Compare commits

..

1 Commits

Author SHA1 Message Date
Ettore Di Giacinto
b16a01d0bd WIP speculative 2025-01-24 10:17:54 +01:00
452 changed files with 35961 additions and 264212 deletions

View File

@@ -0,0 +1,23 @@
meta {
name: musicgen
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/sound-generation
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model_id": "facebook/musicgen-small",
"text": "Exciting 80s Newscast Interstitial",
"duration_seconds": 8
}
}

View File

@@ -0,0 +1,17 @@
meta {
name: backend monitor
type: http
seq: 4
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/backend/monitor
body: json
auth: none
}
body:json {
{
"model": "{{DEFAULT_MODEL}}"
}
}

View File

@@ -0,0 +1,21 @@
meta {
name: backend-shutdown
type: http
seq: 3
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/backend/shutdown
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}"
}
}

View File

@@ -0,0 +1,5 @@
{
"version": "1",
"name": "LocalAI Test Requests",
"type": "collection"
}

View File

@@ -0,0 +1,6 @@
vars {
HOST: localhost
PORT: 8080
DEFAULT_MODEL: gpt-3.5-turbo
PROTOCOL: http://
}

View File

@@ -0,0 +1,11 @@
meta {
name: get models list
type: http
seq: 2
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models
body: none
auth: none
}

View File

@@ -0,0 +1,25 @@
meta {
name: Generate image
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/images/generations
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"prompt": "<positive prompt>|<negative prompt>",
"model": "model-name",
"step": 51,
"size": "1024x1024",
"image": ""
}
}

View File

@@ -0,0 +1,24 @@
meta {
name: -completions
type: http
seq: 4
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"prompt": "function downloadFile(string url, string outputPath) {",
"max_tokens": 256,
"temperature": 0.5
}
}

View File

@@ -0,0 +1,23 @@
meta {
name: -edits
type: http
seq: 5
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/edits
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"input": "What day of the wek is it?",
"instruction": "Fix the spelling mistakes"
}
}

View File

@@ -0,0 +1,22 @@
meta {
name: -embeddings
type: http
seq: 6
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/embeddings
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"input": "A STRANGE GAME.\nTHE ONLY WINNING MOVE IS NOT TO PLAY.\n\nHOW ABOUT A NICE GAME OF CHESS?"
}
}

View File

@@ -0,0 +1,30 @@
meta {
name: chat completion -simple- 1 message-
type: http
seq: 4
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/chat/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"messages": [
{
"role": "user",
"content": "How could one use friction to cook an egg?"
}
],
"max_tokens": 256,
"temperature": 0.2,
"grammar": ""
}
}

View File

@@ -0,0 +1,29 @@
meta {
name: chat-completions -long-
type: http
seq: 5
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/chat/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"messages": [{"role": "system", "content": "You are a helpful, intelligent pirate assistant. Always answer as helpfully as possible, while being a pirate and using pirate language. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."},
{"role": "user", "content": "How could one use electricity to cook an egg?"},
{"role": "assistant",
"content": "Shiver me timbers! Using electricity to cook an egg? Well, matey, I reckon that be a right curious idea! *adjusts spectacles* Now, I ain't sure if this be possible, but I'll do me best to help ye out.\n\nFirst things first, ye gotta understand that electricity be a powerful force, and it can't just cook an egg on its own. Ye see, electricity be like a mighty wind that can make things happen, but it needs somethin' to work with. So, if ye want to use electricity to cook an egg, ye gotta find a way to harness that power and make it do the cookin'.\n\nNow, I know what ye might be thinkin': \"How do I harness the power of electricity to cook an egg?\" Well, matey, there be a few ways to do it. One way be to use a special device called an \"electric frying pan.\" This be a pan that has a built-in heating element that gets hot when ye plug it into a wall socket. When the element gets hot, ye can crack an egg into the pan and watch as it cook"
},
{"role": "user", "content": "I don't have one of those, just a raw wire and plenty of power! How do we get it done?"}],
"max_tokens": 1024,
"temperature": 0.5
}
}

View File

@@ -0,0 +1,25 @@
meta {
name: chat-completions -stream-
type: http
seq: 6
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/chat/completions
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"messages": [{"role": "user", "content": "Explain how I can set sail on the ocean using only power generated by seagulls?"}],
"max_tokens": 256,
"temperature": 0.9,
"stream": true
}
}

View File

@@ -0,0 +1,22 @@
meta {
name: add model gallery
type: http
seq: 10
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"url": "file:///home/dave/projects/model-gallery/huggingface/TheBloke__CodeLlama-7B-Instruct-GGML.yaml",
"name": "test"
}
}

View File

@@ -0,0 +1,21 @@
meta {
name: delete model gallery
type: http
seq: 11
}
delete {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"name": "test"
}
}

View File

@@ -0,0 +1,11 @@
meta {
name: list MODELS in galleries
type: http
seq: 7
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/available
body: none
auth: none
}

View File

@@ -0,0 +1,11 @@
meta {
name: list model GALLERIES
type: http
seq: 8
}
get {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: none
auth: none
}

View File

@@ -0,0 +1,11 @@
meta {
name: model delete
type: http
seq: 7
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: none
auth: none
}

View File

@@ -0,0 +1,21 @@
meta {
name: model gallery apply -gist-
type: http
seq: 12
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/apply
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"id": "TheBloke__CodeLlama-7B-Instruct-GGML__codellama-7b-instruct.ggmlv3.Q2_K.bin"
}
}

View File

@@ -0,0 +1,22 @@
meta {
name: model gallery apply
type: http
seq: 9
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/apply
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"id": "dave@TheBloke__CodeLlama-7B-Instruct-GGML__codellama-7b-instruct.ggmlv3.Q3_K_S.bin",
"name": "codellama7b"
}
}

View File

Binary file not shown.

View File

@@ -0,0 +1,16 @@
meta {
name: transcribe
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/audio/transcriptions
body: multipartForm
auth: none
}
body:multipart-form {
file: @file(transcription/gb1.ogg)
model: whisper-1
}

View File

@@ -0,0 +1,22 @@
meta {
name: -tts
type: http
seq: 2
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/tts
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model": "{{DEFAULT_MODEL}}",
"input": "A STRANGE GAME.\nTHE ONLY WINNING MOVE IS NOT TO PLAY.\n\nHOW ABOUT A NICE GAME OF CHESS?"
}
}

View File

@@ -0,0 +1,23 @@
meta {
name: musicgen
type: http
seq: 2
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/tts
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"backend": "transformers",
"model": "facebook/musicgen-small",
"input": "80s Synths playing Jazz"
}
}

View File

@@ -6,6 +6,7 @@ services:
target: devcontainer
args:
- FFMPEG=true
- IMAGE_TYPE=extras
- GO_TAGS=p2p tts
env_file:
- ../.env

5
.env
View File

@@ -29,9 +29,6 @@
## Enable/Disable single backend (useful if only one GPU is available)
# LOCALAI_SINGLE_ACTIVE_BACKEND=true
# Forces shutdown of the backends if busy (only if LOCALAI_SINGLE_ACTIVE_BACKEND is set)
# LOCALAI_FORCE_BACKEND_SHUTDOWN=true
## Specify a build type. Available: cublas, openblas, clblas.
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
## OpenBLAS: This is an open-source implementation of the BLAS library that aims to provide highly optimized code for various platforms. It includes support for multi-threading and can be compiled to use hardware-specific features for additional performance. OpenBLAS can run on many kinds of hardware, including CPUs from Intel, AMD, and ARM.
@@ -76,7 +73,7 @@
### Define a list of GRPC Servers for llama-cpp workers to distribute the load
# https://github.com/ggerganov/llama.cpp/pull/6829
# https://github.com/ggerganov/llama.cpp/blob/master/tools/rpc/README.md
# https://github.com/ggerganov/llama.cpp/blob/master/examples/rpc/README.md
# LLAMACPP_GRPC_SERVERS=""
### Enable to run parallel requests

View File

@@ -29,6 +29,10 @@ updates:
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/autogptq"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/bark"
schedule:
@@ -61,6 +65,10 @@ updates:
directory: "/backend/python/openvoice"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/parler-tts"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/rerankers"
schedule:

2
.github/labeler.yml vendored
View File

@@ -1,4 +1,4 @@
enhancement:
enhancements:
- head-branch: ['^feature', 'feature']
dependencies:

View File

@@ -1,554 +0,0 @@
---
name: 'build backend container images'
on:
push:
branches:
- master
tags:
- '*'
#pull_request:
concurrency:
group: ci-backends-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
backend-jobs:
uses: ./.github/workflows/backend_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
backend: ${{ matrix.backend }}
latest-image: ${{ matrix.latest-image }}
dockerfile: $${ matrix.dockerfile }}
context: $${ matrix.context }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
fail-fast: false
#max-parallel: ${{ github.event_name != 'pull_request' && 6 || 4 }}
matrix:
include:
# CUDA 11 builds
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-rerankers'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "rerankers"
latest-image: 'latest-gpu-nvidia-cuda-11-rerankers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-vllm'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "vllm"
latest-image: 'latest-gpu-nvidia-cuda-11-vllm'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-transformers'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "transformers"
latest-image: 'latest-gpu-nvidia-cuda-11-transformers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-diffusers'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "diffusers"
latest-image: 'latest-gpu-nvidia-cuda-11-diffusers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# CUDA 11 additional backends
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-kokoro'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "kokoro"
latest-image: 'latest-gpu-nvidia-cuda-11-kokoro'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "faster-whisper"
latest-image: 'latest-gpu-nvidia-cuda-11-faster-whisper'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-coqui'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "coqui"
latest-image: 'latest-gpu-nvidia-cuda-11-coqui'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-bark'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "bark"
latest-image: 'latest-gpu-nvidia-cuda-11-bark'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-11-chatterbox'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "chatterbox"
latest-image: 'latest-gpu-nvidia-cuda-11-chatterbox'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# CUDA 12 builds
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-rerankers'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "rerankers"
latest-image: 'latest-gpu-nvidia-cuda-12-rerankers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-vllm'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "vllm"
latest-image: 'latest-gpu-nvidia-cuda-12-vllm'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-transformers'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "transformers"
latest-image: 'latest-gpu-nvidia-cuda-12-transformers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-diffusers'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "diffusers"
latest-image: 'latest-gpu-nvidia-cuda-12-diffusers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# CUDA 12 additional backends
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-kokoro'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "kokoro"
latest-image: 'latest-gpu-nvidia-cuda-12-kokoro'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "faster-whisper"
latest-image: 'latest-gpu-nvidia-cuda-12-faster-whisper'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-coqui'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "coqui"
latest-image: 'latest-gpu-nvidia-cuda-12-coqui'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-bark'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "bark"
latest-image: 'latest-gpu-nvidia-cuda-12-bark'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-nvidia-cuda-12-chatterbox'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "chatterbox"
latest-image: 'latest-gpu-nvidia-cuda-12-chatterbox'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# hipblas builds
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-rerankers'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "rerankers"
latest-image: 'latest-gpu-rocm-hipblas-rerankers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-vllm'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "vllm"
latest-image: 'latest-gpu-rocm-hipblas-vllm'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-transformers'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "transformers"
latest-image: 'latest-gpu-rocm-hipblas-transformers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-diffusers'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "diffusers"
latest-image: 'latest-gpu-rocm-hipblas-diffusers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# ROCm additional backends
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-kokoro'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "kokoro"
latest-image: 'latest-gpu-rocm-hipblas-kokoro'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "faster-whisper"
latest-image: 'latest-gpu-rocm-hipblas-faster-whisper'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-coqui'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "coqui"
latest-image: 'latest-gpu-rocm-hipblas-coqui'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-rocm-hipblas-bark'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
backend: "bark"
latest-image: 'latest-gpu-rocm-hipblas-bark'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# sycl builds
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-rerankers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "rerankers"
latest-image: 'latest-gpu-intel-sycl-f32-rerankers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-rerankers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "rerankers"
latest-image: 'latest-gpu-intel-sycl-f16-rerankers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-vllm'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "vllm"
latest-image: 'latest-gpu-intel-sycl-f32-vllm'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-vllm'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "vllm"
latest-image: 'latest-gpu-intel-sycl-f16-vllm'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-transformers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "transformers"
latest-image: 'latest-gpu-intel-sycl-f32-transformers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-transformers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "transformers"
latest-image: 'latest-gpu-intel-sycl-f16-transformers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-diffusers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "diffusers"
latest-image: 'latest-gpu-intel-sycl-f32-diffusers'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# SYCL additional backends
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-kokoro'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "kokoro"
latest-image: 'latest-gpu-intel-sycl-f32-kokoro'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-kokoro'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "kokoro"
latest-image: 'latest-gpu-intel-sycl-f16-kokoro'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "faster-whisper"
latest-image: 'latest-gpu-intel-sycl-f32-faster-whisper'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "faster-whisper"
latest-image: 'latest-gpu-intel-sycl-f16-faster-whisper'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-coqui'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "coqui"
latest-image: 'latest-gpu-intel-sycl-f32-coqui'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-coqui'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "coqui"
latest-image: 'latest-gpu-intel-sycl-f16-coqui'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f32-bark'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "bark"
latest-image: 'latest-gpu-intel-sycl-f32-bark'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-gpu-intel-sycl-f16-bark'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
backend: "bark"
latest-image: 'latest-gpu-intel-sycl-f16-bark'
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# bark-cpp
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'true'
tag-suffix: '-bark-cpp'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
backend: "bark"
latest-image: 'latest-bark-cpp'
dockerfile: "./backend/Dockerfile.go"
context: "./"

View File

@@ -1,251 +0,0 @@
---
name: 'build python backend container images (reusable)'
on:
workflow_call:
inputs:
base-image:
description: 'Base image'
required: true
type: string
build-type:
description: 'Build type'
default: ''
type: string
cuda-major-version:
description: 'CUDA major version'
default: "12"
type: string
cuda-minor-version:
description: 'CUDA minor version'
default: "1"
type: string
platforms:
description: 'Platforms'
default: ''
type: string
tag-latest:
description: 'Tag latest'
default: ''
type: string
latest-image:
description: 'Tag latest'
default: ''
type: string
tag-suffix:
description: 'Tag suffix'
default: ''
type: string
runs-on:
description: 'Runs on'
required: true
default: ''
type: string
backend:
description: 'Backend to build'
required: true
type: string
context:
description: 'Build context'
required: true
type: string
dockerfile:
description: 'Build Dockerfile'
required: true
type: string
secrets:
dockerUsername:
required: true
dockerPassword:
required: true
quayUsername:
required: true
quayPassword:
required: true
jobs:
reusable_python_backend-build:
runs-on: ${{ inputs.runs-on }}
steps:
- name: Free Disk Space (Ubuntu)
if: inputs.runs-on == 'ubuntu-latest'
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: true
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Force Install GIT latest
run: |
sudo apt-get update \
&& sudo apt-get install -y software-properties-common \
&& sudo apt-get update \
&& sudo add-apt-repository -y ppa:git-core/ppa \
&& sudo apt-get update \
&& sudo apt-get install -y git
- name: Checkout
uses: actions/checkout@v4
- name: Release space from worker
if: inputs.runs-on == 'ubuntu-latest'
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools snapd || true
sudo apt-get purge --auto-remove android-sdk-platform-tools snapd || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get remove -y microsoft-edge-stable || true
sudo apt-get remove -y firefox || true
sudo apt-get remove -y powershell || true
sudo apt-get remove -y r-base-core || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Docker meta
id: meta
if: github.event_name != 'pull_request'
uses: docker/metadata-action@v5
with:
images: |
quay.io/go-skynet/local-ai-backends
localai/localai-backends
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
type=sha
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
- name: Docker meta for PR
id: meta_pull_request
if: github.event_name == 'pull_request'
uses: docker/metadata-action@v5
with:
images: |
quay.io/go-skynet/ci-tests
tags: |
type=ref,event=branch,suffix=${{ github.event.number }}-${{ inputs.backend }}-${{ inputs.build-type }}-${{ inputs.cuda-major-version }}-${{ inputs.cuda-minor-version }}
type=semver,pattern={{raw}},suffix=${{ github.event.number }}-${{ inputs.backend }}-${{ inputs.build-type }}-${{ inputs.cuda-major-version }}-${{ inputs.cuda-minor-version }}
type=sha,suffix=${{ github.event.number }}-${{ inputs.backend }}-${{ inputs.build-type }}-${{ inputs.cuda-major-version }}-${{ inputs.cuda-minor-version }}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
## End testing image
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
platforms: all
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@master
- name: Login to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
username: ${{ secrets.dockerUsername }}
password: ${{ secrets.dockerPassword }}
- name: Login to Quay.io
# if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ secrets.quayUsername }}
password: ${{ secrets.quayPassword }}
- name: Build and push
uses: docker/build-push-action@v6
if: github.event_name != 'pull_request'
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BUILD_TYPE=${{ inputs.build-type }}
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
BASE_IMAGE=${{ inputs.base-image }}
BACKEND=${{ inputs.backend }}
context: ./backend
file: ./backend/Dockerfile.python
cache-from: type=gha
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
load: ${{ github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
- name: Build and push (PR)
uses: docker/build-push-action@v6
if: github.event_name == 'pull_request'
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BUILD_TYPE=${{ inputs.build-type }}
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
BASE_IMAGE=${{ inputs.base-image }}
BACKEND=${{ inputs.backend }}
context: ./backend
file: ./backend/Dockerfile.python
cache-from: type=gha
platforms: ${{ inputs.platforms }}
push: true
tags: ${{ steps.meta_pull_request.outputs.tags }}
labels: ${{ steps.meta_pull_request.outputs.labels }}
- name: Cleanup
run: |
docker builder prune -f
docker system prune --force --volumes --all
- name: Latest tag
if: github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag'
run: |
docker tag localai/localai-backends:${{ steps.meta.outputs.version }} localai/localai-backends:${{ inputs.latest-image }}
docker push localai/localai-backends:${{ inputs.latest-image }}
docker tag quay.io/go-skynet/local-ai-backends:${{ steps.meta.outputs.version }} quay.io/go-skynet/local-ai-backends:${{ inputs.latest-image }}
docker push quay.io/go-skynet/local-ai-backends:${{ inputs.latest-image }}
- name: job summary
run: |
echo "Built image: ${{ steps.meta.outputs.labels }}" >> $GITHUB_STEP_SUMMARY

View File

@@ -9,10 +9,10 @@ jobs:
fail-fast: false
matrix:
include:
- repository: "ggml-org/llama.cpp"
- repository: "ggerganov/llama.cpp"
variable: "CPPLLAMA_VERSION"
branch: "master"
- repository: "ggml-org/whisper.cpp"
- repository: "ggerganov/whisper.cpp"
variable: "WHISPER_CPP_VERSION"
branch: "master"
- repository: "PABannier/bark.cpp"

View File

@@ -5,7 +5,7 @@ on:
workflow_dispatch:
jobs:
checksum_check:
runs-on: ubuntu-latest
runs-on: arc-runner-set
steps:
- name: Force Install GIT latest
run: |

View File

@@ -14,7 +14,7 @@ jobs:
steps:
- name: Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2.4.0
uses: dependabot/fetch-metadata@v2.2.0
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
skip-commit-verification: true

View File

@@ -33,7 +33,7 @@ jobs:
run: |
CGO_ENABLED=0 make build-api
- name: rm
uses: appleboy/ssh-action@v1.2.2
uses: appleboy/ssh-action@v1.2.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
@@ -42,7 +42,7 @@ jobs:
script: |
sudo rm -rf local-ai/ || true
- name: copy file via ssh
uses: appleboy/scp-action@v1.0.0
uses: appleboy/scp-action@v0.1.7
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
@@ -53,7 +53,7 @@ jobs:
rm: true
target: ./local-ai
- name: restarting
uses: appleboy/ssh-action@v1.2.2
uses: appleboy/ssh-action@v1.2.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}

View File

@@ -2,10 +2,9 @@ name: 'generate and publish GRPC docker caches'
on:
workflow_dispatch:
schedule:
# daily at midnight
- cron: '0 0 * * *'
push:
branches:
- master
concurrency:
group: grpc-cache-${{ github.head_ref || github.ref }}-${{ github.repository }}

View File

@@ -15,7 +15,7 @@ jobs:
strategy:
matrix:
include:
- base-image: intel/oneapi-basekit:2025.1.0-0-devel-ubuntu22.04
- base-image: intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04
runs-on: 'ubuntu-latest'
platforms: 'linux/amd64'
runs-on: ${{matrix.runs-on}}

View File

@@ -9,12 +9,13 @@ concurrency:
cancel-in-progress: true
jobs:
image-build:
extras-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
@@ -32,42 +33,108 @@ jobs:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 4 || 8 }}
fail-fast: false
matrix:
include:
# This is basically covered by the AIO test
# - build-type: ''
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-ffmpeg'
# ffmpeg: 'true'
# image-type: 'extras'
# runs-on: 'arc-runner-set'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-gpu-nvidia-cuda12-ffmpeg'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: 'sycl-f16-ffmpeg'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'vulkan'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-vulkan-ffmpeg-core'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'hipblas'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-hipblas'
# ffmpeg: 'false'
# image-type: 'extras'
# base-image: "rocm/dev-ubuntu-22.04:6.1"
# grpc-base-image: "ubuntu:22.04"
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# - build-type: 'sycl_f16'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
# grpc-base-image: "ubuntu:22.04"
# tag-suffix: 'sycl-f16-ffmpeg'
# ffmpeg: 'true'
# image-type: 'extras'
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# core-image-build:
# uses: ./.github/workflows/image_build.yml
# with:
# tag-latest: ${{ matrix.tag-latest }}
# tag-suffix: ${{ matrix.tag-suffix }}
# ffmpeg: ${{ matrix.ffmpeg }}
# image-type: ${{ matrix.image-type }}
# build-type: ${{ matrix.build-type }}
# cuda-major-version: ${{ matrix.cuda-major-version }}
# cuda-minor-version: ${{ matrix.cuda-minor-version }}
# platforms: ${{ matrix.platforms }}
# runs-on: ${{ matrix.runs-on }}
# base-image: ${{ matrix.base-image }}
# grpc-base-image: ${{ matrix.grpc-base-image }}
# makeflags: ${{ matrix.makeflags }}
# secrets:
# dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
# dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
# quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
# quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
# strategy:
# matrix:
# include:
# - build-type: ''
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'sycl_f16'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
# grpc-base-image: "ubuntu:22.04"
# tag-suffix: 'sycl-f16-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# - build-type: 'cublas'
# cuda-major-version: "12"
# cuda-minor-version: "0"
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-cublas-cuda12-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'vulkan'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-vulkan-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"

View File

@@ -19,6 +19,7 @@ jobs:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
@@ -28,24 +29,238 @@ jobs:
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: 2
matrix:
include:
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
self-hosted-jobs:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 5 || 8 }}
matrix:
include:
# Extra images
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: ''
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11'
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12'
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda11-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-11"
latest-image: 'latest-gpu-nvidia-cuda-11'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-11'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-12"
latest-image: 'latest-gpu-nvidia-cuda-12'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-12'
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: ''
ffmpeg: ''
image-type: 'extras'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'auto'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f16"
latest-image: 'latest-gpu-intel-f16'
latest-image-aio: 'latest-aio-gpu-intel-f16'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'auto'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f32"
latest-image: 'latest-gpu-intel-f32'
latest-image-aio: 'latest-aio-gpu-intel-f32'
makeflags: "--jobs=3 --output-sync=target"
# Core images
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
aio: "-aio-gpu-hipblas"
core-image-build:
uses: ./.github/workflows/image_build.yml
@@ -53,6 +268,7 @@ jobs:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
@@ -62,6 +278,8 @@ jobs:
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
@@ -69,17 +287,20 @@ jobs:
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
#max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
- build-type: ''
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: ''
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
runs-on: 'arc-runner-set'
aio: "-aio-cpu"
latest-image: 'latest-cpu'
latest-image-aio: 'latest-aio-cpu'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas'
@@ -87,62 +308,67 @@ jobs:
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-gpu-nvidia-cuda11'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
tag-suffix: '-cublas-cuda11-core'
ffmpeg: ''
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
aio: "-aio-gpu-nvidia-cuda-11"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-gpu-nvidia-cuda12'
tag-suffix: '-cublas-cuda12-core'
ffmpeg: ''
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11-ffmpeg-core'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
image-type: 'core'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target"
aio: "-aio-gpu-nvidia-cuda-12"
- build-type: 'vulkan'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-vulkan'
tag-suffix: '-vulkan-ffmpeg-core'
latest-image: 'latest-vulkan-ffmpeg-core'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
image-type: 'core'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target"
aio: "-aio-gpu-vulkan"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-gpu-intel-f16'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
aio: "-aio-gpu-intel-f16"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-gpu-intel-f32'
ffmpeg: 'true'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
aio: "-aio-gpu-intel-f32"
gh-runner:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
@@ -152,6 +378,8 @@ jobs:
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
@@ -166,9 +394,11 @@ jobs:
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'false'
tag-suffix: '-nvidia-l4t-arm64'
tag-suffix: '-nvidia-l4t-arm64-core'
latest-image: 'latest-nvidia-l4t-arm64-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'true'
skip-drivers: 'true'

View File

@@ -33,6 +33,14 @@ on:
description: 'Tag latest'
default: ''
type: string
latest-image:
description: 'Tag latest'
default: ''
type: string
latest-image-aio:
description: 'Tag latest'
default: ''
type: string
tag-suffix:
description: 'Tag suffix'
default: ''
@@ -45,6 +53,10 @@ on:
description: 'Skip drivers by default'
default: 'false'
type: string
image-type:
description: 'Image type'
default: ''
type: string
runs-on:
description: 'Runs on'
required: true
@@ -73,22 +85,6 @@ jobs:
reusable_image-build:
runs-on: ${{ inputs.runs-on }}
steps:
- name: Free Disk Space (Ubuntu)
if: inputs.runs-on == 'ubuntu-latest'
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: true
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Force Install GIT latest
run: |
sudo apt-get update \
@@ -110,8 +106,8 @@ jobs:
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools snapd || true
sudo apt-get purge --auto-remove android-sdk-platform-tools snapd || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
@@ -156,18 +152,18 @@ jobs:
type=sha
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }},onlatest=true
suffix=${{ inputs.tag-suffix }}
- name: Docker meta for PR
id: meta_pull_request
if: github.event_name == 'pull_request'
uses: docker/metadata-action@v5
with:
images: |
quay.io/go-skynet/ci-tests
ttl.sh/localai-ci-pr-${{ github.event.number }}
tags: |
type=ref,event=branch,suffix=localai${{ github.event.number }}-${{ inputs.build-type }}-${{ inputs.cuda-major-version }}-${{ inputs.cuda-minor-version }}
type=semver,pattern={{raw}},suffix=localai${{ github.event.number }}-${{ inputs.build-type }}-${{ inputs.cuda-major-version }}-${{ inputs.cuda-minor-version }}
type=sha,suffix=localai${{ github.event.number }}-${{ inputs.build-type }}-${{ inputs.cuda-major-version }}-${{ inputs.cuda-minor-version }}
type=ref,event=branch
type=semver,pattern={{raw}}
type=sha
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
@@ -183,7 +179,7 @@ jobs:
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }},onlatest=true
suffix=${{ inputs.aio }}
- name: Docker meta AIO (dockerhub)
if: inputs.aio != ''
@@ -196,8 +192,7 @@ jobs:
type=ref,event=branch
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }},onlatest=true
suffix=${{ inputs.aio }}
- name: Set up QEMU
uses: docker/setup-qemu-action@master
@@ -237,6 +232,7 @@ jobs:
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
@@ -265,6 +261,7 @@ jobs:
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
@@ -275,9 +272,13 @@ jobs:
file: ./Dockerfile
cache-from: type=gha
platforms: ${{ inputs.platforms }}
#push: true
push: true
tags: ${{ steps.meta_pull_request.outputs.tags }}
labels: ${{ steps.meta_pull_request.outputs.labels }}
- name: Testing image
if: github.event_name == 'pull_request'
run: |
echo "Image is available at ttl.sh/localai-ci-pr-${{ github.event.number }}:${{ steps.meta_pull_request.outputs.version }}" >> $GITHUB_STEP_SUMMARY
## End testing image
- name: Build and push AIO image
if: inputs.aio != ''
@@ -309,6 +310,27 @@ jobs:
tags: ${{ steps.meta_aio_dockerhub.outputs.tags }}
labels: ${{ steps.meta_aio_dockerhub.outputs.labels }}
- name: Latest tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker tag localai/localai:${{ steps.meta.outputs.version }} localai/localai:${{ inputs.latest-image }}
docker push localai/localai:${{ inputs.latest-image }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
- name: Latest AIO tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image-aio != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }}
docker tag localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }} localai/localai:${{ inputs.latest-image-aio }}
docker push localai/localai:${{ inputs.latest-image-aio }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
- name: job summary
run: |
echo "Built image: ${{ steps.meta.outputs.labels }}" >> $GITHUB_STEP_SUMMARY

View File

@@ -8,7 +8,7 @@ jobs:
notify-discord:
if: ${{ (github.event.pull_request.merged == true) && (contains(github.event.pull_request.labels.*.name, 'area/ai-model')) }}
env:
MODEL_NAME: gemma-3-12b-it
MODEL_NAME: hermes-2-theta-llama-3-8b
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
@@ -16,9 +16,9 @@ jobs:
fetch-depth: 0 # needed to checkout all branches for this Action to work
- uses: mudler/localai-github-action@v1
with:
model: 'gemma-3-12b-it' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.8.1
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
@@ -79,7 +79,7 @@ jobs:
args: ${{ steps.summarize.outputs.message }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
@@ -87,7 +87,7 @@ jobs:
notify-twitter:
if: ${{ (github.event.pull_request.merged == true) && (contains(github.event.pull_request.labels.*.name, 'area/ai-model')) }}
env:
MODEL_NAME: gemma-3-12b-it
MODEL_NAME: hermes-2-theta-llama-3-8b
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
@@ -99,7 +99,7 @@ jobs:
docker run -e -ti -d --name local-ai -p 8080:8080 localai/localai:master-ffmpeg-core run --debug $MODEL_NAME
until [ "`docker inspect -f {{.State.Health.Status}} local-ai`" == "healthy" ]; do echo "Waiting for container to be ready"; docker logs --tail 10 local-ai; sleep 2; done
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.8.1
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
@@ -161,7 +161,7 @@ jobs:
TWITTER_ACCESS_TOKEN_SECRET: ${{ secrets.TWITTER_ACCESS_TOKEN_SECRET }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -14,7 +14,7 @@ jobs:
steps:
- uses: mudler/localai-github-action@v1
with:
model: 'gemma-3-12b-it' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
- name: Summarize
id: summarize
run: |
@@ -60,4 +60,4 @@ jobs:
DISCORD_AVATAR: "https://avatars.githubusercontent.com/u/139863280?v=4"
uses: Ilshidur/action-discord@master
with:
args: ${{ steps.summarize.outputs.message }}
args: ${{ steps.summarize.outputs.message }}

View File

@@ -36,7 +36,6 @@ jobs:
sudo apt-get update
sudo apt-get install build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk
sudo apt-get install -qy binutils-aarch64-linux-gnu gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libgmock-dev
make install-go-tools
- name: Install CUDA Dependencies
run: |
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/cross-linux-aarch64/cuda-keyring_1.1-1_all.deb
@@ -124,70 +123,14 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
build-linux:
runs-on: ubuntu-latest
runs-on: arc-runner-set
steps:
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: true
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Release space from worker
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools snapd || true
sudo apt-get purge --auto-remove android-sdk-platform-tools snapd || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get remove -y microsoft-edge-stable || true
sudo apt-get remove -y firefox || true
sudo apt-get remove -y powershell || true
sudo apt-get remove -y r-base-core || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Force Install GIT latest
run: |
sudo apt-get update \
@@ -208,7 +151,6 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install -y wget curl build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk cmake libgmock-dev
make install-go-tools
- name: Intel Dependencies
run: |
wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null
@@ -233,12 +175,17 @@ jobs:
sudo apt-get update
sudo DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends ca-certificates curl libnuma-dev gnupg
sudo apt update
wget https://repo.radeon.com/amdgpu-install/6.4.1/ubuntu/noble/amdgpu-install_6.4.60401-1_all.deb
sudo apt install ./amdgpu-install_6.4.60401-1_all.deb
sudo apt update
curl -sL https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -
sudo amdgpu-install --usecase=rocm
printf "deb [arch=amd64] https://repo.radeon.com/rocm/apt/$ROCM_VERSION/ jammy main" | sudo tee /etc/apt/sources.list.d/rocm.list
printf "deb [arch=amd64] https://repo.radeon.com/amdgpu/$AMDGPU_VERSION/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
printf 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt-get update
sudo DEBIAN_FRONTEND=noninteractive apt-get install -y \
hipblas-dev rocm-dev \
rocblas-dev
sudo apt-get clean
sudo rm -rf /var/lib/apt/lists/*
@@ -285,7 +232,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
@@ -306,7 +253,8 @@ jobs:
- name: Dependencies
run: |
brew install protobuf grpc
make install-go-tools
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@8ba23be9613c672d40ae261d2a1335d639bdd59b
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.0
- name: Build
id: build
run: |
@@ -327,7 +275,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
@@ -347,7 +295,8 @@ jobs:
- name: Dependencies
run: |
brew install protobuf grpc libomp llvm
make install-go-tools
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Build
id: build
run: |
@@ -368,7 +317,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -18,7 +18,7 @@ jobs:
if: ${{ github.actor != 'dependabot[bot]' }}
- name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@v2.22.5
uses: securego/gosec@v2.22.0
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'

View File

@@ -1,24 +0,0 @@
name: 'Close stale issues and PRs'
permissions:
issues: write
pull-requests: write
on:
schedule:
- cron: '30 1 * * *'
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9
with:
stale-issue-message: 'This issue is stale because it has been open 90 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
stale-pr-message: 'This PR is stale because it has been open 90 days with no activity. Remove stale label or comment or this will be closed in 10 days.'
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
close-pr-message: 'This PR was closed because it has been stalled for 10 days with no activity.'
days-before-issue-stale: 90
days-before-pr-stale: 90
days-before-issue-close: 5
days-before-pr-close: 10
exempt-issue-labels: 'roadmap'
exempt-pr-labels: 'roadmap'

View File

@@ -14,28 +14,6 @@ concurrency:
cancel-in-progress: true
jobs:
# Requires CUDA
# tests-chatterbox-tts:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# - name: Test chatterbox-tts
# run: |
# make --jobs=5 --output-sync=target -C backend/python/chatterbox
# make --jobs=5 --output-sync=target -C backend/python/chatterbox test
tests-transformers:
runs-on: ubuntu-latest
steps:
@@ -100,26 +78,6 @@ jobs:
make --jobs=5 --output-sync=target -C backend/python/diffusers
make --jobs=5 --output-sync=target -C backend/python/diffusers test
#tests-vllm:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install -y build-essential ffmpeg
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# - name: Test vllm backend
# run: |
# make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test
# tests-transformers-musicgen:
# runs-on: ubuntu-latest
# steps:

View File

@@ -71,7 +71,7 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ccache upx-ucl curl ffmpeg
sudo apt-get install -y libgmock-dev clang
sudo apt-get install -y libgmock-dev
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
@@ -96,10 +96,9 @@ jobs:
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install github.com/GeertJohan/go.rice/rice@latest
# The python3-grpc-tools package in 22.04 is too old
pip install --user grpcio-tools==1.71.0 grpcio==1.71.0
pip install --user grpcio-tools
make -C backend/python/transformers
@@ -131,7 +130,7 @@ jobs:
PATH="$PATH:/root/go/bin" GO_TAGS="tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
@@ -184,11 +183,10 @@ jobs:
rm protoc.zip
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install github.com/GeertJohan/go.rice/rice@latest
PATH="$PATH:$HOME/go/bin" make protogen-go
- name: Build images
run: |
docker build --build-arg FFMPEG=true --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=extras --build-arg EXTRA_BACKENDS=rerankers --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
- name: Test
run: |
@@ -196,7 +194,7 @@ jobs:
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
@@ -223,8 +221,7 @@ jobs:
- name: Dependencies
run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm
pip install --user --no-cache-dir grpcio-tools==1.71.0 grpcio==1.71.0
go install github.com/GeertJohan/go.rice/rice@latest
pip install --user --no-cache-dir grpcio-tools
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
@@ -235,7 +232,7 @@ jobs:
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -8,7 +8,7 @@ jobs:
steps:
- name: 'Checkout'
uses: actions/checkout@master
- name: 'Yamllint model gallery'
- name: 'Yamllint'
uses: karancode/yamllint-github-action@master
with:
yamllint_file_or_dir: 'gallery'
@@ -16,11 +16,3 @@ jobs:
yamllint_comment: true
env:
GITHUB_ACCESS_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: 'Yamllint Backend gallery'
uses: karancode/yamllint-github-action@master
with:
yamllint_file_or_dir: 'backend'
yamllint_strict: false
yamllint_comment: true
env:
GITHUB_ACCESS_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,27 +1,117 @@
ARG IMAGE_TYPE=extras
ARG BASE_IMAGE=ubuntu:22.04
ARG GRPC_BASE_IMAGE=${BASE_IMAGE}
ARG INTEL_BASE_IMAGE=${BASE_IMAGE}
FROM ${BASE_IMAGE} AS requirements
# The requirements-core target is common to all images. It should not be placed in requirements-core unless every single build will use it.
FROM ${BASE_IMAGE} AS requirements-core
USER root
ARG GO_VERSION=1.22.6
ARG CMAKE_VERSION=3.26.4
ARG CMAKE_FROM_SOURCE=false
ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,faster-whisper:/build/backend/python/faster-whisper/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh"
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ca-certificates curl wget espeak-ng libgomp1 \
python3 python-is-python3 ffmpeg && \
build-essential \
ccache \
ca-certificates \
curl libssl-dev \
git \
unzip upx-ucl && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin
# Install grpc compilers
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2 && \
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
RUN update-ca-certificates
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH=/opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion
RUN apt-get update && \
apt-get install -y --no-install-recommends \
libopenblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
WORKDIR /build
###################################
###################################
# The requirements-extras target is for any builds with IMAGE_TYPE=extras. It should not be placed in this target unless every IMAGE_TYPE=extras build will use it
FROM requirements-core AS requirements-extras
# Install uv as a system package
RUN curl -LsSf https://astral.sh/uv/install.sh | UV_INSTALL_DIR=/usr/bin sh
ENV PATH="/root/.cargo/bin:${PATH}"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get update && \
apt-get install -y --no-install-recommends \
espeak-ng \
espeak \
python3-pip \
python-is-python3 \
python3-dev llvm \
python3-venv && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
pip install --upgrade pip
# Install grpcio-tools (the version in 22.04 is too old)
RUN pip install --user grpcio-tools
###################################
###################################
# The requirements-drivers target is for BUILD_TYPE specific items. If you need to install something specific to CUDA, or specific to ROCM, it goes here.
FROM requirements AS requirements-drivers
# This target will be built on top of requirements-core or requirements-extras as retermined by the IMAGE_TYPE build-arg
FROM requirements-${IMAGE_TYPE} AS requirements-drivers
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=12
ARG CUDA_MINOR_VERSION=0
ARG SKIP_DRIVERS=false
ARG TARGETARCH
ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
# Vulkan requirements
@@ -88,83 +178,6 @@ RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
ldconfig \
; fi
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH=/opt/rocm/bin:${PATH}
###################################
###################################
# The requirements-core target is common to all images. It should not be placed in requirements-core unless every single build will use it.
FROM requirements-drivers AS build-requirements
ARG GO_VERSION=1.22.6
ARG CMAKE_VERSION=3.26.4
ARG CMAKE_FROM_SOURCE=false
ARG TARGETARCH
ARG TARGETVARIANT
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
ccache \
ca-certificates espeak-ng \
curl libssl-dev \
git \
git-lfs \
unzip upx-ucl python3 python-is-python3 && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin
# Install grpc compilers and rice
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2 && \
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af && \
go install github.com/GeertJohan/go.rice/rice@latest
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
RUN update-ca-certificates
# OpenBLAS requirements and stable diffusion
RUN apt-get update && \
apt-get install -y --no-install-recommends \
libopenblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
WORKDIR /build
###################################
###################################
@@ -231,14 +244,13 @@ RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shall
# The builder-base target has the arguments, variables, and copies shared between full builder images and the uncompiled devcontainer
FROM build-requirements AS builder-base
FROM requirements-drivers AS builder-base
ARG GO_TAGS="tts p2p"
ARG GRPC_BACKENDS
ARG MAKEFLAGS
ARG LD_FLAGS="-s -w"
ARG TARGETARCH
ARG TARGETVARIANT
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
ENV GO_TAGS=${GO_TAGS}
ENV MAKEFLAGS=${MAKEFLAGS}
@@ -271,47 +283,26 @@ EOT
###################################
###################################
# Compile backends first in a separate stage
FROM builder-base AS builder-backends
ARG TARGETARCH
ARG TARGETVARIANT
COPY --from=grpc /opt/grpc /usr/local
WORKDIR /build
COPY ./Makefile .
COPY ./backend ./backend
COPY ./go.mod .
COPY ./go.sum .
COPY ./.git ./.git
# Some of the Go backends use libs from the main src, we could further optimize the caching by building the CPP backends before here
COPY ./pkg/grpc ./pkg/grpc
COPY ./pkg/utils ./pkg/utils
COPY ./pkg/langchain ./pkg/langchain
RUN ls -l ./
RUN make backend-assets
RUN make prepare
RUN if [ "${TARGETARCH}" = "arm64" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx512 backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make grpcs; \
else \
make grpcs; \
fi
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
# Adjustments to the build process should likely be made here.
FROM builder-backends AS builder
FROM builder-base AS builder
# Install the pre-built GRPC
COPY --from=grpc /opt/grpc /usr/local
# Rebuild with defaults backends
WORKDIR /build
COPY . .
COPY .git .
RUN make prepare
## Build the binary
## If we're on arm64 AND using cublas/hipblas, skip some of the llama-compat backends to save space
## Otherwise just run the normal build
RUN if [ "${TARGETARCH}" = "arm64" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
## If it's CUDA or hipblas, we want to skip some of the llama-compat backends to save space
## We only leave the most CPU-optimized variant and the fallback for the cublas/hipblas build
## (both will use CUDA or hipblas for the actual computation)
RUN if [ "${BUILD_TYPE}" = "cublas" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx512 backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
else \
make build; \
@@ -330,13 +321,24 @@ RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
FROM builder-base AS devcontainer
ARG FFMPEG
COPY --from=grpc /opt/grpc /usr/local
COPY .devcontainer-scripts /.devcontainer-scripts
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
; fi
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ssh less
ssh less wget
# For the devcontainer, leave apt functional in case additional devtools are needed at runtime.
RUN go install github.com/go-delve/delve/cmd/dlv@latest
@@ -350,16 +352,44 @@ RUN go install github.com/mikefarah/yq/v4@latest
# If you cannot find a more suitable place for an addition, this layer is a suitable place for it.
FROM requirements-drivers
ARG FFMPEG
ARG BUILD_TYPE
ARG TARGETARCH
ARG IMAGE_TYPE=extras
ARG EXTRA_BACKENDS
ARG MAKEFLAGS
ENV BUILD_TYPE=${BUILD_TYPE}
ENV REBUILD=false
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
ENV MAKEFLAGS=${MAKEFLAGS}
ARG CUDA_MAJOR_VERSION=12
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
WORKDIR /
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
; fi
COPY ./entrypoint.sh .
WORKDIR /build
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
# so when `entrypoint.sh` runs `make build` again (which it does by default), the build would fail
# see https://github.com/go-skynet/LocalAI/pull/658#discussion_r1241971626 and
# https://github.com/go-skynet/LocalAI/pull/434
COPY . .
COPY --from=builder /build/sources ./sources/
COPY --from=grpc /opt/grpc /usr/local
RUN make prepare-sources
# Copy the binary
COPY --from=builder /build/local-ai ./
@@ -367,13 +397,56 @@ COPY --from=builder /build/local-ai ./
# Copy shared libraries for piper
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
# Change the shell to bash so we can use [[ tests below
SHELL ["/bin/bash", "-c"]
# We try to strike a balance between individual layer size (as that affects total push time) and total image size
# Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer
# Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer
RUN if [[ ( "${IMAGE_TYPE}" == "extras ")]]; then \
apt-get -qq -y install espeak-ng \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/coqui \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "faster-whisper" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/faster-whisper \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/diffusers \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/kokoro \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama2" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama2 \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vllm" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/vllm \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "autogptq" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/autogptq \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "bark" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/bark \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "rerankers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/rerankers \
; fi
# Make sure the models directory exists
RUN mkdir -p /models /backends
RUN mkdir -p /build/models
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
CMD curl -f ${HEALTHCHECK_ENDPOINT} || exit 1
VOLUME /models /backends
VOLUME /build/models
EXPOSE 8080
ENTRYPOINT [ "/entrypoint.sh" ]
ENTRYPOINT [ "/build/entrypoint.sh" ]

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2025 Ettore Di Giacinto (mudler@localai.io)
Copyright (c) 2023-2024 Ettore Di Giacinto (mudler@localai.io)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

157
Makefile
View File

@@ -6,11 +6,13 @@ BINARY_NAME=local-ai
DETECT_LIBS?=true
# llama.cpp versions
CPPLLAMA_VERSION?=8846aace4934ad29651ea61b8c7e3f6b0556e3d2
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=6152129d05870cb38162c422c6ba80434e021e9f
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggml-org/whisper.cpp
WHISPER_CPP_VERSION?=32cf4e2aba799aff069011f37ca025401433cf9f
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
WHISPER_CPP_VERSION?=6266a9f9e56a5b925e9892acf650f3eb1245814d
# go-piper version
PIPER_REPO?=https://github.com/mudler/go-piper
@@ -21,11 +23,8 @@ BARKCPP_REPO?=https://github.com/PABannier/bark.cpp.git
BARKCPP_VERSION?=v1.0.0
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/richiejp/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=53e3b17eb3d0b5760ced06a1f98320b68b34aaae
# ONEAPI variables for SYCL
export ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=5eb15ef4d022bef4a391de4f5f6556e81fbb5024
ONNX_VERSION?=1.20.0
ONNX_ARCH?=x64
@@ -33,12 +32,8 @@ ONNX_OS?=linux
export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
export CMAKE_ARGS?=-DBUILD_SHARED_LIBS=OFF
export WHISPER_CMAKE_ARGS?=-DBUILD_SHARED_LIBS=OFF
export CMAKE_ARGS?=
export BACKEND_LIBS?=
export WHISPER_DIR=$(abspath ./sources/whisper.cpp)
export WHISPER_INCLUDE_PATH=$(WHISPER_DIR)/include:$(WHISPER_DIR)/ggml/include
export WHISPER_LIBRARY_PATH=$(WHISPER_DIR)/build/src/:$(WHISPER_DIR)/build/ggml/src
CGO_LDFLAGS?=
CGO_LDFLAGS_WHISPER?=
@@ -88,7 +83,6 @@ endif
# IF native is false, we add -DGGML_NATIVE=OFF to CMAKE_ARGS
ifeq ($(NATIVE),false)
CMAKE_ARGS+=-DGGML_NATIVE=OFF
WHISPER_CMAKE_ARGS+=-DGGML_NATIVE=OFF
endif
# Detect if we are running on arm64
@@ -116,31 +110,13 @@ ifeq ($(OS),Darwin)
# disable metal if on Darwin and any other value is explicitly passed.
else ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DGGML_METAL=OFF
WHISPER_CMAKE_ARGS+=-DGGML_METAL=OFF
export GGML_NO_ACCELERATE=1
export GGML_NO_METAL=1
GO_LDFLAGS_WHISPER+=-lggml-blas
export WHISPER_LIBRARY_PATH:=$(WHISPER_LIBRARY_PATH):$(WHISPER_DIR)/build/ggml/src/ggml-blas
endif
ifeq ($(BUILD_TYPE),metal)
# -lcblas removed: it seems to always be listed as a duplicate flag.
CGO_LDFLAGS += -framework Accelerate
CGO_LDFLAGS_WHISPER+=-lggml-metal -lggml-blas
CMAKE_ARGS+=-DGGML_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_USE_BF16=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
CMAKE_ARGS+=-DGGML_OPENMP=OFF
WHISPER_CMAKE_ARGS+=-DGGML_METAL=ON
WHISPER_CMAKE_ARGS+=-DGGML_METAL_USE_BF16=ON
WHISPER_CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
WHISPER_CMAKE_ARGS+=-DWHISPER_BUILD_EXAMPLES=OFF
WHISPER_CMAKE_ARGS+=-DWHISPER_BUILD_TESTS=OFF
WHISPER_CMAKE_ARGS+=-DWHISPER_BUILD_SERVER=OFF
WHISPER_CMAKE_ARGS+=-DGGML_OPENMP=OFF
export WHISPER_LIBRARY_PATH:=$(WHISPER_LIBRARY_PATH):$(WHISPER_DIR)/build/ggml/src/ggml-metal/:$(WHISPER_DIR)/build/ggml/src/ggml-blas
else
CGO_LDFLAGS_WHISPER+=-lggml-blas
export WHISPER_LIBRARY_PATH:=$(WHISPER_LIBRARY_PATH):$(WHISPER_DIR)/build/ggml/src/ggml-blas
endif
else
CGO_LDFLAGS_WHISPER+=-lgomp
@@ -152,29 +128,21 @@ ifeq ($(BUILD_TYPE),openblas)
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH) -L$(CUDA_LIBPATH)/stubs/ -lcuda
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
export GGML_CUDA=1
CMAKE_ARGS+=-DGGML_CUDA=ON
WHISPER_CMAKE_ARGS+=-DGGML_CUDA=ON
CGO_LDFLAGS_WHISPER+=-lcufft -lggml-cuda
export WHISPER_LIBRARY_PATH:=$(WHISPER_LIBRARY_PATH):$(WHISPER_DIR)/build/ggml/src/ggml-cuda/
CGO_LDFLAGS_WHISPER+=-L$(CUDA_LIBPATH)/stubs/ -lcuda -lcufft
endif
ifeq ($(BUILD_TYPE),vulkan)
CMAKE_ARGS+=-DGGML_VULKAN=1
WHISPER_CMAKE_ARGS+=-DGGML_VULKAN=1
CGO_LDFLAGS_WHISPER+=-lggml-vulkan -lvulkan
export WHISPER_LIBRARY_PATH:=$(WHISPER_LIBRARY_PATH):$(WHISPER_DIR)/build/ggml/src/ggml-vulkan/
endif
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export GGML_SYCL=1
CMAKE_ARGS+=-DGGML_SYCL=ON
endif
ifeq ($(BUILD_TYPE),sycl_f16)
export GGML_SYCL_F16=1
CMAKE_ARGS+=-DGGML_SYCL_F16=ON
endif
ifeq ($(BUILD_TYPE),hipblas)
@@ -183,9 +151,10 @@ ifeq ($(BUILD_TYPE),hipblas)
LD_LIBRARY_PATH ?= /opt/rocm/lib:/opt/rocm/llvm/lib
export CXX=$(ROCM_HOME)/llvm/bin/clang++
export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here.
export STABLE_BUILD_TYPE=
export GGML_HIP=1
GPU_TARGETS ?= gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102
GPU_TARGETS ?= gfx900,gfx906,gfx908,gfx940,gfx941,gfx942,gfx90a,gfx1030,gfx1031,gfx1100,gfx1101
AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
CMAKE_ARGS+=-DGGML_HIP=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib
@@ -219,12 +188,14 @@ ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx2
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx512
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-grpc
ALL_GRPC_BACKENDS+=backend-assets/util/llama-cpp-rpc-server
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
ifeq ($(ONNX_OS),linux)
ifeq ($(ONNX_ARCH),x64)
ALL_GRPC_BACKENDS+=backend-assets/grpc/bark-cpp
ALL_GRPC_BACKENDS+=backend-assets/grpc/stablediffusion-ggml
endif
endif
@@ -251,6 +222,19 @@ endif
all: help
## go-llama.cpp
sources/go-llama.cpp:
mkdir -p sources/go-llama.cpp
cd sources/go-llama.cpp && \
git init && \
git remote add origin $(GOLLAMA_REPO) && \
git fetch origin && \
git checkout $(GOLLAMA_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp
$(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
## bark.cpp
sources/bark.cpp:
git clone --recursive $(BARKCPP_REPO) sources/bark.cpp && \
@@ -293,7 +277,11 @@ backend/go/image/stablediffusion-ggml/libsd.a: sources/stablediffusion-ggml.cpp
$(MAKE) -C backend/go/image/stablediffusion-ggml libsd.a
backend-assets/grpc/stablediffusion-ggml: backend/go/image/stablediffusion-ggml/libsd.a backend-assets/grpc
$(MAKE) -C backend/go/image/stablediffusion-ggml CGO_LDFLAGS="$(CGO_LDFLAGS)" stablediffusion-ggml
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/image/stablediffusion-ggml/ LIBRARY_PATH=$(CURDIR)/backend/go/image/stablediffusion-ggml/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion-ggml ./backend/go/image/stablediffusion-ggml/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/stablediffusion-ggml
endif
sources/onnxruntime:
mkdir -p sources/onnxruntime
@@ -319,21 +307,22 @@ sources/whisper.cpp:
git checkout $(WHISPER_CPP_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/whisper.cpp/build/src/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && cmake $(WHISPER_CMAKE_ARGS) . -B ./build
cd sources/whisper.cpp/build && cmake --build . --config Release
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a
get-sources: sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp backend/cpp/llama/llama.cpp
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp backend/cpp/llama/llama.cpp
replace:
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
dropreplace:
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
prepare-sources: get-sources replace
$(GOCMD) mod download
@@ -341,6 +330,7 @@ prepare-sources: get-sources replace
## GENERIC
rebuild: ## Rebuilds the project
$(GOCMD) clean -cache
$(MAKE) -C sources/go-llama.cpp clean
$(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-piper clean
$(MAKE) build
@@ -371,14 +361,8 @@ clean-tests:
clean-dc: clean
cp -r /build/backend-assets /workspace/backend-assets
## Install Go tools
install-go-tools:
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install github.com/GeertJohan/go.rice/rice@latest
## Build:
build: prepare backend-assets grpcs install-go-tools ## Build the project
build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
@@ -388,9 +372,7 @@ ifneq ($(BACKEND_LIBS),)
$(MAKE) backend-assets/lib
cp -f $(BACKEND_LIBS) backend-assets/lib/
endif
rm -rf $(BINARY_NAME) || true
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
rice append --exec $(BINARY_NAME)
build-minimal:
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS="backend-assets/grpc/llama-cpp-avx2" GO_TAGS=p2p $(MAKE) build
@@ -452,7 +434,7 @@ run: prepare ## run local-ai
test-models/testmodel.ggml:
mkdir test-models
mkdir test-dir
wget -q https://huggingface.co/mradermacher/gpt2-alpaca-gpt4-GGUF/resolve/main/gpt2-alpaca-gpt4.Q4_K_M.gguf -O test-models/testmodel.ggml
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel.ggml
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
@@ -462,13 +444,13 @@ prepare-test: grpcs
cp -rf backend-assets core/http
cp tests/models_fixtures/* test-models
## Test targets
test: prepare test-models/testmodel.ggml grpcs
@echo 'Running tests'
export GO_TAGS="tts debug"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/transformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(MAKE) test-llama
$(MAKE) test-llama-gguf
$(MAKE) test-tts
$(MAKE) test-stablediffusion
@@ -497,6 +479,10 @@ teardown-e2e:
rm -rf $(TEST_DIR) || true
docker stop $$(docker ps -q --filter ancestor=localai-tests)
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
@@ -537,7 +523,7 @@ protogen: protogen-go protogen-python
protogen-clean: protogen-go-clean protogen-python-clean
.PHONY: protogen-go
protogen-go: install-go-tools
protogen-go:
mkdir -p pkg/grpc/proto
protoc --experimental_allow_proto3_optional -Ibackend/ --go_out=pkg/grpc/proto/ --go_opt=paths=source_relative --go-grpc_out=pkg/grpc/proto/ --go-grpc_opt=paths=source_relative \
backend/backend.proto
@@ -548,10 +534,18 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: bark-protogen coqui-protogen chatterbox-protogen diffusers-protogen exllama2-protogen rerankers-protogen transformers-protogen kokoro-protogen vllm-protogen faster-whisper-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen rerankers-protogen transformers-protogen kokoro-protogen vllm-protogen faster-whisper-protogen
.PHONY: protogen-python-clean
protogen-python-clean: bark-protogen-clean coqui-protogen-clean chatterbox-protogen-clean diffusers-protogen-clean exllama2-protogen-clean rerankers-protogen-clean transformers-protogen-clean kokoro-protogen-clean vllm-protogen-clean faster-whisper-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean rerankers-protogen-clean transformers-protogen-clean kokoro-protogen-clean vllm-protogen-clean faster-whisper-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
$(MAKE) -C backend/python/autogptq protogen
.PHONY: autogptq-protogen-clean
autogptq-protogen-clean:
$(MAKE) -C backend/python/autogptq protogen-clean
.PHONY: bark-protogen
bark-protogen:
@@ -573,18 +567,10 @@ coqui-protogen-clean:
diffusers-protogen:
$(MAKE) -C backend/python/diffusers protogen
.PHONY: chatterbox-protogen
chatterbox-protogen:
$(MAKE) -C backend/python/chatterbox protogen
.PHONY: diffusers-protogen-clean
diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: chatterbox-protogen-clean
chatterbox-protogen-clean:
$(MAKE) -C backend/python/chatterbox protogen-clean
.PHONY: faster-whisper-protogen
faster-whisper-protogen:
$(MAKE) -C backend/python/faster-whisper protogen
@@ -636,10 +622,10 @@ vllm-protogen-clean:
## GRPC
# Note: it is duplicated in the Dockerfile
prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/autogptq
$(MAKE) -C backend/python/bark
$(MAKE) -C backend/python/coqui
$(MAKE) -C backend/python/diffusers
$(MAKE) -C backend/python/chatterbox
$(MAKE) -C backend/python/faster-whisper
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/rerankers
@@ -650,14 +636,10 @@ prepare-extra-conda-environments: protogen-python
prepare-test-extra: protogen-python
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/diffusers
$(MAKE) -C backend/python/chatterbox
$(MAKE) -C backend/python/vllm
test-extra: prepare-test-extra
$(MAKE) -C backend/python/transformers test
$(MAKE) -C backend/python/diffusers test
$(MAKE) -C backend/python/chatterbox test
$(MAKE) -C backend/python/vllm test
backend-assets:
mkdir -p backend-assets
@@ -778,6 +760,13 @@ backend-assets/util/llama-cpp-rpc-server: backend-assets/grpc/llama-cpp-grpc
mkdir -p backend-assets/util/
cp -rf backend/cpp/llama-grpc/llama.cpp/build/bin/rpc-server backend-assets/util/llama-cpp-rpc-server
backend-assets/grpc/llama-ggml: sources/go-llama.cpp sources/go-llama.cpp/libbinding.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama.cpp LIBRARY_PATH=$(CURDIR)/sources/go-llama.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/llama-ggml
endif
backend-assets/grpc/bark-cpp: backend/go/bark/libbark.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/bark/ LIBRARY_PATH=$(CURDIR)/backend/go/bark/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bark-cpp ./backend/go/bark/
@@ -799,8 +788,8 @@ ifneq ($(UPX),)
$(UPX) backend-assets/grpc/silero-vad
endif
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/build/src/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="${WHISPER_INCLUDE_PATH}" LIBRARY_PATH="${WHISPER_LIBRARY_PATH}" LD_LIBRARY_PATH="${WHISPER_LIBRARY_PATH}" \
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="$(CURDIR)/sources/whisper.cpp/include:$(CURDIR)/sources/whisper.cpp/ggml/include" LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/whisper
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/whisper
@@ -852,17 +841,17 @@ docker-aio-all:
docker-image-intel:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.1.0-0-devel-ubuntu24.04 \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
docker-image-intel-xpu:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.1.0-0-devel-ubuntu22.04 \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
@@ -872,7 +861,7 @@ swagger:
.PHONY: gen-assets
gen-assets:
$(GOCMD) run core/dependencies_manager/manager.go webui_static.yaml core/http/static/assets
$(GOCMD) run core/dependencies_manager/manager.go embedded/webui_static.yaml core/http/static/assets
## Documentation
docs/layouts/_default:

153
README.md
View File

@@ -1,6 +1,7 @@
<h1 align="center">
<br>
<img height="300" src="./core/http/static/logo.png"> <br>
<img height="300" src="https://github.com/go-skynet/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd"> <br>
LocalAI
<br>
</h1>
@@ -30,7 +31,7 @@
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
<img src="https://img.shields.io/badge/X-%23000000.svg?style=for-the-badge&logo=X&logoColor=white&label=LocalAI_API" alt="Follow LocalAI_API"/>
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
</a>
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
@@ -43,137 +44,35 @@
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/mudler/LocalAI-examples) Try on
[![Telegram](https://img.shields.io/badge/Telegram-2CA5E0?style=for-the-badge&logo=telegram&logoColor=white)](https://t.me/localaiofficial_bot)
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/mudler/LocalAI-examples)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU. It is created and maintained by [Ettore Di Giacinto](https://github.com/mudler).
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU. It is created and maintained by [Ettore Di Giacinto](https://github.com/mudler).
## 📚🆕 Local Stack Family
🆕 LocalAI is now part of a comprehensive suite of AI tools designed to work together:
<table>
<tr>
<td width="50%" valign="top">
<a href="https://github.com/mudler/LocalAGI">
<img src="https://raw.githubusercontent.com/mudler/LocalAGI/refs/heads/main/webui/react-ui/public/logo_2.png" width="300" alt="LocalAGI Logo">
</a>
</td>
<td width="50%" valign="top">
<h3><a href="https://github.com/mudler/LocalAGI">LocalAGI</a></h3>
<p>A powerful Local AI agent management platform that serves as a drop-in replacement for OpenAI's Responses API, enhanced with advanced agentic capabilities.</p>
</td>
</tr>
<tr>
<td width="50%" valign="top">
<a href="https://github.com/mudler/LocalRecall">
<img src="https://raw.githubusercontent.com/mudler/LocalRecall/refs/heads/main/static/localrecall_horizontal.png" width="300" alt="LocalRecall Logo">
</a>
</td>
<td width="50%" valign="top">
<h3><a href="https://github.com/mudler/LocalRecall">LocalRecall</a></h3>
<p>A REST-ful API and knowledge base management system that provides persistent memory and storage capabilities for AI agents.</p>
</td>
</tr>
</table>
## Screenshots
| Talk Interface | Generate Audio |
| --- | --- |
| ![Screenshot 2025-03-31 at 12-01-36 LocalAI - Talk](./docs/assets/images/screenshots/screenshot_tts.png) | ![Screenshot 2025-03-31 at 12-01-29 LocalAI - Generate audio with voice-en-us-ryan-low](./docs/assets/images/screenshots/screenshot_tts.png) |
| Models Overview | Generate Images |
| --- | --- |
| ![Screenshot 2025-03-31 at 12-01-20 LocalAI - Models](./docs/assets/images/screenshots/screenshot_gallery.png) | ![Screenshot 2025-03-31 at 12-31-41 LocalAI - Generate images with flux 1-dev](./docs/assets/images/screenshots/screenshot_image.png) |
| Chat Interface | Home |
| --- | --- |
| ![Screenshot 2025-03-31 at 11-57-44 LocalAI - Chat with localai-functioncall-qwen2 5-7b-v0 5](./docs/assets/images/screenshots/screenshot_chat.png) | ![Screenshot 2025-03-31 at 11-57-23 LocalAI API - c2a39e3 (c2a39e3639227cfd94ffffe9f5691239acc275a8)](./docs/assets/images/screenshots/screenshot_home.png) |
| Login | Swarm |
| --- | --- |
|![Screenshot 2025-03-31 at 12-09-59 ](./docs/assets/images/screenshots/screenshot_login.png) | ![Screenshot 2025-03-31 at 12-10-39 LocalAI - P2P dashboard](./docs/assets/images/screenshots/screenshot_p2p.png) |
## 💻 Quickstart
![screen](https://github.com/mudler/LocalAI/assets/2420543/20b5ccd2-8393-44f0-aaf6-87a23806381e)
Run the installer script:
```bash
# Basic installation
curl https://localai.io/install.sh | sh
```
For more installation options, see [Installer Options](https://localai.io/docs/advanced/installer/).
Or run with docker:
### CPU only image:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
```
# CPU only image:
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-cpu
### NVIDIA GPU Images:
```bash
# CUDA 12.0
# Nvidia GPU:
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
# CUDA 11.7
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-11
# CPU and GPU image (bigger size):
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
# NVIDIA Jetson (L4T) ARM64
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-nvidia-l4t-arm64
```
### AMD GPU Images (ROCm):
```bash
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas
```
### Intel GPU Images (oneAPI):
```bash
# Intel GPU with FP16 support
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel-f16
# Intel GPU with FP32 support
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel-f32
```
### Vulkan GPU Images:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-vulkan
```
### AIO Images (pre-downloaded models):
```bash
# CPU version
# AIO images (it will pre-download a set of models ready for use, see https://localai.io/basics/container/)
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
# NVIDIA CUDA 12 version
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
# NVIDIA CUDA 11 version
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-11
# Intel GPU version
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-gpu-intel-f16
# AMD GPU version
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-aio-gpu-hipblas
```
For more information about the AIO images and pre-downloaded models, see [Container Documentation](https://localai.io/basics/container/).
To load models:
```bash
@@ -189,17 +88,10 @@ local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
local-ai run oci://localai/phi-2:latest
```
For more information, see [💻 Getting started](https://localai.io/basics/getting_started/index.html)
[💻 Getting started](https://localai.io/basics/getting_started/index.html)
## 📰 Latest project news
- June 2025: [Backend management](https://github.com/mudler/LocalAI/pull/5607) has been added. Attention: extras images are going to be deprecated from the next release! Read [the backend management PR](https://github.com/mudler/LocalAI/pull/5607).
- May 2025: [Audio input](https://github.com/mudler/LocalAI/pull/5466) and [Reranking](https://github.com/mudler/LocalAI/pull/5396) in llama.cpp backend, [Realtime API](https://github.com/mudler/LocalAI/pull/5392), Support to Gemma, SmollVLM, and more multimodal models (available in the gallery).
- May 2025: Important: image name changes [See release](https://github.com/mudler/LocalAI/releases/tag/v2.29.0)
- Apr 2025: Rebrand, WebUI enhancements
- Apr 2025: [LocalAGI](https://github.com/mudler/LocalAGI) and [LocalRecall](https://github.com/mudler/LocalRecall) join the LocalAI family stack.
- Apr 2025: WebUI overhaul, AIO images updates
- Feb 2025: Backend cleanup, Breaking changes, new backends (kokoro, OutelTTS, faster-whisper), Nvidia L4T images
- Jan 2025: LocalAI model release: https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3, SANA support in diffusers: https://github.com/mudler/LocalAI/pull/4603
- Dec 2024: stablediffusion.cpp backend (ggml) added ( https://github.com/mudler/LocalAI/pull/4289 )
- Nov 2024: Bark.cpp backend added ( https://github.com/mudler/LocalAI/pull/4287 )
@@ -213,6 +105,19 @@ For more information, see [💻 Getting started](https://localai.io/basics/getti
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
## 🔥🔥 Hot topics (looking for help):
- Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729
- Realtime API https://github.com/mudler/LocalAI/issues/3714
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
- Anthropic API: https://github.com/mudler/LocalAI/issues/1808
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
## 🚀 [Features](https://localai.io/features/)
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `transformers`, `vllm` ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
@@ -226,10 +131,12 @@ Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3A
- 🥽 [Vision API](https://localai.io/features/gpt-vision/)
- 📈 [Reranker API](https://localai.io/features/reranker/)
- 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/)
- [Agentic capabilities](https://github.com/mudler/LocalAGI)
- 🔊 Voice activity detection (Silero-VAD support)
- 🌍 Integrated WebUI!
## 💻 Usage
Check out the [Getting started](https://localai.io/basics/getting_started/index.html) section in our documentation.
### 🔗 Community and integrations
@@ -305,7 +212,7 @@ A huge thank you to our generous sponsors who support this project covering CI e
<p align="center">
<a href="https://www.spectrocloud.com/" target="blank">
<img height="200" src="https://github.com/user-attachments/assets/72eab1dd-8b93-4fc0-9ade-84db49f24962">
<img height="200" src="https://github.com/go-skynet/LocalAI/assets/2420543/68a6f3cb-8a65-4a4d-99b5-6417a8905512">
</a>
<a href="https://www.premai.io/" target="blank">
<img height="200" src="https://github.com/mudler/LocalAI/assets/2420543/42e4ca83-661e-4f79-8e46-ae43689683d6"> <br>

View File

@@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
embeddings: true
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: huggingface://hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF/llama-3.2-1b-instruct-q4_k_m.gguf
usage: |
You can test this model with curl like this:

View File

@@ -1,13 +1,7 @@
name: jina-reranker-v1-base-en
reranking: true
f16: true
backend: rerankers
parameters:
model: jina-reranker-v1-tiny-en.f16.gguf
download_files:
- filename: jina-reranker-v1-tiny-en.f16.gguf
sha256: 5f696cf0d0f3d347c4a279eee8270e5918554cdac0ed1f632f2619e4e8341407
uri: huggingface://mradermacher/jina-reranker-v1-tiny-en-GGUF/jina-reranker-v1-tiny-en.f16.gguf
model: cross-encoder
usage: |
You can test this model with curl like this:

View File

@@ -1,57 +1,101 @@
context_size: 8192
f16: true
function:
grammar:
no_mixed_free_string: true
schema_type: llama3.1 # or JSON is supported too (json)
response_regex:
- <function=(?P<name>\w+)>(?P<arguments>.*)</function>
mmap: true
name: gpt-4
mmap: true
parameters:
model: Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
context_size: 8192
stopwords:
- <|im_end|>
- <dummy32000>
- <|eot_id|>
- <|end_of_text|>
- "<|im_end|>"
- "<dummy32000>"
- "</tool_call>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
# disable injecting the "answer" tool
disable_no_action: true
grammar:
# This allows the grammar to also return messages
mixed_mode: true
# Suffix to add to the grammar
#prefix: '<tool_call>\n'
# Force parallel calls in the grammar
# parallel_calls: true
return_name_in_function_response: true
# Without grammar uncomment the lines below
# Warning: this is relying only on the capability of the
# LLM model to generate the correct function call.
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*?)"
replace_llm_results:
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
replace_function_results:
# Replace everything that is not JSON array or object
#
- key: '(?s)^[^{\[]*'
value: ""
- key: '(?s)[^}\]]*$'
value: ""
- key: "'([^']*?)'"
value: "_DQUOTE_${1}_DQUOTE_"
- key: '\\"'
value: "__TEMP_QUOTE__"
- key: "\'"
value: "'"
- key: "_DQUOTE_"
value: '"'
- key: "__TEMP_QUOTE__"
value: '"'
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
template:
chat: |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
{{.Input }}
<|start_header_id|>assistant<|end_header_id|>
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
{{ if .FunctionCall -}}
{{ else if eq .RoleName "tool" -}}
The Function was executed and the response was:
{{ end -}}
{{ if .Content -}}
{{.Content -}}
{{ else if .FunctionCall -}}
{{ range .FunctionCall }}
[{{.FunctionCall.Name}}({{.FunctionCall.Arguments}})]
{{ end }}
{{ end -}}
<|eot_id|>
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
<|start_header_id|>system<|end_header_id|>
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out. If the given question lacks the parameters required by the function, also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format as follows:
[func_name1(params_name1=params_value1,params_name2=params_value2,...),func_name2(params_name1=params_value1,params_name2=params_value2,...)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
{{toJson .Functions}}
<|eot_id|><|start_header_id|>user<|end_header_id|>
{{.Input}}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
download_files:
- filename: Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
sha256: 2e220a14ba4328fee38cf36c2c068261560f999fadb5725ce5c6d977cb5126b5
uri: huggingface://bartowski/Hermes-3-Llama-3.2-3B-GGUF/Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
function: |-
<|im_start|>system
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant

View File

@@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View File

@@ -1,49 +1,31 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: bakllava.gguf
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -129,10 +129,10 @@ detect_gpu
detect_gpu_size
PROFILE="${PROFILE:-$GPU_SIZE}" # default to cpu
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vad.yaml,/aio/${PROFILE}/vision.yaml}"
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
check_vars
echo "===> Starting LocalAI[$PROFILE] with the following models: $MODELS"
exec /entrypoint.sh "$@"
exec /build/entrypoint.sh "$@"

View File

@@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:

View File

@@ -1,13 +1,7 @@
name: jina-reranker-v1-base-en
reranking: true
f16: true
backend: rerankers
parameters:
model: jina-reranker-v1-tiny-en.f16.gguf
download_files:
- filename: jina-reranker-v1-tiny-en.f16.gguf
sha256: 5f696cf0d0f3d347c4a279eee8270e5918554cdac0ed1f632f2619e4e8341407
uri: huggingface://mradermacher/jina-reranker-v1-tiny-en-GGUF/jina-reranker-v1-tiny-en.f16.gguf
model: cross-encoder
usage: |
You can test this model with curl like this:

View File

@@ -1,53 +1,101 @@
context_size: 4096
f16: true
function:
capture_llm_results:
- (?s)<Thought>(.*?)</Thought>
grammar:
properties_order: name,arguments
json_regex_match:
- (?s)<Output>(.*?)</Output>
replace_llm_results:
- key: (?s)<Thought>(.*?)</Thought>
value: ""
mmap: true
name: gpt-4
mmap: true
parameters:
model: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
context_size: 8192
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- "<|im_end|>"
- "<dummy32000>"
- "</tool_call>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
# disable injecting the "answer" tool
disable_no_action: true
grammar:
# This allows the grammar to also return messages
mixed_mode: true
# Suffix to add to the grammar
#prefix: '<tool_call>\n'
# Force parallel calls in the grammar
# parallel_calls: true
return_name_in_function_response: true
# Without grammar uncomment the lines below
# Warning: this is relying only on the capability of the
# LLM model to generate the correct function call.
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*?)"
replace_llm_results:
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
replace_function_results:
# Replace everything that is not JSON array or object
#
- key: '(?s)^[^{\[]*'
value: ""
- key: '(?s)[^}\]]*$'
value: ""
- key: "'([^']*?)'"
value: "_DQUOTE_${1}_DQUOTE_"
- key: '\\"'
value: "__TEMP_QUOTE__"
- key: "\'"
value: "'"
- key: "_DQUOTE_"
value: '"'
- key: "__TEMP_QUOTE__"
value: '"'
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
function: |-
<|im_start|>system
You are an AI assistant that executes function calls, and these are the tools at your disposal:
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
<|im_end|>
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
download_files:
- filename: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
sha256: 4e7b7fe1d54b881f1ef90799219dc6cc285d29db24f559c8998d1addb35713d4
uri: huggingface://mudler/LocalAI-functioncall-qwen2.5-7b-v0.5-Q4_K_M-GGUF/localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
<|im_start|>assistant

View File

@@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View File

@@ -1,49 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:

View File

@@ -1,13 +1,7 @@
name: jina-reranker-v1-base-en
reranking: true
f16: true
backend: rerankers
parameters:
model: jina-reranker-v1-tiny-en.f16.gguf
download_files:
- filename: jina-reranker-v1-tiny-en.f16.gguf
sha256: 5f696cf0d0f3d347c4a279eee8270e5918554cdac0ed1f632f2619e4e8341407
uri: huggingface://mradermacher/jina-reranker-v1-tiny-en-GGUF/jina-reranker-v1-tiny-en.f16.gguf
model: cross-encoder
usage: |
You can test this model with curl like this:

View File

@@ -1,53 +1,103 @@
context_size: 4096
f16: true
function:
capture_llm_results:
- (?s)<Thought>(.*?)</Thought>
grammar:
properties_order: name,arguments
json_regex_match:
- (?s)<Output>(.*?)</Output>
replace_llm_results:
- key: (?s)<Thought>(.*?)</Thought>
value: ""
mmap: true
name: gpt-4
mmap: false
context_size: 8192
f16: false
parameters:
model: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- "<|im_end|>"
- "<dummy32000>"
- "</tool_call>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
# disable injecting the "answer" tool
disable_no_action: true
grammar:
# This allows the grammar to also return messages
mixed_mode: true
# Suffix to add to the grammar
#prefix: '<tool_call>\n'
# Force parallel calls in the grammar
# parallel_calls: true
return_name_in_function_response: true
# Without grammar uncomment the lines below
# Warning: this is relying only on the capability of the
# LLM model to generate the correct function call.
json_regex_match:
- "(?s)<tool_call>(.*?)</tool_call>"
- "(?s)<tool_call>(.*?)"
replace_llm_results:
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
replace_function_results:
# Replace everything that is not JSON array or object
#
- key: '(?s)^[^{\[]*'
value: ""
- key: '(?s)[^}\]]*$'
value: ""
- key: "'([^']*?)'"
value: "_DQUOTE_${1}_DQUOTE_"
- key: '\\"'
value: "__TEMP_QUOTE__"
- key: "\'"
value: "'"
- key: "_DQUOTE_"
value: '"'
- key: "__TEMP_QUOTE__"
value: '"'
# Drop the scratchpad content from responses
- key: "(?s)<scratchpad>.*</scratchpad>"
value: ""
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}
<tool_call>
{{- else if eq .RoleName "tool" }}
<tool_response>
{{- end }}
{{- if .Content}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{- end }}
{{- if .FunctionCall}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
{{- end }}
{{- if .FunctionCall }}
</tool_call>
{{- else if eq .RoleName "tool" }}
</tool_response>
{{- end }}<|im_end|>
completion: |
{{.Input}}
function: |
function: |-
<|im_start|>system
You are an AI assistant that executes function calls, and these are the tools at your disposal:
You are a function calling AI model.
Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
<|im_end|>
</tools>
You should call the tools provided to you sequentially
Please use <scratchpad> XML tags to record your reasoning and planning before you call the functions as follows:
<scratchpad>
{step-by-step reasoning and plan in bullet points}
</scratchpad>
For each function call return a json object with function name and arguments within <tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|im_end|>
{{.Input -}}
<|im_start|>assistant
download_files:
- filename: localai-functioncall-phi-4-v0.3-q4_k_m.gguf
sha256: 23fee048ded2a6e2e1a7b6bbefa6cbf83068f194caa9552aecbaa00fec8a16d5
uri: huggingface://mudler/LocalAI-functioncall-phi-4-v0.3-Q4_K_M-GGUF/localai-functioncall-phi-4-v0.3-q4_k_m.gguf

View File

@@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View File

@@ -1,50 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
mmap: false
f16: false
name: gpt-4o
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -1,15 +1,6 @@
package main
import (
rice "github.com/GeertJohan/go.rice"
)
import "embed"
var backendAssets *rice.Box
func init() {
var err error
backendAssets, err = rice.FindBox("backend-assets")
if err != nil {
panic(err)
}
}
//go:embed backend-assets/*
var backendAssets embed.FS

View File

@@ -1,131 +0,0 @@
ARG BASE_IMAGE=ubuntu:22.04
FROM ${BASE_IMAGE} AS builder
ARG BACKEND=rerankers
ARG BUILD_TYPE
ENV BUILD_TYPE=${BUILD_TYPE}
ARG CUDA_MAJOR_VERSION
ARG CUDA_MINOR_VERSION
ARG SKIP_DRIVERS=false
ENV CUDA_MAJOR_VERSION=${CUDA_MAJOR_VERSION}
ENV CUDA_MINOR_VERSION=${CUDA_MINOR_VERSION}
ENV DEBIAN_FRONTEND=noninteractive
ARG TARGETARCH
ARG TARGETVARIANT
ARG GO_VERSION=1.22.6
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
ccache \
ca-certificates \
make \
curl unzip \
libssl-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH=/opt/rocm/bin:${PATH}
# Vulkan requirements
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "vulkan" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils wget gpg-agent && \
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt-get update && \
apt-get install -y \
vulkan-sdk && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# CuBLAS requirements
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "cublas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils
if [ "amd64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
fi
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y --no-install-recommends \
cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcufft-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libclblast-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
; fi
RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
hipblas-dev \
rocblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
# I have no idea why, but the ROCM lib packages don't trigger ldconfig after they install, which results in local-ai and others not being able
# to locate the libraries. We run ldconfig ourselves to work around this packaging deficiency
ldconfig \
; fi
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin:/usr/local/bin
# Install grpc compilers
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2 && \
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
RUN echo "TARGETARCH: $TARGETARCH"
# We need protoc installed, and the version in 22.04 is too old. We will create one as part installing the GRPC build below
# but that will also being in a newer version of absl which stablediffusion cannot compile with. This version of protoc is only
# here so that we can generate the grpc code for the stablediffusion build
RUN <<EOT bash
if [ "amd64" = "$TARGETARCH" ]; then
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v27.1/protoc-27.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v27.1/protoc-27.1-linux-aarch_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
fi
EOT
COPY . /LocalAI
RUN cd /LocalAI && make backend-assets/grpc/bark-cpp
FROM scratch
COPY --from=builder /LocalAI/backend-assets/grpc/bark-cpp ./
COPY --from=builder /LocalAI/backend/go/bark/run.sh ./

View File

@@ -1,123 +0,0 @@
ARG BASE_IMAGE=ubuntu:22.04
FROM ${BASE_IMAGE} AS builder
ARG BACKEND=rerankers
ARG BUILD_TYPE
ENV BUILD_TYPE=${BUILD_TYPE}
ARG CUDA_MAJOR_VERSION
ARG CUDA_MINOR_VERSION
ARG SKIP_DRIVERS=false
ENV CUDA_MAJOR_VERSION=${CUDA_MAJOR_VERSION}
ENV CUDA_MINOR_VERSION=${CUDA_MINOR_VERSION}
ENV DEBIAN_FRONTEND=noninteractive
ARG TARGETARCH
ARG TARGETVARIANT
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
ccache \
ca-certificates \
espeak-ng \
curl \
libssl-dev \
git \
git-lfs \
unzip \
upx-ucl \
curl python3-pip \
python-is-python3 \
python3-dev llvm \
python3-venv make && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
pip install --upgrade pip
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH=/opt/rocm/bin:${PATH}
# Vulkan requirements
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "vulkan" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils wget gpg-agent && \
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt-get update && \
apt-get install -y \
vulkan-sdk && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# CuBLAS requirements
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "cublas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils
if [ "amd64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
fi
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y --no-install-recommends \
cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcufft-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libclblast-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
; fi
RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
hipblas-dev \
rocblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
# I have no idea why, but the ROCM lib packages don't trigger ldconfig after they install, which results in local-ai and others not being able
# to locate the libraries. We run ldconfig ourselves to work around this packaging deficiency
ldconfig \
; fi
# Install uv as a system package
RUN curl -LsSf https://astral.sh/uv/install.sh | UV_INSTALL_DIR=/usr/bin sh
ENV PATH="/root/.cargo/bin:${PATH}"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
# Install grpcio-tools (the version in 22.04 is too old)
RUN pip install --user grpcio-tools==1.71.0 grpcio==1.71.0
COPY python/${BACKEND} /${BACKEND}
COPY backend.proto /${BACKEND}/backend.proto
COPY python/common/ /${BACKEND}/common
RUN cd /${BACKEND} && make
FROM scratch
ARG BACKEND=rerankers
COPY --from=builder /${BACKEND}/ /

View File

@@ -14,7 +14,6 @@ service Backend {
rpc PredictStream(PredictOptions) returns (stream Reply) {}
rpc Embedding(PredictOptions) returns (EmbeddingResult) {}
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
rpc GenerateVideo(GenerateVideoRequest) returns (Result) {}
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
rpc TTS(TTSRequest) returns (Result) {}
rpc SoundGeneration(SoundGenerationRequest) returns (Result) {}
@@ -162,11 +161,6 @@ message Reply {
int32 prompt_tokens = 3;
double timing_prompt_processing = 4;
double timing_token_generation = 5;
bytes audio = 6;
}
message GrammarTrigger {
string word = 1;
}
message ModelOptions {
@@ -192,7 +186,11 @@ message ModelOptions {
int32 NGQA = 20;
string ModelFile = 21;
// AutoGPTQ
string Device = 22;
bool UseTriton = 23;
string ModelBaseName = 24;
bool UseFastTokenizer = 25;
// Diffusers
string PipelineType = 26;
@@ -226,11 +224,6 @@ message ModelOptions {
int32 MaxModelLen = 54;
int32 TensorParallelSize = 55;
string LoadFormat = 58;
bool DisableLogStatus = 66;
string DType = 67;
int32 LimitImagePerPrompt = 68;
int32 LimitVideoPerPrompt = 69;
int32 LimitAudioPerPrompt = 70;
string MMProj = 41;
@@ -254,10 +247,6 @@ message ModelOptions {
string CacheTypeKey = 63;
string CacheTypeValue = 64;
repeated GrammarTrigger GrammarTriggers = 65;
bool Reranking = 71;
}
message Result {
@@ -305,19 +294,6 @@ message GenerateImageRequest {
int32 CLIPSkip = 11;
}
message GenerateVideoRequest {
string prompt = 1;
string start_image = 2; // Path or base64 encoded image for the start frame
string end_image = 3; // Path or base64 encoded image for the end frame
int32 width = 4;
int32 height = 5;
int32 num_frames = 6; // Number of frames to generate
int32 fps = 7; // Frames per second
int32 seed = 8;
float cfg_scale = 9; // Classifier-free guidance scale
string dst = 10; // Output path for the generated video
}
message TTSRequest {
string text = 1;
string model = 2;

View File

@@ -1,3 +1,20 @@
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
set(TARGET myclip)
add_library(${TARGET} clip.cpp clip.h llava.cpp llava.h)
install(TARGETS ${TARGET} LIBRARY)
target_include_directories(myclip PUBLIC .)
target_include_directories(myclip PUBLIC ../..)
target_include_directories(myclip PUBLIC ../../common)
target_link_libraries(${TARGET} PRIVATE common ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
# END CLIP hack
set(TARGET grpc-server)
set(CMAKE_CXX_STANDARD 17)
cmake_minimum_required(VERSION 3.15)
@@ -57,12 +74,8 @@ add_library(hw_grpc_proto
${hw_proto_srcs}
${hw_proto_hdrs} )
add_executable(${TARGET} grpc-server.cpp utils.hpp json.hpp httplib.h)
target_include_directories(${TARGET} PRIVATE ../llava)
target_include_directories(${TARGET} PRIVATE ${CMAKE_SOURCE_DIR})
target_link_libraries(${TARGET} PRIVATE common llama mtmd ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
add_executable(${TARGET} grpc-server.cpp utils.hpp json.hpp)
target_link_libraries(${TARGET} PRIVATE common llama myclip ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
absl::flags_parse
gRPC::${_REFLECTION}
gRPC::${_GRPC_GRPCPP}

View File

@@ -8,7 +8,7 @@ ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
TARGET?=--target grpc-server
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF -DLLAMA_CURL=OFF
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF
# If build type is cublas, then we set -DGGML_CUDA=ON to CMAKE_ARGS automatically
ifeq ($(BUILD_TYPE),cublas)
@@ -36,18 +36,11 @@ else ifeq ($(OS),Darwin)
endif
ifeq ($(BUILD_TYPE),sycl_f16)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DCMAKE_CXX_FLAGS="-fsycl" \
-DGGML_SYCL_F16=ON
CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
endif
ifeq ($(BUILD_TYPE),sycl_f32)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DCMAKE_CXX_FLAGS="-fsycl"
CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
endif
llama.cpp:
@@ -59,8 +52,8 @@ llama.cpp:
git checkout -b build $(LLAMA_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
llama.cpp/tools/grpc-server: llama.cpp
mkdir -p llama.cpp/tools/grpc-server
llama.cpp/examples/grpc-server: llama.cpp
mkdir -p llama.cpp/examples/grpc-server
bash prepare.sh
rebuild:
@@ -70,13 +63,13 @@ rebuild:
purge:
rm -rf llama.cpp/build
rm -rf llama.cpp/tools/grpc-server
rm -rf llama.cpp/examples/grpc-server
rm -rf grpc-server
clean: purge
rm -rf llama.cpp
grpc-server: llama.cpp llama.cpp/tools/grpc-server
grpc-server: llama.cpp llama.cpp/examples/grpc-server
@echo "Building grpc-server with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
@@ -84,4 +77,4 @@ ifneq (,$(findstring sycl,$(BUILD_TYPE)))
else
+cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)
endif
cp llama.cpp/build/bin/grpc-server .
cp llama.cpp/build/bin/grpc-server .

View File

File diff suppressed because it is too large Load Diff

24596
backend/cpp/llama/json.hpp vendored Normal file
View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 3cd0d2fa..6c5e811a 100644
--- a/tools/mtmd/clip.cpp
+++ b/tools/mtmd/clip.cpp
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -2608,7 +2608,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));

View File

@@ -7,46 +7,21 @@ for patch in $(ls patches); do
patch -d llama.cpp/ -p1 < patches/$patch
done
set -e
cp -r CMakeLists.txt llama.cpp/tools/grpc-server/
cp -r grpc-server.cpp llama.cpp/tools/grpc-server/
cp -rfv llama.cpp/vendor/nlohmann/json.hpp llama.cpp/tools/grpc-server/
cp -rfv llama.cpp/tools/server/utils.hpp llama.cpp/tools/grpc-server/
cp -rfv llama.cpp/vendor/cpp-httplib/httplib.h llama.cpp/tools/grpc-server/
set +e
if grep -q "grpc-server" llama.cpp/tools/CMakeLists.txt; then
cp -r CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv json.hpp llama.cpp/examples/grpc-server/
cp -rfv utils.hpp llama.cpp/examples/grpc-server/
if grep -q "grpc-server" llama.cpp/examples/CMakeLists.txt; then
echo "grpc-server already added"
else
echo "add_subdirectory(grpc-server)" >> llama.cpp/tools/CMakeLists.txt
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
fi
set -e
# Now to keep maximum compatibility with the original server.cpp, we need to remove the index.html.gz.hpp and loading.html.hpp includes
# and remove the main function
# TODO: upstream this to the original server.cpp by extracting the upstream main function to a separate file
awk '
/int[ \t]+main[ \t]*\(/ { # If the line starts the main function
in_main=1; # Set a flag
open_braces=0; # Track number of open braces
}
in_main {
open_braces += gsub(/\{/, "{"); # Count opening braces
open_braces -= gsub(/\}/, "}"); # Count closing braces
if (open_braces == 0) { # If all braces are closed
in_main=0; # End skipping
}
next; # Skip lines inside main
}
!in_main # Print lines not inside main
' "llama.cpp/tools/server/server.cpp" > llama.cpp/tools/grpc-server/server.cpp
# remove index.html.gz.hpp and loading.html.hpp includes
if [[ "$OSTYPE" == "darwin"* ]]; then
# macOS
sed -i '' '/#include "index\.html\.gz\.hpp"/d; /#include "loading\.html\.hpp"/d' llama.cpp/tools/grpc-server/server.cpp
else
# Linux and others
sed -i '/#include "index\.html\.gz\.hpp"/d; /#include "loading\.html\.hpp"/d' llama.cpp/tools/grpc-server/server.cpp
fi
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp

483
backend/cpp/llama/utils.hpp vendored Normal file
View File

@@ -0,0 +1,483 @@
// https://github.com/ggerganov/llama.cpp/blob/master/examples/server/utils.hpp
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "../llava/clip.h"
using json = nlohmann::json;
extern bool server_verbose;
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...) \
do \
{ \
if (server_verbose) \
{ \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
//
// parallel
//
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
IDLE,
PROCESSING,
};
enum slot_command
{
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params
{
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image
{
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
// completion token output with probabilities
struct completion_token_output
{
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line,
const char *message, const nlohmann::ordered_json &extra)
{
nlohmann::ordered_json log
{
{"timestamp", time(nullptr)},
{"level", level},
{"function", function},
{"line", line},
{"message", message},
};
if (!extra.empty())
{
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
//
// server utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
inline std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_all_task_finished;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return id++;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when the batch of tasks is finished
void on_all_tasks_finished(std::function<void(void)> callback) {
callback_all_task_finished = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// Start the main loop. This call is blocking
[[noreturn]]
void start_loop() {
while (true) {
// new task arrived
LOG_VERBOSE("have new task", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
// process and update all the multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is finished
callback_all_task_finished();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
void add_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
void remove_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
LOG_VERBOSE("condition_results unblock", {});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {});
queue_results.push_back(result);
condition_results.notify_one();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c)
{
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
int in_ = 0;
int in_len = encoded_string.size();
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4)
{
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
{
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
{
char_array_4[j] = 0;
}
for (j = 0; j <4; j++)
{
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
{
ret.push_back(char_array_3[j]);
}
}
return ret;
}

View File

@@ -48,7 +48,7 @@ int tts(char *text,int threads, char *dst ) {
// generate audio
if (!bark_generate_audio(c, text, threads)) {
fprintf(stderr, "%s: An error occurred. If the problem persists, feel free to open an issue to report it.\n", __func__);
fprintf(stderr, "%s: An error occured. If the problem persists, feel free to open an issue to report it.\n", __func__);
return 1;
}

View File

@@ -1,3 +0,0 @@
#!/bin/bash
set -ex
exec ./bark-cpp

View File

@@ -8,19 +8,12 @@ ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/ggml/include -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp -O3 -DNDEBUG -std=c++17 -fPIC
GOCMD?=go
CGO_LDFLAGS?=
# Avoid parent make file overwriting CGO_LDFLAGS which is needed for hipblas
CGO_LDFLAGS_SYCL=
GO_TAGS?=
LD_FLAGS?=
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF
# If build type is cublas, then we set -DGGML_CUDA=ON to CMAKE_ARGS automatically
ifeq ($(BUILD_TYPE),cublas)
CMAKE_ARGS+=-DSD_CUDA=ON
CMAKE_ARGS+=-DGGML_CUDA=ON
# If build type is openblas then we set -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
# to CMAKE_ARGS automatically
else ifeq ($(BUILD_TYPE),openblas)
@@ -28,50 +21,31 @@ else ifeq ($(BUILD_TYPE),openblas)
# If build type is clblas (openCL) we set -DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DSD_HIPBLAS=ON
CMAKE_ARGS+=-DGGML_HIP=ON
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),Darwin)
ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DSD_METAL=OFF
CMAKE_ARGS+=-DGGML_METAL=OFF
else
CMAKE_ARGS+=-DSD_METAL=ON
CMAKE_ARGS+=-DGGML_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
TARGET+=--target ggml-metal
endif
endif
ifeq ($(BUILD_TYPE),sycl_f16)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DSD_SYCL=ON \
-DGGML_SYCL_F16=ON
CC=icx
CXX=icpx
CGO_LDFLAGS_SYCL += -fsycl -L${DNNLROOT}/lib -ldnnl ${MKLROOT}/lib/intel64/libmkl_sycl.a -fiopenmp -fopenmp-targets=spir64 -lOpenCL
CGO_LDFLAGS_SYCL += $(shell pkg-config --libs mkl-static-lp64-gomp)
CGO_CXXFLAGS += -fiopenmp -fopenmp-targets=spir64
CGO_CXXFLAGS += $(shell pkg-config --cflags mkl-static-lp64-gomp )
endif
# ifeq ($(BUILD_TYPE),sycl_f16)
# CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DSD_SYCL=ON -DGGML_SYCL_F16=ON
# endif
ifeq ($(BUILD_TYPE),sycl_f32)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DSD_SYCL=ON
CC=icx
CXX=icpx
CGO_LDFLAGS_SYCL += -fsycl -L${DNNLROOT}/lib -ldnnl ${MKLROOT}/lib/intel64/libmkl_sycl.a -fiopenmp -fopenmp-targets=spir64 -lOpenCL
CGO_LDFLAGS_SYCL += $(shell pkg-config --libs mkl-static-lp64-gomp)
CGO_CXXFLAGS += -fiopenmp -fopenmp-targets=spir64
CGO_CXXFLAGS += $(shell pkg-config --cflags mkl-static-lp64-gomp )
endif
# ifeq ($(BUILD_TYPE),sycl_f32)
# CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DSD_SYCL=ON
# endif
# warnings
# CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
# Find all .a archives in ARCHIVE_DIR
# (ggml can have different backends cpu, cuda, etc., each backend generates a .a archive)
@@ -112,24 +86,11 @@ endif
$(MAKE) $(COMBINED_LIB)
gosd.o:
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c"
else
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c
endif
libsd.a: gosd.o
cp $(INCLUDE_PATH)/build/libstable-diffusion.a ./libsd.a
$(AR) rcs libsd.a gosd.o
stablediffusion-ggml:
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_SYCL)" C_INCLUDE_PATH="$(INCLUDE_PATH)" LIBRARY_PATH="$(LIBRARY_PATH)" \
CC="$(CC)" CXX="$(CXX)" CGO_CXXFLAGS="$(CGO_CXXFLAGS)" \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o ../../../../backend-assets/grpc/stablediffusion-ggml ./
ifneq ($(UPX),)
$(UPX) ../../../../backend-assets/grpc/stablediffusion-ggml
endif
clean:
rm -rf gosd.o libsd.a build $(COMBINED_LIB)
rm -rf gosd.o libsd.a build $(COMBINED_LIB)

View File

@@ -35,8 +35,6 @@ const char* sample_method_str[] = {
"ipndm",
"ipndm_v",
"lcm",
"ddim_trailing",
"tcd",
};
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
@@ -175,7 +173,6 @@ int gen_image(char *text, char *negativeText, int width, int height, int steps,
-1, //clip_skip
cfg_scale, // sfg_scale
3.5f,
0, // eta
width,
height,
sample_method,

View File

@@ -0,0 +1,204 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/go-llama.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type LLM struct {
base.SingleThread
llama *llama.LLama
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
llamaOpts := []llama.ModelOption{
llama.WithRopeFreqBase(ropeFreqBase),
llama.WithRopeFreqScale(ropeFreqScale),
}
if opts.NGQA != 0 {
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
}
if opts.RMSNormEps != 0 {
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
}
if opts.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
}
if opts.F16Memory {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
if opts.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if opts.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
}
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
if opts.NBatch != 0 {
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
} else {
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
}
if opts.NUMA {
llamaOpts = append(llamaOpts, llama.EnableNUMA)
}
if opts.LowVRAM {
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
}
model, err := llama.New(opts.ModelFile, llamaOpts...)
llm.llama = model
return err
}
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
predictOptions := []llama.PredictOption{
llama.SetTemperature(opts.Temperature),
llama.SetTopP(opts.TopP),
llama.SetTopK(int(opts.TopK)),
llama.SetTokens(int(opts.Tokens)),
llama.SetThreads(int(opts.Threads)),
llama.WithGrammar(opts.Grammar),
llama.SetRopeFreqBase(ropeFreqBase),
llama.SetRopeFreqScale(ropeFreqScale),
llama.SetNegativePromptScale(opts.NegativePromptScale),
llama.SetNegativePrompt(opts.NegativePrompt),
}
if opts.PromptCacheAll {
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
}
if opts.PromptCacheRO {
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
}
// Expected absolute path
if opts.PromptCachePath != "" {
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
}
if opts.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
}
if opts.MirostatETA != 0 {
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
}
if opts.MirostatTAU != 0 {
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
}
if opts.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
if opts.PresencePenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
}
if opts.NKeep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
}
if opts.F16KV {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if opts.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if opts.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
}
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
predictOptions := buildPredictOptions(opts)
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
results <- token
return true
}))
go func() {
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
close(results)
}()
return nil
}
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
predictOptions := buildPredictOptions(opts)
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
}
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
}

View File

@@ -0,0 +1,19 @@
package main
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

View File

@@ -58,9 +58,6 @@ func (llm *LLM) Load(opts *pb.ModelOptions) error {
if opts.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if opts.Reranking {
llamaOpts = append(llamaOpts, llama.EnableReranking)
}
if opts.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
}

View File

@@ -74,7 +74,7 @@ func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (pb.Transcript
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil, nil); err != nil {
if err := context.Process(data, nil, nil); err != nil {
return pb.TranscriptResult{}, err
}

View File

@@ -21,8 +21,8 @@ func (vad *VAD) Load(opts *pb.ModelOptions) error {
SampleRate: 16000,
//WindowSize: 1024,
Threshold: 0.5,
MinSilenceDurationMs: 100,
SpeechPadMs: 30,
MinSilenceDurationMs: 0,
SpeechPadMs: 0,
})
if err != nil {
return fmt.Errorf("create silero detector: %w", err)
@@ -35,10 +35,6 @@ func (vad *VAD) Load(opts *pb.ModelOptions) error {
func (vad *VAD) VAD(req *pb.VADRequest) (pb.VADResponse, error) {
audio := req.Audio
if err := vad.detector.Reset(); err != nil {
return pb.VADResponse{}, fmt.Errorf("reset: %w", err)
}
segments, err := vad.detector.Detect(audio)
if err != nil {
return pb.VADResponse{}, fmt.Errorf("detect: %w", err)

View File

@@ -1,383 +0,0 @@
---
## vLLM
- &vllm
name: "cuda11-vllm"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-11-vllm"
license: apache-2.0
urls:
- https://github.com/vllm-project/vllm
tags:
- text-to-text
- multimodal
- GPTQ
- AWQ
- AutoRound
- INT4
- INT8
- FP8
icon: https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-dark.png
description: |
vLLM is a fast and easy-to-use library for LLM inference and serving.
Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry.
vLLM is fast with:
State-of-the-art serving throughput
Efficient management of attention key and value memory with PagedAttention
Continuous batching of incoming requests
Fast model execution with CUDA/HIP graph
Quantizations: GPTQ, AWQ, AutoRound, INT4, INT8, and FP8
Optimized CUDA kernels, including integration with FlashAttention and FlashInfer
Speculative decoding
Chunked prefill
alias: "vllm"
- !!merge <<: *vllm
name: "cuda12-vllm"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-vllm"
- !!merge <<: *vllm
name: "rocm-vllm"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-vllm"
- !!merge <<: *vllm
name: "intel-sycl-f32-vllm"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-vllm"
- !!merge <<: *vllm
name: "intel-sycl-f16-vllm"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-vllm"
- !!merge <<: *vllm
name: "cuda11-vllm-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-vllm"
- !!merge <<: *vllm
name: "cuda12-vllm-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-vllm"
- !!merge <<: *vllm
name: "rocm-vllm-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-vllm"
- !!merge <<: *vllm
name: "intel-sycl-f32-vllm-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-vllm"
- !!merge <<: *vllm
name: "intel-sycl-f16-vllm-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-vllm"
## Rerankers
- name: "cuda11-rerankers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-11-rerankers"
alias: "cuda11-rerankers"
- name: "cuda12-rerankers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-rerankers"
alias: "cuda12-rerankers"
- name: "intel-sycl-f32-rerankers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-rerankers"
alias: "intel-sycl-f32-rerankers"
- name: "intel-sycl-f16-rerankers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-rerankers"
alias: "intel-sycl-f16-rerankers"
- name: "rocm-rerankers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-rerankers"
alias: "rocm-rerankers"
- name: "cuda11-rerankers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-rerankers"
alias: "rerankers"
- name: "cuda12-rerankers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-rerankers"
alias: "rerankers"
- name: "rocm-rerankers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-rerankers"
alias: "rerankers"
- name: "intel-sycl-f32-rerankers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-rerankers"
alias: "rerankers"
- name: "intel-sycl-f16-rerankers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-rerankers"
alias: "rerankers"
## Transformers
- &transformers
name: "cuda12-transformers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-transformers"
icon: https://camo.githubusercontent.com/26569a27b8a30a488dd345024b71dbc05da7ff1b2ba97bb6080c9f1ee0f26cc7/68747470733a2f2f68756767696e67666163652e636f2f64617461736574732f68756767696e67666163652f646f63756d656e746174696f6e2d696d616765732f7265736f6c76652f6d61696e2f7472616e73666f726d6572732f7472616e73666f726d6572735f61735f615f6d6f64656c5f646566696e6974696f6e2e706e67
alias: "transformers"
license: apache-2.0
description: |
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. transformers is the pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...), and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from transformers.
urls:
- https://github.com/huggingface/transformers
tags:
- text-to-text
- multimodal
- !!merge <<: *transformers
name: "rocm-transformers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-transformers"
- !!merge <<: *transformers
name: "intel-sycl-f32-transformers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-transformers"
- !!merge <<: *transformers
name: "intel-sycl-f16-transformers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-transformers"
- !!merge <<: *transformers
name: "cuda11-transformers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-transformers"
- !!merge <<: *transformers
name: "cuda11-transformers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-11-transformers"
- !!merge <<: *transformers
name: "cuda12-transformers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-transformers"
- !!merge <<: *transformers
name: "rocm-transformers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-transformers"
- !!merge <<: *transformers
name: "intel-sycl-f32-transformers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-transformers"
- !!merge <<: *transformers
name: "intel-sycl-f16-transformers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-transformers"
## Diffusers
- &diffusers
icon: https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg
description: |
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both.
urls:
- https://github.com/huggingface/diffusers
tags:
- image-generation
- video-generation
- diffusion-models
name: "cuda12-diffusers"
license: apache-2.0
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-diffusers"
alias: "diffusers"
- !!merge <<: *diffusers
name: "rocm-diffusers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-diffusers"
- !!merge <<: *diffusers
name: "cuda11-diffusers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-11-diffusers"
- !!merge <<: *diffusers
name: "intel-sycl-f32-diffusers"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-diffusers"
- !!merge <<: *diffusers
name: "cuda11-diffusers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-diffusers"
- !!merge <<: *diffusers
name: "cuda12-diffusers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-diffusers"
- !!merge <<: *diffusers
name: "rocm-diffusers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-diffusers"
- !!merge <<: *diffusers
name: "intel-sycl-f32-diffusers-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-diffusers"
## exllama2
- &exllama2
urls:
- https://github.com/turboderp-org/exllamav2
tags:
- text-to-text
- LLM
- EXL2
license: MIT
description: |
ExLlamaV2 is an inference library for running local LLMs on modern consumer GPUs.
name: "cuda11-exllama2"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-11-exllama2"
alias: "exllama2"
- !!merge <<: *exllama2
name: "cuda12-exllama2"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-exllama2"
- !!merge <<: *exllama2
name: "cuda11-exllama2-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-exllama2"
- !!merge <<: *exllama2
name: "cuda12-exllama2-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-exllama2"
## kokoro
- &kokoro
icon: https://avatars.githubusercontent.com/u/166769057?v=4
description: |
Kokoro is an open-weight TTS model with 82 million parameters. Despite its lightweight architecture, it delivers comparable quality to larger models while being significantly faster and more cost-efficient. With Apache-licensed weights, Kokoro can be deployed anywhere from production environments to personal projects.
urls:
- https://huggingface.co/hexgrad/Kokoro-82M
- https://github.com/hexgrad/kokoro
tags:
- text-to-speech
- TTS
- LLM
license: apache-2.0
name: "cuda11-kokoro-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-kokoro"
alias: "kokoro"
- !!merge <<: *kokoro
name: "cuda12-kokoro-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-kokoro"
- !!merge <<: *kokoro
name: "rocm-kokoro-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-kokoro"
- !!merge <<: *kokoro
name: "sycl-f32-kokoro"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-kokoro"
- !!merge <<: *kokoro
name: "sycl-f16-kokoro"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-kokoro"
- !!merge <<: *kokoro
name: "sycl-f16-kokoro-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-kokoro"
- !!merge <<: *kokoro
name: "sycl-f32-kokoro-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-kokoro"
## faster-whisper
- &faster-whisper
icon: https://avatars.githubusercontent.com/u/1520500?s=200&v=4
description: |
faster-whisper is a reimplementation of OpenAI's Whisper model using CTranslate2, which is a fast inference engine for Transformer models.
This implementation is up to 4 times faster than openai/whisper for the same accuracy while using less memory. The efficiency can be further improved with 8-bit quantization on both CPU and GPU.
urls:
- https://github.com/SYSTRAN/faster-whisper
tags:
- speech-to-text
- Whisper
license: MIT
name: "cuda11-faster-whisper-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-faster-whisper"
alias: "faster-whisper"
- !!merge <<: *faster-whisper
name: "cuda12-faster-whisper-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-faster-whisper"
- !!merge <<: *faster-whisper
name: "rocm-faster-whisper-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-faster-whisper"
- !!merge <<: *faster-whisper
name: "sycl-f32-faster-whisper"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-faster-whisper"
- !!merge <<: *faster-whisper
name: "sycl-f16-faster-whisper"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-faster-whisper"
- !!merge <<: *faster-whisper
name: "sycl-f32-faster-whisper-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-faster-whisper"
- !!merge <<: *faster-whisper
name: "sycl-f16-faster-whisper-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-faster-whisper"
## coqui
- &coqui
urls:
- https://github.com/idiap/coqui-ai-TTS
description: |
🐸 Coqui TTS is a library for advanced Text-to-Speech generation.
🚀 Pretrained models in +1100 languages.
🛠️ Tools for training new models and fine-tuning existing models in any language.
📚 Utilities for dataset analysis and curation.
tags:
- text-to-speech
- TTS
license: mpl-2.0
name: "cuda11-coqui-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-coqui"
alias: "coqui"
icon: https://avatars.githubusercontent.com/u/1338804?s=200&v=4
- !!merge <<: *coqui
name: "cuda12-coqui-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-coqui"
- !!merge <<: *coqui
name: "rocm-coqui-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-coqui"
- !!merge <<: *coqui
name: "sycl-f32-coqui"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-coqui"
- !!merge <<: *coqui
name: "sycl-f16-coqui"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-coqui"
- !!merge <<: *coqui
name: "sycl-f32-coqui-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-coqui"
- !!merge <<: *coqui
name: "sycl-f16-coqui-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-coqui"
## bark
- &bark
urls:
- https://github.com/suno-ai/bark
description: |
Bark is a transformer-based text-to-audio model created by Suno. Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. The model can also produce nonverbal communications like laughing, sighing and crying. To support the research community, we are providing access to pretrained model checkpoints, which are ready for inference and available for commercial use.
tags:
- text-to-speech
- TTS
license: MIT
name: "cuda11-bark-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-bark"
alias: "bark"
icon: https://avatars.githubusercontent.com/u/99442120?s=200&v=4
- !!merge <<: *bark
name: "cuda12-bark-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-bark"
- !!merge <<: *bark
name: "rocm-bark-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-bark"
- !!merge <<: *bark
name: "sycl-f32-bark"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-bark"
- !!merge <<: *bark
name: "sycl-f16-bark"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-bark"
- !!merge <<: *bark
name: "sycl-f32-bark-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f32-bark"
- !!merge <<: *bark
name: "sycl-f16-bark-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-sycl-f16-bark"
- &barkcpp
urls:
- https://github.com/PABannier/bark.cpp
description: |
With bark.cpp, our goal is to bring real-time realistic multilingual text-to-speech generation to the community.
Plain C/C++ implementation without dependencies
AVX, AVX2 and AVX512 for x86 architectures
CPU and GPU compatible backends
Mixed F16 / F32 precision
4-bit, 5-bit and 8-bit integer quantization
Metal and CUDA backends
Models supported
Bark Small
Bark Large
tags:
- text-to-speech
- TTS
license: MIT
icon: https://github.com/PABannier/bark.cpp/raw/main/assets/banner.png
name: "bark-cpp"
uri: "quay.io/go-skynet/local-ai-backends:latest-bark-cpp"
alias: "bark-cpp"
- !!merge <<: *barkcpp
name: "bark-cpp-development"
uri: "quay.io/go-skynet/local-ai-backends:master-bark-cpp"
alias: "bark-cpp"
## chatterbox
- &chatterbox
urls:
- https://github.com/resemble-ai/chatterbox
description: |
Resemble AI's first production-grade open source TTS model. Licensed under MIT, Chatterbox has been benchmarked against leading closed-source systems like ElevenLabs, and is consistently preferred in side-by-side evaluations.
Whether you're working on memes, videos, games, or AI agents, Chatterbox brings your content to life. It's also the first open source TTS model to support emotion exaggeration control, a powerful feature that makes your voices stand out.
tags:
- text-to-speech
- TTS
license: MIT
icon: https://private-user-images.githubusercontent.com/660224/448166653-bd8c5f03-e91d-4ee5-b680-57355da204d1.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NTAxOTE0MDAsIm5iZiI6MTc1MDE5MTEwMCwicGF0aCI6Ii82NjAyMjQvNDQ4MTY2NjUzLWJkOGM1ZjAzLWU5MWQtNGVlNS1iNjgwLTU3MzU1ZGEyMDRkMS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwNjE3JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDYxN1QyMDExNDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1hMmI1NGY3OGFiZTlhNGFkNTVlYTY4NTIwMWEzODRiZGE4YzdhNGQ5MGNhNzE3MDYyYTA2NDIxYTkyYzhiODkwJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.mR9kM9xX0TdzPuSpuspCllHYQiq79dFQ2rtuNvjrl6w
name: "cuda11-chatterbox-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-11-chatterbox"
alias: "chatterbox"
- !!merge <<: *chatterbox
name: "cuda12-chatterbox-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-chatterbox"
- !!merge <<: *chatterbox
name: "cuda11-chatterbox"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-11-chatterbox"
- !!merge <<: *chatterbox
name: "cuda12-chatterbox"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-chatterbox"

View File

@@ -0,0 +1,17 @@
.PHONY: autogptq
autogptq: protogen
bash install.sh
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -0,0 +1,5 @@
# Creating a separate environment for the autogptq project
```
make autogptq
```

View File

@@ -0,0 +1,153 @@
#!/usr/bin/env python3
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import base64
import grpc
import backend_pb2
import backend_pb2_grpc
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextGenerationPipeline
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
device = "cuda:0"
if request.Device != "":
device = request.Device
# support loading local model files
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode)
# support model `Qwen/Qwen-VL-Chat-Int4`
if "qwen-vl" in request.Model.lower():
self.model_name = "Qwen-VL-Chat"
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=request.TrustRemoteCode,
device_map="auto").eval()
else:
model = AutoGPTQForCausalLM.from_quantized(model_path,
model_basename=request.ModelBaseName,
use_safetensors=True,
trust_remote_code=request.TrustRemoteCode,
device=device,
use_triton=request.UseTriton,
quantize_config=None)
self.model = model
self.tokenizer = tokenizer
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
penalty = 1.0
if request.Penalty != 0.0:
penalty = request.Penalty
tokens = 512
if request.Tokens != 0:
tokens = request.Tokens
top_p = 0.95
if request.TopP != 0.0:
top_p = request.TopP
prompt_images = self.recompile_vl_prompt(request)
compiled_prompt = prompt_images[0]
print(f"Prompt: {compiled_prompt}", file=sys.stderr)
# Implement Predict RPC
pipeline = TextGenerationPipeline(
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=tokens,
temperature=request.Temperature,
top_p=top_p,
repetition_penalty=penalty,
)
t = pipeline(compiled_prompt)[0]["generated_text"]
print(f"generated_text: {t}", file=sys.stderr)
if compiled_prompt in t:
t = t.replace(compiled_prompt, "")
# house keeping. Remove the image files from /tmp folder
for img_path in prompt_images[1]:
try:
os.remove(img_path)
except Exception as e:
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr)
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def recompile_vl_prompt(self, request):
prompt = request.Prompt
image_paths = []
if "qwen-vl" in self.model_name.lower():
# request.Images is an array which contains base64 encoded images. Iterate the request.Images array, decode and save each image to /tmp folder with a random filename.
# Then, save the image file paths to an array "image_paths".
# read "request.Prompt", replace "[img-%d]" with the image file paths in the order they appear in "image_paths". Save the new prompt to "prompt".
for i, img in enumerate(request.Images):
timestamp = str(int(time.time() * 1000)) # Generate timestamp
img_path = f"/tmp/vl-{timestamp}.jpg" # Use timestamp in filename
with open(img_path, "wb") as f:
f.write(base64.b64decode(img))
image_paths.append(img_path)
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,")
else:
prompt = request.Prompt
return (prompt, image_paths)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -1,12 +1,7 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
source $(dirname $0)/../common/libbackend.sh
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.

View File

@@ -0,0 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118

View File

@@ -0,0 +1 @@
torch==2.4.1

View File

@@ -0,0 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0

View File

@@ -1,11 +1,6 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
torchaudio==2.3.1+cxx11.abi
transformers==4.46.3
chatterbox-tts
accelerate
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
accelerate
setuptools

View File

@@ -0,0 +1,6 @@
accelerate
auto-gptq==0.7.1
grpcio==1.69.0
protobuf
certifi
transformers

4
backend/python/autogptq/run.sh Executable file
View File

@@ -0,0 +1,4 @@
#!/bin/bash
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View File

@@ -0,0 +1,6 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@@ -22,7 +22,7 @@ protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean

Some files were not shown because too many files have changed in this diff Show More