Compare commits

..

1 Commits

Author SHA1 Message Date
Ettore Di Giacinto
b16a01d0bd WIP speculative 2025-01-24 10:17:54 +01:00
221 changed files with 5656 additions and 248175 deletions

View File

@@ -0,0 +1,23 @@
meta {
name: musicgen
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/sound-generation
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model_id": "facebook/musicgen-small",
"text": "Exciting 80s Newscast Interstitial",
"duration_seconds": 8
}
}

View File

@@ -0,0 +1,17 @@
meta {
name: backend monitor
type: http
seq: 4
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/backend/monitor
body: json
auth: none
}
body:json {
{
"model": "{{DEFAULT_MODEL}}"
}
}

View File

@@ -0,0 +1,21 @@
meta {
name: backend-shutdown
type: http
seq: 3
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/backend/shutdown
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}"
}
}

View File

@@ -0,0 +1,5 @@
{
"version": "1",
"name": "LocalAI Test Requests",
"type": "collection"
}

View File

@@ -0,0 +1,6 @@
vars {
HOST: localhost
PORT: 8080
DEFAULT_MODEL: gpt-3.5-turbo
PROTOCOL: http://
}

View File

@@ -0,0 +1,11 @@
meta {
name: get models list
type: http
seq: 2
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models
body: none
auth: none
}

View File

@@ -0,0 +1,25 @@
meta {
name: Generate image
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/images/generations
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"prompt": "<positive prompt>|<negative prompt>",
"model": "model-name",
"step": 51,
"size": "1024x1024",
"image": ""
}
}

View File

@@ -0,0 +1,24 @@
meta {
name: -completions
type: http
seq: 4
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"prompt": "function downloadFile(string url, string outputPath) {",
"max_tokens": 256,
"temperature": 0.5
}
}

View File

@@ -0,0 +1,23 @@
meta {
name: -edits
type: http
seq: 5
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/edits
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"input": "What day of the wek is it?",
"instruction": "Fix the spelling mistakes"
}
}

View File

@@ -0,0 +1,22 @@
meta {
name: -embeddings
type: http
seq: 6
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/embeddings
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"input": "A STRANGE GAME.\nTHE ONLY WINNING MOVE IS NOT TO PLAY.\n\nHOW ABOUT A NICE GAME OF CHESS?"
}
}

View File

@@ -0,0 +1,30 @@
meta {
name: chat completion -simple- 1 message-
type: http
seq: 4
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/chat/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"messages": [
{
"role": "user",
"content": "How could one use friction to cook an egg?"
}
],
"max_tokens": 256,
"temperature": 0.2,
"grammar": ""
}
}

View File

@@ -0,0 +1,29 @@
meta {
name: chat-completions -long-
type: http
seq: 5
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/chat/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"messages": [{"role": "system", "content": "You are a helpful, intelligent pirate assistant. Always answer as helpfully as possible, while being a pirate and using pirate language. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."},
{"role": "user", "content": "How could one use electricity to cook an egg?"},
{"role": "assistant",
"content": "Shiver me timbers! Using electricity to cook an egg? Well, matey, I reckon that be a right curious idea! *adjusts spectacles* Now, I ain't sure if this be possible, but I'll do me best to help ye out.\n\nFirst things first, ye gotta understand that electricity be a powerful force, and it can't just cook an egg on its own. Ye see, electricity be like a mighty wind that can make things happen, but it needs somethin' to work with. So, if ye want to use electricity to cook an egg, ye gotta find a way to harness that power and make it do the cookin'.\n\nNow, I know what ye might be thinkin': \"How do I harness the power of electricity to cook an egg?\" Well, matey, there be a few ways to do it. One way be to use a special device called an \"electric frying pan.\" This be a pan that has a built-in heating element that gets hot when ye plug it into a wall socket. When the element gets hot, ye can crack an egg into the pan and watch as it cook"
},
{"role": "user", "content": "I don't have one of those, just a raw wire and plenty of power! How do we get it done?"}],
"max_tokens": 1024,
"temperature": 0.5
}
}

View File

@@ -0,0 +1,25 @@
meta {
name: chat-completions -stream-
type: http
seq: 6
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/chat/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"messages": [{"role": "user", "content": "Explain how I can set sail on the ocean using only power generated by seagulls?"}],
"max_tokens": 256,
"temperature": 0.9,
"stream": true
}
}

View File

@@ -0,0 +1,22 @@
meta {
name: add model gallery
type: http
seq: 10
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"url": "file:///home/dave/projects/model-gallery/huggingface/TheBloke__CodeLlama-7B-Instruct-GGML.yaml",
"name": "test"
}
}

View File

@@ -0,0 +1,21 @@
meta {
name: delete model gallery
type: http
seq: 11
}
delete {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"name": "test"
}
}

View File

@@ -0,0 +1,11 @@
meta {
name: list MODELS in galleries
type: http
seq: 7
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/available
body: none
auth: none
}

View File

@@ -0,0 +1,11 @@
meta {
name: list model GALLERIES
type: http
seq: 8
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: none
auth: none
}

View File

@@ -0,0 +1,11 @@
meta {
name: model delete
type: http
seq: 7
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: none
auth: none
}

View File

@@ -0,0 +1,21 @@
meta {
name: model gallery apply -gist-
type: http
seq: 12
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/apply
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"id": "TheBloke__CodeLlama-7B-Instruct-GGML__codellama-7b-instruct.ggmlv3.Q2_K.bin"
}
}

View File

@@ -0,0 +1,22 @@
meta {
name: model gallery apply
type: http
seq: 9
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/apply
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"id": "dave@TheBloke__CodeLlama-7B-Instruct-GGML__codellama-7b-instruct.ggmlv3.Q3_K_S.bin",
"name": "codellama7b"
}
}

View File

Binary file not shown.

View File

@@ -0,0 +1,16 @@
meta {
name: transcribe
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/audio/transcriptions
body: multipartForm
auth: none
}
body:multipart-form {
file: @file(transcription/gb1.ogg)
model: whisper-1
}

View File

@@ -0,0 +1,22 @@
meta {
name: -tts
type: http
seq: 2
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/tts
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"input": "A STRANGE GAME.\nTHE ONLY WINNING MOVE IS NOT TO PLAY.\n\nHOW ABOUT A NICE GAME OF CHESS?"
}
}

View File

@@ -0,0 +1,23 @@
meta {
name: musicgen
type: http
seq: 2
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/tts
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"backend": "transformers",
"model": "facebook/musicgen-small",
"input": "80s Synths playing Jazz"
}
}

2
.github/labeler.yml vendored
View File

@@ -1,4 +1,4 @@
enhancement:
enhancements:
- head-branch: ['^feature', 'feature']
dependencies:

View File

@@ -9,7 +9,7 @@ jobs:
fail-fast: false
matrix:
include:
- repository: "ggml-org/llama.cpp"
- repository: "ggerganov/llama.cpp"
variable: "CPPLLAMA_VERSION"
branch: "master"
- repository: "ggerganov/whisper.cpp"

View File

@@ -14,7 +14,7 @@ jobs:
steps:
- name: Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2.3.0
uses: dependabot/fetch-metadata@v2.2.0
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
skip-commit-verification: true

View File

@@ -33,7 +33,7 @@ jobs:
run: |
CGO_ENABLED=0 make build-api
- name: rm
uses: appleboy/ssh-action@v1.2.2
uses: appleboy/ssh-action@v1.2.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
@@ -53,7 +53,7 @@ jobs:
rm: true
target: ./local-ai
- name: restarting
uses: appleboy/ssh-action@v1.2.2
uses: appleboy/ssh-action@v1.2.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}

View File

@@ -2,10 +2,9 @@ name: 'generate and publish GRPC docker caches'
on:
workflow_dispatch:
schedule:
# daily at midnight
- cron: '0 0 * * *'
push:
branches:
- master
concurrency:
group: grpc-cache-${{ github.head_ref || github.ref }}-${{ github.repository }}
@@ -17,7 +16,7 @@ jobs:
matrix:
include:
- grpc-base-image: ubuntu:22.04
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
platforms: 'linux/amd64,linux/arm64'
runs-on: ${{matrix.runs-on}}
steps:

View File

@@ -310,11 +310,6 @@ jobs:
tags: ${{ steps.meta_aio_dockerhub.outputs.tags }}
labels: ${{ steps.meta_aio_dockerhub.outputs.labels }}
- name: Cleanup
run: |
docker builder prune -f
docker system prune --force --volumes --all
- name: Latest tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag'

View File

@@ -18,7 +18,7 @@ jobs:
with:
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.8.0
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
@@ -99,7 +99,7 @@ jobs:
docker run -e -ti -d --name local-ai -p 8080:8080 localai/localai:master-ffmpeg-core run --debug $MODEL_NAME
until [ "`docker inspect -f {{.State.Health.Status}} local-ai`" == "healthy" ]; do echo "Waiting for container to be ready"; docker logs --tail 10 local-ai; sleep 2; done
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.8.0
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json

View File

@@ -24,7 +24,6 @@ RUN apt-get update && \
ca-certificates \
curl libssl-dev \
git \
git-lfs \
unzip upx-ucl && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2025 Ettore Di Giacinto (mudler@localai.io)
Copyright (c) 2023-2024 Ettore Di Giacinto (mudler@localai.io)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -6,7 +6,9 @@ BINARY_NAME=local-ai
DETECT_LIBS?=true
# llama.cpp versions
CPPLLAMA_VERSION?=4663bd353c61c1136cd8a97b9908755e4ab30cec
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=6152129d05870cb38162c422c6ba80434e021e9f
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
@@ -22,7 +24,7 @@ BARKCPP_VERSION?=v1.0.0
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=19d876ee300a055629926ff836489901f734f2b7
STABLEDIFFUSION_GGML_VERSION?=5eb15ef4d022bef4a391de4f5f6556e81fbb5024
ONNX_VERSION?=1.20.0
ONNX_ARCH?=x64
@@ -149,6 +151,7 @@ ifeq ($(BUILD_TYPE),hipblas)
LD_LIBRARY_PATH ?= /opt/rocm/lib:/opt/rocm/llvm/lib
export CXX=$(ROCM_HOME)/llvm/bin/clang++
export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here.
export STABLE_BUILD_TYPE=
export GGML_HIP=1
GPU_TARGETS ?= gfx900,gfx906,gfx908,gfx940,gfx941,gfx942,gfx90a,gfx1030,gfx1031,gfx1100,gfx1101
@@ -185,6 +188,7 @@ ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx2
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx512
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-grpc
ALL_GRPC_BACKENDS+=backend-assets/util/llama-cpp-rpc-server
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
@@ -218,6 +222,19 @@ endif
all: help
## go-llama.cpp
sources/go-llama.cpp:
mkdir -p sources/go-llama.cpp
cd sources/go-llama.cpp && \
git init && \
git remote add origin $(GOLLAMA_REPO) && \
git fetch origin && \
git checkout $(GOLLAMA_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp
$(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
## bark.cpp
sources/bark.cpp:
git clone --recursive $(BARKCPP_REPO) sources/bark.cpp && \
@@ -293,17 +310,19 @@ sources/whisper.cpp:
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a
get-sources: sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp backend/cpp/llama/llama.cpp
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp backend/cpp/llama/llama.cpp
replace:
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
dropreplace:
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
prepare-sources: get-sources replace
$(GOCMD) mod download
@@ -311,6 +330,7 @@ prepare-sources: get-sources replace
## GENERIC
rebuild: ## Rebuilds the project
$(GOCMD) clean -cache
$(MAKE) -C sources/go-llama.cpp clean
$(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-piper clean
$(MAKE) build
@@ -414,7 +434,7 @@ run: prepare ## run local-ai
test-models/testmodel.ggml:
mkdir test-models
mkdir test-dir
wget -q https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-1.5B-Instruct-gguf/resolve/main/Qwen2-1.5B-Instruct.Q2_K.gguf -O test-models/testmodel.ggml
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel.ggml
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
@@ -429,7 +449,8 @@ test: prepare test-models/testmodel.ggml grpcs
export GO_TAGS="tts debug"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/transformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(MAKE) test-llama
$(MAKE) test-llama-gguf
$(MAKE) test-tts
$(MAKE) test-stablediffusion
@@ -458,6 +479,10 @@ teardown-e2e:
rm -rf $(TEST_DIR) || true
docker stop $$(docker ps -q --filter ancestor=localai-tests)
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
@@ -735,6 +760,13 @@ backend-assets/util/llama-cpp-rpc-server: backend-assets/grpc/llama-cpp-grpc
mkdir -p backend-assets/util/
cp -rf backend/cpp/llama-grpc/llama.cpp/build/bin/rpc-server backend-assets/util/llama-cpp-rpc-server
backend-assets/grpc/llama-ggml: sources/go-llama.cpp sources/go-llama.cpp/libbinding.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama.cpp LIBRARY_PATH=$(CURDIR)/sources/go-llama.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/llama-ggml
endif
backend-assets/grpc/bark-cpp: backend/go/bark/libbark.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/bark/ LIBRARY_PATH=$(CURDIR)/backend/go/bark/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bark-cpp ./backend/go/bark/
@@ -829,7 +861,7 @@ swagger:
.PHONY: gen-assets
gen-assets:
$(GOCMD) run core/dependencies_manager/manager.go webui_static.yaml core/http/static/assets
$(GOCMD) run core/dependencies_manager/manager.go embedded/webui_static.yaml core/http/static/assets
## Documentation
docs/layouts/_default:

View File

@@ -212,7 +212,7 @@ A huge thank you to our generous sponsors who support this project covering CI e
<p align="center">
<a href="https://www.spectrocloud.com/" target="blank">
<img height="200" src="https://github.com/user-attachments/assets/72eab1dd-8b93-4fc0-9ade-84db49f24962">
<img height="200" src="https://github.com/go-skynet/LocalAI/assets/2420543/68a6f3cb-8a65-4a4d-99b5-6417a8905512">
</a>
<a href="https://www.premai.io/" target="blank">
<img height="200" src="https://github.com/mudler/LocalAI/assets/2420543/42e4ca83-661e-4f79-8e46-ae43689683d6"> <br>

View File

@@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
embeddings: true
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: huggingface://hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF/llama-3.2-1b-instruct-q4_k_m.gguf
usage: |
You can test this model with curl like this:

View File

@@ -1,57 +1,101 @@
context_size: 8192
f16: true
function:
grammar:
no_mixed_free_string: true
schema_type: llama3.1 # or JSON is supported too (json)
response_regex:
- <function=(?P<name>\w+)>(?P<arguments>.*)</function>
mmap: true
name: gpt-4
mmap: true
parameters:
model: Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
context_size: 8192
stopwords:
- <|im_end|>
- <dummy32000>
- <|eot_id|>
- <|end_of_text|>
- "<|im_end|>"
- "<dummy32000>"
- "</tool_call>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
# disable injecting the "answer" tool
disable_no_action: true
grammar:
# This allows the grammar to also return messages
mixed_mode: true
# Suffix to add to the grammar
#prefix: '<tool_call>\n'
# Force parallel calls in the grammar
# parallel_calls: true
return_name_in_function_response: true
# Without grammar uncomment the lines below
# Warning: this is relying only on the capability of the
# LLM model to generate the correct function call.
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*?)"
replace_llm_results:
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
replace_function_results:
# Replace everything that is not JSON array or object
#
- key: '(?s)^[^{\[]*'
value: ""
- key: '(?s)[^}\]]*$'
value: ""
- key: "'([^']*?)'"
value: "_DQUOTE_${1}_DQUOTE_"
- key: '\\"'
value: "__TEMP_QUOTE__"
- key: "\'"
value: "'"
- key: "_DQUOTE_"
value: '"'
- key: "__TEMP_QUOTE__"
value: '"'
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
template:
chat: |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
{{.Input }}
<|start_header_id|>assistant<|end_header_id|>
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
{{ if .FunctionCall -}}
{{ else if eq .RoleName "tool" -}}
The Function was executed and the response was:
{{ end -}}
{{ if .Content -}}
{{.Content -}}
{{ else if .FunctionCall -}}
{{ range .FunctionCall }}
[{{.FunctionCall.Name}}({{.FunctionCall.Arguments}})]
{{ end }}
{{ end -}}
<|eot_id|>
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
<|start_header_id|>system<|end_header_id|>
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out. If the given question lacks the parameters required by the function, also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format as follows:
[func_name1(params_name1=params_value1,params_name2=params_value2,...),func_name2(params_name1=params_value1,params_name2=params_value2,...)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
{{toJson .Functions}}
<|eot_id|><|start_header_id|>user<|end_header_id|>
{{.Input}}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
download_files:
- filename: Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
sha256: 2e220a14ba4328fee38cf36c2c068261560f999fadb5725ce5c6d977cb5126b5
uri: huggingface://bartowski/Hermes-3-Llama-3.2-3B-GGUF/Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
function: |-
<|im_start|>system
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant

View File

@@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View File

@@ -1,49 +1,31 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: bakllava.gguf
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -129,7 +129,7 @@ detect_gpu
detect_gpu_size
PROFILE="${PROFILE:-$GPU_SIZE}" # default to cpu
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vad.yaml,/aio/${PROFILE}/vision.yaml}"
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
check_vars

View File

@@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:

View File

@@ -1,53 +1,101 @@
context_size: 4096
f16: true
function:
capture_llm_results:
- (?s)<Thought>(.*?)</Thought>
grammar:
properties_order: name,arguments
json_regex_match:
- (?s)<Output>(.*?)</Output>
replace_llm_results:
- key: (?s)<Thought>(.*?)</Thought>
value: ""
mmap: true
name: gpt-4
mmap: true
parameters:
model: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
context_size: 8192
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- "<|im_end|>"
- "<dummy32000>"
- "</tool_call>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
# disable injecting the "answer" tool
disable_no_action: true
grammar:
# This allows the grammar to also return messages
mixed_mode: true
# Suffix to add to the grammar
#prefix: '<tool_call>\n'
# Force parallel calls in the grammar
# parallel_calls: true
return_name_in_function_response: true
# Without grammar uncomment the lines below
# Warning: this is relying only on the capability of the
# LLM model to generate the correct function call.
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*?)"
replace_llm_results:
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
replace_function_results:
# Replace everything that is not JSON array or object
#
- key: '(?s)^[^{\[]*'
value: ""
- key: '(?s)[^}\]]*$'
value: ""
- key: "'([^']*?)'"
value: "_DQUOTE_${1}_DQUOTE_"
- key: '\\"'
value: "__TEMP_QUOTE__"
- key: "\'"
value: "'"
- key: "_DQUOTE_"
value: '"'
- key: "__TEMP_QUOTE__"
value: '"'
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
function: |-
<|im_start|>system
You are an AI assistant that executes function calls, and these are the tools at your disposal:
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
<|im_end|>
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
download_files:
- filename: localai-functioncall-phi-4-v0.3-q4_k_m.gguf
sha256: 23fee048ded2a6e2e1a7b6bbefa6cbf83068f194caa9552aecbaa00fec8a16d5
uri: huggingface://mudler/LocalAI-functioncall-phi-4-v0.3-Q4_K_M-GGUF/localai-functioncall-phi-4-v0.3-q4_k_m.gguf
<|im_start|>assistant

View File

@@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View File

@@ -1,49 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:

View File

@@ -1,53 +1,103 @@
context_size: 4096
f16: true
function:
capture_llm_results:
- (?s)<Thought>(.*?)</Thought>
grammar:
properties_order: name,arguments
json_regex_match:
- (?s)<Output>(.*?)</Output>
replace_llm_results:
- key: (?s)<Thought>(.*?)</Thought>
value: ""
mmap: true
name: gpt-4
mmap: false
context_size: 8192
f16: false
parameters:
model: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- "<|im_end|>"
- "<dummy32000>"
- "</tool_call>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
# disable injecting the "answer" tool
disable_no_action: true
grammar:
# This allows the grammar to also return messages
mixed_mode: true
# Suffix to add to the grammar
#prefix: '<tool_call>\n'
# Force parallel calls in the grammar
# parallel_calls: true
return_name_in_function_response: true
# Without grammar uncomment the lines below
# Warning: this is relying only on the capability of the
# LLM model to generate the correct function call.
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*?)"
replace_llm_results:
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
replace_function_results:
# Replace everything that is not JSON array or object
#
- key: '(?s)^[^{\[]*'
value: ""
- key: '(?s)[^}\]]*$'
value: ""
- key: "'([^']*?)'"
value: "_DQUOTE_${1}_DQUOTE_"
- key: '\\"'
value: "__TEMP_QUOTE__"
- key: "\'"
value: "'"
- key: "_DQUOTE_"
value: '"'
- key: "__TEMP_QUOTE__"
value: '"'
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
function: |-
<|im_start|>system
You are an AI assistant that executes function calls, and these are the tools at your disposal:
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
<|im_end|>
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
download_files:
- filename: localai-functioncall-phi-4-v0.3-q4_k_m.gguf
sha256: 23fee048ded2a6e2e1a7b6bbefa6cbf83068f194caa9552aecbaa00fec8a16d5
uri: huggingface://mudler/LocalAI-functioncall-phi-4-v0.3-Q4_K_M-GGUF/localai-functioncall-phi-4-v0.3-q4_k_m.gguf

View File

@@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View File

@@ -1,50 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
mmap: false
f16: false
name: gpt-4o
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -163,10 +163,6 @@ message Reply {
double timing_token_generation = 5;
}
message GrammarTrigger {
string word = 1;
}
message ModelOptions {
string Model = 1;
int32 ContextSize = 2;
@@ -228,11 +224,6 @@ message ModelOptions {
int32 MaxModelLen = 54;
int32 TensorParallelSize = 55;
string LoadFormat = 58;
bool DisableLogStatus = 66;
string DType = 67;
int32 LimitImagePerPrompt = 68;
int32 LimitVideoPerPrompt = 69;
int32 LimitAudioPerPrompt = 70;
string MMProj = 41;
@@ -256,8 +247,6 @@ message ModelOptions {
string CacheTypeKey = 63;
string CacheTypeValue = 64;
repeated GrammarTrigger GrammarTriggers = 65;
}
message Result {

View File

@@ -22,6 +22,7 @@
#include "backend.grpc.pb.h"
#include "utils.hpp"
#include "sampling.h"
#include "speculative.h"
// include std::regex
#include <cstddef>
#include <thread>
@@ -185,12 +186,45 @@ static json probs_vector_to_json(const llama_context *ctx, const std::vector<com
return out;
}
struct llama_slot_params {
uint32_t seed = -1; // RNG seed
bool stream = true;
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
bool return_tokens = false;
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<common_adapter_lora_info> lora;
std::vector<std::string> antiprompt;
std::vector<std::string> response_fields;
bool timings_per_token = false;
bool post_sampling_probs = false;
bool ignore_eos = false;
json input_prefix;
json input_suffix;
struct common_params_sampling sampling;
struct common_params_speculative speculative;
};
struct llama_client_slot
{
int id;
int task_id = -1;
struct slot_params params;
struct llama_slot_params params;
common_speculative * spec = nullptr;
llama_batch batch_spec = {};
slot_state state = IDLE;
slot_command command = NONE;
@@ -283,6 +317,7 @@ struct llama_client_slot
images.clear();
}
bool has_budget(common_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1)
{
@@ -454,6 +489,10 @@ struct llama_server_context
{
llama_model *model = nullptr;
llama_context *ctx = nullptr;
common_init_result llama_init_dft;
llama_context * ctx_dft = nullptr;
llama_model * model_dft = nullptr;
llama_context_params cparams_dft;
const llama_vocab * vocab = nullptr;
clip_ctx *clp_ctx = nullptr;
@@ -467,10 +506,6 @@ struct llama_server_context
bool all_slots_are_idle = false;
bool add_bos_token = true;
bool has_eos_token = true;
bool has_gpu = false;
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers;
int32_t n_ctx; // total context for all clients / slots
@@ -506,16 +541,14 @@ struct llama_server_context
}
}
bool load_model(const common_params &params_)
{
params = params_;
if (!params.mmproj.empty()) {
multimodal = true;
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_init(params.mmproj.c_str(), clip_context_params {
/* use_gpu */ has_gpu,
/*verbosity=*/ 1,
});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERR("unable to load clip model: %s", params.mmproj.c_str());
return false;
@@ -552,6 +585,45 @@ struct llama_server_context
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params.speculative.model.empty()) {
LOG("loading draft model '%s'\n", params.speculative.model.c_str());
auto params_dft = params;
params_dft.devices = params.speculative.devices;
params_dft.model = params.speculative.model;
params_dft.n_ctx = params.speculative.n_ctx == 0 ? params.n_ctx / params.n_parallel : params.speculative.n_ctx;
params_dft.n_gpu_layers = params.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) {
LOG("failed to load draft model, '%s'\n", params.speculative.model.c_str());
return false;
}
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
LOG("the draft model '%s' is not compatible with the target model '%s'\n", params.speculative.model.c_str(), params.model.c_str());
return false;
}
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
}
return true;
}
@@ -580,6 +652,22 @@ struct llama_server_context
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
if (model_dft) {
slot.batch_spec = llama_batch_init(params.speculative.n_max + 1, 0, 1);
ctx_dft = llama_init_from_model(model_dft, cparams_dft);
if (ctx_dft == nullptr) {
LOG("%s", "failed to create draft context\n");
return;
}
slot.spec = common_speculative_init(ctx_dft);
if (slot.spec == nullptr) {
LOG("%s", "failed to create speculator\n");
return;
}
}
LOG_INFO("new slot", {
{"slot_id", slot.id},
{"n_ctx_slot", slot.n_ctx}
@@ -688,9 +776,11 @@ struct llama_server_context
}
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
llama_slot_params default_params;
common_params_sampling default_sparams;
default_sparams.speculative = params_base.speculative;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
@@ -713,8 +803,15 @@ struct llama_server_context
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
slot->sparams.grammar_triggers = grammar_triggers;
slot->sparams.grammar_lazy = grammar_lazy;
slot->sparams.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
slot->sparams.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
slot->sparams.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
slot->sparams.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
slot->sparams.speculative.n_min = std::max(params.speculative.n_min, 2);
slot->sparams.speculative.n_max = std::max(params.speculative.n_max, 0);
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
// Might be better to reject the request with a 400 ?
@@ -1159,14 +1256,6 @@ struct llama_server_context
slot.has_next_token = false;
}
if (slot.n_past >= slot.n_ctx) {
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false;
LOG_VERBOSE("stopped due to running out of context capacity", {});
}
if (result.tok == llama_vocab_eos(vocab) || llama_vocab_is_eog(vocab, result.tok))
{
slot.stopped_eos = true;
@@ -1354,7 +1443,7 @@ struct llama_server_context
queue_results.send(res);
}
void send_embedding(llama_client_slot &slot, const llama_batch & batch)
void send_embedding(llama_client_slot &slot)
{
task_result res;
res.id = slot.task_id;
@@ -1376,38 +1465,10 @@ struct llama_server_context
else
{
const float *data = llama_get_embeddings(ctx);
std::vector<float> embd_res(n_embd, 0.0f);
std::vector<std::vector<float>> embedding;
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
continue;
}
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
}
if (embd == NULL) {
LOG("failed to get embeddings");
continue;
}
// normalize only when there is pooling
// TODO: configurable
if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
common_embd_normalize(embd, embd_res.data(), n_embd, 2);
embedding.push_back(embd_res);
} else {
embedding.push_back({ embd, embd + n_embd });
}
}
// OAI compat
std::vector<float> embedding(data, data + n_embd);
res.result_json = json
{
{"embedding", embedding[0] },
{"embedding", embedding },
};
}
queue_results.send(res);
@@ -1667,17 +1728,17 @@ struct llama_server_context
{
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
{
// this check is redundant (for good)
// we should never get here, because generation should already stopped in process_token()
// START LOCALAI changes
// Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969)
// See: https://github.com/mudler/LocalAI/issues/1333
// Context is exhausted, release the slot
slot.release();
send_final_response(slot);
slot.has_next_token = false;
LOG_ERROR("context is exhausted, release the slot", {});
slot.cache_tokens.clear();
slot.n_past = 0;
slot.truncated = false;
slot.has_next_token = true;
LOG("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
continue;
// END LOCALAI changes
@@ -2028,7 +2089,7 @@ struct llama_server_context
// prompt evaluated for embedding
if (slot.embedding)
{
send_embedding(slot, batch_view);
send_embedding(slot);
slot.release();
slot.i_batch = -1;
continue;
@@ -2069,6 +2130,97 @@ struct llama_server_context
}
}
// do speculative decoding
for (auto & slot : slots) {
if (!slot.is_processing() || !(ctx_dft && params.speculative.n_max > 0)) {
continue;
}
if (slot.state != PROCESSING) {
continue;
}
// determine the max draft that fits the current slot state
int n_draft_max = slot.params.speculative.n_max;
// note: n_past is not yet increased for the `id` token sampled above
// also, need to leave space for 1 extra token to allow context shifts
n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
if (slot.n_remaining > 0) {
n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
}
LOG("max possible draft: %d\n", n_draft_max);
if (n_draft_max < slot.params.speculative.n_min) {
LOG("the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
continue;
}
llama_token id = slot.sampled;
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft_max;
params_spec.n_reuse = llama_n_ctx(ctx_dft) - slot.params.speculative.n_max;
params_spec.p_min = slot.params.speculative.p_min;
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
LOG("ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
continue;
}
// construct the speculation batch
common_batch_clear(slot.batch_spec);
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
for (size_t i = 0; i < draft.size(); ++i) {
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
}
LOG("decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
llama_decode(ctx, slot.batch_spec);
// the accepted tokens from the speculation
const auto ids = common_sampler_sample_and_accept_n(slot.ctx_sampling, ctx, draft);
slot.n_past += ids.size();
slot.n_decoded += ids.size();
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;
result.tok = ids[i];
result.text_to_send = common_token_to_piece(ctx, result.tok, params.special);
//result.prob = 1.0f; // set later
// TODO: set result.probs
if (!process_token(result, slot)) {
// release slot because of stop condition
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
break;
}
}
LOG("accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
}
LOG_VERBOSE("slots updated", {});
return true;
}
@@ -2122,11 +2274,7 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
}
std::function<void(int)> shutdown_handler;
inline void signal_handler(int signal) {
exit(1);
}
inline void signal_handler(int signal) { shutdown_handler(signal); }
/////////////////////////////////
////////////////////////////////
@@ -2322,7 +2470,7 @@ static std::string get_all_kv_cache_types() {
}
static void params_parse(const backend::ModelOptions* request,
common_params & params, llama_server_context &llama) {
common_params & params) {
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
@@ -2345,6 +2493,30 @@ static void params_parse(const backend::ModelOptions* request,
params.cpuparams.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch();
params.speculative.model = request->draftmodel();
// If options is not NULL, parse options
for (int i = 0; request->options()[i] != NULL; i++) {
char *optname = strtok(request->options()[i], ":");
char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "speculative.n_gpu_layers")) {
params.speculative.n_gpu_layers = std::stoi(optval);
}
if (!strcmp(optname, "speculative.n_ctx")) {
params.speculative.n_ctx = std::stoi(optval);
}
}
if params.speculative.n_gpu_layers == 0 {
params.speculative.n_gpu_layers = params.n_gpu_layers;
}
if params.speculative.n_ctx == 0 {
params.speculative.n_ctx = params.n_ctx;
}
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
//params.n_parallel = 1;
const char *env_parallel = std::getenv("LLAMACPP_PARALLEL");
@@ -2360,20 +2532,6 @@ static void params_parse(const backend::ModelOptions* request,
add_rpc_devices(std::string(llama_grpc_servers));
}
// decode options. Options are in form optname:optvale, or if booleans only optname.
for (int i = 0; i < request->options_size(); i++) {
std::string opt = request->options(i);
char *optname = strtok(&opt[0], ":");
char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "gpu")) {
llama.has_gpu = true;
}
}
// TODO: Add yarn
if (!request->tensorsplit().empty()) {
@@ -2437,21 +2595,6 @@ static void params_parse(const backend::ModelOptions* request,
if ( request->ropefreqscale() != 0.0f ) {
params.rope_freq_scale = request->ropefreqscale();
}
if (request->grammartriggers_size() > 0) {
LOG_INFO("configuring grammar triggers", {});
llama.grammar_lazy = true;
for (int i = 0; i < request->grammartriggers_size(); i++) {
common_grammar_trigger trigger;
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_WORD;
trigger.value = request->grammartriggers(i).word();
// trigger.at_start = request->grammartriggers(i).at_start();
llama.grammar_triggers.push_back(trigger);
LOG_INFO("grammar trigger", {
{ "word", trigger.value },
});
}
}
}
@@ -2467,7 +2610,7 @@ public:
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
// Implement LoadModel RPC
common_params params;
params_parse(request, params, llama);
params_parse(request, params);
llama_backend_init();
llama_numa_init(params.numa);
@@ -2600,18 +2743,6 @@ public:
return grpc::Status::OK;
}
grpc::Status TokenizeString(ServerContext* context, const backend::PredictOptions* request, backend::TokenizationResponse* response){
json data = parse_options(false, request, llama);
std::vector<llama_token> tokens = llama.tokenize(data["prompt"],false);
for (int i=0 ; i< tokens.size(); i++){
response->add_tokens(tokens[i]);
}
return grpc::Status::OK;
}
grpc::Status GetMetrics(ServerContext* context, const backend::MetricsRequest* request, backend::MetricsResponse* response) {
llama_client_slot* active_slot = llama.get_active_slot();
@@ -2653,20 +2784,6 @@ void RunServer(const std::string& server_address) {
int main(int argc, char** argv) {
std::string server_address("localhost:50051");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = signal_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
sigaction(SIGTERM, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
// Define long and short options
struct option long_options[] = {
{"addr", required_argument, nullptr, 'a'},

View File

@@ -35,8 +35,6 @@ const char* sample_method_str[] = {
"ipndm",
"ipndm_v",
"lcm",
"ddim_trailing",
"tcd",
};
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
@@ -175,7 +173,6 @@ int gen_image(char *text, char *negativeText, int width, int height, int steps,
-1, //clip_skip
cfg_scale, // sfg_scale
3.5f,
0, // eta
width,
height,
sample_method,

View File

@@ -0,0 +1,204 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/go-llama.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type LLM struct {
base.SingleThread
llama *llama.LLama
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
llamaOpts := []llama.ModelOption{
llama.WithRopeFreqBase(ropeFreqBase),
llama.WithRopeFreqScale(ropeFreqScale),
}
if opts.NGQA != 0 {
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
}
if opts.RMSNormEps != 0 {
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
}
if opts.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
}
if opts.F16Memory {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
if opts.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if opts.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
}
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
if opts.NBatch != 0 {
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
} else {
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
}
if opts.NUMA {
llamaOpts = append(llamaOpts, llama.EnableNUMA)
}
if opts.LowVRAM {
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
}
model, err := llama.New(opts.ModelFile, llamaOpts...)
llm.llama = model
return err
}
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
predictOptions := []llama.PredictOption{
llama.SetTemperature(opts.Temperature),
llama.SetTopP(opts.TopP),
llama.SetTopK(int(opts.TopK)),
llama.SetTokens(int(opts.Tokens)),
llama.SetThreads(int(opts.Threads)),
llama.WithGrammar(opts.Grammar),
llama.SetRopeFreqBase(ropeFreqBase),
llama.SetRopeFreqScale(ropeFreqScale),
llama.SetNegativePromptScale(opts.NegativePromptScale),
llama.SetNegativePrompt(opts.NegativePrompt),
}
if opts.PromptCacheAll {
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
}
if opts.PromptCacheRO {
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
}
// Expected absolute path
if opts.PromptCachePath != "" {
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
}
if opts.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
}
if opts.MirostatETA != 0 {
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
}
if opts.MirostatTAU != 0 {
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
}
if opts.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
if opts.PresencePenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
}
if opts.NKeep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
}
if opts.F16KV {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if opts.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if opts.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
}
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
predictOptions := buildPredictOptions(opts)
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
results <- token
return true
}))
go func() {
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
close(results)
}()
return nil
}
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
predictOptions := buildPredictOptions(opts)
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
}
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
}

View File

@@ -0,0 +1,19 @@
package main
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

View File

@@ -1,6 +1,6 @@
accelerate
auto-gptq==0.7.1
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi
transformers

View File

@@ -1,4 +1,4 @@
bark==0.1.5
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi

View File

@@ -1,3 +1,3 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
grpcio-tools

View File

@@ -1,4 +1,4 @@
transformers==4.48.3
transformers
accelerate
torch==2.4.1
coqui-tts

View File

@@ -1,6 +1,6 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
transformers==4.48.3
transformers
accelerate
coqui-tts

View File

@@ -1,5 +1,5 @@
torch==2.4.1
torchaudio==2.4.1
transformers==4.48.3
transformers
accelerate
coqui-tts

View File

@@ -1,6 +1,6 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torchaudio==2.4.1+rocm6.0
transformers==4.48.3
transformers
accelerate
coqui-tts

View File

@@ -5,6 +5,6 @@ torchaudio==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
transformers==4.48.3
transformers
accelerate
coqui-tts

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi
packaging==24.1

View File

@@ -159,18 +159,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torchType = torch.float16
variant = "fp16"
options = request.Options
# empty dict
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the images
for opt in options:
key, value = opt.split(":")
self.options[key] = value
local = False
modelFile = request.Model
@@ -453,9 +441,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
kwargs = {key: options.get(key) for key in keys if key in options}
# populate kwargs from self.options.
kwargs.update(self.options)
# Set seed
if request.seed > 0:
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(

View File

@@ -1,5 +1,5 @@
setuptools
grpcio==1.71.0
grpcio==1.69.0
pillow
protobuf
certifi

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi
wheel

View File

@@ -1,3 +1,3 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
grpcio-tools

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
phonemizer
scipy

View File

@@ -1,3 +1,3 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi

View File

@@ -5,4 +5,4 @@ accelerate
transformers
bitsandbytes
outetts
sentence-transformers==3.4.1
sentence-transformers==3.3.1

View File

@@ -6,4 +6,4 @@ accelerate
transformers
bitsandbytes
outetts
sentence-transformers==3.4.1
sentence-transformers==3.3.1

View File

@@ -5,4 +5,4 @@ numba==0.60.0
transformers
bitsandbytes
outetts
sentence-transformers==3.4.1
sentence-transformers==3.3.1

View File

@@ -7,4 +7,4 @@ numba==0.60.0
bitsandbytes
outetts
bitsandbytes
sentence-transformers==3.4.1
sentence-transformers==3.3.1

View File

@@ -8,4 +8,4 @@ numba==0.60.0
intel-extension-for-transformers
bitsandbytes
outetts
sentence-transformers==3.4.1
sentence-transformers==3.3.1

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi
setuptools

View File

@@ -109,17 +109,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
engine_args.swap_space = request.SwapSpace
if request.MaxModelLen != 0:
engine_args.max_model_len = request.MaxModelLen
if request.DisableLogStatus:
engine_args.disable_log_status = request.DisableLogStatus
if request.DType != "":
engine_args.dtype = request.DType
if request.LimitImagePerPrompt != 0 or request.LimitVideoPerPrompt != 0 or request.LimitAudioPerPrompt != 0:
# limit-mm-per-prompt defaults to 1 per modality, based on vLLM docs
engine_args.limit_mm_per_prompt = {
"image": max(request.LimitImagePerPrompt, 1),
"video": max(request.LimitVideoPerPrompt, 1),
"audio": max(request.LimitAudioPerPrompt, 1)
}
try:
self.llm = AsyncLLMEngine.from_engine_args(engine_args)
@@ -280,7 +269,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
def load_image(self, image_path: str):
"""
Load an image from the given file path or base64 encoded data.
Args:
image_path (str): The path to the image file or base64 encoded data.
@@ -299,7 +288,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
def load_video(self, video_path: str):
"""
Load a video from the given file path.
Args:
video_path (str): The path to the image file.
@@ -346,4 +335,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
asyncio.run(serve(args.addr))
asyncio.run(serve(args.addr))

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
grpcio==1.69.0
protobuf
certifi
setuptools

View File

@@ -62,7 +62,7 @@ func New(opts ...config.AppOption) (*Application, error) {
}
}
if err := pkgStartup.InstallModels(options.Galleries, options.ModelPath, options.EnforcePredownloadScans, nil, options.ModelsURL...); err != nil {
if err := pkgStartup.InstallModels(options.Galleries, options.ModelLibraryURL, options.ModelPath, options.EnforcePredownloadScans, nil, options.ModelsURL...); err != nil {
log.Error().Err(err).Msg("error installing models")
}
@@ -145,7 +145,13 @@ func New(opts ...config.AppOption) (*Application, error) {
if options.LoadToMemory != nil {
for _, m := range options.LoadToMemory {
cfg, err := application.BackendLoader().LoadBackendConfigFileByNameDefaultOptions(m, options)
cfg, err := application.BackendLoader().LoadBackendConfigFileByName(m, options.ModelPath,
config.LoadOptionDebug(options.Debug),
config.LoadOptionThreads(options.Threads),
config.LoadOptionContextSize(options.ContextSize),
config.LoadOptionF16(options.F16),
config.ModelPath(options.ModelPath),
)
if err != nil {
return nil, err
}

View File

@@ -33,7 +33,7 @@ type TokenUsage struct {
TimingTokenGeneration float64
}
func ModelInference(ctx context.Context, s string, messages []schema.Message, images, videos, audios []string, loader *model.ModelLoader, c *config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
func ModelInference(ctx context.Context, s string, messages []schema.Message, images, videos, audios []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
// Check if the modelFile exists, if it doesn't try to load it from the gallery
@@ -48,7 +48,7 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
}
}
opts := ModelOptions(*c, o)
opts := ModelOptions(c, o)
inferenceModel, err := loader.Load(opts...)
if err != nil {
return nil, err
@@ -84,7 +84,7 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (LLMResponse, error) {
opts := gRPCPredictOpts(*c, loader.ModelPath)
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
opts.Messages = protoMessages
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
@@ -116,11 +116,6 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
}
if tokenCallback != nil {
if c.TemplateConfig.ReplyPrefix != "" {
tokenCallback(c.TemplateConfig.ReplyPrefix, tokenUsage)
}
ss := ""
var partialRune []byte
@@ -170,13 +165,8 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
tokenUsage.TimingTokenGeneration = reply.TimingTokenGeneration
tokenUsage.TimingPromptProcessing = reply.TimingPromptProcessing
response := string(reply.Message)
if c.TemplateConfig.ReplyPrefix != "" {
response = c.TemplateConfig.ReplyPrefix + response
}
return LLMResponse{
Response: response,
Response: string(reply.Message),
Usage: tokenUsage,
}, err
}

View File

@@ -118,18 +118,9 @@ func grpcModelOpts(c config.BackendConfig) *pb.ModelOptions {
nGPULayers = *c.NGPULayers
}
triggers := make([]*pb.GrammarTrigger, 0)
for _, t := range c.FunctionsConfig.GrammarConfig.GrammarTriggers {
triggers = append(triggers, &pb.GrammarTrigger{
Word: t.Word,
})
}
return &pb.ModelOptions{
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
GrammarTriggers: triggers,
PipelineType: c.Diffusers.PipelineType,
CFGScale: c.CFGScale,
LoraAdapter: c.LoraAdapter,
@@ -158,12 +149,6 @@ func grpcModelOpts(c config.BackendConfig) *pb.ModelOptions {
SwapSpace: int32(c.SwapSpace),
MaxModelLen: int32(c.MaxModelLen),
TensorParallelSize: int32(c.TensorParallelSize),
DisableLogStatus: c.DisableLogStatus,
DType: c.DType,
// LimitMMPerPrompt vLLM
LimitImagePerPrompt: int32(c.LimitMMPerPrompt.LimitImagePerPrompt),
LimitVideoPerPrompt: int32(c.LimitMMPerPrompt.LimitVideoPerPrompt),
LimitAudioPerPrompt: int32(c.LimitMMPerPrompt.LimitAudioPerPrompt),
MMProj: c.MMProj,
FlashAttention: c.FlashAttention,
CacheTypeKey: c.CacheTypeK,

View File

@@ -9,10 +9,10 @@ import (
model "github.com/mudler/LocalAI/pkg/model"
)
func Rerank(request *proto.RerankRequest, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (*proto.RerankResult, error) {
opts := ModelOptions(backendConfig, appConfig)
rerankModel, err := loader.Load(opts...)
func Rerank(modelFile string, request *proto.RerankRequest, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (*proto.RerankResult, error) {
opts := ModelOptions(backendConfig, appConfig, model.WithModel(modelFile))
rerankModel, err := loader.Load(opts...)
if err != nil {
return nil, err
}

View File

@@ -13,6 +13,7 @@ import (
)
func SoundGeneration(
modelFile string,
text string,
duration *float32,
temperature *float32,
@@ -24,9 +25,8 @@ func SoundGeneration(
backendConfig config.BackendConfig,
) (string, *proto.Result, error) {
opts := ModelOptions(backendConfig, appConfig)
opts := ModelOptions(backendConfig, appConfig, model.WithModel(modelFile))
soundGenModel, err := loader.Load(opts...)
if err != nil {
return "", nil, err
}
@@ -44,7 +44,7 @@ func SoundGeneration(
res, err := soundGenModel.SoundGeneration(context.Background(), &proto.SoundGenerationRequest{
Text: text,
Model: backendConfig.Model,
Model: modelFile,
Dst: filePath,
Sample: doSample,
Duration: duration,

View File

@@ -4,17 +4,24 @@ import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc"
"github.com/mudler/LocalAI/pkg/model"
model "github.com/mudler/LocalAI/pkg/model"
)
func ModelTokenize(s string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (schema.TokenizeResponse, error) {
modelFile := backendConfig.Model
var inferenceModel grpc.Backend
var err error
opts := ModelOptions(backendConfig, appConfig)
inferenceModel, err = loader.Load(opts...)
opts := ModelOptions(backendConfig, appConfig, model.WithModel(modelFile))
if backendConfig.Backend == "" {
inferenceModel, err = loader.Load(opts...)
} else {
opts = append(opts, model.WithBackendString(backendConfig.Backend))
inferenceModel, err = loader.Load(opts...)
}
if err != nil {
return schema.TokenizeResponse{}, err
}
@@ -28,10 +35,6 @@ func ModelTokenize(s string, loader *model.ModelLoader, backendConfig config.Bac
return schema.TokenizeResponse{}, err
}
if resp.Tokens == nil {
resp.Tokens = make([]int32, 0)
}
return schema.TokenizeResponse{
Tokens: resp.Tokens,
}, nil

View File

@@ -47,7 +47,7 @@ func ModelTranscription(audio, language string, translate bool, ml *model.ModelL
tks = append(tks, int(t))
}
tr.Segments = append(tr.Segments,
schema.TranscriptionSegment{
schema.Segment{
Text: s.Text,
Id: int(s.Id),
Start: time.Duration(s.Start),

View File

@@ -14,22 +14,28 @@ import (
)
func ModelTTS(
backend,
text,
modelFile,
voice,
language string,
loader *model.ModelLoader,
appConfig *config.ApplicationConfig,
backendConfig config.BackendConfig,
) (string, *proto.Result, error) {
opts := ModelOptions(backendConfig, appConfig, model.WithDefaultBackendString(model.PiperBackend))
ttsModel, err := loader.Load(opts...)
bb := backend
if bb == "" {
bb = model.PiperBackend
}
opts := ModelOptions(backendConfig, appConfig, model.WithBackendString(bb), model.WithModel(modelFile))
ttsModel, err := loader.Load(opts...)
if err != nil {
return "", nil, err
}
if ttsModel == nil {
return "", nil, fmt.Errorf("could not load tts model %q", backendConfig.Model)
return "", nil, fmt.Errorf("could not load piper model")
}
if err := os.MkdirAll(appConfig.AudioDir, 0750); err != nil {
@@ -39,21 +45,22 @@ func ModelTTS(
fileName := utils.GenerateUniqueFileName(appConfig.AudioDir, "tts", ".wav")
filePath := filepath.Join(appConfig.AudioDir, fileName)
// We join the model name to the model path here. This seems to only be done for TTS and is HIGHLY suspect.
// This should be addressed in a follow up PR soon.
// Copying it over nearly verbatim, as TTS backends are not functional without this.
// If the model file is not empty, we pass it joined with the model path
modelPath := ""
// Checking first that it exists and is not outside ModelPath
// TODO: we should actually first check if the modelFile is looking like
// a FS path
mp := filepath.Join(loader.ModelPath, backendConfig.Model)
if _, err := os.Stat(mp); err == nil {
if err := utils.VerifyPath(mp, appConfig.ModelPath); err != nil {
return "", nil, err
if modelFile != "" {
// If the model file is not empty, we pass it joined with the model path
// Checking first that it exists and is not outside ModelPath
// TODO: we should actually first check if the modelFile is looking like
// a FS path
mp := filepath.Join(loader.ModelPath, modelFile)
if _, err := os.Stat(mp); err == nil {
if err := utils.VerifyPath(mp, appConfig.ModelPath); err != nil {
return "", nil, err
}
modelPath = mp
} else {
modelPath = modelFile
}
modelPath = mp
} else {
modelPath = backendConfig.Model // skip this step if it fails?????
}
res, err := ttsModel.TTS(context.Background(), &proto.TTSRequest{

View File

@@ -1,38 +0,0 @@
package backend
import (
"context"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/model"
)
func VAD(request *schema.VADRequest,
ctx context.Context,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
backendConfig config.BackendConfig) (*schema.VADResponse, error) {
opts := ModelOptions(backendConfig, appConfig)
vadModel, err := ml.Load(opts...)
if err != nil {
return nil, err
}
req := proto.VADRequest{
Audio: request.Audio,
}
resp, err := vadModel.VAD(ctx, &req)
if err != nil {
return nil, err
}
segments := []schema.VADSegment{}
for _, s := range resp.Segments {
segments = append(segments, schema.VADSegment{Start: s.Start, End: s.End})
}
return &schema.VADResponse{
Segments: segments,
}, nil
}

View File

@@ -100,7 +100,7 @@ func (mi *ModelsInstall) Run(ctx *cliContext.Context) error {
log.Info().Str("model", modelName).Str("license", model.License).Msg("installing model")
}
err = startup.InstallModels(galleries, mi.ModelsPath, !mi.DisablePredownloadScan, progressCallback, modelName)
err = startup.InstallModels(galleries, "", mi.ModelsPath, !mi.DisablePredownloadScan, progressCallback, modelName)
if err != nil {
return err
}

View File

@@ -32,13 +32,14 @@ type RunCMD struct {
Galleries string `env:"LOCALAI_GALLERIES,GALLERIES" help:"JSON list of galleries" group:"models" default:"${galleries}"`
AutoloadGalleries bool `env:"LOCALAI_AUTOLOAD_GALLERIES,AUTOLOAD_GALLERIES" group:"models"`
RemoteLibrary string `env:"LOCALAI_REMOTE_LIBRARY,REMOTE_LIBRARY" default:"${remoteLibraryURL}" help:"A LocalAI remote library URL" group:"models"`
PreloadModels string `env:"LOCALAI_PRELOAD_MODELS,PRELOAD_MODELS" help:"A List of models to apply in JSON at start" group:"models"`
Models []string `env:"LOCALAI_MODELS,MODELS" help:"A List of model configuration URLs to load" group:"models"`
PreloadModelsConfig string `env:"LOCALAI_PRELOAD_MODELS_CONFIG,PRELOAD_MODELS_CONFIG" help:"A List of models to apply at startup. Path to a YAML config file" group:"models"`
F16 bool `name:"f16" env:"LOCALAI_F16,F16" help:"Enable GPU acceleration" group:"performance"`
Threads int `env:"LOCALAI_THREADS,THREADS" short:"t" help:"Number of threads used for parallel computation. Usage of the number of physical cores in the system is suggested" group:"performance"`
ContextSize int `env:"LOCALAI_CONTEXT_SIZE,CONTEXT_SIZE" help:"Default context size for models" group:"performance"`
ContextSize int `env:"LOCALAI_CONTEXT_SIZE,CONTEXT_SIZE" default:"512" help:"Default context size for models" group:"performance"`
Address string `env:"LOCALAI_ADDRESS,ADDRESS" default:":8080" help:"Bind address for the API server" group:"api"`
CORS bool `env:"LOCALAI_CORS,CORS" help:"" group:"api"`
@@ -89,6 +90,7 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
config.WithDynamicConfigDirPollInterval(r.LocalaiConfigDirPollInterval),
config.WithF16(r.F16),
config.WithStringGalleries(r.Galleries),
config.WithModelLibraryURL(r.RemoteLibrary),
config.WithCors(r.CORS),
config.WithCorsAllowOrigins(r.CORSAllowOrigins),
config.WithCsrf(r.CSRF),

View File

@@ -86,14 +86,13 @@ func (t *SoundGenerationCMD) Run(ctx *cliContext.Context) error {
options := config.BackendConfig{}
options.SetDefaults()
options.Backend = t.Backend
options.Model = t.Model
var inputFile *string
if t.InputFile != "" {
inputFile = &t.InputFile
}
filePath, _, err := backend.SoundGeneration(text,
filePath, _, err := backend.SoundGeneration(t.Model, text,
parseToFloat32Ptr(t.Duration), parseToFloat32Ptr(t.Temperature), &t.DoSample,
inputFile, parseToInt32Ptr(t.InputFileSampleDivisor), ml, opts, options)

View File

@@ -52,10 +52,8 @@ func (t *TTSCMD) Run(ctx *cliContext.Context) error {
options := config.BackendConfig{}
options.SetDefaults()
options.Backend = t.Backend
options.Model = t.Model
filePath, _, err := backend.ModelTTS(text, t.Voice, t.Language, ml, opts, options)
filePath, _, err := backend.ModelTTS(t.Backend, text, t.Model, t.Voice, t.Language, ml, opts, options)
if err != nil {
return err
}

View File

@@ -44,6 +44,8 @@ type ApplicationConfig struct {
DisableGalleryEndpoint bool
LoadToMemory []string
ModelLibraryURL string
Galleries []Gallery
BackendAssets embed.FS
@@ -124,6 +126,12 @@ func WithP2PToken(s string) AppOption {
}
}
func WithModelLibraryURL(url string) AppOption {
return func(o *ApplicationConfig) {
o.ModelLibraryURL = url
}
}
func WithLibPath(path string) AppOption {
return func(o *ApplicationConfig) {
o.LibPath = path

View File

@@ -130,28 +130,25 @@ type LLMConfig struct {
TrimSpace []string `yaml:"trimspace"`
TrimSuffix []string `yaml:"trimsuffix"`
ContextSize *int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraAdapters []string `yaml:"lora_adapters"`
LoraScales []float32 `yaml:"lora_scales"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
LoadFormat string `yaml:"load_format"`
GPUMemoryUtilization float32 `yaml:"gpu_memory_utilization"` // vLLM
TrustRemoteCode bool `yaml:"trust_remote_code"` // vLLM
EnforceEager bool `yaml:"enforce_eager"` // vLLM
SwapSpace int `yaml:"swap_space"` // vLLM
MaxModelLen int `yaml:"max_model_len"` // vLLM
TensorParallelSize int `yaml:"tensor_parallel_size"` // vLLM
DisableLogStatus bool `yaml:"disable_log_stats"` // vLLM
DType string `yaml:"dtype"` // vLLM
LimitMMPerPrompt LimitMMPerPrompt `yaml:"limit_mm_per_prompt"` // vLLM
MMProj string `yaml:"mmproj"`
ContextSize *int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraAdapters []string `yaml:"lora_adapters"`
LoraScales []float32 `yaml:"lora_scales"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
LoadFormat string `yaml:"load_format"`
GPUMemoryUtilization float32 `yaml:"gpu_memory_utilization"` // vLLM
TrustRemoteCode bool `yaml:"trust_remote_code"` // vLLM
EnforceEager bool `yaml:"enforce_eager"` // vLLM
SwapSpace int `yaml:"swap_space"` // vLLM
MaxModelLen int `yaml:"max_model_len"` // vLLM
TensorParallelSize int `yaml:"tensor_parallel_size"` // vLLM
MMProj string `yaml:"mmproj"`
FlashAttention bool `yaml:"flash_attention"`
NoKVOffloading bool `yaml:"no_kv_offloading"`
@@ -169,13 +166,6 @@ type LLMConfig struct {
CFGScale float32 `yaml:"cfg_scale"` // Classifier-Free Guidance Scale
}
// LimitMMPerPrompt is a struct that holds the configuration for the limit-mm-per-prompt config in vLLM
type LimitMMPerPrompt struct {
LimitImagePerPrompt int `yaml:"image"`
LimitVideoPerPrompt int `yaml:"video"`
LimitAudioPerPrompt int `yaml:"audio"`
}
// AutoGPTQ is a struct that holds the configuration specific to the AutoGPTQ backend
type AutoGPTQ struct {
ModelBaseName string `yaml:"model_base_name"`
@@ -213,8 +203,6 @@ type TemplateConfig struct {
Multimodal string `yaml:"multimodal"`
JinjaTemplate bool `yaml:"jinja_template"`
ReplyPrefix string `yaml:"reply_prefix"`
}
func (c *BackendConfig) UnmarshalYAML(value *yaml.Node) error {
@@ -224,15 +212,7 @@ func (c *BackendConfig) UnmarshalYAML(value *yaml.Node) error {
return err
}
*c = BackendConfig(aux)
c.KnownUsecases = GetUsecasesFromYAML(c.KnownUsecaseStrings)
// Make sure the usecases are valid, we rewrite with what we identified
c.KnownUsecaseStrings = []string{}
for k, usecase := range GetAllBackendConfigUsecases() {
if c.HasUsecases(usecase) {
c.KnownUsecaseStrings = append(c.KnownUsecaseStrings, k)
}
}
return nil
}
@@ -307,8 +287,7 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
defaultTopP := 0.95
defaultTopK := 40
defaultTemp := 0.9
// https://github.com/mudler/LocalAI/issues/2780
defaultMirostat := 0
defaultMirostat := 2
defaultMirostatTAU := 5.0
defaultMirostatETA := 0.1
defaultTypicalP := 1.0
@@ -389,6 +368,16 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
cfg.Embeddings = &falseV
}
// Value passed by the top level are treated as default (no implicit defaults)
// defaults are set by the user
if ctx == 0 {
ctx = 1024
}
if cfg.ContextSize == nil {
cfg.ContextSize = &ctx
}
if threads == 0 {
// Threads can't be 0
threads = 4
@@ -410,7 +399,7 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
cfg.Debug = &trueV
}
guessDefaultsFromFile(cfg, lo.modelPath, ctx)
guessDefaultsFromFile(cfg, lo.modelPath)
}
func (c *BackendConfig) Validate() bool {
@@ -447,21 +436,19 @@ func (c *BackendConfig) HasTemplate() bool {
type BackendConfigUsecases int
const (
FLAG_ANY BackendConfigUsecases = 0b00000000000
FLAG_CHAT BackendConfigUsecases = 0b00000000001
FLAG_COMPLETION BackendConfigUsecases = 0b00000000010
FLAG_EDIT BackendConfigUsecases = 0b00000000100
FLAG_EMBEDDINGS BackendConfigUsecases = 0b00000001000
FLAG_RERANK BackendConfigUsecases = 0b00000010000
FLAG_IMAGE BackendConfigUsecases = 0b00000100000
FLAG_TRANSCRIPT BackendConfigUsecases = 0b00001000000
FLAG_TTS BackendConfigUsecases = 0b00010000000
FLAG_SOUND_GENERATION BackendConfigUsecases = 0b00100000000
FLAG_TOKENIZE BackendConfigUsecases = 0b01000000000
FLAG_VAD BackendConfigUsecases = 0b10000000000
FLAG_ANY BackendConfigUsecases = 0b000000000
FLAG_CHAT BackendConfigUsecases = 0b000000001
FLAG_COMPLETION BackendConfigUsecases = 0b000000010
FLAG_EDIT BackendConfigUsecases = 0b000000100
FLAG_EMBEDDINGS BackendConfigUsecases = 0b000001000
FLAG_RERANK BackendConfigUsecases = 0b000010000
FLAG_IMAGE BackendConfigUsecases = 0b000100000
FLAG_TRANSCRIPT BackendConfigUsecases = 0b001000000
FLAG_TTS BackendConfigUsecases = 0b010000000
FLAG_SOUND_GENERATION BackendConfigUsecases = 0b100000000
// Common Subsets
FLAG_LLM BackendConfigUsecases = FLAG_CHAT | FLAG_COMPLETION | FLAG_EDIT
FLAG_LLM BackendConfigUsecases = FLAG_CHAT & FLAG_COMPLETION & FLAG_EDIT
)
func GetAllBackendConfigUsecases() map[string]BackendConfigUsecases {
@@ -476,16 +463,10 @@ func GetAllBackendConfigUsecases() map[string]BackendConfigUsecases {
"FLAG_TRANSCRIPT": FLAG_TRANSCRIPT,
"FLAG_TTS": FLAG_TTS,
"FLAG_SOUND_GENERATION": FLAG_SOUND_GENERATION,
"FLAG_TOKENIZE": FLAG_TOKENIZE,
"FLAG_VAD": FLAG_VAD,
"FLAG_LLM": FLAG_LLM,
}
}
func stringToFlag(s string) string {
return "FLAG_" + strings.ToUpper(s)
}
func GetUsecasesFromYAML(input []string) *BackendConfigUsecases {
if len(input) == 0 {
return nil
@@ -493,7 +474,7 @@ func GetUsecasesFromYAML(input []string) *BackendConfigUsecases {
result := FLAG_ANY
flags := GetAllBackendConfigUsecases()
for _, str := range input {
flag, exists := flags[stringToFlag(str)]
flag, exists := flags["FLAG_"+strings.ToUpper(str)]
if exists {
result |= flag
}
@@ -567,18 +548,5 @@ func (c *BackendConfig) GuessUsecases(u BackendConfigUsecases) bool {
}
}
if (u & FLAG_TOKENIZE) == FLAG_TOKENIZE {
tokenizeCapableBackends := []string{"llama.cpp", "rwkv"}
if !slices.Contains(tokenizeCapableBackends, c.Backend) {
return false
}
}
if (u & FLAG_VAD) == FLAG_VAD {
if c.Backend != "silero-vad" {
return false
}
}
return true
}

View File

@@ -81,10 +81,10 @@ func readMultipleBackendConfigsFromFile(file string, opts ...ConfigLoaderOption)
c := &[]*BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("readMultipleBackendConfigsFromFile cannot read config file %q: %w", file, err)
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("readMultipleBackendConfigsFromFile cannot unmarshal config file %q: %w", file, err)
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
for _, cc := range *c {
@@ -101,10 +101,10 @@ func readBackendConfigFromFile(file string, opts ...ConfigLoaderOption) (*Backen
c := &BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("readBackendConfigFromFile cannot read config file %q: %w", file, err)
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("readBackendConfigFromFile cannot unmarshal config file %q: %w", file, err)
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
c.SetDefaults(opts...)
@@ -117,9 +117,7 @@ func (bcl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath
// Load a config file if present after the model name
cfg := &BackendConfig{
PredictionOptions: schema.PredictionOptions{
BasicModelRequest: schema.BasicModelRequest{
Model: modelName,
},
Model: modelName,
},
}
@@ -147,15 +145,6 @@ func (bcl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath
return cfg, nil
}
func (bcl *BackendConfigLoader) LoadBackendConfigFileByNameDefaultOptions(modelName string, appConfig *ApplicationConfig) (*BackendConfig, error) {
return bcl.LoadBackendConfigFileByName(modelName, appConfig.ModelPath,
LoadOptionDebug(appConfig.Debug),
LoadOptionThreads(appConfig.Threads),
LoadOptionContextSize(appConfig.ContextSize),
LoadOptionF16(appConfig.F16),
ModelPath(appConfig.ModelPath))
}
// This format is currently only used when reading a single file at startup, passed in via ApplicationConfig.ConfigFile
func (bcl *BackendConfigLoader) LoadMultipleBackendConfigsSingleFile(file string, opts ...ConfigLoaderOption) error {
bcl.Lock()
@@ -178,7 +167,7 @@ func (bcl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoa
defer bcl.Unlock()
c, err := readBackendConfigFromFile(file, opts...)
if err != nil {
return fmt.Errorf("LoadBackendConfig cannot read config file %q: %w", file, err)
return fmt.Errorf("cannot read config file: %w", err)
}
if c.Validate() {
@@ -335,10 +324,9 @@ func (bcl *BackendConfigLoader) Preload(modelPath string) error {
func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
bcl.Lock()
defer bcl.Unlock()
entries, err := os.ReadDir(path)
if err != nil {
return fmt.Errorf("LoadBackendConfigsFromPath cannot read directory '%s': %w", path, err)
return fmt.Errorf("cannot read directory '%s': %w", path, err)
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
@@ -356,13 +344,13 @@ func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...
}
c, err := readBackendConfigFromFile(filepath.Join(path, file.Name()), opts...)
if err != nil {
log.Error().Err(err).Str("File Name", file.Name()).Msgf("LoadBackendConfigsFromPath cannot read config file")
log.Error().Err(err).Msgf("cannot read config file: %s", file.Name())
continue
}
if c.Validate() {
bcl.configs[c.Name] = *c
} else {
log.Error().Err(err).Str("Name", c.Name).Msgf("config is not valid")
log.Error().Err(err).Msgf("config is not valid")
}
}

View File

@@ -48,9 +48,9 @@ parameters:
Expect(config.Name).To(Equal("bar-baz"))
Expect(config.Validate()).To(BeTrue())
// download https://raw.githubusercontent.com/mudler/LocalAI/v2.25.0/embedded/models/hermes-2-pro-mistral.yaml
// download https://raw.githubusercontent.com/mudler/LocalAI/master/embedded/models/hermes-2-pro-mistral.yaml
httpClient := http.Client{}
resp, err := httpClient.Get("https://raw.githubusercontent.com/mudler/LocalAI/v2.25.0/embedded/models/hermes-2-pro-mistral.yaml")
resp, err := httpClient.Get("https://raw.githubusercontent.com/mudler/LocalAI/master/embedded/models/hermes-2-pro-mistral.yaml")
Expect(err).To(BeNil())
defer resp.Body.Close()
tmp, err = os.CreateTemp("", "config.yaml")

View File

@@ -1,253 +0,0 @@
package config
import (
"strings"
"github.com/rs/zerolog/log"
gguf "github.com/thxcode/gguf-parser-go"
)
type familyType uint8
const (
Unknown familyType = iota
LLaMa3
CommandR
Phi3
ChatML
Mistral03
Gemma
DeepSeek2
)
const (
defaultContextSize = 1024
)
type settingsConfig struct {
StopWords []string
TemplateConfig TemplateConfig
RepeatPenalty float64
}
// default settings to adopt with a given model family
var defaultsSettings map[familyType]settingsConfig = map[familyType]settingsConfig{
Gemma: {
RepeatPenalty: 1.0,
StopWords: []string{"<|im_end|>", "<end_of_turn>", "<start_of_turn>"},
TemplateConfig: TemplateConfig{
Chat: "{{.Input }}\n<start_of_turn>model\n",
ChatMessage: "<start_of_turn>{{if eq .RoleName \"assistant\" }}model{{else}}{{ .RoleName }}{{end}}\n{{ if .Content -}}\n{{.Content -}}\n{{ end -}}<end_of_turn>",
Completion: "{{.Input}}",
},
},
DeepSeek2: {
StopWords: []string{"<end▁of▁sentence>"},
TemplateConfig: TemplateConfig{
ChatMessage: `{{if eq .RoleName "user" -}}User: {{.Content }}
{{ end -}}
{{if eq .RoleName "assistant" -}}Assistant: {{.Content}}<end▁of▁sentence>{{end}}
{{if eq .RoleName "system" -}}{{.Content}}
{{end -}}`,
Chat: "{{.Input -}}\nAssistant: ",
},
},
LLaMa3: {
StopWords: []string{"<|eot_id|>"},
TemplateConfig: TemplateConfig{
Chat: "<|begin_of_text|>{{.Input }}\n<|start_header_id|>assistant<|end_header_id|>",
ChatMessage: "<|start_header_id|>{{ .RoleName }}<|end_header_id|>\n\n{{.Content }}<|eot_id|>",
},
},
CommandR: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input -}}<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
Functions: `<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
You are a function calling AI model, you can call the following functions:
## Available Tools
{{range .Functions}}
- {"type": "function", "function": {"name": "{{.Name}}", "description": "{{.Description}}", "parameters": {{toJson .Parameters}} }}
{{end}}
When using a tool, reply with JSON, for instance {"name": "tool_name", "arguments": {"param1": "value1", "param2": "value2"}}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{.Input -}}`,
ChatMessage: `{{if eq .RoleName "user" -}}
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if eq .RoleName "system" -}}
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if eq .RoleName "assistant" -}}
<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if eq .RoleName "tool" -}}
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if .FunctionCall -}}
<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{toJson .FunctionCall}}}<|END_OF_TURN_TOKEN|>
{{- end -}}`,
},
StopWords: []string{"<|END_OF_TURN_TOKEN|>"},
},
Phi3: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input}}\n<|assistant|>",
ChatMessage: "<|{{ .RoleName }}|>\n{{.Content}}<|end|>",
Completion: "{{.Input}}",
},
StopWords: []string{"<|end|>", "<|endoftext|>"},
},
ChatML: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input -}}\n<|im_start|>assistant",
Functions: `<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant`,
ChatMessage: `<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>`,
},
StopWords: []string{"<|im_end|>", "<dummy32000>", "</s>"},
},
Mistral03: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input -}}",
Functions: `[AVAILABLE_TOOLS] [{{range .Functions}}{"type": "function", "function": {"name": "{{.Name}}", "description": "{{.Description}}", "parameters": {{toJson .Parameters}} }}{{end}} ] [/AVAILABLE_TOOLS]{{.Input }}`,
ChatMessage: `{{if eq .RoleName "user" -}}
[INST] {{.Content }} [/INST]
{{- else if .FunctionCall -}}
[TOOL_CALLS] {{toJson .FunctionCall}} [/TOOL_CALLS]
{{- else if eq .RoleName "tool" -}}
[TOOL_RESULTS] {{.Content}} [/TOOL_RESULTS]
{{- else -}}
{{ .Content -}}
{{ end -}}`,
},
StopWords: []string{"<|im_end|>", "<dummy32000>", "</tool_call>", "<|eot_id|>", "<|end_of_text|>", "</s>", "[/TOOL_CALLS]", "[/ACTIONS]"},
},
}
// this maps well known template used in HF to model families defined above
var knownTemplates = map[string]familyType{
`{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}`: ChatML,
`{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}`: Mistral03,
}
func guessGGUFFromFile(cfg *BackendConfig, f *gguf.GGUFFile, defaultCtx int) {
if defaultCtx == 0 && cfg.ContextSize == nil {
ctxSize := f.EstimateLLaMACppUsage().ContextSize
if ctxSize > 0 {
cSize := int(ctxSize)
cfg.ContextSize = &cSize
} else {
defaultCtx = defaultContextSize
cfg.ContextSize = &defaultCtx
}
}
if cfg.HasTemplate() {
// nothing to guess here
log.Debug().Any("name", cfg.Name).Msgf("guessDefaultsFromFile: %s", "template already set")
return
}
log.Debug().
Any("eosTokenID", f.Tokenizer().EOSTokenID).
Any("bosTokenID", f.Tokenizer().BOSTokenID).
Any("modelName", f.Model().Name).
Any("architecture", f.Architecture().Architecture).Msgf("Model file loaded: %s", cfg.ModelFileName())
// guess the name
if cfg.Name == "" {
cfg.Name = f.Model().Name
}
family := identifyFamily(f)
if family == Unknown {
log.Debug().Msgf("guessDefaultsFromFile: %s", "family not identified")
return
}
// identify template
settings, ok := defaultsSettings[family]
if ok {
cfg.TemplateConfig = settings.TemplateConfig
log.Debug().Any("family", family).Msgf("guessDefaultsFromFile: guessed template %+v", cfg.TemplateConfig)
if len(cfg.StopWords) == 0 {
cfg.StopWords = settings.StopWords
}
if cfg.RepeatPenalty == 0.0 {
cfg.RepeatPenalty = settings.RepeatPenalty
}
} else {
log.Debug().Any("family", family).Msgf("guessDefaultsFromFile: no template found for family")
}
if cfg.HasTemplate() {
return
}
// identify from well known templates first, otherwise use the raw jinja template
chatTemplate, found := f.Header.MetadataKV.Get("tokenizer.chat_template")
if found {
// try to use the jinja template
cfg.TemplateConfig.JinjaTemplate = true
cfg.TemplateConfig.ChatMessage = chatTemplate.ValueString()
}
}
func identifyFamily(f *gguf.GGUFFile) familyType {
// identify from well known templates first
chatTemplate, found := f.Header.MetadataKV.Get("tokenizer.chat_template")
if found && chatTemplate.ValueString() != "" {
if family, ok := knownTemplates[chatTemplate.ValueString()]; ok {
return family
}
}
// otherwise try to identify from the model properties
arch := f.Architecture().Architecture
eosTokenID := f.Tokenizer().EOSTokenID
bosTokenID := f.Tokenizer().BOSTokenID
isYI := arch == "llama" && bosTokenID == 1 && eosTokenID == 2
// WTF! Mistral0.3 and isYi have same bosTokenID and eosTokenID
llama3 := arch == "llama" && eosTokenID == 128009
commandR := arch == "command-r" && eosTokenID == 255001
qwen2 := arch == "qwen2"
phi3 := arch == "phi-3"
gemma := strings.HasPrefix(arch, "gemma") || strings.Contains(strings.ToLower(f.Model().Name), "gemma")
deepseek2 := arch == "deepseek2"
switch {
case deepseek2:
return DeepSeek2
case gemma:
return Gemma
case llama3:
return LLaMa3
case commandR:
return CommandR
case phi3:
return Phi3
case qwen2, isYI:
return ChatML
default:
return Unknown
}
}

View File

@@ -3,12 +3,147 @@ package config
import (
"os"
"path/filepath"
"strings"
"github.com/rs/zerolog/log"
gguf "github.com/thxcode/gguf-parser-go"
)
func guessDefaultsFromFile(cfg *BackendConfig, modelPath string, defaultCtx int) {
type familyType uint8
const (
Unknown familyType = iota
LLaMa3
CommandR
Phi3
ChatML
Mistral03
Gemma
DeepSeek2
)
type settingsConfig struct {
StopWords []string
TemplateConfig TemplateConfig
RepeatPenalty float64
}
// default settings to adopt with a given model family
var defaultsSettings map[familyType]settingsConfig = map[familyType]settingsConfig{
Gemma: {
RepeatPenalty: 1.0,
StopWords: []string{"<|im_end|>", "<end_of_turn>", "<start_of_turn>"},
TemplateConfig: TemplateConfig{
Chat: "{{.Input }}\n<start_of_turn>model\n",
ChatMessage: "<start_of_turn>{{if eq .RoleName \"assistant\" }}model{{else}}{{ .RoleName }}{{end}}\n{{ if .Content -}}\n{{.Content -}}\n{{ end -}}<end_of_turn>",
Completion: "{{.Input}}",
},
},
DeepSeek2: {
StopWords: []string{"<end▁of▁sentence>"},
TemplateConfig: TemplateConfig{
ChatMessage: `{{if eq .RoleName "user" -}}User: {{.Content }}
{{ end -}}
{{if eq .RoleName "assistant" -}}Assistant: {{.Content}}<end▁of▁sentence>{{end}}
{{if eq .RoleName "system" -}}{{.Content}}
{{end -}}`,
Chat: "{{.Input -}}\nAssistant: ",
},
},
LLaMa3: {
StopWords: []string{"<|eot_id|>"},
TemplateConfig: TemplateConfig{
Chat: "<|begin_of_text|>{{.Input }}\n<|start_header_id|>assistant<|end_header_id|>",
ChatMessage: "<|start_header_id|>{{ .RoleName }}<|end_header_id|>\n\n{{.Content }}<|eot_id|>",
},
},
CommandR: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input -}}<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
Functions: `<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
You are a function calling AI model, you can call the following functions:
## Available Tools
{{range .Functions}}
- {"type": "function", "function": {"name": "{{.Name}}", "description": "{{.Description}}", "parameters": {{toJson .Parameters}} }}
{{end}}
When using a tool, reply with JSON, for instance {"name": "tool_name", "arguments": {"param1": "value1", "param2": "value2"}}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{.Input -}}`,
ChatMessage: `{{if eq .RoleName "user" -}}
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if eq .RoleName "system" -}}
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if eq .RoleName "assistant" -}}
<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if eq .RoleName "tool" -}}
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{.Content}}<|END_OF_TURN_TOKEN|>
{{- else if .FunctionCall -}}
<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{toJson .FunctionCall}}}<|END_OF_TURN_TOKEN|>
{{- end -}}`,
},
StopWords: []string{"<|END_OF_TURN_TOKEN|>"},
},
Phi3: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input}}\n<|assistant|>",
ChatMessage: "<|{{ .RoleName }}|>\n{{.Content}}<|end|>",
Completion: "{{.Input}}",
},
StopWords: []string{"<|end|>", "<|endoftext|>"},
},
ChatML: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input -}}\n<|im_start|>assistant",
Functions: `<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant`,
ChatMessage: `<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>`,
},
StopWords: []string{"<|im_end|>", "<dummy32000>", "</s>"},
},
Mistral03: {
TemplateConfig: TemplateConfig{
Chat: "{{.Input -}}",
Functions: `[AVAILABLE_TOOLS] [{{range .Functions}}{"type": "function", "function": {"name": "{{.Name}}", "description": "{{.Description}}", "parameters": {{toJson .Parameters}} }}{{end}} ] [/AVAILABLE_TOOLS]{{.Input }}`,
ChatMessage: `{{if eq .RoleName "user" -}}
[INST] {{.Content }} [/INST]
{{- else if .FunctionCall -}}
[TOOL_CALLS] {{toJson .FunctionCall}} [/TOOL_CALLS]
{{- else if eq .RoleName "tool" -}}
[TOOL_RESULTS] {{.Content}} [/TOOL_RESULTS]
{{- else -}}
{{ .Content -}}
{{ end -}}`,
},
StopWords: []string{"<|im_end|>", "<dummy32000>", "</tool_call>", "<|eot_id|>", "<|end_of_text|>", "</s>", "[/TOOL_CALLS]", "[/ACTIONS]"},
},
}
// this maps well known template used in HF to model families defined above
var knownTemplates = map[string]familyType{
`{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}`: ChatML,
`{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}`: Mistral03,
}
func guessDefaultsFromFile(cfg *BackendConfig, modelPath string) {
if os.Getenv("LOCALAI_DISABLE_GUESSING") == "true" {
log.Debug().Msgf("guessDefaultsFromFile: %s", "guessing disabled with LOCALAI_DISABLE_GUESSING")
return
@@ -19,20 +154,105 @@ func guessDefaultsFromFile(cfg *BackendConfig, modelPath string, defaultCtx int)
return
}
// We try to guess only if we don't have a template defined already
guessPath := filepath.Join(modelPath, cfg.ModelFileName())
// try to parse the gguf file
f, err := gguf.ParseGGUFFile(guessPath)
if err == nil {
guessGGUFFromFile(cfg, f, defaultCtx)
if cfg.HasTemplate() {
// nothing to guess here
log.Debug().Any("name", cfg.Name).Msgf("guessDefaultsFromFile: %s", "template already set")
return
}
if cfg.ContextSize == nil {
if defaultCtx == 0 {
defaultCtx = defaultContextSize
// We try to guess only if we don't have a template defined already
f, err := gguf.ParseGGUFFile(filepath.Join(modelPath, cfg.ModelFileName()))
if err != nil {
// Only valid for gguf files
log.Debug().Msgf("guessDefaultsFromFile: %s", "not a GGUF file")
return
}
log.Debug().
Any("eosTokenID", f.Tokenizer().EOSTokenID).
Any("bosTokenID", f.Tokenizer().BOSTokenID).
Any("modelName", f.Model().Name).
Any("architecture", f.Architecture().Architecture).Msgf("Model file loaded: %s", cfg.ModelFileName())
// guess the name
if cfg.Name == "" {
cfg.Name = f.Model().Name
}
family := identifyFamily(f)
if family == Unknown {
log.Debug().Msgf("guessDefaultsFromFile: %s", "family not identified")
return
}
// identify template
settings, ok := defaultsSettings[family]
if ok {
cfg.TemplateConfig = settings.TemplateConfig
log.Debug().Any("family", family).Msgf("guessDefaultsFromFile: guessed template %+v", cfg.TemplateConfig)
if len(cfg.StopWords) == 0 {
cfg.StopWords = settings.StopWords
}
cfg.ContextSize = &defaultCtx
if cfg.RepeatPenalty == 0.0 {
cfg.RepeatPenalty = settings.RepeatPenalty
}
} else {
log.Debug().Any("family", family).Msgf("guessDefaultsFromFile: no template found for family")
}
if cfg.HasTemplate() {
return
}
// identify from well known templates first, otherwise use the raw jinja template
chatTemplate, found := f.Header.MetadataKV.Get("tokenizer.chat_template")
if found {
// try to use the jinja template
cfg.TemplateConfig.JinjaTemplate = true
cfg.TemplateConfig.ChatMessage = chatTemplate.ValueString()
}
}
func identifyFamily(f *gguf.GGUFFile) familyType {
// identify from well known templates first
chatTemplate, found := f.Header.MetadataKV.Get("tokenizer.chat_template")
if found && chatTemplate.ValueString() != "" {
if family, ok := knownTemplates[chatTemplate.ValueString()]; ok {
return family
}
}
// otherwise try to identify from the model properties
arch := f.Architecture().Architecture
eosTokenID := f.Tokenizer().EOSTokenID
bosTokenID := f.Tokenizer().BOSTokenID
isYI := arch == "llama" && bosTokenID == 1 && eosTokenID == 2
// WTF! Mistral0.3 and isYi have same bosTokenID and eosTokenID
llama3 := arch == "llama" && eosTokenID == 128009
commandR := arch == "command-r" && eosTokenID == 255001
qwen2 := arch == "qwen2"
phi3 := arch == "phi-3"
gemma := strings.HasPrefix(arch, "gemma") || strings.Contains(strings.ToLower(f.Model().Name), "gemma")
deepseek2 := arch == "deepseek2"
switch {
case deepseek2:
return DeepSeek2
case gemma:
return Gemma
case llama3:
return LLaMa3
case commandR:
return CommandR
case phi3:
return Phi3
case qwen2, isYI:
return ChatML
default:
return Unknown
}
}

View File

@@ -29,8 +29,6 @@ func InstallModelFromGallery(galleries []config.Gallery, name string, basePath s
if err != nil {
return err
}
config.Description = model.Description
config.License = model.License
} else if len(model.ConfigFile) > 0 {
// TODO: is this worse than using the override method with a blank cfg yaml?
reYamlConfig, err := yaml.Marshal(model.ConfigFile)
@@ -116,7 +114,7 @@ func FindModel(models []*GalleryModel, name string, basePath string) *GalleryMod
// List available models
// Models galleries are a list of yaml files that are hosted on a remote server (for example github).
// Each yaml file contains a list of models that can be downloaded and optionally overrides to define a new model setting.
func AvailableGalleryModels(galleries []config.Gallery, basePath string) (GalleryModels, error) {
func AvailableGalleryModels(galleries []config.Gallery, basePath string) ([]*GalleryModel, error) {
var models []*GalleryModel
// Get models from galleries

View File

@@ -48,10 +48,8 @@ var _ = Describe("Model test", func() {
defer os.RemoveAll(tempdir)
gallery := []GalleryModel{{
Metadata: Metadata{
Name: "bert",
URL: bertEmbeddingsURL,
},
Name: "bert",
URL: bertEmbeddingsURL,
}}
out, err := yaml.Marshal(gallery)
Expect(err).ToNot(HaveOccurred())

View File

@@ -11,14 +11,6 @@ import (
// It is used to install the model by resolving the URL and downloading the files.
// The other fields are used to override the configuration of the model.
type GalleryModel struct {
Metadata `json:",inline" yaml:",inline"`
// config_file is read in the situation where URL is blank - and therefore this is a base config.
ConfigFile map[string]interface{} `json:"config_file,omitempty" yaml:"config_file,omitempty"`
// Overrides are used to override the configuration of the model located at URL
Overrides map[string]interface{} `json:"overrides,omitempty" yaml:"overrides,omitempty"`
}
type Metadata struct {
URL string `json:"url,omitempty" yaml:"url,omitempty"`
Name string `json:"name,omitempty" yaml:"name,omitempty"`
Description string `json:"description,omitempty" yaml:"description,omitempty"`
@@ -26,6 +18,10 @@ type Metadata struct {
URLs []string `json:"urls,omitempty" yaml:"urls,omitempty"`
Icon string `json:"icon,omitempty" yaml:"icon,omitempty"`
Tags []string `json:"tags,omitempty" yaml:"tags,omitempty"`
// config_file is read in the situation where URL is blank - and therefore this is a base config.
ConfigFile map[string]interface{} `json:"config_file,omitempty" yaml:"config_file,omitempty"`
// Overrides are used to override the configuration of the model located at URL
Overrides map[string]interface{} `json:"overrides,omitempty" yaml:"overrides,omitempty"`
// AdditionalFiles are used to add additional files to the model
AdditionalFiles []File `json:"files,omitempty" yaml:"files,omitempty"`
// Gallery is a reference to the gallery which contains the model
@@ -62,15 +58,3 @@ func (gm GalleryModels) FindByName(name string) *GalleryModel {
}
return nil
}
func (gm GalleryModels) Paginate(pageNum int, itemsNum int) GalleryModels {
start := (pageNum - 1) * itemsNum
end := start + itemsNum
if start > len(gm) {
start = len(gm)
}
if end > len(gm) {
end = len(gm)
}
return gm[start:end]
}

View File

@@ -9,11 +9,7 @@ import (
var _ = Describe("Gallery API tests", func() {
Context("requests", func() {
It("parses github with a branch", func() {
req := GalleryModel{
Metadata: Metadata{
URL: "github:go-skynet/model-gallery/gpt4all-j.yaml@main",
},
}
req := GalleryModel{URL: "github:go-skynet/model-gallery/gpt4all-j.yaml@main"}
e, err := GetGalleryConfigFromURL(req.URL, "")
Expect(err).ToNot(HaveOccurred())
Expect(e.Name).To(Equal("gpt4all-j"))

View File

@@ -130,6 +130,7 @@ func API(application *application.Application) (*fiber.App, error) {
return metricsService.Shutdown()
})
}
}
// Health Checks should always be exempt from auth, so register these first
routes.HealthRoutes(router)
@@ -139,28 +140,6 @@ func API(application *application.Application) (*fiber.App, error) {
return nil, fmt.Errorf("failed to create key auth config: %w", err)
}
httpFS := http.FS(embedDirStatic)
router.Use(favicon.New(favicon.Config{
URL: "/favicon.ico",
FileSystem: httpFS,
File: "static/favicon.ico",
}))
router.Use("/static", filesystem.New(filesystem.Config{
Root: httpFS,
PathPrefix: "static",
Browse: true,
}))
if application.ApplicationConfig().ImageDir != "" {
router.Static("/generated-images", application.ApplicationConfig().ImageDir)
}
if application.ApplicationConfig().AudioDir != "" {
router.Static("/generated-audio", application.ApplicationConfig().AudioDir)
}
// Auth is applied to _all_ endpoints. No exceptions. Filtering out endpoints to bypass is the role of the Filter property of the KeyAuth Configuration
router.Use(v2keyauth.New(*kaConfig))
@@ -188,15 +167,27 @@ func API(application *application.Application) (*fiber.App, error) {
galleryService := services.NewGalleryService(application.ApplicationConfig())
galleryService.Start(application.ApplicationConfig().Context, application.BackendLoader())
requestExtractor := middleware.NewRequestExtractor(application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig())
routes.RegisterElevenLabsRoutes(router, requestExtractor, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig())
routes.RegisterLocalAIRoutes(router, requestExtractor, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig(), galleryService)
routes.RegisterOpenAIRoutes(router, requestExtractor, application)
routes.RegisterElevenLabsRoutes(router, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig())
routes.RegisterLocalAIRoutes(router, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig(), galleryService)
routes.RegisterOpenAIRoutes(router, application)
if !application.ApplicationConfig().DisableWebUI {
routes.RegisterUIRoutes(router, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig(), galleryService)
}
routes.RegisterJINARoutes(router, requestExtractor, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig())
routes.RegisterJINARoutes(router, application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig())
httpFS := http.FS(embedDirStatic)
router.Use(favicon.New(favicon.Config{
URL: "/favicon.ico",
FileSystem: httpFS,
File: "static/favicon.ico",
}))
router.Use("/static", filesystem.New(filesystem.Config{
Root: httpFS,
PathPrefix: "static",
Browse: true,
}))
// Define a custom 404 handler
// Note: keep this at the bottom!

Some files were not shown because too many files have changed in this diff Show More