Compare commits

..

5 Commits

Author SHA1 Message Date
Bruce MacDonald
f2a4d058f9 gofmt 2025-06-16 16:34:46 -07:00
Bruce MacDonald
63e7634014 pr feedback 2025-06-16 16:08:38 -07:00
Bruce MacDonald
8d51d92f3b server: cache gguf model capabilities rather than reading off disc 2025-06-16 15:17:36 -07:00
Bruce MacDonald
2348fef568 Revert "server: model info caching system for improved performance"
This reverts commit 8ef643d4978168a8563ae24434a424358ce390e3.
2025-06-16 15:17:02 -07:00
Bruce MacDonald
883f655dd6 server: model info caching system for improved performance
Implements an in-memory cache for loaded models with file modification
time tracking to ensure cache validity. Models are now cached after
first load and retrieved from cache on subsequent requests if the
underlying manifest file hasn't changed.

Key changes:
- Add ModelCache with get/set methods and modification time validation
- Cache models in GetModel() and check cache before disk load
- Move capabilities calculation to model loading time and store in model
- Update capability access to use cached field instead of runtime calculation
- Add test coverage for cache behavior and model loading

This reduces redundant model loading operations and improves response
times for model access.
2025-06-16 15:16:58 -07:00
60 changed files with 855 additions and 7012 deletions

View File

@@ -103,18 +103,21 @@ jobs:
arch: [amd64]
preset: ['CPU']
include:
- os: windows
arch: amd64
preset: 'CUDA 11'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
cuda-version: '11.3'
- os: windows
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-version: '12.8'
flags: ''
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -157,9 +160,6 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'CPU'
run: |
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
@@ -178,9 +178,9 @@ jobs:
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}"
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
@@ -246,7 +246,7 @@ jobs:
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
windows-sign:
runs-on: windows
runs-on: windows-2022
environment: release
needs: [windows-depends, windows-build]
steps:
@@ -322,21 +322,16 @@ jobs:
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_sbsa) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
esac
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
echo "Manifests"
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in ; do
echo $ARCHIVE
cat $ARCHIVE
done
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
@@ -475,18 +470,8 @@ jobs:
- uses: actions/download-artifact@v4
with:
pattern: dist-linux-*
path: stage
merge-multiple: false
- name: Merge linux amd64 payload
working-directory: stage/dist-linux-amd64-archive
run: |
tar zxf ollama-linux-amd64.tgz
tar zxf ../dist-linux-amd64-rocm/ollama-linux-amd64.tgz
rm -f ollama-linux-amd64.tgz ../dist-linux-amd64-rocm/ollama-linux-amd64.tgz
tar -c -f- --owner 0 --group 0 . | pigz -9vc > ../ollama-linux-amd64.tgz
- name: Cleanup linux payloads
run: |
find stage -name ollama-linux\*.tgz -exec mv {} dist/ \;
path: dist
merge-multiple: true
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
working-directory: dist
- name: Create or update Release

View File

@@ -36,7 +36,7 @@ jobs:
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
}
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -46,7 +46,7 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:12.8.1-devel-ubuntu22.04
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -78,11 +78,11 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
flags: '-DAMDGPU_TARGETS=gfx1010'
runs-on: windows
steps:
- run: |
@@ -102,7 +102,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
@@ -120,9 +120,6 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
@@ -136,8 +133,8 @@ jobs:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:

View File

@@ -78,13 +78,14 @@ if(CMAKE_CUDA_COMPILER)
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
)
endif()
@@ -115,11 +116,7 @@ if(CMAKE_HIP_COMPILER)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
install(RUNTIME_DEPENDENCY_SET rocm
RUNTIME_DEPENDENCIES
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"

View File

@@ -17,12 +17,20 @@
"name": "CUDA",
"inherits": [ "Default" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
}
},
{
@@ -50,7 +58,6 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
@@ -71,6 +78,11 @@
"configurePreset": "CUDA",
"targets": [ "ggml-cuda" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],

View File

@@ -7,13 +7,12 @@ ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& dnf install -y ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
@@ -39,6 +38,15 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
@@ -90,15 +98,17 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-12 dist/lib/ollama /lib/ollama
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/cuda_sbsa
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama

View File

@@ -409,7 +409,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
### Cloud

View File

@@ -0,0 +1,178 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -190,8 +190,6 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Gemma3nForConditionalGeneration":
conv = &gemma3nModel{}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":

View File

@@ -1,168 +0,0 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"gonum.org/v1/gonum/stat/distuv"
)
type gemma3nModel struct {
ModelParameters
TextModel struct {
ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
AltupActiveIdx uint32 `json:"altup_active_idx"`
AltupCoefClip float32 `json:"altup_coef_clip"`
AltupCorrectScale bool `json:"altup_correct_scale"`
AltupLRMultiplier float32 `json:"altup_lr_multiplier"`
AltupNumInputs uint32 `json:"altup_num_inputs"`
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenSizePerLayerInput uint32 `json:"hidden_size_per_layer_input"`
IntermediateSize uint32 `json:"intermediate_size"`
LaurelRank uint32 `json:"laurel_rank"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NumKVSharedLayers uint32 `json:"num_kv_shared_layers"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
} `json:"text_config"`
VisionModel struct{} `json:"vision_config"`
}
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3n"
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
norm := distuv.Normal{Mu: 0, Sigma: 1}
for _, v := range m.TextModel.ActivationSparsityPattern {
if !yield(float32(norm.Quantile(float64(v)))) {
break
}
}
})
kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for _, t := range m.TextModel.LayerTypes {
if !yield(t == "sliding_attention") {
break
}
}
})
kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
kv["gemma3n.head_dim"] = m.TextModel.HeadDim
kv["gemma3n.laurel_rank"] = m.TextModel.LaurelRank
kv["gemma3n.num_kv_shared_layers"] = m.TextModel.NumKVSharedLayers
kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
return kv
}
func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
out, ts := mergeTensors(ts,
merge{"altup_proj.*.weight", "altup_proj.weight"},
merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
)
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "audio_tower"),
strings.Contains(t.Name(), "embed_audio"),
strings.Contains(t.Name(), "vision_tower"),
strings.Contains(t.Name(), "embed_vision"):
// TODO: handle audio and vision towers
continue
case strings.Contains(t.Name(), "altup_predict_coef"),
strings.Contains(t.Name(), "altup_correct_coef"):
if m.TextModel.AltupCoefClip > 0 {
t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
if err != nil {
return nil, err
}
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
})
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *gemma3nModel) Replacements() []string {
return []string{
"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
"model.language_model.embed_tokens", "token_embd",
"model.language_model.per_layer_model_projection", "per_layer_model_proj",
"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
"model.language_model.altup_unembed_projections", "altup_unembd_proj",
"model.language_model.norm", "output_norm",
"model.language_model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
"post_feedforward_layernorm", "post_ffw_norm",
"per_layer_input_gate", "inp_gate",
"per_layer_projection", "proj",
"post_per_layer_input_norm", "post_norm",
"altup.", "altup_",
"modality_router", "router",
"prediction_coefs", "predict_coef",
"correction_coefs", "correct_coef",
"correct_output_scale", "correct_scale.weight",
"laurel.", "laurel_",
"linear_left", "l",
"linear_right", "r",
"post_laurel_norm", "post_norm",
}
}

View File

@@ -2,6 +2,9 @@ package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
@@ -27,38 +30,65 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
}
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
merges := make([]merge, 0, p.NumHiddenLayers*6)
for i := range p.NumHiddenLayers {
merges = append(merges, merge{
fmt.Sprintf("blk.%d.*.w1.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w1.bias", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.bias", i),
fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.bias", i),
fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []*ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, &ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
out, ts := mergeTensors(ts, merges...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"model.layers", "blk",
"block_sparse_moe.gate", "ffn_gate_inp",
"block_sparse_moe.experts.", ".",
)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -2,9 +2,7 @@ package convert
import (
"cmp"
"io"
"iter"
"path"
"slices"
"strings"
@@ -76,54 +74,3 @@ func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
}
}
}
type merge struct {
pattern, name string
}
// mergeTensors merges tensors that match a given pattern into a single tensor.
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
var matched []Tensor
for i := range merges {
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
matched, _ := path.Match(merges[i].pattern, t.Name())
return matched
})
if len(matched) > 0 {
out = append(out, &ggml.Tensor{
Name: merges[i].name,
Kind: matched[0].Kind(),
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
WriterTo: mergeGroup(matched),
})
}
}
return out, unmatched
}
// slicesSplitFunc splits a slice into two slices based on a predicate function.
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
for _, e := range s {
if fn(e) {
matched = append(matched, e)
} else {
unmatched = append(unmatched, e)
}
}
return matched, unmatched
}
type mergeGroup []Tensor
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
for _, t := range g {
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -9,8 +9,6 @@ import (
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
)
@@ -304,99 +302,3 @@ func TestSplitDim(t *testing.T) {
}
})
}
func TestMerge(t *testing.T) {
unmatched := []Tensor{
&fakeTensor{
name: "a.0.b",
shape: []uint64{5, 2},
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
},
&fakeTensor{
name: "a.1.b",
shape: []uint64{5, 2},
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
},
&fakeTensor{
name: "c.0.d",
shape: []uint64{5, 2},
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
},
&fakeTensor{
name: "c.1.d",
shape: []uint64{5, 2},
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
},
&fakeTensor{
name: "e.0.f",
shape: []uint64{5, 2},
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
},
}
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
for i := range n {
got := matched[i]
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
t.Errorf("unexpected (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := got.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, 20)
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
offset := 10 + (i * 20)
want := make([]float32, 20)
for j := range 20 {
want[j] = float32(offset + j)
}
if diff := cmp.Diff(want, f32s); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
}
t.Run("single merge", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
if len(unmatched) != 3 {
t.Error("expected 3 remaining tensors, got", len(unmatched))
}
if len(matched) != 1 {
t.Error("expected 1 merged tensor, got", len(matched))
}
checkMatched(t, 1, matched)
})
t.Run("multiple merges", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
if len(unmatched) != 1 {
t.Error("expected 1 remaining tensors, got", len(unmatched))
}
if len(matched) != 2 {
t.Error("expected 2 merged tensor, got", len(matched))
}
checkMatched(t, 2, matched)
})
t.Run("no match", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
if len(unmatched) != 5 {
t.Error("expected 5 remaining tensors, got", len(unmatched))
}
if len(matched) != 0 {
t.Error("expected no merged tensors, got", len(matched))
}
})
}

View File

@@ -3,7 +3,6 @@
package discover
import (
"fmt"
"log/slog"
"os"
"regexp"
@@ -56,13 +55,10 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
}
return "sbsa"
}
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// The detected driver is older than Feb 2023
slog.Warn("old CUDA driver detected - please upgrade to a newer driver", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
return "v11"
}
return "v12"

View File

@@ -12,7 +12,7 @@ import (
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v12', 'rocm', etc.
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {

59
docs/benchmark.md Normal file
View File

@@ -0,0 +1,59 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -1,6 +1,6 @@
# GPU
## Nvidia
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
Ollama supports Nvidia GPUs with compute capability 5.0+.
Check your compute compatibility to see if your card is supported:
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)

View File

@@ -43,7 +43,7 @@ Ollama includes multiple LLM libraries compiled for different GPUs and CPU vecto
In the server log, you will see a message that looks something like this (varies from release to release):
```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v12 rocm_v5]
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
```
**Experimental LLM Library Override**

View File

@@ -10,5 +10,4 @@ type Config interface {
Strings(string, ...[]string) []string
Ints(string, ...[]int32) []int32
Floats(string, ...[]float32) []float32
Bools(string, ...[]bool) []bool
}

View File

@@ -34,8 +34,7 @@ func (kv KV) Kind() string {
}
func (kv KV) ParameterCount() uint64 {
val, _ := keyValue(kv, "general.parameter_count", uint64(0))
return val
return keyValue(kv, "general.parameter_count", uint64(0))
}
func (kv KV) FileType() FileType {
@@ -54,27 +53,16 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCountMax() uint64 {
// TODO(drifkin): using the max value can cause an overestimation. In the
// future if array values become more popular, we can adapt the more invasive
// <https://github.com/ollama/ollama/pull/10225>
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
}
func (kv KV) HeadCountMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
}
func (kv KV) HeadCountKVMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
}
func (kv KV) HeadCountKVMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCountMax() uint64 {
if heads := kv.HeadCountMin(); heads > 0 {
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / heads
}
@@ -82,11 +70,15 @@ func (kv KV) EmbeddingHeadCountMax() uint64 {
}
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCountMax())))
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCountMax())))
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) ContextLength() uint64 {
@@ -98,83 +90,40 @@ func (kv KV) ChatTemplate() string {
}
func (kv KV) String(key string, defaultValue ...string) string {
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
return keyValue(kv, key, append(defaultValue, "")...)
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Bool(key string, defaultValue ...bool) bool {
val, _ := keyValue(kv, key, append(defaultValue, false)...)
return val
}
func (kv KV) UintOrMaxArrayValue(key string, defaultValue uint32) uint32 {
_, max := kv.UintOrArrayValue(key, defaultValue)
return max
}
func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
min, _ := kv.UintOrArrayValue(key, defaultValue)
return min
}
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
if u32, ok := keyValue(kv, key, uint32(0)); ok {
return u32, u32
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
min := slices.Min(u32s.values)
max := slices.Max(u32s.values)
return min, max
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
min := slices.Min(i32s.values)
max := slices.Max(i32s.values)
if min < 0 || max < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "min", min, "max", max)
}
return uint32(min), uint32(max)
}
return defaultValue, defaultValue
return keyValue(kv, key, append(defaultValue, false)...)
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
val, _ := keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]})
return val.values
return keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]}).values
}
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
val, _ := keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]})
return val.values
return keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]}).values
}
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
val, _ := keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]})
return val.values
return keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]}).values
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
val, _ := keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]})
return val.values
}
func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
val, _ := keyValue(kv, key, &array[bool]{values: append(defaultValue, []bool(nil))[0]})
return val.values
return keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]}).values
}
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"gemma3",
"gemma3n",
"mistral3",
"llama4",
"mllama",
@@ -194,17 +143,17 @@ type arrayValueTypes interface {
*array[string] | *array[float32] | *array[float64] | *array[bool]
}
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) (T, bool) {
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key].(T); ok {
return val, true
if val, ok := kv[key]; ok {
return val.(T)
}
slog.Debug("key with type not found", "key", key, "default", defaultValue[0])
return defaultValue[0], false
slog.Debug("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
type Tensors struct {
@@ -476,11 +425,11 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCountMax()
headsKV := f.KV().HeadCountKVMax()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
embeddingHeads := f.KV().EmbeddingHeadCountMax()
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
@@ -555,7 +504,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2", "gemma3", "gemma3n":
case "gemma", "gemma2", "gemma3":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
@@ -568,11 +517,6 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
embedding*embeddingHeadsK*heads*9/16,
)
if f.KV().Architecture() == "gemma3n" {
fullOffload *= 4
partialOffload *= 4
}
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
// engine. Gemma3 always uses the Ollama engine.
if f.KV().Architecture() == "gemma3" {

View File

@@ -269,33 +269,3 @@ func TestKeyValue(t *testing.T) {
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
}
}
func TestHeadCount(t *testing.T) {
valuesArray := []int32{1, 5, 3, 4}
cases := []struct {
kv KV
want uint64
}{
{
kv: KV{
"general.architecture": "abc",
"abc.attention.head_count": &array[int32]{values: valuesArray, size: len(valuesArray)},
},
want: uint64(5),
},
{
kv: KV{
"general.architecture": "abc",
"abc.attention.head_count": uint32(3),
},
want: uint64(3),
},
}
for _, tt := range cases {
got := tt.kv.HeadCountMax()
if got != tt.want {
t.Errorf("unexpected max value: got=%d want=%d", got, tt.want)
}
}
}

View File

@@ -609,10 +609,6 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
err = writeGGUFArray(ws, ggufTypeString, v)
case *array[string]:
err = writeGGUFArray(ws, ggufTypeString, v.values)
case []bool:
err = writeGGUFArray(ws, ggufTypeBool, v)
case *array[bool]:
err = writeGGUFArray(ws, ggufTypeBool, v.values)
default:
return fmt.Errorf("improper type for '%s'", k)
}

View File

@@ -65,7 +65,7 @@ func Open(path string) (f *File, err error) {
return nil, err
}
if f.Version < 2 {
if f.Version != 3 {
return nil, fmt.Errorf("%w version %v", ErrUnsupported, f.Version)
}

2
go.mod
View File

@@ -25,7 +25,6 @@ require (
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
golang.org/x/tools v0.30.0
gonum.org/v1/gonum v0.15.0
)
require (
@@ -45,6 +44,7 @@ require (
github.com/xtgo/set v1.0.0 // indirect
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.15.0 // indirect
gorgonia.org/vecf32 v0.9.0 // indirect
gorgonia.org/vecf64 v0.9.0 // indirect
)

View File

@@ -45,8 +45,6 @@ var (
"qwen2.5-coder:latest",
"qwen:latest",
"solar-pro:latest",
"codellama:latest",
"nous-hermes:latest",
}
)

View File

@@ -150,7 +150,7 @@ index 4cce5166..7f6617fa 100644
llama_model_loader::llama_model_loader(
const std::string & fname,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 3a4e72a3..db62973f 100644
index 3a4e72a3..831b68c0 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1402,6 +1402,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {

View File

@@ -22,10 +22,10 @@ multiple batches of processing until everything is complete.
4 files changed, 59 insertions(+), 79 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index dca22d8b..1f3a3956 100644
index c22687e4..c5948e8f 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -947,9 +947,12 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -950,9 +950,12 @@ int llama_context::decode(llama_batch & inp_batch) {
// find KV slot
if (!kv_self->find_slot(ubatch)) {
@@ -41,7 +41,7 @@ index dca22d8b..1f3a3956 100644
}
ggml_backend_sched_reset(sched.get());
@@ -1965,9 +1968,12 @@ void llama_context::opt_epoch_iter(
@@ -1967,9 +1970,12 @@ void llama_context::opt_epoch_iter(
// TODO: not sure if this is needed
if (!kv_self->find_slot(ubatch)) {

View File

@@ -10,10 +10,10 @@ Subject: [PATCH] add argsort and cuda copy for i32
3 files changed, 192 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
index 955fec59..654e2f28 100644
index becdae07..7a44b6cf 100644
--- a/ggml/src/ggml-cpu/ops.cpp
+++ b/ggml/src/ggml-cpu/ops.cpp
@@ -6822,6 +6822,45 @@ static void ggml_compute_forward_argsort_f32(
@@ -6890,6 +6890,45 @@ static void ggml_compute_forward_argsort_f32(
}
}
@@ -59,7 +59,7 @@ index 955fec59..654e2f28 100644
void ggml_compute_forward_argsort(
const ggml_compute_params * params,
ggml_tensor * dst) {
@@ -6833,6 +6872,10 @@ void ggml_compute_forward_argsort(
@@ -6901,6 +6940,10 @@ void ggml_compute_forward_argsort(
{
ggml_compute_forward_argsort_f32(params, dst);
} break;
@@ -195,7 +195,7 @@ index 607ded85..53b02634 100644
+ }
}
diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu
index d027271f..4abd01d7 100644
index 2d46176e..47383486 100644
--- a/ggml/src/ggml-cuda/cpy.cu
+++ b/ggml/src/ggml-cuda/cpy.cu
@@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
@@ -257,7 +257,7 @@ index d027271f..4abd01d7 100644
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
@@ -633,6 +678,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
@@ -631,6 +676,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
@@ -266,7 +266,7 @@ index d027271f..4abd01d7 100644
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
@@ -688,6 +735,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
@@ -686,6 +733,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>;

View File

@@ -1,32 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Sun, 22 Jun 2025 09:22:05 -0700
Subject: [PATCH] temporary prevent rocm+cuda mixed loading
---
ggml/src/ggml-backend-reg.cpp | 12 ++++++++++--
1 file changed, 10 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 4e67d243..8f49f084 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -573,8 +573,16 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
- ggml_backend_load_best("cuda", silent, dir_path);
- ggml_backend_load_best("hip", silent, dir_path);
+
+ // Avoid mixed hip+cuda configurations
+ const char * hip_devices = std::getenv("HIP_VISIBLE_DEVICES");
+ const char * rocr_devices = std::getenv("ROCR_VISIBLE_DEVICES");
+ if (!hip_devices && !rocr_devices) {
+ ggml_backend_load_best("cuda", silent, dir_path);
+ } else {
+ ggml_backend_load_best("hip", silent, dir_path);
+ }
+
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);

View File

@@ -1,169 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Georgi Gerganov <ggerganov@gmail.com>
Date: Thu, 19 Jun 2025 08:05:21 +0300
Subject: [PATCH] metal : add mean kernel (#14267)
* metal : add mean kernel
ggml-ci
* cont : dedup implementation
ggml-ci
---
ggml/src/ggml-metal/ggml-metal.m | 33 ++++++++++++++++---
ggml/src/ggml-metal/ggml-metal.metal | 48 ++++++++++++++++++++++------
2 files changed, 67 insertions(+), 14 deletions(-)
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index ee4f2dcb..f20f5615 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -489,6 +489,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
+ GGML_METAL_KERNEL_TYPE_MEAN,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
GGML_METAL_KERNEL_TYPE_ARGMAX,
@@ -1436,6 +1437,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
@@ -1634,6 +1636,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_LOG:
return false; // TODO: implement
case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
case GGML_OP_SOFT_MAX:
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
@@ -2362,11 +2365,30 @@ static bool ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
{
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
+ id<MTLComputePipelineState> pipeline = nil;
+
+ switch (dst->op) {
+ case GGML_OP_SUM_ROWS:
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
+ break;
+ case GGML_OP_MEAN:
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
+ break;
+ default:
+ GGML_ABORT("fatal error");
+ }
+
+ int nth = 32; // SIMD width
+
+ while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
+ nth *= 2;
+ }
+ nth = MIN(nth, ne00);
ggml_metal_kargs_sum_rows args = {
/*.ne00 =*/ ne00,
@@ -2396,11 +2418,12 @@ static bool ggml_metal_encode_node(
};
[encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
+ [encoder setBytes:&args length:sizeof(args) atIndex:0];
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
+ [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_SOFT_MAX:
{
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index 9cfddf45..08e8d807 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -956,31 +956,61 @@ kernel void kernel_neg(
dst[tpig] = -src0[tpig];
}
+template <bool norm>
kernel void kernel_sum_rows(
+ constant ggml_metal_kargs_sum_rows & args,
device const float * src0,
device float * dst,
- constant ggml_metal_kargs_sum_rows & args,
- uint3 tpig[[thread_position_in_grid]]) {
- int64_t i3 = tpig.z;
- int64_t i2 = tpig.y;
- int64_t i1 = tpig.x;
+ threadgroup float * shmem_f32 [[threadgroup(0)]],
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ ushort3 tpitg[[thread_position_in_threadgroup]],
+ ushort sgitg[[simdgroup_index_in_threadgroup]],
+ ushort tiisg[[thread_index_in_simdgroup]],
+ ushort3 ntg[[threads_per_threadgroup]]) {
+ int64_t i3 = tgpig.z;
+ int64_t i2 = tgpig.y;
+ int64_t i1 = tgpig.x;
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}
+ if (sgitg == 0) {
+ shmem_f32[tiisg] = 0.0f;
+ }
+
device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
- float row_sum = 0;
+ float sumf = 0;
- for (int64_t i0 = 0; i0 < args.ne00; i0++) {
- row_sum += src_row[i0];
+ for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
+ sumf += src_row[i0];
}
- dst_row[0] = row_sum;
+ sumf = simd_sum(sumf);
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ shmem_f32[sgitg] = sumf;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ sumf = shmem_f32[tiisg];
+ sumf = simd_sum(sumf);
+
+ if (tpitg.x == 0) {
+ dst_row[0] = norm ? sumf / args.ne00 : sumf;
+ }
}
+typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
+
+template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
+template [[host_name("kernel_mean")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
+
template<typename T>
kernel void kernel_soft_max(
device const char * src0,

View File

File diff suppressed because it is too large Load Diff

View File

@@ -151,12 +151,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
if graphPartialOffload == 0 {
headsKV := f.KV().HeadCountKVMin()
if headsKV == 0 {
headsKV = 1
}
gqa := f.KV().HeadCountMax() / headsKV
graphPartialOffload = gqa * kvTotal / 6
graphPartialOffload = f.KV().GQA() * kvTotal / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload

View File

@@ -139,13 +139,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
gpus = discover.GetCPUInfo()
}
// Verify the requested context size is <= the model training size
trainCtx := f.KV().ContextLength()
if opts.NumCtx/numParallel > int(trainCtx) && trainCtx > 0 {
slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "num_parallel", numParallel, "n_ctx_train", trainCtx)
opts.NumCtx = int(trainCtx) * numParallel
}
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
@@ -318,7 +311,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
params = append(params, "--mmproj", projectors[0])
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'rocm', etc.
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {

View File

@@ -253,7 +253,6 @@ type Tensor interface {
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Sub(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Div(ctx Context, t2 Tensor) Tensor
@@ -277,7 +276,6 @@ type Tensor interface {
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
RELU(ctx Context) Tensor
Sigmoid(ctx Context) Tensor
Reshape(ctx Context, shape ...int) Tensor
@@ -299,12 +297,6 @@ type Tensor interface {
TopK(ctx Context, k int) Tensor
Argsort(ctx Context) Tensor
Mean(ctx Context) Tensor
Variance(ctx Context) Tensor
Stddev(ctx Context) Tensor
Sqr(ctx Context) Tensor
Sqrt(ctx Context) Tensor
Clamp(ctx Context, min, max float32) Tensor
}
// ScaledDotProductAttention implements a fused attention

View File

@@ -297,9 +297,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
}
case contains(t.Name, "cls", "output", "output_norm",
"altup_proj", "altup_unembd_proj",
"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
case contains(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts, blocks)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
@@ -604,9 +602,7 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
}
func (c *Context) Compute(tensors ...ml.Tensor) {
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
C.ggml_backend_sched_reset(c.b.sched)
needSync := true
@@ -895,13 +891,6 @@ func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
if dim < 0 || dim >= C.GGML_MAX_DIMS {
panic("invalid dimension")
@@ -1209,13 +1198,6 @@ func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1291,42 +1273,3 @@ func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
}
}
func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mean(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
Sqr(ctx).
SumRows(ctx).
Scale(ctx, 1/float64(t.Dim(0)))
}
func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
return t.Variance(ctx).Sqrt(ctx)
}
func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
}
}

View File

@@ -573,16 +573,8 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
// Avoid mixed hip+cuda configurations
const char * hip_devices = std::getenv("HIP_VISIBLE_DEVICES");
const char * rocr_devices = std::getenv("ROCR_VISIBLE_DEVICES");
if (!hip_devices && !rocr_devices) {
ggml_backend_load_best("cuda", silent, dir_path);
} else {
ggml_backend_load_best("hip", silent, dir_path);
}
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);

View File

@@ -362,26 +362,6 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#endif // FP16_AVAILABLE
}
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
template<bool norm>
static __global__ void reduce_rows_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x;
const int col = threadIdx.x;
float sum = 0.0f;
for (int i = col; i < ncols; i += blockDim.x) {
sum += x[row * ncols + i];
}
sum = warp_reduce_sum(sum);
if (col != 0) {
return;
}
dst[row] = norm ? sum / ncols : sum;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll

View File

@@ -35,7 +35,6 @@
#include "ggml-cuda/ssm-scan.cuh"
#include "ggml-cuda/sum.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/mean.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
@@ -2323,9 +2322,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SUM_ROWS:
ggml_cuda_op_sum_rows(ctx, dst);
break;
case GGML_OP_MEAN:
ggml_cuda_op_mean(ctx, dst);
break;
case GGML_OP_SSM_CONV:
ggml_cuda_op_ssm_conv(ctx, dst);
break;
@@ -3215,7 +3211,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
return true;

View File

@@ -1,19 +0,0 @@
#include "mean.cuh"
void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums(nrows, 1, 1);
reduce_rows_f32</*norm*/ true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
}

View File

@@ -1,3 +0,0 @@
#include "common.cuh"
void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,9 +1,25 @@
#include "sumrows.cuh"
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x;
const int col = threadIdx.x;
float sum = 0.0f;
for (int i = col; i < ncols; i += blockDim.x) {
sum += x[row * ncols + i];
}
sum = warp_reduce_sum(sum);
if (col == 0) {
dst[row] = sum;
}
}
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums(nrows, 1, 1);
reduce_rows_f32</*norm*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
}
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -19,8 +35,5 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums(nrows, 1, 1);
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
}

View File

@@ -1,4 +1,5 @@
#include "common.cuh"
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream);
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -3434,61 +3434,31 @@ kernel void kernel_neg(
dst[tpig] = -src0[tpig];
}
template <bool norm>
kernel void kernel_sum_rows(
constant ggml_metal_kargs_sum_rows & args,
device const float * src0,
device float * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
int64_t i3 = tgpig.z;
int64_t i2 = tgpig.y;
int64_t i1 = tgpig.x;
constant ggml_metal_kargs_sum_rows & args,
uint3 tpig[[thread_position_in_grid]]) {
int64_t i3 = tpig.z;
int64_t i2 = tpig.y;
int64_t i1 = tpig.x;
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
float sumf = 0;
float row_sum = 0;
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
sumf += src_row[i0];
for (int64_t i0 = 0; i0 < args.ne00; i0++) {
row_sum += src_row[i0];
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
if (tpitg.x == 0) {
dst_row[0] = norm ? sumf / args.ne00 : sumf;
}
dst_row[0] = row_sum;
}
typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
template [[host_name("kernel_mean")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
template<typename T>
kernel void kernel_soft_max(
device const char * src0,

View File

@@ -489,7 +489,6 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_MEAN,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
GGML_METAL_KERNEL_TYPE_ARGMAX,
@@ -1437,7 +1436,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
@@ -1636,7 +1634,6 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_LOG:
return false; // TODO: implement
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_SOFT_MAX:
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
@@ -2365,30 +2362,11 @@ static bool ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
{
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
id<MTLComputePipelineState> pipeline = nil;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
switch (dst->op) {
case GGML_OP_SUM_ROWS:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
break;
case GGML_OP_MEAN:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
break;
default:
GGML_ABORT("fatal error");
}
int nth = 32; // SIMD width
while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
nth *= 2;
}
nth = MIN(nth, ne00);
ggml_metal_kargs_sum_rows args = {
/*.ne00 =*/ ne00,
@@ -2418,12 +2396,11 @@ static bool ggml_metal_encode_node(
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SOFT_MAX:
{

View File

@@ -956,61 +956,31 @@ kernel void kernel_neg(
dst[tpig] = -src0[tpig];
}
template <bool norm>
kernel void kernel_sum_rows(
constant ggml_metal_kargs_sum_rows & args,
device const float * src0,
device float * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
int64_t i3 = tgpig.z;
int64_t i2 = tgpig.y;
int64_t i1 = tgpig.x;
constant ggml_metal_kargs_sum_rows & args,
uint3 tpig[[thread_position_in_grid]]) {
int64_t i3 = tpig.z;
int64_t i2 = tpig.y;
int64_t i1 = tpig.x;
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
float sumf = 0;
float row_sum = 0;
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
sumf += src_row[i0];
for (int64_t i0 = 0; i0 < args.ne00; i0++) {
row_sum += src_row[i0];
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
if (tpitg.x == 0) {
dst_row[0] = norm ? sumf / args.ne00 : sumf;
}
dst_row[0] = row_sum;
}
typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
template [[host_name("kernel_mean")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
template<typename T>
kernel void kernel_soft_max(
device const char * src0,

View File

@@ -1,52 +0,0 @@
package gemma3n
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.SentencePieceModel
*TextModel
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
return m.TextModel.Forward(ctx, batch, m.Cache)
}
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
}
// TODO: setup hybrid (local sliding window + global) cache
m.Cache = kvcache.NewWrapperCache(
kvcache.NewCausalCache(m.Shift),
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
)
return &m, nil
}
func init() {
model.Register("gemma3n", New)
}

View File

@@ -1,360 +0,0 @@
package gemma3n
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
type TextModel struct {
TokenEmbedding *TextScaledWordEmbedding `gguf:"token_embd"`
*PerLayerProjector
AltupEmbd *nn.Linear `gguf:"altup_proj"`
AltupUnembd *nn.Linear `gguf:"altup_unembd_proj"`
TextLayers []TextLayer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
TextOptions
}
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
// Create a tensor of a single float32 value of 1.0 to use for altup correction
one := ctx.Input().FromFloatSlice([]float32{1.0}, 1)
inputs := m.TokenEmbedding.Forward(ctx, batch.Inputs, math.Sqrt(float64(m.hiddenSize)))
inputsPerLayer := m.PerLayerProjector.Forward(ctx, batch, inputs, &m.TextOptions)
targetMagnitude := inputs.Sqr(ctx).Mean(ctx).Sqrt(ctx)
targetMagnitude = targetMagnitude.Repeat(ctx, 2, m.altupInputs-1)
hiddenState := inputs.Repeat(ctx, 2, m.altupInputs-1)
altupProj := m.AltupEmbd.Forward(ctx, hiddenState)
altupProj = altupProj.Mul(ctx, targetMagnitude.Div(ctx, altupProj.Sqr(ctx).Mean(ctx).Sqrt(ctx)))
hiddenStates := inputs.Concat(ctx, altupProj, 2)
firstSharedKeyValue := m.hiddenLayers - m.sharedKeyValueLayers
for i, layer := range m.TextLayers {
if i < firstSharedKeyValue {
cache.SetLayer(i)
} else if m.isLocal(i) {
cache.SetLayer(firstSharedKeyValue - 2)
} else {
cache.SetLayer(firstSharedKeyValue - 1)
}
var layerType int
ropeBase := m.ropeBase
if m.isLocal(i) {
layerType = 1
ropeBase = m.ropeBaseLocal
}
cache.(*kvcache.WrapperCache).SetLayerType(layerType)
// inputPerLayer = inputsPerLayer[:, i, :]
inputPerLayer := inputsPerLayer.View(ctx, i*inputsPerLayer.Stride(1), inputsPerLayer.Dim(0), inputsPerLayer.Stride(2), inputsPerLayer.Dim(2))
hiddenStates = layer.Forward(ctx, hiddenStates, inputPerLayer, positions, one, cache, i >= firstSharedKeyValue, ropeBase, float64(m.activationSparsityScale[i]), &m.TextOptions)
}
// hiddenStates = hiddenStates[:, :, 0]
hiddenStates0 := hiddenStates.View(ctx, 0, hiddenStates.Dim(0), hiddenStates.Stride(1), hiddenStates.Dim(1))
targetMagnitude = hiddenStates0.Sqr(ctx).Mean(ctx).Sqrt(ctx)
targetMagnitude = targetMagnitude.Repeat(ctx, 2, m.altupInputs-1)
// hiddenState = hiddenStates[:, :, 1:]
hiddenState = hiddenStates.View(ctx, hiddenStates.Stride(2), hiddenStates.Dim(0), hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), m.altupInputs-1)
altupUnembdProj := m.AltupUnembd.Forward(ctx, hiddenState)
altupUnembdProj = altupUnembdProj.Mul(ctx, targetMagnitude.Div(ctx, altupUnembdProj.Sqr(ctx).Mean(ctx).Sqrt(ctx)))
hiddenStates = hiddenStates0.Concat(ctx, altupUnembdProj, 2)
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeBase := m.ropeBase
if m.isLocal(layer) {
ropeBase = m.ropeBaseLocal
}
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
type TextScaledWordEmbedding struct {
*nn.Embedding
}
func (e TextScaledWordEmbedding) Forward(ctx ml.Context, inputIDs ml.Tensor, scale float64) ml.Tensor {
return e.Embedding.Forward(ctx, inputIDs).Scale(ctx, scale)
}
type PerLayerProjector struct {
TokenEmbedding *TextScaledWordEmbedding `gguf:"per_layer_token_embd"`
Projector *nn.Linear `gguf:"per_layer_model_proj"`
Norm *nn.RMSNorm `gguf:"per_layer_proj_norm"`
}
func (p PerLayerProjector) Forward(ctx ml.Context, batch input.Batch, inputs ml.Tensor, opts *TextOptions) ml.Tensor {
inputsPerLayer := p.TokenEmbedding.Forward(ctx, batch.Inputs, math.Sqrt(float64(opts.hiddenSizePerLayerInput)))
inputsPerLayer = inputsPerLayer.Reshape(ctx, opts.hiddenSizePerLayerInput, opts.hiddenLayers, batch.Inputs.Dim(0), batch.Inputs.Dim(1))
perLayerProjection := p.Projector.Forward(ctx, inputs)
perLayerProjection = perLayerProjection.Scale(ctx, math.Sqrt(float64(opts.hiddenSize)))
perLayerProjection = perLayerProjection.Reshape(ctx, opts.hiddenSizePerLayerInput, opts.hiddenLayers, inputs.Dim(1))
perLayerProjection = p.Norm.Forward(ctx, perLayerProjection, opts.eps)
if inputsPerLayer != nil {
perLayerProjection = perLayerProjection.Add(ctx, inputsPerLayer)
perLayerProjection = perLayerProjection.Scale(ctx, 1/math.Sqrt(2))
}
return perLayerProjection
}
type TextLayer struct {
*AltUp
*Laurel
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *TextAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
PerLayerInputGate *nn.Linear `gguf:"inp_gate"`
PerLayerProjection *nn.Linear `gguf:"proj"`
PostPerLayerNorm *nn.RMSNorm `gguf:"post_norm"`
}
func (d TextLayer) Forward(ctx ml.Context, hiddenStates, perLayerInput, positions, one ml.Tensor, cache kvcache.Cache, sharedKV bool, ropeBase float32, activationSparsityScale float64, opts *TextOptions) ml.Tensor {
predictions := d.Predict(ctx, hiddenStates, opts)
active := opts.altupActive(ctx, predictions)
attn := d.AttentionNorm.Forward(ctx, active, opts.eps)
laurel := d.Laurel.Forward(ctx, attn, opts)
attn = d.Attention.Forward(ctx, attn, positions, cache, sharedKV, ropeBase, opts)
attn = d.PostAttentionNorm.Forward(ctx, attn, opts.eps)
attn = active.Add(ctx, attn)
attn = attn.Add(ctx, laurel).Scale(ctx, 1/math.Sqrt(2))
mlp := d.MLPNorm.Forward(ctx, attn, opts.eps)
mlp = d.MLP.Forward(ctx, mlp, activationSparsityScale)
mlp = d.PostMLPNorm.Forward(ctx, mlp, opts.eps)
mlp = attn.Add(ctx, mlp)
predictions = d.Correct(ctx, predictions, mlp, one, opts)
active = opts.altupActive(ctx, predictions)
if opts.altupCorrectScale {
active = d.ScaleCorrectedOutput(ctx, active)
}
active = d.PerLayerInputGate.Forward(ctx, active)
active = active.GELU(ctx)
active = active.Mul(ctx, perLayerInput)
active = d.PerLayerProjection.Forward(ctx, active)
active = d.PostPerLayerNorm.Forward(ctx, active, opts.eps)
// inactive := predictions[:, :, 1:]
inactive := predictions.View(ctx, predictions.Stride(2), predictions.Dim(0), predictions.Stride(1), predictions.Dim(1), predictions.Stride(2), predictions.Dim(2)-1)
active = inactive.Add(ctx, active)
predictions0 := predictions.View(ctx, 0, predictions.Dim(0), predictions.Stride(1), predictions.Dim(1))
return predictions0.Concat(ctx, active, 2)
}
type AltUp struct {
CorrectionScale ml.Tensor `gguf:"altup_correct_scale.weight"`
PredictionCoefficient *nn.Linear `gguf:"altup_predict_coef"`
CorrectionCoefficient *nn.Linear `gguf:"altup_correct_coef"`
Router *nn.Linear `gguf:"altup_router"`
RouterNorm *nn.RMSNorm `gguf:"altup_router_norm"`
}
func (a AltUp) computeRouterModalities(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
routerInputs := a.RouterNorm.Forward(ctx, hiddenStates, opts.eps).Scale(ctx, 1.0/float64(opts.hiddenSize))
return a.Router.Forward(ctx, routerInputs).Tanh(ctx)
}
func (a AltUp) Predict(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
modalities := a.computeRouterModalities(ctx, opts.altupActive(ctx, hiddenStates), opts)
coefficients := a.PredictionCoefficient.Forward(ctx, modalities)
coefficients = coefficients.Reshape(ctx, opts.altupInputs, opts.altupInputs, coefficients.Dim(1), coefficients.Dim(2))
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
predictions := coefficients.Mulmat(ctx, hiddenStates)
predictions = predictions.Add(ctx, hiddenStates)
return predictions.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
}
func (a AltUp) Correct(ctx ml.Context, predictions, activated, one ml.Tensor, opts *TextOptions) ml.Tensor {
innovation := activated.Sub(ctx, opts.altupActive(ctx, predictions))
innovation = innovation.Repeat(ctx, 2, opts.altupInputs)
modalities := a.computeRouterModalities(ctx, activated, opts)
coefficients := a.CorrectionCoefficient.Forward(ctx, modalities)
coefficients = coefficients.Add(ctx, one)
coefficients = coefficients.Reshape(ctx, 1, coefficients.Dim(0), coefficients.Dim(1))
coefficients = coefficients.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
corrected := innovation.Mul(ctx, coefficients)
corrected = corrected.Add(ctx, predictions)
return corrected
}
func (a AltUp) ScaleCorrectedOutput(ctx ml.Context, predictions ml.Tensor) ml.Tensor {
return predictions.Mul(ctx, a.CorrectionScale)
}
type Laurel struct {
LinearLeft *nn.Linear `gguf:"laurel_l"`
LinearRight *nn.Linear `gguf:"laurel_r"`
PostLaurelNorm *nn.RMSNorm `gguf:"laurel_post_norm"`
}
func (l Laurel) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = l.LinearLeft.Forward(ctx, hiddenStates)
hiddenStates = l.LinearRight.Forward(ctx, hiddenStates)
hiddenStates = l.PostLaurelNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates.Add(ctx, residual)
}
type TextAttention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (attn TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, sharedKV bool, ropeBase float32, opts *TextOptions) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
query = attn.QueryNorm.Forward(ctx, query, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
var key, value ml.Tensor
if !sharedKV {
key = attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
key = attn.KeyNorm.Forward(ctx, key, opts.eps)
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
value = attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
value = value.RMSNorm(ctx, nil, opts.eps)
}
attention := nn.Attention(ctx, query, key, value, 1., cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return attn.Output.Forward(ctx, attention)
}
type TextMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, activationSparsityScale float64) ml.Tensor {
upStates := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates)
if activationSparsityScale > 0 {
mean := hiddenStates.Mean(ctx)
std := hiddenStates.Stddev(ctx).Scale(ctx, activationSparsityScale)
cutoff := mean.Add(ctx, std)
hiddenStates = hiddenStates.Sub(ctx, cutoff).RELU(ctx)
}
hiddenStates = hiddenStates.GELU(ctx).Mul(ctx, upStates)
hiddenStates = mlp.Down.Forward(ctx, hiddenStates)
return hiddenStates
}
type TextOptions struct {
hiddenLayers int
hiddenSize int
hiddenSizePerLayerInput int
numHeads, numKVHeads int
keyLength, valueLength int
sharedKeyValueLayers int
altupActiveIndex int
altupInputs int
altupCorrectScale bool
eps float32
ropeBase float32
ropeBaseLocal float32
ropeScale float32
slidingWindowPattern []bool
activationSparsityScale []float32
}
func (o *TextOptions) altupActive(ctx ml.Context, t ml.Tensor) ml.Tensor {
// t[:, :, o.altupActiveIndex]
return t.View(ctx, o.altupActiveIndex*t.Stride(2), t.Dim(0), t.Stride(1), t.Dim(1))
}
func (o *TextOptions) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func (o *TextOptions) isLocal(i int) bool {
return o.slidingWindowPattern[i]
}
func newTextModel(c fs.Config) *TextModel {
return &TextModel{
TextLayers: make([]TextLayer, c.Uint("block_count")),
TextOptions: TextOptions{
hiddenLayers: int(c.Uint("block_count")),
hiddenSize: int(c.Uint("embedding_length")),
hiddenSizePerLayerInput: int(c.Uint("embedding_length_per_layer_input")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
sharedKeyValueLayers: int(c.Uint("attention.shared_kv_layers")),
altupActiveIndex: int(c.Uint("altup.active_idx")),
altupInputs: int(c.Uint("altup.num_inputs")),
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeBase: c.Float("rope.freq_base", 1_000_000),
ropeBaseLocal: c.Float("rope.freq_base_local", 10_000),
ropeScale: c.Float("rope.freq_scale", 1.0),
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
activationSparsityScale: c.Floats("activation_sparsity_scale"),
},
}
}

View File

@@ -3,7 +3,6 @@ package models
import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"

View File

@@ -87,7 +87,7 @@ func (v *Vocabulary) Decode(id int32) string {
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == TOKEN_TYPE_CONTROL || v.Types[i] == TOKEN_TYPE_USER_DEFINED {
if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}

View File

@@ -1,16 +0,0 @@
package model
import "testing"
func TestVocabulary_SpecialVocabulary(t *testing.T) {
vocab := &Vocabulary{
Values: []string{"<|startoftext|>", "<|endoftext|>", "<|tool_call_start|>", "<|tool_call_end|>", "hi"},
Types: []int32{TOKEN_TYPE_CONTROL, TOKEN_TYPE_CONTROL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_NORMAL},
}
specialVocab := vocab.SpecialVocabulary()
if len(specialVocab) != 4 {
t.Errorf("expected 4 special tokens, got %d", len(specialVocab))
}
}

View File

@@ -27,6 +27,7 @@ function checkEnv() {
$env:VCToolsRedistDir=(get-item "${MSVC_INSTALL}\VC\Redist\MSVC\*")[0]
}
# Locate CUDA versions
# Note: this assumes every version found will be built
$cudaList=(get-item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v*\bin\" -ea 'silentlycontinue')
if ($cudaList.length -eq 0) {
$d=(get-command -ea 'silentlycontinue' nvcc).path
@@ -93,6 +94,19 @@ function buildOllama() {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v11")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V11")) { $v11="$_" }}
$env:CUDAToolkit_ROOT=$hashEnv[$v11]
write-host "Building CUDA v11 backend libraries"
# Note: cuda v11 requires msvc 2019 so force the older generator
# to avoid 2022 (or newer) from being used as the default
& cmake --fresh --preset "CUDA 11" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
if ("$script:CUDA_DIRS".Contains("v12")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V12")) { $v12="$_" }}
$env:CUDAToolkit_ROOT=$hashEnv[$v12]
@@ -113,17 +127,12 @@ function buildOllama() {
$env:HIPCXX="${env:HIP_PATH}\bin\clang++.exe"
$env:HIP_PLATFORM="amd"
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
& cmake --fresh --preset "ROCm 6" -G Ninja `
-DCMAKE_C_COMPILER=clang `
-DCMAKE_CXX_COMPILER=clang++ `
-DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" `
-DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" `
--install-prefix $script:DIST_DIR
& cmake --fresh --preset "ROCm 6" -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
$env:HIPCXX=""
$env:HIP_PLATFORM=""
$env:CMAKE_PREFIX_PATH=""
& cmake --build --preset "ROCm 6" --config Release --parallel $script:JOBS
& cmake --build --preset "ROCm" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "HIP" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}

View File

@@ -10,7 +10,9 @@ OLLAMA_COMMON_BUILD_ARGS="--build-arg=VERSION \
--build-arg=GOFLAGS \
--build-arg=OLLAMA_CUSTOM_CPU_DEFS \
--build-arg=OLLAMA_SKIP_CUDA_GENERATE \
--build-arg=OLLAMA_SKIP_CUDA_11_GENERATE \
--build-arg=OLLAMA_SKIP_CUDA_12_GENERATE \
--build-arg=CUDA_V11_ARCHITECTURES \
--build-arg=CUDA_V12_ARCHITECTURES \
--build-arg=OLLAMA_SKIP_ROCM_GENERATE \
--build-arg=OLLAMA_FAST_BUILD \

115
server/cache/capabilities.go vendored Normal file
View File

@@ -0,0 +1,115 @@
package cache
import (
"fmt"
"log/slog"
"os"
"slices"
"sync"
"time"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/types/model"
)
// cacheEntry stores capabilities and the modification time of the model file
type cacheEntry struct {
capabilities []model.Capability
modTime time.Time
}
// ggufCapabilities is a cache for gguf model capabilities
var ggufCapabilities = &sync.Map{}
// ModelInfo contains the minimal information needed to determine capabilities
type ModelInfo struct {
ModelPath string
ProjectorPaths []string
Template *template.Template
}
// Capabilities returns the capabilities that the model supports
func Capabilities(info ModelInfo) []model.Capability {
capabilities, err := ggufCapabilties(info.ModelPath)
if err != nil {
slog.Error("could not determine gguf capabilities", "error", err)
}
if info.Template == nil {
return capabilities
}
// Check for tools capability
if slices.Contains(info.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
// Check for insert capability
if slices.Contains(info.Template.Vars(), "suffix") {
capabilities = append(capabilities, model.CapabilityInsert)
}
// Check for vision capability in projector-based models
if len(info.ProjectorPaths) > 0 {
capabilities = append(capabilities, model.CapabilityVision)
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(info.Template.Template)
if openingTag != "" && closingTag != "" {
capabilities = append(capabilities, model.CapabilityThinking)
}
return capabilities
}
func ggufCapabilties(modelPath string) ([]model.Capability, error) {
// Get file info to check modification time
fileInfo, err := os.Stat(modelPath)
if err != nil {
return nil, err
}
currentModTime := fileInfo.ModTime()
// Check if we have a cached entry
if cached, ok := ggufCapabilities.Load(modelPath); ok {
entry := cached.(cacheEntry)
// If the file hasn't been modified since we cached it, return the cached capabilities
if entry.modTime.Equal(currentModTime) {
return entry.capabilities, nil
}
}
// If not cached or file was modified, read the model file to determine capabilities
capabilities := []model.Capability{}
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
f, err := ggml.Decode(r, 1024)
if err != nil {
return nil, err
}
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
capabilities = append(capabilities, model.CapabilityCompletion)
}
if _, ok := f.KV()[fmt.Sprintf("%s.vision.block_count", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityVision)
}
// Cache the capabilities with the modification time
ggufCapabilities.Store(modelPath, cacheEntry{
capabilities: capabilities,
modTime: currentModTime,
})
return capabilities, nil
}

211
server/cache/capabilities_test.go vendored Normal file
View File

@@ -0,0 +1,211 @@
package cache
import (
"bytes"
"maps"
"os"
"slices"
"testing"
"time"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
// testGGUF creates a temporary GGUF model file for testing with custom key-value pairs
func testGGUF(tb testing.TB, customKV ggml.KV) string {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "test*.gguf")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
kv := ggml.KV{}
maps.Copy(kv, customKV)
tensors := []*ggml.Tensor{
{
Name: "token_embd.weight",
Kind: 0,
Shape: []uint64{1, 1},
WriterTo: bytes.NewBuffer(make([]byte, 4)),
},
}
if err := ggml.WriteGGUF(f, kv, tensors); err != nil {
tb.Fatal(err)
}
return f.Name()
}
func TestCapabilities(t *testing.T) {
ggufCapabilities.Range(func(key, value any) bool {
ggufCapabilities.Delete(key)
return true
})
// Create test model paths
completionModelPath := testGGUF(t, ggml.KV{
"general.architecture": "llama",
})
visionModelPath := testGGUF(t, ggml.KV{
"general.architecture": "llama",
"llama.vision.block_count": uint32(1),
})
embeddingModelPath := testGGUF(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(1),
})
// Create templates
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
testCases := []struct {
name string
model ModelInfo
expectedCaps []model.Capability
}{
{
name: "model with completion capability",
model: ModelInfo{
ModelPath: completionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion},
},
{
name: "model with completion, tools, and insert capability",
model: ModelInfo{
ModelPath: completionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools capability",
model: ModelInfo{
ModelPath: completionModelPath,
Template: toolsTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools},
},
{
name: "model with vision capability from gguf",
model: ModelInfo{
ModelPath: visionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision capability from projector",
model: ModelInfo{
ModelPath: completionModelPath,
ProjectorPaths: []string{"/path/to/projector"},
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision, tools, and insert capability",
model: ModelInfo{
ModelPath: visionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with embedding capability",
model: ModelInfo{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityEmbedding},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
// First call - should read from file
caps := Capabilities(tc.model)
slices.Sort(caps)
slices.Sort(tc.expectedCaps)
if !slices.Equal(caps, tc.expectedCaps) {
t.Errorf("Expected capabilities %v, got %v", tc.expectedCaps, caps)
}
// Verify caching for models that read from GGUF
if tc.model.ModelPath != "" {
// Check that entry is cached
_, ok := ggufCapabilities.Load(tc.model.ModelPath)
if !ok {
t.Error("Expected capabilities to be cached")
}
// Second call - should use cache
caps2 := Capabilities(tc.model)
slices.Sort(caps2)
if !slices.Equal(caps, caps2) {
t.Errorf("Cached capabilities don't match original: expected %v, got %v", caps, caps2)
}
}
})
}
// Test cache invalidation on file modification
t.Run("cache invalidation", func(t *testing.T) {
// Use completion model for this test
info := ModelInfo{
ModelPath: completionModelPath,
Template: chatTemplate,
}
// Get initial cached entry
cached, ok := ggufCapabilities.Load(completionModelPath)
if !ok {
t.Fatal("Expected model to be cached from previous tests")
}
entry := cached.(cacheEntry)
// Modify the file's timestamp to the future
future := time.Now().Add(time.Hour)
err := os.Chtimes(completionModelPath, future, future)
if err != nil {
t.Fatalf("Failed to update file timestamp: %v", err)
}
// Call should re-read from file due to changed modtime
caps := Capabilities(info)
if len(caps) != 1 || caps[0] != model.CapabilityCompletion {
t.Errorf("Expected [CapabilityCompletion], got %v", caps)
}
// Check that cache was updated with new modtime
cached2, ok := ggufCapabilities.Load(completionModelPath)
if !ok {
t.Error("Expected capabilities to be cached after re-read")
}
entry2 := cached2.(cacheEntry)
if entry2.modTime.Equal(entry.modTime) {
t.Error("Expected cache entry to have updated modTime")
}
})
}

View File

@@ -23,10 +23,9 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/gguf"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/server/cache"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
@@ -68,60 +67,14 @@ type Model struct {
Template *template.Template
}
// Capabilities returns the capabilities that the model supports
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for completion capability
f, err := gguf.Open(m.ModelPath)
if err == nil {
defer f.Close()
if f.KeyValue("pooling_type").Valid() {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
// If no embedding is specified, we assume the model supports completion
capabilities = append(capabilities, model.CapabilityCompletion)
}
if f.KeyValue("vision.block_count").Valid() {
capabilities = append(capabilities, model.CapabilityVision)
}
} else {
slog.Error("couldn't open model file", "error", err)
}
if m.Template == nil {
return capabilities
}
// Check for tools capability
if slices.Contains(m.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
// Check for insert capability
if slices.Contains(m.Template.Vars(), "suffix") {
capabilities = append(capabilities, model.CapabilityInsert)
}
// Check for vision capability in projector-based models
if len(m.ProjectorPaths) > 0 {
capabilities = append(capabilities, model.CapabilityVision)
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if openingTag != "" && closingTag != "" {
capabilities = append(capabilities, model.CapabilityThinking)
}
return capabilities
}
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
// any missing or unknown capabilities
func (m *Model) CheckCapabilities(want ...model.Capability) error {
available := m.Capabilities()
available := cache.Capabilities(cache.ModelInfo{
ModelPath: m.ModelPath,
ProjectorPaths: m.ProjectorPaths,
Template: m.Template,
})
var errs []error
// Map capabilities to their corresponding error

View File

@@ -9,131 +9,6 @@ import (
"github.com/ollama/ollama/types/model"
)
func TestModelCapabilities(t *testing.T) {
// Create completion model (llama architecture without vision)
completionModelPath, _ := createBinFile(t, ggml.KV{
"general.architecture": "llama",
}, []*ggml.Tensor{})
// Create vision model (llama architecture with vision block count)
visionModelPath, _ := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.vision.block_count": uint32(1),
}, []*ggml.Tensor{})
// Create embedding model (bert architecture with pooling type)
embeddingModelPath, _ := createBinFile(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(1),
}, []*ggml.Tensor{})
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
testModels := []struct {
name string
model Model
expectedCaps []model.Capability
}{
{
name: "model with completion capability",
model: Model{
ModelPath: completionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion},
},
{
name: "model with completion, tools, and insert capability",
model: Model{
ModelPath: completionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools capability",
model: Model{
ModelPath: completionModelPath,
Template: toolsTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools},
},
{
name: "model with vision capability",
model: Model{
ModelPath: visionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision, tools, and insert capability",
model: Model{
ModelPath: visionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with embedding capability",
model: Model{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityEmbedding},
},
}
// compare two slices of model.Capability regardless of order
compareCapabilities := func(a, b []model.Capability) bool {
if len(a) != len(b) {
return false
}
aCount := make(map[model.Capability]int)
for _, cap := range a {
aCount[cap]++
}
bCount := make(map[model.Capability]int)
for _, cap := range b {
bCount[cap]++
}
for cap, count := range aCount {
if bCount[cap] != count {
return false
}
}
return true
}
for _, tt := range testModels {
t.Run(tt.name, func(t *testing.T) {
// Test Capabilities method
caps := tt.model.Capabilities()
if !compareCapabilities(caps, tt.expectedCaps) {
t.Errorf("Expected capabilities %v, got %v", tt.expectedCaps, caps)
}
})
}
}
func TestModelCheckCapabilities(t *testing.T) {
// Create simple model file for tests that don't depend on GGUF content
completionModelPath, _ := createBinFile(t, ggml.KV{

View File

@@ -59,7 +59,7 @@ type DiskCache struct {
testHookBeforeFinalWrite func(f *os.File)
}
// PutBytes is a convenience function for c.Put(d, strings.NewReader(s), int64(len(s))).
// PutString is a convenience function for c.Put(d, strings.NewReader(s), int64(len(s))).
func PutBytes[S string | []byte](c *DiskCache, d Digest, data S) error {
return c.Put(d, bytes.NewReader([]byte(data)), int64(len(data)))
}

View File

@@ -34,6 +34,7 @@ import (
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/server/cache"
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/registry"
"github.com/ollama/ollama/template"
@@ -819,13 +820,17 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
}
resp := &api.ShowResponse{
License: strings.Join(m.License, "\n"),
System: m.System,
Template: m.Template.String(),
Details: modelDetails,
Messages: msgs,
Capabilities: m.Capabilities(),
ModifiedAt: manifest.fi.ModTime(),
License: strings.Join(m.License, "\n"),
System: m.System,
Template: m.Template.String(),
Details: modelDetails,
Messages: msgs,
Capabilities: cache.Capabilities(cache.ModelInfo{
ModelPath: m.ModelPath,
Template: m.Template,
ProjectorPaths: m.ProjectorPaths,
}),
ModifiedAt: manifest.fi.ModTime(),
}
var params []string

View File

@@ -191,7 +191,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
}
// Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath, 1024)
ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
if err != nil {
pending.errCh <- err
break

View File

@@ -18,8 +18,9 @@ const (
)
type Parser struct {
tag string
tools []api.Tool
tag string
names []string
properties []string
state toolsState
buffer []byte
@@ -33,10 +34,15 @@ func NewParser(tmpl *template.Template, tools []api.Tool) *Parser {
}
func NewParserWithTag(tools []api.Tool, tag string) *Parser {
return &Parser{
tag: tag,
tools: tools,
var p Parser
for _, t := range tools {
p.names = append(p.names, t.Function.Name)
for r := range t.Function.Parameters.Properties {
p.properties = append(p.properties, r)
}
}
p.tag = tag
return &p
}
// Add processes a string input to parse tool calls and content that
@@ -115,40 +121,36 @@ func (p *Parser) findTag() (int, bool) {
// parseToolCall finds the next complete tool call in the buffer
// incrementing n and advancing the buffer.
func (p *Parser) parseToolCall() *api.ToolCall {
var tool *api.Tool
var name string
var args map[string]any
var end int = len(p.buffer)
var i int
// find tool name
for _, t := range p.tools {
n := t.Function.Name
var i int
for _, n := range p.names {
if i = bytes.Index(p.buffer, []byte(n)); i != -1 {
if i+len(n) < end {
tool = &t
name = n
end = i + len(n)
}
}
}
if tool == nil {
if name == "" {
return nil
}
// only look for arguments if the tool has parameters
args := map[string]any{}
if len(tool.Function.Parameters.Properties) > 0 {
if args, i = p.findArguments(*tool); args == nil {
return nil
}
if args, i = p.findArguments(); args == nil {
return nil
}
if i > end {
end = i
}
if i > end {
end = i
}
tc := &api.ToolCall{
Function: api.ToolCallFunction{
Name: tool.Function.Name,
Name: name,
Arguments: args,
Index: p.n,
},
@@ -160,17 +162,13 @@ func (p *Parser) parseToolCall() *api.ToolCall {
}
// findArguments returns the first object that appears to be
// arguments for the provided tool, returning nil
func (p *Parser) findArguments(tool api.Tool) (map[string]any, int) {
// arguments and the position where the arguments end, returning nil and 0 if
// an invalid JSON object or non-arguments object is found first
func (p *Parser) findArguments() (map[string]any, int) {
if len(p.buffer) == 0 {
return nil, 0
}
// no arguments to parse
if len(tool.Function.Parameters.Properties) == 0 {
return nil, 0
}
var braces int
var start int = -1
var end int
@@ -186,13 +184,11 @@ func (p *Parser) findArguments(tool api.Tool) (map[string]any, int) {
}
if c == '}' {
if start != -1 {
braces--
if braces == 0 {
end = i + 1
object = p.buffer[start:end]
break
}
braces--
if braces == 0 && start != -1 {
end = i + 1
object = p.buffer[start:end]
break
}
}
}
@@ -210,27 +206,24 @@ func (p *Parser) findArguments(tool api.Tool) (map[string]any, int) {
var find func(obj any) map[string]any
find = func(obj any) map[string]any {
switch obj := obj.(type) {
switch v := obj.(type) {
case map[string]any:
found := true
for key := range obj {
if _, exists := tool.Function.Parameters.Properties[key]; !exists {
found = false
break
// check if the object keys are valid tool properties
// TODO (jmorganca): check only sets of properties that
// go together instead of the entire set
for _, prop := range p.properties {
if _, exists := v[prop]; exists {
return v
}
}
if found {
return obj
}
for _, value := range obj {
for _, value := range v {
if result := find(value); result != nil {
return result
}
}
case []any:
for _, item := range obj {
for _, item := range v {
if result := find(item); result != nil {
return result
}

View File

@@ -104,13 +104,6 @@ func TestParser(t *testing.T) {
},
},
},
{
Type: "function",
Function: api.ToolFunction{
Name: "say_hello",
Description: "Say hello",
},
},
}
tests := []struct {
@@ -151,20 +144,6 @@ func TestParser(t *testing.T) {
},
},
},
{
name: "invalid arguments",
inputs: []string{`<tool_call>{"name": "get_conditions", "arguments": {"city": "San Francisco"}}</tool_call>`},
content: "",
tmpl: qwen,
calls: nil,
},
{
name: "missing args",
inputs: []string{`<tool_call>{"name": "get_conditions"}</tool_call>`},
content: "",
tmpl: qwen,
calls: nil,
},
{
name: "text before tool call",
inputs: []string{`Let me check the weather. <tool_call>{"name": "get_temperature", "arguments": {"city": "New York"}}</tool_call>`},
@@ -182,28 +161,6 @@ func TestParser(t *testing.T) {
},
},
},
{
name: "qwen no args tool call",
inputs: []string{`Let me say hello to the user. I'll use the say_hello tool <tool_call>{"name": "say_hello"}</tool_call>`},
content: "Let me say hello to the user. I'll use the say_hello tool ",
tmpl: qwen,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
{
name: "qwen no args with text",
inputs: []string{"Let me say hello to the user. I'll use the say_hello tool. "},
content: "Let me say hello to the user. I'll use the say_hello tool. ",
tmpl: qwen,
calls: nil,
},
{
name: "two tool calls in a list",
inputs: []string{`[TOOL_CALLS] [{"name": "get_temperature", "arguments": {"city": "London", "format": "fahrenheit"}}, {"name": "get_conditions", "arguments": {"location": "Tokyo"}}][/TOOL_CALLS]`},
@@ -232,7 +189,7 @@ func TestParser(t *testing.T) {
},
},
{
name: "qwen two tool calls",
name: "two tool calls",
inputs: []string{`Okay, let's call both tools! <tool_call>{"name": "get_temperature", "arguments": {"city": "London", "format": "fahrenheit"}}</tool_call><tool_call>{"name": "get_conditions", "arguments": {"location": "Tokyo"}}</tool_call>`},
content: "Okay, let's call both tools! ",
tmpl: qwen,
@@ -258,30 +215,6 @@ func TestParser(t *testing.T) {
},
},
},
{
name: "qwen two tool calls one with no args",
inputs: []string{`Let me check the weather. <tool_call>{"name": "say_hello"}</tool_call><tool_call>{"name": "get_conditions", "arguments": {"location": "Tokyo"}}`},
content: "Let me check the weather. ",
tmpl: qwen,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
{
Function: api.ToolCallFunction{
Index: 1,
Name: "get_conditions",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
},
{
name: "deepseek",
inputs: []string{"<think>Wait, I need to call a tool</think><|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_temperature\n```json\n{\"city\": \"Tokyo\"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>"},
@@ -405,52 +338,6 @@ func TestParser(t *testing.T) {
content: "for { fmt.Println(\"hello\") }",
tmpl: json,
},
{
name: "json no args tool call",
inputs: []string{
"{\"name\": \"say_hello\"}",
},
content: "",
tmpl: json,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
{
name: "json no args no tool call",
inputs: []string{
"I'll use the say_hello tool to say hello to the user.",
},
content: "I'll use the say_hello tool to say hello to the user.",
tmpl: json,
calls: nil,
},
// TODO (jmorganca): this is a false positive, we should
// not be parsing this as a tool call
{
name: "json no args false positive",
inputs: []string{
`{say_hello!!!}`,
},
content: "",
tmpl: json,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
{
name: "list multiple",
inputs: []string{
@@ -493,30 +380,6 @@ func TestParser(t *testing.T) {
},
{
name: "list partial",
inputs: []string{
"[{",
"\"name\": \"get_conditions\", ",
"\"arguments\": {",
"\"location\": \"Tokyo\"",
"}",
"}",
},
content: "",
tmpl: list,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "get_conditions",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
},
{
name: "list invalid",
inputs: []string{
"[",
"{",
@@ -530,33 +393,6 @@ func TestParser(t *testing.T) {
tmpl: list,
calls: nil,
},
{
name: "list trailing ]",
inputs: []string{
"[",
"{",
"\"name\": \"get_conditions\", ",
"\"arguments\": {",
"\"location\": \"Tokyo\"",
"}",
"}",
"]",
"]",
},
content: "",
tmpl: list,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "get_conditions",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
},
{
name: "list not a tool call",
inputs: []string{
@@ -568,26 +404,6 @@ func TestParser(t *testing.T) {
tmpl: list,
calls: nil,
},
{
name: "list with no arguments",
inputs: []string{
"[",
"{",
"\"name\": \"say_hello\"",
"}",
},
content: "",
tmpl: list,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
}
for _, tt := range tests {
@@ -884,75 +700,25 @@ func TestFindTag(t *testing.T) {
}
func TestFindArguments(t *testing.T) {
tool := api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "get_temperature",
Description: "Retrieve the temperature for a given location",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
}{
"format": {
Type: api.PropertyType{"string"},
Description: "The format to return the temperature in",
Enum: []any{"fahrenheit", "celsius"},
},
"location": {
Type: api.PropertyType{"string"},
Description: "The location to get the temperature for",
},
},
},
},
}
tool2 := api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "say_hello",
Description: "Say hello to the user",
},
}
tests := []struct {
name string
buffer []byte
want map[string]any
tool api.Tool
}{
{
name: "empty string",
buffer: []byte{},
want: nil,
tool: tool,
},
{
name: "whitespace only",
buffer: []byte(" \n\t "),
want: nil,
tool: tool,
},
{
name: "unbalanced braces - missing closing",
buffer: []byte(`{"format": "fahrenheit", "location": "San Francisco"`),
want: nil,
tool: tool,
},
{
name: "unbalanced braces - extra closing",
@@ -960,13 +726,11 @@ func TestFindArguments(t *testing.T) {
want: map[string]any{
"format": "fahrenheit",
},
tool: tool,
},
{
name: "invalid JSON",
buffer: []byte(`{format: fahrenheit, location: "San Francisco"}`),
want: nil,
tool: tool,
},
{
name: "valid json",
@@ -975,7 +739,6 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "valid arguments with special tokens",
@@ -984,7 +747,6 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "valid arguments in array",
@@ -993,7 +755,6 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "nested deep",
@@ -1002,49 +763,39 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "one arg",
buffer: []byte(`get_temperature({"location": "San Francisco, CA"})`),
buffer: []byte(`get_weather({"location": "San Francisco, CA"})`),
want: map[string]any{
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "two args",
buffer: []byte(`[{"name": "get_temperature", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}, {"name": "get_weather", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}]`),
buffer: []byte(`[{"name": "get_weather", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}, {"name": "get_weather", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}]`),
want: map[string]any{
"location": "San Francisco, CA",
"format": "fahrenheit",
},
tool: tool,
},
{
name: "no args",
buffer: []byte(`{"name": "say_hello"}`),
want: nil,
tool: tool2,
},
{
name: "deepseek",
buffer: []byte("<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_temperature\n```json\n{\"location\": \"Tokyo\"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>"),
buffer: []byte("<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{\"location\": \"Tokyo\"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>"),
want: map[string]any{
"location": "Tokyo",
},
tool: tool,
},
}
for _, tt := range tests {
parser := &Parser{
buffer: tt.buffer,
tools: []api.Tool{tool, tool2},
buffer: tt.buffer,
properties: []string{"format", "location"},
}
t.Run(tt.name, func(t *testing.T) {
got, _ := parser.findArguments(tool)
got, _ := parser.findArguments()
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("scanArguments() args mismatch (-got +want):\n%s", diff)