Compare commits

..

33 Commits

Author SHA1 Message Date
LocalAI [bot]
ff88c390bb ⬆️ Update ggerganov/llama.cpp (#1750)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-24 00:06:46 +01:00
LocalAI [bot]
d825821a22 ⬆️ Update ggerganov/llama.cpp (#1740)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-23 00:07:15 +01:00
Luna Midori
cbed6ab1bb Update README.md (#1739)
* Update README.md

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

* Update README.md

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: Luna Midori <118759930+lunamidori5@users.noreply.github.com>
2024-02-22 16:35:06 +01:00
LocalAI [bot]
6fc122fa1a ⬆️ Update ggerganov/llama.cpp (#1705)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-22 09:33:23 +00:00
Ettore Di Giacinto
feba38be36 examples(mistral-openorca): add stopword
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-22 00:15:08 +01:00
Ettore Di Giacinto
ba85d0bcad feat(upload-api): do not display error if uploadedFiles.json is not present
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-22 00:15:08 +01:00
Ettore Di Giacinto
ad3623dd8d examples(phi-2): strip newline at the end of the prompt template
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-21 23:17:51 +01:00
Ettore Di Giacinto
8292781045 deps(llama.cpp): update, support Gemma models (#1734)
deps(llama.cpp): update

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-21 17:23:38 +01:00
Ettore Di Giacinto
54ec6348fa deps(llama.cpp): update (#1714)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-21 11:35:44 +01:00
Dave
255748bcba MQTT Startup Refactoring Part 1: core/ packages part 1 (#1728)
This PR specifically introduces a `core` folder and moves the following packages over, without any other changes:

- `api/backend`
- `api/config`
- `api/options`
- `api/schema`

Once this is merged and we confirm there's no regressions, I can migrate over the remaining changes piece by piece to split up application startup, backend services, http, and mqtt as was the goal of the earlier PRs!
2024-02-21 01:21:19 +00:00
Chakib Benziane
594eb468df Add TTS dependency for cuda based builds fixes #1727 (#1730)
Signed-off-by: Chakib Benziane <contact@blob42.xyz>
2024-02-20 21:59:43 +01:00
Ettore Di Giacinto
960d314e4f feat(tools): Parallel function calling (#1726)
feat(tools): support returning multiple tools choices

Fixes: https://github.com/mudler/LocalAI/issues/1275
2024-02-20 21:58:45 +01:00
Ettore Di Giacinto
ed3b50622b Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-20 19:55:36 +01:00
Ettore Di Giacinto
9f2235c208 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-19 19:49:00 +01:00
Ettore Di Giacinto
4ec50bfc41 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-19 19:03:09 +01:00
Ettore Di Giacinto
51b67a247a Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-18 13:37:16 +01:00
Steven Christou
01205fd4c0 Initial implementation of upload files api. (#1703)
* Initial implementation of upload files api.

* Move sanitize method to utils.

* Save uploaded data to uploads folder.

* Avoid loop if we do not have a purpose.

* Minor cleanup of api and fix bug where deleting duplicate filename cause error.

* Revert defer of saving config

* Moved creation of directory to startup.

* Make file names unique when storing on disk.

* Add test for files api.

* Update dependencies.
2024-02-18 10:12:02 +00:00
Ettore Di Giacinto
c72808f18b feat(tools): support Tool calls in the API (#1715)
* feat(tools): support Tools in the API

Co-authored-by: =?UTF-8?q?Stephan=20A=C3=9Fmus?= <stephan.assmus@sap.com>

* feat(tools): support function streaming

* Adhere to new return types when using tools instead of functions

* Keep backward compatibility with function calling

* Evaluate function names in chat templates

* Disable recovery with --debug

* Correctly stream out the entire result

* Detect when llm chooses to reply and to not perform any action in SSE

* Feedback from code review

---------

Co-authored-by: =?UTF-8?q?Stephan=20A=C3=9Fmus?= <stephan.assmus@sap.com>
2024-02-17 10:00:34 +01:00
Ettore Di Giacinto
6b539a2972 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-16 15:22:35 +01:00
LocalAI [bot]
2151d21862 ⬆️ Update docs version mudler/LocalAI (#1718)
* ⬆️ Update docs version mudler/LocalAI

Signed-off-by: GitHub <noreply@github.com>

* Update docs/data/version.json

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-16 15:11:53 +01:00
fenfir
fb0a4c5d9a Build docker container for ROCm (#1595)
* Dockerfile changes to build for ROCm

* Adjust linker flags for ROCm

* Update conda env for diffusers and transformers to use ROCm pytorch

* Update transformers conda env for ROCm

* ci: build hipblas images

* fixup rebase

* use self-hosted

Signed-off-by: mudler <mudler@localai.io>

* specify LD_LIBRARY_PATH only when BUILD_TYPE=hipblas

---------

Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: mudler <mudler@localai.io>
2024-02-16 15:08:50 +01:00
Ettore Di Giacinto
e690bf387a fix(tts): fix regression when supplying backend from requests (#1713)
fixes #1707

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-15 17:33:06 +01:00
Ettore Di Giacinto
5e155fb081 fix(python): pin exllama2 (#1711)
fix(python): pin python deps

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-14 21:44:12 +01:00
Ettore Di Giacinto
39a6b562cf fix(llama.cpp): downgrade to a known working version (#1706)
sycl support is broken otherwise.

See upstream issue: https://github.com/ggerganov/llama.cpp/issues/5469

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-02-14 10:28:06 +01:00
Ettore Di Giacinto
c56b6ddb1c fix(llama.cpp): disable infinite context shifting (#1704)
Infinite context loop might as well trigger an infinite loop of context
shifting if the model hallucinates and does not stop answering.
This has the unpleasant effect that the predicion never terminates,
which is the case especially on small models which tends to hallucinate.

Workarounds https://github.com/mudler/LocalAI/issues/1333 by removing
context-shifting.

See also upstream issue: https://github.com/ggerganov/llama.cpp/issues/3969
2024-02-13 21:17:21 +01:00
Sertaç Özercan
2e61ff32ad ci: add cuda builds to release (#1702)
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
2024-02-13 08:35:39 +00:00
LocalAI [bot]
02f6e18adc ⬆️ Update ggerganov/llama.cpp (#1700)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-12 21:43:33 +00:00
LocalAI [bot]
4436e62cf1 ⬆️ Update ggerganov/llama.cpp (#1698)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-12 09:56:04 +01:00
Ettore Di Giacinto
6e0eb96c61 fix: drop unused code (#1697)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-02-11 11:28:59 +01:00
Ettore Di Giacinto
fd68bf7084 fix(vall-e-x): Fix voice cloning (#1696) 2024-02-11 11:20:00 +01:00
LocalAI [bot]
58cdf97361 ⬆️ Update ggerganov/llama.cpp (#1694)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-11 10:01:11 +01:00
Ettore Di Giacinto
53dbe36f32 feat(tts): respect YAMLs config file, add sycl docs/examples (#1692)
* feat(refactor): refactor config and input reading

* feat(tts): read config file for TTS

* examples(kubernetes): Add simple deployment example

* examples(kubernetes): Add simple deployment for intel arc

* docs(sycl): add sycl example

* feat(tts): do not always pick a first model

* fixups to run vall-e-x on container

* Correctly resolve backend
2024-02-10 21:37:03 +01:00
LocalAI [bot]
081bd07fd1 ⬆️ Update docs version mudler/LocalAI (#1693)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-02-10 21:33:14 +01:00
78 changed files with 1849 additions and 545 deletions

View File

@@ -51,6 +51,14 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:

View File

@@ -103,6 +103,22 @@ jobs:
image-type: 'extras'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
@@ -124,6 +140,22 @@ jobs:
strategy:
matrix:
include:
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'

View File

@@ -20,6 +20,10 @@ jobs:
defines: '-DLLAMA_AVX2=OFF'
- build: 'avx512'
defines: '-DLLAMA_AVX512=ON'
- build: 'cuda12'
defines: ''
- build: 'cuda11'
defines: ''
runs-on: ubuntu-latest
steps:
- name: Clone
@@ -33,7 +37,18 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
- name: Install CUDA Dependencies
if: ${{ matrix.build == 'cuda12' || matrix.build == 'cuda11' }}
run: |
if [ "${{ matrix.build }}" == "cuda12" ]; then
export CUDA_VERSION=12-3
else
export CUDA_VERSION=11-7
fi
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v3
@@ -50,14 +65,19 @@ jobs:
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
BUILD_ID: "${{ matrix.build }}"
run: |
STATIC=true make dist
if [ "${{ matrix.build }}" == "cuda12" ] || [ "${{ matrix.build }}" == "cuda11" ]; then
export BUILD_TYPE=cublas
export PATH=/usr/local/cuda/bin:$PATH
make dist
else
STATIC=true make dist
fi
- uses: actions/upload-artifact@v3
with:
name: ${{ matrix.build }}
@@ -109,4 +129,4 @@ jobs:
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
release/*

View File

@@ -1,4 +1,3 @@
ARG GO_VERSION=1.21
ARG IMAGE_TYPE=extras
ARG BASE_IMAGE=ubuntu:22.04
@@ -39,11 +38,15 @@ RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
; fi
# Cuda
ENV PATH /usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH /opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion
RUN apt-get install -y \
libopenblas-dev \
@@ -70,7 +73,9 @@ RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmo
apt-get install -y conda && apt-get clean
ENV PATH="/root/.cargo/bin:${PATH}"
RUN apt-get install -y python3-pip && apt-get clean
RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get install -y espeak-ng espeak && apt-get clean

View File

@@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=4b7b38bef5addbd31f453871d79647fbae6bec8a
CPPLLAMA_VERSION?=fd43d66f46ee3b5345fb8a74a252d86ccd34a409
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -97,6 +97,8 @@ endif
ifeq ($(BUILD_TYPE),hipblas)
ROCM_HOME ?= /opt/rocm
ROCM_PATH ?= /opt/rocm
LD_LIBRARY_PATH ?= /opt/rocm/lib:/opt/rocm/llvm/lib
export CXX=$(ROCM_HOME)/llvm/bin/clang++
export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here.
@@ -105,7 +107,7 @@ ifeq ($(BUILD_TYPE),hipblas)
GPU_TARGETS ?= gfx900,gfx90a,gfx1030,gfx1031,gfx1100
AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib
endif
ifeq ($(BUILD_TYPE),metal)
@@ -550,4 +552,4 @@ docker-image-intel:
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg BUILD_TYPE=sycl_f16 -t $(DOCKER_IMAGE) .
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .

View File

@@ -43,20 +43,23 @@
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
- Tools API support: https://github.com/mudler/LocalAI/pull/1715
- LLaVa 1.6: https://github.com/mudler/LocalAI/pull/1714
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595
- Intel GPU support (sycl): https://github.com/mudler/LocalAI/issues/1653
- Deprecation of old backends: https://github.com/mudler/LocalAI/issues/1651
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
- Inline templates: https://github.com/mudler/LocalAI/pull/1452
- Mixtral: https://github.com/mudler/LocalAI/pull/1449
- Img2vid https://github.com/mudler/LocalAI/pull/1442
- Musicgen https://github.com/mudler/LocalAI/pull/1387
Hot topics (looking for contributors):
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
@@ -95,9 +98,8 @@ WebUIs:
Model galleries
- https://github.com/go-skynet/model-gallery
Auto Docker / Model setup
- https://io.midori-ai.xyz/howtos/easy-localai-installer/
- https://io.midori-ai.xyz/howtos/easy-model-installer/
UI / Management Programs
- [LocalAI Manager](https://io.midori-ai.xyz/howtos/easy-model-installer/)
Other:
- Helm chart https://github.com/go-skynet/helm-charts

43
api/ctx/fiber.go Normal file
View File

@@ -0,0 +1,43 @@
package fiberContext
import (
"fmt"
"strings"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
// ModelFromContext returns the model from the context
// If no model is specified, it will take the first available
// Takes a model string as input which should be the one received from the user request.
// It returns the model name resolved from the context and an error if any.
func ModelFromContext(ctx *fiber.Ctx, loader *model.ModelLoader, modelInput string, firstModel bool) (string, error) {
if ctx.Params("model") != "" {
modelInput = ctx.Params("model")
}
// Set model from bearer token, if available
bearer := strings.TrimLeft(ctx.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
// If no model was specified, take the first available
if modelInput == "" && !bearerExists && firstModel {
models, _ := loader.ListModels()
if len(models) > 0 {
modelInput = models[0]
log.Debug().Msgf("No model specified, using: %s", modelInput)
} else {
log.Debug().Msgf("No model specified, returning error")
return "", fmt.Errorf("no model specified")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelInput = bearer
}
return modelInput, nil
}

View File

@@ -5,10 +5,10 @@ import (
"fmt"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"

View File

@@ -11,7 +11,7 @@ import (
json "github.com/json-iterator/go"
"gopkg.in/yaml.v3"
config "github.com/go-skynet/LocalAI/api/config"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/utils"

View File

@@ -1,10 +1,12 @@
package localai
import (
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
fiberContext "github.com/go-skynet/LocalAI/api/ctx"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/rs/zerolog/log"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/options"
"github.com/gofiber/fiber/v2"
)
@@ -18,12 +20,31 @@ func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
return func(c *fiber.Ctx) error {
input := new(TTSRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
filePath, _, err := backend.ModelTTS(input.Backend, input.Input, input.Model, o.Loader, o)
modelFile, err := fiberContext.ModelFromContext(c, o.Loader, input.Model, false)
if err != nil {
modelFile = input.Model
log.Warn().Msgf("Model not found in context: %s", input.Model)
}
cfg, err := config.Load(modelFile, o.Loader.ModelPath, cm, false, 0, 0, false)
if err != nil {
modelFile = input.Model
log.Warn().Msgf("Model not found in context: %s", input.Model)
} else {
modelFile = cfg.Model
}
log.Debug().Msgf("Request for model: %s", modelFile)
if input.Backend != "" {
cfg.Backend = input.Backend
}
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, o.Loader, o, *cfg)
if err != nil {
return err
}

View File

@@ -8,10 +8,10 @@ import (
"strings"
"time"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
@@ -55,15 +55,111 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
})
close(responses)
}
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
result := ""
_, tokenUsage, _ := ComputeChoices(req, prompt, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
result += s
// TODO: Change generated BNF grammar to be compliant with the schema so we can
// stream the result token by token here.
return true
})
results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls)
noActionToRun := len(results) > 0 && results[0].name == noAction
switch {
case noActionToRun:
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
result, err := handleQuestion(config, req, o, results[0].arguments, prompt)
if err != nil {
log.Error().Msgf("error handling question: %s", err.Error())
return
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
responses <- resp
default:
for i, ss := range results {
name, args := ss.name, ss.arguments
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
Delta: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
},
},
},
}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
responses <- schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
Delta: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Arguments: args,
},
},
},
}}},
Object: "chat.completion.chunk",
}
}
}
close(responses)
}
return func(c *fiber.Ctx) error {
processFunctions := false
funcs := grammar.Functions{}
modelFile, input, err := readInput(c, o, true)
modelFile, input, err := readRequest(c, o, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@@ -116,13 +212,13 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
// Update input grammar
jsStruct := funcs.ToJSONStructure()
config.Grammar = jsStruct.Grammar("")
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
} else if input.JSONFunctionGrammarObject != nil {
config.Grammar = input.JSONFunctionGrammarObject.Grammar("")
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
}
// functions are not supported in stream mode (yet?)
toStream := input.Stream && !processFunctions
toStream := input.Stream
log.Debug().Msgf("Parameters: %+v", config)
@@ -145,6 +241,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
}
r := config.Roles[role]
contentExists := i.Content != nil && i.StringContent != ""
// First attempt to populate content via a chat message specific template
if config.TemplateConfig.ChatMessage != "" {
chatMessageData := model.ChatMessageTemplateData{
@@ -152,6 +249,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
Role: r,
RoleName: role,
Content: i.StringContent,
FunctionName: i.Name,
MessageIndex: messageIndex,
}
templatedChatMessage, err := o.Loader.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
@@ -254,17 +352,24 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
log.Debug().Msgf("Grammar: %+v", config.Grammar)
}
if toStream {
switch {
case toStream:
responses := make(chan schema.OpenAIResponse)
go process(predInput, input, config, o.Loader, responses)
if !processFunctions {
go process(predInput, input, config, o.Loader, responses)
} else {
go processTools(noActionName, predInput, input, config, o.Loader, responses)
}
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
usage := &schema.OpenAIUsage{}
toolsCalled := false
for ev := range responses {
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
toolsCalled = true
}
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
@@ -278,13 +383,20 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
w.Flush()
}
finishReason := "stop"
if toolsCalled {
finishReason = "tool_calls"
} else if toolsCalled && len(input.Tools) == 0 {
finishReason = "function_call"
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
FinishReason: "stop",
FinishReason: finishReason,
Index: 0,
Delta: &schema.Message{Content: &emptyMessage},
}},
@@ -298,102 +410,182 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
w.Flush()
}))
return nil
}
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
if processFunctions {
// As we have to change the result before processing, we can't stream the answer (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s = utils.EscapeNewLines(s)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// no streaming mode
default:
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
if !processFunctions {
// no function is called, just reply and use stop as finish reason
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
return
}
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name := ss["function"]
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
d, _ := json.Marshal(args)
results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls)
noActionsToRun := len(results) > 0 && results[0].name == noActionName
ss["arguments"] = string(d)
ss["name"] = func_name
switch {
case noActionsToRun:
result, err := handleQuestion(config, input, o, results[0].arguments, predInput)
if err != nil {
log.Error().Msgf("error handling question: %s", err.Error())
return
}
*c = append(*c, schema.Choice{
Message: &schema.Message{Role: "assistant", Content: &result}})
default:
toolChoice := schema.Choice{
Message: &schema.Message{
Role: "assistant",
},
}
// if do nothing, reply with a message
if func_name == noActionName {
log.Debug().Msgf("nothing to do, computing a reply")
if len(input.Tools) > 0 {
toolChoice.FinishReason = "tool_calls"
}
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(d), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = backend.Finetune(*config, predInput, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &message}})
return
}
for _, ss := range results {
name, args := ss.name, ss.arguments
if len(input.Tools) > 0 {
// If we are using tools, we condense the function calls into
// a single response choice with all the tools
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
schema.ToolCall{
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
Arguments: args,
},
},
)
} else {
// otherwise we return more choices directly
*c = append(*c, schema.Choice{
FinishReason: "function_call",
Message: &schema.Message{
Role: "assistant",
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
},
})
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU) another computation
config.Grammar = ""
images := []string{}
for _, m := range input.Messages {
images = append(images, m.StringImages...)
if len(input.Tools) > 0 {
// we need to append our result if we are using tools
*c = append(*c, toolChoice)
}
predFunc, err := backend.ModelInference(input.Context, predInput, images, o.Loader, *config, o, nil)
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return
}
prediction, err := predFunc()
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return
}
fineTunedResponse := backend.Finetune(*config, predInput, prediction.Response)
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &fineTunedResponse}})
} else {
// otherwise reply with the function call
*c = append(*c, schema.Choice{
FinishReason: "function_call",
Message: &schema.Message{Role: "assistant", FunctionCall: ss},
})
}
return
}, nil)
if err != nil {
return err
}
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
}, nil)
if err != nil {
return err
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
}
func handleQuestion(config *config.Config, input *schema.OpenAIRequest, o *options.Option, args, prompt string) (string, error) {
log.Debug().Msgf("nothing to do, computing a reply")
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(args), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = backend.Finetune(*config, prompt, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
return message, nil
}
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU/GPU) another computation
config.Grammar = ""
images := []string{}
for _, m := range input.Messages {
images = append(images, m.StringImages...)
}
predFunc, err := backend.ModelInference(input.Context, prompt, images, o.Loader, *config, o, nil)
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return "", err
}
prediction, err := predFunc()
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return "", err
}
return backend.Finetune(*config, prompt, prediction.Response), nil
}
type funcCallResults struct {
name string
arguments string
}
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
results := []funcCallResults{}
// TODO: use generics to avoid this code duplication
if multipleResults {
ss := []map[string]interface{}{}
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
for _, s := range ss {
func_name := s["function"]
args := s["arguments"]
d, _ := json.Marshal(args)
results = append(results, funcCallResults{name: func_name.(string), arguments: string(d)})
}
} else {
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name := ss["function"]
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
d, _ := json.Marshal(args)
results = append(results, funcCallResults{name: func_name.(string), arguments: string(d)})
}
return results
}

View File

@@ -8,10 +8,10 @@ import (
"fmt"
"time"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
@@ -53,14 +53,14 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
}
return func(c *fiber.Ctx) error {
modelFile, input, err := readInput(c, o, true)
modelFile, input, err := readRequest(c, o, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("`input`: %+v", input)
config, input, err := readConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}

View File

@@ -5,10 +5,10 @@ import (
"fmt"
"time"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
@@ -18,12 +18,12 @@ import (
func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
modelFile, input, err := readInput(c, o, true)
modelFile, input, err := readRequest(c, o, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}

View File

@@ -5,12 +5,12 @@ import (
"fmt"
"time"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
@@ -18,12 +18,12 @@ import (
// https://platform.openai.com/docs/api-reference/embeddings
func EmbeddingsEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o, true)
model, input, err := readRequest(c, o, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
config, input, err := mergeRequestWithConfig(model, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}

218
api/openai/files.go Normal file
View File

@@ -0,0 +1,218 @@
package openai
import (
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"time"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
var uploadedFiles []File
const uploadedFilesFile = "uploadedFiles.json"
// File represents the structure of a file object from the OpenAI API.
type File struct {
ID string `json:"id"` // Unique identifier for the file
Object string `json:"object"` // Type of the object (e.g., "file")
Bytes int `json:"bytes"` // Size of the file in bytes
CreatedAt time.Time `json:"created_at"` // The time at which the file was created
Filename string `json:"filename"` // The name of the file
Purpose string `json:"purpose"` // The purpose of the file (e.g., "fine-tune", "classifications", etc.)
}
func saveUploadConfig(uploadDir string) {
file, err := json.MarshalIndent(uploadedFiles, "", " ")
if err != nil {
log.Error().Msgf("Failed to JSON marshal the uploadedFiles: %s", err)
}
err = os.WriteFile(filepath.Join(uploadDir, uploadedFilesFile), file, 0644)
if err != nil {
log.Error().Msgf("Failed to save uploadedFiles to file: %s", err)
}
}
func LoadUploadConfig(uploadPath string) {
uploadFilePath := filepath.Join(uploadPath, uploadedFilesFile)
_, err := os.Stat(uploadFilePath)
if os.IsNotExist(err) {
log.Debug().Msgf("No uploadedFiles file found at %s", uploadFilePath)
return
}
file, err := os.ReadFile(uploadFilePath)
if err != nil {
log.Error().Msgf("Failed to read file: %s", err)
} else {
err = json.Unmarshal(file, &uploadedFiles)
if err != nil {
log.Error().Msgf("Failed to JSON unmarshal the file into uploadedFiles: %s", err)
}
}
}
// UploadFilesEndpoint https://platform.openai.com/docs/api-reference/files/create
func UploadFilesEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := c.FormFile("file")
if err != nil {
return err
}
// Check the file size
if file.Size > int64(o.UploadLimitMB*1024*1024) {
return c.Status(fiber.StatusBadRequest).SendString(fmt.Sprintf("File size %d exceeds upload limit %d", file.Size, o.UploadLimitMB))
}
purpose := c.FormValue("purpose", "") //TODO put in purpose dirs
if purpose == "" {
return c.Status(fiber.StatusBadRequest).SendString("Purpose is not defined")
}
// Sanitize the filename to prevent directory traversal
filename := utils.SanitizeFileName(file.Filename)
savePath := filepath.Join(o.UploadDir, filename)
// Check if file already exists
if _, err := os.Stat(savePath); !os.IsNotExist(err) {
return c.Status(fiber.StatusBadRequest).SendString("File already exists")
}
err = c.SaveFile(file, savePath)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString("Failed to save file: " + err.Error())
}
f := File{
ID: fmt.Sprintf("file-%d", time.Now().Unix()),
Object: "file",
Bytes: int(file.Size),
CreatedAt: time.Now(),
Filename: file.Filename,
Purpose: purpose,
}
uploadedFiles = append(uploadedFiles, f)
saveUploadConfig(o.UploadDir)
return c.Status(fiber.StatusOK).JSON(f)
}
}
// ListFilesEndpoint https://platform.openai.com/docs/api-reference/files/list
func ListFilesEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
type ListFiles struct {
Data []File
Object string
}
return func(c *fiber.Ctx) error {
var listFiles ListFiles
purpose := c.Query("purpose")
if purpose == "" {
listFiles.Data = uploadedFiles
} else {
for _, f := range uploadedFiles {
if purpose == f.Purpose {
listFiles.Data = append(listFiles.Data, f)
}
}
}
listFiles.Object = "list"
return c.Status(fiber.StatusOK).JSON(listFiles)
}
}
func getFileFromRequest(c *fiber.Ctx) (*File, error) {
id := c.Params("file_id")
if id == "" {
return nil, fmt.Errorf("file_id parameter is required")
}
for _, f := range uploadedFiles {
if id == f.ID {
return &f, nil
}
}
return nil, fmt.Errorf("unable to find file id %s", id)
}
// GetFilesEndpoint https://platform.openai.com/docs/api-reference/files/retrieve
func GetFilesEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := getFileFromRequest(c)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(err.Error())
}
return c.JSON(file)
}
}
// DeleteFilesEndpoint https://platform.openai.com/docs/api-reference/files/delete
func DeleteFilesEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
type DeleteStatus struct {
Id string
Object string
Deleted bool
}
return func(c *fiber.Ctx) error {
file, err := getFileFromRequest(c)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(err.Error())
}
err = os.Remove(filepath.Join(o.UploadDir, file.Filename))
if err != nil {
// If the file doesn't exist then we should just continue to remove it
if !errors.Is(err, os.ErrNotExist) {
return c.Status(fiber.StatusInternalServerError).SendString(fmt.Sprintf("Unable to delete file: %s, %v", file.Filename, err))
}
}
// Remove upload from list
for i, f := range uploadedFiles {
if f.ID == file.ID {
uploadedFiles = append(uploadedFiles[:i], uploadedFiles[i+1:]...)
break
}
}
saveUploadConfig(o.UploadDir)
return c.JSON(DeleteStatus{
Id: file.ID,
Object: "file",
Deleted: true,
})
}
}
// GetFilesContentsEndpoint https://platform.openai.com/docs/api-reference/files/retrieve-contents
func GetFilesContentsEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := getFileFromRequest(c)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(err.Error())
}
fileContents, err := os.ReadFile(filepath.Join(o.UploadDir, file.Filename))
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(err.Error())
}
return c.Send(fileContents)
}
}

287
api/openai/files_test.go Normal file
View File

@@ -0,0 +1,287 @@
package openai
import (
"encoding/json"
"fmt"
"io"
"mime/multipart"
"net/http"
"net/http/httptest"
"os"
"path/filepath"
"strings"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
utils2 "github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/stretchr/testify/assert"
"testing"
)
type ListFiles struct {
Data []File
Object string
}
func startUpApp() (app *fiber.App, option *options.Option, loader *config.ConfigLoader) {
// Preparing the mocked objects
loader = &config.ConfigLoader{}
option = &options.Option{
UploadLimitMB: 10,
UploadDir: "test_dir",
}
_ = os.RemoveAll(option.UploadDir)
app = fiber.New(fiber.Config{
BodyLimit: 20 * 1024 * 1024, // sets the limit to 20MB.
})
// Create a Test Server
app.Post("/files", UploadFilesEndpoint(loader, option))
app.Get("/files", ListFilesEndpoint(loader, option))
app.Get("/files/:file_id", GetFilesEndpoint(loader, option))
app.Delete("/files/:file_id", DeleteFilesEndpoint(loader, option))
app.Get("/files/:file_id/content", GetFilesContentsEndpoint(loader, option))
return
}
func TestUploadFileExceedSizeLimit(t *testing.T) {
// Preparing the mocked objects
loader := &config.ConfigLoader{}
option := &options.Option{
UploadLimitMB: 10,
UploadDir: "test_dir",
}
_ = os.RemoveAll(option.UploadDir)
app := fiber.New(fiber.Config{
BodyLimit: 20 * 1024 * 1024, // sets the limit to 20MB.
})
// Create a Test Server
app.Post("/files", UploadFilesEndpoint(loader, option))
app.Get("/files", ListFilesEndpoint(loader, option))
app.Get("/files/:file_id", GetFilesEndpoint(loader, option))
app.Delete("/files/:file_id", DeleteFilesEndpoint(loader, option))
app.Get("/files/:file_id/content", GetFilesContentsEndpoint(loader, option))
t.Run("UploadFilesEndpoint file size exceeds limit", func(t *testing.T) {
resp, err := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "fine-tune", 11, option)
assert.NoError(t, err)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "exceeds upload limit")
})
t.Run("UploadFilesEndpoint purpose not defined", func(t *testing.T) {
resp, _ := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "", 5, option)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "Purpose is not defined")
})
t.Run("UploadFilesEndpoint file already exists", func(t *testing.T) {
f1 := CallFilesUploadEndpointWithCleanup(t, app, "foo.txt", "file", "fine-tune", 5, option)
resp, err := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "fine-tune", 5, option)
fmt.Println(f1)
fmt.Printf("ERror: %v", err)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "File already exists")
})
t.Run("UploadFilesEndpoint file uploaded successfully", func(t *testing.T) {
file := CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, option)
// Check if file exists in the disk
filePath := filepath.Join(option.UploadDir, utils2.SanitizeFileName("test.txt"))
_, err := os.Stat(filePath)
assert.False(t, os.IsNotExist(err))
assert.Equal(t, file.Bytes, 5242880)
assert.NotEmpty(t, file.CreatedAt)
assert.Equal(t, file.Filename, "test.txt")
assert.Equal(t, file.Purpose, "fine-tune")
})
t.Run("ListFilesEndpoint without purpose parameter", func(t *testing.T) {
resp, err := CallListFilesEndpoint(t, app, "")
assert.NoError(t, err)
assert.Equal(t, 200, resp.StatusCode)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != len(uploadedFiles) {
t.Errorf("Expected %v files, got %v files", len(uploadedFiles), len(listFiles.Data))
}
})
t.Run("ListFilesEndpoint with valid purpose parameter", func(t *testing.T) {
_ = CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, option)
resp, err := CallListFilesEndpoint(t, app, "fine-tune")
assert.NoError(t, err)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != 1 {
t.Errorf("Expected 1 file, got %v files", len(listFiles.Data))
}
})
t.Run("ListFilesEndpoint with invalid query parameter", func(t *testing.T) {
resp, err := CallListFilesEndpoint(t, app, "not-so-fine-tune")
assert.NoError(t, err)
assert.Equal(t, 200, resp.StatusCode)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != 0 {
t.Errorf("Expected 0 file, got %v files", len(listFiles.Data))
}
})
t.Run("GetFilesContentsEndpoint get file content", func(t *testing.T) {
req := httptest.NewRequest("GET", "/files", nil)
resp, _ := app.Test(req)
assert.Equal(t, 200, resp.StatusCode)
var listFiles ListFiles
if err := json.Unmarshal(bodyToByteArray(resp, t), &listFiles); err != nil {
t.Errorf("Failed to decode response: %v", err)
return
}
if len(listFiles.Data) != 0 {
t.Errorf("Expected 0 file, got %v files", len(listFiles.Data))
}
})
}
func CallListFilesEndpoint(t *testing.T, app *fiber.App, purpose string) (*http.Response, error) {
var target string
if purpose != "" {
target = fmt.Sprintf("/files?purpose=%s", purpose)
} else {
target = "/files"
}
req := httptest.NewRequest("GET", target, nil)
return app.Test(req)
}
func CallFilesContentEndpoint(t *testing.T, app *fiber.App, fileId string) (*http.Response, error) {
request := httptest.NewRequest("GET", "/files?file_id="+fileId, nil)
return app.Test(request)
}
func CallFilesUploadEndpoint(t *testing.T, app *fiber.App, fileName, tag, purpose string, fileSize int, o *options.Option) (*http.Response, error) {
// Create a file that exceeds the limit
file := createTestFile(t, fileName, fileSize, o)
// Creating a new HTTP Request
body, writer := newMultipartFile(file.Name(), tag, purpose)
req := httptest.NewRequest(http.MethodPost, "/files", body)
req.Header.Set(fiber.HeaderContentType, writer.FormDataContentType())
return app.Test(req)
}
func CallFilesUploadEndpointWithCleanup(t *testing.T, app *fiber.App, fileName, tag, purpose string, fileSize int, o *options.Option) File {
// Create a file that exceeds the limit
file := createTestFile(t, fileName, fileSize, o)
// Creating a new HTTP Request
body, writer := newMultipartFile(file.Name(), tag, purpose)
req := httptest.NewRequest(http.MethodPost, "/files", body)
req.Header.Set(fiber.HeaderContentType, writer.FormDataContentType())
resp, err := app.Test(req)
assert.NoError(t, err)
f := responseToFile(t, resp)
id := f.ID
t.Cleanup(func() {
_, err := CallFilesDeleteEndpoint(t, app, id)
assert.NoError(t, err)
})
return f
}
func CallFilesDeleteEndpoint(t *testing.T, app *fiber.App, fileId string) (*http.Response, error) {
target := fmt.Sprintf("/files/%s", fileId)
req := httptest.NewRequest(http.MethodDelete, target, nil)
return app.Test(req)
}
// Helper to create multi-part file
func newMultipartFile(filePath, tag, purpose string) (*strings.Reader, *multipart.Writer) {
body := new(strings.Builder)
writer := multipart.NewWriter(body)
file, _ := os.Open(filePath)
defer file.Close()
part, _ := writer.CreateFormFile(tag, filepath.Base(filePath))
io.Copy(part, file)
if purpose != "" {
_ = writer.WriteField("purpose", purpose)
}
writer.Close()
return strings.NewReader(body.String()), writer
}
// Helper to create test files
func createTestFile(t *testing.T, name string, sizeMB int, option *options.Option) *os.File {
err := os.MkdirAll(option.UploadDir, 0755)
if err != nil {
t.Fatalf("Error MKDIR: %v", err)
}
file, _ := os.Create(name)
file.WriteString(strings.Repeat("a", sizeMB*1024*1024)) // sizeMB MB File
t.Cleanup(func() {
os.Remove(name)
os.RemoveAll(option.UploadDir)
})
return file
}
func bodyToString(resp *http.Response, t *testing.T) string {
return string(bodyToByteArray(resp, t))
}
func bodyToByteArray(resp *http.Response, t *testing.T) []byte {
bodyBytes, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
return bodyBytes
}
func responseToFile(t *testing.T, resp *http.Response) File {
var file File
responseToString := bodyToString(resp, t)
err := json.NewDecoder(strings.NewReader(responseToString)).Decode(&file)
if err != nil {
t.Errorf("Failed to decode response: %s", err)
}
return file
}
func responseToListFile(t *testing.T, resp *http.Response) ListFiles {
var listFiles ListFiles
responseToString := bodyToString(resp, t)
err := json.NewDecoder(strings.NewReader(responseToString)).Decode(&listFiles)
if err != nil {
fmt.Printf("Failed to decode response: %s", err)
}
return listFiles
}

View File

@@ -13,12 +13,12 @@ import (
"strings"
"time"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@@ -61,7 +61,7 @@ func downloadFile(url string) (string, error) {
*/
func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, o, false)
m, input, err := readRequest(c, o, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@@ -71,7 +71,7 @@ func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx
}
log.Debug().Msgf("Loading model: %+v", m)
config, input, err := readConfig(m, input, cm, o.Loader, o.Debug, 0, 0, false)
config, input, err := mergeRequestWithConfig(m, input, cm, o.Loader, o.Debug, 0, 0, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}

View File

@@ -1,10 +1,10 @@
package openai
import (
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
)

View File

@@ -3,8 +3,8 @@ package openai
import (
"regexp"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/schema"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
)

View File

@@ -7,20 +7,19 @@ import (
"fmt"
"io/ioutil"
"net/http"
"os"
"path/filepath"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
options "github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
fiberContext "github.com/go-skynet/LocalAI/api/ctx"
config "github.com/go-skynet/LocalAI/core/config"
options "github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func readInput(c *fiber.Ctx, o *options.Option, randomModel bool) (string, *schema.OpenAIRequest, error) {
loader := o.Loader
func readRequest(c *fiber.Ctx, o *options.Option, firstModel bool) (string, *schema.OpenAIRequest, error) {
input := new(schema.OpenAIRequest)
ctx, cancel := context.WithCancel(o.Context)
input.Context = ctx
@@ -30,38 +29,13 @@ func readInput(c *fiber.Ctx, o *options.Option, randomModel bool) (string, *sche
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
}
modelFile := input.Model
if c.Params("model") != "" {
modelFile = c.Params("model")
}
received, _ := json.Marshal(input)
log.Debug().Msgf("Request received: %s", string(received))
// Set model from bearer token, if available
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
modelFile, err := fiberContext.ModelFromContext(c, o.Loader, input.Model, firstModel)
// If no model was specified, take the first available
if modelFile == "" && !bearerExists && randomModel {
models, _ := loader.ListModels()
if len(models) > 0 {
modelFile = models[0]
log.Debug().Msgf("No model specified, using: %s", modelFile)
} else {
log.Debug().Msgf("No model specified, returning error")
return "", nil, fmt.Errorf("no model specified")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelFile = bearer
}
return modelFile, input, nil
return modelFile, input, err
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
@@ -95,7 +69,7 @@ func getBase64Image(s string) (string, error) {
return "", fmt.Errorf("not valid string")
}
func updateConfig(config *config.Config, input *schema.OpenAIRequest) {
func updateRequestConfig(config *config.Config, input *schema.OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
@@ -163,6 +137,20 @@ func updateConfig(config *config.Config, input *schema.OpenAIRequest) {
}
}
if len(input.Tools) > 0 {
for _, tool := range input.Tools {
input.Functions = append(input.Functions, tool.Function)
}
}
if input.ToolsChoice != nil {
var toolChoice grammar.Tool
json.Unmarshal([]byte(input.ToolsChoice.(string)), &toolChoice)
input.FunctionCall = map[string]interface{}{
"name": toolChoice.Function.Name,
}
}
// Decode each request's message content
index := 0
for i, m := range input.Messages {
@@ -282,55 +270,11 @@ func updateConfig(config *config.Config, input *schema.OpenAIRequest) {
}
}
func readConfig(modelFile string, input *schema.OpenAIRequest, cm *config.ConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.Config, *schema.OpenAIRequest, error) {
// Load a config file if present after the model name
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
var cfg *config.Config
defaults := func() {
cfg = config.DefaultConfig(modelFile)
cfg.ContextSize = ctx
cfg.Threads = threads
cfg.F16 = f16
cfg.Debug = debug
}
cfgExisting, exists := cm.GetConfig(modelFile)
if !exists {
if _, err := os.Stat(modelConfig); err == nil {
if err := cm.LoadConfig(modelConfig); err != nil {
return nil, nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = cm.GetConfig(modelFile)
if exists {
cfg = &cfgExisting
} else {
defaults()
}
} else {
defaults()
}
} else {
cfg = &cfgExisting
}
func mergeRequestWithConfig(modelFile string, input *schema.OpenAIRequest, cm *config.ConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.Config, *schema.OpenAIRequest, error) {
cfg, err := config.Load(modelFile, loader.ModelPath, cm, debug, threads, ctx, f16)
// Set the parameters for the language model prediction
updateConfig(cfg, input)
updateRequestConfig(cfg, input)
// Don't allow 0 as setting
if cfg.Threads == 0 {
if threads != 0 {
cfg.Threads = threads
} else {
cfg.Threads = 4
}
}
// Enforce debug flag if passed from CLI
if debug {
cfg.Debug = true
}
return cfg, input, nil
return cfg, input, err
}

View File

@@ -8,9 +8,9 @@ import (
"path"
"path/filepath"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@@ -19,12 +19,12 @@ import (
// https://platform.openai.com/docs/api-reference/audio/create
func TranscriptEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, o, false)
m, input, err := readRequest(c, o, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(m, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
config, input, err := mergeRequestWithConfig(m, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}

View File

@@ -2,16 +2,20 @@
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
set(TARGET myclip)
add_library(${TARGET} clip.cpp clip.h)
add_library(${TARGET} clip.cpp clip.h llava.cpp llava.h)
install(TARGETS ${TARGET} LIBRARY)
target_link_libraries(${TARGET} PRIVATE common ggml ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(myclip PUBLIC .)
target_include_directories(myclip PUBLIC ../..)
target_include_directories(myclip PUBLIC ../../common)
target_link_libraries(${TARGET} PRIVATE common ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
# END CLIP hack
set(TARGET grpc-server)
# END CLIP hack
set(CMAKE_CXX_STANDARD 17)
cmake_minimum_required(VERSION 3.15)
set(TARGET grpc-server)

View File

@@ -45,6 +45,9 @@ llama.cpp/examples/grpc-server:
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp
rebuild:

View File

@@ -11,7 +11,8 @@
#include <memory>
#include <string>
#include <getopt.h>
#include "../llava/clip.h"
#include "clip.h"
#include "llava.h"
#include "stb_image.h"
#include "common.h"
#include "json.hpp"
@@ -32,6 +33,7 @@
#include <grpcpp/grpcpp.h>
#include <grpcpp/health_check_service_interface.h>
#include <atomic>
#include <signal.h>
using grpc::Server;
using grpc::ServerBuilder;
@@ -51,9 +53,11 @@ struct server_params
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
std::string chat_template = "";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
bool slots_endpoint = true;
};
bool server_verbose = false;
@@ -172,6 +176,7 @@ struct llama_client_slot
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t n_predict = -1;
int32_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
@@ -349,6 +354,7 @@ struct llama_server_context
// slots / clients
std::vector<llama_client_slot> slots;
json default_generation_settings_for_props;
llama_server_queue queue_tasks;
llama_server_response queue_results;
@@ -422,6 +428,7 @@ struct llama_server_context
slot.id = i;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
@@ -445,11 +452,10 @@ struct llama_server_context
slots.push_back(slot);
}
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
// empty system prompt
system_prompt = "";
system_tokens.clear();
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
@@ -526,28 +532,40 @@ struct llama_server_context
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
llama_sampling_params default_sparams;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
// Might be better to reject the request with a 400 ?
LOG_WARNING("Max tokens to predict exceeds server configuration", {
{"params.n_predict", slot->params.n_predict},
{"slot.n_predict", slot->n_predict},
});
slot->params.n_predict = slot->n_predict;
}
// infill
if (data.count("input_prefix") != 0)
@@ -626,18 +644,36 @@ struct llama_server_context
const int n_vocab = llama_n_vocab(model);
for (const auto &el : *logit_bias)
{
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
if (el.is_array() && el.size() == 2)
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
float bias;
if (el[1].is_number())
{
if (el[1].is_number())
bias = el[1].get<float>();
}
else if (el[1].is_boolean() && !el[1].get<bool>())
{
bias = -INFINITY;
}
else
{
continue;
}
if (el[0].is_number_integer())
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias[tok] = el[1].get<float>();
slot->sparams.logit_bias[tok] = bias;
}
else if (el[1].is_boolean() && !el[1].get<bool>())
}
else if (el[0].is_string())
{
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias[tok] = -INFINITY;
slot->sparams.logit_bias[tok] = bias;
}
}
}
@@ -658,6 +694,24 @@ struct llama_server_context
}
}
const auto &samplers_sequence = data.find("samplers");
if (samplers_sequence != data.end() && samplers_sequence->is_array())
{
std::vector<std::string> sampler_names;
for (const auto &sampler_name : *samplers_sequence)
{
if (sampler_name.is_string())
{
sampler_names.emplace_back(sampler_name);
}
}
slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
}
else
{
slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
}
if (multimodal)
{
const auto &images_data = data.find("image_data");
@@ -747,27 +801,30 @@ struct llama_server_context
}
void update_system_prompt() {
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch);
kv_cache_clear();
system_tokens.clear();
for (int i = 0; i < (int) system_tokens.size(); ++i)
{
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
if (!system_prompt.empty()) {
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
if (llama_decode(ctx, batch) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
llama_batch_clear(batch);
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
for (int i = 0; i < (int)system_tokens.size(); ++i)
{
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
}
}
LOG_TEE("system prompt updated\n");
@@ -789,10 +846,8 @@ struct llama_server_context
name_user = sys_props.value("anti_prompt", "");
name_assistant = sys_props.value("assistant_name", "");
if (slots.size() > 0)
{
notify_system_prompt_changed();
}
notify_system_prompt_changed();
}
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
@@ -950,28 +1005,12 @@ struct llama_server_context
{
continue;
}
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
{
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
return false;
}
img.image_tokens = clip_n_patches(clp_ctx);
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
if (!img.image_embedding)
{
LOG_TEE("Unable to allocate memory for image embeddings\n");
clip_free(clp_ctx);
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
return false;
}
clip_image_f32_free(img_res);
img.request_encode_image = false;
}
@@ -990,21 +1029,25 @@ struct llama_server_context
queue_results.send(res);
}
json get_model_props()
{
return get_formated_generation(slots[0]);
}
json get_formated_generation(llama_client_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
for (const auto &sampler_type : slot.sparams.samplers_sequence)
{
samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
}
return json {
{"n_ctx", slot.n_ctx},
{"n_predict", slot.n_predict},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
@@ -1027,7 +1070,9 @@ struct llama_server_context
{"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers_sequence}
};
}
@@ -1166,13 +1211,30 @@ struct llama_server_context
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.count("prompt") && task.data.at("prompt").size() > 1)
{
split_multiprompt_task(task_id, task);
}
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.post(task);
// if there's numbers in the prompt array it will be treated as an array of tokens
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
bool numbers = false;
for (const auto& e : task.data.at("prompt")) {
if (e.is_number()) {
numbers = true;
break;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if (numbers) {
queue_tasks.post(task);
} else {
split_multiprompt_task(task_id, task);
}
} else {
queue_tasks.post(task);
}
}
// for multiple images processing
@@ -1254,7 +1316,10 @@ struct llama_server_context
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
if (prompt_count <= 1) {
send_error(multiprompt_task, "error while handling multiple prompts");
return;
}
// generate all the ID for subtask
std::vector<int> subtask_ids(prompt_count);
@@ -1387,30 +1452,20 @@ struct llama_server_context
{
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
{
// Shift context
const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1;
const int n_discard = n_left / 2;
// START LOCALAI changes
// Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969)
// See: https://github.com/mudler/LocalAI/issues/1333
// Context is exhausted, release the slot
slot.release();
send_final_response(slot);
slot.cache_tokens.clear();
slot.n_past = 0;
slot.truncated = false;
slot.has_next_token = true;
LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard);
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
{
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
}
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
slot.n_past -= n_discard;
slot.truncated = true;
LOG_VERBOSE("context shift", {
{ "n_ctx", n_ctx },
{ "n_keep", params.n_keep },
{ "n_left", n_left },
});
continue;
// END LOCALAI changes
}
}
}
@@ -1576,10 +1631,6 @@ struct llama_server_context
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
slot.cache_tokens = prompt_tokens;
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
@@ -1593,6 +1644,10 @@ struct llama_server_context
}
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
@@ -1829,6 +1884,9 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
}
}
std::function<void(int)> shutdown_handler;
inline void signal_handler(int signal) { shutdown_handler(signal); }
/////////////////////////////////
////////////////////////////////
//////// LOCALAI code starts below here
@@ -2099,7 +2157,8 @@ public:
gpt_params params;
params_parse(request, params);
llama_backend_init(params.numa);
llama_backend_init();
llama_numa_init(params.numa);
// load the model
if (!llama.load_model(params))

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Dolly{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPTJ{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPTNeoX{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.MPT{}); err != nil {
panic(err)
}
}

View File

@@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Replit{}); err != nil {
panic(err)
}
}

View File

@@ -8,7 +8,7 @@ import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
)
func sh(c string) (string, error) {

View File

@@ -4,7 +4,7 @@ package main
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
)

View File

@@ -4,6 +4,10 @@ ifeq ($(BUILD_TYPE), cublas)
CONDA_ENV_PATH = "transformers-nvidia.yml"
endif
ifeq ($(BUILD_TYPE), hipblas)
CONDA_ENV_PATH = "transformers-rocm.yml"
endif
.PHONY: transformers
transformers:
@echo "Installing $(CONDA_ENV_PATH)..."

View File

@@ -33,6 +33,7 @@ dependencies:
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.2.2

View File

@@ -0,0 +1,109 @@
name: transformers
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- --pre
- --extra-index-url https://download.pytorch.org/whl/nightly/
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- attrs==23.1.0
- bark==0.1.5
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.2.2
- sentencepiece==0.1.99
- dill==0.3.7
- einops==0.7.0
- encodec==0.1.1
- filelock==3.12.4
- frozenlist==1.4.0
- fsspec==2023.6.0
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub
- idna==3.4
- jinja2==3.1.2
- jmespath==1.0.1
- markupsafe==2.1.3
- mpmath==1.3.0
- multidict==6.0.4
- multiprocess==0.70.15
- networkx
- numpy==1.26.0
- packaging==23.2
- pandas
- peft==0.5.0
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
- python-dateutil==2.8.2
- pytz==2023.3.post1
- pyyaml==6.0.1
- regex==2023.10.3
- requests==2.31.0
- rouge==1.0.1
- s3transfer==0.7.0
- safetensors==0.3.3
- scipy==1.11.3
- six==1.16.0
- sympy==1.12
- tokenizers
- torch
- torchaudio
- tqdm==4.66.1
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
- soundfile
- langid
- wget
- unidecode
- pyopenjtalk-prebuilt
- pypinyin
- inflect
- cn2an
- jieba
- eng_to_ipa
- openai-whisper
- matplotlib
- gradio==3.41.2
- nltk
- sudachipy
- sudachidict_core
- vocos
- vllm==0.2.7
- transformers>=4.36.0 # Required for Mixtral.
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -1,8 +1,13 @@
export CONDA_ENV_PATH = "diffusers.yml"
ifeq ($(BUILD_TYPE), hipblas)
export CONDA_ENV_PATH = "diffusers-rocm.yml"
endif
.PHONY: diffusers
diffusers:
@echo "Creating virtual environment..."
@conda env create --name diffusers --file diffusers.yml
@echo "Virtual environment created."
@echo "Installing $(CONDA_ENV_PATH)..."
bash install.sh $(CONDA_ENV_PATH)
.PHONY: run
run:
@@ -11,4 +16,4 @@ run:
@echo "Diffusers run."
test:
bash test.sh
bash test.sh

View File

@@ -0,0 +1,64 @@
name: diffusers
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- tzdata=2023c=h04d1e81_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- --pre
- --extra-index-url https://download.pytorch.org/whl/nightly/
- accelerate>=0.11.0
- certifi==2023.7.22
- charset-normalizer==3.3.0
- compel==2.0.2
- diffusers==0.24.0
- filelock==3.12.4
- fsspec==2023.9.2
- grpcio==1.59.0
- huggingface-hub>=0.19.4
- idna==3.4
- importlib-metadata==6.8.0
- jinja2==3.1.2
- markupsafe==2.1.3
- mpmath==1.3.0
- networkx==3.1
- numpy==1.26.0
- omegaconf
- packaging==23.2
- pillow==10.0.1
- protobuf==4.24.4
- psutil==5.9.5
- pyparsing==3.1.1
- pyyaml==6.0.1
- regex==2023.10.3
- requests==2.31.0
- safetensors==0.4.0
- sympy==1.12
- tqdm==4.66.1
- transformers>=4.25.1
- triton==2.1.0
- typing-extensions==4.8.0
- urllib3==2.0.6
- zipp==3.17.0
- torch
prefix: /opt/conda/envs/diffusers

View File

@@ -71,4 +71,4 @@ dependencies:
- typing-extensions==4.8.0
- urllib3==2.0.6
- zipp==3.17.0
prefix: /opt/conda/envs/diffusers
prefix: /opt/conda/envs/diffusers

View File

@@ -0,0 +1,24 @@
#!/bin/bash
set -ex
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if conda_env_exists "diffusers" ; then
echo "Creating virtual environment..."
conda env create --name diffusers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
pip cache purge
fi

View File

@@ -1,15 +1,25 @@
#!/bin/bash
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
export SHA=c0ddebaaaf8ffd1b3529c2bb654e650bce2f790f
# Activate conda environment
source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2 && pushd $CONDA_PREFIX/exllamav2 && pip install -r requirements.txt && popd
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2
pushd $CONDA_PREFIX/exllamav2
git checkout -b build $SHA
# TODO: this needs to be pinned within the conda environments
pip install -r requirements.txt
popd
cp -rfv $CONDA_PREFIX/exllamav2/* ./

2
backend/python/mamba/install.sh Normal file → Executable file
View File

@@ -1,5 +1,5 @@
#!/bin/bash
set -e
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin

View File

@@ -10,7 +10,7 @@ source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && pip install -r requirements.txt && popd
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && popd
cp -rfv $CONDA_PREFIX/vall-e-x/* ./

View File

@@ -55,6 +55,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print("Preparing models, please wait", file=sys.stderr)
# download and load all models
preload_models()
self.clonedVoice = False
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
@@ -65,6 +66,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.AudioPath != "":
print("Generating model", file=sys.stderr)
make_prompt(name=model_name, audio_prompt_path=request.AudioPath)
self.clonedVoice = True
### Use given transcript
##make_prompt(name=model_name, audio_prompt_path="paimon_prompt.wav",
## transcript="Just, what was that? Paimon thought we were gonna get eaten.")
@@ -91,6 +93,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
try:
audio_array = None
if model != "":
if self.clonedVoice:
model = os.path.basename(request.model)
audio_array = generate_audio(request.text, prompt=model)
else:
audio_array = generate_audio(request.text)

View File

@@ -3,8 +3,8 @@ package backend
import (
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
)

View File

@@ -1,8 +1,8 @@
package backend
import (
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)

View File

@@ -8,8 +8,8 @@ import (
"sync"
"unicode/utf8"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"

View File

@@ -7,8 +7,8 @@ import (
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
)
func modelOpts(c config.Config, o *options.Option, opts []model.Option) []model.Option {

View File

@@ -4,10 +4,10 @@ import (
"context"
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/schema"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)

View File

@@ -6,8 +6,8 @@ import (
"os"
"path/filepath"
api_config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
@@ -29,16 +29,20 @@ func generateUniqueFileName(dir, baseName, ext string) string {
}
}
func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *options.Option) (string, *proto.Result, error) {
func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *options.Option, c config.Config) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
}
opts := modelOpts(api_config.Config{}, o, []model.Option{
grpcOpts := gRPCModelOpts(c)
opts := modelOpts(config.Config{}, o, []model.Option{
model.WithBackendString(bb),
model.WithModel(modelFile),
model.WithContext(o.Context),
model.WithAssetDir(o.AssetsDestination),
model.WithLoadGRPCLoadModelOpts(grpcOpts),
})
piperModel, err := o.Loader.BackendLoader(opts...)
if err != nil {

View File

@@ -1,4 +1,4 @@
package api_config
package config
import (
"errors"
@@ -148,6 +148,7 @@ type Functions struct {
DisableNoAction bool `yaml:"disable_no_action"`
NoActionFunctionName string `yaml:"no_action_function_name"`
NoActionDescriptionName string `yaml:"no_action_description_name"`
ParallelCalls bool `yaml:"parallel_calls"`
}
type TemplateConfig struct {
@@ -183,6 +184,60 @@ func (c *Config) FunctionToCall() string {
return c.functionCallNameString
}
// Load a config file for a model
func Load(modelName, modelPath string, cm *ConfigLoader, debug bool, threads, ctx int, f16 bool) (*Config, error) {
// Load a config file if present after the model name
modelConfig := filepath.Join(modelPath, modelName+".yaml")
var cfg *Config
defaults := func() {
cfg = DefaultConfig(modelName)
cfg.ContextSize = ctx
cfg.Threads = threads
cfg.F16 = f16
cfg.Debug = debug
}
cfgExisting, exists := cm.GetConfig(modelName)
if !exists {
if _, err := os.Stat(modelConfig); err == nil {
if err := cm.LoadConfig(modelConfig); err != nil {
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = cm.GetConfig(modelName)
if exists {
cfg = &cfgExisting
} else {
defaults()
}
} else {
defaults()
}
} else {
cfg = &cfgExisting
}
// Set the parameters for the language model prediction
//updateConfig(cfg, input)
// Don't allow 0 as setting
if cfg.Threads == 0 {
if threads != 0 {
cfg.Threads = threads
} else {
cfg.Threads = 4
}
}
// Enforce debug flag if passed from CLI
if debug {
cfg.Debug = true
}
return cfg, nil
}
func defaultPredictOptions(modelFile string) PredictionOptions {
return PredictionOptions{
TopP: 0.7,

View File

@@ -1,10 +1,10 @@
package api_config_test
package config_test
import (
"os"
. "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
. "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/pkg/model"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"

View File

@@ -1,4 +1,4 @@
package api_config
package config
type PredictionOptions struct {

View File

@@ -1,4 +1,4 @@
package api
package http
import (
"encoding/json"
@@ -7,11 +7,11 @@ import (
"os"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/localai"
"github.com/go-skynet/LocalAI/api/openai"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/api/schema"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/assets"
@@ -146,7 +146,11 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
}
// Default middleware config
app.Use(recover.New())
if !options.Debug {
app.Use(recover.New())
}
if options.Metrics != nil {
app.Use(metrics.APIMiddleware(options.Metrics))
}
@@ -219,8 +223,12 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
// Make sure directories exists
os.MkdirAll(options.ImageDir, 0755)
os.MkdirAll(options.AudioDir, 0755)
os.MkdirAll(options.UploadDir, 0755)
os.MkdirAll(options.Loader.ModelPath, 0755)
// Load upload json
openai.LoadUploadConfig(options.UploadDir)
modelGalleryService := localai.CreateModelGalleryService(options.Galleries, options.Loader.ModelPath, galleryService)
app.Post("/models/apply", auth, modelGalleryService.ApplyModelGalleryEndpoint())
app.Get("/models/available", auth, modelGalleryService.ListModelFromGalleryEndpoint())
@@ -240,6 +248,18 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, options))
app.Post("/edits", auth, openai.EditEndpoint(cl, options))
// files
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, options))
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, options))
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, options))
app.Get("/files", auth, openai.ListFilesEndpoint(cl, options))
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, options))
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, options))
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, options))
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, options))
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, options))
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, options))
// completion
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, options))
app.Post("/completions", auth, openai.CompletionEndpoint(cl, options))

View File

@@ -1,4 +1,4 @@
package api_test
package http_test
import (
"bytes"
@@ -13,8 +13,8 @@ import (
"path/filepath"
"runtime"
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/api/options"
. "github.com/go-skynet/LocalAI/core/http"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/gallery"

View File

@@ -1,4 +1,4 @@
package api_test
package http_test
import (
"testing"

View File

@@ -21,6 +21,7 @@ type Option struct {
Debug, DisableMessage bool
ImageDir string
AudioDir string
UploadDir string
CORS bool
PreloadJSONModels string
PreloadModelsFromPath string
@@ -249,6 +250,12 @@ func WithImageDir(imageDir string) AppOption {
}
}
func WithUploadDir(uploadDir string) AppOption {
return func(o *Option) {
o.UploadDir = uploadDir
}
}
func WithApiKeys(apiKeys []string) AppOption {
return func(o *Option) {
o.ApiKeys = apiKeys

View File

@@ -3,7 +3,7 @@ package schema
import (
"context"
config "github.com/go-skynet/LocalAI/api/config"
config "github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/grammar"
)
@@ -68,6 +68,10 @@ type ContentURL struct {
type Message struct {
// The message role
Role string `json:"role,omitempty" yaml:"role"`
// The message name (used for tools calls)
Name string `json:"name,omitempty" yaml:"name"`
// The message content
Content interface{} `json:"content" yaml:"content"`
@@ -76,6 +80,20 @@ type Message struct {
// A result of a function call
FunctionCall interface{} `json:"function_call,omitempty" yaml:"function_call,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty" yaml:"tool_call,omitempty"`
}
type ToolCall struct {
Index int `json:"index"`
ID string `json:"id"`
Type string `json:"type"`
FunctionCall FunctionCall `json:"function"`
}
type FunctionCall struct {
Name string `json:"name,omitempty"`
Arguments string `json:"arguments"`
}
type OpenAIModel struct {
@@ -117,6 +135,9 @@ type OpenAIRequest struct {
Functions []grammar.Function `json:"functions" yaml:"functions"`
FunctionCall interface{} `json:"function_call" yaml:"function_call"` // might be a string or an object
Tools []grammar.Tool `json:"tools,omitempty" yaml:"tools"`
ToolsChoice interface{} `json:"tool_choice,omitempty" yaml:"tool_choice"`
Stream bool `json:"stream"`
// Image (not supported by OpenAI)

View File

@@ -112,14 +112,24 @@ llama_init_from_file: kv self size = 512.00 MB
## Intel acceleration (sycl)
#### Requirements
### Requirements
Requirement: [Intel oneAPI Base Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html)
If building from source, you need to install [Intel oneAPI Base Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html) and have the Intel drivers available in the system.
### Container images
To use SYCL, use the images with the `sycl-f16` or `sycl-f32` tag, for example `{{< version >}}-sycl-f32-core`, `{{< version >}}-sycl-f16-ffmpeg-core`, ...
The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags).
#### Example
To run LocalAI with Docker and sycl starting `phi-2`, you can use the following command as an example:
```bash
docker run -e DEBUG=true --privileged -ti -v $PWD/models:/build/models -p 8080:8080 -v /dev/dri:/dev/dri --rm quay.io/go-skynet/local-ai:master-sycl-f32-ffmpeg-core phi-2
```
### Notes
In addition to the commands to run LocalAI normally, you need to specify `--device /dev/dri` to docker, for example:
@@ -128,3 +138,4 @@ In addition to the commands to run LocalAI normally, you need to specify `--devi
docker run --rm -ti --device /dev/dri -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16-ffmpeg-core
```
Note also that sycl does have a known issue to hang with `mmap: true`. You have to disable it in the model configuration if explicitly enabled.

View File

@@ -144,15 +144,15 @@ parameters:
model: "cloned-voice"
vall-e:
# The path to the audio file to be cloned
# relative to the models directory
audio_path: "path-to-wav-source.wav"
# relative to the models directory
# Max 15s
audio_path: "audio-sample.wav"
```
Then you can specify the model name in the requests:
```
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"backend": "vall-e-x",
"model": "cloned-voice",
"input":"Hello!"
}' | aplay

View File

@@ -1,3 +1,3 @@
{
"version": "v2.7.0"
"version": "v2.8.2"
}

View File

@@ -11,20 +11,18 @@ template:
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
{{if .Content}}{{.Content}}{{end}}
<|im_end|>
chat: |
{{.Input}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "mistral-openorca",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'
}'

View File

@@ -12,7 +12,7 @@ parameters:
top_p: 0.95
seed: -1
template:
chat: &template |
chat: &template |-
Instruct: {{.Input}}
Output:
completion: *template

View File

@@ -0,0 +1,68 @@
apiVersion: v1
kind: Namespace
metadata:
name: local-ai
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: models-pvc
namespace: local-ai
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: local-ai
namespace: local-ai
labels:
app: local-ai
spec:
selector:
matchLabels:
app: local-ai
replicas: 1
template:
metadata:
labels:
app: local-ai
name: local-ai
spec:
containers:
- args:
- phi-2
env:
- name: DEBUG
value: "true"
name: local-ai
image: quay.io/go-skynet/local-ai:master-sycl-f32-ffmpeg-core
imagePullPolicy: Always
resources:
limits:
gpu.intel.com/i915: 1
volumeMounts:
- name: models-volume
mountPath: /build/models
volumes:
- name: models-volume
persistentVolumeClaim:
claimName: models-pvc
---
apiVersion: v1
kind: Service
metadata:
name: local-ai
namespace: local-ai
spec:
selector:
app: local-ai
type: LoadBalancer
ports:
- protocol: TCP
port: 8080
targetPort: 8080

View File

@@ -0,0 +1,65 @@
apiVersion: v1
kind: Namespace
metadata:
name: local-ai
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: models-pvc
namespace: local-ai
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: local-ai
namespace: local-ai
labels:
app: local-ai
spec:
selector:
matchLabels:
app: local-ai
replicas: 1
template:
metadata:
labels:
app: local-ai
name: local-ai
spec:
containers:
- args:
- phi-2
env:
- name: DEBUG
value: "true"
name: local-ai
image: quay.io/go-skynet/local-ai:master-ffmpeg-core
imagePullPolicy: IfNotPresent
volumeMounts:
- name: models-volume
mountPath: /build/models
volumes:
- name: models-volume
persistentVolumeClaim:
claimName: models-pvc
---
apiVersion: v1
kind: Service
metadata:
name: local-ai
namespace: local-ai
spec:
selector:
app: local-ai
type: LoadBalancer
ports:
- protocol: TCP
port: 8080
targetPort: 8080

4
go.mod
View File

@@ -8,7 +8,6 @@ require (
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230628193450-85ed71aaec8e
github.com/go-audio/wav v1.1.0
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1
github.com/go-skynet/go-ggml-transformers.cpp v0.0.0-20230714203132-ffb09d7dd71e
github.com/go-skynet/go-llama.cpp v0.0.0-20231009155254-aeba71ee8428
github.com/gofiber/fiber/v2 v2.50.0
github.com/google/uuid v1.3.1
@@ -28,6 +27,7 @@ require (
github.com/rs/zerolog v1.31.0
github.com/sashabaranov/go-openai v1.16.0
github.com/schollz/progressbar/v3 v3.13.1
github.com/stretchr/testify v1.8.4
github.com/tmc/langchaingo v0.0.0-20231019140956-c636b3da7701
github.com/urfave/cli/v2 v2.25.7
github.com/valyala/fasthttp v1.50.0
@@ -55,6 +55,7 @@ require (
require (
github.com/beorn7/perks v1.0.1 // indirect
github.com/cespare/xxhash/v2 v2.2.0 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/dlclark/regexp2 v1.8.1 // indirect
github.com/dsnet/compress v0.0.2-0.20210315054119-f66993602bf5 // indirect
github.com/go-logr/stdr v1.2.2 // indirect
@@ -68,6 +69,7 @@ require (
github.com/nwaples/rardecode v1.1.0 // indirect
github.com/pierrec/lz4/v4 v4.1.2 // indirect
github.com/pkoukk/tiktoken-go v0.1.2 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/prometheus/client_model v0.4.1-0.20230718164431-9a2bf3000d16 // indirect
github.com/prometheus/common v0.44.0 // indirect
github.com/prometheus/procfs v0.11.1 // indirect

2
go.sum
View File

@@ -43,8 +43,6 @@ github.com/go-ole/go-ole v1.2.6 h1:/Fpf6oFPoeFik9ty7siob0G6Ke8QvQEuVcuChpwXzpY=
github.com/go-ole/go-ole v1.2.6/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1 h1:yXvc7QfGtoZ51tUW/YVjoTwAfh8HG88XU7UOrbNlz5Y=
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1/go.mod h1:fYjkCDRzC+oRLHSjQoajmYK6AmeJnmEanV27CClAcDc=
github.com/go-skynet/go-ggml-transformers.cpp v0.0.0-20230714203132-ffb09d7dd71e h1:4reMY29i1eOZaRaSTMPNyXI7X8RMNxCTfDDBXYzrbr0=
github.com/go-skynet/go-ggml-transformers.cpp v0.0.0-20230714203132-ffb09d7dd71e/go.mod h1:31j1odgFXP8hDSUVfH0zErKI5aYVP18ddYnPkwCso2A=
github.com/go-skynet/go-llama.cpp v0.0.0-20231009155254-aeba71ee8428 h1:WYjkXL0Nw7dN2uDBMVCWQ8xLavrIhjF/DLczuh5L9TY=
github.com/go-skynet/go-llama.cpp v0.0.0-20231009155254-aeba71ee8428/go.mod h1:iub0ugfTnflE3rcIuqV2pQSo15nEw3GLW/utm5gyERo=
github.com/go-task/slim-sprig v0.0.0-20210107165309-348f09dbbbc0/go.mod h1:fyg7847qk6SyHyPtNmDHnmrv/HOrqktSC+C9fM+CJOE=

17
main.go
View File

@@ -12,10 +12,10 @@ import (
"syscall"
"time"
api "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/core/backend"
config "github.com/go-skynet/LocalAI/core/config"
api "github.com/go-skynet/LocalAI/core/http"
"github.com/go-skynet/LocalAI/core/options"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/gallery"
@@ -142,6 +142,12 @@ func main() {
EnvVars: []string{"AUDIO_PATH"},
Value: "/tmp/generated/audio",
},
&cli.StringFlag{
Name: "upload-path",
Usage: "Path to store uploads from files api",
EnvVars: []string{"UPLOAD_PATH"},
Value: "/tmp/localai/upload",
},
&cli.StringFlag{
Name: "backend-assets-path",
Usage: "Path used to extract libraries that are required by some of the backends in runtime.",
@@ -227,6 +233,7 @@ For a list of compatible model, check out: https://localai.io/model-compatibilit
options.WithDebug(ctx.Bool("debug")),
options.WithImageDir(ctx.String("image-path")),
options.WithAudioDir(ctx.String("audio-path")),
options.WithUploadDir(ctx.String("upload-path")),
options.WithF16(ctx.Bool("f16")),
options.WithStringGalleries(ctx.String("galleries")),
options.WithModelLibraryURL(ctx.String("remote-library")),
@@ -404,7 +411,7 @@ For a list of compatible model, check out: https://localai.io/model-compatibilit
defer opts.Loader.StopAllGRPC()
filePath, _, err := backend.ModelTTS(backendOption, text, modelOption, opts.Loader, opts)
filePath, _, err := backend.ModelTTS(backendOption, text, modelOption, opts.Loader, opts, config.Config{})
if err != nil {
return err
}

View File

@@ -11,6 +11,12 @@ type Function struct {
}
type Functions []Function
type Tool struct {
Type string `json:"type"`
Function Function `json:"function,omitempty"`
}
type Tools []Tool
func (f Functions) ToJSONStructure() JSONFunctionStructure {
js := JSONFunctionStructure{}
for _, function := range f {

View File

@@ -105,11 +105,28 @@ func (sc *JSONSchemaConverter) addRule(name, rule string) string {
return key
}
func (sc *JSONSchemaConverter) formatGrammar() string {
const array = `arr ::=
"[\n" (
realvalue
(",\n" realvalue)*
)? "]"`
func (sc *JSONSchemaConverter) finalizeGrammar(maybeArray bool) string {
var lines []string
// write down the computed rules.
// if maybeArray is true, we need to add the array rule and slightly tweak the root rule
for name, rule := range sc.rules {
if maybeArray && name == "root" {
name = "realvalue"
}
lines = append(lines, fmt.Sprintf("%s ::= %s", name, rule))
}
if maybeArray {
lines = append(lines, fmt.Sprintf("%s ::= %s", "root", "arr | realvalue"))
lines = append(lines, array)
}
return strings.Join(lines, "\n")
}
@@ -234,15 +251,15 @@ func (sc *JSONSchemaConverter) resolveReference(ref string, rootSchema map[strin
return def
}
func (sc *JSONSchemaConverter) Grammar(schema map[string]interface{}) string {
func (sc *JSONSchemaConverter) Grammar(schema map[string]interface{}, maybeArray bool) string {
sc.visit(schema, "", schema)
return sc.formatGrammar()
return sc.finalizeGrammar(maybeArray)
}
func (sc *JSONSchemaConverter) GrammarFromBytes(b []byte) string {
func (sc *JSONSchemaConverter) GrammarFromBytes(b []byte, maybeArray bool) string {
var schema map[string]interface{}
_ = json.Unmarshal(b, &schema)
return sc.Grammar(schema)
return sc.Grammar(schema, maybeArray)
}
func jsonString(v interface{}) string {
@@ -275,7 +292,7 @@ type JSONFunctionStructure struct {
Defs map[string]interface{} `json:"$defs,omitempty"`
}
func (j JSONFunctionStructure) Grammar(propOrder string) string {
func (j JSONFunctionStructure) Grammar(propOrder string, maybeArray bool) string {
dat, _ := json.Marshal(j)
return NewJSONSchemaConverter(propOrder).GrammarFromBytes(dat)
return NewJSONSchemaConverter(propOrder).GrammarFromBytes(dat, maybeArray)
}

View File

@@ -52,13 +52,32 @@ string ::= "\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" space
root-1-function ::= "\"search\""`
inputResult2 = `root-0-function ::= "\"create_event\""
root-0 ::= "{" space "\"arguments\"" space ":" space root-0-arguments "," space "\"function\"" space ":" space root-0-function "}" space
root-1-arguments ::= "{" space "\"query\"" space ":" space string "}" space
realvalue ::= root-0 | root-1
root ::= arr | realvalue
space ::= " "?
root-0-arguments ::= "{" space "\"date\"" space ":" space string "," space "\"time\"" space ":" space string "," space "\"title\"" space ":" space string "}" space
root-1 ::= "{" space "\"arguments\"" space ":" space root-1-arguments "," space "\"function\"" space ":" space root-1-function "}" space
string ::= "\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" space
arr ::=
"[\n" (
realvalue
(",\n" realvalue)*
)? "]"
root-1-function ::= "\"search\""`
)
var _ = Describe("JSON schema grammar tests", func() {
Context("JSON", func() {
It("generates a valid grammar from JSON schema", func() {
grammar := NewJSONSchemaConverter("").GrammarFromBytes([]byte(testInput1))
grammar := NewJSONSchemaConverter("").GrammarFromBytes([]byte(testInput1), false)
results := strings.Split(inputResult1, "\n")
for _, r := range results {
if r != "" {
@@ -103,7 +122,7 @@ var _ = Describe("JSON schema grammar tests", func() {
},
}}
grammar := structuredGrammar.Grammar("")
grammar := structuredGrammar.Grammar("", false)
results := strings.Split(inputResult1, "\n")
for _, r := range results {
if r != "" {
@@ -112,5 +131,50 @@ var _ = Describe("JSON schema grammar tests", func() {
}
Expect(len(results)).To(Equal(len(strings.Split(grammar, "\n"))))
})
It("generates a valid grammar from JSON Objects for multiple function return", func() {
structuredGrammar := JSONFunctionStructure{
OneOf: []Item{
{
Type: "object",
Properties: Properties{
Function: FunctionName{
Const: "create_event",
},
Arguments: Argument{ // this is OpenAI's parameter
Type: "object",
Properties: map[string]interface{}{
"title": map[string]string{"type": "string"},
"date": map[string]string{"type": "string"},
"time": map[string]string{"type": "string"},
},
},
},
},
{
Type: "object",
Properties: Properties{
Function: FunctionName{
Const: "search",
},
Arguments: Argument{
Type: "object",
Properties: map[string]interface{}{
"query": map[string]string{"type": "string"},
},
},
},
},
}}
grammar := structuredGrammar.Grammar("", true)
results := strings.Split(inputResult2, "\n")
for _, r := range results {
if r != "" {
Expect(grammar).To(ContainSubstring(r))
}
}
Expect(len(results)).To(Equal(len(strings.Split(grammar, "\n"))), grammar)
})
})
})

View File

@@ -2,7 +2,8 @@ package grpc
import (
"context"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"google.golang.org/grpc"
)

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"os"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
gopsutil "github.com/shirou/gopsutil/v3/process"
)

View File

@@ -7,7 +7,7 @@ import (
"sync"
"time"
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials/insecure"

View File

@@ -2,11 +2,12 @@ package grpc
import (
"context"
"github.com/go-skynet/LocalAI/api/schema"
"time"
"github.com/go-skynet/LocalAI/core/schema"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"google.golang.org/grpc"
"google.golang.org/grpc/metadata"
"time"
)
var _ Backend = new(embedBackend)

View File

@@ -1,7 +1,7 @@
package grpc
import (
"github.com/go-skynet/LocalAI/api/schema"
"github.com/go-skynet/LocalAI/core/schema"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
)

View File

@@ -33,6 +33,7 @@ type ChatMessageTemplateData struct {
SystemPrompt string
Role string
RoleName string
FunctionName string
Content string
MessageIndex int
}

View File

@@ -3,6 +3,7 @@ package utils
import (
"fmt"
"path/filepath"
"strings"
)
func inTrustedRoot(path string, trustedRoot string) error {
@@ -20,3 +21,14 @@ func VerifyPath(path, basePath string) error {
c := filepath.Clean(filepath.Join(basePath, path))
return inTrustedRoot(c, filepath.Clean(basePath))
}
// SanitizeFileName sanitizes the given filename
func SanitizeFileName(fileName string) string {
// filepath.Clean to clean the path
cleanName := filepath.Clean(fileName)
// filepath.Base to ensure we only get the final element, not any directory path
baseName := filepath.Base(cleanName)
// Replace any remaining tricky characters that might have survived cleaning
safeName := strings.ReplaceAll(baseName, "..", "")
return safeName
}

View File

@@ -3,7 +3,7 @@ package integration_test
import (
"reflect"
config "github.com/go-skynet/LocalAI/api/config"
config "github.com/go-skynet/LocalAI/core/config"
model "github.com/go-skynet/LocalAI/pkg/model"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"