mirror of
https://github.com/mudler/LocalAI.git
synced 2026-01-03 11:59:25 -05:00
260 lines
7.4 KiB
Markdown
260 lines
7.4 KiB
Markdown
---
|
|
title: "Docker Installation"
|
|
description: "Install LocalAI using Docker containers - the recommended installation method"
|
|
weight: 1
|
|
url: '/installation/docker/'
|
|
---
|
|
|
|
{{% notice tip %}}
|
|
**Recommended Installation Method**
|
|
|
|
Docker is the recommended way to install LocalAI and provides the easiest setup experience.
|
|
{{% /notice %}}
|
|
|
|
LocalAI provides Docker images that work with Docker, Podman, and other container engines. These images are available on [Docker Hub](https://hub.docker.com/r/localai/localai) and [Quay.io](https://quay.io/repository/go-skynet/local-ai).
|
|
|
|
## Prerequisites
|
|
|
|
Before you begin, ensure you have Docker or Podman installed:
|
|
|
|
- [Install Docker Desktop](https://docs.docker.com/get-docker/) (Mac, Windows, Linux)
|
|
- [Install Podman](https://podman.io/getting-started/installation) (Linux alternative)
|
|
- [Install Docker Engine](https://docs.docker.com/engine/install/) (Linux servers)
|
|
|
|
## Quick Start
|
|
|
|
The fastest way to get started is with the CPU image:
|
|
|
|
```bash
|
|
docker run -p 8080:8080 --name local-ai -ti localai/localai:latest
|
|
```
|
|
|
|
This will:
|
|
- Start LocalAI (you'll need to install models separately)
|
|
- Make the API available at `http://localhost:8080`
|
|
|
|
{{% notice tip %}}
|
|
**Docker Run vs Docker Start**
|
|
|
|
- `docker run` creates and starts a new container. If a container with the same name already exists, this command will fail.
|
|
- `docker start` starts an existing container that was previously created with `docker run`.
|
|
|
|
If you've already run LocalAI before and want to start it again, use: `docker start -i local-ai`
|
|
{{% /notice %}}
|
|
|
|
## Image Types
|
|
|
|
LocalAI provides several image types to suit different needs:
|
|
|
|
### Standard Images
|
|
|
|
Standard images don't include pre-configured models. Use these if you want to configure models manually.
|
|
|
|
#### CPU Image
|
|
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
|
|
```
|
|
|
|
#### GPU Images
|
|
|
|
**NVIDIA CUDA 13:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-13
|
|
```
|
|
|
|
**NVIDIA CUDA 12:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
|
|
```
|
|
|
|
**NVIDIA CUDA 11:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-11
|
|
```
|
|
|
|
**AMD GPU (ROCm):**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas
|
|
```
|
|
|
|
**Intel GPU:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel
|
|
```
|
|
|
|
**Vulkan:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-vulkan
|
|
```
|
|
|
|
**NVIDIA Jetson (L4T ARM64):**
|
|
|
|
CUDA 12 (for Nvidia AGX Orin and similar platforms):
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --runtime nvidia --gpus all localai/localai:latest-nvidia-l4t-arm64
|
|
```
|
|
|
|
CUDA 13 (for Nvidia DGX Spark):
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --runtime nvidia --gpus all localai/localai:latest-nvidia-l4t-arm64-cuda-13
|
|
```
|
|
|
|
### All-in-One (AIO) Images
|
|
|
|
**Recommended for beginners** - These images come pre-configured with models and backends, ready to use immediately.
|
|
|
|
#### CPU Image
|
|
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
|
|
```
|
|
|
|
#### GPU Images
|
|
|
|
**NVIDIA CUDA 13:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-13
|
|
```
|
|
|
|
**NVIDIA CUDA 12:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
|
|
```
|
|
|
|
**NVIDIA CUDA 11:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-11
|
|
```
|
|
|
|
**AMD GPU (ROCm):**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-aio-gpu-hipblas
|
|
```
|
|
|
|
**Intel GPU:**
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-gpu-intel
|
|
```
|
|
|
|
## Using Docker Compose
|
|
|
|
For a more manageable setup, especially with persistent volumes, use Docker Compose:
|
|
|
|
```yaml
|
|
version: "3.9"
|
|
services:
|
|
api:
|
|
image: localai/localai:latest-aio-cpu
|
|
# For GPU support, use one of:
|
|
# image: localai/localai:latest-aio-gpu-nvidia-cuda-13
|
|
# image: localai/localai:latest-aio-gpu-nvidia-cuda-12
|
|
# image: localai/localai:latest-aio-gpu-nvidia-cuda-11
|
|
# image: localai/localai:latest-aio-gpu-hipblas
|
|
# image: localai/localai:latest-aio-gpu-intel
|
|
healthcheck:
|
|
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
|
|
interval: 1m
|
|
timeout: 20m
|
|
retries: 5
|
|
ports:
|
|
- 8080:8080
|
|
environment:
|
|
- DEBUG=true
|
|
volumes:
|
|
- ./models:/models:cached
|
|
# For NVIDIA GPUs, uncomment:
|
|
# deploy:
|
|
# resources:
|
|
# reservations:
|
|
# devices:
|
|
# - driver: nvidia
|
|
# count: 1
|
|
# capabilities: [gpu]
|
|
```
|
|
|
|
Save this as `docker-compose.yml` and run:
|
|
|
|
```bash
|
|
docker compose up -d
|
|
```
|
|
|
|
## Persistent Storage
|
|
|
|
To persist models and configurations, mount a volume:
|
|
|
|
```bash
|
|
docker run -ti --name local-ai -p 8080:8080 \
|
|
-v $PWD/models:/models \
|
|
localai/localai:latest-aio-cpu
|
|
```
|
|
|
|
Or use a named volume:
|
|
|
|
```bash
|
|
docker volume create localai-models
|
|
docker run -ti --name local-ai -p 8080:8080 \
|
|
-v localai-models:/models \
|
|
localai/localai:latest-aio-cpu
|
|
```
|
|
|
|
## What's Included in AIO Images
|
|
|
|
All-in-One images come pre-configured with:
|
|
|
|
- **Text Generation**: LLM models for chat and completion
|
|
- **Image Generation**: Stable Diffusion models
|
|
- **Text to Speech**: TTS models
|
|
- **Speech to Text**: Whisper models
|
|
- **Embeddings**: Vector embedding models
|
|
- **Function Calling**: Support for OpenAI-compatible function calling
|
|
|
|
The AIO images use OpenAI-compatible model names (like `gpt-4`, `gpt-4-vision-preview`) but are backed by open-source models. See the [container images documentation](/getting-started/container-images/#all-in-one-images) for the complete mapping.
|
|
|
|
## Next Steps
|
|
|
|
After installation:
|
|
|
|
1. Access the WebUI at `http://localhost:8080`
|
|
2. Check available models: `curl http://localhost:8080/v1/models`
|
|
3. [Install additional models](/getting-started/models/)
|
|
4. [Try out examples](/getting-started/try-it-out/)
|
|
|
|
## Advanced Configuration
|
|
|
|
For detailed information about:
|
|
- All available image tags and versions
|
|
- Advanced Docker configuration options
|
|
- Custom image builds
|
|
- Backend management
|
|
|
|
See the [Container Images documentation](/getting-started/container-images/).
|
|
|
|
## Troubleshooting
|
|
|
|
### Container won't start
|
|
|
|
- Check Docker is running: `docker ps`
|
|
- Check port 8080 is available: `netstat -an | grep 8080` (Linux/Mac)
|
|
- View logs: `docker logs local-ai`
|
|
|
|
### GPU not detected
|
|
|
|
- Ensure Docker has GPU access: `docker run --rm --gpus all nvidia/cuda:12.0.0-base-ubuntu22.04 nvidia-smi`
|
|
- For NVIDIA: Install [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
|
- For AMD: Ensure devices are accessible: `ls -la /dev/kfd /dev/dri`
|
|
|
|
### Models not downloading
|
|
|
|
- Check internet connection
|
|
- Verify disk space: `df -h`
|
|
- Check Docker logs for errors: `docker logs local-ai`
|
|
|
|
## See Also
|
|
|
|
- [Container Images Reference](/getting-started/container-images/) - Complete image reference
|
|
- [Install Models](/getting-started/models/) - Install and configure models
|
|
- [GPU Acceleration](/features/gpu-acceleration/) - GPU setup and optimization
|
|
- [Kubernetes Installation](/installation/kubernetes/) - Deploy on Kubernetes
|
|
|