Compare commits

..

4 Commits

Author SHA1 Message Date
Ettore Di Giacinto
5b8d6a31e2 docs(transformers): add docs section about transformers 2024-03-15 18:02:15 +01:00
Ettore Di Giacinto
f0752be4aa fix: adapt tts CLI 2024-03-14 19:24:50 +01:00
Ettore Di Giacinto
bafc9effad feat(openai/tts): compat layer with openai tts
Fixes: #1276
2024-03-14 18:15:28 +01:00
Ettore Di Giacinto
d2934dd69f feat(elevenlabs): map elevenlabs API support to TTS
This allows elevenlabs Clients to work automatically with LocalAI by
supporting the elevenlabs API.

The elevenlabs server endpoint is implemented such as it is wired to the
TTS endpoints.

Fixes: https://github.com/mudler/LocalAI/issues/1809
2024-03-14 18:12:47 +01:00
279 changed files with 10759 additions and 15180 deletions

View File

@@ -1,11 +1,6 @@
.idea
.github
.vscode
models
examples/chatbot-ui/models
examples/rwkv/models
examples/**/models
Dockerfile*
# SonarQube
.scannerwork
Dockerfile

View File

@@ -1,31 +0,0 @@
root = true
[*]
indent_style = space
indent_size = 2
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true
[*.go]
indent_style = tab
[Makefile]
indent_style = tab
[*.proto]
indent_size = 2
[*.py]
indent_size = 4
[*.js]
indent_size = 2
[*.yaml]
indent_size = 2
[*.md]
trim_trailing_whitespace = false

38
.env
View File

@@ -1,33 +1,33 @@
## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
# LOCALAI_THREADS=14
# THREADS=14
## Specify a different bind address (defaults to ":8080")
# LOCALAI_ADDRESS=127.0.0.1:8080
# ADDRESS=127.0.0.1:8080
## Default models context size
# LOCALAI_CONTEXT_SIZE=512
# CONTEXT_SIZE=512
#
## Define galleries.
## models will to install will be visible in `/models/available`
# LOCALAI_GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
# GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
## CORS settings
# LOCALAI_CORS=true
# LOCALAI_CORS_ALLOW_ORIGINS=*
# CORS=true
# CORS_ALLOW_ORIGINS=*
## Default path for models
#
# LOCALAI_MODELS_PATH=/models
# MODELS_PATH=/models
## Enable debug mode
# LOCALAI_LOG_LEVEL=debug
# DEBUG=true
## Disables COMPEL (Diffusers)
# COMPEL=0
## Enable/Disable single backend (useful if only one GPU is available)
# LOCALAI_SINGLE_ACTIVE_BACKEND=true
# SINGLE_ACTIVE_BACKEND=true
## Specify a build type. Available: cublas, openblas, clblas.
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
@@ -46,13 +46,13 @@
# GO_TAGS=stablediffusion
## Path where to store generated images
# LOCALAI_IMAGE_PATH=/tmp/generated/images
# IMAGE_PATH=/tmp
## Specify a default upload limit in MB (whisper)
# LOCALAI_UPLOAD_LIMIT=15
# UPLOAD_LIMIT
## List of external GRPC backends (note on the container image this variable is already set to use extra backends available in extra/)
# LOCALAI_EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
# EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
### Advanced settings ###
### Those are not really used by LocalAI, but from components in the stack ###
@@ -72,18 +72,18 @@
# LLAMACPP_PARALLEL=1
### Enable to run parallel requests
# LOCALAI_PARALLEL_REQUESTS=true
# PARALLEL_REQUESTS=true
### Watchdog settings
###
# Enables watchdog to kill backends that are inactive for too much time
# LOCALAI_WATCHDOG_IDLE=true
#
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
# LOCALAI_WATCHDOG_IDLE_TIMEOUT=5m
# WATCHDOG_IDLE=true
#
# Enables watchdog to kill backends that are busy for too much time
# LOCALAI_WATCHDOG_BUSY=true
# WATCHDOG_BUSY=true
#
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
# WATCHDOG_IDLE_TIMEOUT=5m
#
# Time in duration format (e.g. 1h30m) after which a backend is considered busy
# LOCALAI_WATCHDOG_BUSY_TIMEOUT=5m
# WATCHDOG_BUSY_TIMEOUT=5m

View File

@@ -1,25 +0,0 @@
# https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: "gomod"
directory: "/"
schedule:
interval: "weekly"
- package-ecosystem: "github-actions"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "pip"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "docker"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"

19
.github/labeler.yml vendored
View File

@@ -1,19 +0,0 @@
enhancements:
- head-branch: ['^feature', 'feature']
kind/documentation:
- any:
- changed-files:
- any-glob-to-any-file: 'docs/*'
- changed-files:
- any-glob-to-any-file: '*.md'
examples:
- any:
- changed-files:
- any-glob-to-any-file: 'examples/*'
ci:
- any:
- changed-files:
- any-glob-to-any-file: '.github/*'

12
.github/release.yml vendored
View File

@@ -12,23 +12,13 @@ changelog:
- title: "Bug fixes :bug:"
labels:
- bug
- regression
- title: Exciting New Features 🎉
labels:
- Semver-Minor
- enhancement
- ux
- roadmap
- title: 🧠 Models
labels:
- area/ai-model
- title: 📖 Documentation and examples
labels:
- kind/documentation
- examples
- title: 👒 Dependencies
labels:
- dependencies
- title: Other Changes
labels:
- "*"
- "*"

View File

@@ -49,7 +49,7 @@ jobs:
run: |
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@@ -17,7 +17,7 @@ jobs:
run: |
bash .github/bump_docs.sh ${{ matrix.repository }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@@ -1,43 +0,0 @@
name: Dependabot auto-merge
on:
- pull_request_target
permissions:
contents: write
pull-requests: write
packages: read
jobs:
dependabot:
runs-on: ubuntu-latest
if: ${{ github.actor == 'dependabot[bot]' }}
steps:
- name: Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2.0.0
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
skip-commit-verification: true
- name: Checkout repository
uses: actions/checkout@v4
- name: Approve a PR if not already approved
run: |
gh pr checkout "$PR_URL"
if [ "$(gh pr status --json reviewDecision -q .currentBranch.reviewDecision)" != "APPROVED" ];
then
gh pr review --approve "$PR_URL"
else
echo "PR already approved.";
fi
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
- name: Enable auto-merge for Dependabot PRs
if: ${{ contains(github.event.pull_request.title, 'bump')}}
run: gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}

View File

@@ -1,90 +0,0 @@
name: 'generate and publish GRPC docker caches'
on:
- workflow_dispatch
concurrency:
group: grpc-cache-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
generate_caches:
strategy:
matrix:
include:
- grpc-base-image: ubuntu:22.04
runs-on: 'ubuntu-latest'
platforms: 'linux/amd64'
runs-on: ${{matrix.runs-on}}
steps:
- name: Release space from worker
if: matrix.runs-on == 'ubuntu-latest'
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get remove -y microsoft-edge-stable || true
sudo apt-get remove -y firefox || true
sudo apt-get remove -y powershell || true
sudo apt-get remove -y r-base-core || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
platforms: all
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@master
- name: Checkout
uses: actions/checkout@v4
- name: Cache GRPC
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
# This means that even the MAKEFLAGS have to be an EXACT match.
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
build-args: |
GRPC_BASE_IMAGE=${{ matrix.grpc-base-image }}
MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.58.0
context: .
file: ./Dockerfile
cache-to: type=gha,ignore-error=true
target: grpc
platforms: ${{ matrix.platforms }}
push: false

View File

@@ -22,8 +22,6 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -43,7 +41,6 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -54,7 +51,6 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -62,19 +58,15 @@ jobs:
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: 'sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
@@ -88,8 +80,6 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -106,17 +96,14 @@ jobs:
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: 'sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -126,5 +113,4 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
base-image: "ubuntu:22.04"

View File

@@ -26,11 +26,6 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -52,16 +47,14 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -72,7 +65,6 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -83,35 +75,26 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-11"
latest-image: 'latest-gpu-nvidia-cuda-11'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-11'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-12"
latest-image: 'latest-gpu-nvidia-cuda-12'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-12'
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
@@ -121,20 +104,14 @@ jobs:
image-type: 'extras'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
grpc-base-image: "ubuntu:22.04"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -142,76 +119,56 @@ jobs:
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f16"
latest-image: 'latest-gpu-intel-f16'
latest-image-aio: 'latest-aio-gpu-intel-f16'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f32"
latest-image: 'latest-gpu-intel-f32'
latest-image-aio: 'latest-aio-gpu-intel-f32'
makeflags: "--jobs=3 --output-sync=target"
# Core images
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -219,9 +176,7 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -229,9 +184,7 @@ jobs:
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
@@ -245,12 +198,7 @@ jobs:
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
aio: ${{ matrix.aio }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -261,16 +209,12 @@ jobs:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-latest: 'false'
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
aio: "-aio-cpu"
latest-image: 'latest-cpu'
latest-image-aio: 'latest-aio-cpu'
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -281,7 +225,6 @@ jobs:
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -292,7 +235,6 @@ jobs:
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -303,7 +245,6 @@ jobs:
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -314,4 +255,3 @@ jobs:
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"

View File

@@ -6,10 +6,6 @@ on:
inputs:
base-image:
description: 'Base image'
required: true
type: string
grpc-base-image:
description: 'GRPC Base image, must be a compatible image with base-image'
required: false
default: ''
type: string
@@ -33,14 +29,6 @@ on:
description: 'Tag latest'
default: ''
type: string
latest-image:
description: 'Tag latest'
default: ''
type: string
latest-image-aio:
description: 'Tag latest'
default: ''
type: string
tag-suffix:
description: 'Tag suffix'
default: ''
@@ -58,16 +46,6 @@ on:
required: true
default: ''
type: string
makeflags:
description: 'Make Flags'
required: false
default: '--jobs=4 --output-sync=target'
type: string
aio:
description: 'AIO Image Name'
required: false
default: ''
type: string
secrets:
dockerUsername:
required: true
@@ -91,7 +69,6 @@ jobs:
&& sudo apt-get install -y git
- name: Checkout
uses: actions/checkout@v4
- name: Release space from worker
if: inputs.runs-on == 'ubuntu-latest'
run: |
@@ -133,7 +110,6 @@ jobs:
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
@@ -149,34 +125,6 @@ jobs:
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
- name: Docker meta AIO (quay.io)
if: inputs.aio != ''
id: meta_aio
uses: docker/metadata-action@v5
with:
images: |
quay.io/go-skynet/local-ai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }}
- name: Docker meta AIO (dockerhub)
if: inputs.aio != ''
id: meta_aio_dockerhub
uses: docker/metadata-action@v5
with:
images: |
localai/localai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }}
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
@@ -201,26 +149,6 @@ jobs:
username: ${{ secrets.quayUsername }}
password: ${{ secrets.quayPassword }}
- name: Cache GRPC
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
# This means that even the MAKEFLAGS have to be an EXACT match.
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
build-args: |
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.58.0
context: .
file: ./Dockerfile
cache-from: type=gha
target: grpc
platforms: ${{ inputs.platforms }}
push: false
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
- name: Build and push
uses: docker/build-push-action@v5
with:
@@ -232,79 +160,12 @@ jobs:
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile
cache-from: type=gha
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
- name: Inspect image
if: github.event_name != 'pull_request'
run: |
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker image inspect localai/localai:${{ steps.meta.outputs.version }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker image inspect quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
- name: Build and push AIO image
if: inputs.aio != ''
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BASE_IMAGE=quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile.aio
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta_aio.outputs.tags }}
labels: ${{ steps.meta_aio.outputs.labels }}
- name: Build and push AIO image (dockerhub)
if: inputs.aio != ''
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BASE_IMAGE=localai/localai:${{ steps.meta.outputs.version }}
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile.aio
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta_aio_dockerhub.outputs.tags }}
labels: ${{ steps.meta_aio_dockerhub.outputs.labels }}
- name: Latest tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker tag localai/localai:${{ steps.meta.outputs.version }} localai/localai:${{ inputs.latest-image }}
docker push localai/localai:${{ inputs.latest-image }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
- name: Latest AIO tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image-aio != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }}
docker tag localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }} localai/localai:${{ inputs.latest-image-aio }}
docker push localai/localai:${{ inputs.latest-image-aio }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
- name: job summary
run: |
echo "Built image: ${{ steps.meta.outputs.labels }}" >> $GITHUB_STEP_SUMMARY
- name: job summary(AIO)
if: inputs.aio != ''
run: |
echo "Built image: ${{ steps.meta_aio.outputs.labels }}" >> $GITHUB_STEP_SUMMARY

View File

@@ -1,12 +0,0 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v5

View File

@@ -1,35 +0,0 @@
name: LocalAI-bot auto-merge
on:
- pull_request_target
permissions:
contents: write
pull-requests: write
packages: read
jobs:
dependabot:
runs-on: ubuntu-latest
if: ${{ github.actor == 'localai-bot' }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Approve a PR if not already approved
run: |
gh pr checkout "$PR_URL"
if [ "$(gh pr status --json reviewDecision -q .currentBranch.reviewDecision)" != "APPROVED" ];
then
gh pr review --approve "$PR_URL"
else
echo "PR already approved.";
fi
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
- name: Enable auto-merge for LocalAIBot PRs
run: gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}

View File

@@ -1,11 +1,6 @@
name: Build and Release
on:
- push
- pull_request
env:
GRPC_VERSION: v1.58.0
on: push
permissions:
contents: write
@@ -35,14 +30,13 @@ jobs:
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
- uses: actions/setup-go@v4
with:
go-version: '1.21.x'
cache: false
go-version: '>=1.21.0'
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg protobuf-compiler
sudo apt-get install build-essential ffmpeg
- name: Install CUDA Dependencies
if: ${{ matrix.build == 'cuda12' || matrix.build == 'cuda11' }}
run: |
@@ -57,29 +51,26 @@ jobs:
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
key: ${{ runner.os }}-grpc
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5 --output-sync=target
../.. && sudo make -j12
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make --jobs 5 --output-sync=target install
cd grpc && cd cmake/build && sudo make -j12 install
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
BUILD_ID: "${{ matrix.build }}"
run: |
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
export PATH=$PATH:$GOPATH/bin
if [ "${{ matrix.build }}" == "cuda12" ] || [ "${{ matrix.build }}" == "cuda11" ]; then
export BUILD_TYPE=cublas
export PATH=/usr/local/cuda/bin:$PATH
@@ -87,12 +78,12 @@ jobs:
else
STATIC=true make dist
fi
- uses: actions/upload-artifact@v4
- uses: actions/upload-artifact@v3
with:
name: LocalAI-linux-${{ matrix.build }}
name: ${{ matrix.build }}
path: release/
- name: Release
uses: softprops/action-gh-release@v2
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
@@ -105,24 +96,27 @@ jobs:
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
- uses: actions/setup-go@v4
with:
go-version: '1.21.x'
cache: false
go-version: '>=1.21.0'
- name: Dependencies
run: |
sudo apt-get install -y --no-install-recommends libopencv-dev protobuf-compiler
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
sudo apt-get install -y --no-install-recommends libopencv-dev
sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
- name: Build stablediffusion
run: |
export PATH=$PATH:$GOPATH/bin
make backend-assets/grpc/stablediffusion
mkdir -p release && cp backend-assets/grpc/stablediffusion release
- uses: actions/upload-artifact@v4
- uses: actions/upload-artifact@v3
with:
name: stablediffusion
path: release/
- name: Release
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
build-macOS:
strategy:
@@ -140,15 +134,12 @@ jobs:
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
- uses: actions/setup-go@v4
with:
go-version: '1.21.x'
cache: false
go-version: '>=1.21.0'
- name: Dependencies
run: |
brew install protobuf grpc
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
- name: Build
id: build
env:
@@ -157,61 +148,13 @@ jobs:
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
make dist
- uses: actions/upload-artifact@v4
- uses: actions/upload-artifact@v3
with:
name: LocalAI-MacOS-${{ matrix.build }}
name: ${{ matrix.build }}
path: release/
- name: Release
uses: softprops/action-gh-release@v2
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
build-macOS-arm64:
strategy:
matrix:
include:
- build: 'avx2'
defines: ''
- build: 'avx'
defines: '-DLLAMA_AVX2=OFF'
- build: 'avx512'
defines: '-DLLAMA_AVX512=ON'
runs-on: macos-14
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
brew install protobuf grpc
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
BUILD_ID: "${{ matrix.build }}"
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
make dist
- uses: actions/upload-artifact@v4
with:
name: LocalAI-MacOS-arm64-${{ matrix.build }}
path: release/
- name: Release
uses: softprops/action-gh-release@v2
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |

View File

@@ -1,30 +0,0 @@
name: "Security Scan"
# Run workflow each time code is pushed to your repository and on a schedule.
# The scheduled workflow runs every at 00:00 on Sunday UTC time.
on:
push:
schedule:
- cron: '0 0 * * 0'
jobs:
tests:
runs-on: ubuntu-latest
env:
GO111MODULE: on
steps:
- name: Checkout Source
uses: actions/checkout@v4
if: ${{ github.actor != 'dependabot[bot]' }}
- name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@master
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'
- name: Upload SARIF file
if: ${{ github.actor != 'dependabot[bot]' }}
uses: github/codeql-action/upload-sarif@v3
with:
# Path to SARIF file relative to the root of the repository
sarif_file: results.sarif

View File

@@ -32,17 +32,16 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/transformers
make --jobs=5 --output-sync=target -C backend/python/transformers test
make -C backend/python/transformers
make -C backend/python/transformers test
tests-sentencetransformers:
runs-on: ubuntu-latest
@@ -62,48 +61,16 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test sentencetransformers
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
tests-rerankers:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo rm -rfv /usr/bin/conda || true
- name: Test rerankers
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/rerankers
make --jobs=5 --output-sync=target -C backend/python/rerankers test
make -C backend/python/sentencetransformers
make -C backend/python/sentencetransformers test
tests-diffusers:
runs-on: ubuntu-latest
@@ -123,47 +90,17 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test diffusers
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/diffusers
make --jobs=5 --output-sync=target -C backend/python/diffusers test
make -C backend/python/diffusers
make -C backend/python/diffusers test
tests-parler-tts:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo rm -rfv /usr/bin/conda || true
- name: Test parler-tts
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/parler-tts
make --jobs=5 --output-sync=target -C backend/python/parler-tts test
tests-transformers-musicgen:
runs-on: ubuntu-latest
@@ -183,49 +120,47 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers-musicgen
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
make -C backend/python/transformers-musicgen
make -C backend/python/transformers-musicgen test
# tests-petals:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user grpcio-tools
tests-petals:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo rm -rfv /usr/bin/conda || true
sudo rm -rfv /usr/bin/conda || true
# - name: Test petals
# run: |
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/petals
# make --jobs=5 --output-sync=target -C backend/python/petals test
- name: Test petals
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/petals
make -C backend/python/petals test
@@ -287,17 +222,16 @@ jobs:
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user grpcio-tools
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo rm -rfv /usr/bin/conda || true
# - name: Test bark
# run: |
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/bark
# make --jobs=5 --output-sync=target -C backend/python/bark test
# make -C backend/python/bark
# make -C backend/python/bark test
# Below tests needs GPU. Commented out for now
@@ -320,15 +254,14 @@ jobs:
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user grpcio-tools
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo rm -rfv /usr/bin/conda || true
# - name: Test vllm
# run: |
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test
# make -C backend/python/vllm
# make -C backend/python/vllm test
tests-vallex:
runs-on: ubuntu-latest
steps:
@@ -347,15 +280,14 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test vall-e-x
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
make --jobs=5 --output-sync=target -C backend/python/vall-e-x test
make -C backend/python/vall-e-x
make -C backend/python/vall-e-x test
tests-coqui:
runs-on: ubuntu-latest
@@ -375,12 +307,11 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng python3-pip
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng
sudo rm -rfv /usr/bin/conda || true
- name: Test coqui
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/coqui
make --jobs=5 --output-sync=target -C backend/python/coqui test
make -C backend/python/coqui
make -C backend/python/coqui test

View File

@@ -9,9 +9,6 @@ on:
tags:
- '*'
env:
GRPC_VERSION: v1.58.0
concurrency:
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
@@ -60,37 +57,26 @@ jobs:
with:
submodules: true
- name: Setup Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v4
with:
go-version: ${{ matrix.go-version }}
cache: false
# You can test your matrix by printing the current Go version
- name: Display Go version
run: go version
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential curl ffmpeg
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake patch python3-pip unzip
sudo apt-get install -y libopencv-dev
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
# The python3-grpc-tools package in 22.04 is too old
pip install --user grpcio-tools
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
@@ -99,91 +85,29 @@ jobs:
GO_TAGS="tts" make -C sources/go-piper piper.o && \
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
key: ${{ runner.os }}-grpc
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --jobs 5 --shallow-submodules https://github.com/grpc/grpc && \
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5
../.. && sudo make -j12
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make --jobs 5 install
cd grpc && cd cmake/build && sudo make -j12 install
- name: Test
run: |
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
tests-aio-container:
runs-on: ubuntu-latest
steps:
- name: Release space from worker
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
df -h
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Build images
run: |
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=core --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
- name: Test
run: |
LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
GO_TAGS="stablediffusion tts" make test
tests-apple:
runs-on: macOS-14
runs-on: macOS-latest
strategy:
matrix:
go-version: ['1.21.x']
@@ -193,28 +117,17 @@ jobs:
with:
submodules: true
- name: Setup Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v4
with:
go-version: ${{ matrix.go-version }}
cache: false
# You can test your matrix by printing the current Go version
- name: Display Go version
run: go version
- name: Dependencies
run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc
pip install --user grpcio-tools
brew install protobuf grpc
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
# Used to run the newer GNUMake version from brew that supports --output-sync
export PATH="/opt/homebrew/opt/make/libexec/gnubin:$PATH"
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test

View File

@@ -1,31 +0,0 @@
name: Update swagger
on:
schedule:
- cron: 0 20 * * *
workflow_dispatch:
jobs:
swagger:
strategy:
fail-fast: false
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: 'stable'
- run: |
go install github.com/swaggo/swag/cmd/swag@latest
- name: Bump swagger 🔧
run: |
make swagger
- name: Create Pull Request
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: 'feat(swagger): update swagger'
title: 'feat(swagger): update swagger'
branch: "update/swagger"
body: Update swagger
signoff: true

View File

@@ -1,18 +0,0 @@
name: 'Yamllint GitHub Actions'
on:
- pull_request
jobs:
yamllint:
name: 'Yamllint'
runs-on: ubuntu-latest
steps:
- name: 'Checkout'
uses: actions/checkout@master
- name: 'Yamllint'
uses: karancode/yamllint-github-action@master
with:
yamllint_file_or_dir: 'gallery'
yamllint_strict: false
yamllint_comment: true
env:
GITHUB_ACCESS_TOKEN: ${{ secrets.GITHUB_TOKEN }}

8
.gitignore vendored
View File

@@ -39,11 +39,3 @@ backend-assets/*
!backend-assets/.keep
prepare
/ggml-metal.metal
# Protobuf generated files
*.pb.go
*pb2.py
*pb2_grpc.py
# SonarQube
.scannerwork

View File

@@ -1,5 +0,0 @@
{
"recommendations": [
"golang.go"
]
}

View File

@@ -1,4 +1,4 @@
# Contributing to LocalAI
# Contributing to localAI
Thank you for your interest in contributing to LocalAI! We appreciate your time and effort in helping to improve our project. Before you get started, please take a moment to review these guidelines.
@@ -29,9 +29,8 @@ Thank you for your interest in contributing to LocalAI! We appreciate your time
1. Clone the repository: `git clone https://github.com/go-skynet/LocalAI.git`
2. Navigate to the project directory: `cd LocalAI`
3. Install the required dependencies ( see https://localai.io/basics/build/#build-localai-locally )
4. Build LocalAI: `make build`
5. Run LocalAI: `./local-ai`
3. Install the required dependencies: `make prepare`
4. Run LocalAI: `make run`
## Contributing
@@ -60,29 +59,14 @@ If you find a bug, have a feature request, or encounter any issues, please check
`make test` cannot handle all the model now. Please be sure to add a test case for the new features or the part was changed.
### Running AIO tests
All-In-One images has a set of tests that automatically verifies that most of the endpoints works correctly, a flow can be :
```bash
# Build the LocalAI docker image
make DOCKER_IMAGE=local-ai docker
# Build the corresponding AIO image
BASE_IMAGE=local-ai DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
# Run the AIO e2e tests
LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio make run-e2e-aio
```
## Documentation
We are welcome the contribution of the documents, please open new PR or create a new issue. The documentation is available under `docs/` https://github.com/mudler/LocalAI/tree/master/docs
- We are welcome the contribution of the documents, please open new PR in the official document repo [localai-website](https://github.com/go-skynet/localai-website)
## Community and Communication
- You can reach out via the Github issue tracker.
- Open a new discussion at [Discussion](https://github.com/go-skynet/LocalAI/discussions)
- Join the Discord channel [Discord](https://discord.gg/uJAeKSAGDy)
---
---

View File

@@ -1,9 +1,8 @@
ARG IMAGE_TYPE=extras
ARG BASE_IMAGE=ubuntu:22.04
ARG GRPC_BASE_IMAGE=${BASE_IMAGE}
# extras or core
FROM ${BASE_IMAGE} AS requirements-core
FROM ${BASE_IMAGE} as requirements-core
USER root
@@ -16,30 +15,17 @@ ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ARG GO_TAGS="stablediffusion tinydream tts"
RUN apt-get update && \
apt-get install -y ca-certificates curl python3-pip unzip && apt-get clean
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
ENV PATH $PATH:/usr/local/go/bin
# Install grpc compilers
ENV PATH $PATH:/root/go/bin
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@latest && \
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
# Install protobuf (the version in 22.04 is too old)
RUN curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
# Install grpcio-tools (the version in 22.04 is too old)
RUN pip install --user grpcio-tools
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
RUN update-ca-certificates
@@ -77,13 +63,10 @@ WORKDIR /build
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
###################################
###################################
# Extras requirements
FROM requirements-core as requirements-extras
FROM requirements-core AS requirements-extras
RUN apt install -y gpg && \
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list && \
@@ -105,39 +88,13 @@ RUN if [ ! -e /usr/bin/python ]; then \
###################################
###################################
FROM ${GRPC_BASE_IMAGE} AS grpc
ARG MAKEFLAGS
ARG GRPC_VERSION=v1.58.0
ENV MAKEFLAGS=${MAKEFLAGS}
WORKDIR /build
RUN apt-get update && \
apt-get install -y build-essential cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc
WORKDIR /build/grpc/cmake/build
RUN cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF ../.. && \
make
###################################
###################################
FROM requirements-${IMAGE_TYPE} AS builder
FROM requirements-${IMAGE_TYPE} as builder
ARG GO_TAGS="stablediffusion tts"
ARG GRPC_BACKENDS
ARG MAKEFLAGS
ARG BUILD_GRPC=true
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
ENV GO_TAGS=${GO_TAGS}
ENV MAKEFLAGS=${MAKEFLAGS}
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
@@ -146,13 +103,6 @@ WORKDIR /build
COPY . .
COPY .git .
RUN echo "GO_TAGS: $GO_TAGS"
RUN apt-get update && \
apt-get install -y build-essential cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN make prepare
# If we are building with clblas support, we need the libraries for the builds
@@ -165,13 +115,14 @@ RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
COPY --from=grpc /build/grpc ./grpc/
WORKDIR /build/grpc/cmake/build
RUN make install
RUN if [ "${BUILD_GRPC}" = "true" ]; then \
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && make -j12 install \
; fi
# Rebuild with defaults backends
WORKDIR /build
RUN make build
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
@@ -188,12 +139,10 @@ ARG FFMPEG
ARG BUILD_TYPE
ARG TARGETARCH
ARG IMAGE_TYPE=extras
ARG MAKEFLAGS
ENV BUILD_TYPE=${BUILD_TYPE}
ENV REBUILD=false
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
ENV MAKEFLAGS=${MAKEFLAGS}
ARG CUDA_MAJOR_VERSION=11
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
@@ -213,11 +162,6 @@ RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
apt-get clean \
; fi
RUN apt-get update && \
apt-get install -y cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
WORKDIR /build
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
@@ -227,9 +171,9 @@ WORKDIR /build
COPY . .
COPY --from=builder /build/sources ./sources/
COPY --from=grpc /build/grpc ./grpc/
COPY --from=builder /build/grpc ./grpc/
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf /build/grpc
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf grpc
# Copy the binary
COPY --from=builder /build/local-ai ./
@@ -242,49 +186,43 @@ COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/
## Duplicated from Makefile to avoid having a big layer that's hard to push
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/autogptq \
make -C backend/python/autogptq \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/bark \
make -C backend/python/bark \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/diffusers \
make -C backend/python/diffusers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/vllm \
make -C backend/python/vllm \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/mamba \
make -C backend/python/mamba \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/sentencetransformers \
make -C backend/python/sentencetransformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/rerankers \
make -C backend/python/transformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/transformers \
make -C backend/python/vall-e-x \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/vall-e-x \
make -C backend/python/exllama \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/exllama \
make -C backend/python/exllama2 \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/exllama2 \
make -C backend/python/petals \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/petals \
make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/parler-tts \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/coqui \
make -C backend/python/coqui \
; fi
# Make sure the models directory exists
@@ -292,8 +230,7 @@ RUN mkdir -p /build/models
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
CMD curl -f ${HEALTHCHECK_ENDPOINT} || exit 1
VOLUME /build/models
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
EXPOSE 8080
ENTRYPOINT [ "/build/entrypoint.sh" ]

View File

@@ -1,8 +0,0 @@
ARG BASE_IMAGE=ubuntu:22.04
FROM ${BASE_IMAGE}
RUN apt-get update && apt-get install -y pciutils && apt-get clean
COPY aio/ /aio
ENTRYPOINT [ "/aio/entrypoint.sh" ]

476
Makefile
View File

@@ -4,8 +4,11 @@ GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
# llama.cpp versions
GOLLAMA_STABLE_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=784e11dea1f5ce9638851b2b0dddb107e2a609c8
GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=19885d205e768579ab090d1e99281cae58c21b54
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -16,26 +19,25 @@ RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version
WHISPER_CPP_VERSION?=858452d58dba3acdc3431c9bced2bb8cfd9bf418
WHISPER_CPP_VERSION?=37a709f6558c6d9783199e2b8cbb136e1c41d346
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
# go-piper version
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
PIPER_VERSION?=d6b6275ba037dabdba4a8b65dfdf6b2a73a67f07
# stablediffusion version
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
# tinydream version
TINYDREAM_VERSION?=22a12a4bc0ac5455856f28f3b771331a551a4293
TINYDREAM_VERSION?=772a9c0d9aaf768290e63cca3c904fe69faf677a
export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
export CMAKE_ARGS?=
CGO_LDFLAGS?=
CGO_LDFLAGS_WHISPER?=
CUDA_LIBPATH?=/usr/local/cuda/lib64/
GO_TAGS?=
BUILD_ID?=git
@@ -70,7 +72,7 @@ UNAME_S := $(shell uname -s)
endif
ifeq ($(OS),Darwin)
CGO_LDFLAGS += -lcblas -framework Accelerate
ifeq ($(OSX_SIGNING_IDENTITY),)
OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/')
endif
@@ -81,12 +83,6 @@ ifeq ($(OS),Darwin)
# disable metal if on Darwin and any other value is explicitly passed.
else ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DLLAMA_METAL=OFF
export LLAMA_NO_ACCELERATE=1
endif
ifeq ($(BUILD_TYPE),metal)
# -lcblas removed: it seems to always be listed as a duplicate flag.
CGO_LDFLAGS += -framework Accelerate
endif
endif
@@ -95,12 +91,10 @@ ifeq ($(BUILD_TYPE),openblas)
export WHISPER_OPENBLAS=1
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
export LLAMA_CUBLAS=1
export WHISPER_CUBLAS=1
CGO_LDFLAGS_WHISPER+=-L$(CUDA_LIBPATH)/stubs/ -lcuda
endif
ifeq ($(BUILD_TYPE),hipblas)
@@ -154,12 +148,12 @@ endif
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
ALL_GRPC_BACKENDS+=backend-assets/grpc/local-store
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
@@ -174,115 +168,126 @@ ifeq ($(BUILD_API_ONLY),true)
GRPC_BACKENDS=
endif
.PHONY: all test build vendor get-sources prepare-sources prepare
.PHONY: all test build vendor
all: help
## BERT embeddings
sources/go-bert.cpp:
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert.cpp
cd sources/go-bert.cpp && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
sources/go-bert.cpp/libgobert.a: sources/go-bert.cpp
$(MAKE) -C sources/go-bert.cpp libgobert.a
## go-llama.cpp
sources/go-llama.cpp:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama.cpp
cd sources/go-llama.cpp && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp
$(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
## go-piper
sources/go-piper:
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o
## GPT4ALL
sources/gpt4all:
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
## go-piper
sources/go-piper:
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
## RWKV
sources/go-rwkv.cpp:
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv.cpp
cd sources/go-rwkv.cpp && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
sources/go-rwkv.cpp/librwkv.a: sources/go-rwkv.cpp
cd sources/go-rwkv.cpp && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
## BERT embeddings
sources/go-bert:
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert
cd sources/go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
## stable diffusion
sources/go-stable-diffusion:
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
sources/go-stable-diffusion/libstablediffusion.a: sources/go-stable-diffusion
CPATH="$(CPATH):/usr/include/opencv4" $(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
sources/go-stable-diffusion/libstablediffusion.a:
$(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
## tiny-dream
sources/go-tiny-dream:
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
sources/go-tiny-dream/libtinydream.a:
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## whisper
## RWKV
sources/go-rwkv:
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv
cd sources/go-rwkv && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
sources/go-rwkv/librwkv.a: sources/go-rwkv
cd sources/go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
sources/go-bert/libgobert.a: sources/go-bert
$(MAKE) -C sources/go-bert libgobert.a
backend-assets/gpt4all: sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
mkdir -p backend-assets/gpt4all
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
backend-assets/espeak-ng-data: sources/go-piper
mkdir -p backend-assets/espeak-ng-data
$(MAKE) -C sources/go-piper piper.o
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
sources/whisper.cpp:
git clone https://github.com/ggerganov/whisper.cpp sources/whisper.cpp
git clone https://github.com/ggerganov/whisper.cpp.git sources/whisper.cpp
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && make libwhisper.a
get-sources: sources/go-llama.cpp sources/gpt4all sources/go-piper sources/go-rwkv.cpp sources/whisper.cpp sources/go-bert.cpp sources/go-stable-diffusion sources/go-tiny-dream
sources/go-llama:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama
cd sources/go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama-ggml:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama/libbinding.a: sources/go-llama
$(MAKE) -C sources/go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
touch $@
replace:
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv.cpp
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert.cpp
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
dropreplace:
$(GOCMD) mod edit -dropreplace github.com/donomii/go-rwkv.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-bert.cpp
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
$(GOCMD) mod edit -dropreplace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
prepare-sources: get-sources replace
$(GOCMD) mod download
touch $@
## GENERIC
rebuild: ## Rebuilds the project
$(GOCMD) clean -cache
$(MAKE) -C sources/go-llama.cpp clean
$(MAKE) -C sources/go-llama clean
$(MAKE) -C sources/go-llama-ggml clean
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
$(MAKE) -C sources/go-rwkv.cpp clean
$(MAKE) -C sources/go-rwkv clean
$(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-stable-diffusion clean
$(MAKE) -C sources/go-bert.cpp clean
$(MAKE) -C sources/go-bert clean
$(MAKE) -C sources/go-piper clean
$(MAKE) -C sources/go-tiny-dream clean
$(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS)
touch $@
clean: ## Remove build related file
$(GOCMD) clean -cache
@@ -290,32 +295,19 @@ clean: ## Remove build related file
rm -rf ./sources
rm -rf $(BINARY_NAME)
rm -rf release/
rm -rf backend-assets/*
rm -rf backend-assets
$(MAKE) -C backend/cpp/grpc clean
$(MAKE) -C backend/cpp/llama clean
$(MAKE) dropreplace
$(MAKE) protogen-clean
rmdir pkg/grpc/proto || true
clean-tests:
rm -rf test-models
rm -rf test-dir
rm -rf core/http/backend-assets
## Build:
build: prepare backend-assets grpcs ## Build the project
build: backend-assets grpcs prepare ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
build-minimal:
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS=backend-assets/grpc/llama-cpp GO_TAGS=none $(MAKE) build
build-api:
BUILD_GRPC_FOR_BACKEND_LLAMA=true BUILD_API_ONLY=true GO_TAGS=none $(MAKE) build
dist: build
mkdir -p release
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH)
@@ -327,10 +319,10 @@ osx-signed: build
run: prepare ## run local-ai
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) run ./
test-models/testmodel.ggml:
test-models/testmodel:
mkdir test-models
mkdir test-dir
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel.ggml
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
@@ -342,9 +334,9 @@ prepare-test: grpcs
cp -rf backend-assets core/http
cp tests/models_fixtures/* test-models
test: prepare test-models/testmodel.ggml grpcs
test: prepare test-models/testmodel grpcs
@echo 'Running tests'
export GO_TAGS="tts stablediffusion debug"
export GO_TAGS="tts stablediffusion"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
@@ -358,16 +350,12 @@ prepare-e2e:
mkdir -p $(TEST_DIR)
cp -rfv $(abspath ./tests/e2e-fixtures)/gpu.yaml $(TEST_DIR)/gpu.yaml
test -e $(TEST_DIR)/ggllm-test-model.bin || wget -q https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q2_K.gguf -O $(TEST_DIR)/ggllm-test-model.bin
docker build --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=11 --build-arg CUDA_MINOR_VERSION=7 --build-arg FFMPEG=true -t localai-tests .
docker build --build-arg BUILD_GRPC=true --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=11 --build-arg CUDA_MINOR_VERSION=7 --build-arg FFMPEG=true -t localai-tests .
run-e2e-image:
ls -liah $(abspath ./tests/e2e-fixtures)
docker run -p 5390:8080 -e MODELS_PATH=/models -e THREADS=1 -e DEBUG=true -d --rm -v $(TEST_DIR):/models --gpus all --name e2e-tests-$(RANDOM) localai-tests
run-e2e-aio:
@echo 'Running e2e AIO tests'
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
test-e2e:
@echo 'Running e2e tests'
BUILD_TYPE=$(BUILD_TYPE) \
@@ -398,11 +386,6 @@ test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stores: backend-assets/grpc/local-store
mkdir -p tests/integration/backend-assets/grpc
cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts 1 -v -r tests/integration
test-container:
docker build --target requirements -t local-ai-test-container .
docker run -ti --rm --entrypoint /bin/bash -ti -v $(abspath ./):/build local-ai-test-container
@@ -419,152 +402,30 @@ help: ## Show this help.
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
}' $(MAKEFILE_LIST)
.PHONY: protogen
protogen: protogen-go protogen-python
.PHONY: protogen-clean
protogen-clean: protogen-go-clean protogen-python-clean
.PHONY: protogen-go
protogen-go:
mkdir -p pkg/grpc/proto
protoc -Ibackend/ --go_out=pkg/grpc/proto/ --go_opt=paths=source_relative --go-grpc_out=pkg/grpc/proto/ --go-grpc_opt=paths=source_relative \
backend/backend.proto
.PHONY: protogen-go-clean
protogen-go-clean:
$(RM) pkg/grpc/proto/backend.pb.go pkg/grpc/proto/backend_grpc.pb.go
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen petals-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean petals-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
$(MAKE) -C backend/python/autogptq protogen
.PHONY: autogptq-protogen-clean
autogptq-protogen-clean:
$(MAKE) -C backend/python/autogptq protogen-clean
.PHONY: bark-protogen
bark-protogen:
$(MAKE) -C backend/python/bark protogen
.PHONY: bark-protogen-clean
bark-protogen-clean:
$(MAKE) -C backend/python/bark protogen-clean
.PHONY: coqui-protogen
coqui-protogen:
$(MAKE) -C backend/python/coqui protogen
.PHONY: coqui-protogen-clean
coqui-protogen-clean:
$(MAKE) -C backend/python/coqui protogen-clean
.PHONY: diffusers-protogen
diffusers-protogen:
$(MAKE) -C backend/python/diffusers protogen
.PHONY: diffusers-protogen-clean
diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: exllama-protogen
exllama-protogen:
$(MAKE) -C backend/python/exllama protogen
.PHONY: exllama-protogen-clean
exllama-protogen-clean:
$(MAKE) -C backend/python/exllama protogen-clean
.PHONY: exllama2-protogen
exllama2-protogen:
$(MAKE) -C backend/python/exllama2 protogen
.PHONY: exllama2-protogen-clean
exllama2-protogen-clean:
$(MAKE) -C backend/python/exllama2 protogen-clean
.PHONY: mamba-protogen
mamba-protogen:
$(MAKE) -C backend/python/mamba protogen
.PHONY: mamba-protogen-clean
mamba-protogen-clean:
$(MAKE) -C backend/python/mamba protogen-clean
.PHONY: petals-protogen
petals-protogen:
$(MAKE) -C backend/python/petals protogen
.PHONY: petals-protogen-clean
petals-protogen-clean:
$(MAKE) -C backend/python/petals protogen-clean
.PHONY: rerankers-protogen
rerankers-protogen:
$(MAKE) -C backend/python/rerankers protogen
.PHONY: rerankers-protogen-clean
rerankers-protogen-clean:
$(MAKE) -C backend/python/rerankers protogen-clean
.PHONY: sentencetransformers-protogen
sentencetransformers-protogen:
$(MAKE) -C backend/python/sentencetransformers protogen
.PHONY: sentencetransformers-protogen-clean
sentencetransformers-protogen-clean:
$(MAKE) -C backend/python/sentencetransformers protogen-clean
.PHONY: transformers-protogen
transformers-protogen:
$(MAKE) -C backend/python/transformers protogen
.PHONY: transformers-protogen-clean
transformers-protogen-clean:
$(MAKE) -C backend/python/transformers protogen-clean
.PHONY: parler-tts-protogen
parler-tts-protogen:
$(MAKE) -C backend/python/parler-tts protogen
.PHONY: parler-tts-protogen-clean
parler-tts-protogen-clean:
$(MAKE) -C backend/python/parler-tts protogen-clean
.PHONY: transformers-musicgen-protogen
transformers-musicgen-protogen:
$(MAKE) -C backend/python/transformers-musicgen protogen
.PHONY: transformers-musicgen-protogen-clean
transformers-musicgen-protogen-clean:
$(MAKE) -C backend/python/transformers-musicgen protogen-clean
.PHONY: vall-e-x-protogen
vall-e-x-protogen:
$(MAKE) -C backend/python/vall-e-x protogen
.PHONY: vall-e-x-protogen-clean
vall-e-x-protogen-clean:
$(MAKE) -C backend/python/vall-e-x protogen-clean
.PHONY: vllm-protogen
vllm-protogen:
$(MAKE) -C backend/python/vllm protogen
.PHONY: vllm-protogen-clean
vllm-protogen-clean:
$(MAKE) -C backend/python/vllm protogen-clean
protogen-python:
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/sentencetransformers/ --grpc_python_out=backend/python/sentencetransformers/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers/ --grpc_python_out=backend/python/transformers/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers-musicgen/ --grpc_python_out=backend/python/transformers-musicgen/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/autogptq/ --grpc_python_out=backend/python/autogptq/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama/ --grpc_python_out=backend/python/exllama/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/bark/ --grpc_python_out=backend/python/bark/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/diffusers/ --grpc_python_out=backend/python/diffusers/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/coqui/ --grpc_python_out=backend/python/coqui/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vall-e-x/ --grpc_python_out=backend/python/vall-e-x/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vllm/ --grpc_python_out=backend/python/vllm/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/petals/ --grpc_python_out=backend/python/petals/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/mamba/ --grpc_python_out=backend/python/mamba/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama2/ --grpc_python_out=backend/python/exllama2/ backend/backend.proto
## GRPC
# Note: it is duplicated in the Dockerfile
prepare-extra-conda-environments: protogen-python
prepare-extra-conda-environments:
$(MAKE) -C backend/python/autogptq
$(MAKE) -C backend/python/bark
$(MAKE) -C backend/python/coqui
@@ -572,16 +433,14 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/mamba
$(MAKE) -C backend/python/sentencetransformers
$(MAKE) -C backend/python/rerankers
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/transformers-musicgen
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/exllama
$(MAKE) -C backend/python/petals
$(MAKE) -C backend/python/exllama2
prepare-test-extra: protogen-python
prepare-test-extra:
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/diffusers
@@ -595,93 +454,92 @@ ifeq ($(BUILD_API_ONLY),true)
touch backend-assets/keep
endif
backend-assets/espeak-ng-data: sources/go-piper sources/go-piper/libpiper_binding.a
mkdir -p backend-assets/espeak-ng-data
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
backend-assets/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
mkdir -p backend-assets/gpt4all
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
backend-assets/grpc: protogen-go replace
backend-assets/grpc:
mkdir -p backend-assets/grpc
backend-assets/grpc/bert-embeddings: sources/go-bert.cpp sources/go-bert.cpp/libgobert.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert.cpp LIBRARY_PATH=$(CURDIR)/sources/go-bert.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
backend-assets/grpc/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a backend-assets/gpt4all backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
backend-assets/grpc/llama: backend-assets/grpc sources/go-llama/libbinding.a
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama LIBRARY_PATH=$(CURDIR)/sources/go-llama \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./backend/go/llm/llama/
# TODO: every binary should have its own folder instead, so can have different implementations
ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama/llama.cpp/ggml-metal.metal backend-assets/grpc/
endif
## BACKEND CPP LLAMA START
# Sets the variables in case it has to build the gRPC locally.
INSTALLED_PACKAGES=$(CURDIR)/backend/cpp/grpc/installed_packages
INSTALLED_LIB_CMAKE=$(INSTALLED_PACKAGES)/lib/cmake
ADDED_CMAKE_ARGS=-Dabsl_DIR=${INSTALLED_LIB_CMAKE}/absl \
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
backend/cpp/llama/grpc-server:
# Conditionally build grpc for the llama backend to use if needed
ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
$(MAKE) -C backend/cpp/grpc build
_PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto \
_GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin \
PATH="${INSTALLED_PACKAGES}/bin:${PATH}" \
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" \
LLAMA_VERSION=$(CPPLLAMA_VERSION) \
$(MAKE) -C backend/cpp/llama grpc-server
export _PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto && \
export _GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin && \
export PATH="${INSTALLED_PACKAGES}/bin:${PATH}" && \
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
else
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
endif
## BACKEND CPP LLAMA END
##
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
# TODO: every binary should have its own folder instead, so can have different metal implementations
ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
cp backend/cpp/llama/llama.cpp/build/bin/ggml-metal.metal backend-assets/grpc/
endif
backend-assets/grpc/llama-ggml: sources/go-llama.cpp sources/go-llama.cpp/libbinding.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama.cpp LIBRARY_PATH=$(CURDIR)/sources/go-llama.cpp \
backend-assets/grpc/llama-ggml: backend-assets/grpc sources/go-llama-ggml/libbinding.a
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
backend-assets/grpc/gpt4all: backend-assets/grpc backend-assets/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
backend-assets/grpc/rwkv: sources/go-rwkv.cpp sources/go-rwkv.cpp/librwkv.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv.cpp LIBRARY_PATH=$(CURDIR)/sources/go-rwkv.cpp \
backend-assets/grpc/rwkv: backend-assets/grpc sources/go-rwkv/librwkv.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/go-stable-diffusion/:/usr/include/opencv4" LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion
backend-assets/grpc/bert-embeddings: backend-assets/grpc sources/go-bert/libgobert.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert LIBRARY_PATH=$(CURDIR)/sources/go-bert \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
backend-assets/grpc/stablediffusion: backend-assets/grpc
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
$(MAKE) sources/go-stable-diffusion; \
$(MAKE) sources/go-stable-diffusion/libstablediffusion.a; \
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-stable-diffusion/ LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion; \
fi
backend-assets/grpc/tinydream: backend-assets/grpc sources/go-tiny-dream/libtinydream.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data sources/go-piper/libpiper_binding.a
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
backend-assets/grpc/local-store: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/local-store ./backend/go/stores/
backend-assets/grpc/whisper: backend-assets/grpc sources/whisper.cpp/libwhisper.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
grpcs: prepare $(GRPC_BACKENDS)
DOCKER_IMAGE?=local-ai
DOCKER_AIO_IMAGE?=local-ai-aio
IMAGE_TYPE?=core
BASE_IMAGE?=ubuntu:22.04
@@ -689,28 +547,15 @@ docker:
docker build \
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg GO_TAGS=$(GO_TAGS) \
--build-arg BUILD_TYPE=$(BUILD_TYPE) \
-t $(DOCKER_IMAGE) .
docker-aio:
@echo "Building AIO image with base $(BASE_IMAGE) as $(DOCKER_AIO_IMAGE)"
docker build \
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
-t $(DOCKER_AIO_IMAGE) -f Dockerfile.aio .
docker-aio-all:
$(MAKE) docker-aio DOCKER_AIO_SIZE=cpu
$(MAKE) docker-aio DOCKER_AIO_SIZE=cpu
docker-image-intel:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
docker-image-intel-xpu:
@@ -718,9 +563,4 @@ docker-image-intel-xpu:
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
.PHONY: swagger
swagger:
swag init -g core/http/app.go --output swagger
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .

View File

@@ -20,14 +20,14 @@
</a>
</p>
<p align="center">
<a href="https://hub.docker.com/r/localai/localai" target="blank">
<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker" alt="LocalAI Docker hub"/>
</a>
<a href="https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest" target="blank">
<img src="https://img.shields.io/badge/quay.io-images-important.svg?" alt="LocalAI Quay.io"/>
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
@@ -36,27 +36,24 @@
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
</p>
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU. It is created and maintained by [Ettore Di Giacinto](https://github.com/mudler).
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
## 🔥🔥 Hot topics / Roadmap
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Reranker API: https://github.com/mudler/LocalAI/pull/2121
- Gallery WebUI: https://github.com/mudler/LocalAI/pull/2104
- llama3: https://github.com/mudler/LocalAI/discussions/2076
- Parler-TTS: https://github.com/mudler/LocalAI/pull/2027
- Openvino support: https://github.com/mudler/LocalAI/pull/1892
- Vector store: https://github.com/mudler/LocalAI/pull/1795
- All-in-one container image: https://github.com/mudler/LocalAI/issues/1855
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
- Tools API support: https://github.com/mudler/LocalAI/pull/1715
- LLaVa 1.6: https://github.com/mudler/LocalAI/pull/1714
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595
- Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
- Deprecation of old backends: https://github.com/mudler/LocalAI/issues/1651
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
- Img2vid https://github.com/mudler/LocalAI/pull/1442
Hot topics (looking for contributors):
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
@@ -69,14 +66,10 @@ If you want to help and contribute, issues up for grabs: https://github.com/mudl
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide.
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide. For those in a hurry, here's a straightforward one-liner to launch a LocalAI instance with [phi-2](https://huggingface.co/microsoft/phi-2) using `docker`:
For those in a hurry, here's a straightforward one-liner to launch a LocalAI AIO(All-in-one) Image using `docker`:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
# or, if you have an Nvidia GPU:
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
```
docker run -ti -p 8080:8080 localai/localai:v2.9.0-ffmpeg-core phi-2
```
## 🚀 [Features](https://localai.io/features/)

View File

@@ -1,5 +0,0 @@
## AIO CPU size
Use this image with CPU-only.
Please keep using only C++ backends so the base image is as small as possible (without CUDA, cuDNN, python, etc).

View File

@@ -1,12 +0,0 @@
name: text-embedding-ada-002
backend: bert-embeddings
parameters:
model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

View File

@@ -1,62 +0,0 @@
name: stablediffusion
backend: stablediffusion
parameters:
model: stablediffusion_assets
license: "BSD-3"
urls:
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/EdVince/Stable-Diffusion-NCNN/blob/main/LICENSE
description: |
Stable Diffusion in NCNN with c++, supported txt2img and img2img
download_files:
- filename: "stablediffusion_assets/AutoencoderKL-256-256-fp16-opt.param"
sha256: "18ca4b66685e21406bcf64c484b3b680b4949900415536d599cc876579c85c82"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-256-256-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-512-512-fp16-opt.param"
sha256: "cf45f63aacf3dbbab0f59ed92a6f2c14d9a1801314631cd3abe91e3c85639a20"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-512-512-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-base-fp16.param"
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-base-fp16.param"
- filename: "stablediffusion_assets/AutoencoderKL-encoder-512-512-fp16.bin"
sha256: "ddcb79a9951b9f91e05e087739ed69da2c1c4ae30ba4168cce350b49d617c9fa"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-encoder-512-512-fp16.bin"
- filename: "stablediffusion_assets/AutoencoderKL-fp16.bin"
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.bin"
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/FrozenCLIPEmbedder-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.param"
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/FrozenCLIPEmbedder-fp16.param"
- filename: "stablediffusion_assets/log_sigmas.bin"
sha256: "a2089f8aa4c61f9c200feaec541ab3f5c94233b28deb6d5e8bcd974fa79b68ac"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/raw/main/x86/linux/assets/log_sigmas.bin"
- filename: "stablediffusion_assets/UNetModel-256-256-MHA-fp16-opt.param"
sha256: "a58c380229f09491776df837b7aa7adffc0a87821dc4708b34535da2e36e3da1"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-256-256-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-512-512-MHA-fp16-opt.param"
sha256: "f12034067062827bd7f43d1d21888d1f03905401acf6c6eea22be23c259636fa"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-512-512-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-base-MHA-fp16.param"
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-base-MHA-fp16.param"
- filename: "stablediffusion_assets/UNetModel-MHA-fp16.bin"
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
- filename: "stablediffusion_assets/vocab.txt"
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@@ -1,27 +0,0 @@
name: jina-reranker-v1-base-en
backend: rerankers
parameters:
model: cross-encoder
usage: |
You can test this model with curl like this:
curl http://localhost:8080/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "jina-reranker-v1-base-en",
"query": "Organic skincare products for sensitive skin",
"documents": [
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"All-natural pet food for dogs with allergies",
"Yoga mats made from recycled materials"
],
"top_n": 3
}'

View File

@@ -1,18 +0,0 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -1,15 +0,0 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"voice-en-us-amy-low",
"input": "Hi, this is a test."
}'

View File

@@ -1,59 +0,0 @@
name: gpt-4
mmap: true
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q2_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View File

@@ -1,31 +0,0 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: bakllava.gguf
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -1,138 +0,0 @@
#!/bin/bash
echo "===> LocalAI All-in-One (AIO) container starting..."
GPU_ACCELERATION=false
GPU_VENDOR=""
function check_intel() {
if lspci | grep -E 'VGA|3D' | grep -iq intel; then
echo "Intel GPU detected"
if [ -d /opt/intel ]; then
GPU_ACCELERATION=true
GPU_VENDOR=intel
else
echo "Intel GPU detected, but Intel GPU drivers are not installed. GPU acceleration will not be available."
fi
fi
}
function check_nvidia_wsl() {
if lspci | grep -E 'VGA|3D' | grep -iq "Microsoft Corporation Device 008e"; then
# We make the assumption this WSL2 cars is NVIDIA, then check for nvidia-smi
# Make sure the container was run with `--gpus all` as the only required parameter
echo "NVIDIA GPU detected via WSL2"
# nvidia-smi should be installed in the container
if nvidia-smi; then
GPU_ACCELERATION=true
GPU_VENDOR=nvidia
else
echo "NVIDIA GPU detected via WSL2, but nvidia-smi is not installed. GPU acceleration will not be available."
fi
fi
}
function check_amd() {
if lspci | grep -E 'VGA|3D' | grep -iq amd; then
echo "AMD GPU detected"
# Check if ROCm is installed
if [ -d /opt/rocm ]; then
GPU_ACCELERATION=true
GPU_VENDOR=amd
else
echo "AMD GPU detected, but ROCm is not installed. GPU acceleration will not be available."
fi
fi
}
function check_nvidia() {
if lspci | grep -E 'VGA|3D' | grep -iq nvidia; then
echo "NVIDIA GPU detected"
# nvidia-smi should be installed in the container
if nvidia-smi; then
GPU_ACCELERATION=true
GPU_VENDOR=nvidia
else
echo "NVIDIA GPU detected, but nvidia-smi is not installed. GPU acceleration will not be available."
fi
fi
}
function check_metal() {
if system_profiler SPDisplaysDataType | grep -iq 'Metal'; then
echo "Apple Metal supported GPU detected"
GPU_ACCELERATION=true
GPU_VENDOR=apple
fi
}
function detect_gpu() {
case "$(uname -s)" in
Linux)
check_nvidia
check_amd
check_intel
check_nvidia_wsl
;;
Darwin)
check_metal
;;
esac
}
function detect_gpu_size() {
# Attempting to find GPU memory size for NVIDIA GPUs
if [ "$GPU_ACCELERATION" = true ] && [ "$GPU_VENDOR" = "nvidia" ]; then
echo "NVIDIA GPU detected. Attempting to find memory size..."
# Using head -n 1 to get the total memory of the 1st NVIDIA GPU detected.
# If handling multiple GPUs is required in the future, this is the place to do it
nvidia_sm=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1)
if [ ! -z "$nvidia_sm" ]; then
echo "Total GPU Memory: $nvidia_sm MiB"
# if bigger than 8GB, use 16GB
#if [ "$nvidia_sm" -gt 8192 ]; then
# GPU_SIZE=gpu-16g
#else
GPU_SIZE=gpu-8g
#fi
else
echo "Unable to determine NVIDIA GPU memory size. Falling back to CPU."
GPU_SIZE=gpu-8g
fi
elif [ "$GPU_ACCELERATION" = true ] && [ "$GPU_VENDOR" = "intel" ]; then
GPU_SIZE=intel
# Default to a generic GPU size until we implement GPU size detection for non NVIDIA GPUs
elif [ "$GPU_ACCELERATION" = true ]; then
echo "Non-NVIDIA GPU detected. Specific GPU memory size detection is not implemented."
GPU_SIZE=gpu-8g
# default to cpu if GPU_SIZE is not set
else
echo "GPU acceleration is not enabled or supported. Defaulting to CPU."
GPU_SIZE=cpu
fi
}
function check_vars() {
if [ -z "$MODELS" ]; then
echo "MODELS environment variable is not set. Please set it to a comma-separated list of model YAML files to load."
exit 1
fi
if [ -z "$PROFILE" ]; then
echo "PROFILE environment variable is not set. Please set it to one of the following: cpu, gpu-8g, gpu-16g, apple"
exit 1
fi
}
detect_gpu
detect_gpu_size
PROFILE="${PROFILE:-$GPU_SIZE}" # default to cpu
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
check_vars
echo "===> Starting LocalAI[$PROFILE] with the following models: $MODELS"
exec /build/entrypoint.sh "$@"

View File

@@ -1,12 +0,0 @@
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

View File

@@ -1,25 +0,0 @@
name: stablediffusion
parameters:
model: DreamShaper_8_pruned.safetensors
backend: diffusers
step: 25
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps"
scheduler_type: "k_dpmpp_2m"
download_files:
- filename: DreamShaper_8_pruned.safetensors
uri: huggingface://Lykon/DreamShaper/DreamShaper_8_pruned.safetensors
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@@ -1,27 +0,0 @@
name: jina-reranker-v1-base-en
backend: rerankers
parameters:
model: cross-encoder
usage: |
You can test this model with curl like this:
curl http://localhost:8080/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "jina-reranker-v1-base-en",
"query": "Organic skincare products for sensitive skin",
"documents": [
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"All-natural pet food for dogs with allergies",
"Yoga mats made from recycled materials"
],
"top_n": 3
}'

View File

@@ -1,18 +0,0 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -1,15 +0,0 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"tts-1",
"input": "Hi, this is a test."
}'

View File

@@ -1,59 +0,0 @@
name: gpt-4
mmap: true
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View File

@@ -1,35 +0,0 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -1,12 +0,0 @@
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

View File

@@ -1,20 +0,0 @@
name: stablediffusion
parameters:
model: runwayml/stable-diffusion-v1-5
backend: diffusers
step: 25
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps"
scheduler_type: "k_dpmpp_2m"
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@@ -1,27 +0,0 @@
name: jina-reranker-v1-base-en
backend: rerankers
parameters:
model: cross-encoder
usage: |
You can test this model with curl like this:
curl http://localhost:8080/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "jina-reranker-v1-base-en",
"query": "Organic skincare products for sensitive skin",
"documents": [
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"All-natural pet food for dogs with allergies",
"Yoga mats made from recycled materials"
],
"top_n": 3
}'

View File

@@ -1,18 +0,0 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -1,15 +0,0 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"tts-1",
"input": "Hi, this is a test."
}'

View File

@@ -1,59 +0,0 @@
name: gpt-4
mmap: false
f16: false
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
stopwords:
- <|im_end|>
- "\n</tool_call>"
- <dummy32000>
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View File

@@ -1,35 +0,0 @@
backend: llama-cpp
context_size: 4096
mmap: false
f16: false
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -18,72 +18,6 @@ service Backend {
rpc TTS(TTSRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
rpc StoresSet(StoresSetOptions) returns (Result) {}
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
rpc StoresGet(StoresGetOptions) returns (StoresGetResult) {}
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
rpc Rerank(RerankRequest) returns (RerankResult) {}
}
message RerankRequest {
string query = 1;
repeated string documents = 2;
int32 top_n = 3;
}
message RerankResult {
Usage usage = 1;
repeated DocumentResult results = 2;
}
message Usage {
int32 total_tokens = 1;
int32 prompt_tokens = 2;
}
message DocumentResult {
int32 index = 1;
string text = 2;
float relevance_score = 3;
}
message StoresKey {
repeated float Floats = 1;
}
message StoresValue {
bytes Bytes = 1;
}
message StoresSetOptions {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
}
message StoresDeleteOptions {
repeated StoresKey Keys = 1;
}
message StoresGetOptions {
repeated StoresKey Keys = 1;
}
message StoresGetResult {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
}
message StoresFindOptions {
StoresKey Key = 1;
int32 TopK = 2;
}
message StoresFindResult {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
repeated float Similarities = 3;
}
message HealthMessage {}
@@ -131,15 +65,11 @@ message PredictOptions {
string NegativePrompt = 40;
int32 NDraft = 41;
repeated string Images = 42;
bool UseTokenizerTemplate = 43;
repeated Message Messages = 44;
}
// The response message containing the result
message Reply {
bytes message = 1;
int32 tokens = 2;
int32 prompt_tokens = 3;
}
message ModelOptions {
@@ -191,7 +121,7 @@ message ModelOptions {
bool NoMulMatQ = 37;
string DraftModel = 39;
string AudioPath = 38;
// vllm
@@ -201,7 +131,6 @@ message ModelOptions {
bool EnforceEager = 52;
int32 SwapSpace = 53;
int32 MaxModelLen = 54;
int32 TensorParallelSize = 55;
string MMProj = 41;
@@ -284,9 +213,4 @@ message StatusResponse {
}
State state = 1;
MemoryUsageData memory = 2;
}
message Message {
string role = 1;
string content = 2;
}

457
backend/backend_grpc.pb.go Normal file
View File

@@ -0,0 +1,457 @@
// Code generated by protoc-gen-go-grpc. DO NOT EDIT.
// versions:
// - protoc-gen-go-grpc v1.2.0
// - protoc v4.23.4
// source: backend/backend.proto
package proto
import (
context "context"
grpc "google.golang.org/grpc"
codes "google.golang.org/grpc/codes"
status "google.golang.org/grpc/status"
)
// This is a compile-time assertion to ensure that this generated file
// is compatible with the grpc package it is being compiled against.
// Requires gRPC-Go v1.32.0 or later.
const _ = grpc.SupportPackageIsVersion7
// BackendClient is the client API for Backend service.
//
// For semantics around ctx use and closing/ending streaming RPCs, please refer to https://pkg.go.dev/google.golang.org/grpc/?tab=doc#ClientConn.NewStream.
type BackendClient interface {
Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error)
Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error)
LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error)
PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error)
Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error)
GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error)
AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error)
TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error)
TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error)
Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error)
}
type backendClient struct {
cc grpc.ClientConnInterface
}
func NewBackendClient(cc grpc.ClientConnInterface) BackendClient {
return &backendClient{cc}
}
func (c *backendClient) Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error) {
out := new(Reply)
err := c.cc.Invoke(ctx, "/backend.Backend/Health", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error) {
out := new(Reply)
err := c.cc.Invoke(ctx, "/backend.Backend/Predict", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/LoadModel", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error) {
stream, err := c.cc.NewStream(ctx, &Backend_ServiceDesc.Streams[0], "/backend.Backend/PredictStream", opts...)
if err != nil {
return nil, err
}
x := &backendPredictStreamClient{stream}
if err := x.ClientStream.SendMsg(in); err != nil {
return nil, err
}
if err := x.ClientStream.CloseSend(); err != nil {
return nil, err
}
return x, nil
}
type Backend_PredictStreamClient interface {
Recv() (*Reply, error)
grpc.ClientStream
}
type backendPredictStreamClient struct {
grpc.ClientStream
}
func (x *backendPredictStreamClient) Recv() (*Reply, error) {
m := new(Reply)
if err := x.ClientStream.RecvMsg(m); err != nil {
return nil, err
}
return m, nil
}
func (c *backendClient) Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error) {
out := new(EmbeddingResult)
err := c.cc.Invoke(ctx, "/backend.Backend/Embedding", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/GenerateImage", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error) {
out := new(TranscriptResult)
err := c.cc.Invoke(ctx, "/backend.Backend/AudioTranscription", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/TTS", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error) {
out := new(TokenizationResponse)
err := c.cc.Invoke(ctx, "/backend.Backend/TokenizeString", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error) {
out := new(StatusResponse)
err := c.cc.Invoke(ctx, "/backend.Backend/Status", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
// BackendServer is the server API for Backend service.
// All implementations must embed UnimplementedBackendServer
// for forward compatibility
type BackendServer interface {
Health(context.Context, *HealthMessage) (*Reply, error)
Predict(context.Context, *PredictOptions) (*Reply, error)
LoadModel(context.Context, *ModelOptions) (*Result, error)
PredictStream(*PredictOptions, Backend_PredictStreamServer) error
Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error)
GenerateImage(context.Context, *GenerateImageRequest) (*Result, error)
AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error)
TTS(context.Context, *TTSRequest) (*Result, error)
TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error)
Status(context.Context, *HealthMessage) (*StatusResponse, error)
mustEmbedUnimplementedBackendServer()
}
// UnimplementedBackendServer must be embedded to have forward compatible implementations.
type UnimplementedBackendServer struct {
}
func (UnimplementedBackendServer) Health(context.Context, *HealthMessage) (*Reply, error) {
return nil, status.Errorf(codes.Unimplemented, "method Health not implemented")
}
func (UnimplementedBackendServer) Predict(context.Context, *PredictOptions) (*Reply, error) {
return nil, status.Errorf(codes.Unimplemented, "method Predict not implemented")
}
func (UnimplementedBackendServer) LoadModel(context.Context, *ModelOptions) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method LoadModel not implemented")
}
func (UnimplementedBackendServer) PredictStream(*PredictOptions, Backend_PredictStreamServer) error {
return status.Errorf(codes.Unimplemented, "method PredictStream not implemented")
}
func (UnimplementedBackendServer) Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error) {
return nil, status.Errorf(codes.Unimplemented, "method Embedding not implemented")
}
func (UnimplementedBackendServer) GenerateImage(context.Context, *GenerateImageRequest) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method GenerateImage not implemented")
}
func (UnimplementedBackendServer) AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error) {
return nil, status.Errorf(codes.Unimplemented, "method AudioTranscription not implemented")
}
func (UnimplementedBackendServer) TTS(context.Context, *TTSRequest) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method TTS not implemented")
}
func (UnimplementedBackendServer) TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error) {
return nil, status.Errorf(codes.Unimplemented, "method TokenizeString not implemented")
}
func (UnimplementedBackendServer) Status(context.Context, *HealthMessage) (*StatusResponse, error) {
return nil, status.Errorf(codes.Unimplemented, "method Status not implemented")
}
func (UnimplementedBackendServer) mustEmbedUnimplementedBackendServer() {}
// UnsafeBackendServer may be embedded to opt out of forward compatibility for this service.
// Use of this interface is not recommended, as added methods to BackendServer will
// result in compilation errors.
type UnsafeBackendServer interface {
mustEmbedUnimplementedBackendServer()
}
func RegisterBackendServer(s grpc.ServiceRegistrar, srv BackendServer) {
s.RegisterService(&Backend_ServiceDesc, srv)
}
func _Backend_Health_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(HealthMessage)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Health(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Health",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Health(ctx, req.(*HealthMessage))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_Predict_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Predict(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Predict",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Predict(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_LoadModel_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(ModelOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).LoadModel(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/LoadModel",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).LoadModel(ctx, req.(*ModelOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_PredictStream_Handler(srv interface{}, stream grpc.ServerStream) error {
m := new(PredictOptions)
if err := stream.RecvMsg(m); err != nil {
return err
}
return srv.(BackendServer).PredictStream(m, &backendPredictStreamServer{stream})
}
type Backend_PredictStreamServer interface {
Send(*Reply) error
grpc.ServerStream
}
type backendPredictStreamServer struct {
grpc.ServerStream
}
func (x *backendPredictStreamServer) Send(m *Reply) error {
return x.ServerStream.SendMsg(m)
}
func _Backend_Embedding_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Embedding(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Embedding",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Embedding(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_GenerateImage_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(GenerateImageRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).GenerateImage(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/GenerateImage",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).GenerateImage(ctx, req.(*GenerateImageRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_AudioTranscription_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(TranscriptRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).AudioTranscription(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/AudioTranscription",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).AudioTranscription(ctx, req.(*TranscriptRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_TTS_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(TTSRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).TTS(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/TTS",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).TTS(ctx, req.(*TTSRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_TokenizeString_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).TokenizeString(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/TokenizeString",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).TokenizeString(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_Status_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(HealthMessage)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Status(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Status",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Status(ctx, req.(*HealthMessage))
}
return interceptor(ctx, in, info, handler)
}
// Backend_ServiceDesc is the grpc.ServiceDesc for Backend service.
// It's only intended for direct use with grpc.RegisterService,
// and not to be introspected or modified (even as a copy)
var Backend_ServiceDesc = grpc.ServiceDesc{
ServiceName: "backend.Backend",
HandlerType: (*BackendServer)(nil),
Methods: []grpc.MethodDesc{
{
MethodName: "Health",
Handler: _Backend_Health_Handler,
},
{
MethodName: "Predict",
Handler: _Backend_Predict_Handler,
},
{
MethodName: "LoadModel",
Handler: _Backend_LoadModel_Handler,
},
{
MethodName: "Embedding",
Handler: _Backend_Embedding_Handler,
},
{
MethodName: "GenerateImage",
Handler: _Backend_GenerateImage_Handler,
},
{
MethodName: "AudioTranscription",
Handler: _Backend_AudioTranscription_Handler,
},
{
MethodName: "TTS",
Handler: _Backend_TTS_Handler,
},
{
MethodName: "TokenizeString",
Handler: _Backend_TokenizeString_Handler,
},
{
MethodName: "Status",
Handler: _Backend_Status_Handler,
},
},
Streams: []grpc.StreamDesc{
{
StreamName: "PredictStream",
Handler: _Backend_PredictStream_Handler,
ServerStreams: true,
},
},
Metadata: "backend/backend.proto",
}

View File

@@ -5,6 +5,7 @@ SYSTEM ?= $(HOST_SYSTEM)
TAG_LIB_GRPC?=v1.59.0
GIT_REPO_LIB_GRPC?=https://github.com/grpc/grpc.git
GIT_CLONE_DEPTH?=1
NUM_BUILD_THREADS?=$(shell nproc --ignore=1)
INSTALLED_PACKAGES=installed_packages
GRPC_REPO=grpc_repo
@@ -47,11 +48,11 @@ $(INSTALLED_PACKAGES): grpc_build
$(GRPC_REPO):
git clone --depth $(GIT_CLONE_DEPTH) -b $(TAG_LIB_GRPC) $(GIT_REPO_LIB_GRPC) $(GRPC_REPO)/grpc
cd $(GRPC_REPO)/grpc && git submodule update --jobs 2 --init --recursive --depth $(GIT_CLONE_DEPTH)
cd $(GRPC_REPO)/grpc && git submodule update --init --recursive --depth $(GIT_CLONE_DEPTH)
$(GRPC_BUILD): $(GRPC_REPO)
mkdir -p $(GRPC_BUILD)
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . && cmake --build . --target install
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . -- -j ${NUM_BUILD_THREADS} && cmake --build . --target install -- -j ${NUM_BUILD_THREADS}
build: $(INSTALLED_PACKAGES)

View File

@@ -18,12 +18,6 @@ else ifeq ($(BUILD_TYPE),clblas)
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),darwin)
ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DLLAMA_METAL=OFF
endif
endif
ifeq ($(BUILD_TYPE),sycl_f16)
@@ -41,7 +35,7 @@ llama.cpp:
fi
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
llama.cpp/examples/grpc-server: llama.cpp
llama.cpp/examples/grpc-server:
mkdir -p llama.cpp/examples/grpc-server
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/

View File

@@ -1084,7 +1084,7 @@ struct llama_server_context
slot.has_next_token = false;
}
if (result.tok == llama_token_eos(model))
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
{
slot.stopped_eos = true;
slot.has_next_token = false;
@@ -2332,10 +2332,6 @@ public:
std::string completion_text = result.result_json.value("content", "");
reply.set_message(completion_text);
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
reply.set_tokens(tokens_predicted);
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
reply.set_prompt_tokens(tokens_evaluated);
// Send the reply
writer->Write(reply);
@@ -2361,10 +2357,6 @@ public:
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop) {
completion_text = result.result_json.value("content", "");
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
reply->set_prompt_tokens(tokens_evaluated);
reply->set_tokens(tokens_predicted);
reply->set_message(completion_text);
}
else

View File

@@ -1,14 +0,0 @@
//go:build debug
// +build debug
package main
import (
"github.com/rs/zerolog/log"
)
func assert(cond bool, msg string) {
if !cond {
log.Fatal().Stack().Msg(msg)
}
}

View File

@@ -1,26 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each store
import (
"flag"
"os"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
log.Logger = log.Output(zerolog.ConsoleWriter{Out: os.Stderr})
flag.Parse()
if err := grpc.StartServer(*addr, NewStore()); err != nil {
panic(err)
}
}

View File

@@ -1,7 +0,0 @@
//go:build !debug
// +build !debug
package main
func assert(cond bool, msg string) {
}

View File

@@ -1,507 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"container/heap"
"fmt"
"math"
"slices"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/rs/zerolog/log"
)
type Store struct {
base.SingleThread
// The sorted keys
keys [][]float32
// The sorted values
values [][]byte
// If for every K it holds that ||k||^2 = 1, then we can use the normalized distance functions
// TODO: Should we normalize incoming keys if they are not instead?
keysAreNormalized bool
// The first key decides the length of the keys
keyLen int
}
// TODO: Only used for sorting using Go's builtin implementation. The interfaces are columnar because
// that's theoretically best for memory layout and cache locality, but this isn't optimized yet.
type Pair struct {
Key []float32
Value []byte
}
func NewStore() *Store {
return &Store{
keys: make([][]float32, 0),
values: make([][]byte, 0),
keysAreNormalized: true,
keyLen: -1,
}
}
func compareSlices(k1, k2 []float32) int {
assert(len(k1) == len(k2), fmt.Sprintf("compareSlices: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
return slices.Compare(k1, k2)
}
func hasKey(unsortedSlice [][]float32, target []float32) bool {
return slices.ContainsFunc(unsortedSlice, func(k []float32) bool {
return compareSlices(k, target) == 0
})
}
func findInSortedSlice(sortedSlice [][]float32, target []float32) (int, bool) {
return slices.BinarySearchFunc(sortedSlice, target, func(k, t []float32) int {
return compareSlices(k, t)
})
}
func isSortedPairs(kvs []Pair) bool {
for i := 1; i < len(kvs); i++ {
if compareSlices(kvs[i-1].Key, kvs[i].Key) > 0 {
return false
}
}
return true
}
func isSortedKeys(keys [][]float32) bool {
for i := 1; i < len(keys); i++ {
if compareSlices(keys[i-1], keys[i]) > 0 {
return false
}
}
return true
}
func sortIntoKeySlicese(keys []*pb.StoresKey) [][]float32 {
ks := make([][]float32, len(keys))
for i, k := range keys {
ks[i] = k.Floats
}
slices.SortFunc(ks, compareSlices)
assert(len(ks) == len(keys), fmt.Sprintf("len(ks) = %d, len(keys) = %d", len(ks), len(keys)))
assert(isSortedKeys(ks), "keys are not sorted")
return ks
}
func (s *Store) Load(opts *pb.ModelOptions) error {
return nil
}
// Sort the incoming kvs and merge them with the existing sorted kvs
func (s *Store) StoresSet(opts *pb.StoresSetOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if len(opts.Keys) != len(opts.Values) {
return fmt.Errorf("len(keys) = %d, len(values) = %d", len(opts.Keys), len(opts.Values))
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
kvs := make([]Pair, len(opts.Keys))
for i, k := range opts.Keys {
if s.keysAreNormalized && !isNormalized(k.Floats) {
s.keysAreNormalized = false
var sample []float32
if len(s.keys) > 5 {
sample = k.Floats[:5]
} else {
sample = k.Floats
}
log.Debug().Msgf("Key is not normalized: %v", sample)
}
kvs[i] = Pair{
Key: k.Floats,
Value: opts.Values[i].Bytes,
}
}
slices.SortFunc(kvs, func(a, b Pair) int {
return compareSlices(a.Key, b.Key)
})
assert(len(kvs) == len(opts.Keys), fmt.Sprintf("len(kvs) = %d, len(opts.Keys) = %d", len(kvs), len(opts.Keys)))
assert(isSortedPairs(kvs), "keys are not sorted")
l := len(kvs) + len(s.keys)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
i, j := 0, 0
for {
if i+j >= l {
break
}
if i >= len(kvs) {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
continue
}
if j >= len(s.keys) {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
continue
}
c := compareSlices(kvs[i].Key, s.keys[j])
if c < 0 {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
} else if c > 0 {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
} else {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
j++
}
}
assert(len(merge_ks) == l, fmt.Sprintf("len(merge_ks) = %d, l = %d", len(merge_ks), l))
assert(isSortedKeys(merge_ks), "merge keys are not sorted")
s.keys = merge_ks
s.values = merge_vs
return nil
}
func (s *Store) StoresDelete(opts *pb.StoresDeleteOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to delete")
}
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Trying to delete key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
ks := sortIntoKeySlicese(opts.Keys)
l := len(s.keys) - len(ks)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
tail_ks := s.keys
tail_vs := s.values
for _, k := range ks {
j, found := findInSortedSlice(tail_ks, k)
if found {
merge_ks = append(merge_ks, tail_ks[:j]...)
merge_vs = append(merge_vs, tail_vs[:j]...)
tail_ks = tail_ks[j+1:]
tail_vs = tail_vs[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: t=%d, %v", len(tail_ks), k))
}
log.Debug().Msgf("Delete: found = %v, t = %d, j = %d, len(merge_ks) = %d, len(merge_vs) = %d", found, len(tail_ks), j, len(merge_ks), len(merge_vs))
}
merge_ks = append(merge_ks, tail_ks...)
merge_vs = append(merge_vs, tail_vs...)
assert(len(merge_ks) <= len(s.keys), fmt.Sprintf("len(merge_ks) = %d, len(s.keys) = %d", len(merge_ks), len(s.keys)))
s.keys = merge_ks
s.values = merge_vs
assert(len(s.keys) >= l, fmt.Sprintf("len(s.keys) = %d, l = %d", len(s.keys), l))
assert(isSortedKeys(s.keys), "keys are not sorted")
assert(func() bool {
for _, k := range ks {
if _, found := findInSortedSlice(s.keys, k); found {
return false
}
}
return true
}(), "Keys to delete still present")
if len(s.keys) != l {
log.Debug().Msgf("Delete: Some keys not found: len(s.keys) = %d, l = %d", len(s.keys), l)
}
return nil
}
func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error) {
pbKeys := make([]*pb.StoresKey, 0, len(opts.Keys))
pbValues := make([]*pb.StoresValue, 0, len(opts.Keys))
ks := sortIntoKeySlicese(opts.Keys)
if len(s.keys) == 0 {
log.Debug().Msgf("Get: No keys in store")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return pb.StoresGetResult{}, fmt.Errorf("Try to get a key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
tail_k := s.keys
tail_v := s.values
for i, k := range ks {
j, found := findInSortedSlice(tail_k, k)
if found {
pbKeys = append(pbKeys, &pb.StoresKey{
Floats: k,
})
pbValues = append(pbValues, &pb.StoresValue{
Bytes: tail_v[j],
})
tail_k = tail_k[j+1:]
tail_v = tail_v[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: i=%d, %v", i, k))
}
}
if len(pbKeys) != len(opts.Keys) {
log.Debug().Msgf("Get: Some keys not found: len(pbKeys) = %d, len(opts.Keys) = %d, len(s.Keys) = %d", len(pbKeys), len(opts.Keys), len(s.keys))
}
return pb.StoresGetResult{
Keys: pbKeys,
Values: pbValues,
}, nil
}
func isNormalized(k []float32) bool {
var sum float32
for _, v := range k {
sum += v
}
return sum == 1.0
}
// TODO: This we could replace with handwritten SIMD code
func normalizedCosineSimilarity(k1, k2 []float32) float32 {
assert(len(k1) == len(k2), fmt.Sprintf("normalizedCosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
var dot float32
for i := 0; i < len(k1); i++ {
dot += k1[i] * k2[i]
}
assert(dot >= -1 && dot <= 1, fmt.Sprintf("dot = %f", dot))
// 2.0 * (1.0 - dot) would be the Euclidean distance
return dot
}
type PriorityItem struct {
Similarity float32
Key []float32
Value []byte
}
type PriorityQueue []*PriorityItem
func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {
// Inverted because the most similar should be at the top
return pq[i].Similarity < pq[j].Similarity
}
func (pq PriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *PriorityQueue) Push(x any) {
item := x.(*PriorityItem)
*pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() any {
old := *pq
n := len(old)
item := old[n-1]
*pq = old[0 : n-1]
return item
}
func (s *Store) StoresFindNormalized(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
top_ks := make(PriorityQueue, 0, int(opts.TopK))
heap.Init(&top_ks)
for i, k := range s.keys {
sim := normalizedCosineSimilarity(tk, k)
heap.Push(&top_ks, &PriorityItem{
Similarity: sim,
Key: k,
Value: s.values[i],
})
if top_ks.Len() > int(opts.TopK) {
heap.Pop(&top_ks)
}
}
similarities := make([]float32, top_ks.Len())
pbKeys := make([]*pb.StoresKey, top_ks.Len())
pbValues := make([]*pb.StoresValue, top_ks.Len())
for i := top_ks.Len() - 1; i >= 0; i-- {
item := heap.Pop(&top_ks).(*PriorityItem)
similarities[i] = item.Similarity
pbKeys[i] = &pb.StoresKey{
Floats: item.Key,
}
pbValues[i] = &pb.StoresValue{
Bytes: item.Value,
}
}
return pb.StoresFindResult{
Keys: pbKeys,
Values: pbValues,
Similarities: similarities,
}, nil
}
func cosineSimilarity(k1, k2 []float32, mag1 float64) float32 {
assert(len(k1) == len(k2), fmt.Sprintf("cosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
var dot, mag2 float64
for i := 0; i < len(k1); i++ {
dot += float64(k1[i] * k2[i])
mag2 += float64(k2[i] * k2[i])
}
sim := float32(dot / (mag1 * math.Sqrt(mag2)))
assert(sim >= -1 && sim <= 1, fmt.Sprintf("sim = %f", sim))
return sim
}
func (s *Store) StoresFindFallback(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
top_ks := make(PriorityQueue, 0, int(opts.TopK))
heap.Init(&top_ks)
var mag1 float64
for _, v := range tk {
mag1 += float64(v * v)
}
mag1 = math.Sqrt(mag1)
for i, k := range s.keys {
dist := cosineSimilarity(tk, k, mag1)
heap.Push(&top_ks, &PriorityItem{
Similarity: dist,
Key: k,
Value: s.values[i],
})
if top_ks.Len() > int(opts.TopK) {
heap.Pop(&top_ks)
}
}
similarities := make([]float32, top_ks.Len())
pbKeys := make([]*pb.StoresKey, top_ks.Len())
pbValues := make([]*pb.StoresValue, top_ks.Len())
for i := top_ks.Len() - 1; i >= 0; i-- {
item := heap.Pop(&top_ks).(*PriorityItem)
similarities[i] = item.Similarity
pbKeys[i] = &pb.StoresKey{
Floats: item.Key,
}
pbValues[i] = &pb.StoresValue{
Bytes: item.Value,
}
}
return pb.StoresFindResult{
Keys: pbKeys,
Values: pbValues,
Similarities: similarities,
}, nil
}
func (s *Store) StoresFind(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
if len(tk) != s.keyLen {
return pb.StoresFindResult{}, fmt.Errorf("Try to find key with length %d when existing length is %d", len(tk), s.keyLen)
}
if opts.TopK < 1 {
return pb.StoresFindResult{}, fmt.Errorf("opts.TopK = %d, must be >= 1", opts.TopK)
}
if s.keyLen == -1 {
s.keyLen = len(opts.Key.Floats)
} else {
if len(opts.Key.Floats) != s.keyLen {
return pb.StoresFindResult{}, fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Key.Floats), s.keyLen)
}
}
if s.keysAreNormalized && isNormalized(tk) {
return s.StoresFindNormalized(opts)
} else {
if s.keysAreNormalized {
var sample []float32
if len(s.keys) > 5 {
sample = tk[:5]
} else {
sample = tk
}
log.Debug().Msgf("Trying to compare non-normalized key with normalized keys: %v", sample)
}
return s.StoresFindFallback(opts)
}
}

View File

@@ -1,13 +1,4 @@
.PHONY: autogptq
autogptq: protogen
autogptq:
$(MAKE) -C ../common-env/transformers
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -5,14 +5,12 @@ import signal
import sys
import os
import time
import base64
import grpc
import backend_pb2
import backend_pb2_grpc
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import TextGenerationPipeline
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -30,18 +28,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.Device != "":
device = request.Device
# support loading local model files
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode)
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=request.UseFastTokenizer)
# support model `Qwen/Qwen-VL-Chat-Int4`
if "qwen-vl" in request.Model.lower():
self.model_name = "Qwen-VL-Chat"
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=request.TrustRemoteCode,
device_map="auto").eval()
else:
model = AutoGPTQForCausalLM.from_quantized(model_path,
model = AutoGPTQForCausalLM.from_quantized(request.Model,
model_basename=request.ModelBaseName,
use_safetensors=True,
trust_remote_code=request.TrustRemoteCode,
@@ -66,11 +55,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.TopP != 0.0:
top_p = request.TopP
prompt_images = self.recompile_vl_prompt(request)
compiled_prompt = prompt_images[0]
print(f"Prompt: {compiled_prompt}", file=sys.stderr)
# Implement Predict RPC
pipeline = TextGenerationPipeline(
model=self.model,
@@ -80,17 +64,10 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
top_p=top_p,
repetition_penalty=penalty,
)
t = pipeline(compiled_prompt)[0]["generated_text"]
print(f"generated_text: {t}", file=sys.stderr)
if compiled_prompt in t:
t = t.replace(compiled_prompt, "")
# house keeping. Remove the image files from /tmp folder
for img_path in prompt_images[1]:
try:
os.remove(img_path)
except Exception as e:
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr)
t = pipeline(request.Prompt)[0]["generated_text"]
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
@@ -101,24 +78,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# Not implemented yet
return self.Predict(request, context)
def recompile_vl_prompt(self, request):
prompt = request.Prompt
image_paths = []
if "qwen-vl" in self.model_name.lower():
# request.Images is an array which contains base64 encoded images. Iterate the request.Images array, decode and save each image to /tmp folder with a random filename.
# Then, save the image file paths to an array "image_paths".
# read "request.Prompt", replace "[img-%d]" with the image file paths in the order they appear in "image_paths". Save the new prompt to "prompt".
for i, img in enumerate(request.Images):
timestamp = str(int(time.time() * 1000)) # Generate timestamp
img_path = f"/tmp/vl-{timestamp}.jpg" # Use timestamp in filename
with open(img_path, "wb") as f:
f.write(base64.b64decode(img))
image_paths.append(img_path)
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,")
else:
prompt = request.Prompt
return (prompt, image_paths)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))

View File

@@ -1,7 +1,3 @@
####
# Attention! This file is abandoned.
# Please use the ../common-env/transformers/transformers.yml file to manage dependencies.
###
name: autogptq
channels:
- defaults
@@ -28,12 +24,12 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.27.0
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- attrs==23.1.0
- auto-gptq==0.7.1
- auto-gptq==0.4.2
- certifi==2023.7.22
- charset-normalizer==3.3.0
- datasets==2.14.5
@@ -63,7 +59,6 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- optimum==1.17.1
- packaging==23.2
- pandas==2.1.1
- peft==0.5.0
@@ -80,11 +75,9 @@ dependencies:
- six==1.16.0
- sympy==1.12
- tokenizers==0.14.0
- torch==2.1.0
- tqdm==4.66.1
- torch==2.2.1
- torchvision==0.17.1
- transformers==4.34.0
- transformers_stream_generator==0.0.5
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -1,25 +1,15 @@
.PHONY: ttsbark
ttsbark: protogen
ttsbark:
$(MAKE) -C ../common-env/transformers
.PHONY: run
run: protogen
run:
@echo "Running bark..."
bash run.sh
@echo "bark run."
.PHONY: test
test: protogen
test:
@echo "Testing bark..."
bash test.sh
@echo "bark tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -2,7 +2,6 @@
set -ex
SKIP_CONDA=${SKIP_CONDA:-0}
REQUIREMENTS_FILE=$1
# Check if environment exist
conda_env_exists(){
@@ -15,7 +14,7 @@ else
export PATH=$PATH:/opt/conda/bin
if conda_env_exists "transformers" ; then
echo "Creating virtual environment..."
conda env create --name transformers --file $REQUIREMENTS_FILE
conda env create --name transformers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
@@ -26,19 +25,14 @@ if [ -d "/opt/intel" ]; then
# Intel GPU: If the directory exists, we assume we are using the intel image
# (no conda env)
# https://github.com/intel/intel-extension-for-pytorch/issues/538
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed optimum[openvino]
fi
# If we didn't skip conda, activate the environment
# to install FlashAttention
if [ $SKIP_CONDA -eq 0 ]; then
source activate transformers
fi
if [[ $REQUIREMENTS_FILE =~ -nvidia.yml$ ]]; then
#TODO: FlashAttention is supported on nvidia and ROCm, but ROCm install can't be done this easily
pip install flash-attn --no-build-isolation
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
if [ $SKIP_CONDA -eq 0 ]; then
# Activate conda environment
source activate transformers
fi
pip cache purge
fi

View File

@@ -24,14 +24,12 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.27.0
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- auto-gptq==0.7.1
- attrs==23.1.0
- bark==0.1.5
- bitsandbytes==0.43.0
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
@@ -70,7 +68,6 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- optimum==1.17.1
- packaging==23.2
- pandas
- peft==0.5.0
@@ -90,7 +87,6 @@ dependencies:
- sympy==1.12
- tokenizers
- torch==2.1.2
- torchvision==0.16.2
- torchaudio==2.1.2
- tqdm==4.66.1
- triton==2.1.0
@@ -98,6 +94,7 @@ dependencies:
- tzdata==2023.3
- urllib3==1.26.17
- xxhash==3.4.1
- auto-gptq==0.6.0
- yarl==1.9.2
- soundfile
- langid
@@ -116,10 +113,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm>=0.4.0
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- transformers_stream_generator==0.0.5
- xformers==0.0.23.post1
- rerankers[transformers]
- pydantic
prefix: /opt/conda/envs/transformers

View File

@@ -26,8 +26,7 @@ dependencies:
- pip:
- --pre
- --extra-index-url https://download.pytorch.org/whl/nightly/
- accelerate==0.27.0
- auto-gptq==0.7.1
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
@@ -83,6 +82,7 @@ dependencies:
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
@@ -90,7 +90,6 @@ dependencies:
- langid
- wget
- unidecode
- optimum==1.17.1
- pyopenjtalk-prebuilt
- pypinyin
- inflect
@@ -104,10 +103,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm>=0.4.0
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- transformers_stream_generator==0.0.5
- xformers==0.0.23.post1
- rerankers[transformers]
- pydantic
prefix: /opt/conda/envs/transformers

View File

@@ -24,17 +24,15 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.27.0
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- auto-gptq==0.7.1
- async-timeout==4.0.3
- attrs==23.1.0
- bark==0.1.5
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- coloredlogs==15.0.1
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
@@ -49,7 +47,6 @@ dependencies:
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub
- humanfriendly==10.0
- idna==3.4
- jinja2==3.1.2
- jmespath==1.0.1
@@ -59,10 +56,6 @@ dependencies:
- multiprocess==0.70.15
- networkx
- numpy==1.26.0
- onnx==1.15.0
- openvino==2024.0.0
- openvino-telemetry==2023.2.1
- optimum[openvino]==1.17.1
- packaging==23.2
- pandas
- peft==0.5.0
@@ -82,12 +75,12 @@ dependencies:
- sympy==1.12
- tokenizers
- torch==2.1.2
- torchvision==0.16.2
- torchaudio==2.1.2
- tqdm==4.66.1
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
@@ -108,10 +101,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm>=0.4.0
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- transformers_stream_generator==0.0.5
- xformers==0.0.23.post1
- rerankers[transformers]
- pydantic
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -1,25 +1,15 @@
.PHONY: coqui
coqui: protogen
coqui:
$(MAKE) -C ../common-env/transformers
.PHONY: run
run: protogen
run:
@echo "Running coqui..."
bash run.sh
@echo "coqui run."
.PHONY: test
test: protogen
test:
@echo "Testing coqui..."
bash test.sh
@echo "coqui tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -12,25 +12,15 @@ export SKIP_CONDA=1
endif
.PHONY: diffusers
diffusers: protogen
diffusers:
@echo "Installing $(CONDA_ENV_PATH)..."
bash install.sh $(CONDA_ENV_PATH)
.PHONY: run
run: protogen
run:
@echo "Running diffusers..."
bash run.sh
@echo "Diffusers run."
test: protogen
test:
bash test.sh
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -61,5 +61,4 @@ dependencies:
- urllib3==2.0.6
- zipp==3.17.0
- torch
- opencv-python
prefix: /opt/conda/envs/diffusers

View File

@@ -71,5 +71,4 @@ dependencies:
- typing-extensions==4.8.0
- urllib3==2.0.6
- zipp==3.17.0
- opencv-python
prefix: /opt/conda/envs/diffusers

View File

@@ -1,21 +1,11 @@
export CONDA_ENV_PATH = "exllama.yml"
.PHONY: exllama
exllama: protogen
exllama:
bash install.sh ${CONDA_ENV_PATH}
.PHONY: run
run: protogen
run:
@echo "Running exllama..."
bash run.sh
@echo "exllama run."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -1,20 +1,10 @@
.PHONY: exllama2
exllama2: protogen
exllama2:
$(MAKE) -C ../common-env/transformers
bash install.sh
.PHONY: run
run: protogen
run:
@echo "Running exllama2..."
bash run.sh
@echo "exllama2 run."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -1,26 +1,16 @@
.PHONY: mamba
mamba: protogen
mamba:
$(MAKE) -C ../common-env/transformers
bash install.sh
.PHONY: run
run: protogen
run:
@echo "Running mamba..."
bash run.sh
@echo "mamba run."
.PHONY: test
test: protogen
test:
@echo "Testing mamba..."
bash test.sh
@echo "mamba tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
@echo "mamba tested."

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -1,39 +0,0 @@
export CONDA_ENV_PATH = "parler.yml"
SKIP_CONDA?=0
ifeq ($(BUILD_TYPE), cublas)
export CONDA_ENV_PATH = "parler-nvidia.yml"
endif
# Intel GPU are supposed to have dependencies installed in the main python
# environment, so we skip conda installation for SYCL builds.
# https://github.com/intel/intel-extension-for-pytorch/issues/538
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: parler-tts
parler-tts: protogen
@echo "Installing $(CONDA_ENV_PATH)..."
bash install.sh $(CONDA_ENV_PATH)
.PHONY: run
run: protogen
@echo "Running transformers..."
bash run.sh
@echo "transformers run."
.PHONY: test
test: protogen
@echo "Testing transformers..."
bash test.sh
@echo "transformers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,39 +0,0 @@
#!/bin/bash
set -ex
SKIP_CONDA=${SKIP_CONDA:-0}
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if [ $SKIP_CONDA -eq 1 ]; then
echo "Skipping conda environment installation"
else
export PATH=$PATH:/opt/conda/bin
if conda_env_exists "parler" ; then
echo "Creating virtual environment..."
conda env create --name parler --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
fi
if [ $SKIP_CONDA -ne 1 ]; then
# Activate conda environment
source activate parler
# https://github.com/descriptinc/audiotools/issues/101
# incompatible protobuf versions.
curl -L https://raw.githubusercontent.com/protocolbuffers/protobuf/main/python/google/protobuf/internal/builder.py -o $CONDA_PREFIX/lib/python3.11/site-packages/google/protobuf/internal/builder.py
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
if [ $SKIP_CONDA -ne 1 ]; then
# Activate conda environment
source activate parler
fi
pip cache purge
fi

View File

@@ -1,48 +0,0 @@
name: parler
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- tzdata=2023c=h04d1e81_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate>=0.11.0
- grpcio==1.59.0
- numpy==1.26.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- torch==2.1.0
- transformers>=4.34.0
- descript-audio-codec
- sentencepiece
- git+https://github.com/huggingface/parler-tts.git@10016fb0300c0dc31a0fb70e26f3affee7b62f16
prefix: /opt/conda/envs/diffusers

View File

@@ -1,36 +0,0 @@
name: parler
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- tzdata=2023c=h04d1e81_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate>=0.11.0
- numpy==1.26.0
- grpcio==1.59.0
- torch==2.1.0
- transformers>=4.34.0
- descript-audio-codec
- sentencepiece
- git+https://github.com/huggingface/parler-tts.git@10016fb0300c0dc31a0fb70e26f3affee7b62f16
prefix: /opt/conda/envs/parler

View File

@@ -1,125 +0,0 @@
#!/usr/bin/env python3
"""
Extra gRPC server for MusicgenForConditionalGeneration models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from scipy.io.wavfile import write as write_wav
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
import torch
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
device = "cuda:0" if torch.cuda.is_available() else "cpu"
try:
self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
model_name = request.model
voice = request.voice
if voice == "":
voice = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
input_ids = self.tokenizer(voice, return_tensors="pt").input_ids.to(device)
prompt_input_ids = self.tokenizer(request.text, return_tensors="pt").input_ids.to(device)
generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
print("[parler-tts] TTS generated!", file=sys.stderr)
sf.write(request.dst, audio_arr, self.model.config.sampling_rate)
print("[parler-tts] TTS saved to", request.dst, file=sys.stderr)
print("[parler-tts] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("[parler-tts] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("[parler-tts] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[parler-tts] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@@ -1,16 +0,0 @@
#!/bin/bash
##
## A bash script wrapper that runs the parler-tts server with conda
echo "Launching gRPC server for parler-tts"
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate parler
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python $DIR/parler_tts_server.py $@

View File

@@ -1,11 +0,0 @@
#!/bin/bash
##
## A bash script wrapper that runs the transformers server with conda
# Activate conda environment
source activate parler
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test_parler.py

View File

@@ -1,81 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "parler_tts_server.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="parler-tts/parler_tts_mini_v0.1"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="parler-tts/parler_tts_mini_v0.1"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="Hey, how are you doing today?")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -1,27 +1,17 @@
.PHONY: petals
petals: protogen
petals:
@echo "Creating virtual environment..."
bash install.sh "petals.yml"
@echo "Virtual environment created."
.PHONY: run
run: protogen
run:
@echo "Running petals..."
bash run.sh
@echo "petals run."
.PHONY: test
test: protogen
test:
@echo "Testing petals..."
bash test.sh
@echo "petals tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

Some files were not shown because too many files have changed in this diff Show More