mirror of
https://github.com/exo-explore/exo.git
synced 2025-12-23 14:17:58 -05:00
update api to match
gotta fix some tests
This commit is contained in:
@@ -33,6 +33,7 @@ dependencies = [
|
||||
"mlx-lm>=0.28.3",
|
||||
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
|
||||
"hypercorn>=0.18.0",
|
||||
"openai-harmony>=0.0.8",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -13,6 +13,12 @@ from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType
|
||||
from hypercorn.config import Config
|
||||
from hypercorn.typing import ASGIFramework
|
||||
from loguru import logger
|
||||
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
HarmonyEncodingName,
|
||||
Role,
|
||||
StreamableParser,
|
||||
load_harmony_encoding,
|
||||
)
|
||||
|
||||
from exo.master.placement import place_instance as get_instance_placements
|
||||
from exo.shared.apply import apply
|
||||
@@ -21,11 +27,13 @@ from exo.shared.logging import InterceptLogger
|
||||
from exo.shared.models.model_cards import MODEL_CARDS
|
||||
from exo.shared.models.model_meta import get_model_meta
|
||||
from exo.shared.types.api import (
|
||||
ChatCompletionChoice,
|
||||
ChatCompletionMessage,
|
||||
ChatCompletionResponse,
|
||||
CreateInstanceParams,
|
||||
CreateInstanceResponse,
|
||||
DeleteInstanceResponse,
|
||||
FinishReason,
|
||||
ModelList,
|
||||
ModelListModel,
|
||||
PlaceInstanceParams,
|
||||
@@ -56,7 +64,7 @@ from exo.utils.channels import Receiver, Sender, channel
|
||||
from exo.utils.dashboard_path import find_dashboard
|
||||
from exo.utils.event_buffer import OrderedBuffer
|
||||
|
||||
HIDE_THINKING = False
|
||||
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
||||
|
||||
|
||||
def chunk_to_response(
|
||||
@@ -161,7 +169,9 @@ class API:
|
||||
self.app.delete("/instance/{instance_id}")(self.delete_instance)
|
||||
self.app.get("/models")(self.get_models)
|
||||
self.app.get("/v1/models")(self.get_models)
|
||||
self.app.post("/v1/chat/completions")(self.chat_completions)
|
||||
self.app.post("/v1/chat/completions", response_model=None)(
|
||||
self.chat_completions
|
||||
)
|
||||
self.app.get("/state")(lambda: self.state)
|
||||
self.app.get("/events")(lambda: self._event_log)
|
||||
|
||||
@@ -177,17 +187,32 @@ class API:
|
||||
return CreateInstanceResponse(
|
||||
message="Command received.",
|
||||
command_id=command.command_id,
|
||||
model_meta=command.model_meta,
|
||||
)
|
||||
|
||||
async def create_instance(
|
||||
self, payload: CreateInstanceParams
|
||||
) -> CreateInstanceResponse:
|
||||
command = CreateInstance(instance=payload.instance)
|
||||
instance = payload.instance
|
||||
model_meta = await resolve_model_meta(instance.shard_assignments.model_id)
|
||||
required_memory = model_meta.storage_size
|
||||
available_memory = self._calculate_total_available_memory()
|
||||
|
||||
if required_memory > available_memory:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Insufficient memory to create instance. Required: {required_memory.in_gb:.1f}GB, Available: {available_memory.in_gb:.1f}GB",
|
||||
)
|
||||
|
||||
command = CreateInstance(
|
||||
instance=instance,
|
||||
)
|
||||
await self._send(command)
|
||||
|
||||
return CreateInstanceResponse(
|
||||
message="Command received.",
|
||||
command_id=command.command_id,
|
||||
model_meta=model_meta,
|
||||
)
|
||||
|
||||
async def get_placement(
|
||||
@@ -352,32 +377,52 @@ class API:
|
||||
instance_id=instance_id,
|
||||
)
|
||||
|
||||
async def _generate_chat_stream(
|
||||
self, command_id: CommandId
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate chat completion stream as JSON strings."""
|
||||
async def _process_gpt_oss(self, token_chunks: Receiver[TokenChunk]):
|
||||
stream = StreamableParser(encoding, role=Role.ASSISTANT)
|
||||
thinking = False
|
||||
|
||||
async for chunk in token_chunks:
|
||||
stream.process(chunk.token_id)
|
||||
|
||||
delta = stream.last_content_delta
|
||||
ch = stream.current_channel
|
||||
|
||||
if ch == "analysis" and not thinking:
|
||||
thinking = True
|
||||
yield chunk.model_copy(update={"text": "<think>"})
|
||||
|
||||
if ch != "analysis" and thinking:
|
||||
thinking = False
|
||||
yield chunk.model_copy(update={"text": "</think>"})
|
||||
|
||||
if delta:
|
||||
yield chunk.model_copy(update={"text": delta})
|
||||
|
||||
if chunk.finish_reason is not None:
|
||||
if thinking:
|
||||
yield chunk.model_copy(update={"text": "</think>"})
|
||||
yield chunk
|
||||
break
|
||||
|
||||
async def _chat_chunk_stream(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
) -> AsyncGenerator[TokenChunk, None]:
|
||||
"""Yield `TokenChunk`s for a given command until completion."""
|
||||
|
||||
try:
|
||||
self._chat_completion_queues[command_id], recv = channel[TokenChunk]()
|
||||
|
||||
is_thinking = False
|
||||
with recv as token_chunks:
|
||||
async for chunk in token_chunks:
|
||||
if HIDE_THINKING:
|
||||
if chunk.text == "<think>":
|
||||
is_thinking = True
|
||||
if chunk.text == "</think>":
|
||||
is_thinking = False
|
||||
chunk_response: ChatCompletionResponse = chunk_to_response(
|
||||
chunk, command_id
|
||||
)
|
||||
if not (is_thinking and HIDE_THINKING):
|
||||
logger.debug(f"chunk_response: {chunk_response}")
|
||||
yield f"data: {chunk_response.model_dump_json()}\n\n"
|
||||
|
||||
if chunk.finish_reason is not None:
|
||||
yield "data: [DONE]\n\n"
|
||||
break
|
||||
if parse_gpt_oss:
|
||||
async for chunk in self._process_gpt_oss(token_chunks):
|
||||
yield chunk
|
||||
if chunk.finish_reason is not None:
|
||||
break
|
||||
else:
|
||||
async for chunk in token_chunks:
|
||||
yield chunk
|
||||
if chunk.finish_reason is not None:
|
||||
break
|
||||
|
||||
except anyio.get_cancelled_exc_class():
|
||||
# TODO: TaskCancelled
|
||||
@@ -392,6 +437,59 @@ class API:
|
||||
await self._send(command)
|
||||
del self._chat_completion_queues[command_id]
|
||||
|
||||
async def _generate_chat_stream(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate chat completion stream as JSON strings."""
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
|
||||
chunk_response: ChatCompletionResponse = chunk_to_response(
|
||||
chunk, command_id
|
||||
)
|
||||
logger.debug(f"chunk_response: {chunk_response}")
|
||||
|
||||
yield f"data: {chunk_response.model_dump_json()}\n\n"
|
||||
|
||||
if chunk.finish_reason is not None:
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
async def _collect_chat_completion(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
) -> ChatCompletionResponse:
|
||||
"""Collect all token chunks for a chat completion and return a single response."""
|
||||
|
||||
text_parts: list[str] = []
|
||||
model: str | None = None
|
||||
finish_reason: FinishReason | None = None
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
|
||||
if model is None:
|
||||
model = chunk.model
|
||||
|
||||
text_parts.append(chunk.text)
|
||||
|
||||
if chunk.finish_reason is not None:
|
||||
finish_reason = chunk.finish_reason
|
||||
|
||||
combined_text = "".join(text_parts)
|
||||
assert model is not None
|
||||
|
||||
return ChatCompletionResponse(
|
||||
id=command_id,
|
||||
created=int(time.time()),
|
||||
model=model,
|
||||
choices=[
|
||||
ChatCompletionChoice(
|
||||
index=0,
|
||||
message=ChatCompletionMessage(
|
||||
role="assistant",
|
||||
content=combined_text,
|
||||
),
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
async def _trigger_notify_user_to_download_model(self, model_id: str) -> None:
|
||||
logger.warning(
|
||||
"TODO: we should send a notification to the user to download the model"
|
||||
@@ -399,10 +497,12 @@ class API:
|
||||
|
||||
async def chat_completions(
|
||||
self, payload: ChatCompletionTaskParams
|
||||
) -> StreamingResponse:
|
||||
"""Handle chat completions with proper streaming response."""
|
||||
) -> ChatCompletionResponse | StreamingResponse:
|
||||
"""Handle chat completions, supporting both streaming and non-streaming responses."""
|
||||
model_meta = await resolve_model_meta(payload.model)
|
||||
payload.model = model_meta.model_id
|
||||
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
|
||||
logger.info(f"{parse_gpt_oss=}")
|
||||
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == payload.model
|
||||
@@ -417,10 +517,13 @@ class API:
|
||||
request_params=payload,
|
||||
)
|
||||
await self._send(command)
|
||||
return StreamingResponse(
|
||||
self._generate_chat_stream(command.command_id),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
if payload.stream:
|
||||
return StreamingResponse(
|
||||
self._generate_chat_stream(command.command_id, parse_gpt_oss),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
|
||||
return await self._collect_chat_completion(command.command_id, parse_gpt_oss)
|
||||
|
||||
def _calculate_total_available_memory(self) -> Memory:
|
||||
"""Calculate total available memory across all nodes in bytes."""
|
||||
@@ -442,6 +545,8 @@ class API:
|
||||
name=card.name,
|
||||
description=card.description,
|
||||
tags=card.tags,
|
||||
storage_size_megabytes=int(card.metadata.storage_size.in_mb),
|
||||
supports_tensor=card.metadata.supports_tensor,
|
||||
)
|
||||
for card in MODEL_CARDS.values()
|
||||
]
|
||||
@@ -458,7 +563,7 @@ class API:
|
||||
async with create_task_group() as tg:
|
||||
self._tg = tg
|
||||
logger.info("Starting API")
|
||||
tg.start_soon(self._applystate)
|
||||
tg.start_soon(self._apply_state)
|
||||
tg.start_soon(self._pause_on_new_election)
|
||||
print_startup_banner(self.port)
|
||||
await serve(
|
||||
@@ -470,7 +575,7 @@ class API:
|
||||
self.command_sender.close()
|
||||
self.global_event_receiver.close()
|
||||
|
||||
async def _applystate(self):
|
||||
async def _apply_state(self):
|
||||
with self.global_event_receiver as events:
|
||||
async for f_event in events:
|
||||
if f_event.origin != self.session_id.master_node_id:
|
||||
|
||||
@@ -123,6 +123,8 @@ async def test_master():
|
||||
pretty_name="Llama 3.2 1B",
|
||||
n_layers=16,
|
||||
storage_size=Memory.from_bytes(678948),
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
sharding=Sharding.Pipeline,
|
||||
instance_meta=InstanceMeta.MlxRing,
|
||||
@@ -180,6 +182,8 @@ async def test_master():
|
||||
pretty_name="Llama 3.2 1B",
|
||||
n_layers=16,
|
||||
storage_size=Memory.from_bytes(678948),
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
device_rank=0,
|
||||
world_size=1,
|
||||
|
||||
@@ -49,6 +49,8 @@ def model_meta() -> ModelMetadata:
|
||||
storage_size=Memory.from_kb(1000),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=10,
|
||||
supports_tensor=True,
|
||||
)
|
||||
|
||||
|
||||
@@ -135,6 +137,8 @@ def test_get_instance_placements_one_node_exact_fit(
|
||||
storage_size=Memory.from_kb(1000),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
),
|
||||
)
|
||||
placements = place_instance(cic, topology, {})
|
||||
@@ -160,6 +164,8 @@ def test_get_instance_placements_one_node_fits_with_extra_memory(
|
||||
storage_size=Memory.from_kb(1000),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
),
|
||||
)
|
||||
placements = place_instance(cic, topology, {})
|
||||
@@ -185,6 +191,8 @@ def test_get_instance_placements_one_node_not_fit(
|
||||
storage_size=Memory.from_kb(1001),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -198,6 +198,8 @@ def test_get_shard_assignments(
|
||||
pretty_name="Test Model",
|
||||
n_layers=total_layers,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
)
|
||||
cycles = topology.get_cycles()
|
||||
selected_cycle = cycles[0]
|
||||
|
||||
@@ -51,6 +51,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="DeepSeek V3.1 (4-bit)",
|
||||
storage_size=Memory.from_gb(378),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"deepseek-v3.1-8bit": ModelCard(
|
||||
@@ -64,6 +66,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="DeepSeek V3.1 (8-bit)",
|
||||
storage_size=Memory.from_gb(713),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# "deepseek-v3.2": ModelCard(
|
||||
@@ -135,6 +139,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Kimi K2 Instruct (4-bit)",
|
||||
storage_size=Memory.from_gb(578),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"kimi-k2-thinking": ModelCard(
|
||||
@@ -148,6 +154,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Kimi K2 Thinking (4-bit)",
|
||||
storage_size=Memory.from_gb(658),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# llama-3.1
|
||||
@@ -162,6 +170,38 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.1 8B (4-bit)",
|
||||
storage_size=Memory.from_mb(4423),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.1-8b-8bit": ModelCard(
|
||||
short_id="llama-3.1-8b-8bit",
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
|
||||
name="Llama 3.1 8B (8-bit)",
|
||||
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
|
||||
pretty_name="Llama 3.1 8B (8-bit)",
|
||||
storage_size=Memory.from_mb(8540),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.1-8b-bf16": ModelCard(
|
||||
short_id="llama-3.1-8b-bf16",
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
|
||||
name="Llama 3.1 8B (BF16)",
|
||||
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
|
||||
pretty_name="Llama 3.1 8B (BF16)",
|
||||
storage_size=Memory.from_mb(16100),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.1-70b": ModelCard(
|
||||
@@ -175,6 +215,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.1 70B (4-bit)",
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# llama-3.2
|
||||
@@ -189,6 +231,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.2 1B (4-bit)",
|
||||
storage_size=Memory.from_mb(696),
|
||||
n_layers=16,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.2-3b": ModelCard(
|
||||
@@ -202,6 +246,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.2 3B (4-bit)",
|
||||
storage_size=Memory.from_mb(1777),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.2-3b-8bit": ModelCard(
|
||||
@@ -215,6 +261,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.2 3B (8-bit)",
|
||||
storage_size=Memory.from_mb(3339),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# llama-3.3
|
||||
@@ -229,6 +277,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.3 70B",
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.3-70b-8bit": ModelCard(
|
||||
@@ -242,6 +292,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.3 70B (8-bit)",
|
||||
storage_size=Memory.from_mb(73242),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.3-70b-fp16": ModelCard(
|
||||
@@ -255,20 +307,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Llama 3.3 70B (FP16)",
|
||||
storage_size=Memory.from_mb(137695),
|
||||
n_layers=80,
|
||||
),
|
||||
),
|
||||
# phi-3
|
||||
"phi-3-mini": ModelCard(
|
||||
short_id="phi-3-mini",
|
||||
model_id=ModelId("mlx-community/Phi-3-mini-128k-instruct-4bit"),
|
||||
name="Phi 3 Mini 128k (4-bit)",
|
||||
description="""Phi 3 Mini is a large language model trained on the Phi 3 Mini dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Phi-3-mini-128k-instruct-4bit"),
|
||||
pretty_name="Phi 3 Mini 128k (4-bit)",
|
||||
storage_size=Memory.from_mb(2099),
|
||||
n_layers=32,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# qwen3
|
||||
@@ -283,6 +323,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 0.6B (4-bit)",
|
||||
storage_size=Memory.from_mb(327),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
),
|
||||
),
|
||||
"qwen3-0.6b-8bit": ModelCard(
|
||||
@@ -296,6 +338,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 0.6B (8-bit)",
|
||||
storage_size=Memory.from_mb(666),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
),
|
||||
),
|
||||
"qwen3-30b": ModelCard(
|
||||
@@ -309,6 +353,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 30B A3B (4-bit)",
|
||||
storage_size=Memory.from_mb(16797),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-30b-8bit": ModelCard(
|
||||
@@ -322,6 +368,68 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 30B A3B (8-bit)",
|
||||
storage_size=Memory.from_mb(31738),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-4bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-4bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
|
||||
name="Qwen3 80B A3B (4-bit)",
|
||||
description="""Qwen3 80B""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
|
||||
pretty_name="Qwen3 80B A3B (4-bit)",
|
||||
storage_size=Memory.from_mb(44800),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-8bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
|
||||
name="Qwen3 80B A3B (8-bit)",
|
||||
description="""Qwen3 80B""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
|
||||
pretty_name="Qwen3 80B A3B (8-bit)",
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-4bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-thinking-4bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
|
||||
name="Qwen3 80B A3B Thinking (4-bit)",
|
||||
description="""Qwen3 80B Reasoning model""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
|
||||
pretty_name="Qwen3 80B A3B (4-bit)",
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-8bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-thinking-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
|
||||
name="Qwen3 80B A3B Thinking (8-bit)",
|
||||
description="""Qwen3 80B Reasoning model""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
|
||||
pretty_name="Qwen3 80B A3B (8-bit)",
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-235b-a22b-4bit": ModelCard(
|
||||
@@ -335,6 +443,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 235B A22B (4-bit)",
|
||||
storage_size=Memory.from_gb(132),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-235b-a22b-8bit": ModelCard(
|
||||
@@ -348,6 +458,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 235B A22B (8-bit)",
|
||||
storage_size=Memory.from_gb(250),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-coder-480b-a35b-4bit": ModelCard(
|
||||
@@ -361,6 +473,8 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 Coder 480B A35B (4-bit)",
|
||||
storage_size=Memory.from_gb(270),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-coder-480b-a35b-8bit": ModelCard(
|
||||
@@ -374,77 +488,84 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
pretty_name="Qwen3 Coder 480B A35B (8-bit)",
|
||||
storage_size=Memory.from_gb(540),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# granite
|
||||
"granite-3.3-2b": ModelCard(
|
||||
short_id="granite-3.3-2b",
|
||||
model_id=ModelId("mlx-community/granite-3.3-2b-instruct-fp16"),
|
||||
name="Granite 3.3 2B (FP16)",
|
||||
description="""Granite-3.3-2B-Instruct is a 2-billion parameter 128K context length language model fine-tuned for improved reasoning and instruction-following capabilities.""",
|
||||
# gpt-oss
|
||||
"gpt-oss-120b-MXFP4-Q8": ModelCard(
|
||||
short_id="gpt-oss-120b-MXFP4-Q8",
|
||||
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
name="GPT-OSS 120B (MXFP4-Q8, MLX)",
|
||||
description="""OpenAI's GPT-OSS 120B is a 117B-parameter Mixture-of-Experts model designed for high-reasoning and general-purpose use; this variant is a 4-bit MLX conversion for Apple Silicon.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/granite-3.3-2b-instruct-fp16"),
|
||||
pretty_name="Granite 3.3 2B (FP16)",
|
||||
storage_size=Memory.from_mb(4951),
|
||||
n_layers=40,
|
||||
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
pretty_name="GPT-OSS 120B (MXFP4-Q8, MLX)",
|
||||
storage_size=Memory.from_kb(68_996_301),
|
||||
n_layers=36,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# "granite-3.3-8b": ModelCard(
|
||||
# short_id="granite-3.3-8b",
|
||||
# model_id=ModelId("mlx-community/granite-3.3-8b-instruct-fp16"),
|
||||
# name="Granite 3.3 8B",
|
||||
# description="""Granite-3.3-8B-Instruct is a 8-billion parameter 128K context length language model fine-tuned for improved reasoning and instruction-following capabilities.""",
|
||||
"gpt-oss-20b-4bit": ModelCard(
|
||||
short_id="gpt-oss-20b-4bit",
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
|
||||
name="GPT-OSS 20B (MXFP4-Q4, MLX)",
|
||||
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this MLX variant uses MXFP4 4-bit quantization.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
|
||||
pretty_name="GPT-OSS 20B (MXFP4-Q4, MLX)",
|
||||
storage_size=Memory.from_kb(11_744_051),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# Needs to be quantized g32 or g16.
|
||||
"glm-4.5-air-8bit": ModelCard(
|
||||
short_id="glm-4.5-air-8bit",
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
name="GLM 4.5 Air 8bit",
|
||||
description="""GLM 4.5 Air 8bit""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
pretty_name="GLM 4.5 Air 8bit",
|
||||
storage_size=Memory.from_gb(114),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=False,
|
||||
),
|
||||
),
|
||||
"glm-4.5-air-bf16": ModelCard(
|
||||
short_id="glm-4.5-air-bf16",
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
|
||||
name="GLM 4.5 Air bf16",
|
||||
description="""GLM 4.5 Air bf16""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
|
||||
pretty_name="GLM 4.5 Air bf16",
|
||||
storage_size=Memory.from_gb(214),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# "devstral-2-123b-instruct-2512-8bit": ModelCard(
|
||||
# short_id="devstral-2-123b-instruct-2512-8bit",
|
||||
# model_id=ModelId("mlx-community/Devstral-2-123B-Instruct-2512-8bit"),
|
||||
# name="Devstral 2 123B Instruct 2512 (8-bit, MLX)",
|
||||
# description="""Mistral AI's Devstral 2 123B Instruct (2512) is an agentic coding model.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/granite-3.3-8b-instruct-fp16"),
|
||||
# pretty_name="Granite 3.3 8B",
|
||||
# storage_size=Memory.from_kb(15958720),
|
||||
# n_layers=40,
|
||||
# ),
|
||||
# ),
|
||||
# smol-lm
|
||||
# "smol-lm-135m": ModelCard(
|
||||
# short_id="smol-lm-135m",
|
||||
# model_id="mlx-community/SmolLM-135M-4bit",
|
||||
# name="Smol LM 135M",
|
||||
# description="""SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters. """,
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/SmolLM-135M-4bit"),
|
||||
# pretty_name="Smol LM 135M",
|
||||
# storage_size=Memory.from_kb(73940),
|
||||
# n_layers=30,
|
||||
# ),
|
||||
# ),
|
||||
# gpt-oss
|
||||
# "gpt-oss-120b-MXFP4-Q8": ModelCard(
|
||||
# short_id="gpt-oss-120b-MXFP4-Q8",
|
||||
# model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
# name="GPT-OSS 120B (MXFP4-Q8, MLX)",
|
||||
# description="""OpenAI's GPT-OSS 120B is a 117B-parameter Mixture-of-Experts model designed for high-reasoning and general-purpose use; this variant is a 4-bit MLX conversion for Apple Silicon.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
# pretty_name="GPT-OSS 120B (MXFP4-Q8, MLX)",
|
||||
# storage_size=Memory.from_kb(68_996_301),
|
||||
# n_layers=36,
|
||||
# hidden_size=2880,
|
||||
# supports_tensor=True,
|
||||
# ),
|
||||
# ),
|
||||
# "gpt-oss-20b-4bit": ModelCard(
|
||||
# short_id="gpt-oss-20b-4bit",
|
||||
# model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
|
||||
# name="GPT-OSS 20B (MXFP4-Q4, MLX)",
|
||||
# description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this MLX variant uses MXFP4 4-bit quantization.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
|
||||
# pretty_name="GPT-OSS 20B (MXFP4-Q4, MLX)",
|
||||
# storage_size=Memory.from_kb(11_744_051),
|
||||
# n_layers=24,
|
||||
# hidden_size=2880,
|
||||
# model_id=ModelId("mlx-community/Devstral-2-123B-Instruct-2512-8bit"),
|
||||
# pretty_name="Devstral 2 123B Instruct 2512 (8-bit, MLX)",
|
||||
# storage_size=Memory.from_kb(133_000_000),
|
||||
# n_layers=88,
|
||||
# hidden_size=12288,
|
||||
# supports_tensor=True,
|
||||
# ),
|
||||
# ),
|
||||
|
||||
@@ -6,6 +6,7 @@ from huggingface_hub import model_info
|
||||
from loguru import logger
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from exo.shared.models.model_cards import MODEL_CARDS
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.worker.download.download_utils import (
|
||||
@@ -25,6 +26,7 @@ class ConfigData(BaseModel):
|
||||
n_layers: Annotated[int, Field(ge=0)] | None = None # Sometimes used
|
||||
num_decoder_layers: Annotated[int, Field(ge=0)] | None = None # Transformer models
|
||||
decoder_layers: Annotated[int, Field(ge=0)] | None = None # Some architectures
|
||||
hidden_size: Annotated[int, Field(ge=0)] | None = None
|
||||
|
||||
@property
|
||||
def layer_count(self) -> int:
|
||||
@@ -106,10 +108,19 @@ async def _get_model_meta(model_id: str) -> ModelMetadata:
|
||||
config_data = await get_config_data(model_id)
|
||||
num_layers = config_data.layer_count
|
||||
mem_size_bytes = await get_safetensors_size(model_id)
|
||||
model_card = next(
|
||||
(card for card in MODEL_CARDS.values() if card.model_id == ModelId(model_id)),
|
||||
None,
|
||||
)
|
||||
|
||||
return ModelMetadata(
|
||||
model_id=ModelId(model_id),
|
||||
pretty_name=model_id,
|
||||
pretty_name=model_card.name if model_card is not None else model_id,
|
||||
storage_size=mem_size_bytes,
|
||||
n_layers=num_layers,
|
||||
hidden_size=config_data.hidden_size or 0,
|
||||
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
|
||||
supports_tensor=model_card.metadata.supports_tensor
|
||||
if model_card is not None
|
||||
else False,
|
||||
)
|
||||
|
||||
@@ -5,7 +5,7 @@ from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic_core import PydanticUseDefault
|
||||
|
||||
from exo.shared.types.common import CommandId
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
|
||||
@@ -174,6 +174,7 @@ class DeleteInstanceTaskParams(BaseModel):
|
||||
class CreateInstanceResponse(BaseModel):
|
||||
message: str
|
||||
command_id: CommandId
|
||||
model_meta: ModelMetadata
|
||||
|
||||
|
||||
class DeleteInstanceResponse(BaseModel):
|
||||
|
||||
@@ -14,3 +14,5 @@ class ModelMetadata(CamelCaseModel):
|
||||
pretty_name: str
|
||||
storage_size: Memory
|
||||
n_layers: PositiveInt
|
||||
hidden_size: PositiveInt
|
||||
supports_tensor: bool
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from copy import copy
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import AsyncIterator, Callable
|
||||
@@ -12,7 +13,7 @@ from exo.shared.types.worker.shards import (
|
||||
from exo.worker.download.download_utils import RepoDownloadProgress
|
||||
|
||||
|
||||
# TODO: the PipelineShardMetadata getting reinstantiated is a bit messy. Shoudl this be a classmethod?
|
||||
# TODO: the PipelineShardMetadata getting reinstantiated is a bit messy. Should this be a classmethod?
|
||||
class ShardDownloader(ABC):
|
||||
@abstractmethod
|
||||
async def ensure_shard(
|
||||
@@ -43,34 +44,7 @@ class ShardDownloader(ABC):
|
||||
Yields:
|
||||
tuple[Path, RepoDownloadProgress]: The path and progress of a shard download.
|
||||
"""
|
||||
yield (
|
||||
Path("/tmp/noop_shard"),
|
||||
RepoDownloadProgress(
|
||||
repo_id="noop",
|
||||
repo_revision="noop",
|
||||
shard=PipelineShardMetadata(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("noop"),
|
||||
pretty_name="noope",
|
||||
storage_size=Memory.from_bytes(0),
|
||||
n_layers=1,
|
||||
),
|
||||
device_rank=0,
|
||||
world_size=1,
|
||||
start_layer=0,
|
||||
end_layer=1,
|
||||
n_layers=1,
|
||||
),
|
||||
completed_files=0,
|
||||
total_files=0,
|
||||
downloaded_bytes=Memory.from_bytes(0),
|
||||
downloaded_bytes_this_session=Memory.from_bytes(0),
|
||||
total_bytes=Memory.from_bytes(0),
|
||||
overall_speed=0,
|
||||
overall_eta=timedelta(seconds=0),
|
||||
status="complete",
|
||||
),
|
||||
)
|
||||
yield (Path("/tmp/noop_shard"), NOOP_DOWNLOAD_PROGRESS)
|
||||
|
||||
@abstractmethod
|
||||
async def get_shard_download_status_for_shard(
|
||||
@@ -94,46 +68,41 @@ class NoopShardDownloader(ShardDownloader):
|
||||
) -> AsyncIterator[tuple[Path, RepoDownloadProgress]]:
|
||||
yield (
|
||||
Path("/tmp/noop_shard"),
|
||||
RepoDownloadProgress(
|
||||
repo_id="noop",
|
||||
repo_revision="noop",
|
||||
shard=PipelineShardMetadata(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("noop"),
|
||||
pretty_name="noope",
|
||||
storage_size=Memory.from_bytes(0),
|
||||
n_layers=1,
|
||||
),
|
||||
device_rank=0,
|
||||
world_size=1,
|
||||
start_layer=0,
|
||||
end_layer=1,
|
||||
n_layers=1,
|
||||
),
|
||||
completed_files=0,
|
||||
total_files=0,
|
||||
downloaded_bytes=Memory.from_bytes(0),
|
||||
downloaded_bytes_this_session=Memory.from_bytes(0),
|
||||
total_bytes=Memory.from_bytes(0),
|
||||
overall_speed=0,
|
||||
overall_eta=timedelta(seconds=0),
|
||||
status="complete",
|
||||
),
|
||||
NOOP_DOWNLOAD_PROGRESS,
|
||||
)
|
||||
|
||||
async def get_shard_download_status_for_shard(
|
||||
self, shard: ShardMetadata
|
||||
) -> RepoDownloadProgress:
|
||||
return RepoDownloadProgress(
|
||||
repo_id="noop",
|
||||
repo_revision="noop",
|
||||
shard=shard,
|
||||
completed_files=0,
|
||||
total_files=0,
|
||||
downloaded_bytes=Memory.from_bytes(0),
|
||||
downloaded_bytes_this_session=Memory.from_bytes(0),
|
||||
total_bytes=Memory.from_bytes(0),
|
||||
overall_speed=0,
|
||||
overall_eta=timedelta(seconds=0),
|
||||
status="complete",
|
||||
)
|
||||
dp = copy(NOOP_DOWNLOAD_PROGRESS)
|
||||
dp.shard = shard
|
||||
return dp
|
||||
|
||||
|
||||
NOOP_DOWNLOAD_PROGRESS = RepoDownloadProgress(
|
||||
repo_id="noop",
|
||||
repo_revision="noop",
|
||||
shard=PipelineShardMetadata(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("noop"),
|
||||
pretty_name="noope",
|
||||
storage_size=Memory.from_bytes(0),
|
||||
n_layers=1,
|
||||
hidden_size=0,
|
||||
supports_tensor=False,
|
||||
),
|
||||
device_rank=0,
|
||||
world_size=1,
|
||||
start_layer=0,
|
||||
end_layer=1,
|
||||
n_layers=1,
|
||||
),
|
||||
completed_files=0,
|
||||
total_files=0,
|
||||
downloaded_bytes=Memory.from_bytes(0),
|
||||
downloaded_bytes_this_session=Memory.from_bytes(0),
|
||||
total_bytes=Memory.from_bytes(0),
|
||||
overall_speed=0,
|
||||
overall_eta=timedelta(seconds=0),
|
||||
status="complete",
|
||||
)
|
||||
|
||||
@@ -2,16 +2,13 @@ import os
|
||||
|
||||
import loguru
|
||||
|
||||
from exo.shared.types.events import Event
|
||||
from exo.shared.types.events import Event, RunnerStatusUpdated
|
||||
from exo.shared.types.tasks import Task
|
||||
from exo.shared.types.worker.instances import BoundInstance, MlxJacclInstance
|
||||
from exo.shared.types.worker.runners import RunnerFailed
|
||||
from exo.utils.channels import MpReceiver, MpSender
|
||||
|
||||
logger: "loguru.Logger"
|
||||
|
||||
|
||||
if os.getenv("EXO_TESTS") == "1":
|
||||
logger = loguru.logger
|
||||
logger: "loguru.Logger" = loguru.logger
|
||||
|
||||
|
||||
def entrypoint(
|
||||
@@ -30,6 +27,23 @@ def entrypoint(
|
||||
logger = _logger
|
||||
|
||||
# Import main after setting global logger - this lets us just import logger from this module
|
||||
from exo.worker.runner.runner import main
|
||||
try:
|
||||
from exo.worker.runner.runner import main
|
||||
|
||||
main(bound_instance, event_sender, task_receiver)
|
||||
main(bound_instance, event_sender, task_receiver)
|
||||
except Exception as e:
|
||||
logger.opt(exception=e).warning(
|
||||
f"Runner {bound_instance.bound_runner_id} crashed with critical exception {e}"
|
||||
)
|
||||
event_sender.send(
|
||||
RunnerStatusUpdated(
|
||||
runner_id=bound_instance.bound_runner_id,
|
||||
runner_status=RunnerFailed(error_message=str(e)),
|
||||
)
|
||||
)
|
||||
finally:
|
||||
event_sender.close()
|
||||
task_receiver.close()
|
||||
event_sender.join()
|
||||
task_receiver.join()
|
||||
logger.info("bye from the runner")
|
||||
|
||||
@@ -1,5 +1,10 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
from dataclasses import dataclass
|
||||
|
||||
from anyio import ClosedResourceError, WouldBlock
|
||||
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
@@ -14,6 +19,96 @@ from exo.shared.types.worker.runners import RunnerId, RunnerStatus, ShardAssignm
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, ShardMetadata
|
||||
|
||||
|
||||
# Synchronous trivial sender and receiver.
|
||||
@dataclass
|
||||
class _State[T]:
|
||||
buffer: list[T]
|
||||
closed: bool = False
|
||||
|
||||
|
||||
class MockSender[T]:
|
||||
def __init__(self, _state: _State[T] | None = None):
|
||||
self._state = _state or _State(buffer=[])
|
||||
self._closed = False
|
||||
|
||||
def send(self, item: T):
|
||||
if self._closed:
|
||||
raise ClosedResourceError
|
||||
self._state.buffer.append(item)
|
||||
|
||||
def close(self):
|
||||
self._closed = True
|
||||
self._state.closed = True
|
||||
|
||||
def join(self):
|
||||
pass
|
||||
|
||||
def clone(self) -> MockSender[T]:
|
||||
if self._closed:
|
||||
raise ClosedResourceError
|
||||
return MockSender(_state=self._state)
|
||||
|
||||
def clone_receiver(self) -> MockReceiver[T]:
|
||||
if self._closed:
|
||||
raise ClosedResourceError
|
||||
return MockReceiver(_state=self._state)
|
||||
|
||||
|
||||
class MockReceiver[T]:
|
||||
def __init__(self, _state: _State[T] | None = None):
|
||||
self._state = _state or _State(buffer=[])
|
||||
self._closed = False
|
||||
|
||||
def close(self):
|
||||
self._closed = True
|
||||
self._state.closed = True
|
||||
|
||||
def join(self):
|
||||
pass
|
||||
|
||||
def clone(self) -> MockReceiver[T]:
|
||||
if self._closed:
|
||||
raise ClosedResourceError
|
||||
return MockReceiver(_state=self._state)
|
||||
|
||||
def clone_sender(self) -> MockSender[T]:
|
||||
if self._closed:
|
||||
raise ClosedResourceError
|
||||
return MockSender(_state=self._state)
|
||||
|
||||
def receive_nowait(self) -> T:
|
||||
if self._state.buffer:
|
||||
return self._state.buffer.pop(0)
|
||||
raise WouldBlock
|
||||
|
||||
def collect(self) -> list[T]:
|
||||
out: list[T] = []
|
||||
while True:
|
||||
try:
|
||||
out.append(self.receive_nowait())
|
||||
except WouldBlock:
|
||||
break
|
||||
return out
|
||||
|
||||
async def receive_at_least(self, n: int) -> list[T]:
|
||||
raise NotImplementedError
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __iter__(self) -> Iterator[T]:
|
||||
while True:
|
||||
try:
|
||||
yield self.receive_nowait()
|
||||
except WouldBlock:
|
||||
break
|
||||
|
||||
def __exit__(self, exc_type, exc, tb):
|
||||
# Don't swallow exceptions
|
||||
return False
|
||||
|
||||
|
||||
# Runner supervisor without multiprocessing logic.
|
||||
@dataclass(frozen=True)
|
||||
class FakeRunnerSupervisor:
|
||||
bound_instance: BoundInstance
|
||||
@@ -35,6 +130,8 @@ def get_pipeline_shard_metadata(
|
||||
pretty_name=str(model_id),
|
||||
storage_size=Memory.from_mb(100000),
|
||||
n_layers=32,
|
||||
hidden_size=2048,
|
||||
supports_tensor=False,
|
||||
),
|
||||
device_rank=device_rank,
|
||||
world_size=world_size,
|
||||
@@ -67,5 +164,21 @@ def get_mlx_ring_instance(
|
||||
shard_assignments=get_shard_assignments(
|
||||
model_id, node_to_runner, runner_to_shard
|
||||
),
|
||||
hosts=[],
|
||||
hosts_by_node={},
|
||||
ephemeral_port=0,
|
||||
)
|
||||
|
||||
|
||||
def get_bound_mlx_ring_instance(
|
||||
instance_id: InstanceId, model_id: ModelId, runner_id: RunnerId, node_id: NodeId
|
||||
) -> BoundInstance:
|
||||
shard = get_pipeline_shard_metadata(model_id=model_id, device_rank=0, world_size=1)
|
||||
instance = get_mlx_ring_instance(
|
||||
instance_id=instance_id,
|
||||
model_id=model_id,
|
||||
node_to_runner={node_id: runner_id},
|
||||
runner_to_shard={runner_id: shard},
|
||||
)
|
||||
return BoundInstance(
|
||||
instance=instance, bound_runner_id=runner_id, bound_node_id=node_id
|
||||
)
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
# TODO:
|
||||
23
uv.lock
generated
23
uv.lock
generated
@@ -336,6 +336,7 @@ dependencies = [
|
||||
{ name = "mlx", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mlx-lm", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "networkx", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "openai-harmony", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "protobuf", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "psutil", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "pydantic", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
@@ -377,6 +378,7 @@ requires-dist = [
|
||||
{ name = "mlx", specifier = ">=0.29.3" },
|
||||
{ name = "mlx-lm", specifier = ">=0.28.3" },
|
||||
{ name = "networkx", specifier = ">=3.5" },
|
||||
{ name = "openai-harmony", specifier = ">=0.0.8" },
|
||||
{ name = "protobuf", specifier = ">=6.32.0" },
|
||||
{ name = "psutil", specifier = ">=7.0.0" },
|
||||
{ name = "pydantic", specifier = ">=2.11.7" },
|
||||
@@ -940,6 +942,27 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e2/c1/6dba12fdf68b02a21ac411c9df19afa66bed2540f467150ca64d246b463d/numpy-2.3.4-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:e1708fac43ef8b419c975926ce1eaf793b0c13b7356cfab6ab0dc34c0a02ac0f", size = 18652691, upload-time = "2025-10-15T16:17:46.247Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "openai-harmony"
|
||||
version = "0.0.8"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pydantic", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/3e/92/2d038d096f29179c7c9571b431f9e739f87a487121901725e23fe338dd9d/openai_harmony-0.0.8.tar.gz", hash = "sha256:6e43f98e6c242fa2de6f8ea12eab24af63fa2ed3e89c06341fb9d92632c5cbdf", size = 284777, upload-time = "2025-11-05T19:07:06.727Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/45/c6/2502f416d46be3ec08bb66d696cccffb57781a499e3ff2e4d7c174af4e8f/openai_harmony-0.0.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:029ec25ca74abe48fdb58eb9fdd2a8c1618581fc33ce8e5653f8a1ffbfbd9326", size = 2627806, upload-time = "2025-11-05T19:06:57.063Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d3/d2/ce6953ca87db9cae3e775024184da7d1c5cb88cead19a2d75b42f00a959c/openai_harmony-0.0.8-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4f709815924ec325b9a890e6ab2bbb0ceec8e319a4e257328eb752cf36b2efc", size = 2948463, upload-time = "2025-11-05T19:06:48.17Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fa/4c/b553c9651662d6ce102ca7f3629d268b23df1abe5841e24bed81e8a8e949/openai_harmony-0.0.8-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5cfcfd963b50a41fc656c84d3440ca6eecdccd6c552158ce790b8f2e33dfb5a9", size = 2704083, upload-time = "2025-11-05T19:06:50.205Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9b/af/4eec8f9ab9c27bcdb444460c72cf43011d176fc44c79d6e113094ca1e152/openai_harmony-0.0.8-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a3a16972aa1cee38ea958470cd04ac9a2d5ac38fdcf77ab686611246220c158", size = 2959765, upload-time = "2025-11-05T19:06:53.62Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/3c/33f3374e4624e0e776f6b13b73c45a7ead7f9c4529f8369ed5bfcaa30cac/openai_harmony-0.0.8-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b4d5cfa168e74d08f8ba6d58a7e49bc7daef4d58951ec69b66b0d56f4927a68d", size = 3427031, upload-time = "2025-11-05T19:06:51.829Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/25/3f/1a192b93bb47c6b44cd98ba8cc1d3d2a9308f1bb700c3017e6352da11bda/openai_harmony-0.0.8-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c007d277218a50db8839e599ed78e0fffe5130f614c3f6d93ae257f282071a29", size = 2953260, upload-time = "2025-11-05T19:06:55.406Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/f8/93b582cad3531797c3db7c2db5400fd841538ccddfd9f5e3df61be99a630/openai_harmony-0.0.8-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:8565d4f5a0638da1bffde29832ed63c9e695c558611053add3b2dc0b56c92dbc", size = 3127044, upload-time = "2025-11-05T19:06:59.553Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/10/4327dbf87f75ae813405fd9a9b4a5cde63d506ffed0a096a440a4cabd89c/openai_harmony-0.0.8-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:cbaa3bda75ef0d8836e1f8cc84af62f971b1d756d740efc95c38c3e04c0bfde2", size = 2932931, upload-time = "2025-11-05T19:07:01.437Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/c8/1774eec4f6f360ef57618fb8f52e3d3af245b2491bd0297513aa09eec04b/openai_harmony-0.0.8-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:772922a9bd24e133950fad71eb1550836f415a88e8c77870e12d0c3bd688ddc2", size = 2996140, upload-time = "2025-11-05T19:07:03.438Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/60/c3/3d1e01e2dba517a91760e4a03e4f20ffc75039a6fe584d0e6f9b5c78fd15/openai_harmony-0.0.8-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:007b0476a1f331f8130783f901f1da6f5a7057af1a4891f1b6a31dec364189b5", size = 3205080, upload-time = "2025-11-05T19:07:05.078Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "packaging"
|
||||
version = "25.0"
|
||||
|
||||
Reference in New Issue
Block a user