Compare commits

...

148 Commits

Author SHA1 Message Date
Ettore Di Giacinto
495191a54a fix(llama.cpp): fix eos without cache 2024-03-18 12:14:16 +01:00
Ettore Di Giacinto
b790fca180 fix(whisper.cpp): Add stubs and -lcuda 2024-03-18 12:13:39 +01:00
Ettore Di Giacinto
0663f66205 deps(whisper.cpp): update, fix cublas build 2024-03-16 10:38:57 +01:00
LocalAI [bot]
5826fb8e6d ⬆️ Update mudler/go-piper (#1844)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-15 23:51:03 +00:00
Ettore Di Giacinto
89351f1a7d feat(embeddings): do not require to be configured (#1842)
Certain engines requires to know during model loading
if the embedding feature has to be enabled, however, it is impractical
to have to set it to ALL the backends that supports embeddings.

There are transformers and sentencentransformers that seamelessly handle
both cases, without having this settings to be explicitly enabled.

The case sussist only for ggml-based models that needs to enable
featuresets during model loading (and thus settings `embedding` is
required), however most of the other engines does not require this.

This change disables the check done at code side, making easier to use
embeddings by not having to specify explicitly `embeddings: true`.

Part of: https://github.com/mudler/LocalAI/issues/1373
2024-03-15 18:14:23 +01:00
Ettore Di Giacinto
ae2e4fc2fe docs(transformers): add docs section about transformers (#1841) 2024-03-15 18:13:30 +01:00
Dave
db199f61da fix: osx build default.metallib (#1837)
fix: osx build default.metallib (#1837)
* port osx fix from refactor pr to slim pr
* manually bump llama.cpp version to unstick CI?
2024-03-15 08:18:58 +00:00
LocalAI [bot]
44adbd2c75 ⬆️ Update go-skynet/go-llama.cpp (#1835)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-14 23:06:42 +00:00
Ettore Di Giacinto
20136ca8b7 feat(tts): add Elevenlabs and OpenAI TTS compatibility layer (#1834)
* feat(elevenlabs): map elevenlabs API support to TTS

This allows elevenlabs Clients to work automatically with LocalAI by
supporting the elevenlabs API.

The elevenlabs server endpoint is implemented such as it is wired to the
TTS endpoints.

Fixes: https://github.com/mudler/LocalAI/issues/1809

* feat(openai/tts): compat layer with openai tts

Fixes: #1276

* fix: adapt tts CLI
2024-03-14 23:08:34 +01:00
Dave
45d520f913 fix: OSX Build Files for llama.cpp (#1836)
bot ate my changes, seperate branch
2024-03-14 23:07:47 +01:00
fakezeta
3882130911 feat: Add Bitsandbytes quantization for transformer backend enhancement #1775 and fix: Transformer backend error on CUDA #1774 (#1823)
* fixes #1775 and #1774

Add BitsAndBytes Quantization and fixes embedding on CUDA devices

* Manage 4bit and 8 bit quantization

Manage different BitsAndBytes options with the quantization: parameter in yaml

* fix compilation errors on non CUDA environment
2024-03-14 23:06:30 +01:00
cryptk
a6b540737f fix: missing OpenCL libraries from docker containers during clblas docker build (#1830) 2024-03-14 08:40:37 +01:00
LocalAI [bot]
f82065703d ⬆️ Update ggerganov/llama.cpp (#1827)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-14 08:39:39 +01:00
cryptk
b423af001d fix: the correct BUILD_TYPE for OpenCL is clblas (with no t) (#1828) 2024-03-14 08:39:21 +01:00
Ettore Di Giacinto
b9e77d394b feat(model-help): display help text in markdown (#1825)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-03-13 21:50:46 +01:00
Ettore Di Giacinto
57222497ec fix(docker-compose): update docker compose file (#1824)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-03-13 17:57:45 +01:00
LocalAI [bot]
5c5f07c1e7 ⬆️ Update ggerganov/llama.cpp (#1821)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-13 10:05:46 +01:00
Ettore Di Giacinto
f895d06605 fix(config): set better defaults for inferencing (#1822)
* fix(defaults): set better defaults for inferencing

This changeset aim to have better defaults and to properly detect when
no inference settings are provided with the model.

If not specified, we defaults to mirostat sampling, and offload all the
GPU layers (if a GPU is detected).

Related to https://github.com/mudler/LocalAI/issues/1373 and https://github.com/mudler/LocalAI/issues/1723

* Adapt tests

* Also pre-initialize default seed
2024-03-13 10:05:30 +01:00
Ettore Di Giacinto
bc8f648a91 fix(doc/examples): set defaults to mirostat (#1820)
The default sampler on some models don't return enough candidates which
leads to a false sense of randomness. Tracing back the code it looks
that with the temperature sampler there might not be enough
candidates to pick from, and since the seed and "randomness" take effect
while picking a good candidate this yields to the same results over and
over.

Fixes https://github.com/mudler/LocalAI/issues/1723 by updating the
examples and documentation to use mirostat instead.
2024-03-11 19:49:03 +01:00
LocalAI [bot]
8e57f4df31 ⬆️ Update ggerganov/llama.cpp (#1818)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-11 00:02:37 +01:00
LocalAI [bot]
a08cc5adbb ⬆️ Update ggerganov/llama.cpp (#1816)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-10 09:32:09 +01:00
LocalAI [bot]
595a73fce4 ⬆️ Update ggerganov/llama.cpp (#1813)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-09 09:27:06 +01:00
LocalAI [bot]
dc919e08e8 ⬆️ Update ggerganov/llama.cpp (#1811)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-08 08:21:25 +01:00
Ettore Di Giacinto
5d1018495f feat(intel): add diffusers/transformers support (#1746)
* feat(intel): add diffusers support

* try to consume upstream container image

* Debug

* Manually install deps

* Map transformers/hf cache dir to modelpath if not specified

* fix(compel): update initialization, pass by all gRPC options

* fix: add dependencies, implement transformers for xpu

* base it from the oneapi image

* Add pillow

* set threads if specified when launching the API

* Skip conda install if intel

* defaults to non-intel

* ci: add to pipelines

* prepare compel only if enabled

* Skip conda install if intel

* fix cleanup

* Disable compel by default

* Install torch 2.1.0 with Intel

* Skip conda on some setups

* Detect python

* Quiet output

* Do not override system python with conda

* Prefer python3

* Fixups

* exllama2: do not install without conda (overrides pytorch version)

* exllama/exllama2: do not install if not using cuda

* Add missing dataset dependency

* Small fixups, symlink to python, add requirements

* Add neural_speed to the deps

* correctly handle model offloading

* fix: device_map == xpu

* go back at calling python, fixed at dockerfile level

* Exllama2 restricted to only nvidia gpus

* Tokenizer to xpu
2024-03-07 14:37:45 +01:00
LocalAI [bot]
ad6fd7a991 ⬆️ Update ggerganov/llama.cpp (#1805)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-06 23:28:31 +01:00
LocalAI [bot]
e022b5959e ⬆️ Update mudler/go-stable-diffusion (#1802)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-05 23:39:57 +00:00
LocalAI [bot]
db7f4955a1 ⬆️ Update ggerganov/llama.cpp (#1801)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-05 21:50:27 +00:00
Dave
5c69dd155f feat(autogpt/transformers): consume trust_remote_code (#1799)
trusting remote code by default is a danger to our users
2024-03-05 19:47:15 +01:00
TwinFin
504f2e8bf4 Update Backend Dependancies (#1797)
* Update transformers.yml

Signed-off-by: TwinFin <57421631+TwinFinz@users.noreply.github.com>

* Update transformers-rocm.yml

Signed-off-by: TwinFin <57421631+TwinFinz@users.noreply.github.com>

* Update transformers-nvidia.yml

Signed-off-by: TwinFin <57421631+TwinFinz@users.noreply.github.com>

---------

Signed-off-by: TwinFin <57421631+TwinFinz@users.noreply.github.com>
2024-03-05 10:10:00 +00:00
Luna Midori
e586dc2924 Edit links in readme and integrations page (#1796)
* Update integrations.md

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

* Update README.md

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

* Update README.md

Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

* Update README.md

Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-05 10:14:30 +01:00
Ettore Di Giacinto
333f918005 Update integrations.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-05 09:45:54 +01:00
LocalAI [bot]
c8e29033c2 ⬆️ Update ggerganov/llama.cpp (#1794)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-05 08:59:09 +01:00
LocalAI [bot]
d0bd961bde ⬆️ Update ggerganov/llama.cpp (#1791)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-04 09:44:21 +01:00
Ettore Di Giacinto
006511ee25 Revert "feat(assistant): Initial implementation of assistants api" (#1790)
Revert "feat(assistant): Initial implementation of assistants api (#1761)"

This reverts commit 4ab72146cd.
2024-03-03 10:31:06 +01:00
Steven Christou
4ab72146cd feat(assistant): Initial implementation of assistants api (#1761)
Initial implementation of assistants api
2024-03-03 08:50:43 +01:00
LocalAI [bot]
b60a3fc879 ⬆️ Update ggerganov/llama.cpp (#1789)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-03 08:49:23 +01:00
Ettore Di Giacinto
a0eeb74957 Update hot topics/roadmap
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-02 09:35:40 +01:00
LocalAI [bot]
daa0b8741c ⬆️ Update ggerganov/llama.cpp (#1785)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-01 22:38:24 +00:00
Ludovic Leroux
939411300a Bump vLLM version + more options when loading models in vLLM (#1782)
* Bump vLLM version to 0.3.2

* Add vLLM model loading options

* Remove transformers-exllama

* Fix install exllama
2024-03-01 22:48:53 +01:00
Dave
1c312685aa refactor: move remaining api packages to core (#1731)
* core 1

* api/openai/files fix

* core 2 - core/config

* move over core api.go and tests to the start of core/http

* move over localai specific endpoints to core/http, begin the service/endpoint split there

* refactor big chunk on the plane

* refactor chunk 2 on plane, next step: port and modify changes to request.go

* easy fixes for request.go, major changes not done yet

* lintfix

* json tag lintfix?

* gitignore and .keep files

* strange fix attempt: rename the config dir?
2024-03-01 16:19:53 +01:00
LocalAI [bot]
316de82f51 ⬆️ Update ggerganov/llama.cpp (#1779)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-29 22:33:30 +00:00
Ettore Di Giacinto
9068bc5271 Create SECURITY.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-29 19:53:04 +01:00
Oussama
31a4c9c9d3 Fix Command Injection Vulnerability (#1778)
* Added fix for command injection

* changed function name from sh to runCommand
2024-02-29 18:32:29 +00:00
Ettore Di Giacinto
c1966af2cf ci: reduce stress on self-hosted runners (#1776)
Split jobs by self-hosted and free public runner provided by Github

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-29 11:40:08 +01:00
LocalAI [bot]
c665898652 ⬆️ Update donomii/go-rwkv.cpp (#1771)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-28 23:50:27 +00:00
LocalAI [bot]
f651a660aa ⬆️ Update ggerganov/llama.cpp (#1772)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-28 23:02:30 +01:00
Ettore Di Giacinto
ba672b51da Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-28 16:03:38 +01:00
Ettore Di Giacinto
be498c5dd9 Update openai-functions.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-28 15:58:31 +01:00
Ettore Di Giacinto
6e95beccb9 Update overview.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-28 15:24:08 +01:00
Ettore Di Giacinto
c8be839481 Update openai-functions.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-27 23:24:46 +01:00
LocalAI [bot]
c7e08813a5 ⬆️ Update ggerganov/llama.cpp (#1767)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-27 23:12:51 +01:00
LocalAI [bot]
d21a6b33ab ⬆️ Update ggerganov/llama.cpp (#1756)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-27 18:07:51 +00:00
Joshua Waring
9112cf153e Update integrations.md (#1765)
Added Jetbrains compatible plugin for LocalAI

Signed-off-by: Joshua Waring <Joshhua5@users.noreply.github.com>
2024-02-27 17:35:59 +01:00
Ettore Di Giacinto
3868ac8402 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-27 15:44:15 +01:00
Ettore Di Giacinto
3f09010227 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-27 15:43:15 +01:00
Ettore Di Giacinto
d6cf82aba3 fix(tests): re-enable tests after code move (#1764)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-27 15:04:19 +01:00
Ettore Di Giacinto
dfe54639b1 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-27 10:37:56 +01:00
Ettore Di Giacinto
bc5f5aa538 deps(llama.cpp): update (#1759)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-26 13:18:44 +01:00
Ettore Di Giacinto
05818e0425 fix(functions): handle correctly when there are no results (#1758) 2024-02-26 08:38:23 +01:00
Sertaç Özercan
7f72a61104 ci: add stablediffusion to release (#1757)
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
2024-02-25 23:06:18 +00:00
LocalAI [bot]
8e45d47740 ⬆️ Update ggerganov/llama.cpp (#1753)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-25 10:03:19 +01:00
LocalAI [bot]
71771d1e9b ⬆️ Update docs version mudler/LocalAI (#1752)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-25 10:02:52 +01:00
Ettore Di Giacinto
aa098e4d0b fix(sse): do not omit empty finish_reason (#1745)
Fixes https://github.com/mudler/LocalAI/issues/1744
2024-02-24 11:51:59 +01:00
Ludovic Leroux
0135e1e3b9 fix: vllm - use AsyncLLMEngine to allow true streaming mode (#1749)
* fix: use vllm AsyncLLMEngine to bring true stream

Current vLLM implementation uses the LLMEngine, which was designed for offline batch inference, which results in the streaming mode outputing all blobs at once at the end of the inference.

This PR reworks the gRPC server to use asyncio and gRPC.aio, in combination with vLLM's AsyncLLMEngine to bring true stream mode.

This PR also passes more parameters to vLLM during inference (presence_penalty, frequency_penalty, stop, ignore_eos, seed, ...).

* Remove unused import
2024-02-24 11:48:45 +01:00
LocalAI [bot]
ff88c390bb ⬆️ Update ggerganov/llama.cpp (#1750)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-24 00:06:46 +01:00
LocalAI [bot]
d825821a22 ⬆️ Update ggerganov/llama.cpp (#1740)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-23 00:07:15 +01:00
Luna Midori
cbed6ab1bb Update README.md (#1739)
* Update README.md

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

* Update README.md

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>
2024-02-22 16:35:06 +01:00
LocalAI [bot]
6fc122fa1a ⬆️ Update ggerganov/llama.cpp (#1705)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-22 09:33:23 +00:00
Ettore Di Giacinto
feba38be36 examples(mistral-openorca): add stopword
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-22 00:15:08 +01:00
Ettore Di Giacinto
ba85d0bcad feat(upload-api): do not display error if uploadedFiles.json is not present
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-22 00:15:08 +01:00
Ettore Di Giacinto
ad3623dd8d examples(phi-2): strip newline at the end of the prompt template
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-21 23:17:51 +01:00
Ettore Di Giacinto
8292781045 deps(llama.cpp): update, support Gemma models (#1734)
deps(llama.cpp): update

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-21 17:23:38 +01:00
Ettore Di Giacinto
54ec6348fa deps(llama.cpp): update (#1714)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-21 11:35:44 +01:00
Dave
255748bcba MQTT Startup Refactoring Part 1: core/ packages part 1 (#1728)
This PR specifically introduces a `core` folder and moves the following packages over, without any other changes:

- `api/backend`
- `api/config`
- `api/options`
- `api/schema`

Once this is merged and we confirm there's no regressions, I can migrate over the remaining changes piece by piece to split up application startup, backend services, http, and mqtt as was the goal of the earlier PRs!
2024-02-21 01:21:19 +00:00
Chakib Benziane
594eb468df Add TTS dependency for cuda based builds fixes #1727 (#1730)
Signed-off-by: Chakib Benziane <contact@blob42.xyz>
2024-02-20 21:59:43 +01:00
Ettore Di Giacinto
960d314e4f feat(tools): Parallel function calling (#1726)
feat(tools): support returning multiple tools choices

Fixes: https://github.com/mudler/LocalAI/issues/1275
2024-02-20 21:58:45 +01:00
Ettore Di Giacinto
ed3b50622b Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-20 19:55:36 +01:00
Ettore Di Giacinto
9f2235c208 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-19 19:49:00 +01:00
Ettore Di Giacinto
4ec50bfc41 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-19 19:03:09 +01:00
Ettore Di Giacinto
51b67a247a Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-18 13:37:16 +01:00
Steven Christou
01205fd4c0 Initial implementation of upload files api. (#1703)
* Initial implementation of upload files api.

* Move sanitize method to utils.

* Save uploaded data to uploads folder.

* Avoid loop if we do not have a purpose.

* Minor cleanup of api and fix bug where deleting duplicate filename cause error.

* Revert defer of saving config

* Moved creation of directory to startup.

* Make file names unique when storing on disk.

* Add test for files api.

* Update dependencies.
2024-02-18 10:12:02 +00:00
Ettore Di Giacinto
c72808f18b feat(tools): support Tool calls in the API (#1715)
* feat(tools): support Tools in the API

Co-authored-by: =?UTF-8?q?Stephan=20A=C3=9Fmus?= <stephan.assmus@sap.com>

* feat(tools): support function streaming

* Adhere to new return types when using tools instead of functions

* Keep backward compatibility with function calling

* Evaluate function names in chat templates

* Disable recovery with --debug

* Correctly stream out the entire result

* Detect when llm chooses to reply and to not perform any action in SSE

* Feedback from code review

---------

Co-authored-by: =?UTF-8?q?Stephan=20A=C3=9Fmus?= <stephan.assmus@sap.com>
2024-02-17 10:00:34 +01:00
Ettore Di Giacinto
6b539a2972 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-16 15:22:35 +01:00
LocalAI [bot]
2151d21862 ⬆️ Update docs version mudler/LocalAI (#1718)
* ⬆️ Update docs version mudler/LocalAI

Signed-off-by: GitHub <noreply@github.com>

* Update docs/data/version.json

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-16 15:11:53 +01:00
fenfir
fb0a4c5d9a Build docker container for ROCm (#1595)
* Dockerfile changes to build for ROCm

* Adjust linker flags for ROCm

* Update conda env for diffusers and transformers to use ROCm pytorch

* Update transformers conda env for ROCm

* ci: build hipblas images

* fixup rebase

* use self-hosted

Signed-off-by: mudler <mudler@localai.io>

* specify LD_LIBRARY_PATH only when BUILD_TYPE=hipblas

---------

Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: mudler <mudler@localai.io>
2024-02-16 15:08:50 +01:00
Ettore Di Giacinto
e690bf387a fix(tts): fix regression when supplying backend from requests (#1713)
fixes #1707

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-15 17:33:06 +01:00
Ettore Di Giacinto
5e155fb081 fix(python): pin exllama2 (#1711)
fix(python): pin python deps

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-14 21:44:12 +01:00
Ettore Di Giacinto
39a6b562cf fix(llama.cpp): downgrade to a known working version (#1706)
sycl support is broken otherwise.

See upstream issue: https://github.com/ggerganov/llama.cpp/issues/5469

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-14 10:28:06 +01:00
Ettore Di Giacinto
c56b6ddb1c fix(llama.cpp): disable infinite context shifting (#1704)
Infinite context loop might as well trigger an infinite loop of context
shifting if the model hallucinates and does not stop answering.
This has the unpleasant effect that the predicion never terminates,
which is the case especially on small models which tends to hallucinate.

Workarounds https://github.com/mudler/LocalAI/issues/1333 by removing
context-shifting.

See also upstream issue: https://github.com/ggerganov/llama.cpp/issues/3969
2024-02-13 21:17:21 +01:00
Sertaç Özercan
2e61ff32ad ci: add cuda builds to release (#1702)
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
2024-02-13 08:35:39 +00:00
LocalAI [bot]
02f6e18adc ⬆️ Update ggerganov/llama.cpp (#1700)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-12 21:43:33 +00:00
LocalAI [bot]
4436e62cf1 ⬆️ Update ggerganov/llama.cpp (#1698)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-12 09:56:04 +01:00
Ettore Di Giacinto
6e0eb96c61 fix: drop unused code (#1697)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-11 11:28:59 +01:00
Ettore Di Giacinto
fd68bf7084 fix(vall-e-x): Fix voice cloning (#1696) 2024-02-11 11:20:00 +01:00
LocalAI [bot]
58cdf97361 ⬆️ Update ggerganov/llama.cpp (#1694)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-11 10:01:11 +01:00
Ettore Di Giacinto
53dbe36f32 feat(tts): respect YAMLs config file, add sycl docs/examples (#1692)
* feat(refactor): refactor config and input reading

* feat(tts): read config file for TTS

* examples(kubernetes): Add simple deployment example

* examples(kubernetes): Add simple deployment for intel arc

* docs(sycl): add sycl example

* feat(tts): do not always pick a first model

* fixups to run vall-e-x on container

* Correctly resolve backend
2024-02-10 21:37:03 +01:00
LocalAI [bot]
081bd07fd1 ⬆️ Update docs version mudler/LocalAI (#1693)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-10 21:33:14 +01:00
LocalAI [bot]
ef1306f703 ⬆️ Update mudler/go-stable-diffusion (#1674)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-09 21:59:15 +00:00
LocalAI [bot]
3196967995 ⬆️ Update ggerganov/llama.cpp (#1691)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-09 21:50:34 +00:00
Ettore Di Giacinto
3875e5e0e5 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-09 00:03:07 +01:00
LocalAI [bot]
fc8423392f ⬆️ Update ggerganov/llama.cpp (#1688)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-09 00:02:23 +01:00
Ettore Di Giacinto
f1f6035967 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-08 20:39:00 +01:00
Ettore Di Giacinto
ddd21f1644 feat: Use ubuntu as base for container images, drop deprecated ggml-transformers backends (#1689)
* cleanup backends

* switch image to ubuntu 22.04

* adapt commands for ubuntu

* transformers cleanup

* no contrib on ubuntu

* Change test model to gguf

* ci: disable bark tests (too cpu-intensive)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* cleanup

* refinements

* use intel base image

* Makefile: Add docker targets

* Change test model

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-08 20:12:51 +01:00
Ettore Di Giacinto
d0a6a35b55 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-07 09:40:31 +01:00
Ettore Di Giacinto
e0632f2ce2 fix(llama.cpp): downgrade to fix sycl build
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-07 00:16:52 +01:00
Ettore Di Giacinto
37e6974afe ci: fix extra(bark) tests
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-06 20:49:28 +01:00
Ettore Di Giacinto
e23e490455 Revert "fix(Dockerfile): sycl dependencies" (#1687)
Revert "fix(Dockerfile): sycl dependencies (#1686)"

This reverts commit f76bb8954b.
2024-02-06 20:48:29 +01:00
Ettore Di Giacinto
f76bb8954b fix(Dockerfile): sycl dependencies (#1686)
* fix(Dockerfile): sycl dependencies

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix(ci): cleanup before running bark test

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-06 19:42:52 +01:00
Ettore Di Giacinto
d168c7c9dc ci: cleanup worker before run (#1685)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-06 19:42:27 +01:00
Ettore Di Giacinto
fd9d060c94 ci: fix sycl image suffix
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-06 15:52:21 +01:00
LocalAI [bot]
d8b17795d7 ⬆️ Update ggerganov/llama.cpp (#1683)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-06 09:26:01 +01:00
Ettore Di Giacinto
ea7b33b0d2 Update integrations.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-05 15:59:31 +01:00
LocalAI [bot]
8ace0a9ba7 ⬆️ Update ggerganov/llama.cpp (#1681)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-04 21:59:14 +00:00
Ettore Di Giacinto
98ad93d53e Drop ggml-based gpt2 and starcoder (supported by llama.cpp) (#1679)
* Drop ggml-based gpt2 and starcoder (supported by llama.cpp)

* Update compatibility table
2024-02-04 13:15:51 +01:00
LocalAI [bot]
38e4ec0b2a ⬆️ Update ggerganov/llama.cpp (#1678)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-04 00:55:12 +01:00
Nicolas Vermande
f083a901fe Fix HTTP links in README.md (#1677)
Signed-off-by: Nicolas Vermande <vfiftyfive@gmail.com>
2024-02-04 00:54:49 +01:00
Ettore Di Giacinto
df13ba655c Drop old falcon backend (deprecated) (#1675)
Drop old falcon backend
2024-02-03 13:01:13 +01:00
LocalAI [bot]
7678b25755 ⬆️ Update ggerganov/llama.cpp (#1673)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-02 21:46:26 +00:00
LocalAI [bot]
c87ca4f320 ⬆️ Update ggerganov/llama.cpp (#1669)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-02 19:14:03 +01:00
Ivan Smirnov
3c24a70a1b fix (docs): fixed broken links github/ -> github.com/ (#1672)
fix broken links
2024-02-02 18:18:03 +01:00
Richard Palethorpe
e46db63e06 feat(mamba): Add bagel-dpo-2.8b (#1671)
Adds the Mamba-slimpj model fine-tuned with bagel.
https://huggingface.co/jondurbin/bagel-dpo-2.8b-v0.2

Signed-off-by: Richard Palethorpe <io@richiejp.com>
2024-02-02 18:17:44 +01:00
Ettore Di Giacinto
1c57f8d077 feat(sycl): Add support for Intel GPUs with sycl (#1647) (#1660)
* feat(sycl): Add sycl support (#1647)

* onekit: install without prompts

* set cmake args only in grpc-server

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* cleanup

* fixup sycl source env

* Cleanup docs

* ci: runs on self-hosted

* fix typo

* bump llama.cpp

* llama.cpp: update server

* adapt to upstream changes

* adapt to upstream changes

* docs: add sycl

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-01 19:21:52 +01:00
LocalAI [bot]
16cebf0390 ⬆️ Update ggerganov/llama.cpp (#1665)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-30 23:38:05 +00:00
Ettore Di Giacinto
555bc02665 Update codellama-7b.yaml
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-30 11:36:20 +01:00
LocalAI [bot]
c1bae1ee81 ⬆️ Update ggerganov/llama.cpp (#1656)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-30 00:43:36 +01:00
LocalAI [bot]
f2ed3df3da ⬆️ Update docs version mudler/LocalAI (#1661)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-30 00:43:18 +01:00
LocalAI [bot]
abd678e147 ⬆️ Update ggerganov/llama.cpp (#1655)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-28 09:24:44 +01:00
Ettore Di Giacinto
6ac5d814fb feat(startup): fetch model definition remotely (#1654) 2024-01-28 00:14:16 +01:00
LocalAI [bot]
f928899338 ⬆️ Update ggerganov/llama.cpp (#1652)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-27 00:13:38 +01:00
Ettore Di Giacinto
5a6fd98839 fix(paths): automatically create paths (#1650)
Especially useful when running inside a container.

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-01-27 00:13:19 +01:00
Ettore Di Giacinto
072f71dfb7 Update codellama-7b.yaml
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-26 18:35:33 +01:00
Ettore Di Giacinto
670cee8274 Update transformers-tinyllama.yaml
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-26 18:29:38 +01:00
Ettore Di Giacinto
9f1be45552 Update quickstart.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-26 17:55:20 +01:00
Ettore Di Giacinto
f1846ae5ac Update phi-2.yaml
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-26 16:22:54 +01:00
LocalAI [bot]
ac19998e5e ⬆️ Update ggerganov/llama.cpp (#1644)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-26 00:13:39 +01:00
Ettore Di Giacinto
cb7512734d transformers: correctly load automodels (#1643)
* backends(transformers): use AutoModel with LLM types

* examples: animagine-xl

* Add codellama examples
2024-01-26 00:13:21 +01:00
LocalAI [bot]
3733250b3c ⬆️ Update ggerganov/llama.cpp (#1642)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-24 22:51:59 +01:00
LocalAI [bot]
da3cd8993d ⬆️ Update docs version mudler/LocalAI (#1631)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-24 19:50:33 +01:00
LocalAI [bot]
7690caf020 ⬆️ Update ggerganov/llama.cpp (#1632)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-23 23:07:51 +01:00
Ettore Di Giacinto
5e335eaead feat(transformers): support also text generation (#1630)
* feat(transformers): support also text generation

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* embedded: set seed -1

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-01-23 23:07:31 +01:00
coyzeng
d5d82ba344 feat(grpc): backend SPI pluggable in embedding mode (#1621)
* run server

* grpc backend embedded support

* backend providable
2024-01-23 08:56:36 +01:00
LocalAI [bot]
efe2883c5d ⬆️ Update ggerganov/llama.cpp (#1626)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-22 23:22:01 +01:00
LocalAI [bot]
47237c7c3c ⬆️ Update ggerganov/llama.cpp (#1623)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-22 08:54:06 +01:00
Ettore Di Giacinto
697c769b64 fix(llama.cpp): enable cont batching when parallel is set (#1622)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-01-21 14:59:48 +01:00
Ettore Di Giacinto
94261b1717 Update gpt-vision.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-21 10:07:30 +01:00
Sebastian
eaf85a30f9 fix(llama.cpp): Enable parallel requests (#1616)
integrate changes from llama.cpp

Signed-off-by: Sebastian <tauven@gmail.com>
2024-01-21 09:56:14 +01:00
LocalAI [bot]
6a88b030ea ⬆️ Update ggerganov/llama.cpp (#1620)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-20 23:34:46 +01:00
LocalAI [bot]
f538416fb3 ⬆️ Update docs version mudler/LocalAI (#1619)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-20 21:37:02 +00:00
188 changed files with 7996 additions and 4794 deletions

View File

@@ -3,3 +3,4 @@ models
examples/chatbot-ui/models
examples/rwkv/models
examples/**/models
Dockerfile

2
.env
View File

@@ -18,7 +18,7 @@
## Default path for models
#
MODELS_PATH=/models
# MODELS_PATH=/models
## Enable debug mode
# DEBUG=true

View File

@@ -21,6 +21,7 @@ jobs:
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -39,6 +40,7 @@ jobs:
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -48,6 +50,23 @@ jobs:
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: 'sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
@@ -60,6 +79,7 @@ jobs:
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -75,6 +95,15 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: 'sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -84,3 +113,4 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"

View File

@@ -13,7 +13,7 @@ concurrency:
cancel-in-progress: true
jobs:
extras-image-build:
self-hosted-jobs:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
@@ -25,6 +25,7 @@ jobs:
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -36,6 +37,7 @@ jobs:
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
# Extra images
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
@@ -44,6 +46,7 @@ jobs:
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -51,6 +54,7 @@ jobs:
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -60,6 +64,7 @@ jobs:
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -69,6 +74,7 @@ jobs:
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -78,6 +84,7 @@ jobs:
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -87,6 +94,7 @@ jobs:
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
@@ -94,7 +102,90 @@ jobs:
tag-suffix: ''
ffmpeg: ''
image-type: 'extras'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
# Core images
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
@@ -107,6 +198,7 @@ jobs:
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -121,6 +213,7 @@ jobs:
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
- build-type: 'cublas'
cuda-major-version: "11"
@@ -130,6 +223,7 @@ jobs:
tag-suffix: '-cublas-cuda11-core'
ffmpeg: ''
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
- build-type: 'cublas'
cuda-major-version: "12"
@@ -139,6 +233,7 @@ jobs:
tag-suffix: '-cublas-cuda12-core'
ffmpeg: ''
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
- build-type: 'cublas'
cuda-major-version: "11"
@@ -149,6 +244,7 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -158,3 +254,4 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"

View File

@@ -4,6 +4,11 @@ name: 'build container images (reusable)'
on:
workflow_call:
inputs:
base-image:
description: 'Base image'
required: false
default: ''
type: string
build-type:
description: 'Build type'
default: ''
@@ -64,42 +69,47 @@ jobs:
&& sudo apt-get install -y git
- name: Checkout
uses: actions/checkout@v4
# - name: Release space from worker
# run: |
# echo "Listing top largest packages"
# pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
# head -n 30 <<< "${pkgs}"
# echo
# df -h
# echo
# sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
# sudo apt-get remove --auto-remove android-sdk-platform-tools || true
# sudo apt-get purge --auto-remove android-sdk-platform-tools || true
# sudo rm -rf /usr/local/lib/android
# sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
# sudo rm -rf /usr/share/dotnet
# sudo apt-get remove -y '^mono-.*' || true
# sudo apt-get remove -y '^ghc-.*' || true
# sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
# sudo apt-get remove -y 'php.*' || true
# sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
# sudo apt-get remove -y '^google-.*' || true
# sudo apt-get remove -y azure-cli || true
# sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
# sudo apt-get remove -y '^gfortran-.*' || true
# sudo apt-get remove -y microsoft-edge-stable || true
# sudo apt-get remove -y firefox || true
# sudo apt-get remove -y powershell || true
# sudo apt-get remove -y r-base-core || true
# sudo apt-get autoremove -y
# sudo apt-get clean
# echo
# echo "Listing top largest packages"
# pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
# head -n 30 <<< "${pkgs}"
# echo
# sudo rm -rfv build || true
# df -h
- name: Release space from worker
if: inputs.runs-on == 'ubuntu-latest'
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get remove -y microsoft-edge-stable || true
sudo apt-get remove -y firefox || true
sudo apt-get remove -y powershell || true
sudo apt-get remove -y r-base-core || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
@@ -149,6 +159,7 @@ jobs:
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
context: .
file: ./Dockerfile
platforms: ${{ inputs.platforms }}

View File

@@ -20,6 +20,10 @@ jobs:
defines: '-DLLAMA_AVX2=OFF'
- build: 'avx512'
defines: '-DLLAMA_AVX512=ON'
- build: 'cuda12'
defines: ''
- build: 'cuda11'
defines: ''
runs-on: ubuntu-latest
steps:
- name: Clone
@@ -33,7 +37,18 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
- name: Install CUDA Dependencies
if: ${{ matrix.build == 'cuda12' || matrix.build == 'cuda11' }}
run: |
if [ "${{ matrix.build }}" == "cuda12" ]; then
export CUDA_VERSION=12-3
else
export CUDA_VERSION=11-7
fi
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v3
@@ -50,14 +65,19 @@ jobs:
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
BUILD_ID: "${{ matrix.build }}"
run: |
STATIC=true make dist
if [ "${{ matrix.build }}" == "cuda12" ] || [ "${{ matrix.build }}" == "cuda11" ]; then
export BUILD_TYPE=cublas
export PATH=/usr/local/cuda/bin:$PATH
make dist
else
STATIC=true make dist
fi
- uses: actions/upload-artifact@v3
with:
name: ${{ matrix.build }}
@@ -69,6 +89,35 @@ jobs:
files: |
release/*
build-stablediffusion:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v4
with:
go-version: '>=1.21.0'
- name: Dependencies
run: |
sudo apt-get install -y --no-install-recommends libopencv-dev
sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
- name: Build stablediffusion
run: |
make backend-assets/grpc/stablediffusion
mkdir -p release && cp backend-assets/grpc/stablediffusion release
- uses: actions/upload-artifact@v3
with:
name: stablediffusion
path: release/
- name: Release
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
build-macOS:
strategy:
matrix:
@@ -109,4 +158,4 @@ jobs:
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
release/*

View File

@@ -164,34 +164,74 @@ jobs:
tests-bark:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# tests-bark:
# runs-on: ubuntu-latest
# steps:
# - name: Release space from worker
# run: |
# echo "Listing top largest packages"
# pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
# head -n 30 <<< "${pkgs}"
# echo
# df -h
# echo
# sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
# sudo apt-get remove --auto-remove android-sdk-platform-tools || true
# sudo apt-get purge --auto-remove android-sdk-platform-tools || true
# sudo rm -rf /usr/local/lib/android
# sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
# sudo rm -rf /usr/share/dotnet
# sudo apt-get remove -y '^mono-.*' || true
# sudo apt-get remove -y '^ghc-.*' || true
# sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
# sudo apt-get remove -y 'php.*' || true
# sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
# sudo apt-get remove -y '^google-.*' || true
# sudo apt-get remove -y azure-cli || true
# sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
# sudo apt-get remove -y '^gfortran-.*' || true
# sudo apt-get remove -y microsoft-edge-stable || true
# sudo apt-get remove -y firefox || true
# sudo apt-get remove -y powershell || true
# sudo apt-get remove -y r-base-core || true
# sudo apt-get autoremove -y
# sudo apt-get clean
# echo
# echo "Listing top largest packages"
# pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
# head -n 30 <<< "${pkgs}"
# echo
# sudo rm -rfv build || true
# sudo rm -rf /usr/share/dotnet || true
# sudo rm -rf /opt/ghc || true
# sudo rm -rf "/usr/local/share/boost" || true
# sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
# df -h
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
# sudo rm -rfv /usr/bin/conda || true
- name: Test bark
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/bark
make -C backend/python/bark test
# - name: Test bark
# run: |
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/bark
# make -C backend/python/bark test
# Below tests needs GPU. Commented out for now
@@ -274,4 +314,4 @@ jobs:
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/coqui
make -C backend/python/coqui test
make -C backend/python/coqui test

4
.gitignore vendored
View File

@@ -21,6 +21,7 @@ local-ai
!charts/*
# prevent above rules from omitting the api/localai folder
!api/localai
!core/**/localai
# Ignore models
models/*
@@ -34,6 +35,7 @@ release/
.idea
# Generated during build
backend-assets/
backend-assets/*
!backend-assets/.keep
prepare
/ggml-metal.metal

View File

@@ -1,10 +1,12 @@
ARG GO_VERSION=1.21-bullseye
ARG IMAGE_TYPE=extras
ARG BASE_IMAGE=ubuntu:22.04
# extras or core
FROM ${BASE_IMAGE} as requirements-core
USER root
FROM golang:$GO_VERSION as requirements-core
ARG GO_VERSION=1.21.7
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=11
ARG CUDA_MINOR_VERSION=7
@@ -12,14 +14,17 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ARG GO_TAGS="stablediffusion tinydream tts"
RUN apt-get update && \
apt-get install -y ca-certificates curl patch pip cmake && apt-get clean
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
# Install Go
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
ENV PATH $PATH:/usr/local/go/bin
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
RUN update-ca-certificates
@@ -31,15 +36,19 @@ RUN echo "Target Variant: $TARGETVARIANT"
# CuBLAS requirements
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
apt-get install -y software-properties-common && \
apt-add-repository contrib && \
curl -O https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.0-1_all.deb && \
dpkg -i cuda-keyring_1.0-1_all.deb && \
rm -f cuda-keyring_1.0-1_all.deb && \
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
; fi
# Cuda
ENV PATH /usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH /opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion
RUN apt-get install -y \
libopenblas-dev \
@@ -66,10 +75,16 @@ RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmo
apt-get install -y conda && apt-get clean
ENV PATH="/root/.cargo/bin:${PATH}"
RUN apt-get install -y python3-pip && apt-get clean
RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get install -y espeak-ng espeak && apt-get clean
RUN if [ ! -e /usr/bin/python ]; then \
ln -s /usr/bin/python3 /usr/bin/python \
; fi
###################################
###################################
@@ -90,6 +105,13 @@ COPY . .
COPY .git .
RUN make prepare
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
apt-get update && \
apt-get install -y libclblast-dev && \
apt-get clean \
; fi
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
@@ -133,6 +155,13 @@ RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get install -y ffmpeg && apt-get clean \
; fi
# Add OpenCL
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
apt-get update && \
apt-get install -y libclblast1 && \
apt-get clean \
; fi
WORKDIR /build
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
@@ -157,43 +186,43 @@ COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/
## Duplicated from Makefile to avoid having a big layer that's hard to push
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/autogptq \
make -C backend/python/autogptq \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/bark \
make -C backend/python/bark \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers \
make -C backend/python/diffusers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/vllm \
make -C backend/python/vllm \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/mamba \
make -C backend/python/mamba \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers \
make -C backend/python/sentencetransformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers \
make -C backend/python/transformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/vall-e-x \
make -C backend/python/vall-e-x \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama \
make -C backend/python/exllama \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama2 \
make -C backend/python/exllama2 \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/petals \
make -C backend/python/petals \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers-musicgen \
make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/coqui \
make -C backend/python/coqui \
; fi
# Make sure the models directory exists

134
Makefile
View File

@@ -4,34 +4,31 @@ GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
# llama.cpp versions
GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_VERSION?=6a8041ef6b46d4712afc3ae791d1c2d73da0ad1c
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=381ee195721d8e747ee31a60c0751822b3072f02
CPPLLAMA_VERSION?=4755afd1cbd40d93c017e5b98c39796f52345314
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
GPT4ALL_VERSION?=27a8b020c36b0df8f8b82a252d261cda47cf44b8
# go-ggml-transformers version
GOGGMLTRANSFORMERS_VERSION?=ffb09d7dd71e2cbc6c5d7d05357d230eea6f369a
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=633c5a3485c403cb2520693dc0991a25dace9f0f
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version
WHISPER_CPP_VERSION?=37a709f6558c6d9783199e2b8cbb136e1c41d346
WHISPER_CPP_VERSION?=a56f435fd475afd7edf02bfbf9f8c77f527198c2
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
# go-piper version
PIPER_VERSION?=d6b6275ba037dabdba4a8b65dfdf6b2a73a67f07
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
# stablediffusion version
STABLEDIFFUSION_VERSION?=902db5f066fd137697e3b69d0fa10d4782bd2c2f
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
# tinydream version
TINYDREAM_VERSION?=772a9c0d9aaf768290e63cca3c904fe69faf677a
@@ -47,6 +44,8 @@ BUILD_ID?=git
TEST_DIR=/tmp/test
TEST_FLAKES?=5
RANDOM := $(shell bash -c 'echo $$RANDOM')
VERSION?=$(shell git describe --always --tags || echo "dev" )
@@ -92,14 +91,19 @@ ifeq ($(BUILD_TYPE),openblas)
export WHISPER_OPENBLAS=1
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
CGO_LDFLAGS+=-lcublas -lcudart -lculibos -lcublasLt -L$(CUDA_LIBPATH)
export LLAMA_CUBLAS=1
# required by whisper.cpp
export WHISPER_CUBLAS=1
CGO_LDFLAGS+=-L$(CUDA_PATH)/stubs -lcuda
endif
ifeq ($(BUILD_TYPE),hipblas)
ROCM_HOME ?= /opt/rocm
ROCM_PATH ?= /opt/rocm
LD_LIBRARY_PATH ?= /opt/rocm/lib:/opt/rocm/llvm/lib
export CXX=$(ROCM_HOME)/llvm/bin/clang++
export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here.
@@ -108,7 +112,7 @@ ifeq ($(BUILD_TYPE),hipblas)
GPU_TARGETS ?= gfx900,gfx90a,gfx1030,gfx1031,gfx1100
AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib
endif
ifeq ($(BUILD_TYPE),metal)
@@ -145,8 +149,18 @@ ifeq ($(findstring tts,$(GO_TAGS)),tts)
OPTIONAL_GRPC+=backend-assets/grpc/piper
endif
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface backend-assets/grpc/falcon-ggml backend-assets/grpc/bert-embeddings backend-assets/grpc/llama backend-assets/grpc/llama-cpp backend-assets/grpc/llama-ggml backend-assets/grpc/gpt4all backend-assets/grpc/dolly backend-assets/grpc/gpt2 backend-assets/grpc/gptj backend-assets/grpc/gptneox backend-assets/grpc/mpt backend-assets/grpc/replit backend-assets/grpc/starcoder backend-assets/grpc/rwkv backend-assets/grpc/whisper $(OPTIONAL_GRPC)
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
TEST_PATHS?=./api/... ./pkg/... ./core/...
# If empty, then we build all
ifeq ($(GRPC_BACKENDS),)
@@ -217,14 +231,6 @@ backend-assets/espeak-ng-data: sources/go-piper
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
## CEREBRAS GPT
sources/go-ggml-transformers:
git clone --recurse-submodules https://github.com/go-skynet/go-ggml-transformers.cpp sources/go-ggml-transformers
cd sources/go-ggml-transformers && git checkout -b build $(GOGPT2_VERSION) && git submodule update --init --recursive --depth 1
sources/go-ggml-transformers/libtransformers.a: sources/go-ggml-transformers
$(MAKE) -C sources/go-ggml-transformers BUILD_TYPE=$(BUILD_TYPE) libtransformers.a
sources/whisper.cpp:
git clone https://github.com/ggerganov/whisper.cpp.git sources/whisper.cpp
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
@@ -250,14 +256,13 @@ sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/go-ggml-transformers sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
touch $@
replace:
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/go-skynet/go-ggml-transformers.cpp=$(CURDIR)/sources/go-ggml-transformers
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
@@ -276,7 +281,6 @@ rebuild: ## Rebuilds the project
$(MAKE) -C sources/go-llama clean
$(MAKE) -C sources/go-llama-ggml clean
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
$(MAKE) -C sources/go-ggml-transformers clean
$(MAKE) -C sources/go-rwkv clean
$(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-stable-diffusion clean
@@ -321,7 +325,7 @@ run: prepare ## run local-ai
test-models/testmodel:
mkdir test-models
mkdir test-dir
wget -q https://huggingface.co/nnakasato/ggml-model-test/resolve/main/ggml-model-q4.bin -O test-models/testmodel
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
@@ -330,7 +334,7 @@ test-models/testmodel:
cp tests/models_fixtures/* test-models
prepare-test: grpcs
cp -rf backend-assets api
cp -rf backend-assets core/http
cp tests/models_fixtures/* test-models
test: prepare test-models/testmodel grpcs
@@ -338,7 +342,7 @@ test: prepare test-models/testmodel grpcs
export GO_TAGS="tts stablediffusion"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts 5 --fail-fast -v -r ./api ./pkg
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(MAKE) test-gpt4all
$(MAKE) test-llama
$(MAKE) test-llama-gguf
@@ -367,23 +371,23 @@ teardown-e2e:
test-gpt4all: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r ./api ./pkg
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r ./api ./pkg
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r ./api ./pkg
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
test-tts: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r ./api ./pkg
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r ./api ./pkg
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
test-container:
docker build --target requirements -t local-ai-test-container .
@@ -461,9 +465,6 @@ backend-assets/grpc/llama: backend-assets/grpc sources/go-llama/libbinding.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama LIBRARY_PATH=$(CURDIR)/sources/go-llama \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./backend/go/llm/llama/
# TODO: every binary should have its own folder instead, so can have different implementations
ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama/llama.cpp/ggml-metal.metal backend-assets/grpc/
endif
## BACKEND CPP LLAMA START
# Sets the variables in case it has to build the gRPC locally.
@@ -484,7 +485,7 @@ ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
else
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
endif
## BACKEND CPP LLAMA END
@@ -493,7 +494,7 @@ backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
# TODO: every binary should have its own folder instead, so can have different metal implementations
ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama/llama.cpp/build/bin/ggml-metal.metal backend-assets/grpc/
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
endif
backend-assets/grpc/llama-ggml: backend-assets/grpc sources/go-llama-ggml/libbinding.a
@@ -505,38 +506,6 @@ backend-assets/grpc/gpt4all: backend-assets/grpc backend-assets/gpt4all sources/
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
backend-assets/grpc/dolly: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/dolly ./backend/go/llm/dolly/
backend-assets/grpc/gpt2: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt2 ./backend/go/llm/gpt2/
backend-assets/grpc/gptj: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gptj ./backend/go/llm/gptj/
backend-assets/grpc/gptneox: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gptneox ./backend/go/llm/gptneox/
backend-assets/grpc/mpt: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/mpt ./backend/go/llm/mpt/
backend-assets/grpc/replit: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/replit ./backend/go/llm/replit/
backend-assets/grpc/falcon-ggml: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/falcon-ggml ./backend/go/llm/falcon-ggml/
backend-assets/grpc/starcoder: backend-assets/grpc sources/go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-ggml-transformers LIBRARY_PATH=$(CURDIR)/sources/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/starcoder ./backend/go/llm/starcoder/
backend-assets/grpc/rwkv: backend-assets/grpc sources/go-rwkv/librwkv.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
@@ -550,6 +519,7 @@ backend-assets/grpc/langchain-huggingface: backend-assets/grpc
backend-assets/grpc/stablediffusion: backend-assets/grpc
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
$(MAKE) sources/go-stable-diffusion; \
$(MAKE) sources/go-stable-diffusion/libstablediffusion.a; \
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-stable-diffusion/ LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion; \
@@ -568,3 +538,29 @@ backend-assets/grpc/whisper: backend-assets/grpc sources/whisper.cpp/libwhisper.
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
grpcs: prepare $(GRPC_BACKENDS)
DOCKER_IMAGE?=local-ai
IMAGE_TYPE?=core
BASE_IMAGE?=ubuntu:22.04
docker:
docker build \
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS=$(GO_TAGS) \
--build-arg BUILD_TYPE=$(BUILD_TYPE) \
-t $(DOCKER_IMAGE) .
docker-image-intel:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
docker-image-intel-xpu:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .

View File

@@ -43,17 +43,24 @@
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
- Tools API support: https://github.com/mudler/LocalAI/pull/1715
- LLaVa 1.6: https://github.com/mudler/LocalAI/pull/1714
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595
- Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
- Deprecation of old backends: https://github.com/mudler/LocalAI/issues/1651
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
- Inline templates: https://github.com/mudler/LocalAI/pull/1452
- Mixtral: https://github.com/mudler/LocalAI/pull/1449
- Img2vid https://github.com/mudler/LocalAI/pull/1442
- Musicgen https://github.com/mudler/LocalAI/pull/1387
Hot topics (looking for contributors):
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
@@ -62,7 +69,7 @@ If you want to help and contribute, issues up for grabs: https://github.com/mudl
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide. For those in a hurry, here's a straightforward one-liner to launch a LocalAI instance with [phi-2](https://huggingface.co/microsoft/phi-2) using `docker`:
```
docker run -ti -p 8080:8080 localai/localai:v2.5.1-ffmpeg-core phi-2
docker run -ti -p 8080:8080 localai/localai:v2.9.0-ffmpeg-core phi-2
```
## 🚀 [Features](https://localai.io/features/)
@@ -92,10 +99,6 @@ WebUIs:
Model galleries
- https://github.com/go-skynet/model-gallery
Auto Docker / Model setup
- https://io.midori-ai.xyz/howtos/easy-localai-installer/
- https://io.midori-ai.xyz/howtos/easy-model-installer/
Other:
- Helm chart https://github.com/go-skynet/helm-charts
@@ -106,17 +109,20 @@ Other:
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/
### 🔗 Resources
- 🆕 New! [LLM finetuning guide](https://localai.io/advanced/fine-tuning/)
- 🆕 New! [LLM finetuning guide](https://localai.io/docs/advanced/fine-tuning/)
- [How to build locally](https://localai.io/basics/build/index.html)
- [How to install in Kubernetes](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes)
- [Projects integrating LocalAI](https://localai.io/integrations/)
- [Projects integrating LocalAI](https://localai.io/docs/integrations/)
- [How tos section](https://io.midori-ai.xyz/howtos/) (curated by our community)
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/ai/answers/tiZMDoZzZV6TLxgDXNBnFE/deploying-helm-charts-on-aws-eks)
- [Run LocalAI on AWS](https://staleks.hashnode.dev/installing-localai-on-aws-ec2-instance)
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
- [LocalAI meets k8sgpt](https://www.youtube.com/watch?v=PKrDNuJ_dfE)
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/)
@@ -176,7 +182,6 @@ LocalAI couldn't have been built without the help of great software already avai
- https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/rhasspy/piper
- https://github.com/cmp-nct/ggllm.cpp
## 🤗 Contributors

42
SECURITY.md Normal file
View File

@@ -0,0 +1,42 @@
# Security Policy
## Introduction
At LocalAI, we take the security of our software seriously. We understand the importance of protecting our community from vulnerabilities and are committed to ensuring the safety and security of our users.
## Supported Versions
We provide support and updates for certain versions of our software. The following table outlines which versions are currently supported with security updates:
| Version | Supported |
| ------- | ------------------ |
| > 2.0 | :white_check_mark: |
| < 2.0 | :x: |
Please ensure that you are using a supported version to receive the latest security updates.
## Reporting a Vulnerability
We encourage the responsible disclosure of any security vulnerabilities. If you believe you've found a security issue in our software, we kindly ask you to follow the steps below to report it to us:
1. **Email Us:** Send an email to [security@localai.io](mailto:security@localai.io) with a detailed report. Please do not disclose the vulnerability publicly or to any third parties before it has been addressed by us.
2. **Expect a Response:** We aim to acknowledge receipt of vulnerability reports within 48 hours. Our security team will review your report and work closely with you to understand the impact and ensure a thorough investigation.
3. **Collaboration:** If the vulnerability is accepted, we will work with you and our community to address the issue promptly. We'll keep you informed throughout the resolution process and may request additional information or collaboration.
4. **Disclosure:** Once the vulnerability has been resolved, we encourage a coordinated disclosure. We believe in transparency and will work with you to ensure that our community is informed in a responsible manner.
## Use of Third-Party Platforms
As a Free and Open Source Software (FOSS) organization, we do not offer monetary bounties. However, researchers who wish to report vulnerabilities can also do so via [Huntr](https://huntr.dev/bounties), a platform that recognizes contributions to open source security.
## Contact
For any security-related inquiries beyond vulnerability reporting, please contact us at [security@localai.io](mailto:security@localai.io).
## Acknowledgments
We appreciate the efforts of those who contribute to the security of our project. Your responsible disclosure is invaluable to the safety and integrity of LocalAI.
Thank you for helping us keep LocalAI secure.

View File

@@ -1,283 +0,0 @@
package api
import (
"encoding/json"
"errors"
"fmt"
"os"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/localai"
"github.com/go-skynet/LocalAI/api/openai"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/startup"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/logger"
"github.com/gofiber/fiber/v2/middleware/recover"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
)
func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader, error) {
options := options.NewOptions(opts...)
zerolog.SetGlobalLevel(zerolog.InfoLevel)
if options.Debug {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
}
log.Info().Msgf("Starting LocalAI using %d threads, with models path: %s", options.Threads, options.Loader.ModelPath)
log.Info().Msgf("LocalAI version: %s", internal.PrintableVersion())
startup.PreloadModelsConfigurations(options.Loader.ModelPath, options.ModelsURL...)
cl := config.NewConfigLoader()
if err := cl.LoadConfigs(options.Loader.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
}
if options.ConfigFile != "" {
if err := cl.LoadConfigFile(options.ConfigFile); err != nil {
log.Error().Msgf("error loading config file: %s", err.Error())
}
}
if err := cl.Preload(options.Loader.ModelPath); err != nil {
log.Error().Msgf("error downloading models: %s", err.Error())
}
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.Debug {
for _, v := range cl.ListConfigs() {
cfg, _ := cl.GetConfig(v)
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
}
}
if options.AssetsDestination != "" {
// Extract files from the embedded FS
err := assets.ExtractFiles(options.BackendAssets, options.AssetsDestination)
log.Debug().Msgf("Extracting backend assets files to %s", options.AssetsDestination)
if err != nil {
log.Warn().Msgf("Failed extracting backend assets files: %s (might be required for some backends to work properly, like gpt4all)", err)
}
}
// turn off any process that was started by GRPC if the context is canceled
go func() {
<-options.Context.Done()
log.Debug().Msgf("Context canceled, shutting down")
options.Loader.StopAllGRPC()
}()
if options.WatchDog {
wd := model.NewWatchDog(
options.Loader,
options.WatchDogBusyTimeout,
options.WatchDogIdleTimeout,
options.WatchDogBusy,
options.WatchDogIdle)
options.Loader.SetWatchDog(wd)
go wd.Run()
go func() {
<-options.Context.Done()
log.Debug().Msgf("Context canceled, shutting down")
wd.Shutdown()
}()
}
return options, cl, nil
}
func App(opts ...options.AppOption) (*fiber.App, error) {
options, cl, err := Startup(opts...)
if err != nil {
return nil, fmt.Errorf("failed basic startup tasks with error %s", err.Error())
}
// Return errors as JSON responses
app := fiber.New(fiber.Config{
BodyLimit: options.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: options.DisableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
// Status code defaults to 500
code := fiber.StatusInternalServerError
// Retrieve the custom status code if it's a *fiber.Error
var e *fiber.Error
if errors.As(err, &e) {
code = e.Code
}
// Send custom error page
return ctx.Status(code).JSON(
schema.ErrorResponse{
Error: &schema.APIError{Message: err.Error(), Code: code},
},
)
},
})
if options.Debug {
app.Use(logger.New(logger.Config{
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
}))
}
// Default middleware config
app.Use(recover.New())
if options.Metrics != nil {
app.Use(metrics.APIMiddleware(options.Metrics))
}
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
auth := func(c *fiber.Ctx) error {
if len(options.ApiKeys) == 0 {
return c.Next()
}
// Check for api_keys.json file
fileContent, err := os.ReadFile("api_keys.json")
if err == nil {
// Parse JSON content from the file
var fileKeys []string
err := json.Unmarshal(fileContent, &fileKeys)
if err != nil {
return c.Status(fiber.StatusInternalServerError).JSON(fiber.Map{"message": "Error parsing api_keys.json"})
}
// Add file keys to options.ApiKeys
options.ApiKeys = append(options.ApiKeys, fileKeys...)
}
if len(options.ApiKeys) == 0 {
return c.Next()
}
authHeader := c.Get("Authorization")
if authHeader == "" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
}
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
}
apiKey := authHeaderParts[1]
for _, key := range options.ApiKeys {
if apiKey == key {
return c.Next()
}
}
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
}
if options.CORS {
var c func(ctx *fiber.Ctx) error
if options.CORSAllowOrigins == "" {
c = cors.New()
} else {
c = cors.New(cors.Config{AllowOrigins: options.CORSAllowOrigins})
}
app.Use(c)
}
// LocalAI API endpoints
galleryService := localai.NewGalleryService(options.Loader.ModelPath)
galleryService.Start(options.Context, cl)
app.Get("/version", auth, func(c *fiber.Ctx) error {
return c.JSON(struct {
Version string `json:"version"`
}{Version: internal.PrintableVersion()})
})
modelGalleryService := localai.CreateModelGalleryService(options.Galleries, options.Loader.ModelPath, galleryService)
app.Post("/models/apply", auth, modelGalleryService.ApplyModelGalleryEndpoint())
app.Get("/models/available", auth, modelGalleryService.ListModelFromGalleryEndpoint())
app.Get("/models/galleries", auth, modelGalleryService.ListModelGalleriesEndpoint())
app.Post("/models/galleries", auth, modelGalleryService.AddModelGalleryEndpoint())
app.Delete("/models/galleries", auth, modelGalleryService.RemoveModelGalleryEndpoint())
app.Get("/models/jobs/:uuid", auth, modelGalleryService.GetOpStatusEndpoint())
app.Get("/models/jobs", auth, modelGalleryService.GetAllStatusEndpoint())
// openAI compatible API endpoint
// chat
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, options))
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, options))
// edit
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, options))
app.Post("/edits", auth, openai.EditEndpoint(cl, options))
// completion
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, options))
app.Post("/completions", auth, openai.CompletionEndpoint(cl, options))
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, options))
// embeddings
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, options))
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, options))
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, options))
// audio
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, options))
app.Post("/tts", auth, localai.TTSEndpoint(cl, options))
// images
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, options))
if options.ImageDir != "" {
app.Static("/generated-images", options.ImageDir)
}
if options.AudioDir != "" {
app.Static("/generated-audio", options.AudioDir)
}
ok := func(c *fiber.Ctx) error {
return c.SendStatus(200)
}
// Kubernetes health checks
app.Get("/healthz", ok)
app.Get("/readyz", ok)
// Experimental Backend Statistics Module
backendMonitor := localai.NewBackendMonitor(cl, options) // Split out for now
app.Get("/backend/monitor", localai.BackendMonitorEndpoint(backendMonitor))
app.Post("/backend/shutdown", localai.BackendShutdownEndpoint(backendMonitor))
// models
app.Get("/v1/models", auth, openai.ListModelsEndpoint(options.Loader, cl))
app.Get("/models", auth, openai.ListModelsEndpoint(options.Loader, cl))
app.Get("/metrics", metrics.MetricsHandler())
return app, nil
}

View File

@@ -1,61 +0,0 @@
package backend
import (
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, c config.Config, o *options.Option) (func() error, error) {
opts := modelOpts(c, o, []model.Option{
model.WithBackendString(c.Backend),
model.WithAssetDir(o.AssetsDestination),
model.WithThreads(uint32(c.Threads)),
model.WithContext(o.Context),
model.WithModel(c.Model),
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
PipelineType: c.Diffusers.PipelineType,
CFGScale: c.Diffusers.CFGScale,
LoraAdapter: c.LoraAdapter,
LoraScale: c.LoraScale,
LoraBase: c.LoraBase,
IMG2IMG: c.Diffusers.IMG2IMG,
CLIPModel: c.Diffusers.ClipModel,
CLIPSubfolder: c.Diffusers.ClipSubFolder,
CLIPSkip: int32(c.Diffusers.ClipSkip),
ControlNet: c.Diffusers.ControlNet,
}),
})
inferenceModel, err := loader.BackendLoader(
opts...,
)
if err != nil {
return nil, err
}
fn := func() error {
_, err := inferenceModel.GenerateImage(
o.Context,
&proto.GenerateImageRequest{
Height: int32(height),
Width: int32(width),
Mode: int32(mode),
Step: int32(step),
Seed: int32(seed),
CLIPSkip: int32(c.Diffusers.ClipSkip),
PositivePrompt: positive_prompt,
NegativePrompt: negative_prompt,
Dst: dst,
Src: src,
EnableParameters: c.Diffusers.EnableParameters,
})
return err
}
return fn, nil
}

View File

@@ -1,127 +0,0 @@
package backend
import (
"os"
"path/filepath"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
)
func modelOpts(c config.Config, o *options.Option, opts []model.Option) []model.Option {
if o.SingleBackend {
opts = append(opts, model.WithSingleActiveBackend())
}
if o.ParallelBackendRequests {
opts = append(opts, model.EnableParallelRequests)
}
if c.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
}
if c.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
}
for k, v := range o.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
return opts
}
func gRPCModelOpts(c config.Config) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
}
return &pb.ModelOptions{
ContextSize: int32(c.ContextSize),
Seed: int32(c.Seed),
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
CUDA: c.CUDA, // diffusers, transformers
DraftModel: c.DraftModel,
AudioPath: c.VallE.AudioPath,
Quantization: c.Quantization,
MMProj: c.MMProj,
YarnExtFactor: c.YarnExtFactor,
YarnAttnFactor: c.YarnAttnFactor,
YarnBetaFast: c.YarnBetaFast,
YarnBetaSlow: c.YarnBetaSlow,
LoraAdapter: c.LoraAdapter,
LoraBase: c.LoraBase,
LoraScale: c.LoraScale,
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
F16Memory: c.F16,
MLock: c.MMlock,
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NUMA: c.NUMA,
Embeddings: c.Embeddings,
LowVRAM: c.LowVRAM,
NGPULayers: int32(c.NGPULayers),
MMap: c.MMap,
MainGPU: c.MainGPU,
Threads: int32(c.Threads),
TensorSplit: c.TensorSplit,
// AutoGPTQ
ModelBaseName: c.AutoGPTQ.ModelBaseName,
Device: c.AutoGPTQ.Device,
UseTriton: c.AutoGPTQ.Triton,
UseFastTokenizer: c.AutoGPTQ.UseFastTokenizer,
// RWKV
Tokenizer: c.Tokenizer,
}
}
func gRPCPredictOpts(c config.Config, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
promptCachePath = p
}
return &pb.PredictOptions{
Temperature: float32(c.Temperature),
TopP: float32(c.TopP),
NDraft: c.NDraft,
TopK: int32(c.TopK),
Tokens: int32(c.Maxtokens),
Threads: int32(c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
PromptCachePath: promptCachePath,
F16KV: c.F16,
DebugMode: c.Debug,
Grammar: c.Grammar,
NegativePromptScale: c.NegativePromptScale,
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NegativePrompt: c.NegativePrompt,
Mirostat: int32(c.LLMConfig.Mirostat),
MirostatETA: float32(c.LLMConfig.MirostatETA),
MirostatTAU: float32(c.LLMConfig.MirostatTAU),
Debug: c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: int32(c.Seed),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: c.MMlock,
MMap: c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(c.TFZ),
TypicalP: float32(c.TypicalP),
}
}

View File

@@ -1,39 +0,0 @@
package backend
import (
"context"
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ModelTranscription(audio, language string, loader *model.ModelLoader, c config.Config, o *options.Option) (*schema.Result, error) {
opts := modelOpts(c, o, []model.Option{
model.WithBackendString(model.WhisperBackend),
model.WithModel(c.Model),
model.WithContext(o.Context),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),
})
whisperModel, err := o.Loader.BackendLoader(opts...)
if err != nil {
return nil, err
}
if whisperModel == nil {
return nil, fmt.Errorf("could not load whisper model")
}
return whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
Dst: audio,
Language: language,
Threads: uint32(c.Threads),
})
}

View File

@@ -1,79 +0,0 @@
package backend
import (
"context"
"fmt"
"os"
"path/filepath"
api_config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
}
}
func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *options.Option) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
}
opts := modelOpts(api_config.Config{}, o, []model.Option{
model.WithBackendString(bb),
model.WithModel(modelFile),
model.WithContext(o.Context),
model.WithAssetDir(o.AssetsDestination),
})
piperModel, err := o.Loader.BackendLoader(opts...)
if err != nil {
return "", nil, err
}
if piperModel == nil {
return "", nil, fmt.Errorf("could not load piper model")
}
if err := os.MkdirAll(o.AudioDir, 0755); err != nil {
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
}
fileName := generateUniqueFileName(o.AudioDir, "piper", ".wav")
filePath := filepath.Join(o.AudioDir, fileName)
// If the model file is not empty, we pass it joined with the model path
modelPath := ""
if modelFile != "" {
if bb != model.TransformersMusicGen {
modelPath = filepath.Join(o.Loader.ModelPath, modelFile)
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
return "", nil, err
}
} else {
modelPath = modelFile
}
}
res, err := piperModel.TTS(context.Background(), &proto.TTSRequest{
Text: text,
Model: modelPath,
Dst: filePath,
})
return filePath, res, err
}

View File

@@ -1,372 +0,0 @@
package api_config
import (
"errors"
"fmt"
"io/fs"
"os"
"path/filepath"
"strings"
"sync"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
)
type Config struct {
PredictionOptions `yaml:"parameters"`
Name string `yaml:"name"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
PromptStrings, InputStrings []string `yaml:"-"`
InputToken [][]int `yaml:"-"`
functionCallString, functionCallNameString string `yaml:"-"`
FunctionsConfig Functions `yaml:"function"`
FeatureFlag FeatureFlag `yaml:"feature_flags"` // Feature Flag registry. We move fast, and features may break on a per model/backend basis. Registry for (usually temporary) flags that indicate aborting something early.
// LLM configs (GPT4ALL, Llama.cpp, ...)
LLMConfig `yaml:",inline"`
// AutoGPTQ specifics
AutoGPTQ AutoGPTQ `yaml:"autogptq"`
// Diffusers
Diffusers Diffusers `yaml:"diffusers"`
Step int `yaml:"step"`
// GRPC Options
GRPC GRPC `yaml:"grpc"`
// Vall-e-x
VallE VallE `yaml:"vall-e"`
// CUDA
// Explicitly enable CUDA or not (some backends might need it)
CUDA bool `yaml:"cuda"`
DownloadFiles []File `yaml:"download_files"`
Description string `yaml:"description"`
Usage string `yaml:"usage"`
}
type File struct {
Filename string `yaml:"filename" json:"filename"`
SHA256 string `yaml:"sha256" json:"sha256"`
URI string `yaml:"uri" json:"uri"`
}
type VallE struct {
AudioPath string `yaml:"audio_path"`
}
type FeatureFlag map[string]*bool
func (ff FeatureFlag) Enabled(s string) bool {
v, exist := ff[s]
return exist && v != nil && *v
}
type GRPC struct {
Attempts int `yaml:"attempts"`
AttemptsSleepTime int `yaml:"attempts_sleep_time"`
}
type Diffusers struct {
CUDA bool `yaml:"cuda"`
PipelineType string `yaml:"pipeline_type"`
SchedulerType string `yaml:"scheduler_type"`
EnableParameters string `yaml:"enable_parameters"` // A list of comma separated parameters to specify
CFGScale float32 `yaml:"cfg_scale"` // Classifier-Free Guidance Scale
IMG2IMG bool `yaml:"img2img"` // Image to Image Diffuser
ClipSkip int `yaml:"clip_skip"` // Skip every N frames
ClipModel string `yaml:"clip_model"` // Clip model to use
ClipSubFolder string `yaml:"clip_subfolder"` // Subfolder to use for clip model
ControlNet string `yaml:"control_net"`
}
type LLMConfig struct {
SystemPrompt string `yaml:"system_prompt"`
TensorSplit string `yaml:"tensor_split"`
MainGPU string `yaml:"main_gpu"`
RMSNormEps float32 `yaml:"rms_norm_eps"`
NGQA int32 `yaml:"ngqa"`
PromptCachePath string `yaml:"prompt_cache_path"`
PromptCacheAll bool `yaml:"prompt_cache_all"`
PromptCacheRO bool `yaml:"prompt_cache_ro"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
MMap bool `yaml:"mmap"`
MMlock bool `yaml:"mmlock"`
LowVRAM bool `yaml:"low_vram"`
Grammar string `yaml:"grammar"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
TrimSuffix []string `yaml:"trimsuffix"`
ContextSize int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
MMProj string `yaml:"mmproj"`
RopeScaling string `yaml:"rope_scaling"`
YarnExtFactor float32 `yaml:"yarn_ext_factor"`
YarnAttnFactor float32 `yaml:"yarn_attn_factor"`
YarnBetaFast float32 `yaml:"yarn_beta_fast"`
YarnBetaSlow float32 `yaml:"yarn_beta_slow"`
}
type AutoGPTQ struct {
ModelBaseName string `yaml:"model_base_name"`
Device string `yaml:"device"`
Triton bool `yaml:"triton"`
UseFastTokenizer bool `yaml:"use_fast_tokenizer"`
}
type Functions struct {
DisableNoAction bool `yaml:"disable_no_action"`
NoActionFunctionName string `yaml:"no_action_function_name"`
NoActionDescriptionName string `yaml:"no_action_description_name"`
}
type TemplateConfig struct {
Chat string `yaml:"chat"`
ChatMessage string `yaml:"chat_message"`
Completion string `yaml:"completion"`
Edit string `yaml:"edit"`
Functions string `yaml:"function"`
}
type ConfigLoader struct {
configs map[string]Config
sync.Mutex
}
func (c *Config) SetFunctionCallString(s string) {
c.functionCallString = s
}
func (c *Config) SetFunctionCallNameString(s string) {
c.functionCallNameString = s
}
func (c *Config) ShouldUseFunctions() bool {
return ((c.functionCallString != "none" || c.functionCallString == "") || c.ShouldCallSpecificFunction())
}
func (c *Config) ShouldCallSpecificFunction() bool {
return len(c.functionCallNameString) > 0
}
func (c *Config) FunctionToCall() string {
return c.functionCallNameString
}
func defaultPredictOptions(modelFile string) PredictionOptions {
return PredictionOptions{
TopP: 0.7,
TopK: 80,
Maxtokens: 512,
Temperature: 0.9,
Model: modelFile,
}
}
func DefaultConfig(modelFile string) *Config {
return &Config{
PredictionOptions: defaultPredictOptions(modelFile),
}
}
func NewConfigLoader() *ConfigLoader {
return &ConfigLoader{
configs: make(map[string]Config),
}
}
func ReadConfigFile(file string) ([]*Config, error) {
c := &[]*Config{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
return *c, nil
}
func ReadConfig(file string) (*Config, error) {
c := &Config{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
return c, nil
}
func (cm *ConfigLoader) LoadConfigFile(file string) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadConfigFile(file)
if err != nil {
return fmt.Errorf("cannot load config file: %w", err)
}
for _, cc := range c {
cm.configs[cc.Name] = *cc
}
return nil
}
func (cm *ConfigLoader) LoadConfig(file string) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadConfig(file)
if err != nil {
return fmt.Errorf("cannot read config file: %w", err)
}
cm.configs[c.Name] = *c
return nil
}
func (cm *ConfigLoader) GetConfig(m string) (Config, bool) {
cm.Lock()
defer cm.Unlock()
v, exists := cm.configs[m]
return v, exists
}
func (cm *ConfigLoader) GetAllConfigs() []Config {
cm.Lock()
defer cm.Unlock()
var res []Config
for _, v := range cm.configs {
res = append(res, v)
}
return res
}
func (cm *ConfigLoader) ListConfigs() []string {
cm.Lock()
defer cm.Unlock()
var res []string
for k := range cm.configs {
res = append(res, k)
}
return res
}
// Preload prepare models if they are not local but url or huggingface repositories
func (cm *ConfigLoader) Preload(modelPath string) error {
cm.Lock()
defer cm.Unlock()
status := func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
}
log.Info().Msgf("Preloading models from %s", modelPath)
for i, config := range cm.configs {
// Download files and verify their SHA
for _, file := range config.DownloadFiles {
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
return err
}
// Create file path
filePath := filepath.Join(modelPath, file.Filename)
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
return err
}
}
modelURL := config.PredictionOptions.Model
modelURL = downloader.ConvertURL(modelURL)
if downloader.LooksLikeURL(modelURL) {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
if err != nil {
return err
}
}
cc := cm.configs[i]
c := &cc
c.PredictionOptions.Model = md5Name
cm.configs[i] = *c
}
if cm.configs[i].Name != "" {
log.Info().Msgf("Model name: %s", cm.configs[i].Name)
}
if cm.configs[i].Description != "" {
log.Info().Msgf("Model description: %s", cm.configs[i].Description)
}
if cm.configs[i].Usage != "" {
log.Info().Msgf("Model usage: \n%s", cm.configs[i].Usage)
}
}
return nil
}
func (cm *ConfigLoader) LoadConfigs(path string) error {
cm.Lock()
defer cm.Unlock()
entries, err := os.ReadDir(path)
if err != nil {
return err
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
info, err := entry.Info()
if err != nil {
return err
}
files = append(files, info)
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
continue
}
c, err := ReadConfig(filepath.Join(path, file.Name()))
if err == nil {
cm.configs[c.Name] = *c
}
}
return nil
}

View File

@@ -1,162 +0,0 @@
package localai
import (
"context"
"fmt"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/api/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
gopsutil "github.com/shirou/gopsutil/v3/process"
)
type BackendMonitorRequest struct {
Model string `json:"model" yaml:"model"`
}
type BackendMonitorResponse struct {
MemoryInfo *gopsutil.MemoryInfoStat
MemoryPercent float32
CPUPercent float64
}
type BackendMonitor struct {
configLoader *config.ConfigLoader
options *options.Option // Taking options in case we need to inspect ExternalGRPCBackends, though that's out of scope for now, hence the name.
}
func NewBackendMonitor(configLoader *config.ConfigLoader, options *options.Option) BackendMonitor {
return BackendMonitor{
configLoader: configLoader,
options: options,
}
}
func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*BackendMonitorResponse, error) {
config, exists := bm.configLoader.GetConfig(model)
var backend string
if exists {
backend = config.Model
} else {
// Last ditch effort: use it raw, see if a backend happens to match.
backend = model
}
if !strings.HasSuffix(backend, ".bin") {
backend = fmt.Sprintf("%s.bin", backend)
}
pid, err := bm.options.Loader.GetGRPCPID(backend)
if err != nil {
log.Error().Msgf("model %s : failed to find pid %+v", model, err)
return nil, err
}
// Name is slightly frightening but this does _not_ create a new process, rather it looks up an existing process by PID.
backendProcess, err := gopsutil.NewProcess(int32(pid))
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting process info %+v", model, pid, err)
return nil, err
}
memInfo, err := backendProcess.MemoryInfo()
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting memory info %+v", model, pid, err)
return nil, err
}
memPercent, err := backendProcess.MemoryPercent()
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting memory percent %+v", model, pid, err)
return nil, err
}
cpuPercent, err := backendProcess.CPUPercent()
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting cpu percent %+v", model, pid, err)
return nil, err
}
return &BackendMonitorResponse{
MemoryInfo: memInfo,
MemoryPercent: memPercent,
CPUPercent: cpuPercent,
}, nil
}
func (bm BackendMonitor) getModelLoaderIDFromCtx(c *fiber.Ctx) (string, error) {
input := new(BackendMonitorRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", err
}
config, exists := bm.configLoader.GetConfig(input.Model)
var backendId string
if exists {
backendId = config.Model
} else {
// Last ditch effort: use it raw, see if a backend happens to match.
backendId = input.Model
}
if !strings.HasSuffix(backendId, ".bin") {
backendId = fmt.Sprintf("%s.bin", backendId)
}
return backendId, nil
}
func BackendMonitorEndpoint(bm BackendMonitor) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
backendId, err := bm.getModelLoaderIDFromCtx(c)
if err != nil {
return err
}
model := bm.options.Loader.CheckIsLoaded(backendId)
if model == "" {
return fmt.Errorf("backend %s is not currently loaded", backendId)
}
status, rpcErr := model.GRPC(false, nil).Status(context.TODO())
if rpcErr != nil {
log.Warn().Msgf("backend %s experienced an error retrieving status info: %s", backendId, rpcErr.Error())
val, slbErr := bm.SampleLocalBackendProcess(backendId)
if slbErr != nil {
return fmt.Errorf("backend %s experienced an error retrieving status info via rpc: %s, then failed local node process sample: %s", backendId, rpcErr.Error(), slbErr.Error())
}
return c.JSON(proto.StatusResponse{
State: proto.StatusResponse_ERROR,
Memory: &proto.MemoryUsageData{
Total: val.MemoryInfo.VMS,
Breakdown: map[string]uint64{
"gopsutil-RSS": val.MemoryInfo.RSS,
},
},
})
}
return c.JSON(status)
}
}
func BackendShutdownEndpoint(bm BackendMonitor) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
backendId, err := bm.getModelLoaderIDFromCtx(c)
if err != nil {
return err
}
return bm.options.Loader.ShutdownModel(backendId)
}
}

View File

@@ -1,326 +0,0 @@
package localai
import (
"context"
"fmt"
"os"
"slices"
"strings"
"sync"
json "github.com/json-iterator/go"
"gopkg.in/yaml.v3"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
)
type galleryOp struct {
req gallery.GalleryModel
id string
galleries []gallery.Gallery
galleryName string
}
type galleryOpStatus struct {
FileName string `json:"file_name"`
Error error `json:"error"`
Processed bool `json:"processed"`
Message string `json:"message"`
Progress float64 `json:"progress"`
TotalFileSize string `json:"file_size"`
DownloadedFileSize string `json:"downloaded_size"`
}
type galleryApplier struct {
modelPath string
sync.Mutex
C chan galleryOp
statuses map[string]*galleryOpStatus
}
func NewGalleryService(modelPath string) *galleryApplier {
return &galleryApplier{
modelPath: modelPath,
C: make(chan galleryOp),
statuses: make(map[string]*galleryOpStatus),
}
}
func prepareModel(modelPath string, req gallery.GalleryModel, cm *config.ConfigLoader, downloadStatus func(string, string, string, float64)) error {
config, err := gallery.GetGalleryConfigFromURL(req.URL)
if err != nil {
return err
}
config.Files = append(config.Files, req.AdditionalFiles...)
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
}
func (g *galleryApplier) updateStatus(s string, op *galleryOpStatus) {
g.Lock()
defer g.Unlock()
g.statuses[s] = op
}
func (g *galleryApplier) getStatus(s string) *galleryOpStatus {
g.Lock()
defer g.Unlock()
return g.statuses[s]
}
func (g *galleryApplier) getAllStatus() map[string]*galleryOpStatus {
g.Lock()
defer g.Unlock()
return g.statuses
}
func (g *galleryApplier) Start(c context.Context, cm *config.ConfigLoader) {
go func() {
for {
select {
case <-c.Done():
return
case op := <-g.C:
utils.ResetDownloadTimers()
g.updateStatus(op.id, &galleryOpStatus{Message: "processing", Progress: 0})
// updates the status with an error
updateError := func(e error) {
g.updateStatus(op.id, &galleryOpStatus{Error: e, Processed: true, Message: "error: " + e.Error()})
}
// displayDownload displays the download progress
progressCallback := func(fileName string, current string, total string, percentage float64) {
g.updateStatus(op.id, &galleryOpStatus{Message: "processing", FileName: fileName, Progress: percentage, TotalFileSize: total, DownloadedFileSize: current})
utils.DisplayDownloadFunction(fileName, current, total, percentage)
}
var err error
// if the request contains a gallery name, we apply the gallery from the gallery list
if op.galleryName != "" {
if strings.Contains(op.galleryName, "@") {
err = gallery.InstallModelFromGallery(op.galleries, op.galleryName, g.modelPath, op.req, progressCallback)
} else {
err = gallery.InstallModelFromGalleryByName(op.galleries, op.galleryName, g.modelPath, op.req, progressCallback)
}
} else {
err = prepareModel(g.modelPath, op.req, cm, progressCallback)
}
if err != nil {
updateError(err)
continue
}
// Reload models
err = cm.LoadConfigs(g.modelPath)
if err != nil {
updateError(err)
continue
}
err = cm.Preload(g.modelPath)
if err != nil {
updateError(err)
continue
}
g.updateStatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
}
}
}()
}
type galleryModel struct {
gallery.GalleryModel `yaml:",inline"` // https://github.com/go-yaml/yaml/issues/63
ID string `json:"id"`
}
func processRequests(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery, requests []galleryModel) error {
var err error
for _, r := range requests {
utils.ResetDownloadTimers()
if r.ID == "" {
err = prepareModel(modelPath, r.GalleryModel, cm, utils.DisplayDownloadFunction)
} else {
if strings.Contains(r.ID, "@") {
err = gallery.InstallModelFromGallery(
galleries, r.ID, modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
} else {
err = gallery.InstallModelFromGalleryByName(
galleries, r.ID, modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
}
}
}
return err
}
func ApplyGalleryFromFile(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery) error {
dat, err := os.ReadFile(s)
if err != nil {
return err
}
var requests []galleryModel
if err := yaml.Unmarshal(dat, &requests); err != nil {
return err
}
return processRequests(modelPath, s, cm, galleries, requests)
}
func ApplyGalleryFromString(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery) error {
var requests []galleryModel
err := json.Unmarshal([]byte(s), &requests)
if err != nil {
return err
}
return processRequests(modelPath, s, cm, galleries, requests)
}
/// Endpoint Service
type ModelGalleryService struct {
galleries []gallery.Gallery
modelPath string
galleryApplier *galleryApplier
}
type GalleryModel struct {
ID string `json:"id"`
gallery.GalleryModel
}
func CreateModelGalleryService(galleries []gallery.Gallery, modelPath string, galleryApplier *galleryApplier) ModelGalleryService {
return ModelGalleryService{
galleries: galleries,
modelPath: modelPath,
galleryApplier: galleryApplier,
}
}
func (mgs *ModelGalleryService) GetOpStatusEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
status := mgs.galleryApplier.getStatus(c.Params("uuid"))
if status == nil {
return fmt.Errorf("could not find any status for ID")
}
return c.JSON(status)
}
}
func (mgs *ModelGalleryService) GetAllStatusEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
return c.JSON(mgs.galleryApplier.getAllStatus())
}
}
func (mgs *ModelGalleryService) ApplyModelGalleryEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(GalleryModel)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
uuid, err := uuid.NewUUID()
if err != nil {
return err
}
mgs.galleryApplier.C <- galleryOp{
req: input.GalleryModel,
id: uuid.String(),
galleryName: input.ID,
galleries: mgs.galleries,
}
return c.JSON(struct {
ID string `json:"uuid"`
StatusURL string `json:"status"`
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
}
}
func (mgs *ModelGalleryService) ListModelFromGalleryEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
log.Debug().Msgf("Listing models from galleries: %+v", mgs.galleries)
models, err := gallery.AvailableGalleryModels(mgs.galleries, mgs.modelPath)
if err != nil {
return err
}
log.Debug().Msgf("Models found from galleries: %+v", models)
for _, m := range models {
log.Debug().Msgf("Model found from galleries: %+v", m)
}
dat, err := json.Marshal(models)
if err != nil {
return err
}
return c.Send(dat)
}
}
// NOTE: This is different (and much simpler!) than above! This JUST lists the model galleries that have been loaded, not their contents!
func (mgs *ModelGalleryService) ListModelGalleriesEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
log.Debug().Msgf("Listing model galleries %+v", mgs.galleries)
dat, err := json.Marshal(mgs.galleries)
if err != nil {
return err
}
return c.Send(dat)
}
}
func (mgs *ModelGalleryService) AddModelGalleryEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(gallery.Gallery)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
if slices.ContainsFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
return gallery.Name == input.Name
}) {
return fmt.Errorf("%s already exists", input.Name)
}
dat, err := json.Marshal(mgs.galleries)
if err != nil {
return err
}
log.Debug().Msgf("Adding %+v to gallery list", *input)
mgs.galleries = append(mgs.galleries, *input)
return c.Send(dat)
}
}
func (mgs *ModelGalleryService) RemoveModelGalleryEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(gallery.Gallery)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
if !slices.ContainsFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
return gallery.Name == input.Name
}) {
return fmt.Errorf("%s is not currently registered", input.Name)
}
mgs.galleries = slices.DeleteFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
return gallery.Name == input.Name
})
return c.Send(nil)
}
}

View File

@@ -1,32 +0,0 @@
package localai
import (
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/gofiber/fiber/v2"
)
type TTSRequest struct {
Model string `json:"model" yaml:"model"`
Input string `json:"input" yaml:"input"`
Backend string `json:"backend" yaml:"backend"`
}
func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(TTSRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
filePath, _, err := backend.ModelTTS(input.Backend, input.Input, input.Model, o.Loader, o)
if err != nil {
return err
}
return c.Download(filePath)
}
}

View File

@@ -1,399 +0,0 @@
package openai
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"strings"
"time"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
emptyMessage := ""
id := uuid.New().String()
created := int(time.Now().Unix())
process := func(s string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
ComputeChoices(req, s, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
}
responses <- resp
return true
})
close(responses)
}
return func(c *fiber.Ctx) error {
processFunctions := false
funcs := grammar.Functions{}
modelFile, input, err := readInput(c, o, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Configuration read: %+v", config)
// Allow the user to set custom actions via config file
// to be "embedded" in each model
noActionName := "answer"
noActionDescription := "use this action to answer without performing any action"
if config.FunctionsConfig.NoActionFunctionName != "" {
noActionName = config.FunctionsConfig.NoActionFunctionName
}
if config.FunctionsConfig.NoActionDescriptionName != "" {
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
}
if input.ResponseFormat.Type == "json_object" {
input.Grammar = grammar.JSONBNF
}
// process functions if we have any defined or if we have a function call string
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
log.Debug().Msgf("Response needs to process functions")
processFunctions = true
noActionGrammar := grammar.Function{
Name: noActionName,
Description: noActionDescription,
Parameters: map[string]interface{}{
"properties": map[string]interface{}{
"message": map[string]interface{}{
"type": "string",
"description": "The message to reply the user with",
}},
},
}
// Append the no action function
funcs = append(funcs, input.Functions...)
if !config.FunctionsConfig.DisableNoAction {
funcs = append(funcs, noActionGrammar)
}
// Force picking one of the functions by the request
if config.FunctionToCall() != "" {
funcs = funcs.Select(config.FunctionToCall())
}
// Update input grammar
jsStruct := funcs.ToJSONStructure()
config.Grammar = jsStruct.Grammar("")
} else if input.JSONFunctionGrammarObject != nil {
config.Grammar = input.JSONFunctionGrammarObject.Grammar("")
}
// functions are not supported in stream mode (yet?)
toStream := input.Stream && !processFunctions
log.Debug().Msgf("Parameters: %+v", config)
var predInput string
suppressConfigSystemPrompt := false
mess := []string{}
for messageIndex, i := range input.Messages {
var content string
role := i.Role
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
if i.FunctionCall != nil && i.Role == "assistant" {
roleFn := "assistant_function_call"
r := config.Roles[roleFn]
if r != "" {
role = roleFn
}
}
r := config.Roles[role]
contentExists := i.Content != nil && i.StringContent != ""
// First attempt to populate content via a chat message specific template
if config.TemplateConfig.ChatMessage != "" {
chatMessageData := model.ChatMessageTemplateData{
SystemPrompt: config.SystemPrompt,
Role: r,
RoleName: role,
Content: i.StringContent,
MessageIndex: messageIndex,
}
templatedChatMessage, err := o.Loader.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
if err != nil {
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, config.TemplateConfig.ChatMessage, err)
} else {
if templatedChatMessage == "" {
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
}
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
content = templatedChatMessage
}
}
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
if content == "" {
if r != "" {
if contentExists {
content = fmt.Sprint(r, i.StringContent)
}
if i.FunctionCall != nil {
j, err := json.Marshal(i.FunctionCall)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
}
} else {
if contentExists {
content = fmt.Sprint(i.StringContent)
}
if i.FunctionCall != nil {
j, err := json.Marshal(i.FunctionCall)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
}
}
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
if contentExists && role == "system" {
suppressConfigSystemPrompt = true
}
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
log.Debug().Msgf("Prompt (before templating): %s", predInput)
if toStream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
// c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Chat != "" && !processFunctions {
templateFile = config.TemplateConfig.Chat
}
if config.TemplateConfig.Functions != "" && processFunctions {
templateFile = config.TemplateConfig.Functions
}
if templateFile != "" {
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
}
}
log.Debug().Msgf("Prompt (after templating): %s", predInput)
if processFunctions {
log.Debug().Msgf("Grammar: %+v", config.Grammar)
}
if toStream {
responses := make(chan schema.OpenAIResponse)
go process(predInput, input, config, o.Loader, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
usage := &schema.OpenAIUsage{}
for ev := range responses {
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
if err != nil {
log.Debug().Msgf("Sending chunk failed: %v", err)
input.Cancel()
break
}
w.Flush()
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
FinishReason: "stop",
Index: 0,
Delta: &schema.Message{Content: &emptyMessage},
}},
Object: "chat.completion.chunk",
Usage: *usage,
}
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
}
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
if processFunctions {
// As we have to change the result before processing, we can't stream the answer (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s = utils.EscapeNewLines(s)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name := ss["function"]
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
d, _ := json.Marshal(args)
ss["arguments"] = string(d)
ss["name"] = func_name
// if do nothing, reply with a message
if func_name == noActionName {
log.Debug().Msgf("nothing to do, computing a reply")
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(d), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = backend.Finetune(*config, predInput, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &message}})
return
}
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU) another computation
config.Grammar = ""
images := []string{}
for _, m := range input.Messages {
images = append(images, m.StringImages...)
}
predFunc, err := backend.ModelInference(input.Context, predInput, images, o.Loader, *config, o, nil)
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return
}
prediction, err := predFunc()
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return
}
fineTunedResponse := backend.Finetune(*config, predInput, prediction.Response)
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &fineTunedResponse}})
} else {
// otherwise reply with the function call
*c = append(*c, schema.Choice{
FinishReason: "function_call",
Message: &schema.Message{Role: "assistant", FunctionCall: ss},
})
}
return
}
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
}, nil)
if err != nil {
return err
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
}

View File

@@ -126,6 +126,11 @@ message ModelOptions {
// vllm
string Quantization = 40;
float GPUMemoryUtilization = 50;
bool TrustRemoteCode = 51;
bool EnforceEager = 52;
int32 SwapSpace = 53;
int32 MaxModelLen = 54;
string MMProj = 41;
@@ -134,6 +139,8 @@ message ModelOptions {
float YarnAttnFactor = 45;
float YarnBetaFast = 46;
float YarnBetaSlow = 47;
string Type = 49;
}
message Result {
@@ -184,6 +191,7 @@ message TTSRequest {
string text = 1;
string model = 2;
string dst = 3;
string voice = 4;
}
message TokenizationResponse {

457
backend/backend_grpc.pb.go Normal file
View File

@@ -0,0 +1,457 @@
// Code generated by protoc-gen-go-grpc. DO NOT EDIT.
// versions:
// - protoc-gen-go-grpc v1.2.0
// - protoc v4.23.4
// source: backend/backend.proto
package proto
import (
context "context"
grpc "google.golang.org/grpc"
codes "google.golang.org/grpc/codes"
status "google.golang.org/grpc/status"
)
// This is a compile-time assertion to ensure that this generated file
// is compatible with the grpc package it is being compiled against.
// Requires gRPC-Go v1.32.0 or later.
const _ = grpc.SupportPackageIsVersion7
// BackendClient is the client API for Backend service.
//
// For semantics around ctx use and closing/ending streaming RPCs, please refer to https://pkg.go.dev/google.golang.org/grpc/?tab=doc#ClientConn.NewStream.
type BackendClient interface {
Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error)
Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error)
LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error)
PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error)
Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error)
GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error)
AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error)
TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error)
TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error)
Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error)
}
type backendClient struct {
cc grpc.ClientConnInterface
}
func NewBackendClient(cc grpc.ClientConnInterface) BackendClient {
return &backendClient{cc}
}
func (c *backendClient) Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error) {
out := new(Reply)
err := c.cc.Invoke(ctx, "/backend.Backend/Health", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error) {
out := new(Reply)
err := c.cc.Invoke(ctx, "/backend.Backend/Predict", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/LoadModel", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error) {
stream, err := c.cc.NewStream(ctx, &Backend_ServiceDesc.Streams[0], "/backend.Backend/PredictStream", opts...)
if err != nil {
return nil, err
}
x := &backendPredictStreamClient{stream}
if err := x.ClientStream.SendMsg(in); err != nil {
return nil, err
}
if err := x.ClientStream.CloseSend(); err != nil {
return nil, err
}
return x, nil
}
type Backend_PredictStreamClient interface {
Recv() (*Reply, error)
grpc.ClientStream
}
type backendPredictStreamClient struct {
grpc.ClientStream
}
func (x *backendPredictStreamClient) Recv() (*Reply, error) {
m := new(Reply)
if err := x.ClientStream.RecvMsg(m); err != nil {
return nil, err
}
return m, nil
}
func (c *backendClient) Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error) {
out := new(EmbeddingResult)
err := c.cc.Invoke(ctx, "/backend.Backend/Embedding", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/GenerateImage", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error) {
out := new(TranscriptResult)
err := c.cc.Invoke(ctx, "/backend.Backend/AudioTranscription", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/TTS", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error) {
out := new(TokenizationResponse)
err := c.cc.Invoke(ctx, "/backend.Backend/TokenizeString", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error) {
out := new(StatusResponse)
err := c.cc.Invoke(ctx, "/backend.Backend/Status", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
// BackendServer is the server API for Backend service.
// All implementations must embed UnimplementedBackendServer
// for forward compatibility
type BackendServer interface {
Health(context.Context, *HealthMessage) (*Reply, error)
Predict(context.Context, *PredictOptions) (*Reply, error)
LoadModel(context.Context, *ModelOptions) (*Result, error)
PredictStream(*PredictOptions, Backend_PredictStreamServer) error
Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error)
GenerateImage(context.Context, *GenerateImageRequest) (*Result, error)
AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error)
TTS(context.Context, *TTSRequest) (*Result, error)
TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error)
Status(context.Context, *HealthMessage) (*StatusResponse, error)
mustEmbedUnimplementedBackendServer()
}
// UnimplementedBackendServer must be embedded to have forward compatible implementations.
type UnimplementedBackendServer struct {
}
func (UnimplementedBackendServer) Health(context.Context, *HealthMessage) (*Reply, error) {
return nil, status.Errorf(codes.Unimplemented, "method Health not implemented")
}
func (UnimplementedBackendServer) Predict(context.Context, *PredictOptions) (*Reply, error) {
return nil, status.Errorf(codes.Unimplemented, "method Predict not implemented")
}
func (UnimplementedBackendServer) LoadModel(context.Context, *ModelOptions) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method LoadModel not implemented")
}
func (UnimplementedBackendServer) PredictStream(*PredictOptions, Backend_PredictStreamServer) error {
return status.Errorf(codes.Unimplemented, "method PredictStream not implemented")
}
func (UnimplementedBackendServer) Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error) {
return nil, status.Errorf(codes.Unimplemented, "method Embedding not implemented")
}
func (UnimplementedBackendServer) GenerateImage(context.Context, *GenerateImageRequest) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method GenerateImage not implemented")
}
func (UnimplementedBackendServer) AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error) {
return nil, status.Errorf(codes.Unimplemented, "method AudioTranscription not implemented")
}
func (UnimplementedBackendServer) TTS(context.Context, *TTSRequest) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method TTS not implemented")
}
func (UnimplementedBackendServer) TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error) {
return nil, status.Errorf(codes.Unimplemented, "method TokenizeString not implemented")
}
func (UnimplementedBackendServer) Status(context.Context, *HealthMessage) (*StatusResponse, error) {
return nil, status.Errorf(codes.Unimplemented, "method Status not implemented")
}
func (UnimplementedBackendServer) mustEmbedUnimplementedBackendServer() {}
// UnsafeBackendServer may be embedded to opt out of forward compatibility for this service.
// Use of this interface is not recommended, as added methods to BackendServer will
// result in compilation errors.
type UnsafeBackendServer interface {
mustEmbedUnimplementedBackendServer()
}
func RegisterBackendServer(s grpc.ServiceRegistrar, srv BackendServer) {
s.RegisterService(&Backend_ServiceDesc, srv)
}
func _Backend_Health_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(HealthMessage)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Health(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Health",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Health(ctx, req.(*HealthMessage))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_Predict_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Predict(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Predict",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Predict(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_LoadModel_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(ModelOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).LoadModel(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/LoadModel",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).LoadModel(ctx, req.(*ModelOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_PredictStream_Handler(srv interface{}, stream grpc.ServerStream) error {
m := new(PredictOptions)
if err := stream.RecvMsg(m); err != nil {
return err
}
return srv.(BackendServer).PredictStream(m, &backendPredictStreamServer{stream})
}
type Backend_PredictStreamServer interface {
Send(*Reply) error
grpc.ServerStream
}
type backendPredictStreamServer struct {
grpc.ServerStream
}
func (x *backendPredictStreamServer) Send(m *Reply) error {
return x.ServerStream.SendMsg(m)
}
func _Backend_Embedding_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Embedding(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Embedding",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Embedding(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_GenerateImage_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(GenerateImageRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).GenerateImage(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/GenerateImage",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).GenerateImage(ctx, req.(*GenerateImageRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_AudioTranscription_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(TranscriptRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).AudioTranscription(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/AudioTranscription",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).AudioTranscription(ctx, req.(*TranscriptRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_TTS_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(TTSRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).TTS(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/TTS",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).TTS(ctx, req.(*TTSRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_TokenizeString_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).TokenizeString(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/TokenizeString",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).TokenizeString(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_Status_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(HealthMessage)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Status(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Status",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Status(ctx, req.(*HealthMessage))
}
return interceptor(ctx, in, info, handler)
}
// Backend_ServiceDesc is the grpc.ServiceDesc for Backend service.
// It's only intended for direct use with grpc.RegisterService,
// and not to be introspected or modified (even as a copy)
var Backend_ServiceDesc = grpc.ServiceDesc{
ServiceName: "backend.Backend",
HandlerType: (*BackendServer)(nil),
Methods: []grpc.MethodDesc{
{
MethodName: "Health",
Handler: _Backend_Health_Handler,
},
{
MethodName: "Predict",
Handler: _Backend_Predict_Handler,
},
{
MethodName: "LoadModel",
Handler: _Backend_LoadModel_Handler,
},
{
MethodName: "Embedding",
Handler: _Backend_Embedding_Handler,
},
{
MethodName: "GenerateImage",
Handler: _Backend_GenerateImage_Handler,
},
{
MethodName: "AudioTranscription",
Handler: _Backend_AudioTranscription_Handler,
},
{
MethodName: "TTS",
Handler: _Backend_TTS_Handler,
},
{
MethodName: "TokenizeString",
Handler: _Backend_TokenizeString_Handler,
},
{
MethodName: "Status",
Handler: _Backend_Status_Handler,
},
},
Streams: []grpc.StreamDesc{
{
StreamName: "PredictStream",
Handler: _Backend_PredictStream_Handler,
ServerStreams: true,
},
},
Metadata: "backend/backend.proto",
}

View File

@@ -2,16 +2,20 @@
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
set(TARGET myclip)
add_library(${TARGET} clip.cpp clip.h)
add_library(${TARGET} clip.cpp clip.h llava.cpp llava.h)
install(TARGETS ${TARGET} LIBRARY)
target_link_libraries(${TARGET} PRIVATE common ggml ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(myclip PUBLIC .)
target_include_directories(myclip PUBLIC ../..)
target_include_directories(myclip PUBLIC ../../common)
target_link_libraries(${TARGET} PRIVATE common ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
# END CLIP hack
set(TARGET grpc-server)
# END CLIP hack
set(CMAKE_CXX_STANDARD 17)
cmake_minimum_required(VERSION 3.15)
set(TARGET grpc-server)
@@ -70,7 +74,7 @@ add_library(hw_grpc_proto
${hw_proto_srcs}
${hw_proto_hdrs} )
add_executable(${TARGET} grpc-server.cpp json.hpp )
add_executable(${TARGET} grpc-server.cpp utils.hpp json.hpp)
target_link_libraries(${TARGET} PRIVATE common llama myclip ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
absl::flags_parse
gRPC::${_REFLECTION}

View File

@@ -3,6 +3,7 @@ LLAMA_VERSION?=
CMAKE_ARGS?=
BUILD_TYPE?=
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
# If build type is cublas, then we set -DLLAMA_CUBLAS=ON to CMAKE_ARGS automatically
ifeq ($(BUILD_TYPE),cublas)
@@ -11,12 +12,21 @@ ifeq ($(BUILD_TYPE),cublas)
# to CMAKE_ARGS automatically
else ifeq ($(BUILD_TYPE),openblas)
CMAKE_ARGS+=-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
# If build type is clblast (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblast)
# If build type is clblas (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
endif
ifeq ($(BUILD_TYPE),sycl_f16)
CMAKE_ARGS+=-DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
endif
ifeq ($(BUILD_TYPE),sycl_f32)
CMAKE_ARGS+=-DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
endif
llama.cpp:
@@ -31,10 +41,14 @@ llama.cpp/examples/grpc-server:
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
cp -rfv $(abspath ./)/utils.hpp llama.cpp/examples/grpc-server/
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp
rebuild:
@@ -49,5 +63,10 @@ clean:
rm -rf grpc-server
grpc-server: llama.cpp llama.cpp/examples/grpc-server
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
bash -c "source $(ONEAPI_VARS); \
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release"
else
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release
endif
cp llama.cpp/build/bin/grpc-server .

View File

File diff suppressed because it is too large Load Diff

510
backend/cpp/llama/utils.hpp Normal file
View File

@@ -0,0 +1,510 @@
// https://github.com/ggerganov/llama.cpp/blob/master/examples/server/utils.hpp
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "../llava/clip.h"
using json = nlohmann::json;
extern bool server_verbose;
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...) \
do \
{ \
if (server_verbose) \
{ \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
//
// parallel
//
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
IDLE,
PROCESSING,
};
enum slot_command
{
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params
{
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image
{
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
// completion token output with probabilities
struct completion_token_output
{
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line,
const char *message, const nlohmann::ordered_json &extra)
{
nlohmann::ordered_json log
{
{"timestamp", time(nullptr)},
{"level", level},
{"function", function},
{"line", line},
{"message", message},
};
if (!extra.empty())
{
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
//
// server utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
inline std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_all_task_finished;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return id++;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when the batch of tasks is finished
void on_all_tasks_finished(std::function<void(void)> callback) {
callback_all_task_finished = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// Start the main loop. This call is blocking
[[noreturn]]
void start_loop() {
while (true) {
// new task arrived
LOG_VERBOSE("have new task", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
// process and update all the multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is finished
callback_all_task_finished();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
void add_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
void remove_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
LOG_VERBOSE("condition_results unblock", {});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {});
queue_results.push_back(result);
condition_results.notify_one();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c)
{
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
int in_ = 0;
int in_len = encoded_string.size();
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4)
{
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
{
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
{
char_array_4[j] = 0;
}
for (j = 0; j <4; j++)
{
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
{
ret.push_back(char_array_3[j]);
}
}
return ret;
}
//
// random string / id
//
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Dolly{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Falcon{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPT2{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPTJ{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPTNeoX{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.MPT{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Replit{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Starcoder{}); err != nil {
panic(err)
}
}

View File

@@ -1,44 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type Dolly struct {
base.SingleThread
dolly *transformers.Dolly
}
func (llm *Dolly) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewDolly(opts.ModelFile)
llm.dolly = model
return err
}
func (llm *Dolly) Predict(opts *pb.PredictOptions) (string, error) {
return llm.dolly.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *Dolly) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.dolly.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,43 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type Falcon struct {
base.SingleThread
falcon *transformers.Falcon
}
func (llm *Falcon) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewFalcon(opts.ModelFile)
llm.falcon = model
return err
}
func (llm *Falcon) Predict(opts *pb.PredictOptions) (string, error) {
return llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *Falcon) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,42 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type GPT2 struct {
base.SingleThread
gpt2 *transformers.GPT2
}
func (llm *GPT2) Load(opts *pb.ModelOptions) error {
model, err := transformers.New(opts.ModelFile)
llm.gpt2 = model
return err
}
func (llm *GPT2) Predict(opts *pb.PredictOptions) (string, error) {
return llm.gpt2.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *GPT2) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.gpt2.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,42 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type GPTJ struct {
base.SingleThread
gptj *transformers.GPTJ
}
func (llm *GPTJ) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewGPTJ(opts.ModelFile)
llm.gptj = model
return err
}
func (llm *GPTJ) Predict(opts *pb.PredictOptions) (string, error) {
return llm.gptj.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *GPTJ) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.gptj.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,42 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type GPTNeoX struct {
base.SingleThread
gptneox *transformers.GPTNeoX
}
func (llm *GPTNeoX) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewGPTNeoX(opts.ModelFile)
llm.gptneox = model
return err
}
func (llm *GPTNeoX) Predict(opts *pb.PredictOptions) (string, error) {
return llm.gptneox.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *GPTNeoX) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.gptneox.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,42 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type MPT struct {
base.SingleThread
mpt *transformers.MPT
}
func (llm *MPT) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewMPT(opts.ModelFile)
llm.mpt = model
return err
}
func (llm *MPT) Predict(opts *pb.PredictOptions) (string, error) {
return llm.mpt.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *MPT) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.mpt.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,26 +0,0 @@
package transformers
import (
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
func buildPredictOptions(opts *pb.PredictOptions) []transformers.PredictOption {
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(float64(opts.Temperature)),
transformers.SetTopP(float64(opts.TopP)),
transformers.SetTopK(int(opts.TopK)),
transformers.SetTokens(int(opts.Tokens)),
transformers.SetThreads(int(opts.Threads)),
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(int(opts.Batch)))
}
if opts.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(int(opts.Seed)))
}
return predictOptions
}

View File

@@ -1,42 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type Replit struct {
base.SingleThread
replit *transformers.Replit
}
func (llm *Replit) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewReplit(opts.ModelFile)
llm.replit = model
return err
}
func (llm *Replit) Predict(opts *pb.PredictOptions) (string, error) {
return llm.replit.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *Replit) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.replit.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -1,43 +0,0 @@
package transformers
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
)
type Starcoder struct {
base.SingleThread
starcoder *transformers.Starcoder
}
func (llm *Starcoder) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewStarcoder(opts.ModelFile)
llm.starcoder = model
return err
}
func (llm *Starcoder) Predict(opts *pb.PredictOptions) (string, error) {
return llm.starcoder.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
// fallback to Predict
func (llm *Starcoder) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
res, err := llm.starcoder.Predict(opts.Prompt, buildPredictOptions(opts)...)
if err != nil {
fmt.Println("err: ", err)
}
results <- res
close(results)
}()
return nil
}

View File

@@ -8,24 +8,24 @@ import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
)
func sh(c string) (string, error) {
cmd := exec.Command("/bin/sh", "-c", c)
func runCommand(command []string) (string, error) {
cmd := exec.Command(command[0], command[1:]...)
cmd.Env = os.Environ()
o, err := cmd.CombinedOutput()
return string(o), err
out, err := cmd.CombinedOutput()
return string(out), err
}
// AudioToWav converts audio to wav for transcribe. It bashes out to ffmpeg
// AudioToWav converts audio to wav for transcribe.
// TODO: use https://github.com/mccoyst/ogg?
func audioToWav(src, dst string) error {
out, err := sh(fmt.Sprintf("ffmpeg -i %s -format s16le -ar 16000 -ac 1 -acodec pcm_s16le %s", src, dst))
command := []string{"ffmpeg", "-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
out, err := runCommand(command)
if err != nil {
return fmt.Errorf("error: %w out: %s", err, out)
}
return nil
}

View File

@@ -4,7 +4,7 @@ package main
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
)

View File

@@ -33,7 +33,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
model = AutoGPTQForCausalLM.from_quantized(request.Model,
model_basename=request.ModelBaseName,
use_safetensors=True,
trust_remote_code=True,
trust_remote_code=request.TrustRemoteCode,
device=device,
use_triton=request.UseTriton,
quantize_config=None)

View File

@@ -71,7 +71,7 @@ dependencies:
- regex==2023.10.3
- requests==2.31.0
- rouge==1.0.1
- safetensors==0.3.3
- safetensors>=0.3.3
- six==1.16.0
- sympy==1.12
- tokenizers==0.14.0

View File

File diff suppressed because one or more lines are too long

View File

File diff suppressed because one or more lines are too long

View File

@@ -4,6 +4,17 @@ ifeq ($(BUILD_TYPE), cublas)
CONDA_ENV_PATH = "transformers-nvidia.yml"
endif
ifeq ($(BUILD_TYPE), hipblas)
CONDA_ENV_PATH = "transformers-rocm.yml"
endif
# Intel GPU are supposed to have dependencies installed in the main python
# environment, so we skip conda installation for SYCL builds.
# https://github.com/intel/intel-extension-for-pytorch/issues/538
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: transformers
transformers:
@echo "Installing $(CONDA_ENV_PATH)..."

View File

@@ -1,24 +1,38 @@
#!/bin/bash
set -ex
SKIP_CONDA=${SKIP_CONDA:-0}
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if conda_env_exists "transformers" ; then
echo "Creating virtual environment..."
conda env create --name transformers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
if [ $SKIP_CONDA -eq 1 ]; then
echo "Skipping conda environment installation"
else
export PATH=$PATH:/opt/conda/bin
if conda_env_exists "transformers" ; then
echo "Creating virtual environment..."
conda env create --name transformers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
fi
if [ -d "/opt/intel" ]; then
# Intel GPU: If the directory exists, we assume we are using the intel image
# (no conda env)
# https://github.com/intel/intel-extension-for-pytorch/issues/538
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
if [ $SKIP_CONDA -eq 0 ]; then
# Activate conda environment
source activate transformers
fi
pip cache purge
fi

View File

@@ -30,12 +30,14 @@ dependencies:
- async-timeout==4.0.3
- attrs==23.1.0
- bark==0.1.5
- bitsandbytes==0.43.0
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.2.2
- sentence-transformers==2.5.1 # Updated Version
- sentencepiece==0.1.99
- dill==0.3.7
- einops==0.7.0
@@ -80,8 +82,8 @@ dependencies:
- requests==2.31.0
- rouge==1.0.1
- s3transfer==0.7.0
- safetensors==0.3.3
- scipy==1.11.3
- safetensors>=0.4.1
- scipy==1.12.0 # Updated Version
- six==1.16.0
- sympy==1.12
- tokenizers
@@ -112,7 +114,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm==0.2.7
- transformers>=4.36.0 # Required for Mixtral.
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -0,0 +1,109 @@
name: transformers
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- --pre
- --extra-index-url https://download.pytorch.org/whl/nightly/
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- attrs==23.1.0
- bark==0.1.5
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.5.1 # Updated Version
- sentencepiece==0.1.99
- dill==0.3.7
- einops==0.7.0
- encodec==0.1.1
- filelock==3.12.4
- frozenlist==1.4.0
- fsspec==2023.6.0
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub
- idna==3.4
- jinja2==3.1.2
- jmespath==1.0.1
- markupsafe==2.1.3
- mpmath==1.3.0
- multidict==6.0.4
- multiprocess==0.70.15
- networkx
- numpy==1.26.0
- packaging==23.2
- pandas
- peft==0.5.0
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
- python-dateutil==2.8.2
- pytz==2023.3.post1
- pyyaml==6.0.1
- regex==2023.10.3
- requests==2.31.0
- rouge==1.0.1
- s3transfer==0.7.0
- safetensors>=0.4.1
- scipy==1.12.0 # Updated Version
- six==1.16.0
- sympy==1.12
- tokenizers
- torch
- torchaudio
- tqdm==4.66.1
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
- soundfile
- langid
- wget
- unidecode
- pyopenjtalk-prebuilt
- pypinyin
- inflect
- cn2an
- jieba
- eng_to_ipa
- openai-whisper
- matplotlib
- gradio==3.41.2
- nltk
- sudachipy
- sudachidict_core
- vocos
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -36,7 +36,7 @@ dependencies:
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.2.2
- sentence-transformers==2.5.1 # Updated Version
- sentencepiece==0.1.99
- dill==0.3.7
- einops==0.7.0
@@ -69,8 +69,8 @@ dependencies:
- requests==2.31.0
- rouge==1.0.1
- s3transfer==0.7.0
- safetensors==0.3.3
- scipy==1.11.3
- safetensors>=0.4.1
- scipy==1.12.0 # Updated Version
- six==1.16.0
- sympy==1.12
- tokenizers
@@ -101,7 +101,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm==0.2.7
- transformers>=4.36.0 # Required for Mixtral.
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers
prefix: /opt/conda/envs/transformers

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,8 +1,20 @@
export CONDA_ENV_PATH = "diffusers.yml"
ifeq ($(BUILD_TYPE), hipblas)
export CONDA_ENV_PATH = "diffusers-rocm.yml"
endif
# Intel GPU are supposed to have dependencies installed in the main python
# environment, so we skip conda installation for SYCL builds.
# https://github.com/intel/intel-extension-for-pytorch/issues/538
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: diffusers
diffusers:
@echo "Creating virtual environment..."
@conda env create --name diffusers --file diffusers.yml
@echo "Virtual environment created."
@echo "Installing $(CONDA_ENV_PATH)..."
bash install.sh $(CONDA_ENV_PATH)
.PHONY: run
run:
@@ -11,4 +23,4 @@ run:
@echo "Diffusers run."
test:
bash test.sh
bash test.sh

View File

@@ -21,14 +21,15 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipelin
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image,export_to_video
from compel import Compel
from compel import Compel, ReturnedEmbeddingsType
from transformers import CLIPTextModel
from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL=os.environ.get("COMPEL", "1") == "1"
COMPEL=os.environ.get("COMPEL", "0") == "1"
XPU=os.environ.get("XPU", "0") == "1"
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
@@ -36,6 +37,10 @@ FPS=os.environ.get("FPS", "7")
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
FRAMES=os.environ.get("FRAMES", "64")
if XPU:
import intel_extension_for_pytorch as ipex
print(ipex.xpu.get_device_name(0))
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
@@ -231,8 +236,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
if not self.img2vid:
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
if COMPEL:
self.compel = Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2 ],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
if request.ControlNet:
@@ -247,6 +257,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.pipe.to('cuda')
if self.controlnet:
self.controlnet.to('cuda')
if XPU:
self.pipe = self.pipe.to("xpu")
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
@@ -386,8 +398,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
image = {}
if COMPEL:
conditioning = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"]= conditioning
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"] = conditioning
kwargs["pooled_prompt_embeds"] = pooled
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
guidance_scale=self.cfg_scale,

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,64 @@
name: diffusers
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- tzdata=2023c=h04d1e81_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- --pre
- --extra-index-url https://download.pytorch.org/whl/nightly/
- accelerate>=0.11.0
- certifi==2023.7.22
- charset-normalizer==3.3.0
- compel==2.0.2
- diffusers==0.24.0
- filelock==3.12.4
- fsspec==2023.9.2
- grpcio==1.59.0
- huggingface-hub>=0.19.4
- idna==3.4
- importlib-metadata==6.8.0
- jinja2==3.1.2
- markupsafe==2.1.3
- mpmath==1.3.0
- networkx==3.1
- numpy==1.26.0
- omegaconf
- packaging==23.2
- pillow==10.0.1
- protobuf==4.24.4
- psutil==5.9.5
- pyparsing==3.1.1
- pyyaml==6.0.1
- regex==2023.10.3
- requests==2.31.0
- safetensors==0.4.0
- sympy==1.12
- tqdm==4.66.1
- transformers>=4.25.1
- triton==2.1.0
- typing-extensions==4.8.0
- urllib3==2.0.6
- zipp==3.17.0
- torch
prefix: /opt/conda/envs/diffusers

View File

@@ -71,4 +71,4 @@ dependencies:
- typing-extensions==4.8.0
- urllib3==2.0.6
- zipp==3.17.0
prefix: /opt/conda/envs/diffusers
prefix: /opt/conda/envs/diffusers

View File

@@ -0,0 +1,50 @@
#!/bin/bash
set -ex
SKIP_CONDA=${SKIP_CONDA:-0}
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if [ $SKIP_CONDA -eq 1 ]; then
echo "Skipping conda environment installation"
else
export PATH=$PATH:/opt/conda/bin
if conda_env_exists "diffusers" ; then
echo "Creating virtual environment..."
conda env create --name diffusers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
fi
if [ -d "/opt/intel" ]; then
# Intel GPU: If the directory exists, we assume we are using the Intel image
# https://github.com/intel/intel-extension-for-pytorch/issues/538
pip install torch==2.1.0a0 \
torchvision==0.16.0a0 \
torchaudio==2.1.0a0 \
intel-extension-for-pytorch==2.1.10+xpu \
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install google-api-python-client \
grpcio \
grpcio-tools \
diffusers==0.24.0 \
transformers>=4.25.1 \
accelerate \
compel==2.0.2 \
Pillow
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
if [ $SKIP_CONDA -ne 1 ]; then
# Activate conda environment
source activate diffusers
fi
pip cache purge
fi

View File

@@ -3,10 +3,15 @@
##
## A bash script wrapper that runs the diffusers server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
if [ -d "/opt/intel" ]; then
# Assumes we are using the Intel oneAPI container image
# https://github.com/intel/intel-extension-for-pytorch/issues/538
export XPU=1
else
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
fi
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -1,7 +1,8 @@
export CONDA_ENV_PATH = "exllama.yml"
.PHONY: exllama
exllama:
$(MAKE) -C ../common-env/transformers
bash install.sh
bash install.sh ${CONDA_ENV_PATH}
.PHONY: run
run:

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,14 +1,27 @@
#!/bin/bash
set -ex
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[exllama] Attention!!! Nvidia GPU is required - skipping installation"
exit 0
fi
echo $CONDA_PREFIX
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if conda_env_exists "exllama" ; then
echo "Creating virtual environment..."
conda env create --name exllama --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
source activate exllama
git clone https://github.com/turboderp/exllama $CONDA_PREFIX/exllama && pushd $CONDA_PREFIX/exllama && pip install -r requirements.txt && popd

View File

@@ -2,11 +2,10 @@
##
## A bash script wrapper that runs the exllama server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
source activate exllama
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,15 +1,29 @@
#!/bin/bash
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
export SHA=c0ddebaaaf8ffd1b3529c2bb654e650bce2f790f
# Activate conda environment
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[exllamav2] Attention!!! Nvidia GPU is required - skipping installation"
exit 0
fi
export PATH=$PATH:/opt/conda/bin
source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2 && pushd $CONDA_PREFIX/exllamav2 && pip install -r requirements.txt && popd
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2
pushd $CONDA_PREFIX/exllamav2
git checkout -b build $SHA
# TODO: this needs to be pinned within the conda environments
pip install -r requirements.txt
popd
cp -rfv $CONDA_PREFIX/exllamav2/* ./

View File

File diff suppressed because one or more lines are too long

5
backend/python/mamba/install.sh Normal file → Executable file
View File

@@ -1,14 +1,15 @@
#!/bin/bash
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
if [ "$BUILD_TYPE" != "cublas" ]; then
echo "[mamba] Attention!!! nvcc is required - skipping installation"
exit 0
fi
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers

View File

@@ -1,7 +1,7 @@
.PHONY: petals
petals:
@echo "Creating virtual environment..."
@conda env create --name petals --file petals.yml
bash install.sh "petals.yml"
@echo "Virtual environment created."
.PHONY: run

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,5 @@
#!/bin/bash
export PATH=$PATH:/opt/conda/bin
conda env create --name petals --file $1

View File

File diff suppressed because one or more lines are too long

View File

File diff suppressed because one or more lines are too long

View File

File diff suppressed because one or more lines are too long

View File

@@ -3,10 +3,16 @@
##
## A bash script wrapper that runs the transformers server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
if [ -d "/opt/intel" ]; then
# Assumes we are using the Intel oneAPI container image
# https://github.com/intel/intel-extension-for-pytorch/issues/538
export XPU=1
else
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
fi
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -15,8 +15,16 @@ import backend_pb2_grpc
import grpc
import torch
import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
if XPU:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel, set_seed
else:
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed, BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModel
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -67,19 +75,60 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True) # trust_remote_code is needed to use the encode method with embeddings models like jinai-v2
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if request.CUDA:
compute = "auto"
if request.F16Memory == True:
compute=torch.bfloat16
self.CUDA = request.CUDA
device_map="cpu"
quantization = None
if self.CUDA:
if request.Device:
device_map=request.Device
else:
device_map="cuda:0"
if request.Quantization == "bnb_4bit":
quantization = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_compute_dtype = compute,
bnb_4bit_quant_type = "nf4",
bnb_4bit_use_double_quant = True,
load_in_8bit = False,
)
elif request.Quantization == "bnb_8bit":
quantization = BitsAndBytesConfig(
load_in_4bit=False,
bnb_4bit_compute_dtype = None,
load_in_8bit=True,
)
try:
if request.Type == "AutoModelForCausalLM":
if XPU:
if quantization == "xpu_4bit":
xpu_4bit = True
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode,
device_map="xpu", load_in_4bit=xpu_4bit)
else:
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
else:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if XPU:
self.XPU = True
try:
# TODO: also tensorflow, make configurable
import torch.cuda
if torch.cuda.is_available():
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
self.model = self.model.to("cuda")
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using CUDA:", err, file=sys.stderr)
print("Not using XPU:", err, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
@@ -98,6 +147,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
An EmbeddingResult object that contains the calculated embeddings.
"""
set_seed(request.Seed)
# Tokenize input
max_length = 512
if request.Tokens != 0:
@@ -105,13 +155,60 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
model_output = self.model(**encoded_input)
if self.CUDA:
encoded_input = encoded_input.to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
print("Embeddings:", sentence_embeddings, file=sys.stderr)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The predict result.
"""
set_seed(request.Seed)
if request.TopP == 0:
request.TopP = 0.9
max_tokens = 200
if request.Tokens > 0:
max_tokens = request.Tokens
inputs = self.tokenizer(request.Prompt, return_tensors="pt").input_ids
if self.CUDA:
inputs = inputs.to("cuda")
if XPU:
inputs = inputs.to("xpu")
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
generated_text = self.tokenizer.batch_decode(outputs[:, inputs.shape[1]:], skip_special_tokens=True)[0]
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
Args:
request: The predict stream request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict stream result.
"""
yield self.Predict(request, context)
def serve(address):

View File

@@ -1,3 +1,7 @@
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: ttsvalle
ttsvalle:
$(MAKE) -C ../common-env/transformers

View File

File diff suppressed because one or more lines are too long

View File

@@ -2,15 +2,18 @@
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
export SHA=3faaf8ccadb154d63b38070caf518ce9309ea0f4
# Activate conda environment
source activate transformers
SKIP_CONDA=${SKIP_CONDA:-0}
echo $CONDA_PREFIX
if [ $SKIP_CONDA -ne 1 ]; then
source activate transformers
else
export PATH=$PATH:/opt/conda/bin
CONDA_PREFIX=$PWD
fi
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && pip install -r requirements.txt && popd
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && popd
cp -rfv $CONDA_PREFIX/vall-e-x/* ./

View File

@@ -55,6 +55,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print("Preparing models, please wait", file=sys.stderr)
# download and load all models
preload_models()
self.clonedVoice = False
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
@@ -65,6 +66,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.AudioPath != "":
print("Generating model", file=sys.stderr)
make_prompt(name=model_name, audio_prompt_path=request.AudioPath)
self.clonedVoice = True
### Use given transcript
##make_prompt(name=model_name, audio_prompt_path="paimon_prompt.wav",
## transcript="Just, what was that? Paimon thought we were gonna get eaten.")
@@ -91,6 +93,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
try:
audio_array = None
if model != "":
if self.clonedVoice:
model = os.path.basename(request.model)
audio_array = generate_audio(request.text, prompt=model)
else:
audio_array = generate_audio(request.text)

View File

@@ -79,7 +79,7 @@ dependencies:
- pypinyin==0.49.0
- python-multipart==0.0.6
- regex==2023.10.3
- safetensors==0.4.0
- safetensors>=0.4.0
- semantic-version==2.10.0
- soundfile==0.12.1
- starlette==0.27.0

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python3
import asyncio
from concurrent import futures
import time
import argparse
import signal
import sys
@@ -10,7 +10,10 @@ import backend_pb2
import backend_pb2_grpc
import grpc
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -79,16 +82,30 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
Returns:
backend_pb2.Result: The load model result.
"""
engine_args = AsyncEngineArgs(
model=request.Model,
)
if request.Quantization != "":
engine_args.quantization = request.Quantization
if request.GPUMemoryUtilization != 0:
engine_args.gpu_memory_utilization = request.GPUMemoryUtilization
if request.TrustRemoteCode:
engine_args.trust_remote_code = request.TrustRemoteCode
if request.EnforceEager:
engine_args.enforce_eager = request.EnforceEager
if request.SwapSpace != 0:
engine_args.swap_space = request.SwapSpace
if request.MaxModelLen != 0:
engine_args.max_model_len = request.MaxModelLen
try:
if request.Quantization != "":
self.llm = LLM(model=request.Model, quantization=request.Quantization)
else:
self.llm = LLM(model=request.Model)
self.llm = AsyncLLMEngine.from_engine_args(engine_args)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
async def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
@@ -99,24 +116,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
Returns:
backend_pb2.Reply: The predict result.
"""
if request.TopP == 0:
request.TopP = 0.9
gen = self._predict(request, context, streaming=False)
res = await gen.__anext__()
return res
max_tokens = 200
if request.Tokens > 0:
max_tokens = request.Tokens
sampling_params = SamplingParams(max_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP)
outputs = self.llm.generate([request.Prompt], sampling_params)
generated_text = outputs[0].outputs[0].text
# Remove prompt from response if present
if request.Prompt in generated_text:
generated_text = generated_text.replace(request.Prompt, "")
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
def PredictStream(self, request, context):
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
@@ -127,30 +131,84 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
Returns:
backend_pb2.Result: The predict stream result.
"""
yield self.Predict(request, context)
iterations = self._predict(request, context, streaming=True)
try:
async for iteration in iterations:
yield iteration
finally:
await iterations.aclose()
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
async def _predict(self, request, context, streaming=False):
# Build sampling parameters
sampling_params = SamplingParams(top_p=0.9, max_tokens=200)
if request.TopP != 0:
sampling_params.top_p = request.TopP
if request.Tokens > 0:
sampling_params.max_tokens = request.Tokens
if request.Temperature != 0:
sampling_params.temperature = request.Temperature
if request.TopK != 0:
sampling_params.top_k = request.TopK
if request.PresencePenalty != 0:
sampling_params.presence_penalty = request.PresencePenalty
if request.FrequencyPenalty != 0:
sampling_params.frequency_penalty = request.FrequencyPenalty
if request.StopPrompts:
sampling_params.stop = request.StopPrompts
if request.IgnoreEOS:
sampling_params.ignore_eos = request.IgnoreEOS
if request.Seed != 0:
sampling_params.seed = request.Seed
# Generate text
request_id = random_uuid()
outputs = self.llm.generate(request.Prompt, sampling_params, request_id)
# Stream the results
generated_text = ""
try:
async for request_output in outputs:
iteration_text = request_output.outputs[0].text
if streaming:
# Remove text already sent as vllm concatenates the text from previous yields
delta_iteration_text = iteration_text.removeprefix(generated_text)
# Send the partial result
yield backend_pb2.Reply(message=bytes(delta_iteration_text, encoding='utf-8'))
# Keep track of text generated
generated_text = iteration_text
finally:
await outputs.aclose()
# If streaming, we already sent everything
if streaming:
return
# Sending the final generated text
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
# Add the servicer to the server
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
# Bind the server to the address
server.add_insecure_port(address)
server.start()
# Gracefully shutdown the server on SIGTERM or SIGINT
loop = asyncio.get_event_loop()
for sig in (signal.SIGINT, signal.SIGTERM):
loop.add_signal_handler(
sig, lambda: asyncio.ensure_future(server.stop(5))
)
# Start the server
await server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
# Wait for the server to be terminated
await server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
@@ -159,4 +217,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
serve(args.addr)
asyncio.run(serve(args.addr))

0
configuration/.keep Normal file
View File

View File

@@ -3,36 +3,32 @@ package backend
import (
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.Config, o *options.Option) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
modelFile := backendConfig.Model
modelFile := c.Model
grpcOpts := gRPCModelOpts(c)
grpcOpts := gRPCModelOpts(backendConfig)
var inferenceModel interface{}
var err error
opts := modelOpts(c, o, []model.Option{
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),
model.WithThreads(uint32(*backendConfig.Threads)),
model.WithAssetDir(appConfig.AssetsDestination),
model.WithModel(modelFile),
model.WithContext(o.Context),
model.WithContext(appConfig.Context),
})
if c.Backend == "" {
if backendConfig.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
} else {
opts = append(opts, model.WithBackendString(c.Backend))
opts = append(opts, model.WithBackendString(backendConfig.Backend))
inferenceModel, err = loader.BackendLoader(opts...)
}
if err != nil {
@@ -41,9 +37,9 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {
case *grpc.Client:
case grpc.Backend:
fn = func() ([]float32, error) {
predictOptions := gRPCPredictOpts(c, loader.ModelPath)
predictOptions := gRPCPredictOpts(backendConfig, loader.ModelPath)
if len(tokens) > 0 {
embeds := []int32{}
@@ -52,7 +48,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
}
predictOptions.EmbeddingTokens = embeds
res, err := model.Embeddings(o.Context, predictOptions)
res, err := model.Embeddings(appConfig.Context, predictOptions)
if err != nil {
return nil, err
}
@@ -61,7 +57,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
}
predictOptions.Embeddings = s
res, err := model.Embeddings(o.Context, predictOptions)
res, err := model.Embeddings(appConfig.Context, predictOptions)
if err != nil {
return nil, err
}

52
core/backend/image.go Normal file
View File

@@ -0,0 +1,52 @@
package backend
import (
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
threads := backendConfig.Threads
if *threads == 0 && appConfig.Threads != 0 {
threads = &appConfig.Threads
}
gRPCOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(backendConfig.Backend),
model.WithAssetDir(appConfig.AssetsDestination),
model.WithThreads(uint32(*threads)),
model.WithContext(appConfig.Context),
model.WithModel(backendConfig.Model),
model.WithLoadGRPCLoadModelOpts(gRPCOpts),
})
inferenceModel, err := loader.BackendLoader(
opts...,
)
if err != nil {
return nil, err
}
fn := func() error {
_, err := inferenceModel.GenerateImage(
appConfig.Context,
&proto.GenerateImageRequest{
Height: int32(height),
Width: int32(width),
Mode: int32(mode),
Step: int32(step),
Seed: int32(seed),
CLIPSkip: int32(backendConfig.Diffusers.ClipSkip),
PositivePrompt: positive_prompt,
NegativePrompt: negative_prompt,
Dst: dst,
Src: src,
EnableParameters: backendConfig.Diffusers.EnableParameters,
})
return err
}
return fn, nil
}

View File

@@ -8,8 +8,8 @@ import (
"sync"
"unicode/utf8"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
@@ -26,17 +26,20 @@ type TokenUsage struct {
Completion int
}
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.Config, o *options.Option, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
threads := c.Threads
if *threads == 0 && o.Threads != 0 {
threads = &o.Threads
}
grpcOpts := gRPCModelOpts(c)
var inferenceModel *grpc.Client
var inferenceModel grpc.Backend
var err error
opts := modelOpts(c, o, []model.Option{
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModel(modelFile),
model.WithContext(o.Context),
@@ -140,7 +143,7 @@ func ModelInference(ctx context.Context, s string, images []string, loader *mode
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config config.Config, input, prediction string) string {
func Finetune(config config.BackendConfig, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}

141
core/backend/options.go Normal file
View File

@@ -0,0 +1,141 @@
package backend
import (
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/core/config"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
if so.SingleBackend {
opts = append(opts, model.WithSingleActiveBackend())
}
if so.ParallelBackendRequests {
opts = append(opts, model.EnableParallelRequests)
}
if c.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
}
if c.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
}
for k, v := range so.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
return opts
}
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
}
return &pb.ModelOptions{
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
PipelineType: c.Diffusers.PipelineType,
CFGScale: c.Diffusers.CFGScale,
LoraAdapter: c.LoraAdapter,
LoraScale: c.LoraScale,
F16Memory: *c.F16,
LoraBase: c.LoraBase,
IMG2IMG: c.Diffusers.IMG2IMG,
CLIPModel: c.Diffusers.ClipModel,
CLIPSubfolder: c.Diffusers.ClipSubFolder,
CLIPSkip: int32(c.Diffusers.ClipSkip),
ControlNet: c.Diffusers.ControlNet,
ContextSize: int32(*c.ContextSize),
Seed: int32(*c.Seed),
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
DraftModel: c.DraftModel,
AudioPath: c.VallE.AudioPath,
Quantization: c.Quantization,
GPUMemoryUtilization: c.GPUMemoryUtilization,
TrustRemoteCode: c.TrustRemoteCode,
EnforceEager: c.EnforceEager,
SwapSpace: int32(c.SwapSpace),
MaxModelLen: int32(c.MaxModelLen),
MMProj: c.MMProj,
YarnExtFactor: c.YarnExtFactor,
YarnAttnFactor: c.YarnAttnFactor,
YarnBetaFast: c.YarnBetaFast,
YarnBetaSlow: c.YarnBetaSlow,
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
MLock: *c.MMlock,
RopeFreqBase: c.RopeFreqBase,
RopeScaling: c.RopeScaling,
Type: c.ModelType,
RopeFreqScale: c.RopeFreqScale,
NUMA: c.NUMA,
Embeddings: c.Embeddings,
LowVRAM: *c.LowVRAM,
NGPULayers: int32(*c.NGPULayers),
MMap: *c.MMap,
MainGPU: c.MainGPU,
Threads: int32(*c.Threads),
TensorSplit: c.TensorSplit,
// AutoGPTQ
ModelBaseName: c.AutoGPTQ.ModelBaseName,
Device: c.AutoGPTQ.Device,
UseTriton: c.AutoGPTQ.Triton,
UseFastTokenizer: c.AutoGPTQ.UseFastTokenizer,
// RWKV
Tokenizer: c.Tokenizer,
}
}
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
promptCachePath = p
}
return &pb.PredictOptions{
Temperature: float32(*c.Temperature),
TopP: float32(*c.TopP),
NDraft: c.NDraft,
TopK: int32(*c.TopK),
Tokens: int32(*c.Maxtokens),
Threads: int32(*c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
PromptCachePath: promptCachePath,
F16KV: *c.F16,
DebugMode: *c.Debug,
Grammar: c.Grammar,
NegativePromptScale: c.NegativePromptScale,
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NegativePrompt: c.NegativePrompt,
Mirostat: int32(*c.LLMConfig.Mirostat),
MirostatETA: float32(*c.LLMConfig.MirostatETA),
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
Debug: *c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: int32(*c.Seed),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: *c.MMlock,
MMap: *c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(c.TFZ),
TypicalP: float32(c.TypicalP),
}
}

View File

@@ -0,0 +1,38 @@
package backend
import (
"context"
"fmt"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.Result, error) {
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(model.WhisperBackend),
model.WithModel(backendConfig.Model),
model.WithContext(appConfig.Context),
model.WithThreads(uint32(*backendConfig.Threads)),
model.WithAssetDir(appConfig.AssetsDestination),
})
whisperModel, err := ml.BackendLoader(opts...)
if err != nil {
return nil, err
}
if whisperModel == nil {
return nil, fmt.Errorf("could not load whisper model")
}
return whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
Dst: audio,
Language: language,
Threads: uint32(*backendConfig.Threads),
})
}

89
core/backend/tts.go Normal file
View File

@@ -0,0 +1,89 @@
package backend
import (
"context"
"fmt"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
}
}
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
}
grpcOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
model.WithBackendString(bb),
model.WithModel(modelFile),
model.WithContext(appConfig.Context),
model.WithAssetDir(appConfig.AssetsDestination),
model.WithLoadGRPCLoadModelOpts(grpcOpts),
})
ttsModel, err := loader.BackendLoader(opts...)
if err != nil {
return "", nil, err
}
if ttsModel == nil {
return "", nil, fmt.Errorf("could not load piper model")
}
if err := os.MkdirAll(appConfig.AudioDir, 0755); err != nil {
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
}
fileName := generateUniqueFileName(appConfig.AudioDir, "tts", ".wav")
filePath := filepath.Join(appConfig.AudioDir, fileName)
// If the model file is not empty, we pass it joined with the model path
modelPath := ""
if modelFile != "" {
// If the model file is not empty, we pass it joined with the model path
// Checking first that it exists and is not outside ModelPath
// TODO: we should actually first check if the modelFile is looking like
// a FS path
mp := filepath.Join(loader.ModelPath, modelFile)
if _, err := os.Stat(mp); err == nil {
if err := utils.VerifyPath(mp, appConfig.ModelPath); err != nil {
return "", nil, err
}
modelPath = mp
} else {
modelPath = modelFile
}
}
res, err := ttsModel.TTS(context.Background(), &proto.TTSRequest{
Text: text,
Model: modelPath,
Voice: voice,
Dst: filePath,
})
return filePath, res, err
}

View File

@@ -1,4 +1,4 @@
package options
package config
import (
"context"
@@ -6,27 +6,27 @@ import (
"encoding/json"
"time"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/gallery"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/rs/zerolog/log"
)
type Option struct {
type ApplicationConfig struct {
Context context.Context
ConfigFile string
Loader *model.ModelLoader
ModelPath string
UploadLimitMB, Threads, ContextSize int
F16 bool
Debug, DisableMessage bool
ImageDir string
AudioDir string
UploadDir string
CORS bool
PreloadJSONModels string
PreloadModelsFromPath string
CORSAllowOrigins string
ApiKeys []string
Metrics *metrics.Metrics
ModelLibraryURL string
Galleries []gallery.Gallery
@@ -49,10 +49,10 @@ type Option struct {
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
}
type AppOption func(*Option)
type AppOption func(*ApplicationConfig)
func NewOptions(o ...AppOption) *Option {
opt := &Option{
func NewApplicationConfig(o ...AppOption) *ApplicationConfig {
opt := &ApplicationConfig{
Context: context.Background(),
UploadLimitMB: 15,
Threads: 1,
@@ -67,57 +67,69 @@ func NewOptions(o ...AppOption) *Option {
}
func WithModelsURL(urls ...string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.ModelsURL = urls
}
}
func WithModelPath(path string) AppOption {
return func(o *ApplicationConfig) {
o.ModelPath = path
}
}
func WithCors(b bool) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.CORS = b
}
}
var EnableWatchDog = func(o *Option) {
func WithModelLibraryURL(url string) AppOption {
return func(o *ApplicationConfig) {
o.ModelLibraryURL = url
}
}
var EnableWatchDog = func(o *ApplicationConfig) {
o.WatchDog = true
}
var EnableWatchDogIdleCheck = func(o *Option) {
var EnableWatchDogIdleCheck = func(o *ApplicationConfig) {
o.WatchDog = true
o.WatchDogIdle = true
}
var EnableWatchDogBusyCheck = func(o *Option) {
var EnableWatchDogBusyCheck = func(o *ApplicationConfig) {
o.WatchDog = true
o.WatchDogBusy = true
}
func SetWatchDogBusyTimeout(t time.Duration) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.WatchDogBusyTimeout = t
}
}
func SetWatchDogIdleTimeout(t time.Duration) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.WatchDogIdleTimeout = t
}
}
var EnableSingleBackend = func(o *Option) {
var EnableSingleBackend = func(o *ApplicationConfig) {
o.SingleBackend = true
}
var EnableParallelBackendRequests = func(o *Option) {
var EnableParallelBackendRequests = func(o *ApplicationConfig) {
o.ParallelBackendRequests = true
}
var EnableGalleriesAutoload = func(o *Option) {
var EnableGalleriesAutoload = func(o *ApplicationConfig) {
o.AutoloadGalleries = true
}
func WithExternalBackend(name string, uri string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
if o.ExternalGRPCBackends == nil {
o.ExternalGRPCBackends = make(map[string]string)
}
@@ -126,27 +138,26 @@ func WithExternalBackend(name string, uri string) AppOption {
}
func WithCorsAllowOrigins(b string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.CORSAllowOrigins = b
}
}
func WithBackendAssetsOutput(out string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.AssetsDestination = out
}
}
func WithBackendAssets(f embed.FS) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.BackendAssets = f
}
}
func WithStringGalleries(galls string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
if galls == "" {
log.Debug().Msgf("no galleries to load")
o.Galleries = []gallery.Gallery{}
return
}
@@ -159,96 +170,96 @@ func WithStringGalleries(galls string) AppOption {
}
func WithGalleries(galleries []gallery.Gallery) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.Galleries = append(o.Galleries, galleries...)
}
}
func WithContext(ctx context.Context) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.Context = ctx
}
}
func WithYAMLConfigPreload(configFile string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.PreloadModelsFromPath = configFile
}
}
func WithJSONStringPreload(configFile string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.PreloadJSONModels = configFile
}
}
func WithConfigFile(configFile string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.ConfigFile = configFile
}
}
func WithModelLoader(loader *model.ModelLoader) AppOption {
return func(o *Option) {
o.Loader = loader
}
}
func WithUploadLimitMB(limit int) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.UploadLimitMB = limit
}
}
func WithThreads(threads int) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.Threads = threads
}
}
func WithContextSize(ctxSize int) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.ContextSize = ctxSize
}
}
func WithF16(f16 bool) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.F16 = f16
}
}
func WithDebug(debug bool) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.Debug = debug
}
}
func WithDisableMessage(disableMessage bool) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.DisableMessage = disableMessage
}
}
func WithAudioDir(audioDir string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.AudioDir = audioDir
}
}
func WithImageDir(imageDir string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.ImageDir = imageDir
}
}
func WithUploadDir(uploadDir string) AppOption {
return func(o *ApplicationConfig) {
o.UploadDir = uploadDir
}
}
func WithApiKeys(apiKeys []string) AppOption {
return func(o *Option) {
return func(o *ApplicationConfig) {
o.ApiKeys = apiKeys
}
}
func WithMetrics(meter *metrics.Metrics) AppOption {
return func(o *Option) {
o.Metrics = meter
}
}
// func WithMetrics(meter *metrics.Metrics) AppOption {
// return func(o *StartupOptions) {
// o.Metrics = meter
// }
// }

View File

@@ -0,0 +1,565 @@
package config
import (
"errors"
"fmt"
"io/fs"
"math/rand"
"os"
"path/filepath"
"strings"
"sync"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
"github.com/charmbracelet/glamour"
)
type BackendConfig struct {
schema.PredictionOptions `yaml:"parameters"`
Name string `yaml:"name"`
F16 *bool `yaml:"f16"`
Threads *int `yaml:"threads"`
Debug *bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
PromptStrings, InputStrings []string `yaml:"-"`
InputToken [][]int `yaml:"-"`
functionCallString, functionCallNameString string `yaml:"-"`
FunctionsConfig Functions `yaml:"function"`
FeatureFlag FeatureFlag `yaml:"feature_flags"` // Feature Flag registry. We move fast, and features may break on a per model/backend basis. Registry for (usually temporary) flags that indicate aborting something early.
// LLM configs (GPT4ALL, Llama.cpp, ...)
LLMConfig `yaml:",inline"`
// AutoGPTQ specifics
AutoGPTQ AutoGPTQ `yaml:"autogptq"`
// Diffusers
Diffusers Diffusers `yaml:"diffusers"`
Step int `yaml:"step"`
// GRPC Options
GRPC GRPC `yaml:"grpc"`
// Vall-e-x
VallE VallE `yaml:"vall-e"`
// CUDA
// Explicitly enable CUDA or not (some backends might need it)
CUDA bool `yaml:"cuda"`
DownloadFiles []File `yaml:"download_files"`
Description string `yaml:"description"`
Usage string `yaml:"usage"`
}
type File struct {
Filename string `yaml:"filename" json:"filename"`
SHA256 string `yaml:"sha256" json:"sha256"`
URI string `yaml:"uri" json:"uri"`
}
type VallE struct {
AudioPath string `yaml:"audio_path"`
}
type FeatureFlag map[string]*bool
func (ff FeatureFlag) Enabled(s string) bool {
v, exist := ff[s]
return exist && v != nil && *v
}
type GRPC struct {
Attempts int `yaml:"attempts"`
AttemptsSleepTime int `yaml:"attempts_sleep_time"`
}
type Diffusers struct {
CUDA bool `yaml:"cuda"`
PipelineType string `yaml:"pipeline_type"`
SchedulerType string `yaml:"scheduler_type"`
EnableParameters string `yaml:"enable_parameters"` // A list of comma separated parameters to specify
CFGScale float32 `yaml:"cfg_scale"` // Classifier-Free Guidance Scale
IMG2IMG bool `yaml:"img2img"` // Image to Image Diffuser
ClipSkip int `yaml:"clip_skip"` // Skip every N frames
ClipModel string `yaml:"clip_model"` // Clip model to use
ClipSubFolder string `yaml:"clip_subfolder"` // Subfolder to use for clip model
ControlNet string `yaml:"control_net"`
}
type LLMConfig struct {
SystemPrompt string `yaml:"system_prompt"`
TensorSplit string `yaml:"tensor_split"`
MainGPU string `yaml:"main_gpu"`
RMSNormEps float32 `yaml:"rms_norm_eps"`
NGQA int32 `yaml:"ngqa"`
PromptCachePath string `yaml:"prompt_cache_path"`
PromptCacheAll bool `yaml:"prompt_cache_all"`
PromptCacheRO bool `yaml:"prompt_cache_ro"`
MirostatETA *float64 `yaml:"mirostat_eta"`
MirostatTAU *float64 `yaml:"mirostat_tau"`
Mirostat *int `yaml:"mirostat"`
NGPULayers *int `yaml:"gpu_layers"`
MMap *bool `yaml:"mmap"`
MMlock *bool `yaml:"mmlock"`
LowVRAM *bool `yaml:"low_vram"`
Grammar string `yaml:"grammar"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
TrimSuffix []string `yaml:"trimsuffix"`
ContextSize *int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
GPUMemoryUtilization float32 `yaml:"gpu_memory_utilization"` // vLLM
TrustRemoteCode bool `yaml:"trust_remote_code"` // vLLM
EnforceEager bool `yaml:"enforce_eager"` // vLLM
SwapSpace int `yaml:"swap_space"` // vLLM
MaxModelLen int `yaml:"max_model_len"` // vLLM
MMProj string `yaml:"mmproj"`
RopeScaling string `yaml:"rope_scaling"`
ModelType string `yaml:"type"`
YarnExtFactor float32 `yaml:"yarn_ext_factor"`
YarnAttnFactor float32 `yaml:"yarn_attn_factor"`
YarnBetaFast float32 `yaml:"yarn_beta_fast"`
YarnBetaSlow float32 `yaml:"yarn_beta_slow"`
}
type AutoGPTQ struct {
ModelBaseName string `yaml:"model_base_name"`
Device string `yaml:"device"`
Triton bool `yaml:"triton"`
UseFastTokenizer bool `yaml:"use_fast_tokenizer"`
}
type Functions struct {
DisableNoAction bool `yaml:"disable_no_action"`
NoActionFunctionName string `yaml:"no_action_function_name"`
NoActionDescriptionName string `yaml:"no_action_description_name"`
ParallelCalls bool `yaml:"parallel_calls"`
}
type TemplateConfig struct {
Chat string `yaml:"chat"`
ChatMessage string `yaml:"chat_message"`
Completion string `yaml:"completion"`
Edit string `yaml:"edit"`
Functions string `yaml:"function"`
}
func (c *BackendConfig) SetFunctionCallString(s string) {
c.functionCallString = s
}
func (c *BackendConfig) SetFunctionCallNameString(s string) {
c.functionCallNameString = s
}
func (c *BackendConfig) ShouldUseFunctions() bool {
return ((c.functionCallString != "none" || c.functionCallString == "") || c.ShouldCallSpecificFunction())
}
func (c *BackendConfig) ShouldCallSpecificFunction() bool {
return len(c.functionCallNameString) > 0
}
func (c *BackendConfig) FunctionToCall() string {
return c.functionCallNameString
}
func (cfg *BackendConfig) SetDefaults(debug bool, threads, ctx int, f16 bool) {
defaultTopP := 0.7
defaultTopK := 80
defaultTemp := 0.9
defaultMaxTokens := 2048
defaultMirostat := 2
defaultMirostatTAU := 5.0
defaultMirostatETA := 0.1
// Try to offload all GPU layers (if GPU is found)
defaultNGPULayers := 99999999
trueV := true
falseV := false
if cfg.Seed == nil {
// random number generator seed
defaultSeed := int(rand.Int31())
cfg.Seed = &defaultSeed
}
if cfg.TopK == nil {
cfg.TopK = &defaultTopK
}
if cfg.MMap == nil {
// MMap is enabled by default
cfg.MMap = &trueV
}
if cfg.MMlock == nil {
// MMlock is disabled by default
cfg.MMlock = &falseV
}
if cfg.TopP == nil {
cfg.TopP = &defaultTopP
}
if cfg.Temperature == nil {
cfg.Temperature = &defaultTemp
}
if cfg.Maxtokens == nil {
cfg.Maxtokens = &defaultMaxTokens
}
if cfg.Mirostat == nil {
cfg.Mirostat = &defaultMirostat
}
if cfg.MirostatETA == nil {
cfg.MirostatETA = &defaultMirostatETA
}
if cfg.MirostatTAU == nil {
cfg.MirostatTAU = &defaultMirostatTAU
}
if cfg.NGPULayers == nil {
cfg.NGPULayers = &defaultNGPULayers
}
if cfg.LowVRAM == nil {
cfg.LowVRAM = &falseV
}
// Value passed by the top level are treated as default (no implicit defaults)
// defaults are set by the user
if ctx == 0 {
ctx = 1024
}
if cfg.ContextSize == nil {
cfg.ContextSize = &ctx
}
if threads == 0 {
// Threads can't be 0
threads = 4
}
if cfg.Threads == nil {
cfg.Threads = &threads
}
if cfg.F16 == nil {
cfg.F16 = &f16
}
if debug {
cfg.Debug = &debug
}
}
////// Config Loader ////////
type BackendConfigLoader struct {
configs map[string]BackendConfig
sync.Mutex
}
type LoadOptions struct {
debug bool
threads, ctxSize int
f16 bool
}
func LoadOptionDebug(debug bool) ConfigLoaderOption {
return func(o *LoadOptions) {
o.debug = debug
}
}
func LoadOptionThreads(threads int) ConfigLoaderOption {
return func(o *LoadOptions) {
o.threads = threads
}
}
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
return func(o *LoadOptions) {
o.ctxSize = ctxSize
}
}
func LoadOptionF16(f16 bool) ConfigLoaderOption {
return func(o *LoadOptions) {
o.f16 = f16
}
}
type ConfigLoaderOption func(*LoadOptions)
func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
for _, l := range options {
l(lo)
}
}
// Load a config file for a model
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
lo := &LoadOptions{}
lo.Apply(opts...)
// Load a config file if present after the model name
cfg := &BackendConfig{
PredictionOptions: schema.PredictionOptions{
Model: modelName,
},
}
cfgExisting, exists := cl.GetBackendConfig(modelName)
if exists {
cfg = &cfgExisting
} else {
// Try loading a model config file
modelConfig := filepath.Join(modelPath, modelName+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := cl.LoadBackendConfig(modelConfig); err != nil {
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = cl.GetBackendConfig(modelName)
if exists {
cfg = &cfgExisting
}
}
}
cfg.SetDefaults(lo.debug, lo.threads, lo.ctxSize, lo.f16)
return cfg, nil
}
func NewBackendConfigLoader() *BackendConfigLoader {
return &BackendConfigLoader{
configs: make(map[string]BackendConfig),
}
}
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
lo := &LoadOptions{}
lo.Apply(opts...)
c := &[]*BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
for _, cc := range *c {
cc.SetDefaults(lo.debug, lo.threads, lo.ctxSize, lo.f16)
}
return *c, nil
}
func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
lo := &LoadOptions{}
lo.Apply(opts...)
c := &BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
c.SetDefaults(lo.debug, lo.threads, lo.ctxSize, lo.f16)
return c, nil
}
func (cm *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadBackendConfigFile(file, opts...)
if err != nil {
return fmt.Errorf("cannot load config file: %w", err)
}
for _, cc := range c {
cm.configs[cc.Name] = *cc
}
return nil
}
func (cl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
cl.Lock()
defer cl.Unlock()
c, err := ReadBackendConfig(file, opts...)
if err != nil {
return fmt.Errorf("cannot read config file: %w", err)
}
cl.configs[c.Name] = *c
return nil
}
func (cl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
cl.Lock()
defer cl.Unlock()
v, exists := cl.configs[m]
return v, exists
}
func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
cl.Lock()
defer cl.Unlock()
var res []BackendConfig
for _, v := range cl.configs {
res = append(res, v)
}
return res
}
func (cl *BackendConfigLoader) ListBackendConfigs() []string {
cl.Lock()
defer cl.Unlock()
var res []string
for k := range cl.configs {
res = append(res, k)
}
return res
}
// Preload prepare models if they are not local but url or huggingface repositories
func (cl *BackendConfigLoader) Preload(modelPath string) error {
cl.Lock()
defer cl.Unlock()
status := func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
}
log.Info().Msgf("Preloading models from %s", modelPath)
renderMode := "dark"
if os.Getenv("COLOR") != "" {
renderMode = os.Getenv("COLOR")
}
glamText := func(t string) {
out, err := glamour.Render(t, renderMode)
if err == nil && os.Getenv("NO_COLOR") == "" {
fmt.Println(out)
} else {
fmt.Println(t)
}
}
for i, config := range cl.configs {
// Download files and verify their SHA
for _, file := range config.DownloadFiles {
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
return err
}
// Create file path
filePath := filepath.Join(modelPath, file.Filename)
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
return err
}
}
modelURL := config.PredictionOptions.Model
modelURL = downloader.ConvertURL(modelURL)
if downloader.LooksLikeURL(modelURL) {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
if err != nil {
return err
}
}
cc := cl.configs[i]
c := &cc
c.PredictionOptions.Model = md5Name
cl.configs[i] = *c
}
if cl.configs[i].Name != "" {
glamText(fmt.Sprintf("**Model name**: _%s_", cl.configs[i].Name))
}
if cl.configs[i].Description != "" {
//glamText("**Description**")
glamText(cl.configs[i].Description)
}
if cl.configs[i].Usage != "" {
//glamText("**Usage**")
glamText(cl.configs[i].Usage)
}
}
return nil
}
// LoadBackendConfigsFromPath reads all the configurations of the models from a path
// (non-recursive)
func (cm *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
cm.Lock()
defer cm.Unlock()
entries, err := os.ReadDir(path)
if err != nil {
return err
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
info, err := entry.Info()
if err != nil {
return err
}
files = append(files, info)
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
continue
}
c, err := ReadBackendConfig(filepath.Join(path, file.Name()), opts...)
if err == nil {
cm.configs[c.Name] = *c
}
}
return nil
}

View File

@@ -1,11 +1,10 @@
package api_config_test
package config_test
import (
"os"
. "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/model"
. "github.com/go-skynet/LocalAI/core/config"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
@@ -19,7 +18,7 @@ var _ = Describe("Test cases for config related functions", func() {
Context("Test Read configuration functions", func() {
configFile = os.Getenv("CONFIG_FILE")
It("Test ReadConfigFile", func() {
config, err := ReadConfigFile(configFile)
config, err := ReadBackendConfigFile(configFile)
Expect(err).To(BeNil())
Expect(config).ToNot(BeNil())
// two configs in config.yaml
@@ -28,29 +27,26 @@ var _ = Describe("Test cases for config related functions", func() {
})
It("Test LoadConfigs", func() {
cm := NewConfigLoader()
opts := options.NewOptions()
modelLoader := model.NewModelLoader(os.Getenv("MODELS_PATH"))
options.WithModelLoader(modelLoader)(opts)
err := cm.LoadConfigs(opts.Loader.ModelPath)
cm := NewBackendConfigLoader()
opts := NewApplicationConfig()
err := cm.LoadBackendConfigsFromPath(opts.ModelPath)
Expect(err).To(BeNil())
Expect(cm.ListConfigs()).ToNot(BeNil())
Expect(cm.ListBackendConfigs()).ToNot(BeNil())
// config should includes gpt4all models's api.config
Expect(cm.ListConfigs()).To(ContainElements("gpt4all"))
Expect(cm.ListBackendConfigs()).To(ContainElements("gpt4all"))
// config should includes gpt2 models's api.config
Expect(cm.ListConfigs()).To(ContainElements("gpt4all-2"))
Expect(cm.ListBackendConfigs()).To(ContainElements("gpt4all-2"))
// config should includes text-embedding-ada-002 models's api.config
Expect(cm.ListConfigs()).To(ContainElements("text-embedding-ada-002"))
Expect(cm.ListBackendConfigs()).To(ContainElements("text-embedding-ada-002"))
// config should includes rwkv_test models's api.config
Expect(cm.ListConfigs()).To(ContainElements("rwkv_test"))
Expect(cm.ListBackendConfigs()).To(ContainElements("rwkv_test"))
// config should includes whisper-1 models's api.config
Expect(cm.ListConfigs()).To(ContainElements("whisper-1"))
Expect(cm.ListBackendConfigs()).To(ContainElements("whisper-1"))
})
})
})

242
core/http/api.go Normal file
View File

@@ -0,0 +1,242 @@
package http
import (
"encoding/json"
"errors"
"os"
"strings"
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/logger"
"github.com/gofiber/fiber/v2/middleware/recover"
)
func readAuthHeader(c *fiber.Ctx) string {
authHeader := c.Get("Authorization")
// elevenlabs
xApiKey := c.Get("xi-api-key")
if xApiKey != "" {
authHeader = "Bearer " + xApiKey
}
// anthropic
xApiKey = c.Get("x-api-key")
if xApiKey != "" {
authHeader = "Bearer " + xApiKey
}
return authHeader
}
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
// Return errors as JSON responses
app := fiber.New(fiber.Config{
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: appConfig.DisableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
// Status code defaults to 500
code := fiber.StatusInternalServerError
// Retrieve the custom status code if it's a *fiber.Error
var e *fiber.Error
if errors.As(err, &e) {
code = e.Code
}
// Send custom error page
return ctx.Status(code).JSON(
schema.ErrorResponse{
Error: &schema.APIError{Message: err.Error(), Code: code},
},
)
},
})
if appConfig.Debug {
app.Use(logger.New(logger.Config{
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
}))
}
// Default middleware config
if !appConfig.Debug {
app.Use(recover.New())
}
metricsService, err := services.NewLocalAIMetricsService()
if err != nil {
return nil, err
}
if metricsService != nil {
app.Use(localai.LocalAIMetricsAPIMiddleware(metricsService))
app.Hooks().OnShutdown(func() error {
return metricsService.Shutdown()
})
}
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
auth := func(c *fiber.Ctx) error {
if len(appConfig.ApiKeys) == 0 {
return c.Next()
}
// Check for api_keys.json file
fileContent, err := os.ReadFile("api_keys.json")
if err == nil {
// Parse JSON content from the file
var fileKeys []string
err := json.Unmarshal(fileContent, &fileKeys)
if err != nil {
return c.Status(fiber.StatusInternalServerError).JSON(fiber.Map{"message": "Error parsing api_keys.json"})
}
// Add file keys to options.ApiKeys
appConfig.ApiKeys = append(appConfig.ApiKeys, fileKeys...)
}
if len(appConfig.ApiKeys) == 0 {
return c.Next()
}
authHeader := readAuthHeader(c)
if authHeader == "" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
}
// If it's a bearer token
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
}
apiKey := authHeaderParts[1]
for _, key := range appConfig.ApiKeys {
if apiKey == key {
return c.Next()
}
}
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
}
if appConfig.CORS {
var c func(ctx *fiber.Ctx) error
if appConfig.CORSAllowOrigins == "" {
c = cors.New()
} else {
c = cors.New(cors.Config{AllowOrigins: appConfig.CORSAllowOrigins})
}
app.Use(c)
}
// LocalAI API endpoints
galleryService := services.NewGalleryService(appConfig.ModelPath)
galleryService.Start(appConfig.Context, cl)
app.Get("/version", auth, func(c *fiber.Ctx) error {
return c.JSON(struct {
Version string `json:"version"`
}{Version: internal.PrintableVersion()})
})
// Load upload json
openai.LoadUploadConfig(appConfig.UploadDir)
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
app.Post("/models/galleries", auth, modelGalleryEndpointService.AddModelGalleryEndpoint())
app.Delete("/models/galleries", auth, modelGalleryEndpointService.RemoveModelGalleryEndpoint())
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
// Elevenlabs
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
// openAI compatible API endpoint
// chat
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
// edit
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
// files
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
// completion
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
// embeddings
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
// audio
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
// images
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
if appConfig.ImageDir != "" {
app.Static("/generated-images", appConfig.ImageDir)
}
if appConfig.AudioDir != "" {
app.Static("/generated-audio", appConfig.AudioDir)
}
ok := func(c *fiber.Ctx) error {
return c.SendStatus(200)
}
// Kubernetes health checks
app.Get("/healthz", ok)
app.Get("/readyz", ok)
// Experimental Backend Statistics Module
backendMonitor := services.NewBackendMonitor(cl, ml, appConfig) // Split out for now
app.Get("/backend/monitor", localai.BackendMonitorEndpoint(backendMonitor))
app.Post("/backend/shutdown", localai.BackendShutdownEndpoint(backendMonitor))
// models
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/metrics", localai.LocalAIMetricsEndpoint())
return app, nil
}

View File

@@ -1,4 +1,4 @@
package api_test
package http_test
import (
"bytes"
@@ -13,9 +13,10 @@ import (
"path/filepath"
"runtime"
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/core/config"
. "github.com/go-skynet/LocalAI/core/http"
"github.com/go-skynet/LocalAI/core/startup"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/model"
@@ -29,6 +30,15 @@ import (
"github.com/sashabaranov/go-openai/jsonschema"
)
const testPrompt = `### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.
### User:
Can you help rephrasing sentences?
### Response:`
type modelApplyRequest struct {
ID string `json:"id"`
URL string `json:"url"`
@@ -118,25 +128,33 @@ var backendAssets embed.FS
var _ = Describe("API test", func() {
var app *fiber.App
var modelLoader *model.ModelLoader
var client *openai.Client
var client2 *openaigo.Client
var c context.Context
var cancel context.CancelFunc
var tmpdir string
var modelDir string
var bcl *config.BackendConfigLoader
var ml *model.ModelLoader
var applicationConfig *config.ApplicationConfig
commonOpts := []options.AppOption{
options.WithDebug(true),
options.WithDisableMessage(true),
commonOpts := []config.AppOption{
config.WithDebug(true),
config.WithDisableMessage(true),
}
Context("API with ephemeral models", func() {
BeforeEach(func() {
BeforeEach(func(sc SpecContext) {
var err error
tmpdir, err = os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
modelLoader = model.NewModelLoader(tmpdir)
modelDir = filepath.Join(tmpdir, "models")
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
err = os.Mkdir(backendAssetsDir, 0755)
Expect(err).ToNot(HaveOccurred())
c, cancel = context.WithCancel(context.Background())
g := []gallery.GalleryModel{
@@ -163,16 +181,18 @@ var _ = Describe("API test", func() {
},
}
metricsService, err := metrics.SetupMetrics()
bcl, ml, applicationConfig, err = startup.Startup(
append(commonOpts,
config.WithContext(c),
config.WithGalleries(galleries),
config.WithModelPath(modelDir),
config.WithBackendAssets(backendAssets),
config.WithBackendAssetsOutput(backendAssetsDir))...)
Expect(err).ToNot(HaveOccurred())
app, err = App(
append(commonOpts,
options.WithMetrics(metricsService),
options.WithContext(c),
options.WithGalleries(galleries),
options.WithModelLoader(modelLoader), options.WithBackendAssets(backendAssets), options.WithBackendAssetsOutput(tmpdir))...)
app, err = App(bcl, ml, applicationConfig)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@@ -189,15 +209,21 @@ var _ = Describe("API test", func() {
}, "2m").ShouldNot(HaveOccurred())
})
AfterEach(func() {
AfterEach(func(sc SpecContext) {
cancel()
app.Shutdown()
os.RemoveAll(tmpdir)
if app != nil {
err := app.Shutdown()
Expect(err).ToNot(HaveOccurred())
}
err := os.RemoveAll(tmpdir)
Expect(err).ToNot(HaveOccurred())
_, err = os.ReadDir(tmpdir)
Expect(err).To(HaveOccurred())
})
Context("Applying models", func() {
It("applies models from a gallery", func() {
It("applies models from a gallery", func() {
models := getModels("http://127.0.0.1:9090/models/available")
Expect(len(models)).To(Equal(2), fmt.Sprint(models))
Expect(models[0].Installed).To(BeFalse(), fmt.Sprint(models))
@@ -219,10 +245,10 @@ var _ = Describe("API test", func() {
}, "360s", "10s").Should(Equal(true))
Expect(resp["message"]).ToNot(ContainSubstring("error"))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert2.yaml"))
dat, err := os.ReadFile(filepath.Join(modelDir, "bert2.yaml"))
Expect(err).ToNot(HaveOccurred())
_, err = os.ReadFile(filepath.Join(tmpdir, "foo.yaml"))
_, err = os.ReadFile(filepath.Join(modelDir, "foo.yaml"))
Expect(err).ToNot(HaveOccurred())
content := map[string]interface{}{}
@@ -244,6 +270,7 @@ var _ = Describe("API test", func() {
}
})
It("overrides models", func() {
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
Name: "bert",
@@ -261,7 +288,7 @@ var _ = Describe("API test", func() {
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
dat, err := os.ReadFile(filepath.Join(modelDir, "bert.yaml"))
Expect(err).ToNot(HaveOccurred())
content := map[string]interface{}{}
@@ -285,7 +312,7 @@ var _ = Describe("API test", func() {
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
dat, err := os.ReadFile(filepath.Join(modelDir, "bert.yaml"))
Expect(err).ToNot(HaveOccurred())
content := map[string]interface{}{}
@@ -359,7 +386,7 @@ var _ = Describe("API test", func() {
var res map[string]string
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
Expect(err).ToNot(HaveOccurred())
Expect(res["location"]).To(Equal("San Francisco, California, United States"), fmt.Sprint(res))
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
@@ -474,8 +501,11 @@ var _ = Describe("API test", func() {
var err error
tmpdir, err = os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
modelDir = filepath.Join(tmpdir, "models")
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
err = os.Mkdir(backendAssetsDir, 0755)
Expect(err).ToNot(HaveOccurred())
modelLoader = model.NewModelLoader(tmpdir)
c, cancel = context.WithCancel(context.Background())
galleries := []gallery.Gallery{
@@ -485,21 +515,20 @@ var _ = Describe("API test", func() {
},
}
metricsService, err := metrics.SetupMetrics()
Expect(err).ToNot(HaveOccurred())
app, err = App(
bcl, ml, applicationConfig, err = startup.Startup(
append(commonOpts,
options.WithContext(c),
options.WithMetrics(metricsService),
options.WithAudioDir(tmpdir),
options.WithImageDir(tmpdir),
options.WithGalleries(galleries),
options.WithModelLoader(modelLoader),
options.WithBackendAssets(backendAssets),
options.WithBackendAssetsOutput(tmpdir))...,
config.WithContext(c),
config.WithAudioDir(tmpdir),
config.WithImageDir(tmpdir),
config.WithGalleries(galleries),
config.WithModelPath(modelDir),
config.WithBackendAssets(backendAssets),
config.WithBackendAssetsOutput(tmpdir))...,
)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@@ -518,8 +547,14 @@ var _ = Describe("API test", func() {
AfterEach(func() {
cancel()
app.Shutdown()
os.RemoveAll(tmpdir)
if app != nil {
err := app.Shutdown()
Expect(err).ToNot(HaveOccurred())
}
err := os.RemoveAll(tmpdir)
Expect(err).ToNot(HaveOccurred())
_, err = os.ReadDir(tmpdir)
Expect(err).To(HaveOccurred())
})
It("installs and is capable to run tts", Label("tts"), func() {
if runtime.GOOS != "linux" {
@@ -590,20 +625,20 @@ var _ = Describe("API test", func() {
Context("API query", func() {
BeforeEach(func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
modelPath := os.Getenv("MODELS_PATH")
c, cancel = context.WithCancel(context.Background())
metricsService, err := metrics.SetupMetrics()
Expect(err).ToNot(HaveOccurred())
var err error
app, err = App(
bcl, ml, applicationConfig, err = startup.Startup(
append(commonOpts,
options.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
options.WithContext(c),
options.WithModelLoader(modelLoader),
options.WithMetrics(metricsService),
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
config.WithContext(c),
config.WithModelPath(modelPath),
)...)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@@ -621,7 +656,10 @@ var _ = Describe("API test", func() {
})
AfterEach(func() {
cancel()
app.Shutdown()
if app != nil {
err := app.Shutdown()
Expect(err).ToNot(HaveOccurred())
}
})
It("returns the models list", func() {
models, err := client.ListModels(context.TODO())
@@ -629,28 +667,28 @@ var _ = Describe("API test", func() {
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
})
It("can generate completions", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: "abcdedfghikl"})
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: testPrompt})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
})
It("can generate chat completions ", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
})
It("can generate completions from model configs", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: "abcdedfghikl"})
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: testPrompt})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
})
It("can generate chat completions from model configs", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
@@ -658,7 +696,7 @@ var _ = Describe("API test", func() {
It("returns errors", func() {
backends := len(model.AutoLoadBackends) + 1 // +1 for huggingface
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: testPrompt})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring(fmt.Sprintf("error, status code: 500, message: could not load model - all backends returned error: %d errors occurred:", backends)))
})
@@ -802,20 +840,20 @@ var _ = Describe("API test", func() {
Context("Config file", func() {
BeforeEach(func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
modelPath := os.Getenv("MODELS_PATH")
c, cancel = context.WithCancel(context.Background())
metricsService, err := metrics.SetupMetrics()
Expect(err).ToNot(HaveOccurred())
app, err = App(
var err error
bcl, ml, applicationConfig, err = startup.Startup(
append(commonOpts,
options.WithContext(c),
options.WithMetrics(metricsService),
options.WithModelLoader(modelLoader),
options.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
config.WithContext(c),
config.WithModelPath(modelPath),
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
)
Expect(err).ToNot(HaveOccurred())
app, err = App(bcl, ml, applicationConfig)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@@ -831,16 +869,19 @@ var _ = Describe("API test", func() {
})
AfterEach(func() {
cancel()
app.Shutdown()
if app != nil {
err := app.Shutdown()
Expect(err).ToNot(HaveOccurred())
}
})
It("can generate chat completions from config file (list1)", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: "abcdedfghikl"}}})
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
})
It("can generate chat completions from config file (list2)", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: "abcdedfghikl"}}})
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())

View File

@@ -1,4 +1,4 @@
package api_test
package http_test
import (
"testing"

Some files were not shown because too many files have changed in this diff Show More