Compare commits

..

1 Commits

Author SHA1 Message Date
Bruce MacDonald
5a2cd7b48a runner: add test for unicode token processing 2025-05-14 11:29:11 -07:00
3 changed files with 233 additions and 5 deletions

View File

@@ -6,6 +6,7 @@ import (
"fmt"
"io"
"log/slog"
"math"
"slices"
"strings"
@@ -652,15 +653,24 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
numPatches*numPatches*headCount)
case "qwen25vl":
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
mergeSize := uint64(llm.KV().Uint("vision.spatial_merge_size", 2))
temporalPatchSize := uint64(2)
numPatches := maxPixels / (patchSize * patchSize)
// Calculate max possible patches based on max_pixels
maxHeight := uint64(math.Sqrt(float64(maxPixels)))
maxWidth := maxPixels / maxHeight
maxGridHeight := maxHeight / patchSize
maxGridWidth := maxWidth / patchSize
// Account for merged patches (2x2 grid)
numPatches := (maxGridHeight * maxGridWidth) / (mergeSize * mergeSize)
// Calculate graph size based on typical operations in ProcessImage and createPatches
graphSize = 4 * (maxPixels*numChannels + // Original image storage
// Normalized pixels
maxPixels*numChannels +
// Patches storage (numPatches * channels * patchSize^2)
numPatches*numChannels*patchSize*patchSize +
// Self-attention calculations
// Patches storage (numPatches * channels * temporalPatchSize * patchSize^2)
numPatches*numChannels*temporalPatchSize*patchSize*patchSize +
// Self-attention calculations (similar to other architectures)
numPatches*numPatches*headCount +
// Additional buffer for processing
embeddingLength*numPatches)

View File

@@ -0,0 +1,218 @@
package ollamarunner
import (
"context"
"sync"
"testing"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/sample"
"golang.org/x/sync/semaphore"
)
// testBackend implements ml.Backend with minimal functionality required for tests.
type testBackend struct{}
func (b *testBackend) Config() fs.Config { return testConfig{} }
func (b *testBackend) Get(string) ml.Tensor { return nil }
func (b *testBackend) NewContext() ml.Context { return &testContext{} }
func (b *testBackend) NewContextSize(int) ml.Context { return &testContext{} }
// testConfig is a stub implementation of fs.Config used by testBackend.
type testConfig struct{}
func (testConfig) Architecture() string { return "" }
func (testConfig) String(string, ...string) string { return "" }
func (testConfig) Uint(string, ...uint32) uint32 { return 0 }
func (testConfig) Float(string, ...float32) float32 { return 0 }
func (testConfig) Bool(string, ...bool) bool { return false }
func (testConfig) Strings(string, ...[]string) []string { return nil }
func (testConfig) Ints(string, ...[]int32) []int32 { return nil }
func (testConfig) Floats(string, ...[]float32) []float32 { return nil }
type testContext struct{}
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
sz := 1
for _, s := range shape {
sz *= s
}
return &testTensor{dtype: dtype, data: make([]float32, sz), shape: shape}
}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor { return c.Empty(dtype, shape...) }
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
f := make([]float32, len(s))
for i, v := range s {
f[i] = float32(v)
}
out, _ := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
}
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
return c.Empty(dtype, int((stop-start)/step))
}
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) MaxGraphNodes() int { return 0 }
func (c *testContext) Close() {}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
type testTensor struct {
ml.Tensor
dtype ml.DType
data []float32
shape []int
}
func (t *testTensor) Dim(n int) int { return t.shape[n] }
func (t *testTensor) Stride(n int) int { return 0 }
func (t *testTensor) Shape() []int { return t.shape }
func (t *testTensor) DType() ml.DType { return t.dtype }
func (t *testTensor) Bytes() []byte { return nil }
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor { return nil }
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out, _ := ctx.(*testContext).FromFloatSlice(nil, len(t.data))
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return nil }
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return nil }
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return nil }
func (t *testTensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor { return nil }
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor { return nil }
func (t *testTensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, e float32) ml.Tensor {
return nil
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
return ctx.(*testContext).Empty(t.dtype, shape...)
}
func (t *testTensor) Copy(ctx ml.Context, dest ml.Tensor) ml.Tensor {
copy(dest.(*testTensor).data, t.data)
return nil
}
// fakeModel implements model.Model and model.TextProcessor.
type fakeModel struct {
model.Base
decode map[int32]string
logits [][]float32
call int
backend ml.Backend
}
func (f *fakeModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
idx := f.call
if idx >= len(f.logits) {
idx = len(f.logits) - 1
}
f.call++
return ctx.FromFloatSlice(f.logits[idx], len(f.logits[idx]))
}
func (f *fakeModel) Backend() ml.Backend {
if f.backend == nil {
f.backend = &testBackend{}
}
return f.backend
}
func (f *fakeModel) Encode(string, bool) ([]int32, error) { return nil, nil }
func (f *fakeModel) Decode(ids []int32) (string, error) {
var s string
for _, id := range ids {
s += f.decode[id]
}
return s, nil
}
func (f *fakeModel) Is(id int32, sp model.Special) bool { return false }
func (f *fakeModel) Vocabulary() *model.Vocabulary { return &model.Vocabulary{} }
var _ model.Model = (*fakeModel)(nil)
var _ model.TextProcessor = (*fakeModel)(nil)
func TestProcessBatchUnicode(t *testing.T) {
tests := []struct {
name string
decode map[int32]string
logits [][]float32
want string
}{
{
name: "emoji",
decode: map[int32]string{0: "A", 1: "😀", 2: "👍", 3: "!"},
logits: [][]float32{{10, 0, 0, 0}, {0, 10, 0, 0}, {0, 0, 10, 0}, {0, 0, 0, 10}},
want: "A😀👍!",
},
{
name: "ascii",
decode: map[int32]string{0: "H", 1: "e", 2: "y"},
logits: [][]float32{{10, 0, 0}, {0, 10, 0}, {0, 0, 10}},
want: "Hey",
},
{
name: "multibyte",
decode: map[int32]string{0: "世", 1: "界", 2: "😊"},
logits: [][]float32{{10, 0, 0}, {0, 10, 0}, {0, 0, 10}},
want: "世界😊",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
m := &fakeModel{decode: tt.decode, logits: tt.logits}
s := &Server{model: m, batchSize: 1, parallel: 1}
s.cache = &InputCache{enabled: true, slots: []InputCacheSlot{{Id: 0}}, numCtx: 10}
s.seqs = make([]*Sequence, 1)
s.seqsSem = semaphore.NewWeighted(1)
if err := s.seqsSem.Acquire(context.Background(), 1); err != nil {
t.Fatal(err)
}
s.cond = sync.NewCond(&s.mu)
seq := &Sequence{
inputs: []input.Input{{Token: 0}},
cache: &s.cache.slots[0],
responses: make(chan string, 10),
quit: make(chan bool, 1),
numPredict: len(tt.logits),
sampler: sample.NewSampler(0, 0, 0, 0, 0, nil),
embedding: make(chan []float32, 1),
}
s.seqs[0] = seq
for {
if err := s.processBatch(); err != nil {
t.Fatal(err)
}
if s.seqs[0] == nil {
break
}
}
var result string
for r := range seq.responses {
result += r
}
if result != tt.want {
t.Fatalf("got %q want %q", result, tt.want)
}
})
}
}

View File

@@ -430,7 +430,7 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
fnWrap := func(n uint64) {
done := doneBytes.Add(n)
progress := float32(done) / float32(totalBytes)
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType), Digest: "0000000000000000000", Total: layer.Size, Completed: int64(progress * float32(layer.Size))})
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType), Digest: "0", Total: layer.Size, Completed: int64(progress * float32(layer.Size))})
}
ftype, err := ggml.ParseFileType(quantizeType)
if err != nil {