mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 11:13:31 -05:00
Compare commits
4 Commits
fix_eos
...
docs_updat
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5b8d6a31e2 | ||
|
|
f0752be4aa | ||
|
|
bafc9effad | ||
|
|
d2934dd69f |
18
Makefile
18
Makefile
@@ -4,11 +4,11 @@ GOVET=$(GOCMD) vet
|
||||
BINARY_NAME=local-ai
|
||||
|
||||
# llama.cpp versions
|
||||
GOLLAMA_VERSION?=6a8041ef6b46d4712afc3ae791d1c2d73da0ad1c
|
||||
GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
|
||||
|
||||
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
|
||||
|
||||
CPPLLAMA_VERSION?=4755afd1cbd40d93c017e5b98c39796f52345314
|
||||
CPPLLAMA_VERSION?=19885d205e768579ab090d1e99281cae58c21b54
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
@@ -19,13 +19,13 @@ RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
|
||||
|
||||
# whisper.cpp version
|
||||
WHISPER_CPP_VERSION?=a56f435fd475afd7edf02bfbf9f8c77f527198c2
|
||||
WHISPER_CPP_VERSION?=37a709f6558c6d9783199e2b8cbb136e1c41d346
|
||||
|
||||
# bert.cpp version
|
||||
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
|
||||
# go-piper version
|
||||
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
|
||||
PIPER_VERSION?=d6b6275ba037dabdba4a8b65dfdf6b2a73a67f07
|
||||
|
||||
# stablediffusion version
|
||||
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
|
||||
@@ -91,13 +91,10 @@ ifeq ($(BUILD_TYPE),openblas)
|
||||
export WHISPER_OPENBLAS=1
|
||||
endif
|
||||
|
||||
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CGO_LDFLAGS+=-lcublas -lcudart -lculibos -lcublasLt -L$(CUDA_LIBPATH)
|
||||
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
|
||||
export LLAMA_CUBLAS=1
|
||||
# required by whisper.cpp
|
||||
export WHISPER_CUBLAS=1
|
||||
CGO_LDFLAGS+=-L$(CUDA_PATH)/stubs -lcuda
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),hipblas)
|
||||
@@ -465,6 +462,9 @@ backend-assets/grpc/llama: backend-assets/grpc sources/go-llama/libbinding.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama LIBRARY_PATH=$(CURDIR)/sources/go-llama \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./backend/go/llm/llama/
|
||||
# TODO: every binary should have its own folder instead, so can have different implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
## BACKEND CPP LLAMA START
|
||||
# Sets the variables in case it has to build the gRPC locally.
|
||||
@@ -494,7 +494,7 @@ backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
|
||||
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
|
||||
# TODO: every binary should have its own folder instead, so can have different metal implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-ggml: backend-assets/grpc sources/go-llama-ggml/libbinding.a
|
||||
|
||||
@@ -18,7 +18,6 @@ else ifeq ($(BUILD_TYPE),clblas)
|
||||
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
|
||||
else ifeq ($(BUILD_TYPE),hipblas)
|
||||
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
|
||||
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),sycl_f16)
|
||||
|
||||
@@ -1084,7 +1084,7 @@ struct llama_server_context
|
||||
slot.has_next_token = false;
|
||||
}
|
||||
|
||||
if (result.tok == llama_token_eos(model))
|
||||
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
|
||||
{
|
||||
slot.stopped_eos = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
@@ -30,7 +30,6 @@ dependencies:
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- bark==0.1.5
|
||||
- bitsandbytes==0.43.0
|
||||
- boto3==1.28.61
|
||||
- botocore==1.31.61
|
||||
- certifi==2023.7.22
|
||||
|
||||
@@ -23,7 +23,7 @@ if XPU:
|
||||
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, AutoModel, set_seed
|
||||
else:
|
||||
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed, BitsAndBytesConfig
|
||||
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
@@ -75,50 +75,18 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
|
||||
compute = "auto"
|
||||
if request.F16Memory == True:
|
||||
compute=torch.bfloat16
|
||||
|
||||
self.CUDA = request.CUDA
|
||||
|
||||
device_map="cpu"
|
||||
|
||||
quantization = None
|
||||
|
||||
if self.CUDA:
|
||||
if request.Device:
|
||||
device_map=request.Device
|
||||
else:
|
||||
device_map="cuda:0"
|
||||
if request.Quantization == "bnb_4bit":
|
||||
quantization = BitsAndBytesConfig(
|
||||
load_in_4bit = True,
|
||||
bnb_4bit_compute_dtype = compute,
|
||||
bnb_4bit_quant_type = "nf4",
|
||||
bnb_4bit_use_double_quant = True,
|
||||
load_in_8bit = False,
|
||||
)
|
||||
elif request.Quantization == "bnb_8bit":
|
||||
quantization = BitsAndBytesConfig(
|
||||
load_in_4bit=False,
|
||||
bnb_4bit_compute_dtype = None,
|
||||
load_in_8bit=True,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
if request.Type == "AutoModelForCausalLM":
|
||||
if XPU:
|
||||
if quantization == "xpu_4bit":
|
||||
xpu_4bit = True
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode,
|
||||
device_map="xpu", load_in_4bit=xpu_4bit)
|
||||
device_map="xpu", load_in_4bit=True)
|
||||
else:
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode)
|
||||
else:
|
||||
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
|
||||
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode)
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.CUDA = False
|
||||
self.XPU = False
|
||||
|
||||
if XPU:
|
||||
@@ -129,6 +97,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
except Exception as err:
|
||||
print("Not using XPU:", err, file=sys.stderr)
|
||||
|
||||
if request.CUDA or torch.cuda.is_available():
|
||||
try:
|
||||
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
|
||||
self.model = self.model.to("cuda")
|
||||
self.CUDA = True
|
||||
except Exception as err:
|
||||
print("Not using CUDA:", err, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
@@ -155,17 +130,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
||||
|
||||
# Create word embeddings
|
||||
if self.CUDA:
|
||||
encoded_input = encoded_input.to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
model_output = self.model(**encoded_input)
|
||||
model_output = self.model(**encoded_input)
|
||||
|
||||
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()
|
||||
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
print("Embeddings:", sentence_embeddings, file=sys.stderr)
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""
|
||||
@@ -192,8 +163,12 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
if XPU:
|
||||
inputs = inputs.to("xpu")
|
||||
|
||||
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
|
||||
generated_text = self.tokenizer.batch_decode(outputs[:, inputs.shape[1]:], skip_special_tokens=True)[0]
|
||||
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP)
|
||||
|
||||
generated_text = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in generated_text:
|
||||
generated_text = generated_text.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
||||
|
||||
|
||||
@@ -10,6 +10,10 @@ import (
|
||||
)
|
||||
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
if !backendConfig.Embeddings {
|
||||
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
|
||||
}
|
||||
|
||||
modelFile := backendConfig.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
Reference in New Issue
Block a user