Compare commits

..

1 Commits

Author SHA1 Message Date
Michael Yang
240921fd96 fix: omit array parsing
these instances of decode should not need any array data so omit them
2025-05-15 16:35:11 -07:00
115 changed files with 1756 additions and 5141 deletions

View File

@@ -51,8 +51,6 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
add_compile_definitions(NDEBUG)
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)

View File

@@ -40,10 +40,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
```shell
ollama run gemma3
ollama run llama3.2
```
## Model library
@@ -405,10 +405,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
### Cloud
@@ -452,8 +448,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
### Apple Vision Pro
@@ -590,7 +584,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
### Supported backends

View File

@@ -24,10 +24,7 @@ import (
"net/http"
"net/url"
"runtime"
"strconv"
"time"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/version"
@@ -79,14 +76,6 @@ func NewClient(base *url.URL, http *http.Client) *Client {
}
}
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
token, err := auth.Sign(ctx, []byte(challenge))
if err != nil {
return "", err
}
return token, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
@@ -108,21 +97,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil {
return err
@@ -132,10 +106,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
respObj, err := c.http.Do(request)
if err != nil {
return err
@@ -173,22 +143,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
var err error
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil {
return err
@@ -198,10 +152,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
response, err := c.http.Do(request)
if err != nil {
return err

View File

@@ -83,12 +83,6 @@ type GenerateRequest struct {
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Needs to be a pointer so we can distinguish between false
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *bool `json:"think,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -114,10 +108,6 @@ type ChatRequest struct {
// Options lists model-specific options.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding
Think *bool `json:"think,omitempty"`
}
type Tools []Tool
@@ -136,11 +126,8 @@ func (t Tool) String() string {
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
Role string `json:"role"`
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
@@ -491,10 +478,6 @@ type GenerateResponse struct {
// Response is the textual response itself.
Response string `json:"response"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
// Done specifies if the response is complete.
Done bool `json:"done"`

View File

@@ -372,50 +372,3 @@ func TestPropertyType_MarshalJSON(t *testing.T) {
})
}
}
func TestThinking_UnmarshalJSON(t *testing.T) {
trueVal := true
falseVal := false
tests := []struct {
name string
input string
expectedThinking *bool
expectedError bool
}{
{
name: "true",
input: `{ "think": true }`,
expectedThinking: &trueVal,
},
{
name: "false",
input: `{ "think": false }`,
expectedThinking: &falseVal,
},
{
name: "unset",
input: `{ }`,
expectedThinking: nil,
},
{
name: "invalid",
input: `{ "think": "true" }`,
expectedThinking: nil,
expectedError: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var req GenerateRequest
err := json.Unmarshal([]byte(test.input), &req)
if test.expectedError {
require.Error(t, err)
} else {
require.NoError(t, err)
assert.Equal(t, test.expectedThinking, req.Think)
}
})
}
}

View File

@@ -39,7 +39,6 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
@@ -47,23 +46,6 @@ import (
"github.com/ollama/ollama/version"
)
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
return
}
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
if err != nil {
return
}
for _, cap := range resp.Capabilities {
if cap == model.CapabilityThinking {
return
}
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
func getModelfileName(cmd *cobra.Command) (string, error) {
@@ -283,9 +265,6 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
req := &api.GenerateRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
Think: opts.Think,
}
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
@@ -320,22 +299,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
opts.Format = format
thinkFlag := cmd.Flags().Lookup("think")
if thinkFlag.Changed {
think, err := cmd.Flags().GetBool("think")
if err != nil {
return err
}
opts.Think = &think
} else {
opts.Think = nil
}
hidethinking, err := cmd.Flags().GetBool("hidethinking")
if err != nil {
return err
}
opts.HideThinking = hidethinking
keepAlive, err := cmd.Flags().GetString("keepalive")
if err != nil {
return err
@@ -399,11 +362,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below,
@@ -789,38 +747,11 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
case float64:
v = fmt.Sprintf("%g", vData)
case []any:
targetWidth := 10 // Small width where we are displaying the data in a column
var itemsToShow int
totalWidth := 1 // Start with 1 for opening bracket
// Find how many we can fit
for i := range vData {
itemStr := fmt.Sprintf("%v", vData[i])
width := runewidth.StringWidth(itemStr)
// Add separator width (", ") for all items except the first
if i > 0 {
width += 2
}
// Check if adding this item would exceed our width limit
if totalWidth+width > targetWidth && i > 0 {
break
}
totalWidth += width
itemsToShow++
}
// Format the output
if itemsToShow < len(vData) {
v = fmt.Sprintf("%v", vData[:itemsToShow])
v = strings.TrimSuffix(v, "]")
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
} else {
v = fmt.Sprintf("%v", vData)
n := 3
if len(vData) < n {
n = len(vData)
}
v = fmt.Sprintf("%v", vData[:n])
default:
v = fmt.Sprintf("%T", vData)
}
@@ -841,19 +772,10 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
count := 0
for scanner.Scan() {
text := strings.TrimSpace(scanner.Text())
if text == "" {
continue
for scanner.Scan() && (len(rows) < n || n < 0) {
if text := scanner.Text(); text != "" {
rows = append(rows, []string{"", strings.TrimSpace(text)})
}
count++
if n < 0 || count <= n {
rows = append(rows, []string{"", text})
}
}
if n >= 0 && count > n {
rows = append(rows, []string{"", "..."})
}
return
}
@@ -965,19 +887,17 @@ func PullHandler(cmd *cobra.Command, args []string) error {
type generateContextKey string
type runOptions struct {
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
Think *bool
HideThinking bool
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
}
type displayResponseState struct {
@@ -1033,26 +953,6 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
}
}
func thinkingOutputOpeningText(plainText bool) string {
text := "Thinking...\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
}
func thinkingOutputClosingText(plainText bool) string {
text := "...done thinking.\n\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
}
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -1080,34 +980,14 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
var latest api.ChatResponse
var fullResponse strings.Builder
var role string
var thinkTagOpened bool = false
var thinkTagClosed bool = false
fn := func(response api.ChatResponse) error {
if response.Message.Content != "" || !opts.HideThinking {
p.StopAndClear()
}
p.StopAndClear()
latest = response
role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(false))
thinkTagOpened = true
}
displayResponse(response.Message.Thinking, opts.WordWrap, state)
}
content := response.Message.Content
if thinkTagOpened && !thinkTagClosed && content != "" {
fmt.Print(thinkingOutputClosingText(false))
thinkTagClosed = true
}
// purposefully not putting thinking blocks in the response, which would
// only be needed if we later added tool calling to the cli (they get
// filtered out anyway since current models don't expect them unless you're
// about to finish some tool calls)
fullResponse.WriteString(content)
displayResponse(content, opts.WordWrap, state)
@@ -1124,7 +1004,6 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
Messages: opts.Messages,
Format: json.RawMessage(opts.Format),
Options: opts.Options,
Think: opts.Think,
}
if opts.KeepAlive != nil {
@@ -1186,32 +1065,13 @@ func generate(cmd *cobra.Command, opts runOptions) error {
}()
var state *displayResponseState = &displayResponseState{}
var thinkTagOpened bool = false
var thinkTagClosed bool = false
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
fn := func(response api.GenerateResponse) error {
p.StopAndClear()
latest = response
content := response.Response
if response.Response != "" || !opts.HideThinking {
p.StopAndClear()
}
if response.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(plainText))
thinkTagOpened = true
}
displayResponse(response.Thinking, opts.WordWrap, state)
}
if thinkTagOpened && !thinkTagClosed && content != "" {
fmt.Print(thinkingOutputClosingText(plainText))
thinkTagClosed = true
}
displayResponse(content, opts.WordWrap, state)
return nil
@@ -1237,7 +1097,6 @@ func generate(cmd *cobra.Command, opts runOptions) error {
System: opts.System,
Options: opts.Options,
KeepAlive: opts.KeepAlive,
Think: opts.Think,
}
if err := client.Generate(ctx, &request, fn); err != nil {
@@ -1341,11 +1200,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := client.Heartbeat(cmd.Context()); err != nil {
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
if !strings.Contains(err.Error(), " refused") {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return fmt.Errorf("ollama server not responding - %w", err)
return errors.New("could not connect to ollama app, is it running?")
}
}
return nil
@@ -1423,7 +1282,7 @@ func NewCLI() *cobra.Command {
}
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
showCmd := &cobra.Command{
Use: "show MODEL",
@@ -1453,8 +1312,6 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
runCmd.Flags().Bool("think", false, "Whether to use thinking mode for supported models")
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
stopCmd := &cobra.Command{
Use: "stop MODEL",
@@ -1506,6 +1363,7 @@ func NewCLI() *cobra.Command {
PreRunE: checkServerHeartbeat,
RunE: ListRunningHandler,
}
copyCmd := &cobra.Command{
Use: "cp SOURCE DESTINATION",
Short: "Copy a model",
@@ -1594,45 +1452,3 @@ func NewCLI() *cobra.Command {
return rootCmd
}
// If the user has explicitly set thinking options, either through the CLI or
// through the `/set think` or `set nothink` interactive options, then we
// respect them. Otherwise, we check model capabilities to see if the model
// supports thinking. If the model does support thinking, we enable it.
// Otherwise, we unset the thinking option (which is different than setting it
// to false).
//
// If capabilities are not provided, we fetch them from the server.
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*bool, error) {
if explicitlySetByUser {
return runOpts.Think, nil
}
if caps == nil {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
ret, err := client.Show(context.Background(), &api.ShowRequest{
Model: runOpts.Model,
})
if err != nil {
return nil, err
}
caps = &ret.Capabilities
}
thinkingSupported := false
for _, cap := range *caps {
if cap == model.CapabilityThinking {
thinkingSupported = true
}
}
if thinkingSupported {
thinking := true
return &thinking, nil
}
return nil, nil
}

View File

@@ -225,7 +225,6 @@ Weigh anchor!
System
You are a pirate!
Ahoy, matey!
...
`
if diff := cmp.Diff(expect, b.String()); diff != "" {

View File

@@ -62,8 +62,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
fmt.Fprintln(os.Stderr, "")
}
@@ -130,7 +128,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
var sb strings.Builder
var multiline MultilineState
var thinkExplicitlySet bool = opts.Think != nil
for {
line, err := scanner.Readline()
@@ -198,19 +195,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
continue
}
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue
@@ -271,22 +260,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
think := true
opts.Think = &think
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'think' mode.")
case "nothink":
think := false
opts.Think = &think
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
@@ -475,11 +448,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
assistant, err := chat(cmd, opts)
if err != nil {
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
sb.Reset()
continue
}
return err
}
if assistant != nil {

View File

@@ -5,7 +5,7 @@ import (
"errors"
"os"
"os/exec"
"regexp"
"strings"
"github.com/ollama/ollama/api"
)
@@ -19,12 +19,11 @@ func startApp(ctx context.Context, client *api.Client) error {
if err != nil {
return err
}
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
if !strings.Contains(link, "Ollama.app") {
return errors.New("could not find ollama app")
}
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
return err
}
return waitForServer(ctx, client)

View File

@@ -4,27 +4,17 @@ import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"syscall"
"unsafe"
"github.com/ollama/ollama/api"
"golang.org/x/sys/windows"
)
const (
Installer = "OllamaSetup.exe"
)
func startApp(ctx context.Context, client *api.Client) error {
if len(isProcRunning(Installer)) > 0 {
return fmt.Errorf("upgrade in progress...")
}
// log.Printf("XXX Attempting to find and start ollama app")
AppName := "ollama app.exe"
exe, err := os.Executable()
if err != nil {
@@ -45,11 +35,14 @@ func startApp(ctx context.Context, client *api.Client) error {
}
}
}
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
cmd := exec.Command(cmd_path, "/c", appExe)
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
@@ -63,50 +56,3 @@ func startApp(ctx context.Context, client *api.Client) error {
}
return waitForServer(ctx, client)
}
func isProcRunning(procName string) []uint32 {
pids := make([]uint32, 2048)
var ret uint32
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
if ret > uint32(len(pids)) {
pids = make([]uint32, ret+10)
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
}
if ret < uint32(len(pids)) {
pids = pids[:ret]
}
var matches []uint32
for _, pid := range pids {
if pid == 0 {
continue
}
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
if err != nil {
continue
}
defer windows.CloseHandle(hProcess)
var module windows.Handle
var cbNeeded uint32
cb := (uint32)(unsafe.Sizeof(module))
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
continue
}
var sz uint32 = 1024 * 8
moduleName := make([]uint16, sz)
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
continue
}
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
if strings.EqualFold(exeFile, procName) {
matches = append(matches, pid)
}
}
return matches
}

View File

@@ -1,63 +0,0 @@
package cmd
import (
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
// Test that a warning is printed when thinking is requested but not supported.
func TestWarnMissingThinking(t *testing.T) {
cases := []struct {
capabilities []model.Capability
expectWarn bool
}{
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
{capabilities: []model.Capability{}, expectWarn: true},
}
for _, tc := range cases {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
}
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatalf("decode request: %v", err)
}
resp := api.ShowResponse{Capabilities: tc.capabilities}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("encode response: %v", err)
}
}))
defer srv.Close()
t.Setenv("OLLAMA_HOST", srv.URL)
client, err := api.ClientFromEnvironment()
if err != nil {
t.Fatal(err)
}
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
ensureThinkingSupport(t.Context(), client, "m")
w.Close()
os.Stderr = oldStderr
out, _ := io.ReadAll(r)
warned := strings.Contains(string(out), "warning:")
if tc.expectWarn && !warned {
t.Errorf("expected warning, got none")
}
if !tc.expectWarn && warned {
t.Errorf("did not expect warning, got: %s", string(out))
}
}
}

View File

@@ -53,11 +53,8 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
if len(sv.IDs) > 0 {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
}
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
return kv

View File

@@ -94,9 +94,7 @@ func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
text = append(text, t)
} else if t.Name() == "v.position_embd.gate" {
if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
@@ -107,21 +105,23 @@ func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
WriterTo: tt,
})
}
} else {
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
t.SetRepacker(m.repack(t.Name()))
}
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else {
text = append(text, t)
}
}
@@ -137,35 +137,16 @@ func (m *mllamaModel) repack(name string) Repacker {
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
heads := m.VisionModel.AttentionHeads
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if err := t.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := t.Reshape(dims...); err != nil {
return nil, err
}
if err := t.Transpose(); err != nil {
return nil, err
}
} else {
t, err = tensor.Tanh(t)
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
}
t = tensor.Materialize(t)

View File

@@ -65,17 +65,17 @@ func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
strings.NewReplacer("patch_embed.proj", "patch_embd_0"),
strings.NewReplacer("patch_embed.proj", "patch_embd_1"),
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
strings.NewReplacer("attn.qkv", "attn_q"),
strings.NewReplacer("attn.qkv", "attn_k"),
strings.NewReplacer("attn.qkv", "attn_v"),
))...)
} else {
out = append(out, &ggml.Tensor{

View File

@@ -47,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, err := ggml.Decode(r, -1)
m, _, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -332,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, err := ggml.Decode(r, -1)
m, _, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}

View File

@@ -1,73 +1,53 @@
package convert
import (
"cmp"
"iter"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type split struct {
*strings.Replacer
dim int
// fn is an optional function to apply to the tensor after slicing
fn func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided unless a specific count is given.
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
// is split evenly based on the number of replacers provided.
func splitDim(t Tensor, dim int, replacers ...*strings.Replacer) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
var offset int
for _, split := range splits {
t := t.Clone()
for i, replacer := range replacers {
shape := slices.Clone(t.Shape())
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
shape[dim] = shape[dim] / uint64(len(replacers))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
slice[dim] = tensor.S(i*int(shape[dim]), (i+1)*int(shape[dim]))
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
tt := t.Clone()
tt.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(slice...)
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err := t.Slice(slice...)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
if split.fn != nil {
tt, err = split.fn(tt)
if err != nil {
return nil, err
}
}
t = tensor.Materialize(t)
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
return native.VectorF32(t.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: split.Replace(t.Name()),
Name: replacer.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
WriterTo: tt,
}) {
break
}

View File

@@ -1,304 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"iter"
"slices"
"strings"
"testing"
"github.com/pdevine/tensor"
)
type fakeTensor struct {
name string
shape []uint64
data []float32
repacker Repacker
}
func (f fakeTensor) Name() string {
return f.name
}
func (f fakeTensor) Shape() []uint64 {
return f.shape
}
func (f fakeTensor) Kind() uint32 {
return 0
}
func (f *fakeTensor) SetRepacker(fn Repacker) {
f.repacker = fn
}
func (f fakeTensor) Clone() Tensor {
return &fakeTensor{
name: f.name,
shape: slices.Clone(f.shape),
data: slices.Clone(f.data),
repacker: f.repacker,
}
}
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
data := f.data
if f.repacker != nil {
data, err = f.repacker(f.name, data, f.shape)
if err != nil {
return 0, err
}
}
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
return 0, err
}
return int64(len(data) * 4), nil
}
func mul(shape []uint64) int {
n := 1
for _, dim := range shape {
n *= int(dim)
}
return n
}
func TestSplitDim(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 4}) {
t.Fatalf("expected shape [3, 4], got %v", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) {
t.Fatalf("expected data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], got %v", f32s)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{2, 3, 6, 7, 10, 11}) {
t.Fatal("expected data [2, 3, 6, 7, 10, 11], got", f32s)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{2, 4}) {
t.Fatal("expected shape [2, 4], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}) {
t.Fatal("expected data [0, 1, 2, 3, 4, 5, 6, 7], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{1, 4}) {
t.Fatal("expected shape [1, 4], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{8, 9, 10, 11}) {
t.Fatal("expected data [8, 9, 10, 11], got", f32s)
}
}
})
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{2, 6, 10, 3, 7, 11}) {
t.Fatal("expected data [2, 6, 10, 3, 7, 11], got", f32s)
}
}
})
}

View File

@@ -110,7 +110,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil {
return nil, err
} else {
@@ -172,34 +171,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
}
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
for _, st := range specialTokenTypes {
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
var ids []int32
if err := json.Unmarshal(bts, &ids); err != nil {
// value is not a list so the existing ID is used
continue
}
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
return sv.Type == st
}); i >= 0 {
t.SpecialVocabulary[i].IDs = ids
}
}
}
}
return t, nil
}
@@ -309,9 +280,6 @@ type SpecialVocabulary struct {
ID int
Content string
AddToken bool
// IDs is populated by generation_config.json
IDs []int32
}
func (sv SpecialVocabulary) Key() string {

View File

@@ -247,67 +247,6 @@ func TestParseTokenizer(t *testing.T) {
Pre: "default",
},
},
{
name: "generation config eos token ids",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<bos>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<eot>",
"special": true
},
{
"id": 3,
"content": "<eom>",
"special": true
}
],
"model": {
"vocab": {
"<bos>": 0,
"<eos>": 1,
"<eot>": 2,
"<eom>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>"
}`),
"generation_config.json": strings.NewReader(`{
"bos_token_id": 0,
"eos_token_id": [1, 2, 3]
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
},
Pre: "default",
},
},
}
for _, tt := range cases {

View File

@@ -43,7 +43,6 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
- `think`: (for thinking models) should the model think before responding?
Advanced parameters (optional):
@@ -491,13 +490,11 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `think`: (for thinking models) should the model think before responding?
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `thinking`: (for thinking models) the model's thinking process
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use

View File

@@ -118,7 +118,7 @@ To run tests, use `go test`:
go test ./...
```
> NOTE: In rare cirumstances, you may need to change a package using the new
> NOTE: In rare cirumstances, you may nedd to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or

View File

@@ -132,12 +132,22 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com

View File

@@ -112,8 +112,8 @@ sudo systemctl status ollama
> While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
> of your Radeon GPU.
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
## Customizing

View File

@@ -183,8 +183,6 @@ var (
NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
)
func String(s string) func() string {

View File

@@ -15,7 +15,6 @@ import (
type GGML struct {
container
model
Length int64
}
type model interface {
@@ -387,12 +386,12 @@ func DetectContentType(b []byte) string {
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, err
return nil, 0, err
}
var c container
@@ -402,25 +401,24 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default:
return nil, errors.New("invalid file magic")
return nil, 0, errors.New("invalid file magic")
}
model, err := c.Decode(rs)
if err != nil {
return nil, err
return nil, 0, err
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return nil, err
return nil, 0, err
}
// final model type
return &GGML{
container: c,
model: model,
Length: offset,
}, nil
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {

View File

@@ -527,17 +527,23 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
return err
}
for _, key := range slices.Sorted(maps.Keys(kv)) {
keys := slices.Collect(maps.Keys(kv))
slices.Sort(keys)
for _, key := range keys {
if err := ggufWriteKV(f, key, kv[key]); err != nil {
return err
}
}
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i > 0 && j > 0 {
if i, j := a.block(), b.block(); i < 0 && j > 0 {
return 1
} else if i > 0 && j < 0 {
return -1
} else {
return cmp.Compare(i, j)
}
return cmp.Compare(a.Name, b.Name)
})
var s uint64

View File

@@ -2,82 +2,62 @@ package ggml
import (
"bytes"
"math/rand/v2"
"os"
"strings"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWriteGGUF(t *testing.T) {
r := rand.New(rand.NewPCG(0, 0))
for range 8 {
t.Run("shuffle", func(t *testing.T) {
t.Parallel()
w, err := os.CreateTemp(t.TempDir(), "*.bin")
if err != nil {
t.Fatal(err)
}
defer w.Close()
ts := []*Tensor{
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.1.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.2.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.3.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.4.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.5.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
}
if err := WriteGGUF(w, KV{
"general.alignment": uint32(16),
}, []*Tensor{
{Name: "test.0", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.1", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.2", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.3", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.4", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.5", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
}); err != nil {
t.Fatal(err)
}
r.Shuffle(len(ts), func(i, j int) {
ts[i], ts[j] = ts[j], ts[i]
})
r, err := os.Open(w.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
w, err := os.CreateTemp(t.TempDir(), strings.ReplaceAll(t.Name(), "/", "_")+"*.bin")
if err != nil {
t.Fatal(err)
}
defer w.Close()
ff, _, err := Decode(r, 0)
if err != nil {
t.Fatal(err)
}
if err := WriteGGUF(w, KV{
"general.alignment": uint32(16),
}, ts); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(ff.KV(), KV{
"general.alignment": uint32(16),
"general.parameter_count": uint64(36),
}); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
r, err := os.Open(w.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
ff, err := Decode(r, 0)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(KV{
"general.alignment": uint32(16),
"general.parameter_count": uint64(54),
}, ff.KV()); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(Tensors{
Offset: 608,
items: []*Tensor{
{Name: "blk.0.attn_norm.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.1.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.2.attn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.3.attn_norm.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.4.attn_norm.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.5.attn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "output.weight", Offset: 192, Shape: []uint64{3, 2}},
{Name: "output_norm.weight", Offset: 224, Shape: []uint64{3, 2}},
{Name: "token_embd.weight", Offset: 256, Shape: []uint64{2, 3}},
},
}, ff.Tensors(), cmp.AllowUnexported(Tensors{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
})
if diff := cmp.Diff(ff.Tensors(), Tensors{
Offset: 336,
items: []*Tensor{
{Name: "test.0", Offset: 0, Shape: []uint64{2, 3}},
{Name: "test.1", Offset: 32, Shape: []uint64{2, 3}},
{Name: "test.2", Offset: 64, Shape: []uint64{2, 3}},
{Name: "test.3", Offset: 96, Shape: []uint64{2, 3}},
{Name: "test.4", Offset: 128, Shape: []uint64{2, 3}},
{Name: "test.5", Offset: 160, Shape: []uint64{2, 3}},
},
}, cmp.AllowUnexported(Tensors{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
}

View File

@@ -19,7 +19,7 @@ func TestVisionModels(t *testing.T) {
}
testCases := []testCase{
{
model: "qwen2.5vl",
model: "llava:7b",
},
{
model: "llama3.2-vision",
@@ -60,7 +60,6 @@ func TestVisionModels(t *testing.T) {
}
func TestIntegrationSplitBatch(t *testing.T) {
skipUnderMinVRAM(t, 6)
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{

View File

File diff suppressed because one or more lines are too long

View File

@@ -30,11 +30,6 @@ type Causal struct {
// ** current forward pass **
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// the active layer for Get and Put
curLayer int
@@ -164,13 +159,12 @@ func (c *Causal) Close() {
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
c.curReserve = reserve
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
if !c.curReserve {
if !reserve {
c.updateSlidingWindow()
var err error
@@ -217,9 +211,10 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curCellRange.max = len(c.cells) - 1
}
c.curMask = c.buildMask(ctx)
var err error
c.curMask, err = c.buildMask(ctx)
return nil
return err
}
func newRange() cellRange {
@@ -302,7 +297,7 @@ func roundUp(length, pad int) int {
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
@@ -310,11 +305,6 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
if c.curReserve {
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
}
mask := make([]float32, batchSize*length)
for i := range c.curBatchSize {
@@ -335,7 +325,10 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
mask[i] = float32(math.Inf(-1))
}
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
@@ -343,7 +336,7 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
maskTensor = out
}
return maskTensor
return maskTensor, nil
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
@@ -498,7 +491,12 @@ func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts
if ctx != nil {
c.curMask = c.buildMask(ctx)
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
}
}
}
@@ -654,7 +652,10 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
}
kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys {
if key == nil {

View File

@@ -344,7 +344,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
}
cache.SetLayer(0)
tensor := context.FromFloatSlice(test.in, test.inShape...)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
@@ -386,7 +386,7 @@ func TestCanResume(t *testing.T) {
}
cache.SetLayer(0)
tensor := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet
@@ -413,7 +413,7 @@ func TestCanResume(t *testing.T) {
}
cache.SetLayer(0)
tensor = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
@@ -470,24 +470,24 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...)
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t
return t, nil
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) ml.Tensor {
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out := c.FromFloatSlice(f, shape...)
out, _ := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out
return out, nil
}
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
@@ -496,7 +496,7 @@ func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tenso
s = append(s, i)
}
out := c.FromFloatSlice(s, len(s))
out, _ := c.FromFloatSlice(s, len(s))
out.(*testTensor).dtype = dtype
return out
}
@@ -508,7 +508,7 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) MaxGraphNodes() int {
return 10

View File

@@ -544,7 +544,7 @@ func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext,
cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
cparams.penalty_repeat = C.float(params.PenaltyRepeat)
cparams.penalty_freq = C.float(params.PenaltyFreq)
cparams.penalty_present = C.float(params.PenaltyPresent)
cparams.penalty_present = C.float(params.PenaltyFreq)
cparams.seed = C.uint32_t(params.Seed)
grammar := C.CString(params.Grammar)
@@ -580,7 +580,7 @@ func SchemaToGrammar(schema []byte) []byte {
defer C.free(unsafe.Pointer(cStr))
// Allocate buffer for grammar based on schema length but with upper bound
maxLen := max(32768, min(1024*1024, len(schema)*4))
maxLen := min(1024*1024, len(schema)*4)
buf := make([]byte, maxLen)
// Call C function to convert schema to grammar
@@ -602,7 +602,7 @@ type Grammar struct {
mu sync.Mutex
}
func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogTokens []int32) *Grammar {
func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogTokens []uint32) *Grammar {
cGrammar := C.CString(grammar)
defer C.free(unsafe.Pointer(cGrammar))
@@ -622,7 +622,7 @@ func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogToke
cEogTokens[i] = C.uint32_t(token)
}
g := C.grammar_init(cGrammar, unsafe.SliceData(cTokens), C.size_t(len(cTokens)), unsafe.SliceData(cPieces), unsafe.SliceData(cEogTokens), C.size_t(len(cEogTokens)))
g := C.grammar_init(cGrammar, (*C.uint32_t)(unsafe.Pointer(&cTokens[0])), C.size_t(len(cTokens)), (**C.char)(unsafe.Pointer(&cPieces[0])), (*C.uint32_t)(unsafe.Pointer(&cEogTokens[0])), C.size_t(len(cEogTokens)))
if g == nil {
return nil
}

View File

@@ -1,156 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Fri, 18 Apr 2025 15:58:19 -0700
Subject: [PATCH] graph memory reporting on failure
---
ggml/include/ggml-alloc.h | 6 ++++++
ggml/include/ggml-backend.h | 6 ++++++
ggml/src/ggml-alloc.c | 38 +++++++++++++++++++++++++++++++++----
ggml/src/ggml-backend.cpp | 10 ++++++++++
4 files changed, 56 insertions(+), 4 deletions(-)
diff --git a/ggml/include/ggml-alloc.h b/ggml/include/ggml-alloc.h
index 2cb150fd..781b1e10 100644
--- a/ggml/include/ggml-alloc.h
+++ b/ggml/include/ggml-alloc.h
@@ -66,6 +66,12 @@ GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+struct ggml_allocr_buffer_status {
+ size_t size;
+ bool allocated;
+};
+GGML_API struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 778927f6..74e46716 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -304,6 +304,12 @@ extern "C" {
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+ struct ggml_backend_buffer_status {
+ size_t size;
+ bool allocated;
+ };
+ GGML_API struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c
index 5fd379f6..04812990 100644
--- a/ggml/src/ggml-alloc.c
+++ b/ggml/src/ggml-alloc.c
@@ -364,6 +364,7 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
+ size_t *buffer_sizes; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -387,6 +388,9 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
GGML_ASSERT(galloc->buffers != NULL);
+ galloc->buffer_sizes = calloc(n_bufs, sizeof(size_t));
+ GGML_ASSERT(galloc->buffer_sizes != NULL);
+
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
GGML_ASSERT(galloc->buf_tallocs != NULL);
@@ -453,6 +457,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values);
free(galloc->bufts);
+ free(galloc->buffer_sizes);
free(galloc->buffers);
free(galloc->buf_tallocs);
free(galloc->node_allocs);
@@ -748,6 +753,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
+ bool success = true;
+
// reallocate buffers if needed
for (int i = 0; i < galloc->n_buffers; i++) {
// if the buffer type is used multiple times, we reuse the same buffer
@@ -769,15 +776,20 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
- if (galloc->buffers[i] == NULL) {
+ if (galloc->buffers[i]) {
+ galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
+ ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
+ } else {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
- return false;
+ galloc->buffer_sizes[i] = new_size;
+ success = false;
}
- ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
+ } else {
+ galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
}
}
- return true;
+ return success;
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
@@ -934,6 +946,24 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
+struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
+ GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
+
+ for (int i = 0; i < buffer_id; i++) {
+ if (galloc->buf_tallocs[i] == galloc->buf_tallocs[buffer_id]) {
+ // This buffer is the same as a previous one due to the same buffer type being used multiple times
+ // (See above.) However, we need a different check because multiple buffers might be NULL in our
+ // case and we still want to know the attempted size.
+
+ struct ggml_allocr_buffer_status status = {0, true};
+ return status;
+ }
+ }
+
+ struct ggml_allocr_buffer_status status = {galloc->buffer_sizes[buffer_id], galloc->buffers[buffer_id] != NULL};
+ return status;
+}
+
// utils
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index 0ce73a99..be335e8c 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -1629,6 +1629,16 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
+struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+
+ struct ggml_allocr_buffer_status allocr_status = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+ struct ggml_backend_buffer_status status = {allocr_status.size, allocr_status.allocated};
+
+ return status;
+}
+
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);

View File

@@ -1,9 +1,12 @@
package llm
import (
"cmp"
"fmt"
"log/slog"
"maps"
"os"
"slices"
"strconv"
"strings"
@@ -82,11 +85,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
var graphOffload uint64
// Projectors loaded into GPU0 only
var llamaEngineProjectorWeights uint64
// Projectors loaded with output layer
var ollamaEngineProjectorWeights uint64
var ollamaEngineProjectorGraph uint64
var projectorWeights uint64
var projectorGraph uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
@@ -111,23 +111,21 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors {
llamaEngineProjectorWeights += projectorMemoryRequirements(projector)
weight := projectorMemoryRequirements(projector)
projectorWeights += weight
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
if llamaEngineProjectorWeights == 0 {
ollamaEngineProjectorWeights, ollamaEngineProjectorGraph = f.VisionGraphSize()
opts.NumCtx = max(opts.NumCtx, 2048)
if projectorWeights == 0 && projectorGraph == 0 {
projectorWeights, projectorGraph = f.VisionGraphSize()
}
layers := f.Tensors().GroupLayers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
} else {
slog.Warn("model missing blk.0 layer size")
}
// add one layer (chosing the max layer) worth of memory as a buffer
layerSize = slices.MaxFunc(slices.Collect(maps.Values(layers)), func(a, b ggml.Layer) int {
return cmp.Compare(a.Size(), b.Size())
}).Size()
var kvct string
if envconfig.FlashAttention() &&
@@ -165,7 +163,6 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
graphFullOffload = graphPartialOffload
}
// Output layer handled at the end if we have space
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.Size()
}
@@ -175,7 +172,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
memoryLayerOutput += layer.Size()
}
gpuZeroOverhead := llamaEngineProjectorWeights
// Output layer handled at the end if we have space
gpuZeroOverhead := projectorWeights + projectorGraph
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
var layerCount int
@@ -218,8 +216,6 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
} else {
overflow += gpuZeroOverhead
}
// For all the layers, find where they can fit on the GPU(s)
@@ -260,24 +256,21 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
// Determine if we need to consider output then find where it fits
memoryLastLayer := memoryLayerOutput + ollamaEngineProjectorWeights + ollamaEngineProjectorGraph
if memoryLastLayer > 0 {
if opts.NumGPU < 0 || layerCount < opts.NumGPU {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > overhead+used+memoryLastLayer {
gpuAllocations[g.i] += memoryLastLayer
layerCounts[g.i]++
layerCount++
break
}
if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > overhead+used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
break
}
}
if layerCount < int(f.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLastLayer
overflow += memoryLayerOutput
}
}
@@ -335,8 +328,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
projectorWeights: llamaEngineProjectorWeights + ollamaEngineProjectorWeights,
projectorGraph: ollamaEngineProjectorGraph,
projectorWeights: projectorWeights,
projectorGraph: projectorGraph,
}
if gpus[0].Library == "cpu" {
@@ -422,7 +415,7 @@ func projectorMemoryRequirements(filename string) (weights uint64) {
}
defer file.Close()
ggml, err := ggml.Decode(file, 1024)
ggml, _, err := ggml.Decode(file, 0)
if err != nil {
return 0
}

View File

@@ -121,7 +121,7 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
}
defer f.Close()
ggml, err := ggml.Decode(f, maxArraySize)
ggml, _, err := ggml.Decode(f, maxArraySize)
return ggml, err
}
@@ -797,8 +797,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
res, err := http.DefaultClient.Do(serverReq)
if err != nil {
slog.Error("post predict", "error", err)
return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
return fmt.Errorf("POST predict: %v", err)
}
defer res.Body.Close()

View File

@@ -5,8 +5,8 @@ import (
"context"
"encoding/binary"
"fmt"
"log/slog"
"math"
"os"
"slices"
"strconv"
"strings"
@@ -15,11 +15,6 @@ import (
)
type Backend interface {
Load(ctx context.Context, progress func(float32)) error
// BackendMemory returns the memory allocations that were made for this model
BackendMemory() BackendMemory
Config() fs.Config
Get(name string) Tensor
NewContext() Context
@@ -57,6 +52,10 @@ type CacheConfig struct {
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// Progress is a callback function that allows reporting percentage completion
// of model loading
Progress func(float32)
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
@@ -73,122 +72,9 @@ type BackendParams struct {
FlashAttention bool
}
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
BackendMemory
}
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
func (e ErrNoMem) Error() string {
return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}
type AllocationStatus int
const (
// Unallocated memory - have not yet attempted to allocate
Unallocated AllocationStatus = iota
// Failed memory - tried to allocate the memory and did not succeed
Failed
// Allocated memory = tried and succeeded to allocate memory
Allocated
)
// Memory is the size of an allocation and whether it was successful.
type Memory struct {
Size uint64
Status AllocationStatus
}
func (m Memory) String() string {
s := fmt.Sprint(m.Size)
switch m.Status {
case Unallocated:
s += "U"
case Failed:
s += "F"
case Allocated:
s += "A"
}
return s
}
// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
// Name is the name of the device as labeled by the backend. It
// may not be persistent across instances of the runner.
Name string
// Weights is the per-layer memory needed for the model weights.
Weights []Memory
// Cache is the per-layer memory needed for the KV cache.
Cache []Memory
// Graph is the size of the compute graph. It is not per-layer.
Graph Memory
}
func memoryPresent(mem []Memory) bool {
return slices.ContainsFunc(mem, func(m Memory) bool { return m.Size != 0 })
}
func (m DeviceMemory) LogValue() slog.Value {
var attrs []slog.Attr
if memoryPresent(m.Weights) {
attrs = append(attrs, slog.Any("Weights", m.Weights))
}
if memoryPresent(m.Cache) {
attrs = append(attrs, slog.Any("Cache", m.Cache))
}
if m.Graph.Size != 0 {
attrs = append(attrs, slog.Any("Graph", m.Graph))
}
return slog.GroupValue(attrs...)
}
// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputsWeights are always located on the CPU and cannot be moved
InputWeights Memory
// CPU model components are located in system memory. This does not
// include unified memory allocated through the GPU.
CPU DeviceMemory
// GPU model components are located on one or more GPUs.
GPUs []DeviceMemory
}
func (m BackendMemory) LogValue() slog.Value {
var attrs []slog.Attr
if m.InputWeights.Size != 0 {
attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
}
attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
for _, g := range m.GPUs {
attrs = append(attrs, slog.Any(g.Name, g))
}
return slog.GroupValue(attrs...)
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
@@ -196,9 +82,9 @@ func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)
backends[name] = f
}
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(modelPath, params)
return backend(ctx, f, params)
}
return nil, fmt.Errorf("unsupported backend")
@@ -207,8 +93,8 @@ func NewBackend(modelPath string, params BackendParams) (Backend, error) {
type Context interface {
Empty(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) Tensor
FromIntSlice(s []int32, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
Arange(start, stop, step float32, dtype DType) Tensor
@@ -220,7 +106,7 @@ type Context interface {
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
Reserve()
Reserve() error
MaxGraphNodes() int
Close()
@@ -233,6 +119,21 @@ type Context interface {
Layer(int) Context
}
// RopeOptions contains optional parameters for RoPE function
type RopeOptions struct {
OriginalContextLen uint32
}
// RopeOption defines a function that modifies RopeOpts
type RopeOption func(*RopeOptions)
// WithContextLen sets a custom context length
func WithContextLen(len uint32) RopeOption {
return func(opts *RopeOptions) {
opts.OriginalContextLen = len
}
}
type Tensor interface {
Dim(n int) int
Stride(n int) int
@@ -246,8 +147,6 @@ type Tensor interface {
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Div(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
MulmatID(ctx Context, t2, ids Tensor) Tensor
@@ -256,11 +155,11 @@ type Tensor interface {
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
SumRows(ctx Context) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32, options ...RopeOption) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Sin(ctx Context) Tensor

View File

@@ -10,6 +10,7 @@ import "C"
import (
"context"
"errors"
"fmt"
"io"
"log/slog"
@@ -29,7 +30,6 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"github.com/ollama/ollama/ml/nn/rope"
"golang.org/x/sync/errgroup"
)
@@ -44,15 +44,8 @@ func devices() []*C.struct_ggml_backend_device {
}
type Backend struct {
// modelPath is the location of the model data
modelPath string
meta *fsggml.GGML
// tensorLoadTargets maps from the name of the tensor in the file
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
sched *C.struct_ggml_backend_sched
schedBackends []*C.struct_ggml_backend
schedBufts []*C.struct_ggml_backend_buffer_type
@@ -65,26 +58,14 @@ type Backend struct {
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
// requiredMemory is the cumulative memory allocations needed by the backend
requiredMemory *ml.BackendMemory
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
}
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
@@ -99,9 +80,6 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
"num_key_values", len(meta.KV()),
)
var requiredMemory ml.BackendMemory
btDeviceMemory := make(map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory)
type deviceBufferType struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
@@ -122,8 +100,6 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
}
blocks := int(meta.KV().BlockCount())
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
@@ -131,27 +107,17 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
}
}
requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
for i, d := range gpus {
for _, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
})
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
}
useDefaultSplit := true
@@ -190,6 +156,8 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
// inputs always use cpu
input := cpuDeviceBufferType
blocks := int(meta.KV().BlockCount())
// define a range of gpu layers. anything outside of this range is assigned to the cpu
gpuRangeStart := max(0, blocks-params.NumGPULayers)
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
@@ -230,7 +198,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
// contexts are shared by tensors of the same buffer type
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type, layer int) *C.struct_ggml_tensor {
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
@@ -256,16 +224,6 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
C.ggml_set_name(tt, cname)
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
requiredMemory.InputWeights.Status = ml.Allocated
requiredMemory.InputWeights.Size += uint64(size)
} else {
btDeviceMemory[bt].Weights[layer].Size += uint64(size)
}
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
@@ -287,22 +245,22 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts, -1)
createTensor(tensor{source: t}, input.bts)
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
createTensor(tensor{source: t, target: "output.weight"}, output.bts)
}
case contains(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts, blocks)
createTensor(tensor{source: t}, output.bts)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts, blocks)
createTensor(tensor{source: t}, output.bts)
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
// these tensors should be repeated per layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts, i)
}, layer.bts)
}
default:
layerIndex := -1
@@ -313,10 +271,10 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
createTensor(tensor{source: t}, layers[layerIndex].bts)
} else {
// load all other tensors on the cpu
createTensor(tensor{source: t}, input.bts, -1)
createTensor(tensor{source: t}, input.bts)
}
}
}
@@ -329,18 +287,8 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
for i := range btDeviceMemory[bt].Weights {
if btDeviceMemory[bt].Weights[i].Size != 0 {
if b != nil {
btDeviceMemory[bt].Weights[i].Status = ml.Allocated
} else {
btDeviceMemory[bt].Weights[i].Status = ml.Failed
}
}
}
if b == nil {
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
return nil, fmt.Errorf("unable to allocate memory from device %v for model weights", C.GoString(C.ggml_backend_buft_name(bt)))
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
@@ -359,6 +307,73 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
}
var doneBytes atomic.Uint64
totalBytes := uint64(n) - meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
for i := range tts {
target := targets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(r.Name())
if err != nil {
slog.Warn("file open error", "file", r.Name(), "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", r.Name(), "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if params.Progress != nil {
done := doneBytes.Add(uint64(n))
params.Progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
@@ -382,11 +397,9 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
return &Backend{
modelPath: modelPath,
flashAttention: params.FlashAttention,
meta: meta,
tensorLoadTargets: targets,
tensors: tensors,
flashAttention: params.FlashAttention,
meta: meta,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
@@ -405,9 +418,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
return m
}(),
requiredMemory: &requiredMemory,
btDeviceMemory: btDeviceMemory,
maxGraphNodes: maxGraphNodes,
maxGraphNodes: maxGraphNodes,
}, nil
}
@@ -415,81 +426,6 @@ func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
var doneBytes atomic.Uint64
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range b.meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
for i := range tts {
target := b.tensorLoadTargets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := b.tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(b.modelPath)
if err != nil {
slog.Warn("file open error", "file", b.modelPath, "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
return nil
}
func (b *Backend) BackendMemory() ml.BackendMemory {
return *b.requiredMemory
}
func (b *Backend) Config() fs.Config {
return b.meta.KV()
}
@@ -521,7 +457,6 @@ func (b *Backend) NewContextSize(n int) ml.Context {
no_alloc: true,
}),
allocatedBuffers: &allocatedBuffers,
layer: -1,
}
}
@@ -548,9 +483,6 @@ type Context struct {
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
// layer is the graph layer that this context is allocating for - assumed to be cache
layer int
}
func (c *Context) Input() ml.Context {
@@ -561,7 +493,6 @@ func (c *Context) Input() ml.Context {
buft: c.b.input,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: -1,
}
}
@@ -576,7 +507,6 @@ func (c *Context) Layer(i int) ml.Context {
buft: buft,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: i,
}
}
@@ -614,34 +544,22 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
}
}
func (c *Context) Reserve() {
reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
func (c *Context) Reserve() error {
if !C.ggml_backend_sched_reserve(c.b.sched, c.graph) {
C.ggml_backend_sched_reset(c.b.sched)
return errors.New("failed to reserve graph")
}
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
for _, bt := range c.b.schedBufts {
c.b.btDeviceMemory[bt].Graph = ml.Memory{}
}
for i := range c.b.schedBackends {
bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
graph.Size += uint64(bufferStatus.size)
if bufferStatus.allocated && graph.Status != ml.Failed {
graph.Status = ml.Allocated
} else {
graph.Status = ml.Failed
}
size := C.ggml_backend_sched_get_buffer_size(c.b.sched, c.b.schedBackends[i])
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(bufferStatus.size)))
"size", format.HumanBytes2(uint64(size)))
}
if !reserved {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
C.ggml_backend_sched_reset(c.b.sched)
return nil
}
func (c *Context) MaxGraphNodes() int {
@@ -661,7 +579,7 @@ func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
func (c *Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
}
@@ -684,7 +602,7 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}, nil
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -697,43 +615,40 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if c.layer >= 0 {
cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]
cache.Size += uint64(size)
if b != nil {
cache.Status = ml.Allocated
} else {
cache.Status = ml.Failed
}
}
if b == nil {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
return nil, fmt.Errorf("unable to allocate %v from device %v for new tensor", format.HumanBytes2(uint64(size)), C.GoString(C.ggml_backend_buft_name(c.buft)))
}
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
return &Tensor{b: c.b, t: t}, nil
}
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return c.newTensor(dtype, shape)
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
return t
}
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := c.newTensor(dtype, shape)
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
C.ggml_set_zero(t.(*Tensor).t)
return t
}
func checkShape[S ~[]E, E any](s S, shape ...int) {
func checkShape[S ~[]E, E any](s S, shape ...int) error {
n := len(s)
if n == 0 {
return
return nil
}
for _, v := range shape {
@@ -741,32 +656,44 @@ func checkShape[S ~[]E, E any](s S, shape ...int) {
}
if n != 1 {
panic(fmt.Errorf("invalid shape: %v", shape))
return fmt.Errorf("invalid shape: %v", shape)
}
return nil
}
func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
checkShape(s, shape...)
func (c *Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
t, err := c.newTensor(ml.DTypeF32, shape)
if err != nil {
return nil, err
}
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t
return t, nil
}
func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
checkShape(s, shape...)
func (c *Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
t, err := c.newTensor(ml.DTypeI32, shape)
if err != nil {
return nil, err
}
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t
return t, nil
}
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
@@ -784,7 +711,12 @@ func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
arange = append(arange, int32(i))
}
return c.Input().FromIntSlice(arange, len(arange))
t, err := c.Input().FromIntSlice(arange, len(arange))
if err != nil {
panic(err)
}
return t
default:
panic("unsupported dtype for arange")
}
@@ -935,13 +867,6 @@ func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1059,13 +984,6 @@ func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
}
}
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1137,15 +1055,28 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
}
}
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
const (
ropeTypeNorm C.int = 0
ropeTypeNeox C.int = 2
ropeTypeMrope C.int = 8
ropeTypeVision C.int = 24
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32, options ...ml.RopeOption) ml.Tensor {
// Default options
opts := &rope.Options{OriginalContextLength: 131072, Factors: &Tensor{}}
opts := &ml.RopeOptions{
OriginalContextLen: 131072,
}
// Apply any provided options
for _, option := range options {
option(opts)
}
if ropeFactors == nil {
ropeFactors = &Tensor{b: t.b}
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
@@ -1156,11 +1087,11 @@ func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase
t: C.ggml_rope_ext(
ctx.(*Context).ctx,
dequant,
positions.(*Tensor).t,
opts.Factors.(*Tensor).t,
positionIDs.(*Tensor).t,
ropeFactors.(*Tensor).t,
C.int(ropeDim),
C.int(opts.Type),
C.int(opts.OriginalContextLength),
C.int(ropeType),
C.int(opts.OriginalContextLen),
C.float(ropeBase),
C.float(ropeScale),
C.float(0.0),

View File

@@ -66,12 +66,6 @@ GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
struct ggml_allocr_buffer_status {
size_t size;
bool allocated;
};
GGML_API struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);

View File

@@ -304,12 +304,6 @@ extern "C" {
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
struct ggml_backend_buffer_status {
size_t size;
bool allocated;
};
GGML_API struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);

View File

@@ -364,7 +364,6 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
size_t *buffer_sizes; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -388,9 +387,6 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
GGML_ASSERT(galloc->buffers != NULL);
galloc->buffer_sizes = calloc(n_bufs, sizeof(size_t));
GGML_ASSERT(galloc->buffer_sizes != NULL);
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
GGML_ASSERT(galloc->buf_tallocs != NULL);
@@ -457,7 +453,6 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values);
free(galloc->bufts);
free(galloc->buffer_sizes);
free(galloc->buffers);
free(galloc->buf_tallocs);
free(galloc->node_allocs);
@@ -753,8 +748,6 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
bool success = true;
// reallocate buffers if needed
for (int i = 0; i < galloc->n_buffers; i++) {
// if the buffer type is used multiple times, we reuse the same buffer
@@ -776,20 +769,15 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
if (galloc->buffers[i]) {
galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
} else {
if (galloc->buffers[i] == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
galloc->buffer_sizes[i] = new_size;
success = false;
return false;
}
} else {
galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
}
}
return success;
return true;
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
@@ -946,24 +934,6 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
for (int i = 0; i < buffer_id; i++) {
if (galloc->buf_tallocs[i] == galloc->buf_tallocs[buffer_id]) {
// This buffer is the same as a previous one due to the same buffer type being used multiple times
// (See above.) However, we need a different check because multiple buffers might be NULL in our
// case and we still want to know the attempted size.
struct ggml_allocr_buffer_status status = {0, true};
return status;
}
}
struct ggml_allocr_buffer_status status = {galloc->buffer_sizes[buffer_id], galloc->buffers[buffer_id] != NULL};
return status;
}
// utils
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {

View File

@@ -1629,16 +1629,6 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
struct ggml_allocr_buffer_status allocr_status = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
struct ggml_backend_buffer_status status = {allocr_status.size, allocr_status.allocated};
return status;
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);

View File

@@ -3,7 +3,7 @@ package cpu
// #cgo CFLAGS: -O3 -Wno-implicit-function-declaration
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/amx -I${SRCDIR}/llamafile -I${SRCDIR}/.. -I${SRCDIR}/../../include
// #cgo CPPFLAGS: -DNDEBUG -DGGML_USE_LLAMAFILE
// #cgo CPPFLAGS: -DGGML_USE_LLAMAFILE
// #cgo linux CPPFLAGS: -D_GNU_SOURCE
// #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
// #cgo darwin,arm64 LDFLAGS: -framework Accelerate

View File

@@ -4,6 +4,6 @@ package metal
//go:generate sh -c "{ echo // Code generated by 'go generate'. DO NOT EDIT.; sed -e '/__embed_ggml-common.h__/r ../ggml-common.h' -e '/__embed_ggml-common.h__/d' -e '/#include \"ggml-metal-impl.h\"/r ggml-metal-impl.h' -e '/#include \"ggml-metal-impl.h\"/d' ggml-metal.metal; } >ggml-metal-embed.metal"
// #cgo CPPFLAGS: -DGGML_METAL_NDEBUG -DGGML_METAL_EMBED_LIBRARY -I.. -I../../include
// #cgo CPPFLAGS: -DGGML_METAL_EMBED_LIBRARY -I.. -I../../include
// #cgo LDFLAGS: -framework Metal -framework MetalKit
import "C"

View File

@@ -1,21 +0,0 @@
// fast provides implementations of fast (fused) operations for increased performance.
package fast
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/rope"
)
// fastRoPE is an interface for tensors that support fast rotary positional embedding.
type fastRoPE interface {
RoPE(ctx ml.Context, positionIDs ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor
}
// RoPE applies rotary positional embedding to tensor `t`.
func RoPE(ctx ml.Context, t, positions ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor {
if t, ok := t.(fastRoPE); ok {
return t.RoPE(ctx, positions, dim, base, scale, options...)
}
panic("RoPE not implemented for this tensor type")
}

View File

@@ -1,33 +0,0 @@
package rope
import "github.com/ollama/ollama/ml"
// Options contains optional parameters for RoPE function
type Options struct {
OriginalContextLength int
Type int
Factors ml.Tensor
}
// WithOriginalContextLength sets a custom context length
func WithOriginalContextLength(n int) func(*Options) {
return func(opts *Options) {
opts.OriginalContextLength = n
}
}
// WithType sets RoPE type to NeoX
func WithTypeNeoX() func(*Options) {
return func(opts *Options) {
opts.Type = 2
}
}
// WithFactors sets custom rope factors
func WithFactors(factors ml.Tensor) func(*Options) {
return func(opts *Options) {
if factors != nil {
opts.Factors = factors
}
}
}

View File

@@ -98,8 +98,14 @@ func Register(name string, f func(fs.Config) (Model, error)) {
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(modelPath string, params ml.BackendParams) (Model, error) {
b, err := ml.NewBackend(modelPath, params)
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
b, err := ml.NewBackend(ctx, r, params)
if err != nil {
return nil, err
}
@@ -128,7 +134,7 @@ func NewTextProcessor(s string) (TextProcessor, error) {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
meta, _, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
@@ -287,7 +293,11 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
return nil, errors.New("batch size cannot be less than 1")
}
batch.Inputs = ctx.Input().FromIntSlice(inputs, len(inputs))
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return nil, err
}
cache := m.Config().Cache
if cache != nil {

View File

@@ -7,8 +7,6 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
@@ -45,13 +43,10 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]Layer, c.Uint("block_count")),
@@ -85,10 +80,11 @@ type SelfAttention struct {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -98,7 +94,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -128,7 +124,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
@@ -175,8 +171,15 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

View File

@@ -60,16 +60,12 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
EOS: int32(1),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
EOT: int32(106),
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
},
),
ImageProcessor: newImageProcessor(c),
@@ -101,11 +97,14 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s,
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
@@ -141,8 +140,15 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

View File

@@ -7,8 +7,6 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
@@ -75,6 +73,7 @@ type TextSelfAttention struct {
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
ropeBase := opts.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
@@ -84,7 +83,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -95,7 +94,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -113,7 +112,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
}
type TextMLP struct {

View File

@@ -1,23 +1,22 @@
package llama
import (
"cmp"
"fmt"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type Model struct {
@@ -33,6 +32,10 @@ type Model struct {
}
func New(c fs.Config) (model.Model, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -40,13 +43,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
Layers: make([]Layer, c.Uint("block_count")),
@@ -54,11 +57,10 @@ func New(c fs.Config) (model.Model, error) {
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
@@ -75,31 +77,31 @@ type SelfAttention struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
ropeDim := cmp.Or(opts.ropeDim, headDim)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, attention)
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -120,11 +122,11 @@ type Layer struct {
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
@@ -142,19 +144,27 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tenso
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -40,13 +40,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
ImageProcessor: newImageProcessor(c),
@@ -77,7 +77,10 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
tilesLocal := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
tilesLocal, err := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
if err != nil {
return nil, err
}
ratioW, ratioH := size.X/m.imageSize, size.Y/m.imageSize
@@ -88,7 +91,11 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
pixelValues := tilesLocal
if len(pixelsGlobal) > 0 {
tilesGlobal := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
tilesGlobal, err := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
if err != nil {
return nil, err
}
pixelValues = pixelValues.Concat(ctx, tilesGlobal, 3)
}
@@ -175,8 +182,15 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

View File

@@ -8,8 +8,6 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
@@ -33,8 +31,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
if useRope {
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
}
if opts.useQKNorm {
@@ -63,9 +61,9 @@ func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOp
}
type TextExperts struct {
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
Gate ml.Tensor `gguf:"ffn_gate_exps.weight"`
Up ml.Tensor `gguf:"ffn_up_exps.weight"`
Down ml.Tensor `gguf:"ffn_down_exps.weight"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -76,13 +74,13 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.Weight.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.Weight.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.Weight.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
upStates := e.Up.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
}
return nextStates
@@ -223,7 +221,11 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
scales[i] = float32(math.Log(math.Floor(((float64(p)+1.0)/float64(m.attentionFloorScale))+1.0))*m.attentionScale + 1.0)
}
attentionScales = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales))
var err error
attentionScales, err = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales))
if err != nil {
panic(err)
}
}
for i, layer := range m.Layers {
@@ -248,5 +250,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil
}

View File

@@ -245,7 +245,10 @@ func (m *VisionModel) rotaryEmbedding(ctx ml.Context) (ml.Tensor, ml.Tensor) {
}
}
ropeFreqs := ctx.Input().FromFloatSlice(freqs, freqDim/2, numPatches, 2)
ropeFreqs, err := ctx.Input().FromFloatSlice(freqs, freqDim/2, numPatches, 2)
if err != nil {
panic(err)
}
ropeFreqs = ropeFreqs.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
ropeFreqs = ropeFreqs.Reshape(ctx, freqDim, 1, numPatches)

View File

@@ -31,26 +31,31 @@ var _ model.MultimodalProcessor = (*Model)(nil)
var _ model.TextProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
textModel, err := NewTextModel(c)
if err != nil {
return nil, err
}
m := &Model{
TextModel: textModel,
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
@@ -114,7 +119,10 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
@@ -158,8 +166,15 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

View File

@@ -1,21 +1,21 @@
package mistral3
import (
"cmp"
"fmt"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
hiddenSize, numHeads, numKVHeads, headDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type TextModel struct {
@@ -36,15 +36,19 @@ type SelfAttention struct {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
ropeType := uint32(0)
headDim := opts.headDim
if headDim == 0 {
headDim = opts.hiddenSize / opts.numHeads
}
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -55,7 +59,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale), nil
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -121,18 +125,24 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
return m.Output.Forward(ctx, hiddenState)
}
func newTextModel(c fs.Config) *TextModel {
return &TextModel{
func NewTextModel(c fs.Config) (*TextModel, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
textModel := &TextModel{
Layers: make([]Layer, c.Uint("block_count")),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
return textModel, nil
}

View File

@@ -110,8 +110,15 @@ func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor)
}
}
h := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
w := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
h, err := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
w, err := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
@@ -144,7 +151,10 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
}
}
positionIDs := ctx.Input().FromIntSlice(positions, len(positions))
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
panic(err)
}
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
@@ -160,7 +170,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 24)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),

View File

@@ -38,13 +38,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
ImageProcessor: newImageProcessor(c),
@@ -80,8 +80,15 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
f32s = f32s[:m.imageSize*m.imageSize*m.numChannels*m.maxNumTiles]
}
pixelValues := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, m.maxNumTiles)
aspectRatio := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
pixelValues, err := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, m.maxNumTiles)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
if err != nil {
return nil, err
}
positionIDs := ctx.Arange(0, 1601, 1, ml.DTypeI32)
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
@@ -106,8 +113,15 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal[0].Tensor
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil

View File

@@ -8,8 +8,6 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
)
type TextSelfAttention struct {
@@ -23,14 +21,15 @@ type TextSelfAttention struct {
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -45,7 +44,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
}
return key, nil
@@ -200,8 +199,8 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
type TextModelOptions struct {
hiddenSize, numHeads, numKVHeads int
ropeDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
crossAttentionLayers []int32
}
@@ -241,10 +240,10 @@ func newTextModel(c fs.Config) *TextModel {
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
crossAttentionLayers: c.Ints("attention.cross_attention_layers"),
},
}

View File

@@ -16,6 +16,8 @@ type VisionSelfAttention struct {
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
Gate ml.Tensor `gguf:"attn_gate"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
@@ -23,16 +25,27 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, op
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), nil)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
return sa.Output.Forward(ctx, attention)
hiddenState = sa.Output.Forward(ctx, attention)
return hiddenState
}
type VisionMLP struct {
@@ -63,18 +76,21 @@ func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts
// self attention
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
if e.AttentionGate != nil {
hiddenState = hiddenState.Mul(ctx, e.AttentionGate)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
// feed forward
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
if e.MLPGate != nil {
hiddenState = hiddenState.Mul(ctx, e.MLPGate)
}
hiddenState = hiddenState.Add(ctx, residual)
return hiddenState
}

View File

@@ -7,7 +7,5 @@ import (
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"
)

View File

@@ -1,164 +0,0 @@
package qwen2
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
ropeDim := cmp.Or(opts.ropeDim, headDim)
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key := attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
return attn.Output.Forward(ctx, attention)
}
type MLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type DecoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.MLP.Forward(ctx, hiddenStates)
return hiddenStates.Add(ctx, residual)
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []DecoderLayer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
// Forward implements model.Model.
func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
hiddenStates = m.Output.Forward(ctx, hiddenStates)
return hiddenStates, nil
}
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
func New(c fs.Config) (model.Model, error) {
m := Model{
Layers: make([]DecoderLayer, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func init() {
model.Register("qwen2", New)
}

View File

@@ -34,13 +34,12 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
TextModel: NewTextModel(c),
@@ -69,7 +68,10 @@ func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
pixelValues, err := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
if err != nil {
return nil, nil, fmt.Errorf("failed to create tensor from image: %w", err)
}
return pixelValues, grid, nil
}
@@ -118,14 +120,13 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
result = append(result, input.Input{Token: visionStartToken, SameBatch: patchesPerChunk + 1})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
SameBatch: patchesPerChunk,
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
@@ -139,8 +140,15 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
}

View File

@@ -7,15 +7,13 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
ropeDim, originalContextLength int
eps, ropeBase, ropeScale float32
ctxLen, hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim, defaultContextLen uint32
}
type TextModel struct {
@@ -31,14 +29,15 @@ func NewTextModel(c fs.Config) *TextModel {
m := TextModel{
Layers: make([]Layer, c.Uint("block_count")),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
ropeDim: int(c.Uint("rope.dimension_count", 128)),
originalContextLength: int(c.Uint("context_length", 128000)),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ctxLen: int(c.Uint("context_length")),
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count", 128),
defaultContextLen: c.Uint("context_length", 128000),
},
}
@@ -60,11 +59,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen))
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen))
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -78,7 +77,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
return key.RoPE(ctx, shift, nil, m.ropeDim, 2, m.ropeBase, m.ropeScale, ml.WithContextLen(m.defaultContextLen)), nil
}
// MLP implements the feed-forward network component with SwiGLU activation

View File

@@ -1,6 +1,7 @@
package qwen25vl
import (
"fmt"
"math"
"slices"
@@ -43,8 +44,10 @@ func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int
}
}
mask := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
mask, err := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
if err != nil {
panic(err)
}
// Reshape to match [seqLength, seqLength, 1] for broadcasting
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
@@ -300,7 +303,10 @@ func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int)
}
}
t := ctx.Input().FromIntSlice(index, len(index))
t, err := ctx.Input().FromIntSlice(index, len(index))
if err != nil {
panic(err)
}
return t, bounds
}
@@ -320,7 +326,10 @@ func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
}
}
freqs := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
freqs, err := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
if err != nil {
panic(fmt.Errorf("failed to create tensor from frequencies: %w", err))
}
// Create position coordinates (y,x pairs) for the grid
// In PyTorch: Equivalent to generating position ids with torch.arange()
@@ -330,7 +339,10 @@ func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
coords = append(coords, int32(y), int32(x))
}
}
pos := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
pos, err := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
if err != nil {
panic(fmt.Errorf("failed to create tensor from positions: %w", err))
}
// Reshape and permute positions to match spatial merging pattern
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)

View File

@@ -1,233 +0,0 @@
package qwen3
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
eps float32
ropeBase, ropeScale float32
keyLength, valueLength int
numExperts, numExpertsUsed int
normTopKProb bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
type Attention struct {
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Query *nn.Linear `gguf:"attn_q"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP interface {
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
routerLogits := mlp.Router.Forward(ctx, hiddenStates)
routingWeights := routerLogits.Softmax(ctx)
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
if opts.normTopKProb {
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := mlp.Up.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = mlp.Gate.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.SILU(ctx)
hiddenStates = hiddenStates.Mul(ctx, upStates)
experts := mlp.Down.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
*Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP
}
func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Layers []Layer `gguf:"blk"`
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
var _ model.Model = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
if c.String("general.architecture") == "qwen3moe" {
layers[i].MLP = &sparse{}
} else {
layers[i].MLP = &dense{}
}
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func init() {
model.Register("qwen3", New)
model.Register("qwen3moe", New)
}

View File

@@ -3,16 +3,118 @@ package model
import (
"cmp"
"context"
"fmt"
"iter"
"log/slog"
"slices"
"strings"
"sync"
"github.com/dlclark/regexp2"
heap "github.com/emirpasic/gods/v2/trees/binaryheap"
"github.com/ollama/ollama/logutil"
)
type Special int32
const (
SpecialBOS Special = iota
SpecialEOS
)
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Vocabulary() *Vocabulary
}
type Vocabulary struct {
Values []string
Types []int32
Scores []float32
Merges []string
BOS, EOS, EOT int32
AddBOS, AddEOS, AddEOT bool
specialOnce sync.Once
special []string
valuesOnce sync.Once
values map[string]int32
mergeOnce sync.Once
merge map[string]int32
}
func (v *Vocabulary) Is(id int32, special Special) bool {
switch special {
case SpecialBOS:
return id == v.BOS
case SpecialEOS:
return id == v.EOS || id == v.EOT
default:
return false
}
}
func (v *Vocabulary) Encode(s string) int32 {
v.valuesOnce.Do(func() {
v.values = make(map[string]int32, len(v.Values))
for i, value := range v.Values {
v.values[value] = int32(i)
}
})
if id, ok := v.values[s]; ok {
return id
}
return -1
}
func (v *Vocabulary) Decode(id int32) string {
return v.Values[id]
}
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if slices.Contains([]int{105, 106}, i) {
v.special = append(v.special, v.Values[i])
} else if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}
})
return v.special
}
func (v *Vocabulary) Merge(left, right string) int {
v.mergeOnce.Do(func() {
v.merge = make(map[string]int32, len(v.Merges))
for i, merge := range v.Merges {
v.merge[merge] = int32(i)
}
})
if id, ok := v.merge[left+" "+right]; ok {
return int(id)
}
return -1
}
type BytePairEncoding struct {
pre *regexp2.Regexp
vocab *Vocabulary
@@ -202,23 +304,30 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = bpe.vocab.addSpecials(ids)
if bpe.vocab.AddBOS {
if ids[0] == bpe.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", bpe.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", bpe.vocab.BOS)
ids = append([]int32{bpe.vocab.BOS}, ids...)
}
if bpe.vocab.AddEOS {
if ids[len(ids)-1] == bpe.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", bpe.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", bpe.vocab.EOS)
ids = append(ids, bpe.vocab.EOS)
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "ids", ids)
return ids, nil
}
type lazyIdsString struct {
ids []int32
}
func (l lazyIdsString) LogValue() slog.Value {
return slog.AnyValue(fmt.Sprint(l.ids))
}
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
@@ -243,6 +352,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String())
return sb.String(), nil
}

View File

@@ -182,12 +182,27 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = spm.vocab.addSpecials(ids)
if spm.vocab.AddBOS {
if ids[0] == spm.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", spm.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", spm.vocab.BOS)
ids = append([]int32{spm.vocab.BOS}, ids...)
}
if spm.vocab.AddEOS {
if ids[len(ids)-1] == spm.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", spm.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", spm.vocab.EOS)
ids = append(ids, spm.vocab.EOS)
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "ids", ids)
return ids, nil
}
@@ -246,6 +261,6 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "ids", ids, "string", sb.String())
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String())
return sb.String(), nil
}

View File

@@ -1,17 +0,0 @@
package model
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Vocabulary() *Vocabulary
}

View File

@@ -1,112 +0,0 @@
package model
import (
"log/slog"
"slices"
"sync"
)
type Special int32
const (
SpecialBOS Special = iota
SpecialEOS
)
type Vocabulary struct {
Values []string
Types []int32
Scores []float32
Merges []string
BOS, EOS []int32
AddBOS, AddEOS bool
specialOnce sync.Once
special []string
valuesOnce sync.Once
values map[string]int32
mergeOnce sync.Once
merge map[string]int32
}
func (v *Vocabulary) Is(id int32, special Special) bool {
switch special {
case SpecialBOS:
return slices.Contains(v.BOS, id)
case SpecialEOS:
return slices.Contains(v.EOS, id)
default:
return false
}
}
func (v *Vocabulary) addSpecials(ids []int32) []int32 {
if v.AddBOS && len(v.BOS) > 0 {
if slices.Contains(v.BOS, ids[0]) {
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
}
slog.Debug("adding bos token to prompt", "id", v.BOS)
ids = append([]int32{v.BOS[0]}, ids...)
}
if v.AddEOS && len(v.EOS) > 0 {
if slices.Contains(v.BOS, ids[len(ids)-1]) {
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
}
slog.Debug("adding eos token to prompt", "id", v.EOS)
ids = append(ids, v.EOS[0])
}
return ids
}
func (v *Vocabulary) Encode(s string) int32 {
v.valuesOnce.Do(func() {
v.values = make(map[string]int32, len(v.Values))
for i, value := range v.Values {
v.values[value] = int32(i)
}
})
if id, ok := v.values[s]; ok {
return id
}
return -1
}
func (v *Vocabulary) Decode(id int32) string {
return v.Values[id]
}
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == TOKEN_TYPE_CONTROL || v.Types[i] == TOKEN_TYPE_USER_DEFINED {
v.special = append(v.special, v.Values[i])
}
}
})
return v.special
}
func (v *Vocabulary) Merge(left, right string) int {
v.mergeOnce.Do(func() {
v.merge = make(map[string]int32, len(v.Merges))
for i, merge := range v.Merges {
v.merge[merge] = int32(i)
}
})
if id, ok := v.merge[left+" "+right]; ok {
return int(id)
}
return -1
}

View File

@@ -1,16 +0,0 @@
package model
import "testing"
func TestVocabulary_SpecialVocabulary(t *testing.T) {
vocab := &Vocabulary{
Values: []string{"<|startoftext|>", "<|endoftext|>", "<|tool_call_start|>", "<|tool_call_end|>", "hi"},
Types: []int32{TOKEN_TYPE_CONTROL, TOKEN_TYPE_CONTROL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_NORMAL},
}
specialVocab := vocab.SpecialVocabulary()
if len(specialVocab) != 4 {
t.Errorf("expected 4 special tokens, got %d", len(specialVocab))
}
}

View File

@@ -292,18 +292,13 @@ func filesForModel(path string) ([]string, error) {
}
files = append(files, js...)
// only include tokenizer.model is tokenizer.json is not present
if !slices.ContainsFunc(files, func(s string) bool {
return slices.Contains(strings.Split(s, string(os.PathSeparator)), "tokenizer.json")
}) {
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
files = append(files, tks...)
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
files = append(files, tks...)
}
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
files = append(files, tks...)
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
files = append(files, tks...)
}
return files, nil

View File

@@ -61,8 +61,6 @@ const (
ColorGrey = Esc + "[38;5;245m"
ColorDefault = Esc + "[0m"
ColorBold = Esc + "[1m"
StartBracketedPaste = Esc + "[?2004h"
EndBracketedPaste = Esc + "[?2004l"
)

View File

@@ -95,14 +95,17 @@ func (m multimodalStore) getTensor(backend ml.Backend, ctx ml.Context, in ml.Ten
}
}
} else {
computeCtx.Reserve()
err := computeCtx.Reserve()
if err != nil {
return nil, err
}
}
}
for i, t := range entry.mm {
if in == t.Tensor {
if !reserve {
return ctx.Input().FromFloatSlice(entry.data[i], t.Tensor.Shape()...), nil
return ctx.Input().FromFloatSlice(entry.data[i], t.Tensor.Shape()...)
} else {
return ctx.Input().Empty(t.Tensor.DType(), t.Tensor.Shape()...), nil
}

View File

@@ -808,7 +808,10 @@ func (s *Server) reserveWorstCaseGraph() error {
batch.Outputs[i] = int32(i)
}
batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
batch.Inputs, err = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
if err != nil {
return err
}
cache := s.model.Config().Cache
if cache != nil {
@@ -823,12 +826,16 @@ func (s *Server) reserveWorstCaseGraph() error {
return err
}
ctx.Forward(t).Reserve()
err = ctx.Forward(t).Reserve()
if err != nil {
return err
}
return nil
}
func (s *Server) initModel(
func (s *Server) loadModel(
ctx context.Context,
mpath string,
params ml.BackendParams,
lpath multiLPath,
@@ -836,21 +843,21 @@ func (s *Server) initModel(
kvCacheType string,
kvSize int,
multiUserCache bool,
) error {
) {
var err error
s.model, err = model.New(mpath, params)
s.model, err = model.New(ctx, mpath, params)
if err != nil {
return err
panic(err)
}
// TODO(jessegross): LoRA loading
if lpath.String() != "" {
return errors.New("loras are not yet implemented")
panic("loras are not yet implemented")
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
if err != nil {
return err
panic(err)
}
if !s.cache.enabled && parallel > 1 {
@@ -862,30 +869,7 @@ func (s *Server) initModel(
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
return s.reserveWorstCaseGraph()
}
func (s *Server) load(
ctx context.Context,
mpath string,
params ml.BackendParams,
lpath multiLPath,
parallel int,
kvCacheType string,
kvSize int,
multiUserCache bool,
) {
err := s.initModel(mpath, params, lpath, parallel, kvCacheType, kvSize, multiUserCache)
if err != nil {
panic(err)
}
slog.Debug("memory", "allocated", s.model.Backend().BackendMemory())
err = s.model.Backend().Load(ctx,
func(progress float32) {
s.progress = progress
})
err = s.reserveWorstCaseGraph()
if err != nil {
panic(err)
}
@@ -929,14 +913,9 @@ func Execute(args []string) error {
status: llm.ServerStatusLoadingModel,
}
server.cond = sync.NewCond(&server.mu)
server.ready.Add(1)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
// TODO(jessegross): Parameters that need to be implemented:
// no-mmap
// mlock
var tensorSplitFloats []float32
if *tensorSplit != "" {
@@ -949,6 +928,9 @@ func Execute(args []string) error {
}
params := ml.BackendParams{
Progress: func(progress float32) {
server.progress = progress
},
NumThreads: *threads,
NumGPULayers: *numGPULayers,
MainGPU: *mainGPU,
@@ -956,7 +938,14 @@ func Execute(args []string) error {
FlashAttention: *flashAttention,
}
go server.load(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.ready.Add(1)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)

View File

@@ -176,7 +176,7 @@ func NewGrammarSampler(model model.TextProcessor, grammarStr string) (*GrammarSa
vocabIds[i] = uint32(i)
}
grammar := llama.NewGrammar(grammarStr, vocabIds, pieces, model.Vocabulary().EOS)
grammar := llama.NewGrammar(grammarStr, vocabIds, pieces, []uint32{uint32(model.Vocabulary().EOS), uint32(model.Vocabulary().EOT)})
if grammar == nil {
return nil, errors.New("sample: failed to initialize grammar")
}

View File

@@ -295,7 +295,7 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
}
defer bin.Close()
f, err := ggml.Decode(bin, -1)
f, _, err := ggml.Decode(bin, -1)
if err != nil {
return nil, err
}
@@ -467,7 +467,7 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
return nil, err
}
f, err := ggml.Decode(temp, 1024)
f, _, err := ggml.Decode(temp, 0)
if err != nil {
slog.Error(fmt.Sprintf("error decoding ggml: %s\n", err))
return nil, err
@@ -501,26 +501,47 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
return nil, errOnlyGGUFSupported
}
f, err := ggml.Decode(blob, -1)
stat, err := blob.Stat()
if err != nil {
return nil, err
}
mediatype := "application/vnd.ollama.image.model"
if f.KV().Kind() == "adapter" {
mediatype = "application/vnd.ollama.image.adapter"
} else if (f.KV().Uint("block_count") == 0 && f.KV().Uint("vision.block_count") > 0) || f.KV().Kind() == "projector" {
// if a model has vision.block_count but not block_count, it is a standalone vision model
mediatype = "application/vnd.ollama.image.projector"
}
var offset int64
for offset < stat.Size() {
f, n, err := ggml.Decode(blob, 1024)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
return nil, err
}
layer, err := NewLayerFromLayer(digest, mediatype, blob.Name())
if err != nil {
slog.Debug("could not create new layer from layer", "error", err)
return nil, err
}
mediatype := "application/vnd.ollama.image.model"
if f.KV().Kind() == "adapter" {
mediatype = "application/vnd.ollama.image.adapter"
} else if _, ok := f.KV()[fmt.Sprintf("%s.vision.block_count", f.KV().Architecture())]; ok || f.KV().Kind() == "projector" {
mediatype = "application/vnd.ollama.image.projector"
}
layers = append(layers, &layerGGML{layer, f})
var layer Layer
if digest != "" && n == stat.Size() && offset == 0 {
layer, err = NewLayerFromLayer(digest, mediatype, blob.Name())
if err != nil {
slog.Debug("could not create new layer from layer", "error", err)
return nil, err
}
}
// Fallback to creating layer from file copy (either NewLayerFromLayer failed, or digest empty/n != stat.Size())
if layer.Digest == "" {
layer, err = NewLayer(io.NewSectionReader(blob, offset, n), mediatype)
if err != nil {
return nil, err
}
}
layers = append(layers, &layerGGML{layer, f})
offset = n
}
return detectChatTemplate(layers)
}

View File

@@ -464,10 +464,6 @@ type downloadOpts struct {
// downloadBlob downloads a blob from the registry and stores it in the blobs directory
func downloadBlob(ctx context.Context, opts downloadOpts) (cacheHit bool, _ error) {
if opts.digest == "" {
return false, fmt.Errorf(("%s: %s"), opts.mp.GetNamespaceRepository(), "digest is is empty")
}
fp, err := GetBlobsPath(opts.digest)
if err != nil {
return false, err

View File

@@ -26,7 +26,6 @@ import (
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
@@ -38,7 +37,6 @@ var (
errCapabilityInsert = errors.New("insert")
errCapabilityVision = errors.New("vision")
errCapabilityEmbedding = errors.New("embedding")
errCapabilityThinking = errors.New("thinking")
errInsecureProtocol = errors.New("insecure protocol http")
)
@@ -77,7 +75,7 @@ func (m *Model) Capabilities() []model.Capability {
if err == nil {
defer r.Close()
f, err := ggml.Decode(r, 1024)
f, _, err := ggml.Decode(r, 0)
if err == nil {
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityEmbedding)
@@ -113,12 +111,6 @@ func (m *Model) Capabilities() []model.Capability {
capabilities = append(capabilities, model.CapabilityVision)
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if openingTag != "" && closingTag != "" {
capabilities = append(capabilities, model.CapabilityThinking)
}
return capabilities
}
@@ -135,7 +127,6 @@ func (m *Model) CheckCapabilities(want ...model.Capability) error {
model.CapabilityInsert: errCapabilityInsert,
model.CapabilityVision: errCapabilityVision,
model.CapabilityEmbedding: errCapabilityEmbedding,
model.CapabilityThinking: errCapabilityThinking,
}
for _, cap := range want {
@@ -150,19 +141,11 @@ func (m *Model) CheckCapabilities(want ...model.Capability) error {
}
}
var err error
if len(errs) > 0 {
err = fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
return fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
}
if slices.Contains(errs, errCapabilityThinking) {
if m.Config.ModelFamily == "qwen3" || model.ParseName(m.Name).Model == "deepseek-r1" {
// append a message to the existing error
return fmt.Errorf("%w. Pull the model again to get the latest version with full thinking support", err)
}
}
return err
return nil
}
func (m *Model) String() string {

View File

@@ -59,7 +59,7 @@ type DiskCache struct {
testHookBeforeFinalWrite func(f *os.File)
}
// PutBytes is a convenience function for c.Put(d, strings.NewReader(s), int64(len(s))).
// PutString is a convenience function for c.Put(d, strings.NewReader(s), int64(len(s))).
func PutBytes[S string | []byte](c *DiskCache, d Digest, data S) error {
return c.Put(d, bytes.NewReader([]byte(data)), int64(len(data)))
}

View File

@@ -10,6 +10,9 @@ import (
"log/slog"
"net/http"
"os"
"slices"
"strings"
"text/template/parse"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/fs/ggml"
@@ -61,7 +64,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
}
defer blob.Close()
f, err := ggml.Decode(blob, -1)
f, _, err := ggml.Decode(blob, -1)
if err != nil {
return nil, err
}
@@ -125,3 +128,124 @@ func detectContentType(r io.Reader) (string, error) {
return "unknown", nil
}
func parseObjects(s string) []map[string]any {
var objs []map[string]any
for offset := 0; offset < len(s); {
var obj map[string]any
decoder := json.NewDecoder(strings.NewReader(s[offset:]))
if err := decoder.Decode(&obj); errors.Is(err, io.EOF) || errors.Is(err, io.ErrUnexpectedEOF) {
break
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
// skip over any syntax errors
offset += int(syntax.Offset)
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
// skip over any unmarshalable types
offset += int(unmarshalType.Offset)
} else if err != nil {
return nil
} else {
offset += int(decoder.InputOffset())
objs = append(objs, obj)
}
}
return objs
}
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
// mxyng: this only really works if the input contains tool calls in some JSON format
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
// create a subtree from the node that ranges over .ToolCalls
tmpl := m.Template.Subtree(func(n parse.Node) bool {
if t, ok := n.(*parse.RangeNode); ok {
return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls")
}
return false
})
if tmpl == nil {
return nil, false
}
var b bytes.Buffer
if err := tmpl.Execute(&b, map[string][]api.ToolCall{
"ToolCalls": {
{
Function: api.ToolCallFunction{
Name: "@@name@@",
Arguments: api.ToolCallFunctionArguments{
"@@argument@@": 1,
},
},
},
},
}); err != nil {
return nil, false
}
templateObjects := parseObjects(b.String())
if len(templateObjects) == 0 {
return nil, false
}
// find the keys that correspond to the name and arguments fields
var name, arguments string
for k, v := range templateObjects[0] {
switch v.(type) {
case string:
name = k
case map[string]any:
arguments = k
}
}
if name == "" || arguments == "" {
return nil, false
}
responseObjects := parseObjects(s)
if len(responseObjects) == 0 {
return nil, false
}
// collect all nested objects
var collect func(any) []map[string]any
collect = func(obj any) (all []map[string]any) {
switch o := obj.(type) {
case map[string]any:
all = append(all, o)
for _, v := range o {
all = append(all, collect(v)...)
}
case []any:
for _, v := range o {
all = append(all, collect(v)...)
}
}
return all
}
var objs []map[string]any
for _, p := range responseObjects {
objs = append(objs, collect(p)...)
}
var toolCalls []api.ToolCall
for _, kv := range objs {
n, nok := kv[name].(string)
a, aok := kv[arguments].(map[string]any)
if nok && aok {
toolCalls = append(toolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: n,
Arguments: a,
},
})
}
}
return toolCalls, len(toolCalls) > 0
}

179
server/model_test.go Normal file
View File

@@ -0,0 +1,179 @@
package server
import (
"bytes"
"encoding/json"
"fmt"
"os"
"path/filepath"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/template"
)
func readFile(t *testing.T, base, name string) *bytes.Buffer {
t.Helper()
bts, err := os.ReadFile(filepath.Join(base, name))
if err != nil {
t.Fatal(err)
}
return bytes.NewBuffer(bts)
}
func TestExecuteWithTools(t *testing.T) {
p := filepath.Join("testdata", "tools")
cases := []struct {
model string
output string
ok bool
}{
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"To }]`, false},
{"mistral", `I'm not aware of that information. However, I can suggest searching for the weather using the "get_current_weather" function:
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"command-r-plus", "Action: ```json" + `
[
{
"tool_name": "get_current_weather",
"parameters": {
"format": "fahrenheit",
"location": "San Francisco, CA"
}
},
{
"tool_name": "get_current_weather",
"parameters": {
"format": "celsius",
"location": "Toronto, Canada"
}
}
]
` + "```", true},
{"command-r-plus", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"firefunction", ` functools[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"firefunction", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"llama3-groq-tool-use", `<tool_call>
{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}}
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
</tool_call>`, true},
{"xlam", `{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true},
{"nemotron", `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]} </toolcall>`, true},
}
var tools []api.Tool
if err := json.Unmarshal(readFile(t, p, "tools.json").Bytes(), &tools); err != nil {
t.Fatal(err)
}
var messages []api.Message
if err := json.Unmarshal(readFile(t, p, "messages.json").Bytes(), &messages); err != nil {
t.Fatal(err)
}
calls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: api.ToolCallFunctionArguments{
"format": "fahrenheit",
"location": "San Francisco, CA",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: api.ToolCallFunctionArguments{
"format": "celsius",
"location": "Toronto, Canada",
},
},
},
}
for _, tt := range cases {
t.Run(tt.model, func(t *testing.T) {
tmpl, err := template.Parse(readFile(t, p, fmt.Sprintf("%s.gotmpl", tt.model)).String())
if err != nil {
t.Fatal(err)
}
t.Run("template", func(t *testing.T) {
var actual bytes.Buffer
if err := tmpl.Execute(&actual, template.Values{Tools: tools, Messages: messages}); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(actual.String(), readFile(t, p, fmt.Sprintf("%s.out", tt.model)).String()); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("parse", func(t *testing.T) {
m := &Model{Template: tmpl}
actual, ok := m.parseToolCalls(tt.output)
if ok != tt.ok {
t.Fatalf("expected %t, got %t", tt.ok, ok)
}
if tt.ok {
if diff := cmp.Diff(actual, calls); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
})
})
}
}
func TestParseObjects(t *testing.T) {
tests := []struct {
input string
want []map[string]any
}{
{
input: `[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`,
want: []map[string]any{
{"name": "get_current_weather", "arguments": map[string]any{"format": "fahrenheit", "location": "San Francisco, CA"}},
{"name": "get_current_weather", "arguments": map[string]any{"format": "celsius", "location": "Toronto, Canada"}},
},
},
{
input: `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}} </toolcall>`,
want: []map[string]any{
{"name": "get_current_weather", "arguments": map[string]any{"format": "fahrenheit", "location": "San Francisco, CA"}},
},
},
{
input: `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}} </toolcall> <toolcall>{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, ON"}} </toolcall>`,
want: []map[string]any{
{"name": "get_current_weather", "arguments": map[string]any{"format": "fahrenheit", "location": "San Francisco, CA"}},
{"name": "get_current_weather", "arguments": map[string]any{"format": "celsius", "location": "Toronto, ON"}},
},
},
{
input: `{"name": "get_current_weather", "arguments": `,
want: nil,
},
}
for _, tc := range tests {
t.Run(tc.input, func(t *testing.T) {
got := parseObjects(tc.input)
if diff := cmp.Diff(got, tc.want); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
}

View File

@@ -116,7 +116,7 @@ func (mp ModelPath) BaseURL() *url.URL {
func GetManifestPath() (string, error) {
path := filepath.Join(envconfig.Models(), "manifests")
if err := os.MkdirAll(path, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
return "", err
}
return path, nil
@@ -139,7 +139,7 @@ func GetBlobsPath(digest string) (string, error) {
}
if err := os.MkdirAll(dirPath, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
return "", err
}
return path, nil

View File

@@ -19,7 +19,7 @@ type tokenizeFunc func(context.Context, string) ([]int, error)
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
// latest message and 2) system messages
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool, think *bool) (prompt string, images []llm.ImageData, _ error) {
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool) (prompt string, images []llm.ImageData, _ error) {
var system []api.Message
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
@@ -41,12 +41,8 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
}
}
thinkVal := false
if think != nil {
thinkVal = *think
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools, Think: thinkVal, IsThinkSet: think != nil}); err != nil {
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools}); err != nil {
return "", nil, err
}
@@ -100,11 +96,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
// truncate any messages that do not fit into the context window
var b bytes.Buffer
thinkVal := false
if think != nil {
thinkVal = *think
}
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools, Think: thinkVal, IsThinkSet: think != nil}); err != nil {
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools}); err != nil {
return "", nil, err
}

View File

@@ -208,8 +208,7 @@ func TestChatPrompt(t *testing.T) {
t.Run(tt.name, func(t *testing.T) {
model := tt.model
opts := api.Options{Runner: api.Runner{NumCtx: tt.limit}}
think := false
prompt, images, err := chatPrompt(t.Context(), &model, mockRunner{}.Tokenize, &opts, tt.msgs, nil, &think)
prompt, images, err := chatPrompt(t.Context(), &model, mockRunner{}.Tokenize, &opts, tt.msgs, nil)
if tt.error == nil && err != nil {
t.Fatal(err)
} else if tt.error != nil && err != tt.error {

View File

@@ -120,30 +120,14 @@ func getTensorNewType(kv fsggml.KV, qs *quantizeState, newType fsggml.TensorType
if newType.IsQuantized() {
nx := shape[0]
ny := uint64(1)
if len(shape) > 1 {
ny = shape[1]
}
qk_k := newType.BlockSize()
// Check if first dimension is divisible by block size
if nx%qk_k != 0 {
// Store the original type for logging
originalType := newType
// Select appropriate fallback based on original type
switch newType {
case fsggml.TensorTypeQ4_K:
newType = fsggml.TensorTypeQ5_0
case fsggml.TensorTypeQ5_K:
newType = fsggml.TensorTypeQ5_1
case fsggml.TensorTypeQ6_K:
newType = fsggml.TensorTypeQ8_0
}
// Final check - if still incompatible, fall back to F16
if nx%newType.BlockSize() != 0 {
newType = fsggml.TensorTypeF16
}
slog.Warn(fmt.Sprintf("tensor cols %d are not divisible by %d, required for %s - using fallback quantization %s",
nx, qk_k, originalType.String(), newType.String()))
slog.Warn(fmt.Sprintf("tensor cols %d x %d are not divisible by %d, required for %s. Falling back to quantization %s", nx, ny, qk_k, newType.String(), fsggml.TensorTypeF16.String()))
newType = fsggml.TensorTypeF16
}
}
return newType

View File

@@ -271,7 +271,7 @@ func TestQuantizeModel(t *testing.T) {
t.Fatal(err.Error())
}
defer fp.Close()
meta, err := fsggml.Decode(fp, -1)
meta, _, err := fsggml.Decode(fp, -1)
if err != nil {
t.Fatal(err.Error())
}
@@ -303,7 +303,7 @@ func TestQuantizeModel(t *testing.T) {
t.Fatalf("failed to load the quantized model %s: %s", tmp.Name(), err)
}
defer fpNew.Close()
newMeta, err := fsggml.Decode(fpNew, -1)
newMeta, _, err := fsggml.Decode(fpNew, -1)
if err != nil {
t.Fatalf("failed to load the quantized model %s: %s", tmp.Name(), err)
}

View File

@@ -17,6 +17,7 @@ import (
"net/netip"
"os"
"os/signal"
"regexp"
"slices"
"strings"
"syscall"
@@ -37,8 +38,6 @@ import (
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/registry"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/tools"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
@@ -186,13 +185,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
if req.Suffix != "" {
caps = append(caps, model.CapabilityInsert)
}
if req.Think != nil && *req.Think {
caps = append(caps, model.CapabilityThinking)
// TODO(drifkin): consider adding a warning if it's false and the model
// doesn't support thinking. It's not strictly required, but it can be a
// hint that the user is on an older qwen3/r1 model that doesn't have an
// updated template supporting thinking
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), name.String(), caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
@@ -261,9 +253,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
}
values.Think = req.Think != nil && *req.Think
values.IsThinkSet = req.Think != nil
var b bytes.Buffer
if req.Context != nil {
slog.Warn("the context field is deprecated and will be removed in a future version of Ollama")
@@ -283,15 +272,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
prompt = b.String()
}
var thinkingState *thinking.Parser
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if req.Think != nil && *req.Think && openingTag != "" && closingTag != "" {
thinkingState = &thinking.Parser{
OpeningTag: openingTag,
ClosingTag: closingTag,
}
}
ch := make(chan any)
go func() {
// TODO (jmorganca): avoid building the response twice both here and below
@@ -316,12 +296,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
},
}
if thinkingState != nil {
thinking, content := thinkingState.AddContent(cr.Content)
res.Thinking = thinking
res.Response = content
}
if _, err := sb.WriteString(cr.Content); err != nil {
ch <- gin.H{"error": err.Error()}
}
@@ -349,13 +323,11 @@ func (s *Server) GenerateHandler(c *gin.Context) {
if req.Stream != nil && !*req.Stream {
var r api.GenerateResponse
var sbThinking strings.Builder
var sbContent strings.Builder
var sb strings.Builder
for rr := range ch {
switch t := rr.(type) {
case api.GenerateResponse:
sbThinking.WriteString(t.Thinking)
sbContent.WriteString(t.Response)
sb.WriteString(t.Response)
r = t
case gin.H:
msg, ok := t["error"].(string)
@@ -371,9 +343,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
}
r.Thinking = sbThinking.String()
r.Response = sbContent.String()
r.Response = sb.String()
c.JSON(http.StatusOK, r)
return
}
@@ -1465,9 +1435,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
if len(req.Tools) > 0 {
caps = append(caps, model.CapabilityTools)
}
if req.Think != nil && *req.Think {
caps = append(caps, model.CapabilityThinking)
}
name := model.ParseName(req.Model)
if !name.IsValid() {
@@ -1508,31 +1475,18 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
msgs = filterThinkTags(msgs, m)
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, req.Tools, req.Think)
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, req.Tools)
if err != nil {
slog.Error("chat prompt error", "error", err)
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
var thinkingState *thinking.Parser
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if req.Think != nil && *req.Think && openingTag != "" && closingTag != "" {
thinkingState = &thinking.Parser{
OpeningTag: openingTag,
ClosingTag: closingTag,
}
}
var toolParser *tools.Parser
if len(req.Tools) > 0 {
toolParser = tools.NewParser(m.Template.Template, req.Tools)
}
ch := make(chan any)
go func() {
defer close(ch)
var sb strings.Builder
var toolCallIndex int = 0
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
@@ -1552,41 +1506,43 @@ func (s *Server) ChatHandler(c *gin.Context) {
},
}
if thinkingState != nil {
thinkingContent, remainingContent := thinkingState.AddContent(res.Message.Content)
if thinkingContent == "" && remainingContent == "" && !r.Done {
// need to accumulate more to decide what to send
return
}
res.Message.Content = remainingContent
res.Message.Thinking = thinkingContent
}
if r.Done {
res.DoneReason = r.DoneReason.String()
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
if len(req.Tools) > 0 {
toolCalls, content := toolParser.Add(res.Message.Content)
if len(content) > 0 {
res.Message.Content = content
} else if len(toolCalls) > 0 {
res.Message.ToolCalls = toolCalls
res.Message.Content = ""
} else if res.Message.Thinking != "" {
// don't return
} else {
if r.Done {
res.Message.Content = toolParser.Content()
ch <- res
}
return
}
// TODO: tool call checking and filtering should be moved outside of this callback once streaming
// however this was a simple change for now without reworking streaming logic of this (and other)
// handlers
if req.Stream != nil && !*req.Stream || len(req.Tools) == 0 {
ch <- res
return
}
ch <- res
// Streaming tool calls:
// If tools are recognized, use a flag to track the sending of a tool downstream
// This ensures that content is cleared from the message on the last chunk sent
sb.WriteString(r.Content)
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
res.Message.ToolCalls = toolCalls
for i := range toolCalls {
toolCalls[i].Function.Index = toolCallIndex
toolCallIndex++
}
res.Message.Content = ""
sb.Reset()
ch <- res
return
}
if r.Done {
// Send any remaining content if no tool calls were detected
if toolCallIndex == 0 {
res.Message.Content = sb.String()
}
ch <- res
}
}); err != nil {
ch <- gin.H{"error": err.Error()}
}
@@ -1594,18 +1550,12 @@ func (s *Server) ChatHandler(c *gin.Context) {
if req.Stream != nil && !*req.Stream {
var resp api.ChatResponse
var toolCalls []api.ToolCall
var sbThinking strings.Builder
var sbContent strings.Builder
var sb strings.Builder
for rr := range ch {
switch t := rr.(type) {
case api.ChatResponse:
sbThinking.WriteString(t.Message.Thinking)
sbContent.WriteString(t.Message.Content)
sb.WriteString(t.Message.Content)
resp = t
if len(req.Tools) > 0 {
toolCalls = append(toolCalls, t.Message.ToolCalls...)
}
case gin.H:
msg, ok := t["error"].(string)
if !ok {
@@ -1620,11 +1570,13 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
}
resp.Message.Content = sbContent.String()
resp.Message.Thinking = sbThinking.String()
resp.Message.Content = sb.String()
if len(toolCalls) > 0 {
resp.Message.ToolCalls = toolCalls
if len(req.Tools) > 0 {
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
resp.Message.ToolCalls = toolCalls
resp.Message.Content = ""
}
}
c.JSON(http.StatusOK, resp)
@@ -1649,6 +1601,8 @@ func handleScheduleError(c *gin.Context, name string, err error) {
}
}
var thinkTagRegexp = regexp.MustCompile(`<think>(?s).*?</think>(\n)*`)
func filterThinkTags(msgs []api.Message, m *Model) []api.Message {
if m.Config.ModelFamily == "qwen3" || model.ParseName(m.Name).Model == "deepseek-r1" {
finalUserIndex := -1
@@ -1660,17 +1614,7 @@ func filterThinkTags(msgs []api.Message, m *Model) []api.Message {
for i, msg := range msgs {
if msg.Role == "assistant" && i < finalUserIndex {
// TODO(drifkin): this is from before we added proper thinking support.
// However, even if thinking is not enabled (and therefore we shouldn't
// change the user output), we should probably perform this filtering
// for all thinking models (not just qwen3 & deepseek-r1) since it tends
// to save tokens and improve quality.
thinkingState := &thinking.Parser{
OpeningTag: "<think>",
ClosingTag: "</think>",
}
_, content := thinkingState.AddContent(msg.Content)
msgs[i].Content = content
msgs[i].Content = thinkTagRegexp.ReplaceAllString(msg.Content, "")
}
}
}

View File

@@ -143,25 +143,6 @@ func TestGenerateChat(t *testing.T) {
}
})
t.Run("missing thinking capability", func(t *testing.T) {
think := true
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test",
Messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
Think: &think,
})
if w.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", w.Code)
}
if diff := cmp.Diff(w.Body.String(), `{"error":"registry.ollama.ai/library/test:latest does not support thinking"}`); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("missing model", func(t *testing.T) {
w := createRequest(t, s.ChatHandler, api.ChatRequest{})
if w.Code != http.StatusBadRequest {

View File

@@ -387,17 +387,6 @@ func (s *Scheduler) processCompleted(ctx context.Context) {
s.loadedMu.Unlock()
runner.refMu.Unlock()
slog.Debug("duplicate expired event, ignoring", "runner", runner)
} else if runner.pid != runnerToUnload.pid {
// If the pids do not match, we likely had multiple load
// failures for the same model in quick succession due to
// request context canceled and are draining the queue of
// events. Ensure the orphaned runner is properly shut down, but
// do not delete the mismatched loaded runner, or wait for VRAM
// convergence.
slog.Debug("orphaned runner shutting down", "orphan", runner, "loaded", runnerToUnload)
runner.unload()
s.loadedMu.Unlock()
runner.refMu.Unlock()
} else {
slog.Debug("starting background wait for VRAM recovery", "runner", runner)
finished := runner.waitForVRAMRecovery()

View File

@@ -0,0 +1,67 @@
{{- if or .Tools .System }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
{{- if .Tools }}# Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
{{ if .System }}# User Preamble
{{ .System }}
{{- end }}
## Available Tools
Here is a list of tools that you have available to you:
{{- range .Tools }}
```python
def {{ .Function.Name }}(
{{- range $name, $property := .Function.Parameters.Properties }}{{ $name }}: {{ $property.Type }}, {{ end }}) -> List[Dict]:
"""{{ .Function.Description }}
{{- if .Function.Parameters.Properties }}
Args:
{{- range $name, $property := .Function.Parameters.Properties }}
{{ $name }} ({{ $property.Type }}): {{ $property.Description }}
{{- end }}
{{- end }}
"""
pass
```
{{- end }}
{{- else if .System }}{{ .System }}
{{- end }}<|END_OF_TURN_TOKEN|>
{{- end }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- continue }}
{{- end }}<|START_OF_TURN_TOKEN|>
{{- if eq .Role "user" }}<|USER_TOKEN|>{{ .Content }}
{{- else if eq .Role "assistant" }}<|CHATBOT_TOKEN|>
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }}
Action: ```json
[
{{- range .ToolCalls }}
{
"tool_name": "{{ .Function.Name }}",
"parameters": {{ .Function.Arguments }}
}
{{- end }}
]```
{{ continue }}
{{ end }}
{{- else if eq .Role "tool" }}<|SYSTEM_TOKEN|><results>
{{ .Content }}</results>
{{- end }}<|END_OF_TURN_TOKEN|>
{{- end }}
{{- if .Tools }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
```json
[
{
"tool_name": title of the tool in the specification,
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
}
]```
{{- end }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

View File

@@ -0,0 +1,39 @@
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
# User Preamble
You are a knowledgeable assistant. You can answer questions and perform tasks.
## Available Tools
Here is a list of tools that you have available to you:
```python
def get_current_weather(format: string, location: string, ) -> List[Dict]:
"""Get the current weather
Args:
format (string): The temperature unit to use. Infer this from the user's location.
location (string): The city and state, e.g. San Francisco, CA
"""
pass
```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>What's the weather like today in Paris?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
Action: ```json
[
{
"tool_name": "get_current_weather",
"parameters": {"format":"celsius","location":"Paris, France"}
}
]```
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results>
22</results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>The current temperature in Paris, France is 22 degrees Celsius.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>What's the weather like today in San Francisco and Toronto?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
```json
[
{
"tool_name": title of the tool in the specification,
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
}
]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

View File

@@ -0,0 +1,31 @@
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
{{- if .System }}
{{ .System }}
{{- end }}
In addition to plain text responses, you can chose to call one or more of the provided functions.
Use the following rule to decide when to call a function:
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
If you decide to call functions:
* prefix function calls with functools marker (no closing marker required)
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
* make sure you pick the right functions that match the user intent
Available functions as JSON spec:
{{- if .Tools }}
{{ .Tools }}
{{- end }}<|eot_id|>
{{- end }}
{{- range .Messages }}<|start_header_id|>
{{- if or (eq .Role "user") (eq .Role "assistant") (eq .Role "tool") }}{{ .Role }}
{{- end }}<|end_header_id|>
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }} functools[
{{- range .ToolCalls }}{{ "{" }}"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}{{ "}" }}
{{- end }}]
{{- end }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>

17
server/testdata/tools/firefunction.out vendored Normal file
View File

@@ -0,0 +1,17 @@
<|start_header_id|>system<|end_header_id|>
You are a knowledgeable assistant. You can answer questions and perform tasks.
In addition to plain text responses, you can chose to call one or more of the provided functions.
Use the following rule to decide when to call a function:
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
If you decide to call functions:
* prefix function calls with functools marker (no closing marker required)
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
* make sure you pick the right functions that match the user intent
Available functions as JSON spec:
[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the user's location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}]<|eot_id|><|start_header_id|><|end_header_id|>You are a knowledgeable assistant. You can answer questions and perform tasks.<|eot_id|><|start_header_id|>user<|end_header_id|>What's the weather like today in Paris?<|eot_id|><|start_header_id|>assistant<|end_header_id|> functools[{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]<|eot_id|><|start_header_id|>tool<|end_header_id|>22<|eot_id|><|start_header_id|>assistant<|end_header_id|>The current temperature in Paris, France is 22 degrees Celsius.<|eot_id|><|start_header_id|>user<|end_header_id|>What's the weather like today in San Francisco and Toronto?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

View File

@@ -0,0 +1,43 @@
{{- if .Messages }}
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
{{ .System }}
{{- if .Tools }} You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>,"arguments": <args-dict>}
</tool_call>
Here are the available tools:
<tools>
{{- range .Tools }} {{ .Function }}
{{- end }} </tools>
{{- end }}
{{- end }}<|eot_id|>
{{- range .Messages }}
{{- if ne .Role "system" }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ if eq .Role "user" }}{{ .Content }}
{{- else if eq .Role "assistant" }}
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}
</tool_call>
{{- end }}
{{- else if eq .Role "tool" }}<tool_response>
{{ .Content }}
</tool_response>
{{- end }}<|eot_id|>
{{- end }}
{{- end }}<|start_header_id|>assistant<|end_header_id|>
{{ else }}
{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}{{ .Response }}
{{- if .Response }}<|eot_id|>
{{- end }}

View File

@@ -0,0 +1,24 @@
<|start_header_id|>system<|end_header_id|>
You are a knowledgeable assistant. You can answer questions and perform tasks. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>,"arguments": <args-dict>}
</tool_call>
Here are the available tools:
<tools> {"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the user's location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}} </tools><|eot_id|><|start_header_id|>user<|end_header_id|>
What's the weather like today in Paris?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
<tool_call>
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}
</tool_call><|eot_id|><|start_header_id|>tool<|end_header_id|>
<tool_response>
22
</tool_response><|eot_id|><|start_header_id|>assistant<|end_header_id|>
The current temperature in Paris, France is 22 degrees Celsius.<|eot_id|><|start_header_id|>user<|end_header_id|>
What's the weather like today in San Francisco and Toronto?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

39
server/testdata/tools/messages.json vendored Normal file
View File

@@ -0,0 +1,39 @@
[
{
"role": "system",
"content": "You are a knowledgeable assistant. You can answer questions and perform tasks."
},
{
"role": "user",
"content": "What's the weather like today in Paris?"
},
{
"role": "assistant",
"tool_calls": [
{
"id": "89a1e453-0bce-4de3-a456-c54bed09c520",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": {
"location": "Paris, France",
"format": "celsius"
}
}
}
]
},
{
"role": "tool",
"tool_call_id": "89a1e453-0bce-4de3-a456-c54bed09c520",
"content": "22"
},
{
"role": "assistant",
"content": "The current temperature in Paris, France is 22 degrees Celsius."
},
{
"role": "user",
"content": "What's the weather like today in San Francisco and Toronto?"
}
]

15
server/testdata/tools/mistral.gotmpl vendored Normal file
View File

@@ -0,0 +1,15 @@
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (eq (len (slice $.Messages $index)) 1) $.Tools }}[AVAILABLE_TOOLS] {{ $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}</s>
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}]</s>
{{- end }}
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
{{- end }}
{{- end }}

3
server/testdata/tools/mistral.out vendored Normal file
View File

@@ -0,0 +1,3 @@
[INST] What's the weather like today in Paris?[/INST][TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Paris, France"}}]</s>[TOOL_RESULTS] {"content": 22}[/TOOL_RESULTS] The current temperature in Paris, France is 22 degrees Celsius.</s>[AVAILABLE_TOOLS] [{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","required":["location","format"],"properties":{"format":{"type":"string","description":"The temperature unit to use. Infer this from the user's location.","enum":["celsius","fahrenheit"]},"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}}}}}][/AVAILABLE_TOOLS][INST] You are a knowledgeable assistant. You can answer questions and perform tasks.
What's the weather like today in San Francisco and Toronto?[/INST]

Some files were not shown because too many files have changed in this diff Show More