacheCell, c.Capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *Causal) SetConfig(config ml.CacheConfig) {
@@ -115,11 +135,16 @@ func (c *Causal) SetConfig(config ml.CacheConfig) {
}
func (c *Causal) Close() {
c.cacheCtx.Close()
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
c.opts.Except = nil
var err error
c.curLoc, err = c.findStartLoc()
@@ -132,8 +157,8 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
@@ -158,7 +183,7 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx, positions, seqs)
c.curMask, err = c.buildMask(ctx)
return err
}
@@ -199,7 +224,7 @@ func roundUp(length, pad int) int {
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
@@ -210,9 +235,11 @@ func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Te
mask := make([]float32, batchSize*length)
for i := range c.curBatchSize {
enabled := !slices.Contains(c.opts.Except, i)
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
c.cells[j].pos < positions[i]-c.windowSize {
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
@@ -224,13 +251,13 @@ func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Te
mask[i] = float32(math.Inf(-1))
}
maskTensor, err := ctx.FromFloatSlice(mask, length, batchSize)
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Empty(c.config.MaskDType, maskTensor.Shape()...)
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
}
@@ -239,13 +266,11 @@ func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Te
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
for i := range c.keys {
if c.keys[i] == nil {
for i, key := range c.keys {
if key == nil {
continue
}
key := c.keys[i]
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
@@ -305,7 +330,7 @@ func (c *Causal) defrag() {
layers++
}
maxMoves := ctx.MaxTensors() / (6 * layers)
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
@@ -377,14 +402,30 @@ func (c *Causal) defrag() {
}
func (c *Causal) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
type CausalOptions struct {
// Enabled controls whether the causal mask is generated for a particular index in a batch
Except []int
}
// SetCausal disables causal mask generation for a particular range of indicies in
// the current batch for subsequent calls to Get. The state resets for the next forward pass.
func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts
if ctx != nil {
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
}
}
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
@@ -433,13 +474,19 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
}
}
@@ -501,7 +548,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
}
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}

View File

@@ -6,6 +6,7 @@ import (
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type testCase struct {
@@ -269,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, test.pos, test.seqs)
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -303,6 +304,10 @@ func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
@@ -346,11 +351,15 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return out, nil
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxTensors() int {
func (c *testContext) MaxGraphNodes() int {
return 10
}
@@ -432,11 +441,19 @@ func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
@@ -486,6 +503,10 @@ func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}

View File

@@ -4,6 +4,7 @@ import (
"fmt"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Encoder cache stores K and V tensors that are position independent
@@ -35,13 +36,17 @@ type EncoderCache struct {
encoderPos int32
// ** cache data storage **
cacheCtx ml.Context
keys, values []ml.Tensor
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{}
return &EncoderCache{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
@@ -57,7 +62,7 @@ func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
c.cacheCtx = backend.NewContext()
c.backend = backend
}
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
@@ -69,22 +74,21 @@ func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
}
func (c *EncoderCache) Close() {
c.cacheCtx.Close()
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
// We work with the most recent image
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
}
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
@@ -104,9 +108,16 @@ func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
value = value.Permute(ctx, 1, 2, 0, 3)
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Empty(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Empty(value.DType(), value.Shape()...)
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
}
if _, ok := c.values[c.curLayer]; !ok {
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
}
ctx.Forward(

View File

@@ -4,6 +4,7 @@ import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Wrapper cache is a container for multiple types of caches,
@@ -40,14 +41,14 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, positions, seqs)
err := cache.StartForward(ctx, opts)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
}
}
return err

View File

@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN

View File

@@ -245,6 +245,20 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
return &m, nil
}
func LoadVocabFromFile(path string) (*Vocab, error) {
mp := C.CString(path)
defer C.free(unsafe.Pointer(mp))
v := Vocab{c: C.llama_load_vocab_from_file(mp)}
if v.c == nil {
return nil, fmt.Errorf("unable to load vocab: %s", path)
}
return &v, nil
}
func FreeVocab(vocab *Vocab) {
C.llama_free_vocab(vocab.c)
}
func FreeModel(model *Model) {
C.llama_model_free(model.c)
}
@@ -293,6 +307,10 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
return nil
}
type Vocab struct {
c *C.struct_llama_vocab
}
func (m *Model) Vocab() *C.struct_llama_vocab {
return C.llama_model_get_vocab(m.c)
}
@@ -669,3 +687,53 @@ func SchemaToGrammar(schema []byte) []byte {
}
return buf[:n]
}
type Sampler struct {
c *C.struct_llama_sampler
}
func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
cGrammar := C.CString(grammar)
cRoot := C.CString("root")
defer C.free(unsafe.Pointer(cGrammar))
defer C.free(unsafe.Pointer(cRoot))
sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
return sampler
}
func (s *Sampler) Accept(token int32) {
C.llama_sampler_accept(s.c, C.llama_token(token))
}
type TokenData struct {
Id int32
Logit float32
}
func (s *Sampler) Apply(tokens []TokenData) {
tds := make([]C.struct_llama_token_data, len(tokens))
for i, token := range tokens {
tds[i] = C.struct_llama_token_data{
id: C.int32_t(token.Id),
logit: C.float(token.Logit),
p: C.float(0.0),
}
}
tda := &C.llama_token_data_array{
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
size: C.size_t(len(tokens)),
selected: C.int64_t(-1),
sorted: C.bool(false),
}
var pinner runtime.Pinner
pinner.Pin(&tds[0])
defer pinner.Unpin()
C.llama_sampler_apply(s.c, tda)
for i := range tokens {
tokens[i].Logit = float32(tds[i].logit)
}
}

View File

@@ -0,0 +1,64 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Wed, 5 Mar 2025 17:41:07 -0800
Subject: [PATCH] fix string arr kv loading
---
ggml/include/gguf.h | 1 +
ggml/src/gguf.cpp | 7 +++++--
src/llama-vocab.cpp | 2 +-
3 files changed, 7 insertions(+), 3 deletions(-)
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
index 79ee2020..3efb22f0 100644
--- a/ggml/include/gguf.h
+++ b/ggml/include/gguf.h
@@ -114,6 +114,7 @@ extern "C" {
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
+ GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
index ab13669c..f75b923f 100644
--- a/ggml/src/gguf.cpp
+++ b/ggml/src/gguf.cpp
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
+size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].data.size();
+}
+
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index c7ff28be..7a185443 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
- size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
+ size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN

View File

@@ -0,0 +1,33 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Sun, 9 Mar 2025 14:44:16 -0700
Subject: [PATCH] ollama debug tensor
---
ggml/src/ggml-cpu/ggml-cpu.c | 6 ++++++
1 file changed, 6 insertions(+)
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
index 2f606d82..ec60e8fc 100644
--- a/ggml/src/ggml-cpu/ggml-cpu.c
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
@@ -11,6 +11,8 @@
#include "ggml-threading.h"
#include "ggml.h"
+#include "ollama-debug.h"
+
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node);
+#ifdef OLLAMA_DEBUG
+ ollama_debug(node, true);
+#endif
+
if (state->ith == 0 && cplan->abort_callback &&
cplan->abort_callback(cplan->abort_callback_data)) {
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);

View File

@@ -2,6 +2,9 @@
#include "sampling.h"
#include "sampling_ext.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "llama-model.h"
#include "llama-model-loader.h"
struct common_sampler *common_sampler_cinit(const struct llama_model *model, struct common_sampler_cparams *params) {
try {
@@ -64,3 +67,22 @@ int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len)
return 0;
}
}
struct llama_vocab * llama_load_vocab_from_file(const char * fname) {
llama_vocab * vocab = new llama_vocab();
try {
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
std::vector<std::string> splits = {};
llama_model_loader ml(std::string(fname), splits, false, false, nullptr);
vocab->load(ml, kv);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
return nullptr;
}
return vocab;
}
void llama_free_vocab(struct llama_vocab * vocab) {
delete vocab;
}

View File

@@ -35,6 +35,9 @@ extern "C"
int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len);
struct llama_vocab * llama_load_vocab_from_file(const char * fname);
void llama_free_vocab(struct llama_vocab * vocab);
#ifdef __cplusplus
}
#endif

View File

@@ -271,7 +271,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
var llamaModel *llama.Model
var textProcessor model.TextProcessor
if envconfig.NewEngine() {
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
textProcessor, err = model.NewTextProcessor(modelPath)
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
@@ -729,29 +729,24 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
if len(req.Format) > 0 {
format := string(req.Format)
if format != `null` && format != `""` {
if s.textProcessor != nil {
// New engine handles this on the backend
request["format"] = req.Format
} else {
// old engine
switch format {
case `"json"`:
request["grammar"] = grammarJSON
default:
if req.Format[0] != '{' {
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
}
// User provided a JSON schema
g := llama.SchemaToGrammar(req.Format)
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
request["grammar"] = string(g)
}
switch string(req.Format) {
case `null`, `""`:
// Field was set, but "missing" a value. We accept
// these as "not set".
break
case `"json"`:
request["grammar"] = grammarJSON
default:
if req.Format[0] != '{' {
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
}
// User provided a JSON schema
g := llama.SchemaToGrammar(req.Format)
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
request["grammar"] = string(g)
}
}

View File

@@ -5,6 +5,7 @@ import (
"encoding/binary"
"fmt"
"os"
"slices"
"strconv"
"strings"
)
@@ -18,12 +19,14 @@ type Config interface {
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
Floats(string, ...[]float32) []float32
}
type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
NewContextSize(size int) Context
}
// BackendCacheConfig should be implemented by backends that need special output
@@ -99,8 +102,17 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
MaxTensors() int
MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating input tensors
Input() Context
// Output returns a context appropriate for creating output tensors
Output() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}
type Tensor interface {
@@ -123,8 +135,10 @@ type Tensor interface {
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
@@ -134,6 +148,7 @@ type Tensor interface {
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Pad(ctx Context, shape ...int) Tensor
Unpad(ctx Context, shape ...int) Tensor
@@ -205,7 +220,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16:
case DTypeF16, DTypeQ80, DTypeQ40:
f32 := ctx.Empty(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
@@ -231,16 +246,17 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
}
shape := t.Shape()
slices.Reverse(shape)
var sb strings.Builder
var f func([]int, int)
f = func(dims []int, stride int) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
sb.WriteString("[")
defer func() { sb.WriteString("]") }()
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
fmt.Fprint(&sb, "..., ")
sb.WriteString("..., ")
// skip to next printable element
skip := dims[0] - 2*items
if len(dims) > 1 {
@@ -255,9 +271,14 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, fn(s[stride+i]))
text := fn(s[stride+i])
if len(text) > 0 && text[0] != '-' {
sb.WriteString(" ")
}
sb.WriteString(text)
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
sb.WriteString(", ")
}
}
}
@@ -273,5 +294,7 @@ const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeQ80
DTypeQ40
DTypeI32
)

View File

@@ -9,67 +9,53 @@ package ggml
import "C"
import (
"errors"
"fmt"
"io"
"log/slog"
"maps"
"os"
"sync"
"slices"
"strconv"
"strings"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"golang.org/x/sync/errgroup"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"golang.org/x/sync/errgroup"
)
type device struct {
d *C.struct_ggml_backend_device
}
func (d device) LogValue() slog.Value {
var free, total uint64
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
kind := "unknown"
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
kind = "cpu"
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
kind = "gpu"
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
kind = "accel"
}
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
slog.String("kind", kind),
slog.String("free", format.HumanBytes2(free)),
slog.String("total", format.HumanBytes2(total)),
)
}
var devices = sync.OnceValue(func() []device {
func devices() []*C.struct_ggml_backend_device {
ggml.OnceLoad()
s := make([]device, C.ggml_backend_dev_count())
for i := range s {
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
for i := range ds {
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
}
return s
})
return ds
}
type Backend struct {
meta *fs.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
input *C.struct_ggml_backend_buffer_type
// output is the backend used for outputs
output *C.struct_ggml_backend_buffer_type
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
flashAttention bool
meta *fs.GGML
cpus, gpus []Context
tensors map[string]*Context
sched *C.struct_ggml_backend_sched
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
}
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
@@ -88,107 +74,315 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
"num_key_values", len(meta.KV()),
)
var cpus, gpus []Context
type deviceBufferType struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
}
var cpus, accels, gpus []*C.struct_ggml_backend_device
for _, d := range devices() {
switch C.ggml_backend_dev_type(d.d) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
}
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
slog.Info("cpu", "device", d)
cpus = append(cpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
slog.Info("gpu", "device", d)
gpus = append(gpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
}
}
ctxFunc := func(s []Context) (*Context, error) {
for _, e := range s {
return &e, nil
}
return nil, fmt.Errorf("no devices available")
}
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
for _, t := range meta.Tensors().Items() {
c, err := ctxFunc(append(gpus, cpus...))
if err != nil {
return nil, err
}
func() {
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_set_name(tt, cname)
tensors[t] = c
}()
}
for _, b := range append(gpus, cpus...) {
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for t, c := range tensors {
g.Go(func() error {
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != int(t.Size()) {
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
}
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
return nil
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
for _, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
})
}
if err := g.Wait(); err != nil {
useDefaultSplit := true
for _, s := range params.TensorSplit {
if s != 0 {
useDefaultSplit = false
break
}
}
// calculate splits
splits := make([]float32, len(gpus))
if useDefaultSplit {
// default: split on free memory
for i := range splits {
var free, total C.size_t
C.ggml_backend_dev_memory(gpus[i], &free, &total)
splits[i] = float32(free)
}
} else {
splits = params.TensorSplit
}
var sum float32
// cumulative sum of all splits
for i := range splits {
sum += splits[i]
splits[i] = sum
}
// normalize splits
for i := range splits {
splits[i] /= sum
}
// inputs always use cpu
input := cpuDeviceBufferType
blocks := int(meta.KV().BlockCount())
// define a range of gpu layers. anything outside of this range is assigned to the cpu
gpuRangeStart := max(0, blocks-params.NumGPULayers)
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
assignLayer := func(i int) deviceBufferType {
if i < gpuRangeStart || i >= gpuRangeStop {
return cpuDeviceBufferType
}
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
if index < 0 || index >= len(gpuDeviceBufferTypes) {
return cpuDeviceBufferType
}
return gpuDeviceBufferTypes[index]
}
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
// outputs are assigned iff allowed by splits and configured number of gpu layers
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
// each layer has at most 2 extra tensors for rope operations
maxTensors += blocks * 2
type tensor struct {
source *fs.Tensor
target string
}
// some tensors are mapped to different names so keep a list
targets := make(map[string][]string)
// contexts are shared by tensors of the same buffer type
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
contains := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts)
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts)
}
case contains(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts)
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
// these tensors should be repeated per layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts)
}
default:
layerIndex := -1
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
layerIndex = i
}
}
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts)
} else {
// load all other tensors on the cpu
createTensor(tensor{source: t}, input.bts)
}
}
}
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
for _, target := range targets[t.Name] {
g.Go(func() error {
if target == "" {
target = t.Name
}
tt, ok := tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != len(bts) {
return errors.New("short read")
}
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
return nil
})
}
}
if g.Wait() != nil {
return nil, err
}
backends := make([]*C.struct_ggml_backend, len(gpus)+len(cpus))
bufts := make([]*C.struct_ggml_backend_buffer_type, len(gpus)+len(cpus))
for i, c := range append(gpus, cpus...) {
backends[i] = c.backend
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
// create backends and buffer types used for the compute graph scheduler
var schedBackends []*C.struct_ggml_backend
var schedBufts []*C.struct_ggml_backend_buffer_type
for _, d := range append(gpus, append(accels, cpus...)...) {
b := C.ggml_backend_dev_init(d, nil)
bt := C.ggml_backend_get_default_buffer_type(b)
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
// use the first gpu host buffer type for gpu if possible
if hbt := C.ggml_backend_dev_host_buffer_type(gpus[0]); hbt != nil {
bt = hbt
}
}
deviceBufferTypes[d] = bt
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
}
}
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
return &Backend{
flashAttention: params.FlashAttention,
meta: meta,
cpus: cpus,
gpus: gpus,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
true,
),
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
m[i] = deviceBufferTypes[layer.d]
}
return m
}(),
maxGraphNodes: maxGraphNodes,
}, nil
}
@@ -201,36 +395,29 @@ func (b *Backend) Config() ml.Config {
}
func (b *Backend) Get(name string) ml.Tensor {
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
for _, c := range append(b.gpus, b.cpus...) {
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
return &Tensor{b: b, t: t}
}
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
nodes := max(8192, len(b.meta.Tensors().Items())*5)
c := C.ggml_init(C.struct_ggml_init_params{
mem_buffer: nil,
mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
no_alloc: true,
})
return b.NewContextSize(b.maxGraphNodes)
}
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
for i, c := range append(b.gpus, b.cpus...) {
backends[i] = c.backend
func (b *Backend) NewContextSize(n int) ml.Context {
if n > b.maxGraphNodes {
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
}
return &Context{
b: b,
ctx: c,
backend: backends[0],
nodes: nodes,
b: b,
maxGraphNodes: n,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
}
}
@@ -243,17 +430,60 @@ func (b *Backend) CacheConfig() ml.CacheConfig {
}
type Context struct {
b *Backend
ctx *C.struct_ggml_context
backend *C.struct_ggml_backend
b *Backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
nodes int
// buft is the buffer type used for new tensors
buft *C.struct_ggml_backend_buffer_type
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
}
func (c Context) Input() ml.Context {
if c.b.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.input,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Output() ml.Context {
if c.b.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Layer(i int) ml.Context {
if buft, ok := c.b.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
buft: buft,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
}
for _, tensor := range tensors {
@@ -263,7 +493,7 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
return c
}
func (c *Context) Compute(tensors ...ml.Tensor) {
func (c Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
C.ggml_backend_sched_reset(c.b.sched)
@@ -282,21 +512,48 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
}
}
func (c *Context) MaxTensors() int {
return c.nodes
func (c Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = (C.int64_t)(s)
sh[i] = C.int64_t(s)
}
return &sh[0]
}
func newTensor(ctx Context, dtype ml.DType, zero bool, shape []int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input, Output, or Layer before creating tensors")
}
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeQ80:
cdtype = C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
cdtype = C.GGML_TYPE_Q4_0
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
default:
panic("unsupported dtype")
}
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -306,41 +563,28 @@ func newTensor(ctx Context, dtype ml.DType, zero bool, shape []int) ml.Tensor {
}
}
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeI32:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
default:
panic("unsupported dtype")
}
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
if zero {
C.ggml_set_zero(t)
}
return &Tensor{b: ctx.b, t: t}
return &Tensor{b: c.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return newTensor(c, dtype, false, shape)
return c.newTensor(dtype, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return newTensor(c, dtype, true, shape)
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
func checkShape[S ~[]E, E any](s S, shape ...int) error {
n := len(s)
if n == 0 {
var shape C.int64_t = 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
return &Tensor{b: ctx.b, t: t}, nil
return nil
}
for _, v := range shape {
@@ -348,22 +592,36 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
}
if n != 1 {
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
return fmt.Errorf("invalid shape: %v", shape)
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
return &Tensor{b: ctx.b, t: t}, nil
return nil
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t, nil
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t, nil
}
func (c *Context) Close() {
@@ -431,6 +689,10 @@ func (t *Tensor) DType() ml.DType {
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_Q8_0:
return ml.DTypeQ80
case C.GGML_TYPE_Q4_0:
return ml.DTypeQ40
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
@@ -636,10 +898,13 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
}
const (
ropeTypeNorm C.int = iota
ropeTypeNorm C.int = 0
ropeTypeNeox C.int = 2
ropeTypeMrope C.int = 8
ropeTypeVision C.int = 24
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{b: t.b}
}
@@ -654,8 +919,8 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
C.int(ropeType),
131072, // YaRN n_ctx_train
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor
@@ -687,6 +952,27 @@ func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
}
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
}
}
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
var tt *C.struct_ggml_tensor
switch len(strides) {
case 0:
tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
case 1:
tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
default:
panic("unsupported number of dimensions")
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {

View File

@@ -114,6 +114,7 @@ extern "C" {
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);

View File

@@ -0,0 +1,11 @@
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
void ollama_debug(const struct ggml_tensor *tensor, bool verbose);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,6 @@
//go:build debug
package cpu
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
import "C"

View File

@@ -11,6 +11,8 @@
#include "ggml-threading.h"
#include "ggml.h"
#include "ollama-debug.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
@@ -14103,6 +14105,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node);
#ifdef OLLAMA_DEBUG
ollama_debug(node, true);
#endif
if (state->ith == 0 && cplan->abort_callback &&
cplan->abort_callback(cplan->abort_callback_data)) {
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);

View File

@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].data.size();
}
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}

115
ml/backend/ggml/ggml/src/ollama-debug.c vendored Normal file
View File

@@ -0,0 +1,115 @@
#include <string.h>
#include "ollama-debug.h"
static int mul(int64_t *dims, int ndims) {
int result = 1;
for (int i = 0; i < ndims; i++) {
result *= dims[i];
}
return result;
}
static void repeat(char c, int n) {
for (int i = 0; i < n; i++) {
fprintf(stderr, "%c", c);
}
}
static void print_tensor(const void *tensor, void (*cb)(const void *, int),
int shape,
int64_t *dims, int ndims, int stride,
int nitems, int pad) {
fprintf(stderr, "[");
for (int i = 0; i < dims[0]; i++) {
if (i >= nitems && i < dims[0] - nitems) {
fprintf(stderr, "... (%lld more), ", dims[0] - 2 * nitems);
int skip = dims[0] - 2 * nitems;
if (ndims > 1) {
stride += mul(dims + 1, ndims - 1) * skip;
repeat('\n', ndims - 1);
repeat(' ', shape - ndims + 1 + pad);
}
i += skip - 1;
} else if (ndims > 1) {
print_tensor(tensor, cb, shape, dims + 1, ndims - 1, stride,
nitems, pad);
stride += mul(dims + 1, ndims - 1);
if (i < dims[0] - 1) {
fprintf(stderr, ", ");
repeat('\n', ndims - 1);
repeat(' ', shape - ndims + 1 + pad);
}
} else {
cb(tensor, stride + i);
if (i < dims[0] - 1) {
fprintf(stderr, ", ");
}
}
}
fprintf(stderr, "]");
}
static void print_tensor_f16(const void *tensor, int i) {
float value = ggml_fp16_to_fp32(((const ggml_fp16_t *)tensor)[i]);
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
}
static void print_tensor_f32(const void *tensor, int i) {
float value = ((const float *)tensor)[i];
fprintf(stderr, "%s%f", value < 0 ? "" : " ", value);
}
static void print_tensor_i32(const void *tensor, int i) {
int32_t value = ((const int32_t *)tensor)[i];
fprintf(stderr, "%s%d", value < 0 ? "" : " ", value);
}
static void ollama_debug_tensor(const struct ggml_tensor *tensor, bool verbose, const char *prefix, int indent) {
fprintf(stderr, "%s%s %s (%s): [%lld %lld %lld %lld]\n", prefix, tensor->name,
ggml_op_name(tensor->op), ggml_type_name(tensor->type), tensor->ne[0],
tensor->ne[1], tensor->ne[2], tensor->ne[3]);
if (!verbose) {
return;
}
for (int i = 0; i < indent; i++) {
fprintf(stderr, " ");
}
switch (tensor->type) {
case GGML_TYPE_F16:
print_tensor(ggml_get_data(tensor), print_tensor_f16, ggml_n_dims(tensor),
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
break;
case GGML_TYPE_F32:
print_tensor(ggml_get_data(tensor), print_tensor_f32, ggml_n_dims(tensor),
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
break;
case GGML_TYPE_I32:
print_tensor(ggml_get_data(tensor), print_tensor_i32, ggml_n_dims(tensor),
(int64_t *)tensor->ne, ggml_n_dims(tensor), 0, 3, indent);
break;
default:
fprintf(stderr, "<unsupported type>\n");
return;
}
fprintf(stderr, "\n");
}
void ollama_debug(const struct ggml_tensor *tensor, bool verbose) {
ollama_debug_tensor(tensor, verbose, ">>> ", 4);
for (int i = 0; i < GGML_MAX_SRC && tensor->src[i] != NULL; ++i) {
char src[8];
const int n = snprintf(src, sizeof(src), " src%d ", i);
if (n >= sizeof(src)) {
src[sizeof(src) - 1] = '\0';
}
ollama_debug_tensor(tensor->src[i], verbose, src, 4);
}
}

View File

@@ -0,0 +1,7 @@
//go:build !debug
package ggml
func Threads(n int) int {
return n
}

View File

@@ -0,0 +1,7 @@
//go:build debug
package ggml
func Threads(_ int) int {
return 1
}

37
model/input/input.go Normal file
View File

@@ -0,0 +1,37 @@
package input
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
}
// MultimodalIndex is a multimodal element (such as an image)
// together with an index into the slice of Inputs with the
// corresponding token. Note that the index is not the same
// as the position - to find that use the index with the
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
}

View File

@@ -19,66 +19,12 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/model/input"
)
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
}
// MultimodalIndex is a multimodal element (such as an image)
// together with an index into the slice of Inputs with the
// corresponding token. Note that the index is not the same
// as the position - to find that use the index with the
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
}
type config struct {
Cache kvcache.Cache
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Forward(ml.Context, input.Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
@@ -112,7 +58,26 @@ type MultimodalProcessor interface {
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize(ml.Context, []Input) ([]Input, error)
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
type config struct {
Cache kvcache.Cache
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
var models = make(map[string]func(ml.Config) (Model, error))
@@ -313,7 +278,7 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
@@ -324,7 +289,7 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
err := cache.StartForward(ctx, opts)
if err != nil {
return nil, err
}

View File

@@ -11,6 +11,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@@ -162,7 +163,7 @@ func TestGetTextProcessor(t *testing.T) {
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, Options) (ml.Tensor, error) {
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
panic("unimplemented")
}

View File

@@ -0,0 +1,220 @@
package gemma2
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeBase, ropeScale float32
attnLogitSoftcap float32
finalLogitSoftcap float32
largeModelScaling bool
}
type Model struct {
model.Base
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
*Options
}
const (
gemma27BLayerCount = 46
)
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length")),
attnValLen: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 10000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
finalLogitSoftcap: c.Float("final_logit_softcapping"),
},
}
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
m.Cache.SetConfig(ml.CacheConfig{})
return &m, nil
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
} else {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
}
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
cache.Put(ctx, k, v)
k, v, mask := cache.Get(ctx)
q = q.Permute(ctx, 0, 2, 1, 3)
k = k.Permute(ctx, 0, 2, 1, 3)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.Mulmat(ctx, q)
// logit softcap
kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
kq = kq.Tanh(ctx)
kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
kq = kq.Add(ctx, mask)
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
if len(m.Layers) == gemma27BLayerCount {
m.Options.largeModelScaling = true
}
for i, layer := range m.Layers {
cacheType := i % 2
m.Cache.SetLayer(i)
wc := m.Cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("gemma2", New)
}

View File

@@ -0,0 +1,173 @@
package gemma3
import (
"bytes"
"encoding/binary"
"hash/fnv"
"image"
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.SentencePieceModel
*VisionModel `gguf:"v,vision"`
*TextModel
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
var _ model.MultimodalProcessor = (*Model)(nil)
type MultiModalProjector struct {
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
InputProjection *nn.Linear `gguf:"mm_input_projection"`
tokensPerImage int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
l := visionOutputs.Dim(0)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
patchesPerImage := imageSize / patchSize
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
return visionOutputs
}
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(1),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOT: int32(106),
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
},
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
MultiModalProjector: &MultiModalProjector{
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
},
}
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
return visionOutputs, nil
}
type imageToken struct {
embedding ml.Tensor
index int
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var result []input.Input
fnvHash := fnv.New64a()
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
imageInputs := []input.Input{
{Token: 108}, // "\n\n"
{Token: 255999}, // "<start_of_image>""
}
result = append(result, imageInputs...)
// add image embeddings
inputMultimodal := inp.Multimodal.(ml.Tensor)
for i := range inputMultimodal.Dim(1) {
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
fnvHash.Write([]byte{byte(i)})
imageToken := imageToken{embedding: inputMultimodal, index: i}
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
}
result = append(result,
input.Input{Token: 256000}, // <end_of_image>
input.Input{Token: 108}, // "\n\n"
)
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
}
func init() {
model.Register("gemma3", New)
}

View File

@@ -0,0 +1,254 @@
package gemma3
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase, ropeGlobalBase float32
finalLogitSoftcap float32
largeModelScaling bool
}
type TextModel struct {
model.Base
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []TextLayer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextOptions
}
const (
gemmaGlobalCacheCount = 6
gemma27BLayerCount = 62
)
const (
cacheTypeSWA = iota
cacheTypeCausal
)
func newTextModel(c ml.Config) *TextModel {
numBlocks := int(c.Uint("block_count"))
m := TextModel{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]TextLayer, numBlocks),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length", 256)),
attnValLen: int(c.Uint("attention.value_length", 256)),
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
finalLogitSoftcap: c.Float("final_logit_softcapping", 30.0),
},
}
if numBlocks == gemma27BLayerCount {
m.largeModelScaling = true
}
return &m
}
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
ropeBase := opts.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
ropeBase = opts.ropeGlobalBase
}
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
} else {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
}
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
scaleFactor := 1.0
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeBase := m.TextOptions.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
ropeBase = m.TextOptions.ropeGlobalBase
}
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
}
type TextMLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type TextLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *TextSelfAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, layer, hiddenState, positionIDs, cache, opts)
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
return hiddenState.Add(ctx, residual)
}
func setImageEmbeddings(ctx ml.Context, hiddenState ml.Tensor, multimodal []input.MultimodalIndex) []int {
var embedding ml.Tensor
var src, dst, length int
var except []int
for _, image := range multimodal {
imageToken := image.Multimodal.(imageToken)
imageSrc := imageToken.index
imageDst := image.Index
if embedding == nil {
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
} else if embedding == imageToken.embedding && imageSrc+1 == src && imageDst+1 == dst {
src = imageSrc
dst = imageDst
length++
} else if embedding == imageToken.embedding && src+length == imageSrc && dst+length == imageDst {
length++
} else {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
embedding = imageToken.embedding
src = imageSrc
dst = imageDst
length = 1
}
except = append(except, imageDst)
}
if embedding != nil {
visionOutputs := embedding.View(ctx, src*embedding.Stride(1), length*embedding.Dim(0))
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, dst*hiddenState.Stride(1), length*hiddenState.Dim(0))))
}
return except
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
except := setImageEmbeddings(ctx, hiddenState, opts.Multimodal)
for i, layer := range m.Layers {
// gemma alternates between the sliding window (local) and causal (global)
// kv cache every 6 layers
cacheType := cacheTypeSWA
if (i+1)%gemmaGlobalCacheCount == 0 {
cacheType = cacheTypeCausal
}
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
}
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.TextOptions.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
return hiddenState.Scale(ctx, float64(m.TextOptions.finalLogitSoftcap))
}

View File

@@ -0,0 +1,127 @@
package gemma3
import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
key := sa.Key.Forward(ctx, hiddenState)
value := sa.Value.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
hiddenState = sa.Output.Forward(ctx, attention)
return hiddenState
}
type VisionMLP struct {
FC1 *nn.Linear `gguf:"fc1"`
FC2 *nn.Linear `gguf:"fc2"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenState = mlp.FC1.Forward(ctx, hiddenState).GELU(ctx)
hiddenState = mlp.FC2.Forward(ctx, hiddenState)
return hiddenState
}
type VisionEncoderLayer struct {
LayerNorm1 *nn.LayerNorm `gguf:"layer_norm1"`
SelfAttention *VisionSelfAttention
LayerNorm2 *nn.LayerNorm `gguf:"layer_norm2"`
MLP *VisionMLP `gguf:"mlp"`
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenState
// self attention
hiddenState = e.LayerNorm1.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
// feed forward
hiddenState = e.LayerNorm2.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
type VisionModelOptions struct {
hiddenSize, numHeads int
imageSize, patchSize int
eps float32
}
type VisionModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_embedding"`
PositionEmbedding *nn.Embedding `gguf:"position_embedding"`
PostLayerNorm *nn.LayerNorm `gguf:"post_layernorm"`
Layers []VisionEncoderLayer `gguf:"blk"`
*VisionModelOptions
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
positions := make([]int32, numPatches)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
panic(err)
}
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positionIDs))
for _, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, m.VisionModelOptions)
}
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
return hiddenState
}
func newVisionModel(c ml.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
eps: c.Float("vision.attention.layer_norm_epsilon"),
},
}
}

View File

@@ -0,0 +1,58 @@
package gemma3
import (
"image"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/imageproc"
)
type ImageProcessor struct {
imageSize, patchSize, numChannels int
}
func newImageProcessor(c ml.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
numChannels: int(c.Uint("vision.num_channels")),
}
}
func (p *ImageProcessor) pack(img image.Image, mean, std [3]float32) []float32 {
var pixelVals, rVals, gVals, bVals []float32
bounds := img.Bounds()
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := img.At(x, y)
r, g, b, _ := c.RGBA()
rVal := float32(r>>8) / 255.0
gVal := float32(g>>8) / 255.0
bVal := float32(b>>8) / 255.0
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
bVals = append(bVals, bVal)
}
}
pixelVals = append(pixelVals, rVals...)
pixelVals = append(pixelVals, gVals...)
pixelVals = append(pixelVals, bVals...)
return pixelVals
}
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
outputSize := image.Point{p.imageSize, p.imageSize}
newImage := imageproc.Composite(img)
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
data := p.pack(newImage, imageproc.ImageNetStandardMean, imageproc.ImageNetStandardSTD)
return data, nil
}

View File

@@ -9,10 +9,10 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32
@@ -66,23 +66,25 @@ func New(c ml.Config) (model.Model, error) {
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -95,7 +97,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -137,18 +139,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}

View File

@@ -12,6 +12,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
@@ -72,7 +73,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return nil, err
}
pixelValues, err := ctx.FromFloatSlice(f32s,
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
@@ -82,7 +83,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return nil, err
}
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
@@ -92,7 +93,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
positions[i] = int32(i)
}
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
@@ -101,8 +102,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []model.Input) ([]model.Input, error) {
var images []model.Input
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
@@ -125,28 +126,28 @@ func (m *Model) PostTokenize(ctx ml.Context, inputs []model.Input) ([]model.Inpu
}
}
inputs = slices.DeleteFunc(inputs, func(input model.Input) bool { return input.Token == -1 })
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if opts.Multimodal != nil {
crossAttentionStates = opts.Multimodal[0].Multimodal.(ml.Tensor)
if len(opts.Multimodal) > 0 {
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
}
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}

View File

@@ -10,23 +10,25 @@ import (
)
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -39,8 +41,12 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the causal cache, which are just the self attention layers
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
// This will only get called for layers in the cache, which are just the self attention layers
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
}
return key, nil
}
type TextMLP struct {
@@ -191,8 +197,6 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
}
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32

View File

@@ -144,8 +144,6 @@ func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point)
return images
}
// remove the "alpha" channel by drawing over a prefilled image
//
// remove the "alpha" channel by drawing over a prefilled image
//
//nolint:unused

View File

@@ -1,6 +1,8 @@
package models
import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -4,6 +4,7 @@ import (
"cmp"
"iter"
"log/slog"
"slices"
"strings"
"sync"
@@ -18,6 +19,15 @@ const (
SpecialEOS
)
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
@@ -27,11 +37,11 @@ type TextProcessor interface {
type Vocabulary struct {
Values []string
Types []uint32
Scores []uint32
Scores []float32
Merges []string
BOS, EOS int32
AddBOS, AddEOS bool
BOS, EOS, EOT int32
AddBOS, AddEOS, AddEOT bool
specialOnce sync.Once
special []string
@@ -48,7 +58,7 @@ func (v *Vocabulary) Is(id int32, special Special) bool {
case SpecialBOS:
return id == v.BOS
case SpecialEOS:
return id == v.EOS
return id == v.EOS || id == v.EOT
default:
return false
}
@@ -76,7 +86,9 @@ func (v *Vocabulary) Decode(id int32) string {
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == 3 {
if slices.Contains([]int{105, 106}, i) {
v.special = append(v.special, v.Values[i])
} else if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}
@@ -177,7 +189,6 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
slog.Debug("encoded", "text", frag.value, "ids", frag.ids, "special", true)
continue
}
@@ -201,7 +212,6 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
continue
}
@@ -275,7 +285,6 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
}
}
}
@@ -329,6 +338,5 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

246
model/process_text_spm.go Normal file
View File

@@ -0,0 +1,246 @@
package model
import (
"iter"
"log/slog"
"strings"
"github.com/dlclark/regexp2"
queue "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
const spmWhitespaceSep = "▁"
func replaceWhitespaceBySeperator(s string) string {
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
}
type SentencePieceModel struct {
maxTokenLen int
pre *regexp2.Regexp
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePieceModel)(nil)
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
var maxTokenLen int
for cnt := range vocab.Types {
switch vocab.Types[cnt] {
case TOKEN_TYPE_NORMAL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_UNUSED:
maxTokenLen = max(maxTokenLen, len(vocab.Values[cnt]))
fallthrough
default:
counter[int(vocab.Types[cnt])] += 1
}
}
slog.Debug("Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
"max token len", maxTokenLen)
return SentencePieceModel{
maxTokenLen: maxTokenLen,
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
}
}
func (spm SentencePieceModel) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
}
}
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := spm.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
continue
}
var middle []fragment
switch i := strings.Index(frag.value, special); {
case i < 0:
middle = append(middle, frag)
case i > 0:
middle = append(middle, fragment{value: frag.value[:i]})
fallthrough
default:
middle = append(middle, fragment{value: special, ids: []int32{id}})
if rest := frag.value[i+len(special):]; rest != "" {
middle = append(middle, fragment{value: rest})
}
}
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
slog.Debug("fragments", "frags", fragments)
var ids []int32
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
continue
}
for split := range spm.split(frag.value) {
split = replaceWhitespaceBySeperator(split)
var sb strings.Builder
sb.Write([]byte(split))
if id := spm.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
}
runes := []rune(sb.String())
pq := queue.NewWith(func(a, b any) int {
priA := a.(*candidate)
priB := b.(*candidate)
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
return -1
}
return 1
})
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
slog.Debug("tokenizer", "merges", merges)
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
score: spm.vocab.Scores[id],
}
}
return nil
}
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pq.Enqueue(pair)
}
}
pqv := pq.Values()
for _, v := range pqv {
e := v.(*candidate)
slog.Debug("candidate", "candidate", e)
}
for !pq.Empty() {
v, _ := pq.Dequeue()
pair := v.(*candidate)
left, right := merges[pair.a], merges[pair.b]
slog.Debug("pair", "left", left, "right", right)
if len(left.runes) == 0 || len(right.runes) == 0 {
continue
}
if id := spm.vocab.Encode(string(left.runes) + string(right.runes)); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pq.Enqueue(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pq.Enqueue(pair)
}
}
slog.Debug("merges", "merges", merges)
for _, merge := range merges {
if len(merge.runes) > 0 {
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
} else {
slog.Debug("missing token", "token", string(merge.runes))
}
}
}
}
}
if addSpecial && len(ids) > 0 {
if spm.vocab.AddBOS {
if ids[0] == spm.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", spm.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", spm.vocab.BOS)
ids = append([]int32{spm.vocab.BOS}, ids...)
}
if spm.vocab.AddEOS {
if ids[len(ids)-1] == spm.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", spm.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", spm.vocab.EOS)
ids = append(ids, spm.vocab.EOS)
}
}
return ids, nil
}
type candidate struct {
a, b int
score float32
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
if _, err := sb.WriteString(data); err != nil {
return "", err
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -0,0 +1,118 @@
package model
import (
"log/slog"
"os"
"path/filepath"
"slices"
"testing"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
)
func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
t.Helper()
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
if err != nil {
t.Fatal(err)
}
var spm sentencepiece.ModelProto
if err := proto.Unmarshal(bts, &spm); err != nil {
t.Fatal(err)
}
preTokenizer := `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`
var v Vocabulary
for _, piece := range spm.GetPieces() {
v.Values = append(v.Values, piece.GetPiece())
v.Scores = append(v.Scores, piece.GetScore())
switch t := piece.GetType(); t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
sentencepiece.ModelProto_SentencePiece_CONTROL,
sentencepiece.ModelProto_SentencePiece_UNUSED,
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, uint32(t))
default:
tt := uint32(sentencepiece.ModelProto_SentencePiece_NORMAL)
// todo parse the special tokens file
// - this will roundtrip correctly but the <start_of_turn> and
// <end_of_turn> tokens aren't processed
v.Types = append(v.Types, tt)
}
}
return NewSentencePieceModel(preTokenizer, &v)
}
func TestSentencePieceEncode(t *testing.T) {
logger := slog.New(slog.NewTextHandler(os.Stdout, &slog.HandlerOptions{Level: slog.LevelDebug}))
slog.SetDefault(logger)
tokenizer := loadSentencePieceVocab(t)
t.Run("basic roundtrip", func(t *testing.T) {
t.Parallel()
cases := []string{
"hello",
"hello ",
"hello ",
" hello",
" hello ",
" hello ",
"hello world",
"请考试我的软件12345",
"你好",
"Hello 你好 world!",
"Special characters: !@#$%^&*()_+-=[]{}|;':\",./<>?",
"Multilingual: 你好 こんにちは Привет Hola مرحبا",
"Numbers and symbols: 123456789 +- */",
"Special tokens: <bos> text <eos>",
"Code snippets: func main() { fmt.Println(\"Hello World\") }",
"Long text: " + "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " +
"Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. " +
"Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.",
}
for _, want := range cases {
ids, err := tokenizer.Encode(want, true)
if err != nil {
t.Fatal(err)
}
if got, err := tokenizer.Decode(ids); err != nil {
t.Fatal(err)
} else if got != want {
t.Errorf("got %q, want %q [%#v]", got, want, ids)
}
}
})
t.Run("special tokens", func(t *testing.T) {
type candidate struct {
token string
ids []int32
}
cases := []candidate{
{"<bos>", []int32{2}},
{"<eos>", []int32{1}},
}
for _, want := range cases {
ids, err := tokenizer.Encode(want.token, true)
if err != nil {
t.Fatal(err)
}
if !slices.Equal(ids, want.ids) {
t.Errorf("got %#v, want %#v", ids, want.ids)
}
}
})
}

BIN
model/testdata/gemma2/tokenizer.model vendored Normal file
View File

Binary file not shown.

View File

@@ -10,6 +10,7 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type InputCache struct {
@@ -58,9 +59,9 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
func kvCacheTypeFromStr(s string) ml.DType {
switch s {
case "q8_0":
panic("kv cache quantization not yet implemented")
return ml.DTypeQ80
case "q4_0":
panic("kv cache quantization not yet implemented")
return ml.DTypeQ40
default:
return ml.DTypeF16
}
@@ -79,7 +80,7 @@ type InputCacheSlot struct {
Id int
// Inputs that are stored in the KV cache
Inputs []model.Input
Inputs []input.Input
// is this cache actively being processed as part of a sequence?
InUse bool
@@ -88,7 +89,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []model.Input, cachePrompt bool) (*InputCacheSlot, []model.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -139,7 +140,7 @@ func (c *InputCache) LoadCacheSlot(prompt []model.Input, cachePrompt bool) (*Inp
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []model.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
@@ -162,7 +163,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []model.Input) (*InputCacheSlot
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []model.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
@@ -198,7 +199,7 @@ func (c *InputCache) findBestCacheSlot(prompt []model.Input) (*InputCacheSlot, i
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]model.Input, longest)
oldestSlot.Inputs = make([]input.Input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
@@ -208,7 +209,7 @@ func (c *InputCache) findBestCacheSlot(prompt []model.Input) (*InputCacheSlot, i
return oldestSlot, longest, nil
}
func countCommonPrefix(a []model.Input, b []model.Input) int32 {
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
var count int32
for i := range a {

View File

@@ -5,7 +5,7 @@ import (
"testing"
"time"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
func TestCountCommon(t *testing.T) {
@@ -15,50 +15,50 @@ func TestCountCommon(t *testing.T) {
tests := []struct {
name string
t1 []model.Input
t2 []model.Input
t1 []input.Input
t2 []input.Input
expected int32
}{
{
name: "Equal",
t1: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []model.Input{{Token: 1}},
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input.Input{{Token: 1}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []model.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []model.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
expected: 1,
},
{
name: "Mixed",
t1: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []model.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
expected: 1,
},
{
name: "Empty",
t1: []model.Input{},
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input.Input{},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []model.Input{},
t2: []model.Input{},
t1: []input.Input{},
t2: []input.Input{},
expected: 0,
},
}
@@ -82,7 +82,7 @@ func TestFindCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []model.Input
prompt []input.Input
longest expected
best expected
}{
@@ -91,18 +91,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []model.Input{{Token: 1}},
prompt: []input.Input{{Token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
@@ -111,18 +111,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []model.Input{{Token: 1}, {Token: 2}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
@@ -131,18 +131,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []model.Input{{Token: 2}},
prompt: []input.Input{{Token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -152,19 +152,19 @@ func TestFindCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []model.Input{{Token: 1}},
prompt: []input.Input{{Token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
@@ -173,18 +173,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []model.Input{{Token: 2}, {Token: 3}},
prompt: []input.Input{{Token: 2}, {Token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -193,18 +193,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{{Token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []model.Input{{Token: 1}, {Token: 2}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},

View File

@@ -26,6 +26,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
@@ -41,10 +42,10 @@ type Sequence struct {
iBatch int
// prompt inputs left to evaluate
inputs []model.Input
inputs []input.Input
// inputs that have been added to a batch but not yet submitted to Forward
pendingInputs []model.Input
pendingInputs []input.Input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
@@ -144,8 +145,8 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]model.Input, error) {
var inputs []model.Input
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
var inputs []input.Input
var parts []string
var matches [][]string
@@ -168,7 +169,7 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]mo
}
for _, t := range tokens {
inputs = append(inputs, model.Input{Token: t})
inputs = append(inputs, input.Input{Token: t})
}
// image - decode and store
@@ -196,7 +197,7 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]mo
_, _ = s.multimodalHash.Write(images[imageIndex].Data)
imageHash := s.multimodalHash.Sum64()
inputs = append(inputs, model.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
postTokenize = true
}
}
@@ -250,12 +251,15 @@ type Server struct {
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
// multimodalHash generates hashes for comparing equality
// of non-text data
multimodalHash maphash.Hash
// vocab is a llama.cpp vocab required for gammar-based
// constrained generation (json mode, structured outputs)
// TODO: this is temporary until Ollama sampling supports
// constrained generation
vocab *sample.Vocab
}
func (s *Server) allNil() bool {
@@ -329,29 +333,25 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var options model.Options
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
var options input.Options
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
s.removeSequence(i, "limit")
continue
}
if !s.cache.enabled {
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
seq.cache.Inputs = []model.Input{}
seq.cache.Inputs = []input.Input{}
}
for i, input := range seq.inputs {
for j, inp := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
@@ -363,33 +363,23 @@ func (s *Server) processBatch() error {
}
}
if i >= s.batchSize {
if j >= s.batchSize {
break
}
// TODO(jessegross): This is a workaround for generating an attention mask and also providing a hint
// to the encoder cache.
//
// Break the batch when switching from text to images so that images are always at the beginning.
if input.Multimodal != nil && !(len(seq.pendingInputs) == 0 ||
(len(options.Multimodal) > 0 && options.Multimodal[len(options.Multimodal)-1].Index == len(options.Inputs)-1)) {
s.nextSeq = seqIdx
break
}
options.Inputs = append(options.Inputs, input.Token)
if input.Multimodal != nil {
options.Multimodal = append(options.Multimodal, model.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: input.Multimodal})
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
}
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(options.Outputs)
if i+1 == len(seq.inputs) {
if j+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, input)
seq.pendingInputs = append(seq.pendingInputs, inp)
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
@@ -417,7 +407,7 @@ func (s *Server) processBatch() error {
// After calling Forward, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []model.Input{}
seq.pendingInputs = []input.Input{}
}
// don't sample prompt processing
@@ -436,6 +426,7 @@ func (s *Server) processBatch() error {
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported")
s.removeSequence(i, "")
continue
}
@@ -463,7 +454,7 @@ func (s *Server) processBatch() error {
return err
}
seq.inputs = []model.Input{{Token: token}}
seq.inputs = []input.Input{{Token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
@@ -589,11 +580,30 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
var grammar *sample.Grammar
var err error
if req.Grammar != "" {
grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
if err != nil {
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
return
}
}
sampler := sample.NewSampler(
req.Temperature,
req.TopK,
req.TopP,
req.MinP,
req.Seed,
grammar,
)
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: int32(req.NumKeep),
sampler: sample.Greedy(), // TODO: add support for different samplers when performance is optimized
sampler: sampler,
embedding: false,
})
if err != nil {
@@ -800,6 +810,8 @@ func (s *Server) loadModel(
panic(err)
}
s.vocab = sample.NewVocab(mpath)
// TODO(jessegross): LoRA loading
if lpath.String() != "" {
panic("loras are not yet implemented")

View File

@@ -3,118 +3,223 @@ package sample
import (
"errors"
"math"
"math/rand/v2"
"slices"
"sync"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/sampleuv"
"github.com/ollama/ollama/llama"
)
type Sampler interface {
Sample([]float32) (int32, error)
// token represents information about a single token during sampling
type token struct {
id int32 // The token's unique identifier
value float32 // The raw logit or probability from the model
}
type weighted struct {
src rand.Source
transforms []Transform
type Sampler struct {
rng *rand.Rand
topK int
topP float32
minP float32
temperature float32
grammar *Grammar
}
// TODO(parthsareen): remove uv sample dependency https://github.com/ollama/ollama/issues/9279
func Weighted(seed *uint64, transforms ...Transform) Sampler {
var src rand.Source
if seed != nil {
src = rand.NewSource(*seed)
}
return weighted{src: src, transforms: transforms}
}
func (s weighted) Sample(logits []float32) (int32, error) {
logits64 := make([]float64, len(logits))
for i, v := range logits {
logits64[i] = float64(v)
}
for _, t := range s.transforms {
logits64 = t.Apply(logits64)
}
logitsCopy := make([]float64, 0, len(logits))
indices := make([]int, 0, len(logits))
for i, logit := range logits64 {
if !math.IsInf(logit, -1) {
logitsCopy = append(logitsCopy, logit)
indices = append(indices, i)
}
}
if len(logitsCopy) == 0 {
return -1, errors.New("no valid logits found for weighed sampling")
}
probs := softmax(logitsCopy)
w := sampleuv.NewWeighted(probs, s.src)
if idx, ok := w.Take(); ok {
return int32(indices[idx]), nil
}
return -1, errors.New("weighted sampler failed, no valid token found")
}
type greedy struct{}
func Greedy() Sampler {
return greedy{}
}
// Sample returns the index of the maximum value in logits.
func (s greedy) Sample(logits []float32) (int32, error) {
if len(logits) == 0 {
return -1, errors.New("no logits provided for greedy sampling")
}
maxIdx := 0
func (s *Sampler) Sample(logits []float32) (int32, error) {
tokens := make([]token, len(logits))
for i := range logits {
if logits[i] > logits[maxIdx] {
maxIdx = i
tokens[i].id = int32(i)
tokens[i].value = logits[i]
}
t, err := s.sample(tokens)
if err != nil {
return -1, err
}
if s.grammar != nil {
// optimization: first check if the max logit is accepted by the grammar
// if the max logit is rejected, apply the grammar to all logits (slower)
top := []token{t}
s.grammar.Apply(top)
if !math.IsInf(float64(top[0].value), -1) {
s.grammar.Accept(top[0].id)
return top[0].id, nil
}
// since .sample has side effects of modifying the tokens
// we need to reset them before applying the grammar and
// sampling again
for i := range logits {
tokens[i].id = int32(i)
tokens[i].value = logits[i]
}
s.grammar.Apply(tokens)
t, err = s.sample(tokens)
if err != nil {
return -1, err
}
s.grammar.Accept(t.id)
}
return t.id, nil
}
// greedy returns the highest probability token from the tokens
func greedy(tokens []token) token {
max := tokens[0]
for i := 1; i < len(tokens); i++ {
if tokens[i].value > max.value {
max = tokens[i]
}
}
return int32(maxIdx), nil
return max
}
// sample returns the highest probability token from the tokens
// given sampler parameters. It also has side effects of modifying the tokens
func (s *Sampler) sample(tokens []token) (token, error) {
if s.temperature == 0 {
return greedy(tokens), nil
}
// topK also sorts the tokens in descending order of logits
tokens = topK(tokens, s.topK)
// token logit values are updated to probabilities
tokens = temperature(tokens, s.temperature)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var r float32
if s.rng != nil {
r = s.rng.Float32()
} else {
r = rand.Float32()
}
// Calculate cumulative sum of probabilities
var sum float32
for i := range tokens {
sum += tokens[i].value
tokens[i].value = sum
}
r *= tokens[len(tokens)-1].value
idx, _ := slices.BinarySearchFunc(tokens, r, func(token token, target float32) int {
if token.value < target {
return -1
}
return 1
})
return tokens[idx], nil
}
// TODO(parthsareen): update sampler interface to use json unmarshal https://github.com/ollama/ollama/issues/9278
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int) (Sampler, error) {
if temperature == 0 {
return Greedy(), nil
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int, grammar *Grammar) Sampler {
var rng *rand.Rand
if seed != -1 {
// PCG requires two parameters: sequence and stream
// Use original seed for sequence
sequence := uint64(seed)
// Use golden ratio hash to generate statistically independent seeds
rng = rand.New(rand.NewPCG(sequence, sequence^0x9E3779B9))
}
if temperature < 0.0 {
temperature = 0.0
}
if temperature < 0 || temperature > 2 {
return nil, errors.New("temperature must be between 0 and 2")
if topP < 0.0 {
topP = 0.0
}
if topP >= 1.0 {
topP = 1.0
}
transforms := []Transform{Temperature(temperature)}
if topK != 0 {
if topK <= 0 {
return nil, errors.New("topK must be greater than 0")
}
transforms = append(transforms, TopK(topK))
if minP < 0.0 {
minP = 0.0
}
if minP >= 1.0 {
minP = 1.0
}
if topP != 0 {
if topP < 0 || topP >= 1 {
return nil, errors.New("topP must be between 0 and 1")
}
transforms = append(transforms, TopP(topP))
return Sampler{
rng: rng,
topK: topK,
topP: topP,
minP: minP,
temperature: temperature,
grammar: grammar,
}
if minP != 0 {
if minP < 0 || minP >= 1 {
return nil, errors.New("minP must be between 0 and 1")
}
transforms = append(transforms, MinP(minP))
}
if seed >= 0 {
seed64 := uint64(seed)
return Weighted(&seed64, transforms...), nil
}
return Weighted(nil, transforms...), nil
}
type Grammar struct {
vocab *Vocab
grammar string
sampler *llama.Sampler
}
func NewGrammar(vocab *Vocab, grammar string) (*Grammar, error) {
v, err := vocab.Load()
if err != nil {
return nil, err
}
return &Grammar{
vocab: vocab,
grammar: grammar,
sampler: llama.NewGrammarSampler(v, grammar),
}, nil
}
func (g *Grammar) Apply(tokens []token) {
tds := make([]llama.TokenData, len(tokens))
for i, token := range tokens {
tds[i].Id = token.id
tds[i].Logit = token.value
}
g.sampler.Apply(tds)
for i := range tokens {
tokens[i].value = tds[i].Logit
}
}
func (g *Grammar) Accept(token int32) {
g.sampler.Accept(token)
}
type Vocab struct {
once sync.Once
vocab *llama.Vocab
err error
path string
}
func NewVocab(path string) *Vocab {
return &Vocab{path: path}
}
// Load returns the lazily-loaded vocabulary
func (v *Vocab) Load() (*llama.Vocab, error) {
v.once.Do(func() {
vocab, err := llama.LoadVocabFromFile(v.path)
if err != nil {
v.err = err
return
}
v.vocab = vocab
})
return v.vocab, v.err
}

View File

@@ -0,0 +1,92 @@
package sample
import (
"fmt"
"math/rand"
"testing"
)
func BenchmarkWeightedSampler(b *testing.B) {
sizes := []int{10, 100, 1000, 10000}
for _, size := range sizes {
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
sampler := NewSampler(0.8, 0, 0, 0, 42, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
configs := []struct {
name string
temperature float32
topK int
topP float32
minP float32
seed int
}{
{"Greedy", 0, -1, 0, 0, -1},
{"Temperature", 0.8, -1, 0, 0, -1},
{"TopK", 0.8, 50, 0, 0, -1},
{"TopP", 0.8, -1, 0.9, 0, -1},
{"MinP", 0.8, -1, 0, 0.05, -1},
{"WithSeed", 0.8, 50, 0, 0, 42},
}
// Fixed size for common vocab size
size := 128000
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
for _, tc := range configs {
b.Run("Config"+tc.name, func(b *testing.B) {
sampler := NewSampler(tc.temperature, tc.topK, tc.topP, tc.minP, tc.seed, nil)
sampler.Sample(logits)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
// Test with combined transforms separately - topK influences performance greatly
b.Run("TransformCombined", func(b *testing.B) {
sampler := NewSampler(0.8, 50, 0.9, 0.05, 42, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
func BenchmarkGreedySampler(b *testing.B) {
sizes := []int{10, 100, 1000, 10000, 100000}
for _, size := range sizes {
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
sampler := NewSampler(0, -1, 0, 0, -1, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
}

View File

@@ -1,15 +1,14 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWeighted(t *testing.T) {
got, err := Weighted(nil).Sample([]float32{float32(math.Inf(-1)), 2, float32(math.Inf(-1)), float32(math.Inf(-1))})
logits := []float32{-10, 3, -10, -10}
sampler := NewSampler(0, 0, 0, 0, 0, nil)
got, err := sampler.Sample(logits)
if err != nil {
t.Error(err)
return
@@ -19,194 +18,26 @@ func TestWeighted(t *testing.T) {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
got, err = Weighted(nil).Sample([]float32{float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1))})
if err == nil {
t.Error("expected error for no valid tokens, got index", got)
}
seed := uint64(42)
got, err = Weighted(&seed).Sample([]float32{1, 2, 3, 4})
logits = []float32{-100, -10, 0, 10}
sampler = NewSampler(0, 0, 0, 0, 0, nil)
got, err = sampler.Sample(logits)
if err != nil {
t.Error(err)
return
}
// With seed 42, we expect a consistent sample
want = int32(3) // This will be deterministic due to the seed
want = int32(3) // Should pick highest probability with this r value
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
}
type testTransform struct {
id int
callOrder *[]int
}
func (ts *testTransform) Apply(logits []float64) []float64 {
if ts.callOrder != nil {
*ts.callOrder = append(*ts.callOrder, ts.id)
}
return logits
}
func TestSample(t *testing.T) {
input := []float32{1, 2, 3, 4}
var callOrder []int
mock1 := &testTransform{
id: 1,
callOrder: &callOrder,
}
mock2 := &testTransform{
id: 2,
callOrder: &callOrder,
}
mock3 := &testTransform{
id: 3,
callOrder: &callOrder,
}
_, err := Weighted(nil, mock1, mock2, mock3).Sample(input)
if err != nil {
t.Error(err)
return
}
wantOrder := []int{1, 2, 3}
if diff := cmp.Diff(wantOrder, callOrder); diff != "" {
t.Errorf("call order mismatch (-want +got):\n%s", diff)
}
}
func TestNewSampler(t *testing.T) {
tests := []struct {
name string
temperature float32
topK int
topP float32
minP float32
seed int
wantErr bool
}{
{
name: "no transforms",
// temperature is 0, so greedy should be used
wantErr: false,
},
{
name: "temperature",
temperature: 0.5,
wantErr: false,
},
{
name: "invalid temperature negative",
temperature: -1,
wantErr: true,
},
{
name: "invalid temperature too high",
temperature: 2.1,
wantErr: true,
},
{
name: "top k",
topK: 10,
temperature: 0.8,
wantErr: false,
},
{
name: "invalid top k negative",
topK: -1,
temperature: 0.8,
wantErr: true,
},
{
name: "top p",
topP: 0.9,
temperature: 0.8,
wantErr: false,
},
{
name: "invalid top p negative",
topP: -0.1,
temperature: 0.8,
wantErr: true,
},
{
name: "invalid top p one",
topP: 1.0,
temperature: 0.8,
wantErr: true,
},
{
name: "min p",
minP: 0.2,
temperature: 0.8,
wantErr: false,
},
{
name: "invalid min p negative",
minP: -0.1,
temperature: 0.8,
wantErr: true,
},
{
name: "invalid min p one",
minP: 1.0,
temperature: 0.8,
wantErr: true,
},
{
name: "default values",
temperature: 0.8,
topK: 40,
topP: 0.9,
minP: 0.0,
seed: 0,
wantErr: false,
},
{
name: "all zeroes",
temperature: 0.0,
topK: 0,
topP: 0.0,
minP: 0.0,
seed: 0,
wantErr: false, // all zeroes means no transforms
},
{
name: "all transforms",
temperature: 0.8,
topK: 50,
topP: 0.95,
minP: 0.1,
seed: 42,
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
_, err := NewSampler(tt.temperature, tt.topK, tt.topP, tt.minP, tt.seed)
if (err != nil) != tt.wantErr {
t.Errorf("NewSampler() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func BenchmarkSample(b *testing.B) {
transforms := []Transform{
Temperature(0.5),
TopK(10),
TopP(0.9),
MinP(0.2),
}
samplers := map[string]Sampler{
"Greedy": Greedy(),
"Weighted": Weighted(nil, transforms...),
"Greedy": NewSampler(0, 0, 0, 0, 0, nil), // Use NewSampler with temp=0 for greedy
"Weighted": NewSampler(0.5, 10, 0.9, 0.2, -1, nil),
}
// Generate random logits for benchmarking
logits := make([]float32, 1<<16)
for i := range logits {
logits[i] = rand.Float32()
@@ -215,9 +46,9 @@ func BenchmarkSample(b *testing.B) {
for name, s := range samplers {
b.Run(name, func(b *testing.B) {
b.ResetTimer()
for range b.N {
for b.Loop() {
if _, err := s.Sample(logits); err != nil {
b.Error(err)
b.Fatalf("error sampling: %v", err)
}
}
})

View File

@@ -1,120 +1,136 @@
package sample
import (
"cmp"
"container/heap"
"math"
"slices"
pq "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
type Transform interface {
Apply([]float64) []float64
// tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
type tokenHeap []token
func (h tokenHeap) Len() int { return len(h) }
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value }
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *tokenHeap) Push(x any) {
*h = append(*h, x.(token))
}
// TODO(parthsareen): potentially cache softmax values
func softmax(logits []float64) []float64 {
var sum float64
probs := make([]float64, len(logits))
for i, v := range logits {
probs[i] = math.Exp(v)
sum += probs[i]
}
for i := range probs {
probs[i] /= sum
}
return probs
func (h *tokenHeap) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
type Temperature float64
func (t Temperature) Apply(logits []float64) []float64 {
temp := math.Max(float64(t), 1e-7)
// subtracting max logit to avoid under/overflow
maxLogit := slices.Max(logits)
for i := range logits {
logits[i] = (logits[i] - maxLogit) / temp
}
return logits
}
type logitMap struct {
index int
logit float64
}
type TopK int
// TODO(parthsareen): avoid having to check all logits after this transform
func (k TopK) Apply(logits []float64) []float64 {
if int(k) >= len(logits) {
return logits
}
q := pq.NewWith(func(a, b logitMap) int {
return -cmp.Compare(a.logit, b.logit)
})
for i, logit := range logits {
q.Enqueue(logitMap{index: i, logit: logit})
}
validLogits := make(map[int]float64)
for range k {
logitMap, _ := q.Dequeue()
validLogits[logitMap.index] = logitMap.logit
}
for i := range logits {
if _, ok := validLogits[i]; !ok {
logits[i] = math.Inf(-1)
// temperature applies scaling and softmax to the logits
func temperature(ts []token, temp float32) []token {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
if t.value > maxLogit {
maxLogit = t.value
}
}
return logits
}
type TopP float64
func (p TopP) Apply(logits []float64) []float64 {
probs := softmax(logits)
indices := make([]int, len(probs))
for i := range indices {
indices[i] = i
// Apply temperature and compute exp(x - max)
temp = max(temp, 1e-7)
var sum float32
for i, v := range ts {
ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
sum += ts[i].value
}
// sort in descending order
slices.SortFunc(indices, func(i, j int) int {
return cmp.Compare(probs[j], probs[i])
})
// Normalize
for i := range ts {
ts[i].value /= sum
}
var sum float64
for i, idx := range indices {
sum += probs[idx]
if sum > float64(p) {
for _, idx := range indices[i+1:] {
logits[idx] = math.Inf(-1)
return ts
}
// topK limits the number of tokens considered to the k highest logits
func topK(ts []token, k int) []token {
if k >= len(ts) || k <= 0 {
slices.SortFunc(ts, func(a, b token) int {
switch {
case a.value < b.value:
return 1
case a.value > b.value:
return -1
default:
return 0
}
break
}
})
return ts
}
return logits
}
type MinP float64
// Initialize min-heap with first k elements
h := make(tokenHeap, k)
copy(h, ts[:k])
heap.Init(&h)
func (p MinP) Apply(logits []float64) []float64 {
probs := softmax(logits)
threshold := slices.Max(probs) * float64(p)
for i, prob := range probs {
if prob < threshold {
logits[i] = math.Inf(-1)
// Process remaining elements
for i := k; i < len(ts); i++ {
if ts[i].value > h[0].value {
heap.Pop(&h)
heap.Push(&h, ts[i])
}
}
return logits
// Convert heap to sorted slice in descending order
result := make([]token, len(h))
for i := k - 1; i >= 0; i-- {
result[i] = heap.Pop(&h).(token)
}
return result
}
// topP limits tokens to those with cumulative probability p
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
// Find cutoff index where cumulative sum exceeds p
var sum float32
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
func minP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}

View File

@@ -4,77 +4,194 @@ import (
"math"
"math/rand/v2"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTemperature(t *testing.T) {
got := Temperature(0.5).Apply([]float64{2, -1, 4, -3, 1, -2, 0})
want := []float64{-4, -10, 0, -14, -6, -12, -8}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
// Helper to convert float32 slice to logit slice
func toTokens(values []float32) []token {
tokens := make([]token, len(values))
for i, v := range values {
tokens[i] = token{
id: int32(i),
value: v,
}
}
return tokens
}
// Helper to compare logit slices
func compareLogits(t *testing.T, name string, want []float32, got []token) {
t.Helper()
if len(want) != len(got) {
t.Errorf("%s: length mismatch: want %d, got %d", name, len(want), len(got))
return
}
for i := range want {
if math.Abs(float64(got[i].value-want[i])) > 1e-6 {
t.Errorf("%s: index %d: want %f, got %f", name, i, want[i], got[i].value)
}
}
}
func TestSoftmax(t *testing.T) {
got := softmax([]float64{-3, -2, -1, 0, 1, 2, 4})
func TestTemperatureAndSoftmax(t *testing.T) {
input := []float32{1, 4, -2, 0}
got := temperature(toTokens(input), 0.5)
want := []float64{0.000751406628089903, 0.0020425349829204676, 0.005552185728064613, 0.015092405572827691, 0.04102541181635154, 0.11151863144543739, 0.8240174238263085}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("probs mismatch (-want +got):\n%s", diff)
// Check probabilities sum to 1
var sum float32
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum-1.0)) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
got = temperature(toTokens(input), 1)
// Check probabilities sum to 1
sum = 0.0
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum-1.0)) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
}
func TestTopK(t *testing.T) {
got := TopK(3).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 1, 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
// Test k=5
got := topK(toTokens(input), 5)
if len(got) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
}
// Should keep highest 3 values in descending order
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
compareLogits(t, "topK(3)", want, got)
got = topK(toTokens(input), 20)
if len(got) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
}
got = TopK(10).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want = []float64{-3, -2, -1, 0, 1, 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
// Test k=-1
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), -1)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
// Test k=0
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), 0)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
}
func TestTopP(t *testing.T) {
got := TopP(0.9).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
input := []float32{-3, -2, -1, 0, 1, 2, 4}
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
tokens = temperature(tokens, 1)
tokens = topK(tokens, 20)
// Then apply topP
got := topP(tokens, 0.95)
// Should keep tokens until cumsum > 0.95
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
}
func TestMinP(t *testing.T) {
got := MinP(0.2).Apply([]float64{-3, -2, -1, 0, 1, 2, 4, 3})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 4, 3}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
tokens = temperature(tokens, 1)
// Then apply minP
got := minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
}
}
func BenchmarkTransform(b *testing.B) {
transforms := map[string]Transform{
"Temperature": Temperature(0.5),
"TopK": TopK(10),
"TopP": TopP(0.9),
"MinP": MinP(0.2),
func TestSortLogits(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
tokens = topK(tokens, 20)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
}
}
logits := make([]float64, 1<<16)
for i := range logits {
logits[i] = rand.Float64()
}
for name, transform := range transforms {
b.Run(name, func(b *testing.B) {
b.ResetTimer()
for range b.N {
transform.Apply(logits)
}
})
}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {
// Generate random logits
tokens := make([]token, 1<<16)
for i := range tokens {
tokens[i] = token{
id: int32(i),
value: rand.Float32(),
}
}
tokensCopy := make([]token, len(tokens))
b.Run("Temperature", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
temperature(tokensCopy, 0.5)
}
})
b.Run("TopK", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 10)
}
})
b.Run("TopP", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topP(tokensCopy, 0.9)
}
})
b.Run("MinP", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
minP(tokensCopy, 0.2)
}
})
b.Run("SortTokens", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 200000)
}
})
}

View File

@@ -80,13 +80,14 @@ function checkEnv() {
function buildOllama() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
New-Item "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ItemType Directory -ea 0
& cmake --fresh --preset CPU --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset CPU --parallel $script:JOBS
& cmake --build --preset CPU --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component CPU --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -101,7 +102,7 @@ function buildOllama() {
# to avoid 2022 (or newer) from being used as the default
& cmake --fresh --preset "CUDA 11" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 11" --parallel $script:JOBS
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -112,7 +113,7 @@ function buildOllama() {
write-host "Building CUDA v12 backend libraries"
& cmake --fresh --preset "CUDA 12" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 12" --parallel $script:JOBS
& cmake --build --preset "CUDA 12" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -131,7 +132,7 @@ function buildOllama() {
$env:HIPCXX=""
$env:HIP_PLATFORM=""
$env:CMAKE_PREFIX_PATH=""
& cmake --build --preset "ROCm" --parallel $script:JOBS
& cmake --build --preset "ROCm" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "HIP" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}

View File

@@ -26,6 +26,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
var system []api.Message
isMllama := checkMllamaModelFamily(m)
isGemma3 := checkGemma3ModelFamily(m)
var imageNumTokens int
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
@@ -40,7 +41,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n; i >= 0; i-- {
if isMllama && len(msgs[i].Images) > 1 {
if (isMllama || isGemma3) && len(msgs[i].Images) > 1 {
return "", nil, errTooManyImages
}
@@ -157,3 +158,12 @@ func checkMllamaModelFamily(m *Model) bool {
}
return false
}
func checkGemma3ModelFamily(m *Model) bool {
for _, arch := range m.Config.ModelFamilies {
if arch == "gemma3" {
return true
}
}
return false
}