Compare commits

..

9 Commits

Author SHA1 Message Date
Alex Cheema
f2857adf63 Add unit tests for MTP module
Add 28 unit tests covering:
- Weight extraction from layer 61
- MTPModule forward pass and initialization
- MTPTransformerBlock
- Weight loading into MTPModule
- Sanitize patching and restoration
- Model ID detection for DeepSeek V3/R1
- Parameter flattening utility
- ModelWithHiddenStates wrapper
- KV cache quantization logic
- Speculative decoding acceptance/rejection logic
- MTPGenerationResponse dataclass
- Integration test with mock model

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:11:39 +00:00
Alex Cheema
3a161b4a3e Add Multi-Token Prediction (MTP) for DeepSeek V3 speculative decoding
Implement support for DeepSeek V3's MTP layer (layer 61) to enable
speculative decoding. Based on vLLM/SGLang research showing 81-82%
acceptance rate with k=1 and 1.5-2x speedup at low QPS.

Key changes:
- Add MTP module with MTPModule class and speculative decode logic
- Patch DeepSeek V3 sanitize() to preserve layer 61 weights
- Extract MTP weights and create MTPModule during model loading
- Integrate MTP generation path in mlx_generate()
- Add MTP_ENABLED and MTP_NUM_DRAFT_TOKENS configuration

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 12:03:54 +00:00
Alex Cheema
c5158bee53 Add pre-commit checks documentation to AGENTS.md (#1184)
## Motivation

CI failures can be avoided by running checks locally before committing.
This adds clear documentation to AGENTS.md so that AI agents (and
humans) know exactly which checks must pass before pushing code.

## Changes

Added a new "Pre-Commit Checks (REQUIRED)" section to AGENTS.md that:
- Lists all 4 required checks (basedpyright, ruff, nix fmt, pytest)
- Provides a one-liner to run all checks in sequence
- Notes that `nix fmt` changes must be staged before committing
- Explains that CI runs `nix flake check` which verifies everything

## Why It Works

Clear documentation prevents CI failures by ensuring contributors run
checks locally first. The one-liner command makes it easy to run all
checks before committing.

## Test Plan

### Manual Testing
- Verified the documented commands work correctly

### Automated Testing
- N/A - documentation only change

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 21:50:24 +00:00
rltakashige
5c8a237940 Handle model timeouts (#1177)
- Add eval with a timeout.
- Add fast synch flag

## Motivation

Because of the experimental FAST SYNCH flag, some models may not work.
This PR catches when this occurs and allows users to specify a run
without fast synch

## Changes

- Adds a flag to enable or disable fast synch (--fast-synch and
--no-fast-synch)
- Adds a heuristic timeout
- Reduces exo_bench default timeout to 10 minutes.

## Why It Works

Heuristic timeout assumes normal loading times on Mac devices (60 +
model size in gb / 5: e.g. DeepSeek takes up to 120 seconds to load on
tensor parallel, and timeout is set to 60 + 120 = 180s.

We could raise this value if necessary.

## Test Plan

### Manual Testing
Catches that GPT OSS fails to load in Tensor RDMA
Can launch with --no-fast-synch flag to launch GPT OSS.

**GPT OSS 20B**
TP with fast synch
<img width="3064" height="456" alt="image"
src="https://github.com/user-attachments/assets/f6e25cd8-8621-4e99-99fe-292ee05c4035"
/>

TP without fast synch
<img width="3098" height="496" alt="image"
src="https://github.com/user-attachments/assets/d36453d9-6686-4cfe-aa7c-a7d458369d4d"
/>
[Note: the performance is really not great as fast synch is off]

(As a sanity check)
PP with fast synch
<img width="3124" height="496" alt="image"
src="https://github.com/user-attachments/assets/e97d4547-c6fa-483d-badb-4b371b900b4c"
/>

PP without fast synch
<img width="3078" height="508" alt="image"
src="https://github.com/user-attachments/assets/b2e20dfd-4b0e-4295-8a92-417dfe745c28"
/>

PP without RDMA
<img width="3070" height="498" alt="image"
src="https://github.com/user-attachments/assets/a8509d68-0aef-4cda-bca5-a67d39a0801e"
/>

TP without RDMA
<img width="3068" height="496" alt="image"
src="https://github.com/user-attachments/assets/b5691429-89f4-4369-bcf2-8fde2ad7154a"
/>
2026-01-16 20:25:12 +00:00
rltakashige
745343c705 Return error responses for Chat Completions (#1173)
- Error chunks
- Use error handling in exo_bench.py

## Motivation

Return when an error occurs so that generation stops. Adding timeouts is
a separate TODO for model loading and chat completions.

## Changes

- Return HTTP exceptions as JSON responses in an OpenAI compatible
format.
- Context manager for generation to catch and return error messages.
- Use error handling in exo_bench.py.

## Test Plan

### Manual Testing
Manually tested that exo_bench returns on failures within and outside
generation

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-16 19:24:37 +00:00
Alex Cheema
5e28664c41 Fix draft release detection (attempt 3) (#1176)
## Motivation

Previous fix still failed in CI. Suspecting permissions issue with
GITHUB_TOKEN not being able to see draft releases via API.

## Changes

1. Add explicit `permissions: contents: write` to the job
2. Use `gh release list` first to check if draft exists (this uses a
different code path that might work better)
3. Add debug echo statements

## Test Plan

Delete v1.0.63 tag and re-push after merging.

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 17:26:06 +00:00
Alex Cheema
ae0a804ccb Fix draft release detection query (#1175)
## Motivation

Fixes the draft release detection that failed on the v1.0.63 release
attempt.

## Changes

The jq query was piped to `head -1` which truncated multi-line JSON
output to just `{`, causing the empty check to fail.

Changed to use `first // empty` in jq instead.

## Test Plan

Tested locally:
```bash
GITHUB_REF_NAME="v1.0.63"
gh api repos/exo-explore/exo/releases --jq "[.[] | select(.draft == true) | select(.name == \"$GITHUB_REF_NAME\")] | first // empty"
# Returns the full draft release JSON (2711 chars)
```

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 17:05:24 +00:00
Alex Cheema
07cf2c1aa1 Add GitHub releases with Sparkle release notes integration (#1172)
## Motivation

Closes #1140

Currently releases are uploaded to S3 for Sparkle updates but there's no
GitHub Release created, and Sparkle update dialogs don't show release
notes. Users have no visibility into what changed.

## Changes

- Added release workflow documentation comment at top of `build-app.yml`
- Added "Fetch release notes for Sparkle" step that converts markdown
from draft GitHub release to HTML
- Added "Inject release notes into appcast" step that embeds HTML in
appcast.xml with CDATA
- Added "Publish GitHub Release" step that attaches DMG and publishes
the draft

## Why It Works

- Sparkle's `<description>` tag supports HTML wrapped in CDATA for
rendering in update dialogs
- GitHub's markdown API (`/markdown`) converts the release notes to HTML
with proper formatting
- Draft releases allow writing polished notes before the build, then the
workflow publishes them automatically
- The workflow fails if no draft release exists, ensuring release notes
are always provided

## Test Plan

### Manual Testing
1. Create a draft GitHub release for a new tag with markdown release
notes
2. Push the tag to trigger the workflow
3. Verify the GitHub release is published with DMG attached
4. Download appcast.xml from S3 and verify
`<description><![CDATA[...]]></description>` contains HTML
5. Test Sparkle update dialog on macOS to confirm release notes appear

### Automated Testing
No automated tests added - this is CI workflow configuration.

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 16:47:33 +00:00
Evan
83c5285a80 reduce logs
previous commits logs were too verbose, this tones them down a bit
2026-01-16 14:05:47 +00:00
26 changed files with 2705 additions and 132 deletions

View File

@@ -1,5 +1,16 @@
name: Build EXO macOS DMG
# Release workflow:
# 1. Create a draft GitHub Release with the tag name (e.g. v1.0.0) and write release notes in markdown
# 2. Push the tag: git tag v1.0.0 && git push origin v1.0.0
# 3. This workflow builds, signs, and notarizes the DMG
# 4. Release notes are embedded in appcast.xml for Sparkle (rendered as markdown)
# 5. DMG and appcast.xml are uploaded to S3
# 6. The draft GitHub Release is published with the DMG attached
#
# For alpha releases (e.g. v1.0.0-alpha.1): draft release and notes are optional.
# If no draft exists, a release is auto-created with generated notes.
on:
workflow_dispatch:
push:
@@ -11,8 +22,10 @@ on:
jobs:
build-macos-app:
runs-on: "macos-26"
permissions:
contents: write
env:
SPARKLE_VERSION: 2.8.1
SPARKLE_VERSION: 2.9.0-beta.1
SPARKLE_DOWNLOAD_PREFIX: ${{ secrets.SPARKLE_DOWNLOAD_PREFIX }}
SPARKLE_FEED_URL: ${{ secrets.SPARKLE_FEED_URL }}
SPARKLE_ED25519_PUBLIC: ${{ secrets.SPARKLE_ED25519_PUBLIC }}
@@ -87,6 +100,52 @@ jobs:
exit 1
fi
- name: Fetch and validate release notes
if: github.ref_type == 'tag'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Find draft release by name using gh release list (more reliable with default token)
echo "Looking for draft release named '$GITHUB_REF_NAME'..."
DRAFT_EXISTS=$(gh release list --json name,isDraft --jq ".[] | select(.isDraft == true) | select(.name == \"$GITHUB_REF_NAME\") | .name" 2>/dev/null || echo "")
if [[ -z "$DRAFT_EXISTS" ]]; then
if [[ "$IS_ALPHA" == "true" ]]; then
echo "No draft release found for alpha tag $GITHUB_REF_NAME (optional for alphas)"
echo "HAS_RELEASE_NOTES=false" >> $GITHUB_ENV
exit 0
fi
echo "ERROR: No draft release found for tag $GITHUB_REF_NAME"
echo "Please create a draft release with release notes before pushing the tag."
exit 1
fi
# Fetch full release details via API to get body and ID
echo "Found draft release, fetching details..."
RELEASE_JSON=$(gh api repos/${{ github.repository }}/releases --jq ".[] | select(.draft == true) | select(.name == \"$GITHUB_REF_NAME\")" 2>/dev/null || echo "")
# Extract release notes
NOTES=$(echo "$RELEASE_JSON" | jq -r '.body // ""')
if [[ -z "$NOTES" || "$NOTES" == "null" ]]; then
if [[ "$IS_ALPHA" == "true" ]]; then
echo "Draft release has no notes (optional for alphas)"
echo "HAS_RELEASE_NOTES=false" >> $GITHUB_ENV
exit 0
fi
echo "ERROR: Draft release exists but has no release notes"
echo "Please add release notes to the draft release before pushing the tag."
exit 1
fi
# Save release ID for later publishing
RELEASE_ID=$(echo "$RELEASE_JSON" | jq -r '.id')
echo "DRAFT_RELEASE_ID=$RELEASE_ID" >> $GITHUB_ENV
echo "HAS_RELEASE_NOTES=true" >> $GITHUB_ENV
echo "Found draft release (ID: $RELEASE_ID), saving release notes..."
echo "$NOTES" > /tmp/release_notes.md
echo "RELEASE_NOTES_FILE=/tmp/release_notes.md" >> $GITHUB_ENV
# ============================================================
# Install dependencies
# ============================================================
@@ -304,6 +363,28 @@ jobs:
$CHANNEL_FLAG \
.
- name: Inject release notes into appcast
if: github.ref_type == 'tag' && env.HAS_RELEASE_NOTES == 'true'
env:
RELEASE_VERSION: ${{ env.RELEASE_VERSION }}
run: |
# Inject markdown release notes with sparkle:format="markdown" (Sparkle 2.9+)
export NOTES=$(cat "$RELEASE_NOTES_FILE")
# Insert description after the enclosure tag for this version
awk '
/<enclosure[^>]*>/ && index($0, ENVIRON["RELEASE_VERSION"]) {
print
print " <description sparkle:format=\"markdown\"><![CDATA["
print ENVIRON["NOTES"]
print " ]]></description>"
next
}
{ print }
' output/appcast.xml > output/appcast.xml.tmp && mv output/appcast.xml.tmp output/appcast.xml
echo "Injected markdown release notes for version $RELEASE_VERSION"
# ============================================================
# Upload artifacts
# ============================================================
@@ -336,3 +417,26 @@ jobs:
aws s3 cp "$DMG_NAME" "s3://${SPARKLE_S3_BUCKET}/${PREFIX}EXO-latest.dmg"
aws s3 cp appcast.xml "s3://${SPARKLE_S3_BUCKET}/${PREFIX}appcast.xml" --content-type application/xml --cache-control no-cache
fi
- name: Publish GitHub Release
if: github.ref_type == 'tag'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
DMG_PATH="output/EXO-${RELEASE_VERSION}.dmg"
if [[ "$HAS_RELEASE_NOTES" == "true" ]]; then
# Update the draft release with the tag and upload DMG
gh api --method PATCH "repos/${{ github.repository }}/releases/$DRAFT_RELEASE_ID" \
-f tag_name="$GITHUB_REF_NAME" \
-F draft=false
gh release upload "$GITHUB_REF_NAME" "$DMG_PATH" --clobber
echo "Published release $GITHUB_REF_NAME with DMG attached"
else
# Alpha without draft release - create one with auto-generated notes
gh release create "$GITHUB_REF_NAME" "$DMG_PATH" \
--title "$GITHUB_REF_NAME" \
--generate-notes \
--prerelease
echo "Created alpha release $GITHUB_REF_NAME with auto-generated notes"
fi

View File

@@ -40,6 +40,31 @@ uv run ruff check
nix fmt
```
## Pre-Commit Checks (REQUIRED)
**IMPORTANT: Always run these checks before committing code. CI will fail if these don't pass.**
```bash
# 1. Type checking - MUST pass with 0 errors
uv run basedpyright
# 2. Linting - MUST pass
uv run ruff check
# 3. Formatting - MUST be applied
nix fmt
# 4. Tests - MUST pass
uv run pytest
```
Run all checks in sequence:
```bash
uv run basedpyright && uv run ruff check && nix fmt && uv run pytest
```
If `nix fmt` changes any files, stage them before committing. The CI runs `nix flake check` which verifies formatting, linting, and runs Rust tests.
## Architecture
### Node Composition

View File

@@ -585,7 +585,7 @@
repositoryURL = "https://github.com/sparkle-project/Sparkle.git";
requirement = {
kind = upToNextMajorVersion;
minimumVersion = 2.8.1;
minimumVersion = 2.9.0-beta.1;
};
};
/* End XCRemoteSwiftPackageReference section */

View File

@@ -6,8 +6,8 @@
"kind" : "remoteSourceControl",
"location" : "https://github.com/sparkle-project/Sparkle.git",
"state" : {
"revision" : "5581748cef2bae787496fe6d61139aebe0a451f6",
"version" : "2.8.1"
"revision" : "e641adb41915a8409895e2e30666aa64e487b637",
"version" : "2.9.0-beta.1"
}
}
],

View File

@@ -3,6 +3,7 @@
from __future__ import annotations
import argparse
import contextlib
import http.client
import json
import os
@@ -26,7 +27,7 @@ class ExoHttpError(RuntimeError):
class ExoClient:
def __init__(self, host: str, port: int, timeout_s: float = 2400.0):
def __init__(self, host: str, port: int, timeout_s: float = 600.0):
self.host = host
self.port = port
self.timeout_s = timeout_s
@@ -104,22 +105,46 @@ def runner_ready(runner: dict[str, Any]) -> bool:
return "RunnerReady" in runner
def runner_failed(runner: dict[str, Any]) -> bool:
return "RunnerFailed" in runner
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
if "RunnerFailed" in runner:
return runner["RunnerFailed"].get("errorMessage")
return None
def wait_for_instance_ready(
client: ExoClient, instance_id: str, timeout: float = 24000.0
) -> None:
start_time = time.time()
instance_existed = False
while time.time() - start_time < timeout:
state = client.request_json("GET", "/state")
instances = state.get("instances", {})
if instance_id not in instances:
if instance_existed:
# Instance was deleted after being created - likely due to runner failure
raise RuntimeError(
f"Instance {instance_id} was deleted (runner may have failed)"
)
time.sleep(0.1)
continue
instance_existed = True
instance = instances[instance_id]
runner_ids = runner_ids_from_instance(instance)
runners = state.get("runners", {})
# Check for failed runners first
for rid in runner_ids:
runner = runners.get(rid, {})
if runner_failed(runner):
error_msg = get_runner_failed_message(runner) or "Unknown error"
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
return
@@ -299,6 +324,12 @@ def main() -> int:
default=4,
help="Only consider placements using <= this many nodes.",
)
ap.add_argument(
"--min-nodes",
type=int,
default=1,
help="Only consider placements using >= this many nodes.",
)
ap.add_argument(
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
)
@@ -320,7 +351,7 @@ def main() -> int:
help="Warmup runs per placement (uses first pp/tg).",
)
ap.add_argument(
"--timeout", type=float, default=2400.0, help="HTTP timeout (seconds)."
"--timeout", type=float, default=600.0, help="HTTP timeout (seconds)."
)
ap.add_argument(
"--json-out",
@@ -399,7 +430,7 @@ def main() -> int:
):
continue
if 0 < n <= args.max_nodes:
if args.min_nodes <= n <= args.max_nodes:
selected.append(p)
if not selected:
@@ -441,7 +472,13 @@ def main() -> int:
)
client.request_json("POST", "/instance", body={"instance": instance})
wait_for_instance_ready(client, instance_id)
try:
wait_for_instance_ready(client, instance_id)
except (RuntimeError, TimeoutError) as e:
logger.error(f"Failed to initialize placement: {e}")
with contextlib.suppress(ExoHttpError):
client.request_json("DELETE", f"/instance/{instance_id}")
continue
time.sleep(1)

View File

@@ -6,6 +6,8 @@ readme = "README.md"
requires-python = ">=3.13"
dependencies = [
"aiofiles>=24.1.0",
"aiohttp>=3.12.14",
"types-aiofiles>=24.1.0.20250708",
"pydantic>=2.11.7",
"fastapi>=0.116.1",
"filelock>=3.18.0",

View File

@@ -205,6 +205,14 @@ def main():
logger.info("Starting EXO")
logger.info(f"EXO_LIBP2P_NAMESPACE: {os.getenv('EXO_LIBP2P_NAMESPACE')}")
# Set FAST_SYNCH override env var for runner subprocesses
if args.fast_synch is True:
os.environ["EXO_FAST_SYNCH"] = "on"
logger.info("FAST_SYNCH forced ON")
elif args.fast_synch is False:
os.environ["EXO_FAST_SYNCH"] = "off"
logger.info("FAST_SYNCH forced OFF")
node = anyio.run(Node.create, args)
anyio.run(node.run)
logger.info("EXO Shutdown complete")
@@ -218,6 +226,7 @@ class Args(CamelCaseModel):
api_port: PositiveInt = 52415
tb_only: bool = False
no_worker: bool = False
fast_synch: bool | None = None # None = auto, True = force on, False = force off
@classmethod
def parse(cls) -> Self:
@@ -259,6 +268,20 @@ class Args(CamelCaseModel):
"--no-worker",
action="store_true",
)
fast_synch_group = parser.add_mutually_exclusive_group()
fast_synch_group.add_argument(
"--fast-synch",
action="store_true",
dest="fast_synch",
default=None,
help="Force MLX FAST_SYNCH on (for JACCL backend)",
)
fast_synch_group.add_argument(
"--no-fast-synch",
action="store_false",
dest="fast_synch",
help="Force MLX FAST_SYNCH off",
)
args = parser.parse_args()
return cls(**vars(args)) # pyright: ignore[reportAny] - We are intentionally validating here, we can't do it statically

View File

@@ -1,13 +1,14 @@
import time
from collections.abc import AsyncGenerator
from http import HTTPStatus
from typing import cast
import anyio
from anyio import create_task_group
from anyio import BrokenResourceError, create_task_group
from anyio.abc import TaskGroup
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType]
from hypercorn.config import Config
@@ -29,6 +30,8 @@ from exo.shared.types.api import (
CreateInstanceParams,
CreateInstanceResponse,
DeleteInstanceResponse,
ErrorInfo,
ErrorResponse,
FinishReason,
GenerationStats,
ModelList,
@@ -49,7 +52,12 @@ from exo.shared.types.commands import (
TaskFinished,
)
from exo.shared.types.common import CommandId, NodeId, SessionId
from exo.shared.types.events import ChunkGenerated, Event, ForwarderEvent, IndexedEvent
from exo.shared.types.events import (
ChunkGenerated,
Event,
ForwarderEvent,
IndexedEvent,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.state import State
@@ -115,6 +123,7 @@ class API:
self.paused_ev: anyio.Event = anyio.Event()
self.app = FastAPI()
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
@@ -145,6 +154,20 @@ class API:
self.paused_ev.set()
self.paused_ev = anyio.Event()
def _setup_exception_handlers(self) -> None:
@self.app.exception_handler(HTTPException)
async def http_exception_handler( # pyright: ignore[reportUnusedFunction]
_: Request, exc: HTTPException
) -> JSONResponse:
err = ErrorResponse(
error=ErrorInfo(
message=exc.detail,
type=HTTPStatus(exc.status_code).phrase,
code=exc.status_code,
)
)
return JSONResponse(err.model_dump(), status_code=exc.status_code)
def _setup_cors(self) -> None:
self.app.add_middleware(
CORSMiddleware,
@@ -406,6 +429,18 @@ class API:
"""Generate chat completion stream as JSON strings."""
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
error_response = ErrorResponse(
error=ErrorInfo(
message=chunk.error_message or "Internal server error",
type="InternalServerError",
code=500,
)
)
yield f"data: {error_response.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
return
chunk_response: ChatCompletionResponse = chunk_to_response(
chunk, command_id
)
@@ -426,6 +461,12 @@ class API:
finish_reason: FinishReason | None = None
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
raise HTTPException(
status_code=500,
detail=chunk.error_message or "Internal server error",
)
if model is None:
model = chunk.model
@@ -463,6 +504,12 @@ class API:
stats: GenerationStats | None = None
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
raise HTTPException(
status_code=500,
detail=chunk.error_message or "Internal server error",
)
if model is None:
model = chunk.model
@@ -607,14 +654,14 @@ class API:
for idx, event in self.event_buffer.drain_indexed():
self._event_log.append(event)
self.state = apply(self.state, IndexedEvent(event=event, idx=idx))
if (
isinstance(event, ChunkGenerated)
and event.command_id in self._chat_completion_queues
):
if isinstance(event, ChunkGenerated):
assert isinstance(event.chunk, TokenChunk)
await self._chat_completion_queues[event.command_id].send(
event.chunk
)
queue = self._chat_completion_queues.get(event.command_id)
if queue is not None:
try:
await queue.send(event.chunk)
except BrokenResourceError:
self._chat_completion_queues.pop(event.command_id, None)
async def _pause_on_new_election(self):
with self.election_receiver as ems:

View File

@@ -0,0 +1,107 @@
# pyright: reportUnusedFunction=false, reportAny=false
from typing import Any, get_args
from fastapi import FastAPI, HTTPException
from fastapi.testclient import TestClient
from exo.shared.types.api import ErrorInfo, ErrorResponse, FinishReason
from exo.shared.types.chunks import TokenChunk
from exo.worker.tests.constants import MODEL_A_ID
def test_http_exception_handler_formats_openai_style() -> None:
"""Test that HTTPException is converted to OpenAI-style error format."""
from exo.master.api import API
app = FastAPI()
# Setup exception handler
api = object.__new__(API)
api.app = app
api._setup_exception_handlers() # pyright: ignore[reportPrivateUsage]
# Add test routes that raise HTTPException
@app.get("/test-error")
async def _test_error() -> None:
raise HTTPException(status_code=500, detail="Test error message")
@app.get("/test-not-found")
async def _test_not_found() -> None:
raise HTTPException(status_code=404, detail="Resource not found")
client = TestClient(app)
# Test 500 error
response = client.get("/test-error")
assert response.status_code == 500
data: dict[str, Any] = response.json()
assert "error" in data
assert data["error"]["message"] == "Test error message"
assert data["error"]["type"] == "Internal Server Error"
assert data["error"]["code"] == 500
# Test 404 error
response = client.get("/test-not-found")
assert response.status_code == 404
data = response.json()
assert "error" in data
assert data["error"]["message"] == "Resource not found"
assert data["error"]["type"] == "Not Found"
assert data["error"]["code"] == 404
def test_finish_reason_includes_error() -> None:
valid_reasons = get_args(FinishReason)
assert "error" in valid_reasons
def test_token_chunk_with_error_fields() -> None:
chunk = TokenChunk(
idx=0,
model=MODEL_A_ID,
text="",
token_id=0,
finish_reason="error",
error_message="Something went wrong",
)
assert chunk.finish_reason == "error"
assert chunk.error_message == "Something went wrong"
def test_token_chunk_without_error() -> None:
chunk = TokenChunk(
idx=1,
model=MODEL_A_ID,
text="Hello",
token_id=42,
finish_reason=None,
)
assert chunk.finish_reason is None
assert chunk.error_message is None
def test_error_response_construction() -> None:
error_response = ErrorResponse(
error=ErrorInfo(
message="Generation failed",
type="InternalServerError",
code=500,
)
)
assert error_response.error.message == "Generation failed"
assert error_response.error.code == 500
def test_normal_finish_reasons_still_work() -> None:
for reason in ["stop", "length", "tool_calls", "content_filter", "function_call"]:
chunk = TokenChunk(
idx=0,
model=MODEL_A_ID,
text="done",
token_id=100,
finish_reason=reason, # type: ignore[arg-type]
)
assert chunk.finish_reason == reason

View File

@@ -11,10 +11,21 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
FinishReason = Literal[
"stop", "length", "tool_calls", "content_filter", "function_call"
"stop", "length", "tool_calls", "content_filter", "function_call", "error"
]
class ErrorInfo(BaseModel):
message: str
type: str
param: str | None = None
code: int
class ErrorResponse(BaseModel):
error: ErrorInfo
class ModelListModel(BaseModel):
id: str
object: str = "model"

View File

@@ -22,6 +22,7 @@ class TokenChunk(BaseChunk):
token_id: int
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
error_message: str | None = None
class ImageChunk(BaseChunk):

View File

@@ -7,13 +7,13 @@ import time
import traceback
from datetime import timedelta
from pathlib import Path
from typing import Callable, Literal, cast
from typing import Callable, Literal
from urllib.parse import urljoin
import aiofiles
import aiofiles.os as aios
import aiohttp
import certifi
import httpx
from loguru import logger
from pydantic import (
BaseModel,
@@ -207,22 +207,23 @@ async def _fetch_file_list(
headers = await get_download_headers()
async with (
create_http_session(timeout_profile="short") as session,
session.get(url, headers=headers) as response,
):
response = await session.get(url, headers=headers)
if response.status_code != 200:
raise Exception(f"Failed to fetch file list: {response.status_code}")
data = TypeAdapter(list[FileListEntry]).validate_json(response.text)
files: list[FileListEntry] = []
for item in data:
if item.type == "file":
files.append(FileListEntry.model_validate(item))
elif item.type == "directory" and recursive:
subfiles = await _fetch_file_list(
repo_id, revision, item.path, recursive
)
files.extend(subfiles)
return files
if response.status == 200:
data_json = await response.text()
data = TypeAdapter(list[FileListEntry]).validate_json(data_json)
files: list[FileListEntry] = []
for item in data:
if item.type == "file":
files.append(FileListEntry.model_validate(item))
elif item.type == "directory" and recursive:
subfiles = await _fetch_file_list(
repo_id, revision, item.path, recursive
)
files.extend(subfiles)
return files
else:
raise Exception(f"Failed to fetch file list: {response.status}")
async def get_download_headers() -> dict[str, str]:
@@ -230,25 +231,31 @@ async def get_download_headers() -> dict[str, str]:
def create_http_session(
auto_decompress: bool = False,
timeout_profile: Literal["short", "long"] = "long",
) -> httpx.AsyncClient:
) -> aiohttp.ClientSession:
if timeout_profile == "short":
total_timeout = 30
connect_timeout = 10
read_timeout = 30
sock_read_timeout = 30
sock_connect_timeout = 10
else:
total_timeout = 1800
connect_timeout = 60
read_timeout = 1800
sock_read_timeout = 1800
sock_connect_timeout = 60
ssl_context = ssl.create_default_context(cafile=certifi.where())
connector = aiohttp.TCPConnector(ssl=ssl_context)
return httpx.AsyncClient(
verify=ssl_context,
timeout=httpx.Timeout(
return aiohttp.ClientSession(
auto_decompress=auto_decompress,
connector=connector,
timeout=aiohttp.ClientTimeout(
total=total_timeout,
connect=connect_timeout,
read=read_timeout,
write=total_timeout,
sock_read=sock_read_timeout,
sock_connect=sock_connect_timeout,
),
)
@@ -275,25 +282,23 @@ async def file_meta(
headers = await get_download_headers()
async with (
create_http_session(timeout_profile="short") as session,
session.head(url, headers=headers) as r,
):
r = await session.head(url, headers=headers)
if r.status_code == 307:
if r.status == 307:
# On redirect, only trust Hugging Face's x-linked-* headers.
x_linked_size = cast(str | None, r.headers.get("x-linked-size"))
x_linked_etag = cast(str | None, r.headers.get("x-linked-etag"))
x_linked_size = r.headers.get("x-linked-size")
x_linked_etag = r.headers.get("x-linked-etag")
if x_linked_size and x_linked_etag:
content_length = int(x_linked_size)
etag = trim_etag(x_linked_etag)
return content_length, etag
# Otherwise, follow the redirect to get authoritative size/hash
redirected_location = cast(str | None, r.headers.get("location"))
redirected_location = r.headers.get("location")
return await file_meta(repo_id, revision, path, redirected_location)
content_length = cast(
str | None,
r.headers.get("x-linked-size") or r.headers.get("content-length"),
content_length = int(
r.headers.get("x-linked-size") or r.headers.get("content-length") or 0
)
content_length = 0 if content_length is None else int(content_length)
etag = cast(str | None, r.headers.get("x-linked-etag") or r.headers.get("etag"))
etag = r.headers.get("x-linked-etag") or r.headers.get("etag")
assert content_length > 0, f"No content length for {url}"
assert etag is not None, f"No remote hash for {url}"
etag = trim_etag(etag)
@@ -352,17 +357,17 @@ async def _download_file(
n_read = resume_byte_pos or 0
async with (
create_http_session(timeout_profile="long") as session,
session.get(url, headers=headers) as r,
):
r = await session.get(url, headers=headers)
if r.status_code == 404:
if r.status == 404:
raise FileNotFoundError(f"File not found: {url}")
assert r.status_code in [200, 206], (
f"Failed to download {path} from {url}: {r.status_code}"
assert r.status in [200, 206], (
f"Failed to download {path} from {url}: {r.status}"
)
async with aiofiles.open(
partial_path, "ab" if resume_byte_pos else "wb"
) as f:
async for chunk in r.aiter_bytes(8 * 1024 * 1024):
while chunk := await r.content.read(8 * 1024 * 1024):
n_read = n_read + (await f.write(chunk))
on_progress(n_read, length, False)

View File

@@ -13,3 +13,8 @@ KV_CACHE_BITS: int | None = None
# TODO: We should really make this opt-in, but Kimi requires trust_remote_code=True
TRUST_REMOTE_CODE: bool = True
# Multi-Token Prediction (MTP) configuration for DeepSeek V3
# MTP enables speculative decoding using the model's built-in draft layer
MTP_ENABLED: bool = True # Feature flag to enable/disable MTP
MTP_NUM_DRAFT_TOKENS: int = 1 # Number of tokens to draft (vLLM reports k=1 is optimal)

View File

@@ -19,7 +19,13 @@ from exo.shared.types.worker.runner_response import (
GenerationResponse,
)
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.constants import KV_BITS, KV_GROUP_SIZE, MAX_TOKENS
from exo.worker.engines.mlx.constants import (
KV_BITS,
KV_GROUP_SIZE,
MAX_TOKENS,
MTP_ENABLED,
MTP_NUM_DRAFT_TOKENS,
)
from exo.worker.engines.mlx.utils_mlx import (
apply_chat_template,
make_kv_cache,
@@ -115,6 +121,11 @@ def eos_ids_from_tokenizer(tokenizer: TokenizerWrapper) -> list[int]:
return eos
def _has_mtp_module(model: Model) -> bool:
"""Check if the model has an attached MTP module."""
return hasattr(model, "mtp_module") and model.mtp_module is not None # type: ignore[attr-defined]
def mlx_generate(
model: Model,
tokenizer: TokenizerWrapper,
@@ -149,6 +160,43 @@ def mlx_generate(
)
max_tokens = task.max_tokens or MAX_TOKENS
# Check if we should use MTP speculative decoding
use_mtp = MTP_ENABLED and _has_mtp_module(model)
if use_mtp:
logger.info("Using MTP speculative decoding")
yield from _mlx_generate_with_mtp(
model=model,
tokenizer=tokenizer,
prompt=prompt,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=caches,
)
else:
yield from _mlx_generate_standard(
model=model,
tokenizer=tokenizer,
prompt=prompt,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=caches,
)
def _mlx_generate_standard(
model: Model,
tokenizer: TokenizerWrapper,
prompt: str,
max_tokens: int,
sampler: Callable[[mx.array], mx.array],
logits_processors: list[Callable[[mx.array, mx.array], mx.array]],
prompt_cache: list[KVCache | Any],
) -> Generator[GenerationResponse]:
"""Standard generation path using mlx_lm stream_generate."""
for out in stream_generate(
model=model,
tokenizer=tokenizer,
@@ -156,7 +204,7 @@ def mlx_generate(
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=caches,
prompt_cache=prompt_cache,
# TODO: Dynamically change prefill step size to be the maximum possible without timing out.
prefill_step_size=2048,
kv_group_size=KV_GROUP_SIZE,
@@ -191,4 +239,64 @@ def mlx_generate(
if out.finish_reason is not None:
break
def _mlx_generate_with_mtp(
model: Model,
tokenizer: TokenizerWrapper,
prompt: str,
max_tokens: int,
sampler: Callable[[mx.array], mx.array],
logits_processors: list[Callable[[mx.array, mx.array], mx.array]],
prompt_cache: list[KVCache | Any],
) -> Generator[GenerationResponse]:
"""MTP speculative decoding generation path.
Uses the model's attached MTP module for speculative decoding,
which can provide 1.5-2x speedup with ~81% acceptance rate.
"""
from exo.worker.engines.mlx.mtp.speculative_decode import mtp_speculative_generate
mtp_module = model.mtp_module # type: ignore[attr-defined]
for out in mtp_speculative_generate(
model=model,
mtp_module=mtp_module,
tokenizer=tokenizer,
prompt=prompt,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=prompt_cache,
num_draft_tokens=MTP_NUM_DRAFT_TOKENS,
prefill_step_size=2048,
kv_group_size=KV_GROUP_SIZE if KV_GROUP_SIZE is not None else 64,
kv_bits=KV_BITS,
):
logger.info(f"{out.text} (from_draft={out.from_draft})")
stats: GenerationStats | None = None
if out.finish_reason is not None:
stats = GenerationStats(
prompt_tps=float(out.prompt_tps),
generation_tps=float(out.generation_tps),
prompt_tokens=int(out.prompt_tokens),
generation_tokens=int(out.generation_tokens),
peak_memory_usage=Memory.from_gb(out.peak_memory),
)
if out.finish_reason not in get_args(FinishReason):
logger.warning(
f"Model generated unexpected finish_reason: {out.finish_reason}"
)
yield GenerationResponse(
text=out.text,
token=out.token,
finish_reason=cast(FinishReason | None, out.finish_reason),
stats=stats,
)
if out.finish_reason is not None:
break
# TODO: Do we want an mx_barrier?

View File

@@ -0,0 +1,6 @@
"""Multi-Token Prediction (MTP) module for DeepSeek V3 speculative decoding."""
from exo.worker.engines.mlx.mtp.module import MTPModule
from exo.worker.engines.mlx.mtp.speculative_decode import mtp_speculative_generate
__all__ = ["MTPModule", "mtp_speculative_generate"]

View File

@@ -0,0 +1,207 @@
"""MTP Module for DeepSeek V3 Multi-Token Prediction.
The MTP architecture predicts one additional token ahead using:
1. hnorm - RMSNorm for hidden state normalization
2. enorm - RMSNorm for embedding normalization
3. eh_proj - Linear(2*hidden_size -> hidden_size) projection
4. transformer_block - Single decoder layer (attention + MLP)
5. Shared embedding/lm_head from main model
Forward pass:
h_norm = hnorm(hidden_state)
e_norm = enorm(embed(token))
projected = eh_proj(concat([h_norm, e_norm]))
new_hidden = transformer_block(projected)
logits = lm_head(output_norm(new_hidden))
"""
from typing import Any
import mlx.core as mx
import mlx.nn as nn
from mlx_lm.models.cache import KVCache
from mlx_lm.models.deepseek_v3 import (
DeepseekV3Attention,
DeepseekV3MLP,
ModelArgs,
)
MTP_LAYER_INDEX = 61
class MTPModule(nn.Module):
"""Multi-Token Prediction module for DeepSeek V3.
This module is initialized from the layer 61 weights that are normally
discarded during model loading. It enables speculative decoding by
predicting one token ahead using the hidden state from the main model.
"""
def __init__(
self,
config: ModelArgs,
shared_embedding: nn.Embedding,
shared_lm_head: nn.Linear,
output_norm: nn.RMSNorm,
) -> None:
super().__init__()
self.config = config
# MTP-specific normalization layers
self.hnorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.enorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# Projection: concatenated [hidden, embedding] -> hidden_size
self.eh_proj = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=False)
# Single transformer block for MTP
# Use a dense MLP since this is just a single layer
self.transformer_block = MTPTransformerBlock(config)
# Share embedding and lm_head with main model
self._shared_embedding = shared_embedding
self._shared_lm_head = shared_lm_head
self._output_norm = output_norm
def __call__(
self,
hidden_state: mx.array,
draft_token: mx.array,
cache: KVCache | None = None,
mask: mx.array | None = None,
) -> tuple[mx.array, mx.array]:
"""Forward pass for MTP.
Args:
hidden_state: Hidden state from main model [batch, seq_len, hidden_size]
draft_token: Token to embed and combine with hidden state [batch, seq_len]
cache: Optional KV cache for the MTP transformer block
mask: Optional attention mask
Returns:
tuple of (logits, new_hidden_state)
"""
# Get embedding of draft token
embedding = self._shared_embedding(draft_token)
# Normalize hidden state and embedding
h_norm = self.hnorm(hidden_state)
e_norm = self.enorm(embedding)
# Project concatenated representation
concatenated = mx.concatenate([h_norm, e_norm], axis=-1)
projected = self.eh_proj(concatenated)
# Pass through single transformer block
new_hidden = self.transformer_block(projected, mask=mask, cache=cache)
# Apply output norm and get logits
normed_hidden = self._output_norm(new_hidden)
logits = self._shared_lm_head(normed_hidden)
return logits, new_hidden
class MTPTransformerBlock(nn.Module):
"""Single transformer block for MTP.
This is similar to DeepseekV3DecoderLayer but uses a dense MLP
instead of MoE since this is just for the single MTP layer.
"""
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.self_attn = DeepseekV3Attention(config)
# MTP uses dense MLP, not MoE
self.mlp = DeepseekV3MLP(config)
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: mx.array | None = None,
cache: Any | None = None,
) -> mx.array:
"""Forward pass with residual connections."""
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
return h + r
def extract_mtp_weights(weights: dict[str, mx.array]) -> dict[str, mx.array]:
"""Extract MTP-specific weights from layer 61.
The MTP layer has these weight patterns:
- model.layers.61.enorm.weight -> MTP embedding normalization
- model.layers.61.hnorm.weight -> MTP hidden normalization
- model.layers.61.eh_proj.weight -> MTP projection layer
- model.layers.61.self_attn.* -> MTP attention
- model.layers.61.input_layernorm.* -> MTP layer norms
- model.layers.61.post_attention_layernorm.*
- model.layers.61.mlp.* -> MTP MLP (dense, not MoE)
Args:
weights: Full model weights dict
Returns:
Dict of MTP-specific weights with keys renamed for MTPModule
"""
mtp_weights: dict[str, mx.array] = {}
mtp_prefix = f"model.layers.{MTP_LAYER_INDEX}."
for key, value in weights.items():
if key.startswith(mtp_prefix):
# Remove the layer prefix to get relative path
new_key = key[len(mtp_prefix) :]
mtp_weights[new_key] = value
return mtp_weights
def load_mtp_weights_into_module(
mtp_module: MTPModule,
mtp_weights: dict[str, mx.array],
) -> None:
"""Load extracted MTP weights into the MTPModule.
Args:
mtp_module: The MTPModule instance to load weights into
mtp_weights: Extracted MTP weights from extract_mtp_weights()
"""
# Map weight names to module attributes
weight_mapping: dict[str, str] = {
"enorm.weight": "enorm.weight",
"hnorm.weight": "hnorm.weight",
"eh_proj.weight": "eh_proj.weight",
}
# Load direct mappings
for src_name, dst_name in weight_mapping.items():
if src_name in mtp_weights:
parts = dst_name.split(".")
obj: Any = mtp_module
for part in parts[:-1]:
obj = getattr(obj, part)
setattr(obj, parts[-1], mtp_weights[src_name])
# Load transformer block weights (self_attn, mlp, layer norms)
transformer_prefixes = [
"self_attn",
"mlp",
"input_layernorm",
"post_attention_layernorm",
]
for prefix in transformer_prefixes:
for key, value in mtp_weights.items():
if key.startswith(prefix):
# Navigate to the correct attribute
parts = key.split(".")
obj = mtp_module.transformer_block
for part in parts[:-1]:
obj = getattr(obj, part)
setattr(obj, parts[-1], value)

View File

@@ -0,0 +1,506 @@
"""MTP Speculative Decoding for DeepSeek V3.
This module implements speculative decoding using the Multi-Token Prediction (MTP)
layer from DeepSeek V3. The key difference from standard speculative decoding is
that MTP requires hidden states from the main model, not just token predictions.
Based on vLLM/SGLang research:
- 81-82% acceptance rate with k=1
- 1.5-2x speedup at low QPS
"""
import functools
import time
from collections.abc import Callable, Generator
from dataclasses import dataclass
from typing import Any, cast
import mlx.core as mx
import mlx.nn as nn
from mlx_lm.models import cache
from mlx_lm.models.cache import KVCache
from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.worker.engines.mlx.mtp.module import MTPModule
# Generation stream for async operations
generation_stream = mx.new_stream(mx.default_device())
@dataclass
class MTPGenerationResponse:
"""Response from MTP speculative generation.
Attributes:
text: The next segment of decoded text.
token: The next token.
logprobs: A vector of log probabilities.
from_draft: Whether the token was generated by the MTP draft module.
prompt_tokens: The number of tokens in the prompt.
prompt_tps: The prompt processing tokens-per-second.
generation_tokens: The number of generated tokens.
generation_tps: The tokens-per-second for generation.
peak_memory: The peak memory used so far in GB.
finish_reason: The reason the response is being sent: "length", "stop" or None.
"""
text: str
token: int
logprobs: mx.array
from_draft: bool
prompt_tokens: int
prompt_tps: float
generation_tokens: int
generation_tps: float
peak_memory: float
finish_reason: str | None = None
def maybe_quantize_kv_cache(
prompt_cache: list[Any],
quantized_kv_start: int,
kv_group_size: int,
kv_bits: int | None,
) -> None:
"""Quantize KV cache entries if needed."""
if kv_bits is None:
return
for e, c in enumerate(prompt_cache):
if (
hasattr(c, "to_quantized")
and hasattr(c, "offset")
and c.offset >= quantized_kv_start
):
prompt_cache[e] = c.to_quantized(group_size=kv_group_size, bits=kv_bits)
class ModelWithHiddenStates(nn.Module):
"""Wrapper to extract hidden states before lm_head.
This wrapper allows capturing the hidden states from the transformer
layers before the final lm_head projection, which is needed for MTP.
"""
def __init__(self, base_model: nn.Module) -> None:
super().__init__()
self._base = base_model
def forward_with_hidden(
self,
inputs: mx.array,
model_cache: list[Any] | None = None,
) -> tuple[mx.array, mx.array]:
"""Forward pass that returns both logits and hidden states.
Args:
inputs: Input token ids
model_cache: KV cache
Returns:
Tuple of (logits, hidden_states)
"""
# Call the inner model (transformer layers + norm)
hidden: mx.array = self._base.model(inputs, model_cache)
# Get logits from lm_head
logits: mx.array = self._base.lm_head(hidden)
return logits, hidden
def forward(
self,
inputs: mx.array,
model_cache: list[Any] | None = None,
) -> mx.array:
"""Standard forward pass returning only logits."""
return cast(mx.array, self._base(inputs, cache=model_cache))
@property
def layers(self) -> list[nn.Module]:
"""Access layers for cache creation."""
return cast(list[nn.Module], self._base.layers)
def mtp_speculative_generate_step(
prompt: mx.array,
model: nn.Module,
mtp_module: MTPModule,
*,
num_draft_tokens: int = 1,
max_tokens: int = 256,
sampler: Callable[[mx.array], mx.array] | None = None,
logits_processors: list[Callable[[mx.array, mx.array], mx.array]] | None = None,
prompt_cache: list[Any] | None = None,
mtp_cache: KVCache | None = None,
prefill_step_size: int = 512,
kv_bits: int | None = None,
kv_group_size: int = 64,
quantized_kv_start: int = 0,
) -> Generator[tuple[int, mx.array, bool], None, None]:
"""MTP speculative decoding generator.
Unlike standard speculative decoding where the draft model only needs tokens,
MTP requires the hidden states from the main model. This generator:
1. Runs the main model to get logits AND hidden states
2. Uses MTP module with hidden state + sampled token to predict next token
3. Verifies MTP predictions with the main model
4. Accepts/rejects based on matching
Args:
prompt: The input prompt as token ids
model: The main model (must support return_hidden=True)
mtp_module: The MTP module for draft prediction
num_draft_tokens: Number of tokens to draft (typically 1 for MTP)
max_tokens: Maximum number of tokens to generate
sampler: Optional sampler function for token selection
logits_processors: Optional list of logits processors
prompt_cache: KV cache for the main model
mtp_cache: KV cache for the MTP module
prefill_step_size: Step size for prompt processing
kv_bits: Bits for KV cache quantization
kv_group_size: Group size for KV cache quantization
quantized_kv_start: Step to begin cache quantization
Yields:
Tuple of (token, logprobs, from_draft)
"""
y = prompt.astype(mx.uint32)
prev_tokens: mx.array | None = None
# Wrap model to get hidden states
wrapped_model = (
model
if isinstance(model, ModelWithHiddenStates)
else ModelWithHiddenStates(model)
)
# Create caches if needed
if prompt_cache is None:
prompt_cache = cache.make_prompt_cache(model)
if mtp_cache is None:
mtp_cache = KVCache()
final_sampler = (
sampler if sampler is not None else (lambda x: mx.argmax(x, axis=-1))
)
quantize_cache_fn = functools.partial(
maybe_quantize_kv_cache,
quantized_kv_start=quantized_kv_start,
kv_group_size=kv_group_size,
kv_bits=kv_bits,
)
def _process_and_sample(
tokens: mx.array | None,
logits: mx.array,
) -> tuple[mx.array, mx.array]:
"""Process logits and sample tokens."""
nonlocal logits_processors
processed_logits = logits
if logits_processors:
for processor in logits_processors:
processed_logits = processor(
tokens if tokens is not None else mx.array([]), processed_logits
)
logprobs = processed_logits - mx.logsumexp(
processed_logits, axis=-1, keepdims=True
)
sampled = final_sampler(logprobs)
return sampled, logprobs
def _main_model_step_with_hidden(
input_y: mx.array,
) -> tuple[mx.array, mx.array, mx.array]:
"""Run main model step with hidden state return."""
nonlocal prev_tokens
with mx.stream(generation_stream):
logits, hidden = wrapped_model.forward_with_hidden(
input_y[None], prompt_cache
)
logits = logits[:, -1, :]
quantize_cache_fn(prompt_cache)
if logits_processors:
prev_tokens = (
mx.concatenate([prev_tokens, input_y])
if prev_tokens is not None
else input_y
)
sampled, logprobs_result = _process_and_sample(prev_tokens, logits)
return sampled, logprobs_result.squeeze(0), hidden[:, -1:, :]
def _main_model_step(
input_y: mx.array,
) -> tuple[mx.array, mx.array]:
"""Run main model step without hidden state."""
nonlocal prev_tokens
with mx.stream(generation_stream):
logits = wrapped_model.forward(input_y[None], prompt_cache)
logits = logits[:, -1, :]
quantize_cache_fn(prompt_cache)
if logits_processors:
prev_tokens = (
mx.concatenate([prev_tokens, input_y])
if prev_tokens is not None
else input_y
)
sampled, logprobs_result = _process_and_sample(prev_tokens, logits)
return sampled, logprobs_result.squeeze(0)
def _mtp_draft(
hidden_state: mx.array,
draft_token: mx.array,
) -> tuple[mx.array, mx.array]:
"""Generate draft token using MTP module."""
with mx.stream(generation_stream):
logits, new_hidden = mtp_module(
hidden_state,
draft_token,
cache=mtp_cache,
)
logits = logits[:, -1, :]
sampled, _ = _process_and_sample(None, logits)
return sampled, new_hidden
def _prefill(input_y: mx.array) -> mx.array:
"""Prefill the prompt cache."""
result_y = input_y
while result_y.size > prefill_step_size:
_ = wrapped_model.forward(result_y[:prefill_step_size][None], prompt_cache)
quantize_cache_fn(prompt_cache)
mx.eval([c.state for c in prompt_cache])
result_y = result_y[prefill_step_size:]
mx.clear_cache()
return result_y
def _rewind_cache(num_draft: int, num_accept: int) -> None:
"""Rewind caches after rejection."""
cache.trim_prompt_cache(prompt_cache, num_draft - num_accept)
# Prefill phase
with mx.stream(generation_stream):
y = _prefill(y)
ntoks = 0
num_draft = 0
n_accepted = 0
last_hidden: mx.array | None = None
try:
# Initial step to get first token and hidden state
sampled, logprobs, last_hidden = _main_model_step_with_hidden(y)
mx.eval(sampled, logprobs, last_hidden)
y = sampled
current_logprobs = logprobs
while ntoks < max_tokens:
# Draft phase: use MTP to predict next token
num_draft = min(max_tokens - ntoks - 1, num_draft_tokens)
if num_draft > 0 and last_hidden is not None:
# Use MTP to draft
draft_token, draft_hidden = _mtp_draft(last_hidden, y)
mx.eval(draft_token, draft_hidden)
# Verify with main model
# Feed the drafted token to main model
verify_input = mx.concatenate([y, draft_token.flatten()])
verify_sampled, verify_logprobs, new_hidden = (
_main_model_step_with_hidden(verify_input)
)
mx.eval(verify_sampled, verify_logprobs, new_hidden)
# Check if draft matches verification
draft_token_val = int(draft_token.item())
verify_token_val = (
int(verify_sampled[0].item())
if verify_sampled.shape[0] > 1
else int(verify_sampled.item())
)
# Yield the current token (not from draft)
ntoks += 1
yield int(y.item()), current_logprobs, False
if ntoks >= max_tokens:
break
if draft_token_val == verify_token_val:
# Draft accepted
n_accepted += 1
ntoks += 1
draft_logprobs = (
verify_logprobs[0]
if verify_logprobs.ndim > 1
else verify_logprobs
)
yield draft_token_val, draft_logprobs, True
if ntoks >= max_tokens:
break
# Continue with the token after the draft
y = (
verify_sampled[-1:]
if verify_sampled.ndim > 0 and verify_sampled.shape[0] > 1
else verify_sampled
)
current_logprobs = (
verify_logprobs[-1]
if verify_logprobs.ndim > 1
else verify_logprobs
)
last_hidden = new_hidden
else:
# Draft rejected - rewind and use verified token
_rewind_cache(1, 0)
y = (
verify_sampled[:1]
if verify_sampled.ndim > 0 and verify_sampled.shape[0] > 1
else verify_sampled
)
current_logprobs = (
verify_logprobs[0]
if verify_logprobs.ndim > 1
else verify_logprobs
)
last_hidden = (
new_hidden[:, :1, :] if new_hidden is not None else None
)
else:
# No drafting, just do normal generation
ntoks += 1
yield int(y.item()), current_logprobs, False
if ntoks >= max_tokens:
break
sampled, logprobs, last_hidden = _main_model_step_with_hidden(y)
mx.eval(sampled, logprobs, last_hidden)
y = sampled
current_logprobs = logprobs
if ntoks % 256 == 0:
mx.clear_cache()
finally:
_rewind_cache(num_draft, n_accepted)
def mtp_speculative_generate(
model: nn.Module,
mtp_module: MTPModule,
tokenizer: TokenizerWrapper,
prompt: str | mx.array | list[int],
max_tokens: int = 256,
sampler: Callable[[mx.array], mx.array] | None = None,
logits_processors: list[Callable[[mx.array, mx.array], mx.array]] | None = None,
prompt_cache: list[Any] | None = None,
num_draft_tokens: int = 1,
prefill_step_size: int = 512,
kv_group_size: int = 64,
kv_bits: int | None = None,
) -> Generator[MTPGenerationResponse, None, None]:
"""High-level MTP speculative generation with text output.
Args:
model: The main model
mtp_module: The MTP module for draft prediction
tokenizer: Tokenizer for encoding/decoding
prompt: Input prompt (string, array, or token list)
max_tokens: Maximum tokens to generate
sampler: Optional sampler function
logits_processors: Optional logits processors
prompt_cache: Optional KV cache
num_draft_tokens: Number of draft tokens
prefill_step_size: Prefill step size
kv_group_size: KV group size
kv_bits: KV bits
Yields:
MTPGenerationResponse objects with text and metadata
"""
if not isinstance(prompt, mx.array):
if isinstance(prompt, str):
bos_token = getattr(tokenizer, "bos_token", None)
add_special_tokens = bos_token is None or not prompt.startswith(
str(bos_token)
)
encoded: list[int] = tokenizer.encode(
prompt, add_special_tokens=add_special_tokens
)
prompt = mx.array(encoded)
else:
prompt = mx.array(prompt)
detokenizer = tokenizer.detokenizer
eos_token_ids: list[int] = getattr(tokenizer, "eos_token_ids", [])
token_generator = mtp_speculative_generate_step(
prompt,
model,
mtp_module,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=prompt_cache,
num_draft_tokens=num_draft_tokens,
prefill_step_size=prefill_step_size,
kv_group_size=kv_group_size,
kv_bits=kv_bits,
)
tic = time.perf_counter()
prompt_tps = 0.0
token = 0
logprobs: mx.array = mx.array([0.0])
from_draft = False
n = 0
for n, (token, logprobs, from_draft) in enumerate(token_generator):
if n == 0:
prompt_time = time.perf_counter() - tic
prompt_tps = float(prompt.size) / prompt_time
tic = time.perf_counter()
if token in eos_token_ids:
break
detokenizer.add_token(token)
if (n + 1) == max_tokens:
break
yield MTPGenerationResponse(
text=str(detokenizer.last_segment),
token=token,
logprobs=logprobs,
from_draft=from_draft,
prompt_tokens=int(prompt.size),
prompt_tps=prompt_tps,
generation_tokens=n + 1,
generation_tps=(n + 1) / (time.perf_counter() - tic),
peak_memory=mx.get_peak_memory() / 1e9,
finish_reason=None,
)
detokenizer.finalize()
yield MTPGenerationResponse(
text=str(detokenizer.last_segment),
token=token,
logprobs=logprobs,
from_draft=from_draft,
prompt_tokens=int(prompt.size),
prompt_tps=prompt_tps,
generation_tokens=n + 1,
generation_tps=(n + 1) / (time.perf_counter() - tic),
peak_memory=mx.get_peak_memory() / 1e9,
finish_reason="stop" if token in eos_token_ids else "length",
)

View File

@@ -0,0 +1 @@
"""Tests for MTP module."""

View File

@@ -0,0 +1,412 @@
"""Unit tests for MTP module components."""
import mlx.core as mx
import mlx.nn as nn
import pytest
from exo.worker.engines.mlx.mtp.module import (
MTP_LAYER_INDEX,
MTPModule,
MTPTransformerBlock,
extract_mtp_weights,
load_mtp_weights_into_module,
)
class MockModelArgs:
"""Mock ModelArgs for testing without importing deepseek_v3."""
def __init__(
self,
hidden_size: int = 256,
intermediate_size: int = 512,
num_attention_heads: int = 4,
num_key_value_heads: int = 4,
rms_norm_eps: float = 1e-6,
vocab_size: int = 1000,
q_lora_rank: int | None = None,
kv_lora_rank: int = 64,
qk_rope_head_dim: int = 16,
v_head_dim: int = 32,
qk_nope_head_dim: int = 32,
rope_theta: float = 10000.0,
rope_scaling: dict | None = None,
attention_bias: bool = False,
max_position_embeddings: int = 2048,
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.rms_norm_eps = rms_norm_eps
self.vocab_size = vocab_size
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.max_position_embeddings = max_position_embeddings
class TestExtractMTPWeights:
"""Tests for extract_mtp_weights function."""
def test_extracts_layer_61_weights(self) -> None:
"""Should extract only layer 61 weights."""
weights = {
"model.layers.60.self_attn.weight": mx.zeros((10, 10)),
"model.layers.61.enorm.weight": mx.ones((10,)),
"model.layers.61.hnorm.weight": mx.ones((10,)) * 2,
"model.layers.61.eh_proj.weight": mx.ones((10, 20)),
"model.layers.62.self_attn.weight": mx.zeros((10, 10)),
"model.embed_tokens.weight": mx.zeros((100, 10)),
}
mtp_weights = extract_mtp_weights(weights)
assert len(mtp_weights) == 3
assert "enorm.weight" in mtp_weights
assert "hnorm.weight" in mtp_weights
assert "eh_proj.weight" in mtp_weights
# Check values are preserved
assert mx.allclose(mtp_weights["enorm.weight"], mx.ones((10,)))
assert mx.allclose(mtp_weights["hnorm.weight"], mx.ones((10,)) * 2)
def test_returns_empty_dict_when_no_layer_61(self) -> None:
"""Should return empty dict when layer 61 doesn't exist."""
weights = {
"model.layers.0.self_attn.weight": mx.zeros((10, 10)),
"model.layers.60.self_attn.weight": mx.zeros((10, 10)),
}
mtp_weights = extract_mtp_weights(weights)
assert len(mtp_weights) == 0
def test_handles_nested_layer_61_weights(self) -> None:
"""Should handle nested weight paths like self_attn.q_proj.weight."""
weights = {
f"model.layers.{MTP_LAYER_INDEX}.self_attn.q_a_proj.weight": mx.zeros(
(10, 10)
),
f"model.layers.{MTP_LAYER_INDEX}.mlp.gate_proj.weight": mx.zeros((20, 10)),
}
mtp_weights = extract_mtp_weights(weights)
assert "self_attn.q_a_proj.weight" in mtp_weights
assert "mlp.gate_proj.weight" in mtp_weights
class TestMTPTransformerBlock:
"""Tests for MTPTransformerBlock."""
@pytest.fixture
def config(self) -> MockModelArgs:
return MockModelArgs(
hidden_size=64, intermediate_size=128, num_attention_heads=2
)
def test_forward_shape(self, config: MockModelArgs) -> None:
"""Forward pass should preserve input shape."""
# Skip if deepseek_v3 imports fail (CI without mlx_lm)
pytest.importorskip("mlx_lm.models.deepseek_v3")
block = MTPTransformerBlock(config) # type: ignore[arg-type]
x = mx.random.normal((1, 5, config.hidden_size))
output = block(x)
assert output.shape == x.shape
def test_forward_with_mask(self, config: MockModelArgs) -> None:
"""Forward pass should work with attention mask."""
pytest.importorskip("mlx_lm.models.deepseek_v3")
block = MTPTransformerBlock(config) # type: ignore[arg-type]
x = mx.random.normal((1, 5, config.hidden_size))
# Create causal mask
mask = mx.triu(mx.full((5, 5), float("-inf")), k=1)
output = block(x, mask=mask)
assert output.shape == x.shape
class TestMTPModule:
"""Tests for MTPModule."""
@pytest.fixture
def config(self) -> MockModelArgs:
return MockModelArgs(
hidden_size=64,
intermediate_size=128,
num_attention_heads=2,
vocab_size=100,
)
@pytest.fixture
def shared_components(
self, config: MockModelArgs
) -> tuple[nn.Embedding, nn.Linear, nn.RMSNorm]:
embedding = nn.Embedding(config.vocab_size, config.hidden_size)
lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
output_norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
return embedding, lm_head, output_norm
def test_initialization(
self,
config: MockModelArgs,
shared_components: tuple[nn.Embedding, nn.Linear, nn.RMSNorm],
) -> None:
"""MTPModule should initialize with correct components."""
pytest.importorskip("mlx_lm.models.deepseek_v3")
embedding, lm_head, output_norm = shared_components
mtp = MTPModule(
config=config, # type: ignore[arg-type]
shared_embedding=embedding,
shared_lm_head=lm_head,
output_norm=output_norm,
)
assert mtp.hnorm is not None
assert mtp.enorm is not None
assert mtp.eh_proj is not None
assert mtp.transformer_block is not None
def test_forward_output_shapes(
self,
config: MockModelArgs,
shared_components: tuple[nn.Embedding, nn.Linear, nn.RMSNorm],
) -> None:
"""Forward pass should return correct output shapes."""
pytest.importorskip("mlx_lm.models.deepseek_v3")
embedding, lm_head, output_norm = shared_components
mtp = MTPModule(
config=config, # type: ignore[arg-type]
shared_embedding=embedding,
shared_lm_head=lm_head,
output_norm=output_norm,
)
batch_size = 2
seq_len = 1
hidden_state = mx.random.normal((batch_size, seq_len, config.hidden_size))
draft_token = mx.array([[5], [10]]) # [batch, seq_len]
logits, new_hidden = mtp(hidden_state, draft_token)
assert logits.shape == (batch_size, seq_len, config.vocab_size)
assert new_hidden.shape == (batch_size, seq_len, config.hidden_size)
def test_shares_embedding_and_lm_head(
self,
config: MockModelArgs,
shared_components: tuple[nn.Embedding, nn.Linear, nn.RMSNorm],
) -> None:
"""MTPModule should use shared embedding and lm_head."""
pytest.importorskip("mlx_lm.models.deepseek_v3")
embedding, lm_head, output_norm = shared_components
mtp = MTPModule(
config=config, # type: ignore[arg-type]
shared_embedding=embedding,
shared_lm_head=lm_head,
output_norm=output_norm,
)
# Verify they're the same objects
assert mtp._shared_embedding is embedding
assert mtp._shared_lm_head is lm_head
assert mtp._output_norm is output_norm
class TestLoadMTPWeights:
"""Tests for load_mtp_weights_into_module."""
@pytest.fixture
def config(self) -> MockModelArgs:
return MockModelArgs(
hidden_size=64,
intermediate_size=128,
num_attention_heads=2,
vocab_size=100,
)
def test_loads_norm_weights(self, config: MockModelArgs) -> None:
"""Should load enorm and hnorm weights."""
pytest.importorskip("mlx_lm.models.deepseek_v3")
embedding = nn.Embedding(config.vocab_size, config.hidden_size)
lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
output_norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
mtp = MTPModule(
config=config, # type: ignore[arg-type]
shared_embedding=embedding,
shared_lm_head=lm_head,
output_norm=output_norm,
)
# Create test weights
test_enorm = mx.ones((config.hidden_size,)) * 3.0
test_hnorm = mx.ones((config.hidden_size,)) * 5.0
mtp_weights = {
"enorm.weight": test_enorm,
"hnorm.weight": test_hnorm,
}
load_mtp_weights_into_module(mtp, mtp_weights)
assert mx.allclose(mtp.enorm.weight, test_enorm)
assert mx.allclose(mtp.hnorm.weight, test_hnorm)
class TestSanitizePatch:
"""Tests for the sanitize patching logic."""
def test_patch_preserves_layer_61(self) -> None:
"""Patching sanitize should preserve layer 61 weights."""
from exo.worker.engines.mlx.utils_mlx import (
_patch_deepseek_sanitize_for_mtp,
_restore_deepseek_sanitize,
)
deepseek_v3 = pytest.importorskip("mlx_lm.models.deepseek_v3")
model_cls = deepseek_v3.Model
# Get original sanitize behavior
original_sanitize = model_cls.sanitize
try:
# Apply patch
_patch_deepseek_sanitize_for_mtp()
# Note: we can't easily test the full sanitize without a real model
# This test verifies the patch is applied
assert model_cls.sanitize is not original_sanitize
finally:
_restore_deepseek_sanitize()
# Verify restore worked
assert model_cls.sanitize is original_sanitize
def test_restore_sanitize(self) -> None:
"""Restoring sanitize should return to original behavior."""
from exo.worker.engines.mlx.utils_mlx import (
_patch_deepseek_sanitize_for_mtp,
_restore_deepseek_sanitize,
)
deepseek_v3 = pytest.importorskip("mlx_lm.models.deepseek_v3")
model_cls = deepseek_v3.Model
original_sanitize = model_cls.sanitize
_patch_deepseek_sanitize_for_mtp()
assert model_cls.sanitize is not original_sanitize
_restore_deepseek_sanitize()
assert model_cls.sanitize is original_sanitize
def test_double_patch_is_safe(self) -> None:
"""Calling patch twice should be safe (idempotent)."""
from exo.worker.engines.mlx.utils_mlx import (
_patch_deepseek_sanitize_for_mtp,
_restore_deepseek_sanitize,
)
deepseek_v3 = pytest.importorskip("mlx_lm.models.deepseek_v3")
model_cls = deepseek_v3.Model
original_sanitize = model_cls.sanitize
try:
_patch_deepseek_sanitize_for_mtp()
patched_sanitize = model_cls.sanitize
# Patch again - should be no-op
_patch_deepseek_sanitize_for_mtp()
assert model_cls.sanitize is patched_sanitize
finally:
_restore_deepseek_sanitize()
assert model_cls.sanitize is original_sanitize
class TestModelIdDetection:
"""Tests for DeepSeek V3 model ID detection."""
def test_detects_deepseek_v3(self) -> None:
"""Should detect DeepSeek V3 model IDs."""
from exo.worker.engines.mlx.utils_mlx import _might_be_deepseek_v3
assert _might_be_deepseek_v3("deepseek-ai/DeepSeek-V3")
assert _might_be_deepseek_v3("deepseek-ai/deepseek-v3-base")
assert _might_be_deepseek_v3("mlx-community/DeepSeek-V3-4bit")
def test_detects_deepseek_r1(self) -> None:
"""Should detect DeepSeek R1 model IDs (also uses MTP)."""
from exo.worker.engines.mlx.utils_mlx import _might_be_deepseek_v3
assert _might_be_deepseek_v3("deepseek-ai/DeepSeek-R1")
assert _might_be_deepseek_v3("mlx-community/DeepSeek-R1-4bit")
def test_rejects_non_deepseek(self) -> None:
"""Should reject non-DeepSeek model IDs."""
from exo.worker.engines.mlx.utils_mlx import _might_be_deepseek_v3
assert not _might_be_deepseek_v3("meta-llama/Llama-3-70B")
assert not _might_be_deepseek_v3("mistralai/Mixtral-8x7B")
assert not _might_be_deepseek_v3("deepseek-ai/DeepSeek-V2") # V2, not V3
def test_case_insensitive(self) -> None:
"""Detection should be case insensitive."""
from exo.worker.engines.mlx.utils_mlx import _might_be_deepseek_v3
assert _might_be_deepseek_v3("DEEPSEEK-AI/DEEPSEEK-V3")
assert _might_be_deepseek_v3("DeepSeek-AI/deepseek-v3")
class TestFlattenParams:
"""Tests for parameter flattening utility."""
def test_flattens_nested_dict(self) -> None:
"""Should flatten nested parameter dict."""
from exo.worker.engines.mlx.utils_mlx import _flatten_params
params = {
"model": {
"layers": {
"0": {
"weight": mx.zeros((10,)),
}
},
"embed": mx.ones((5,)),
}
}
flat = _flatten_params(params)
assert "model.layers.0.weight" in flat
assert "model.embed" in flat
assert mx.allclose(flat["model.layers.0.weight"], mx.zeros((10,)))
assert mx.allclose(flat["model.embed"], mx.ones((5,)))
def test_handles_flat_dict(self) -> None:
"""Should handle already-flat dict."""
from exo.worker.engines.mlx.utils_mlx import _flatten_params
params = {
"weight": mx.zeros((10,)),
"bias": mx.ones((10,)),
}
flat = _flatten_params(params)
assert flat == params

View File

@@ -0,0 +1,253 @@
"""Unit tests for MTP speculative decoding."""
import mlx.core as mx
import mlx.nn as nn
import pytest
from exo.worker.engines.mlx.mtp.speculative_decode import (
ModelWithHiddenStates,
maybe_quantize_kv_cache,
)
class MockModel(nn.Module):
"""Mock model for testing speculative decoding."""
def __init__(self, hidden_size: int = 64, vocab_size: int = 100) -> None:
super().__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
# Create simple model components
self.model = MockInnerModel(hidden_size)
self.lm_head = nn.Linear(hidden_size, vocab_size, bias=False)
self._layers = [nn.Linear(hidden_size, hidden_size) for _ in range(3)]
def __call__(
self,
inputs: mx.array,
cache: list | None = None,
) -> mx.array:
hidden = self.model(inputs, cache)
return self.lm_head(hidden)
@property
def layers(self) -> list[nn.Module]:
return self._layers
class MockInnerModel(nn.Module):
"""Mock inner model (like DeepseekV3Model)."""
def __init__(self, hidden_size: int) -> None:
super().__init__()
self.embed_tokens = nn.Embedding(100, hidden_size)
self.norm = nn.RMSNorm(hidden_size)
def __call__(
self,
inputs: mx.array,
cache: list | None = None,
) -> mx.array:
# Simple embedding + norm
embedded = self.embed_tokens(inputs)
return self.norm(embedded)
class TestModelWithHiddenStates:
"""Tests for ModelWithHiddenStates wrapper."""
@pytest.fixture
def mock_model(self) -> MockModel:
return MockModel(hidden_size=64, vocab_size=100)
def test_forward_returns_logits(self, mock_model: MockModel) -> None:
"""Standard forward should return logits."""
wrapped = ModelWithHiddenStates(mock_model)
inputs = mx.array([[1, 2, 3]])
logits = wrapped.forward(inputs)
assert logits.shape == (1, 3, mock_model.vocab_size)
def test_forward_with_hidden_returns_tuple(self, mock_model: MockModel) -> None:
"""Forward with hidden should return (logits, hidden)."""
wrapped = ModelWithHiddenStates(mock_model)
inputs = mx.array([[1, 2, 3]])
logits, hidden = wrapped.forward_with_hidden(inputs)
assert logits.shape == (1, 3, mock_model.vocab_size)
assert hidden.shape == (1, 3, mock_model.hidden_size)
def test_layers_property(self, mock_model: MockModel) -> None:
"""Should expose layers property from base model."""
wrapped = ModelWithHiddenStates(mock_model)
assert wrapped.layers == mock_model.layers
assert len(wrapped.layers) == 3
class TestMaybeQuantizeKVCache:
"""Tests for KV cache quantization."""
def test_no_quantization_when_bits_none(self) -> None:
"""Should not quantize when kv_bits is None."""
cache = [MockCache(offset=100)]
maybe_quantize_kv_cache(
cache,
quantized_kv_start=50,
kv_group_size=64,
kv_bits=None,
)
# Cache should be unchanged
assert not hasattr(cache[0], "quantized")
def test_respects_quantized_kv_start(self) -> None:
"""Should only quantize caches past the start threshold."""
cache_below = MockCache(offset=30)
cache_above = MockCache(offset=100)
caches = [cache_below, cache_above]
maybe_quantize_kv_cache(
caches,
quantized_kv_start=50,
kv_group_size=64,
kv_bits=4,
)
# Only cache_above should be quantized
assert not getattr(cache_below, "was_quantized", False)
assert getattr(caches[1], "was_quantized", False)
class MockCache:
"""Mock KV cache for testing."""
def __init__(self, offset: int = 0) -> None:
self.offset = offset
self.was_quantized = False
def to_quantized(self, group_size: int, bits: int) -> "MockCache":
quantized = MockCache(self.offset)
quantized.was_quantized = True
return quantized
class TestSpeculativeDecodingLogic:
"""Tests for the core speculative decoding logic."""
def test_draft_acceptance_identical_tokens(self) -> None:
"""When draft matches verification, both should be accepted."""
# This tests the logic, not the full generator
draft_token = 42
verify_token = 42
accepted = draft_token == verify_token
assert accepted
def test_draft_rejection_different_tokens(self) -> None:
"""When draft differs from verification, draft should be rejected."""
draft_token = 42
verify_token = 99
accepted = draft_token == verify_token
assert not accepted
class TestMTPGenerationResponse:
"""Tests for MTPGenerationResponse dataclass."""
def test_response_creation(self) -> None:
"""Should create response with all fields."""
from exo.worker.engines.mlx.mtp.speculative_decode import MTPGenerationResponse
response = MTPGenerationResponse(
text="Hello",
token=42,
logprobs=mx.array([0.1, 0.2]),
from_draft=True,
prompt_tokens=10,
prompt_tps=100.0,
generation_tokens=5,
generation_tps=50.0,
peak_memory=1.5,
finish_reason=None,
)
assert response.text == "Hello"
assert response.token == 42
assert response.from_draft is True
assert response.finish_reason is None
def test_response_with_finish_reason(self) -> None:
"""Should handle finish_reason."""
from exo.worker.engines.mlx.mtp.speculative_decode import MTPGenerationResponse
response = MTPGenerationResponse(
text="",
token=0,
logprobs=mx.array([0.0]),
from_draft=False,
prompt_tokens=10,
prompt_tps=100.0,
generation_tokens=100,
generation_tps=50.0,
peak_memory=1.5,
finish_reason="length",
)
assert response.finish_reason == "length"
class TestIntegration:
"""Integration tests for the full MTP pipeline."""
def test_mtp_module_with_mock_model(self) -> None:
"""Test MTP module can be created and run with mock components."""
pytest.importorskip("mlx_lm.models.deepseek_v3")
from exo.worker.engines.mlx.mtp.module import MTPModule
# Create mock config
class MockConfig:
hidden_size = 64
intermediate_size = 128
num_attention_heads = 2
num_key_value_heads = 2
rms_norm_eps = 1e-6
q_lora_rank = None
kv_lora_rank = 32
qk_rope_head_dim = 8
v_head_dim = 16
qk_nope_head_dim = 16
rope_theta = 10000.0
rope_scaling = None
attention_bias = False
max_position_embeddings = 2048
config = MockConfig()
embedding = nn.Embedding(100, config.hidden_size)
lm_head = nn.Linear(config.hidden_size, 100, bias=False)
output_norm = nn.RMSNorm(config.hidden_size)
mtp = MTPModule(
config=config, # type: ignore[arg-type]
shared_embedding=embedding,
shared_lm_head=lm_head,
output_norm=output_norm,
)
# Run forward pass
hidden = mx.random.normal((1, 1, config.hidden_size))
token = mx.array([[5]])
logits, new_hidden = mtp(hidden, token)
assert logits.shape == (1, 1, 100)
assert new_hidden.shape == (1, 1, config.hidden_size)
# Verify outputs are valid (not NaN)
assert not mx.any(mx.isnan(logits))
assert not mx.any(mx.isnan(new_hidden))

View File

@@ -2,7 +2,9 @@ import json
import os
import resource
import sys
import threading
import time
from collections.abc import Callable
from pathlib import Path
from typing import Any, cast
@@ -26,6 +28,7 @@ from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.worker.engines.mlx.constants import (
CACHE_GROUP_SIZE,
KV_CACHE_BITS,
MTP_ENABLED,
TRUST_REMOTE_CODE,
)
@@ -67,6 +70,67 @@ Group = mx.distributed.Group
resource.setrlimit(resource.RLIMIT_NOFILE, (2048, 4096))
# MTP (Multi-Token Prediction) support for DeepSeek V3
MTP_LAYER_INDEX = 61
_original_deepseek_sanitize: Callable[..., dict[str, Any]] | None = None
def _is_deepseek_v3_model(model: nn.Module) -> bool:
"""Check if the model is DeepSeek V3."""
return hasattr(model, "model") and isinstance(model.model, DeepseekV3Model)
def _patch_deepseek_sanitize_for_mtp() -> None:
"""Patch DeepSeek V3 Model.sanitize to preserve MTP layer weights.
The original sanitize() method filters out layer 61 (MTP layer) weights.
This patch keeps them so we can extract and use the MTP module.
"""
global _original_deepseek_sanitize
from mlx_lm.models.deepseek_v3 import Model as DeepSeekV3Model
if _original_deepseek_sanitize is not None:
# Already patched
return
_original_deepseek_sanitize = DeepSeekV3Model.sanitize
def sanitize_with_mtp(
self: DeepSeekV3Model, weights: dict[str, Any]
) -> dict[str, Any]:
"""Modified sanitize that keeps MTP layer weights."""
# First, call the original sanitize to handle all the weight transformations
# (dequantization, expert stacking, etc.)
if _original_deepseek_sanitize is None:
raise RuntimeError(
"_original_deepseek_sanitize is None - patch not applied correctly"
)
original_result: dict[str, Any] = _original_deepseek_sanitize(self, weights)
# Re-add the MTP layer weights that were filtered out
mtp_weights = {
k: v
for k, v in weights.items()
if k.startswith(f"model.layers.{MTP_LAYER_INDEX}")
}
return {**original_result, **mtp_weights}
DeepSeekV3Model.sanitize = sanitize_with_mtp
def _restore_deepseek_sanitize() -> None:
"""Restore the original DeepSeek V3 sanitize method."""
global _original_deepseek_sanitize
if _original_deepseek_sanitize is None:
return
from mlx_lm.models.deepseek_v3 import Model as DeepSeekV3Model
DeepSeekV3Model.sanitize = _original_deepseek_sanitize
_original_deepseek_sanitize = None
# TODO: Test this
# ALSO https://github.com/exo-explore/exo/pull/233#discussion_r2549683673
def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
@@ -82,6 +146,45 @@ def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
)
class ModelLoadingTimeoutError(Exception):
pass
TimeoutCallback = Callable[[], None]
def eval_with_timeout(
mlx_item: Any, # pyright: ignore[reportAny]
timeout_seconds: float = 60.0,
on_timeout: TimeoutCallback | None = None,
) -> None:
"""Evaluate MLX item with a hard timeout.
If on_timeout callback is provided, it will be called before terminating
the process. This allows the runner to send a failure event before exit.
"""
completed = threading.Event()
def watchdog() -> None:
if not completed.wait(timeout=timeout_seconds):
logger.error(
f"mlx_item evaluation timed out after {timeout_seconds:.0f}s. "
"This may indicate an issue with FAST_SYNCH and tensor parallel sharding. "
"Terminating process."
)
if on_timeout is not None:
on_timeout()
os._exit(1)
watchdog_thread = threading.Thread(target=watchdog, daemon=True)
watchdog_thread.start()
try:
mx.eval(mlx_item) # pyright: ignore[reportAny]
finally:
completed.set()
def mx_barrier(group: Group | None = None):
mx.eval(
mx.distributed.all_sum(
@@ -188,34 +291,172 @@ def initialize_mlx(
def load_mlx_items(
bound_instance: BoundInstance, group: Group | None
bound_instance: BoundInstance,
group: Group | None,
on_timeout: TimeoutCallback | None = None,
) -> tuple[Model, TokenizerWrapper]:
if group is None:
logger.info(f"Single device used for {bound_instance.instance}")
model_path = build_model_path(bound_instance.bound_shard.model_meta.model_id)
start_time = time.perf_counter()
model, _ = load_model(model_path, strict=True)
end_time = time.perf_counter()
logger.info(f"Time taken to load model: {(end_time - start_time):.2f}s")
tokenizer = get_tokenizer(model_path, bound_instance.bound_shard)
"""Load MLX model and tokenizer.
else:
logger.info("Starting distributed init")
start_time = time.perf_counter()
model, tokenizer = shard_and_load(bound_instance.bound_shard, group=group)
end_time = time.perf_counter()
logger.info(
f"Time taken to shard and load model: {(end_time - start_time):.2f}s"
)
Returns:
Tuple of (model, tokenizer)
"""
model_id = bound_instance.bound_shard.model_meta.model_id
mtp_module = None
# Patch sanitize for MTP if this might be DeepSeek V3
should_try_mtp = MTP_ENABLED and _might_be_deepseek_v3(model_id)
if should_try_mtp:
logger.info("Patching DeepSeek V3 sanitize for MTP weight preservation")
_patch_deepseek_sanitize_for_mtp()
try:
if group is None:
logger.info(f"Single device used for {bound_instance.instance}")
model_path = build_model_path(model_id)
start_time = time.perf_counter()
model, _ = load_model(model_path, strict=not should_try_mtp)
end_time = time.perf_counter()
logger.info(f"Time taken to load model: {(end_time - start_time):.2f}s")
tokenizer = get_tokenizer(model_path, bound_instance.bound_shard)
else:
logger.info("Starting distributed init")
start_time = time.perf_counter()
model, tokenizer = shard_and_load(
bound_instance.bound_shard, group=group, on_timeout=on_timeout
)
end_time = time.perf_counter()
logger.info(
f"Time taken to shard and load model: {(end_time - start_time):.2f}s"
)
# Extract MTP module if available
if should_try_mtp and _is_deepseek_v3_model(model):
mtp_module = _extract_mtp_module(model)
if mtp_module is not None:
logger.info("Successfully extracted MTP module from DeepSeek V3")
finally:
# Restore original sanitize
if should_try_mtp:
_restore_deepseek_sanitize()
set_wired_limit_for_model(get_weights_size(bound_instance.bound_shard))
# Store MTP module on the model for later access
if mtp_module is not None:
model.mtp_module = mtp_module # noqa: B010
return cast(Model, model), tokenizer
def _might_be_deepseek_v3(model_id: str) -> bool:
"""Check if model ID suggests this might be DeepSeek V3."""
model_id_lower = model_id.lower()
return "deepseek" in model_id_lower and (
"v3" in model_id_lower or "r1" in model_id_lower
)
def _flatten_params(
params: dict[str, Any],
prefix: str = "",
) -> dict[str, mx.array]:
"""Flatten nested parameter dict to flat dict with dot-separated keys."""
result: dict[str, mx.array] = {}
for key, value in params.items():
full_key = f"{prefix}.{key}" if prefix else key
if isinstance(value, mx.array):
result[full_key] = value
elif isinstance(value, dict):
result.update(_flatten_params(value, full_key))
return result
def _extract_mtp_module(model: nn.Module) -> Any | None:
"""Extract MTP module from a loaded DeepSeek V3 model.
The MTP weights are stored in model.model.layers at index 61 (if preserved).
This function extracts them and creates an MTPModule.
Returns:
MTPModule if MTP weights were found and extracted, None otherwise.
"""
from exo.worker.engines.mlx.mtp.module import (
MTPModule,
extract_mtp_weights,
load_mtp_weights_into_module,
)
try:
# Check if the model has the MTP layer
inner_model = getattr(model, "model", None)
if inner_model is None or not hasattr(inner_model, "layers"):
logger.debug("Model doesn't have expected structure for MTP extraction")
return None
layers: list[nn.Module] = inner_model.layers # type: ignore[assignment]
if len(layers) <= MTP_LAYER_INDEX:
logger.debug(
f"Model has {len(layers)} layers, MTP layer {MTP_LAYER_INDEX} not found"
)
return None
# Get model config
config = getattr(model, "args", None)
if config is None:
logger.debug("Could not get model config for MTP module")
return None
# Create MTP module with shared weights
embed_tokens = getattr(inner_model, "embed_tokens", None)
lm_head = getattr(model, "lm_head", None)
norm = getattr(inner_model, "norm", None)
if embed_tokens is None or lm_head is None or norm is None:
logger.debug("Could not get required model components for MTP")
return None
mtp_module = MTPModule(
config=config,
shared_embedding=embed_tokens,
shared_lm_head=lm_head,
output_norm=norm,
)
# Extract MTP layer weights from the model's parameters
# The weights should be at model.model.layers.61.*
# model.parameters() returns a nested dict, we need to flatten it
raw_params: dict[str, Any] = dict(model.parameters()) # type: ignore[arg-type]
model_weights = _flatten_params(raw_params)
mtp_weights = extract_mtp_weights(model_weights)
if not mtp_weights:
logger.debug("No MTP weights found in model parameters")
return None
# Load weights into MTP module
load_mtp_weights_into_module(mtp_module, mtp_weights)
# Remove MTP layer from main model to avoid double computation
# Create new layers list without the MTP layer
new_layers = [layer for i, layer in enumerate(layers) if i != MTP_LAYER_INDEX]
inner_model.layers = new_layers # noqa: B010
logger.info(
f"Extracted MTP module, main model now has {len(new_layers)} layers"
)
return mtp_module
except Exception as e:
logger.warning(f"Failed to extract MTP module: {e}")
return None
def shard_and_load(
shard_metadata: ShardMetadata,
group: Group,
on_timeout: TimeoutCallback | None = None,
) -> tuple[nn.Module, TokenizerWrapper]:
model_path = build_model_path(shard_metadata.model_meta.model_id)
@@ -252,7 +493,15 @@ def shard_and_load(
logger.info(f"loading model from {model_path} with pipeline parallelism")
model = pipeline_auto_parallel(model, group, shard_metadata)
mx.eval(model.parameters())
# Estimate timeout based on model size
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "60"))
model_size_gb = get_weights_size(shard_metadata).in_bytes / (1024**3)
timeout_seconds = base_timeout + model_size_gb / 5
logger.info(
f"Evaluating model parameters with timeout of {timeout_seconds:.0f}s "
f"(model size: {model_size_gb:.1f}GB)"
)
eval_with_timeout(model.parameters(), timeout_seconds, on_timeout)
# TODO: Do we need this?
mx.eval(model)

View File

@@ -17,15 +17,23 @@ def entrypoint(
task_receiver: MpReceiver[Task],
_logger: "loguru.Logger",
) -> None:
if (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.ibv_devices) >= 2
fast_synch_override = os.environ.get("EXO_FAST_SYNCH")
if fast_synch_override == "on" or (
fast_synch_override != "off"
and (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.ibv_devices) >= 2
)
):
os.environ["MLX_METAL_FAST_SYNCH"] = "1"
else:
os.environ["MLX_METAL_FAST_SYNCH"] = "0"
global logger
logger = _logger
logger.info(f"Fast synch flag: {os.environ['MLX_METAL_FAST_SYNCH']}")
# Import main after setting global logger - this lets us just import logger from this module
try:
from exo.worker.runner.runner import main

View File

@@ -1,6 +1,8 @@
import time
from collections.abc import Generator
from contextlib import contextmanager
from functools import cache
from typing import cast
import mlx.core as mx
from mlx_lm.models.gpt_oss import Model as GptOssModel
@@ -13,6 +15,7 @@ from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
from exo.shared.types.api import ChatCompletionMessageText
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.common import CommandId
from exo.shared.types.events import (
ChunkGenerated,
Event,
@@ -20,6 +23,7 @@ from exo.shared.types.events import (
TaskAcknowledged,
TaskStatusUpdated,
)
from exo.shared.types.models import ModelId
from exo.shared.types.tasks import (
ChatCompletion,
ConnectToGroup,
@@ -48,6 +52,7 @@ from exo.shared.types.worker.runners import (
RunnerWarmingUp,
)
from exo.utils.channels import MpReceiver, MpSender
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
from exo.worker.engines.mlx.utils_mlx import (
initialize_mlx,
@@ -57,6 +62,33 @@ from exo.worker.engines.mlx.utils_mlx import (
from exo.worker.runner.bootstrap import logger
@contextmanager
def send_error_chunk_on_exception(
event_sender: MpSender[Event],
command_id: CommandId,
model_id: ModelId,
device_rank: int,
):
try:
yield
except Exception as e:
logger.error(e)
if device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=0,
model=model_id,
text="",
token_id=0,
finish_reason="error",
error_message=str(e),
),
)
)
def main(
bound_instance: BoundInstance,
event_sender: MpSender[Event],
@@ -118,7 +150,20 @@ def main(
)
)
model, tokenizer = load_mlx_items(bound_instance, group)
def on_model_load_timeout() -> None:
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id,
runner_status=RunnerFailed(
error_message="Model loading timed out"
),
)
)
time.sleep(0.5)
model, tokenizer = load_mlx_items(
bound_instance, group, on_timeout=on_model_load_timeout
)
current_status = RunnerLoaded()
logger.info("runner loaded")
@@ -135,7 +180,7 @@ def main(
logger.info(f"warming up inference for instance: {instance}")
toks = warmup_inference(
model=model,
model=cast(Model, model),
tokenizer=tokenizer,
# kv_prefix_cache=kv_prefix_cache, # supply for warmup-time prefix caching
)
@@ -148,8 +193,6 @@ def main(
case ChatCompletion(task_params=task_params, command_id=command_id) if (
isinstance(current_status, RunnerReady)
):
assert model
assert tokenizer
logger.info(f"received chat request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
@@ -158,41 +201,47 @@ def main(
runner_id=runner_id, runner_status=current_status
)
)
assert task_params.messages[0].content is not None
_check_for_debug_prompts(task_params.messages[0].content)
with send_error_chunk_on_exception(
event_sender,
command_id,
shard_metadata.model_meta.model_id,
shard_metadata.device_rank,
):
assert model
assert tokenizer
assert task_params.messages[0].content is not None
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses using the actual MLX generation
mlx_generator = mlx_generate(
model=model,
tokenizer=tokenizer,
task=task_params,
)
# Generate responses using the actual MLX generation
mlx_generator = mlx_generate(
model=cast(Model, model),
tokenizer=tokenizer,
task=task_params,
)
# GPT-OSS specific parsing to match other model formats.
if isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
# GPT-OSS specific parsing to match other model formats.
if isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
# TODO: Add tool call parser here
# TODO: Add tool call parser here
for response in mlx_generator:
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
for response in mlx_generator:
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
)
)
)
# case TokenizedResponse():
# TODO: something here ig
current_status = RunnerReady()
logger.info("runner ready")

View File

@@ -0,0 +1,50 @@
# pyright: reportAny=false
from unittest.mock import MagicMock
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.common import CommandId
from exo.shared.types.events import ChunkGenerated
from exo.worker.runner.runner import send_error_chunk_on_exception
from exo.worker.tests.constants import MODEL_A_ID
def test_send_error_chunk_on_exception_no_error() -> None:
event_sender = MagicMock()
command_id = CommandId()
with send_error_chunk_on_exception(
event_sender, command_id, MODEL_A_ID, device_rank=0
):
_ = 1 + 1
event_sender.send.assert_not_called()
def test_send_error_chunk_on_exception_catches_error() -> None:
event_sender = MagicMock()
command_id = CommandId()
with send_error_chunk_on_exception(
event_sender, command_id, MODEL_A_ID, device_rank=0
):
raise ValueError("test error")
event_sender.send.assert_called_once()
call_args = event_sender.send.call_args[0][0]
assert isinstance(call_args, ChunkGenerated)
assert call_args.command_id == command_id
assert isinstance(call_args.chunk, TokenChunk)
assert call_args.chunk.finish_reason == "error"
assert call_args.chunk.error_message == "test error"
def test_send_error_chunk_on_exception_skips_non_rank_zero() -> None:
event_sender = MagicMock()
command_id = CommandId()
with send_error_chunk_on_exception(
event_sender, command_id, MODEL_A_ID, device_rank=1
):
raise ValueError("test error")
event_sender.send.assert_not_called()

View File

@@ -22,7 +22,6 @@ async def check_reachability(
url = f"http://{target_ip}:52415/node_id"
remote_node_id = None
last_error = None
for _ in range(REACHABILITY_ATTEMPTS):
@@ -40,24 +39,24 @@ async def check_reachability(
remote_node_id = NodeId(body)
break
# expected failure cases
except (
httpx.ConnectError,
httpx.ConnectTimeout,
httpx.ReadTimeout,
httpx.RemoteProtocolError,
) as e:
httpx.TimeoutException,
httpx.NetworkError,
):
await anyio.sleep(1)
# other failures should be logged on last attempt
except httpx.HTTPError as e:
last_error = e
await anyio.sleep(1)
else:
if last_error is not None:
logger.warning(
f"connect error {type(last_error).__name__} from {target_ip} after {REACHABILITY_ATTEMPTS} attempts; treating as down"
)
else:
logger.warning(
f"malformed response from {target_ip} after {REACHABILITY_ATTEMPTS} attempts; treating as down"
)
if last_error is not None:
logger.warning(
f"connect error {type(last_error).__name__} from {target_ip} after {REACHABILITY_ATTEMPTS} attempts; treating as down"
)
if remote_node_id is None:
return
if remote_node_id != expected_node_id:

358
uv.lock generated
View File

@@ -28,6 +28,89 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/8a/340a1555ae33d7354dbca4faa54948d76d89a27ceef032c8c3bc661d003e/aiofiles-25.1.0-py3-none-any.whl", hash = "sha256:abe311e527c862958650f9438e859c1fa7568a141b22abcd015e120e86a85695", size = 14668, upload-time = "2025-10-09T20:51:03.174Z" },
]
[[package]]
name = "aiohappyeyeballs"
version = "2.6.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/26/30/f84a107a9c4331c14b2b586036f40965c128aa4fee4dda5d3d51cb14ad54/aiohappyeyeballs-2.6.1.tar.gz", hash = "sha256:c3f9d0113123803ccadfdf3f0faa505bc78e6a72d1cc4806cbd719826e943558", size = 22760, upload-time = "2025-03-12T01:42:48.764Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl", hash = "sha256:f349ba8f4b75cb25c99c5c2d84e997e485204d2902a9597802b0371f09331fb8", size = 15265, upload-time = "2025-03-12T01:42:47.083Z" },
]
[[package]]
name = "aiohttp"
version = "3.13.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "aiohappyeyeballs", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "aiosignal", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "attrs", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "frozenlist", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "multidict", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "propcache", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "yarl", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/50/42/32cf8e7704ceb4481406eb87161349abb46a57fee3f008ba9cb610968646/aiohttp-3.13.3.tar.gz", hash = "sha256:a949eee43d3782f2daae4f4a2819b2cb9b0c5d3b7f7a927067cc84dafdbb9f88", size = 7844556, upload-time = "2026-01-03T17:33:05.204Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/97/8a/12ca489246ca1faaf5432844adbfce7ff2cc4997733e0af120869345643a/aiohttp-3.13.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5dff64413671b0d3e7d5918ea490bdccb97a4ad29b3f311ed423200b2203e01c", size = 734190, upload-time = "2026-01-03T17:30:45.832Z" },
{ url = "https://files.pythonhosted.org/packages/32/08/de43984c74ed1fca5c014808963cc83cb00d7bb06af228f132d33862ca76/aiohttp-3.13.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:87b9aab6d6ed88235aa2970294f496ff1a1f9adcd724d800e9b952395a80ffd9", size = 491783, upload-time = "2026-01-03T17:30:47.466Z" },
{ url = "https://files.pythonhosted.org/packages/17/f8/8dd2cf6112a5a76f81f81a5130c57ca829d101ad583ce57f889179accdda/aiohttp-3.13.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:425c126c0dc43861e22cb1c14ba4c8e45d09516d0a3ae0a3f7494b79f5f233a3", size = 490704, upload-time = "2026-01-03T17:30:49.373Z" },
{ url = "https://files.pythonhosted.org/packages/6d/40/a46b03ca03936f832bc7eaa47cfbb1ad012ba1be4790122ee4f4f8cba074/aiohttp-3.13.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7f9120f7093c2a32d9647abcaf21e6ad275b4fbec5b55969f978b1a97c7c86bf", size = 1720652, upload-time = "2026-01-03T17:30:50.974Z" },
{ url = "https://files.pythonhosted.org/packages/f7/7e/917fe18e3607af92657e4285498f500dca797ff8c918bd7d90b05abf6c2a/aiohttp-3.13.3-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:697753042d57f4bf7122cab985bf15d0cef23c770864580f5af4f52023a56bd6", size = 1692014, upload-time = "2026-01-03T17:30:52.729Z" },
{ url = "https://files.pythonhosted.org/packages/71/b6/cefa4cbc00d315d68973b671cf105b21a609c12b82d52e5d0c9ae61d2a09/aiohttp-3.13.3-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:6de499a1a44e7de70735d0b39f67c8f25eb3d91eb3103be99ca0fa882cdd987d", size = 1759777, upload-time = "2026-01-03T17:30:54.537Z" },
{ url = "https://files.pythonhosted.org/packages/fb/e3/e06ee07b45e59e6d81498b591fc589629be1553abb2a82ce33efe2a7b068/aiohttp-3.13.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:37239e9f9a7ea9ac5bf6b92b0260b01f8a22281996da609206a84df860bc1261", size = 1861276, upload-time = "2026-01-03T17:30:56.512Z" },
{ url = "https://files.pythonhosted.org/packages/7c/24/75d274228acf35ceeb2850b8ce04de9dd7355ff7a0b49d607ee60c29c518/aiohttp-3.13.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f76c1e3fe7d7c8afad7ed193f89a292e1999608170dcc9751a7462a87dfd5bc0", size = 1743131, upload-time = "2026-01-03T17:30:58.256Z" },
{ url = "https://files.pythonhosted.org/packages/04/98/3d21dde21889b17ca2eea54fdcff21b27b93f45b7bb94ca029c31ab59dc3/aiohttp-3.13.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:fc290605db2a917f6e81b0e1e0796469871f5af381ce15c604a3c5c7e51cb730", size = 1556863, upload-time = "2026-01-03T17:31:00.445Z" },
{ url = "https://files.pythonhosted.org/packages/9e/84/da0c3ab1192eaf64782b03971ab4055b475d0db07b17eff925e8c93b3aa5/aiohttp-3.13.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:4021b51936308aeea0367b8f006dc999ca02bc118a0cc78c303f50a2ff6afb91", size = 1682793, upload-time = "2026-01-03T17:31:03.024Z" },
{ url = "https://files.pythonhosted.org/packages/ff/0f/5802ada182f575afa02cbd0ec5180d7e13a402afb7c2c03a9aa5e5d49060/aiohttp-3.13.3-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:49a03727c1bba9a97d3e93c9f93ca03a57300f484b6e935463099841261195d3", size = 1716676, upload-time = "2026-01-03T17:31:04.842Z" },
{ url = "https://files.pythonhosted.org/packages/3f/8c/714d53bd8b5a4560667f7bbbb06b20c2382f9c7847d198370ec6526af39c/aiohttp-3.13.3-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3d9908a48eb7416dc1f4524e69f1d32e5d90e3981e4e37eb0aa1cd18f9cfa2a4", size = 1733217, upload-time = "2026-01-03T17:31:06.868Z" },
{ url = "https://files.pythonhosted.org/packages/7d/79/e2176f46d2e963facea939f5be2d26368ce543622be6f00a12844d3c991f/aiohttp-3.13.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:2712039939ec963c237286113c68dbad80a82a4281543f3abf766d9d73228998", size = 1552303, upload-time = "2026-01-03T17:31:08.958Z" },
{ url = "https://files.pythonhosted.org/packages/ab/6a/28ed4dea1759916090587d1fe57087b03e6c784a642b85ef48217b0277ae/aiohttp-3.13.3-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:7bfdc049127717581866fa4708791220970ce291c23e28ccf3922c700740fdc0", size = 1763673, upload-time = "2026-01-03T17:31:10.676Z" },
{ url = "https://files.pythonhosted.org/packages/e8/35/4a3daeb8b9fab49240d21c04d50732313295e4bd813a465d840236dd0ce1/aiohttp-3.13.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8057c98e0c8472d8846b9c79f56766bcc57e3e8ac7bfd510482332366c56c591", size = 1721120, upload-time = "2026-01-03T17:31:12.575Z" },
{ url = "https://files.pythonhosted.org/packages/99/36/5b6514a9f5d66f4e2597e40dea2e3db271e023eb7a5d22defe96ba560996/aiohttp-3.13.3-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:ea37047c6b367fd4bd632bff8077449b8fa034b69e812a18e0132a00fae6e808", size = 737238, upload-time = "2026-01-03T17:31:17.909Z" },
{ url = "https://files.pythonhosted.org/packages/f7/49/459327f0d5bcd8c6c9ca69e60fdeebc3622861e696490d8674a6d0cb90a6/aiohttp-3.13.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:6fc0e2337d1a4c3e6acafda6a78a39d4c14caea625124817420abceed36e2415", size = 492292, upload-time = "2026-01-03T17:31:19.919Z" },
{ url = "https://files.pythonhosted.org/packages/e8/0b/b97660c5fd05d3495b4eb27f2d0ef18dc1dc4eff7511a9bf371397ff0264/aiohttp-3.13.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c685f2d80bb67ca8c3837823ad76196b3694b0159d232206d1e461d3d434666f", size = 493021, upload-time = "2026-01-03T17:31:21.636Z" },
{ url = "https://files.pythonhosted.org/packages/54/d4/438efabdf74e30aeceb890c3290bbaa449780583b1270b00661126b8aae4/aiohttp-3.13.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:48e377758516d262bde50c2584fc6c578af272559c409eecbdd2bae1601184d6", size = 1717263, upload-time = "2026-01-03T17:31:23.296Z" },
{ url = "https://files.pythonhosted.org/packages/71/f2/7bddc7fd612367d1459c5bcf598a9e8f7092d6580d98de0e057eb42697ad/aiohttp-3.13.3-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:34749271508078b261c4abb1767d42b8d0c0cc9449c73a4df494777dc55f0687", size = 1669107, upload-time = "2026-01-03T17:31:25.334Z" },
{ url = "https://files.pythonhosted.org/packages/00/5a/1aeaecca40e22560f97610a329e0e5efef5e0b5afdf9f857f0d93839ab2e/aiohttp-3.13.3-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:82611aeec80eb144416956ec85b6ca45a64d76429c1ed46ae1b5f86c6e0c9a26", size = 1760196, upload-time = "2026-01-03T17:31:27.394Z" },
{ url = "https://files.pythonhosted.org/packages/f8/f8/0ff6992bea7bd560fc510ea1c815f87eedd745fe035589c71ce05612a19a/aiohttp-3.13.3-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:2fff83cfc93f18f215896e3a190e8e5cb413ce01553901aca925176e7568963a", size = 1843591, upload-time = "2026-01-03T17:31:29.238Z" },
{ url = "https://files.pythonhosted.org/packages/e3/d1/e30e537a15f53485b61f5be525f2157da719819e8377298502aebac45536/aiohttp-3.13.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bbe7d4cecacb439e2e2a8a1a7b935c25b812af7a5fd26503a66dadf428e79ec1", size = 1720277, upload-time = "2026-01-03T17:31:31.053Z" },
{ url = "https://files.pythonhosted.org/packages/84/45/23f4c451d8192f553d38d838831ebbc156907ea6e05557f39563101b7717/aiohttp-3.13.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b928f30fe49574253644b1ca44b1b8adbd903aa0da4b9054a6c20fc7f4092a25", size = 1548575, upload-time = "2026-01-03T17:31:32.87Z" },
{ url = "https://files.pythonhosted.org/packages/6a/ed/0a42b127a43712eda7807e7892c083eadfaf8429ca8fb619662a530a3aab/aiohttp-3.13.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7b5e8fe4de30df199155baaf64f2fcd604f4c678ed20910db8e2c66dc4b11603", size = 1679455, upload-time = "2026-01-03T17:31:34.76Z" },
{ url = "https://files.pythonhosted.org/packages/2e/b5/c05f0c2b4b4fe2c9d55e73b6d3ed4fd6c9dc2684b1d81cbdf77e7fad9adb/aiohttp-3.13.3-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:8542f41a62bcc58fc7f11cf7c90e0ec324ce44950003feb70640fc2a9092c32a", size = 1687417, upload-time = "2026-01-03T17:31:36.699Z" },
{ url = "https://files.pythonhosted.org/packages/c9/6b/915bc5dad66aef602b9e459b5a973529304d4e89ca86999d9d75d80cbd0b/aiohttp-3.13.3-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:5e1d8c8b8f1d91cd08d8f4a3c2b067bfca6ec043d3ff36de0f3a715feeedf926", size = 1729968, upload-time = "2026-01-03T17:31:38.622Z" },
{ url = "https://files.pythonhosted.org/packages/11/3b/e84581290a9520024a08640b63d07673057aec5ca548177a82026187ba73/aiohttp-3.13.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:90455115e5da1c3c51ab619ac57f877da8fd6d73c05aacd125c5ae9819582aba", size = 1545690, upload-time = "2026-01-03T17:31:40.57Z" },
{ url = "https://files.pythonhosted.org/packages/f5/04/0c3655a566c43fd647c81b895dfe361b9f9ad6d58c19309d45cff52d6c3b/aiohttp-3.13.3-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:042e9e0bcb5fba81886c8b4fbb9a09d6b8a00245fd8d88e4d989c1f96c74164c", size = 1746390, upload-time = "2026-01-03T17:31:42.857Z" },
{ url = "https://files.pythonhosted.org/packages/1f/53/71165b26978f719c3419381514c9690bd5980e764a09440a10bb816ea4ab/aiohttp-3.13.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2eb752b102b12a76ca02dff751a801f028b4ffbbc478840b473597fc91a9ed43", size = 1702188, upload-time = "2026-01-03T17:31:44.984Z" },
{ url = "https://files.pythonhosted.org/packages/6c/2a/3c79b638a9c3d4658d345339d22070241ea341ed4e07b5ac60fb0f418003/aiohttp-3.13.3-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:05861afbbec40650d8a07ea324367cb93e9e8cc7762e04dd4405df99fa65159c", size = 769512, upload-time = "2026-01-03T17:31:51.134Z" },
{ url = "https://files.pythonhosted.org/packages/29/b9/3e5014d46c0ab0db8707e0ac2711ed28c4da0218c358a4e7c17bae0d8722/aiohttp-3.13.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2fc82186fadc4a8316768d61f3722c230e2c1dcab4200d52d2ebdf2482e47592", size = 506444, upload-time = "2026-01-03T17:31:52.85Z" },
{ url = "https://files.pythonhosted.org/packages/90/03/c1d4ef9a054e151cd7839cdc497f2638f00b93cbe8043983986630d7a80c/aiohttp-3.13.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:0add0900ff220d1d5c5ebbf99ed88b0c1bbf87aa7e4262300ed1376a6b13414f", size = 510798, upload-time = "2026-01-03T17:31:54.91Z" },
{ url = "https://files.pythonhosted.org/packages/ea/76/8c1e5abbfe8e127c893fe7ead569148a4d5a799f7cf958d8c09f3eedf097/aiohttp-3.13.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:568f416a4072fbfae453dcf9a99194bbb8bdeab718e08ee13dfa2ba0e4bebf29", size = 1868835, upload-time = "2026-01-03T17:31:56.733Z" },
{ url = "https://files.pythonhosted.org/packages/8e/ac/984c5a6f74c363b01ff97adc96a3976d9c98940b8969a1881575b279ac5d/aiohttp-3.13.3-cp314-cp314t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:add1da70de90a2569c5e15249ff76a631ccacfe198375eead4aadf3b8dc849dc", size = 1720486, upload-time = "2026-01-03T17:31:58.65Z" },
{ url = "https://files.pythonhosted.org/packages/b2/9a/b7039c5f099c4eb632138728828b33428585031a1e658d693d41d07d89d1/aiohttp-3.13.3-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:10b47b7ba335d2e9b1239fa571131a87e2d8ec96b333e68b2a305e7a98b0bae2", size = 1847951, upload-time = "2026-01-03T17:32:00.989Z" },
{ url = "https://files.pythonhosted.org/packages/3c/02/3bec2b9a1ba3c19ff89a43a19324202b8eb187ca1e928d8bdac9bbdddebd/aiohttp-3.13.3-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:3dd4dce1c718e38081c8f35f323209d4c1df7d4db4bab1b5c88a6b4d12b74587", size = 1941001, upload-time = "2026-01-03T17:32:03.122Z" },
{ url = "https://files.pythonhosted.org/packages/37/df/d879401cedeef27ac4717f6426c8c36c3091c6e9f08a9178cc87549c537f/aiohttp-3.13.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:34bac00a67a812570d4a460447e1e9e06fae622946955f939051e7cc895cfab8", size = 1797246, upload-time = "2026-01-03T17:32:05.255Z" },
{ url = "https://files.pythonhosted.org/packages/8d/15/be122de1f67e6953add23335c8ece6d314ab67c8bebb3f181063010795a7/aiohttp-3.13.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:a19884d2ee70b06d9204b2727a7b9f983d0c684c650254679e716b0b77920632", size = 1627131, upload-time = "2026-01-03T17:32:07.607Z" },
{ url = "https://files.pythonhosted.org/packages/12/12/70eedcac9134cfa3219ab7af31ea56bc877395b1ac30d65b1bc4b27d0438/aiohttp-3.13.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:5f8ca7f2bb6ba8348a3614c7918cc4bb73268c5ac2a207576b7afea19d3d9f64", size = 1795196, upload-time = "2026-01-03T17:32:09.59Z" },
{ url = "https://files.pythonhosted.org/packages/32/11/b30e1b1cd1f3054af86ebe60df96989c6a414dd87e27ad16950eee420bea/aiohttp-3.13.3-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:b0d95340658b9d2f11d9697f59b3814a9d3bb4b7a7c20b131df4bcef464037c0", size = 1782841, upload-time = "2026-01-03T17:32:11.445Z" },
{ url = "https://files.pythonhosted.org/packages/88/0d/d98a9367b38912384a17e287850f5695c528cff0f14f791ce8ee2e4f7796/aiohttp-3.13.3-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:a1e53262fd202e4b40b70c3aff944a8155059beedc8a89bba9dc1f9ef06a1b56", size = 1795193, upload-time = "2026-01-03T17:32:13.705Z" },
{ url = "https://files.pythonhosted.org/packages/43/a5/a2dfd1f5ff5581632c7f6a30e1744deda03808974f94f6534241ef60c751/aiohttp-3.13.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:d60ac9663f44168038586cab2157e122e46bdef09e9368b37f2d82d354c23f72", size = 1621979, upload-time = "2026-01-03T17:32:15.965Z" },
{ url = "https://files.pythonhosted.org/packages/fa/f0/12973c382ae7c1cccbc4417e129c5bf54c374dfb85af70893646e1f0e749/aiohttp-3.13.3-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:90751b8eed69435bac9ff4e3d2f6b3af1f57e37ecb0fbeee59c0174c9e2d41df", size = 1822193, upload-time = "2026-01-03T17:32:18.219Z" },
{ url = "https://files.pythonhosted.org/packages/3c/5f/24155e30ba7f8c96918af1350eb0663e2430aad9e001c0489d89cd708ab1/aiohttp-3.13.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fc353029f176fd2b3ec6cfc71be166aba1936fe5d73dd1992ce289ca6647a9aa", size = 1769801, upload-time = "2026-01-03T17:32:20.25Z" },
]
[[package]]
name = "aiosignal"
version = "1.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "frozenlist", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/61/62/06741b579156360248d1ec624842ad0edf697050bbaf7c3e46394e106ad1/aiosignal-1.4.0.tar.gz", hash = "sha256:f47eecd9468083c2029cc99945502cb7708b082c232f9aca65da147157b251c7", size = 25007, upload-time = "2025-07-03T22:54:43.528Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl", hash = "sha256:053243f8b92b990551949e63930a839ff0cf0b0ebbe0597b0f3fb19e1a0fe82e", size = 7490, upload-time = "2025-07-03T22:54:42.156Z" },
]
[[package]]
name = "altgraph"
version = "0.17.5"
@@ -68,6 +151,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/15/b3/9b1a8074496371342ec1e796a96f99c82c945a339cd81a8e73de28b4cf9e/anyio-4.11.0-py3-none-any.whl", hash = "sha256:0287e96f4d26d4149305414d4e3bc32f0dcd0862365a4bddea19d7a1ec38c4fc", size = 109097, upload-time = "2025-09-23T09:19:10.601Z" },
]
[[package]]
name = "attrs"
version = "25.4.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/6b/5c/685e6633917e101e5dcb62b9dd76946cbb57c26e133bae9e0cd36033c0a9/attrs-25.4.0.tar.gz", hash = "sha256:16d5969b87f0859ef33a48b35d55ac1be6e42ae49d5e853b597db70c35c57e11", size = 934251, upload-time = "2025-10-06T13:54:44.725Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl", hash = "sha256:adcf7e2a1fb3b36ac48d97835bb6d8ade15b8dcce26aba8bf1d14847b57a3373", size = 67615, upload-time = "2025-10-06T13:54:43.17Z" },
]
[[package]]
name = "basedpyright"
version = "1.37.1"
@@ -139,6 +231,7 @@ version = "0.3.0"
source = { editable = "." }
dependencies = [
{ name = "aiofiles", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "aiohttp", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "anyio", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "exo-pyo3-bindings", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "fastapi", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
@@ -155,6 +248,7 @@ dependencies = [
{ name = "pydantic", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "rustworkx", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "tiktoken", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "types-aiofiles", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
]
[package.dev-dependencies]
@@ -170,6 +264,7 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "aiofiles", specifier = ">=24.1.0" },
{ name = "aiohttp", specifier = ">=3.12.14" },
{ name = "anyio", specifier = "==4.11.0" },
{ name = "exo-pyo3-bindings", editable = "rust/exo_pyo3_bindings" },
{ name = "fastapi", specifier = ">=0.116.1" },
@@ -186,6 +281,7 @@ requires-dist = [
{ name = "pydantic", specifier = ">=2.11.7" },
{ name = "rustworkx", specifier = ">=0.17.1" },
{ name = "tiktoken", specifier = ">=0.12.0" },
{ name = "types-aiofiles", specifier = ">=24.1.0.20250708" },
]
[package.metadata.requires-dev]
@@ -243,6 +339,67 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl", hash = "sha256:4b0dda527ee31078689fc205ec4f1c1bf7d56cf88b6dc9426c4f230e46c2dce1", size = 16701, upload-time = "2026-01-09T17:55:04.334Z" },
]
[[package]]
name = "frozenlist"
version = "1.8.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/2d/f5/c831fac6cc817d26fd54c7eaccd04ef7e0288806943f7cc5bbf69f3ac1f0/frozenlist-1.8.0.tar.gz", hash = "sha256:3ede829ed8d842f6cd48fc7081d7a41001a56f1f38603f9d49bf3020d59a31ad", size = 45875, upload-time = "2025-10-06T05:38:17.865Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/2d/40/0832c31a37d60f60ed79e9dfb5a92e1e2af4f40a16a29abcc7992af9edff/frozenlist-1.8.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8d92f1a84bb12d9e56f818b3a746f3efba93c1b63c8387a73dde655e1e42282a", size = 85717, upload-time = "2025-10-06T05:36:27.341Z" },
{ url = "https://files.pythonhosted.org/packages/30/ba/b0b3de23f40bc55a7057bd38434e25c34fa48e17f20ee273bbde5e0650f3/frozenlist-1.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96153e77a591c8adc2ee805756c61f59fef4cf4073a9275ee86fe8cba41241f7", size = 49651, upload-time = "2025-10-06T05:36:28.855Z" },
{ url = "https://files.pythonhosted.org/packages/0c/ab/6e5080ee374f875296c4243c381bbdef97a9ac39c6e3ce1d5f7d42cb78d6/frozenlist-1.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f21f00a91358803399890ab167098c131ec2ddd5f8f5fd5fe9c9f2c6fcd91e40", size = 49417, upload-time = "2025-10-06T05:36:29.877Z" },
{ url = "https://files.pythonhosted.org/packages/d5/4e/e4691508f9477ce67da2015d8c00acd751e6287739123113a9fca6f1604e/frozenlist-1.8.0-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:fb30f9626572a76dfe4293c7194a09fb1fe93ba94c7d4f720dfae3b646b45027", size = 234391, upload-time = "2025-10-06T05:36:31.301Z" },
{ url = "https://files.pythonhosted.org/packages/40/76/c202df58e3acdf12969a7895fd6f3bc016c642e6726aa63bd3025e0fc71c/frozenlist-1.8.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:eaa352d7047a31d87dafcacbabe89df0aa506abb5b1b85a2fb91bc3faa02d822", size = 233048, upload-time = "2025-10-06T05:36:32.531Z" },
{ url = "https://files.pythonhosted.org/packages/f9/c0/8746afb90f17b73ca5979c7a3958116e105ff796e718575175319b5bb4ce/frozenlist-1.8.0-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:03ae967b4e297f58f8c774c7eabcce57fe3c2434817d4385c50661845a058121", size = 226549, upload-time = "2025-10-06T05:36:33.706Z" },
{ url = "https://files.pythonhosted.org/packages/7e/eb/4c7eefc718ff72f9b6c4893291abaae5fbc0c82226a32dcd8ef4f7a5dbef/frozenlist-1.8.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f6292f1de555ffcc675941d65fffffb0a5bcd992905015f85d0592201793e0e5", size = 239833, upload-time = "2025-10-06T05:36:34.947Z" },
{ url = "https://files.pythonhosted.org/packages/c2/4e/e5c02187cf704224f8b21bee886f3d713ca379535f16893233b9d672ea71/frozenlist-1.8.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:29548f9b5b5e3460ce7378144c3010363d8035cea44bc0bf02d57f5a685e084e", size = 245363, upload-time = "2025-10-06T05:36:36.534Z" },
{ url = "https://files.pythonhosted.org/packages/1f/96/cb85ec608464472e82ad37a17f844889c36100eed57bea094518bf270692/frozenlist-1.8.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ec3cc8c5d4084591b4237c0a272cc4f50a5b03396a47d9caaf76f5d7b38a4f11", size = 229314, upload-time = "2025-10-06T05:36:38.582Z" },
{ url = "https://files.pythonhosted.org/packages/5d/6f/4ae69c550e4cee66b57887daeebe006fe985917c01d0fff9caab9883f6d0/frozenlist-1.8.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:517279f58009d0b1f2e7c1b130b377a349405da3f7621ed6bfae50b10adf20c1", size = 243365, upload-time = "2025-10-06T05:36:40.152Z" },
{ url = "https://files.pythonhosted.org/packages/7a/58/afd56de246cf11780a40a2c28dc7cbabbf06337cc8ddb1c780a2d97e88d8/frozenlist-1.8.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:db1e72ede2d0d7ccb213f218df6a078a9c09a7de257c2fe8fcef16d5925230b1", size = 237763, upload-time = "2025-10-06T05:36:41.355Z" },
{ url = "https://files.pythonhosted.org/packages/cb/36/cdfaf6ed42e2644740d4a10452d8e97fa1c062e2a8006e4b09f1b5fd7d63/frozenlist-1.8.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:b4dec9482a65c54a5044486847b8a66bf10c9cb4926d42927ec4e8fd5db7fed8", size = 240110, upload-time = "2025-10-06T05:36:42.716Z" },
{ url = "https://files.pythonhosted.org/packages/03/a8/9ea226fbefad669f11b52e864c55f0bd57d3c8d7eb07e9f2e9a0b39502e1/frozenlist-1.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:21900c48ae04d13d416f0e1e0c4d81f7931f73a9dfa0b7a8746fb2fe7dd970ed", size = 233717, upload-time = "2025-10-06T05:36:44.251Z" },
{ url = "https://files.pythonhosted.org/packages/d2/5c/3bbfaa920dfab09e76946a5d2833a7cbdf7b9b4a91c714666ac4855b88b4/frozenlist-1.8.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:e25ac20a2ef37e91c1b39938b591457666a0fa835c7783c3a8f33ea42870db94", size = 89235, upload-time = "2025-10-06T05:36:48.78Z" },
{ url = "https://files.pythonhosted.org/packages/d2/d6/f03961ef72166cec1687e84e8925838442b615bd0b8854b54923ce5b7b8a/frozenlist-1.8.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:07cdca25a91a4386d2e76ad992916a85038a9b97561bf7a3fd12d5d9ce31870c", size = 50742, upload-time = "2025-10-06T05:36:49.837Z" },
{ url = "https://files.pythonhosted.org/packages/1e/bb/a6d12b7ba4c3337667d0e421f7181c82dda448ce4e7ad7ecd249a16fa806/frozenlist-1.8.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:4e0c11f2cc6717e0a741f84a527c52616140741cd812a50422f83dc31749fb52", size = 51725, upload-time = "2025-10-06T05:36:50.851Z" },
{ url = "https://files.pythonhosted.org/packages/bc/71/d1fed0ffe2c2ccd70b43714c6cab0f4188f09f8a67a7914a6b46ee30f274/frozenlist-1.8.0-cp313-cp313t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b3210649ee28062ea6099cfda39e147fa1bc039583c8ee4481cb7811e2448c51", size = 284533, upload-time = "2025-10-06T05:36:51.898Z" },
{ url = "https://files.pythonhosted.org/packages/c9/1f/fb1685a7b009d89f9bf78a42d94461bc06581f6e718c39344754a5d9bada/frozenlist-1.8.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:581ef5194c48035a7de2aefc72ac6539823bb71508189e5de01d60c9dcd5fa65", size = 292506, upload-time = "2025-10-06T05:36:53.101Z" },
{ url = "https://files.pythonhosted.org/packages/e6/3b/b991fe1612703f7e0d05c0cf734c1b77aaf7c7d321df4572e8d36e7048c8/frozenlist-1.8.0-cp313-cp313t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:3ef2d026f16a2b1866e1d86fc4e1291e1ed8a387b2c333809419a2f8b3a77b82", size = 274161, upload-time = "2025-10-06T05:36:54.309Z" },
{ url = "https://files.pythonhosted.org/packages/ca/ec/c5c618767bcdf66e88945ec0157d7f6c4a1322f1473392319b7a2501ded7/frozenlist-1.8.0-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:5500ef82073f599ac84d888e3a8c1f77ac831183244bfd7f11eaa0289fb30714", size = 294676, upload-time = "2025-10-06T05:36:55.566Z" },
{ url = "https://files.pythonhosted.org/packages/7c/ce/3934758637d8f8a88d11f0585d6495ef54b2044ed6ec84492a91fa3b27aa/frozenlist-1.8.0-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:50066c3997d0091c411a66e710f4e11752251e6d2d73d70d8d5d4c76442a199d", size = 300638, upload-time = "2025-10-06T05:36:56.758Z" },
{ url = "https://files.pythonhosted.org/packages/fc/4f/a7e4d0d467298f42de4b41cbc7ddaf19d3cfeabaf9ff97c20c6c7ee409f9/frozenlist-1.8.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:5c1c8e78426e59b3f8005e9b19f6ff46e5845895adbde20ece9218319eca6506", size = 283067, upload-time = "2025-10-06T05:36:57.965Z" },
{ url = "https://files.pythonhosted.org/packages/dc/48/c7b163063d55a83772b268e6d1affb960771b0e203b632cfe09522d67ea5/frozenlist-1.8.0-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:eefdba20de0d938cec6a89bd4d70f346a03108a19b9df4248d3cf0d88f1b0f51", size = 292101, upload-time = "2025-10-06T05:36:59.237Z" },
{ url = "https://files.pythonhosted.org/packages/9f/d0/2366d3c4ecdc2fd391e0afa6e11500bfba0ea772764d631bbf82f0136c9d/frozenlist-1.8.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cf253e0e1c3ceb4aaff6df637ce033ff6535fb8c70a764a8f46aafd3d6ab798e", size = 289901, upload-time = "2025-10-06T05:37:00.811Z" },
{ url = "https://files.pythonhosted.org/packages/b8/94/daff920e82c1b70e3618a2ac39fbc01ae3e2ff6124e80739ce5d71c9b920/frozenlist-1.8.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:032efa2674356903cd0261c4317a561a6850f3ac864a63fc1583147fb05a79b0", size = 289395, upload-time = "2025-10-06T05:37:02.115Z" },
{ url = "https://files.pythonhosted.org/packages/e3/20/bba307ab4235a09fdcd3cc5508dbabd17c4634a1af4b96e0f69bfe551ebd/frozenlist-1.8.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:6da155091429aeba16851ecb10a9104a108bcd32f6c1642867eadaee401c1c41", size = 283659, upload-time = "2025-10-06T05:37:03.711Z" },
{ url = "https://files.pythonhosted.org/packages/f1/c8/85da824b7e7b9b6e7f7705b2ecaf9591ba6f79c1177f324c2735e41d36a2/frozenlist-1.8.0-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:cee686f1f4cadeb2136007ddedd0aaf928ab95216e7691c63e50a8ec066336d0", size = 86127, upload-time = "2025-10-06T05:37:08.438Z" },
{ url = "https://files.pythonhosted.org/packages/8e/e8/a1185e236ec66c20afd72399522f142c3724c785789255202d27ae992818/frozenlist-1.8.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:119fb2a1bd47307e899c2fac7f28e85b9a543864df47aa7ec9d3c1b4545f096f", size = 49698, upload-time = "2025-10-06T05:37:09.48Z" },
{ url = "https://files.pythonhosted.org/packages/a1/93/72b1736d68f03fda5fdf0f2180fb6caaae3894f1b854d006ac61ecc727ee/frozenlist-1.8.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:4970ece02dbc8c3a92fcc5228e36a3e933a01a999f7094ff7c23fbd2beeaa67c", size = 49749, upload-time = "2025-10-06T05:37:10.569Z" },
{ url = "https://files.pythonhosted.org/packages/a7/b2/fabede9fafd976b991e9f1b9c8c873ed86f202889b864756f240ce6dd855/frozenlist-1.8.0-cp314-cp314-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:cba69cb73723c3f329622e34bdbf5ce1f80c21c290ff04256cff1cd3c2036ed2", size = 231298, upload-time = "2025-10-06T05:37:11.993Z" },
{ url = "https://files.pythonhosted.org/packages/3a/3b/d9b1e0b0eed36e70477ffb8360c49c85c8ca8ef9700a4e6711f39a6e8b45/frozenlist-1.8.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:778a11b15673f6f1df23d9586f83c4846c471a8af693a22e066508b77d201ec8", size = 232015, upload-time = "2025-10-06T05:37:13.194Z" },
{ url = "https://files.pythonhosted.org/packages/dc/94/be719d2766c1138148564a3960fc2c06eb688da592bdc25adcf856101be7/frozenlist-1.8.0-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:0325024fe97f94c41c08872db482cf8ac4800d80e79222c6b0b7b162d5b13686", size = 225038, upload-time = "2025-10-06T05:37:14.577Z" },
{ url = "https://files.pythonhosted.org/packages/e4/09/6712b6c5465f083f52f50cf74167b92d4ea2f50e46a9eea0523d658454ae/frozenlist-1.8.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:97260ff46b207a82a7567b581ab4190bd4dfa09f4db8a8b49d1a958f6aa4940e", size = 240130, upload-time = "2025-10-06T05:37:15.781Z" },
{ url = "https://files.pythonhosted.org/packages/f8/d4/cd065cdcf21550b54f3ce6a22e143ac9e4836ca42a0de1022da8498eac89/frozenlist-1.8.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:54b2077180eb7f83dd52c40b2750d0a9f175e06a42e3213ce047219de902717a", size = 242845, upload-time = "2025-10-06T05:37:17.037Z" },
{ url = "https://files.pythonhosted.org/packages/62/c3/f57a5c8c70cd1ead3d5d5f776f89d33110b1addae0ab010ad774d9a44fb9/frozenlist-1.8.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:2f05983daecab868a31e1da44462873306d3cbfd76d1f0b5b69c473d21dbb128", size = 229131, upload-time = "2025-10-06T05:37:18.221Z" },
{ url = "https://files.pythonhosted.org/packages/6c/52/232476fe9cb64f0742f3fde2b7d26c1dac18b6d62071c74d4ded55e0ef94/frozenlist-1.8.0-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:33f48f51a446114bc5d251fb2954ab0164d5be02ad3382abcbfe07e2531d650f", size = 240542, upload-time = "2025-10-06T05:37:19.771Z" },
{ url = "https://files.pythonhosted.org/packages/5f/85/07bf3f5d0fb5414aee5f47d33c6f5c77bfe49aac680bfece33d4fdf6a246/frozenlist-1.8.0-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:154e55ec0655291b5dd1b8731c637ecdb50975a2ae70c606d100750a540082f7", size = 237308, upload-time = "2025-10-06T05:37:20.969Z" },
{ url = "https://files.pythonhosted.org/packages/11/99/ae3a33d5befd41ac0ca2cc7fd3aa707c9c324de2e89db0e0f45db9a64c26/frozenlist-1.8.0-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:4314debad13beb564b708b4a496020e5306c7333fa9a3ab90374169a20ffab30", size = 238210, upload-time = "2025-10-06T05:37:22.252Z" },
{ url = "https://files.pythonhosted.org/packages/b2/60/b1d2da22f4970e7a155f0adde9b1435712ece01b3cd45ba63702aea33938/frozenlist-1.8.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:073f8bf8becba60aa931eb3bc420b217bb7d5b8f4750e6f8b3be7f3da85d38b7", size = 231972, upload-time = "2025-10-06T05:37:23.5Z" },
{ url = "https://files.pythonhosted.org/packages/c0/c7/43200656ecc4e02d3f8bc248df68256cd9572b3f0017f0a0c4e93440ae23/frozenlist-1.8.0-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d3bb933317c52d7ea5004a1c442eef86f426886fba134ef8cf4226ea6ee1821d", size = 89238, upload-time = "2025-10-06T05:37:29.373Z" },
{ url = "https://files.pythonhosted.org/packages/d1/29/55c5f0689b9c0fb765055629f472c0de484dcaf0acee2f7707266ae3583c/frozenlist-1.8.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:8009897cdef112072f93a0efdce29cd819e717fd2f649ee3016efd3cd885a7ed", size = 50738, upload-time = "2025-10-06T05:37:30.792Z" },
{ url = "https://files.pythonhosted.org/packages/ba/7d/b7282a445956506fa11da8c2db7d276adcbf2b17d8bb8407a47685263f90/frozenlist-1.8.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:2c5dcbbc55383e5883246d11fd179782a9d07a986c40f49abe89ddf865913930", size = 51739, upload-time = "2025-10-06T05:37:32.127Z" },
{ url = "https://files.pythonhosted.org/packages/62/1c/3d8622e60d0b767a5510d1d3cf21065b9db874696a51ea6d7a43180a259c/frozenlist-1.8.0-cp314-cp314t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:39ecbc32f1390387d2aa4f5a995e465e9e2f79ba3adcac92d68e3e0afae6657c", size = 284186, upload-time = "2025-10-06T05:37:33.21Z" },
{ url = "https://files.pythonhosted.org/packages/2d/14/aa36d5f85a89679a85a1d44cd7a6657e0b1c75f61e7cad987b203d2daca8/frozenlist-1.8.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92db2bf818d5cc8d9c1f1fc56b897662e24ea5adb36ad1f1d82875bd64e03c24", size = 292196, upload-time = "2025-10-06T05:37:36.107Z" },
{ url = "https://files.pythonhosted.org/packages/05/23/6bde59eb55abd407d34f77d39a5126fb7b4f109a3f611d3929f14b700c66/frozenlist-1.8.0-cp314-cp314t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:2dc43a022e555de94c3b68a4ef0b11c4f747d12c024a520c7101709a2144fb37", size = 273830, upload-time = "2025-10-06T05:37:37.663Z" },
{ url = "https://files.pythonhosted.org/packages/d2/3f/22cff331bfad7a8afa616289000ba793347fcd7bc275f3b28ecea2a27909/frozenlist-1.8.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:cb89a7f2de3602cfed448095bab3f178399646ab7c61454315089787df07733a", size = 294289, upload-time = "2025-10-06T05:37:39.261Z" },
{ url = "https://files.pythonhosted.org/packages/a4/89/5b057c799de4838b6c69aa82b79705f2027615e01be996d2486a69ca99c4/frozenlist-1.8.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:33139dc858c580ea50e7e60a1b0ea003efa1fd42e6ec7fdbad78fff65fad2fd2", size = 300318, upload-time = "2025-10-06T05:37:43.213Z" },
{ url = "https://files.pythonhosted.org/packages/30/de/2c22ab3eb2a8af6d69dc799e48455813bab3690c760de58e1bf43b36da3e/frozenlist-1.8.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:168c0969a329b416119507ba30b9ea13688fafffac1b7822802537569a1cb0ef", size = 282814, upload-time = "2025-10-06T05:37:45.337Z" },
{ url = "https://files.pythonhosted.org/packages/59/f7/970141a6a8dbd7f556d94977858cfb36fa9b66e0892c6dd780d2219d8cd8/frozenlist-1.8.0-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:28bd570e8e189d7f7b001966435f9dac6718324b5be2990ac496cf1ea9ddb7fe", size = 291762, upload-time = "2025-10-06T05:37:46.657Z" },
{ url = "https://files.pythonhosted.org/packages/c1/15/ca1adae83a719f82df9116d66f5bb28bb95557b3951903d39135620ef157/frozenlist-1.8.0-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:b2a095d45c5d46e5e79ba1e5b9cb787f541a8dee0433836cea4b96a2c439dcd8", size = 289470, upload-time = "2025-10-06T05:37:47.946Z" },
{ url = "https://files.pythonhosted.org/packages/ac/83/dca6dc53bf657d371fbc88ddeb21b79891e747189c5de990b9dfff2ccba1/frozenlist-1.8.0-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:eab8145831a0d56ec9c4139b6c3e594c7a83c2c8be25d5bcf2d86136a532287a", size = 289042, upload-time = "2025-10-06T05:37:49.499Z" },
{ url = "https://files.pythonhosted.org/packages/96/52/abddd34ca99be142f354398700536c5bd315880ed0a213812bc491cff5e4/frozenlist-1.8.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:974b28cf63cc99dfb2188d8d222bc6843656188164848c4f679e63dae4b0708e", size = 283148, upload-time = "2025-10-06T05:37:50.745Z" },
{ url = "https://files.pythonhosted.org/packages/9a/9a/e35b4a917281c0b8419d4207f4334c8e8c5dbf4f3f5f9ada73958d937dcc/frozenlist-1.8.0-py3-none-any.whl", hash = "sha256:0c18a16eab41e82c295618a77502e17b195883241c563b00f0aa5106fc4eaa0d", size = 13409, upload-time = "2025-10-06T05:38:16.721Z" },
]
[[package]]
name = "fsspec"
version = "2026.1.0"
@@ -534,6 +691,75 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/67/b3/73cc2f584ac612a476096d35a61eed75ee7ed8b4e320b0c36cf60a14d4eb/mlx_metal-0.30.1-py3-none-macosx_26_0_arm64.whl", hash = "sha256:e0b151a0053ac00b4226710bfb6dbf54b87283fb01e10fb3877f9ea969f680aa", size = 44981160, upload-time = "2025-12-18T00:15:47.518Z" },
]
[[package]]
name = "multidict"
version = "6.7.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/80/1e/5492c365f222f907de1039b91f922b93fa4f764c713ee858d235495d8f50/multidict-6.7.0.tar.gz", hash = "sha256:c6e99d9a65ca282e578dfea819cfa9c0a62b2499d8677392e09feaf305e9e6f5", size = 101834, upload-time = "2025-10-06T14:52:30.657Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d2/86/33272a544eeb36d66e4d9a920602d1a2f57d4ebea4ef3cdfe5a912574c95/multidict-6.7.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:bee7c0588aa0076ce77c0ea5d19a68d76ad81fcd9fe8501003b9a24f9d4000f6", size = 76135, upload-time = "2025-10-06T14:49:54.26Z" },
{ url = "https://files.pythonhosted.org/packages/91/1c/eb97db117a1ebe46d457a3d235a7b9d2e6dcab174f42d1b67663dd9e5371/multidict-6.7.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7ef6b61cad77091056ce0e7ce69814ef72afacb150b7ac6a3e9470def2198159", size = 45117, upload-time = "2025-10-06T14:49:55.82Z" },
{ url = "https://files.pythonhosted.org/packages/f1/d8/6c3442322e41fb1dd4de8bd67bfd11cd72352ac131f6368315617de752f1/multidict-6.7.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9c0359b1ec12b1d6849c59f9d319610b7f20ef990a6d454ab151aa0e3b9f78ca", size = 43472, upload-time = "2025-10-06T14:49:57.048Z" },
{ url = "https://files.pythonhosted.org/packages/75/3f/e2639e80325af0b6c6febdf8e57cc07043ff15f57fa1ef808f4ccb5ac4cd/multidict-6.7.0-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:cd240939f71c64bd658f186330603aac1a9a81bf6273f523fca63673cb7378a8", size = 249342, upload-time = "2025-10-06T14:49:58.368Z" },
{ url = "https://files.pythonhosted.org/packages/5d/cc/84e0585f805cbeaa9cbdaa95f9a3d6aed745b9d25700623ac89a6ecff400/multidict-6.7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a60a4d75718a5efa473ebd5ab685786ba0c67b8381f781d1be14da49f1a2dc60", size = 257082, upload-time = "2025-10-06T14:49:59.89Z" },
{ url = "https://files.pythonhosted.org/packages/b0/9c/ac851c107c92289acbbf5cfb485694084690c1b17e555f44952c26ddc5bd/multidict-6.7.0-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:53a42d364f323275126aff81fb67c5ca1b7a04fda0546245730a55c8c5f24bc4", size = 240704, upload-time = "2025-10-06T14:50:01.485Z" },
{ url = "https://files.pythonhosted.org/packages/50/cc/5f93e99427248c09da95b62d64b25748a5f5c98c7c2ab09825a1d6af0e15/multidict-6.7.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:3b29b980d0ddbecb736735ee5bef69bb2ddca56eff603c86f3f29a1128299b4f", size = 266355, upload-time = "2025-10-06T14:50:02.955Z" },
{ url = "https://files.pythonhosted.org/packages/ec/0c/2ec1d883ceb79c6f7f6d7ad90c919c898f5d1c6ea96d322751420211e072/multidict-6.7.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:f8a93b1c0ed2d04b97a5e9336fd2d33371b9a6e29ab7dd6503d63407c20ffbaf", size = 267259, upload-time = "2025-10-06T14:50:04.446Z" },
{ url = "https://files.pythonhosted.org/packages/c6/2d/f0b184fa88d6630aa267680bdb8623fb69cb0d024b8c6f0d23f9a0f406d3/multidict-6.7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9ff96e8815eecacc6645da76c413eb3b3d34cfca256c70b16b286a687d013c32", size = 254903, upload-time = "2025-10-06T14:50:05.98Z" },
{ url = "https://files.pythonhosted.org/packages/06/c9/11ea263ad0df7dfabcad404feb3c0dd40b131bc7f232d5537f2fb1356951/multidict-6.7.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:7516c579652f6a6be0e266aec0acd0db80829ca305c3d771ed898538804c2036", size = 252365, upload-time = "2025-10-06T14:50:07.511Z" },
{ url = "https://files.pythonhosted.org/packages/41/88/d714b86ee2c17d6e09850c70c9d310abac3d808ab49dfa16b43aba9d53fd/multidict-6.7.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:040f393368e63fb0f3330e70c26bfd336656bed925e5cbe17c9da839a6ab13ec", size = 250062, upload-time = "2025-10-06T14:50:09.074Z" },
{ url = "https://files.pythonhosted.org/packages/15/fe/ad407bb9e818c2b31383f6131ca19ea7e35ce93cf1310fce69f12e89de75/multidict-6.7.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b3bc26a951007b1057a1c543af845f1c7e3e71cc240ed1ace7bf4484aa99196e", size = 249683, upload-time = "2025-10-06T14:50:10.714Z" },
{ url = "https://files.pythonhosted.org/packages/8c/a4/a89abdb0229e533fb925e7c6e5c40201c2873efebc9abaf14046a4536ee6/multidict-6.7.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7b022717c748dd1992a83e219587aabe45980d88969f01b316e78683e6285f64", size = 261254, upload-time = "2025-10-06T14:50:12.28Z" },
{ url = "https://files.pythonhosted.org/packages/8d/aa/0e2b27bd88b40a4fb8dc53dd74eecac70edaa4c1dd0707eb2164da3675b3/multidict-6.7.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:9600082733859f00d79dee64effc7aef1beb26adb297416a4ad2116fd61374bd", size = 257967, upload-time = "2025-10-06T14:50:14.16Z" },
{ url = "https://files.pythonhosted.org/packages/d0/8e/0c67b7120d5d5f6d874ed85a085f9dc770a7f9d8813e80f44a9fec820bb7/multidict-6.7.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:94218fcec4d72bc61df51c198d098ce2b378e0ccbac41ddbed5ef44092913288", size = 250085, upload-time = "2025-10-06T14:50:15.639Z" },
{ url = "https://files.pythonhosted.org/packages/e8/68/7b3a5170a382a340147337b300b9eb25a9ddb573bcdfff19c0fa3f31ffba/multidict-6.7.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:ad9ce259f50abd98a1ca0aa6e490b58c316a0fce0617f609723e40804add2c00", size = 83114, upload-time = "2025-10-06T14:50:21.223Z" },
{ url = "https://files.pythonhosted.org/packages/55/5c/3fa2d07c84df4e302060f555bbf539310980362236ad49f50eeb0a1c1eb9/multidict-6.7.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:07f5594ac6d084cbb5de2df218d78baf55ef150b91f0ff8a21cc7a2e3a5a58eb", size = 48442, upload-time = "2025-10-06T14:50:22.871Z" },
{ url = "https://files.pythonhosted.org/packages/fc/56/67212d33239797f9bd91962bb899d72bb0f4c35a8652dcdb8ed049bef878/multidict-6.7.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:0591b48acf279821a579282444814a2d8d0af624ae0bc600aa4d1b920b6e924b", size = 46885, upload-time = "2025-10-06T14:50:24.258Z" },
{ url = "https://files.pythonhosted.org/packages/46/d1/908f896224290350721597a61a69cd19b89ad8ee0ae1f38b3f5cd12ea2ac/multidict-6.7.0-cp313-cp313t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:749a72584761531d2b9467cfbdfd29487ee21124c304c4b6cb760d8777b27f9c", size = 242588, upload-time = "2025-10-06T14:50:25.716Z" },
{ url = "https://files.pythonhosted.org/packages/ab/67/8604288bbd68680eee0ab568fdcb56171d8b23a01bcd5cb0c8fedf6e5d99/multidict-6.7.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6b4c3d199f953acd5b446bf7c0de1fe25d94e09e79086f8dc2f48a11a129cdf1", size = 249966, upload-time = "2025-10-06T14:50:28.192Z" },
{ url = "https://files.pythonhosted.org/packages/20/33/9228d76339f1ba51e3efef7da3ebd91964d3006217aae13211653193c3ff/multidict-6.7.0-cp313-cp313t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:9fb0211dfc3b51efea2f349ec92c114d7754dd62c01f81c3e32b765b70c45c9b", size = 228618, upload-time = "2025-10-06T14:50:29.82Z" },
{ url = "https://files.pythonhosted.org/packages/f8/2d/25d9b566d10cab1c42b3b9e5b11ef79c9111eaf4463b8c257a3bd89e0ead/multidict-6.7.0-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a027ec240fe73a8d6281872690b988eed307cd7d91b23998ff35ff577ca688b5", size = 257539, upload-time = "2025-10-06T14:50:31.731Z" },
{ url = "https://files.pythonhosted.org/packages/b6/b1/8d1a965e6637fc33de3c0d8f414485c2b7e4af00f42cab3d84e7b955c222/multidict-6.7.0-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d1d964afecdf3a8288789df2f5751dc0a8261138c3768d9af117ed384e538fad", size = 256345, upload-time = "2025-10-06T14:50:33.26Z" },
{ url = "https://files.pythonhosted.org/packages/ba/0c/06b5a8adbdeedada6f4fb8d8f193d44a347223b11939b42953eeb6530b6b/multidict-6.7.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:caf53b15b1b7df9fbd0709aa01409000a2b4dd03a5f6f5cc548183c7c8f8b63c", size = 247934, upload-time = "2025-10-06T14:50:34.808Z" },
{ url = "https://files.pythonhosted.org/packages/8f/31/b2491b5fe167ca044c6eb4b8f2c9f3b8a00b24c432c365358eadac5d7625/multidict-6.7.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:654030da3197d927f05a536a66186070e98765aa5142794c9904555d3a9d8fb5", size = 245243, upload-time = "2025-10-06T14:50:36.436Z" },
{ url = "https://files.pythonhosted.org/packages/61/1a/982913957cb90406c8c94f53001abd9eafc271cb3e70ff6371590bec478e/multidict-6.7.0-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:2090d3718829d1e484706a2f525e50c892237b2bf9b17a79b059cb98cddc2f10", size = 235878, upload-time = "2025-10-06T14:50:37.953Z" },
{ url = "https://files.pythonhosted.org/packages/be/c0/21435d804c1a1cf7a2608593f4d19bca5bcbd7a81a70b253fdd1c12af9c0/multidict-6.7.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:2d2cfeec3f6f45651b3d408c4acec0ebf3daa9bc8a112a084206f5db5d05b754", size = 243452, upload-time = "2025-10-06T14:50:39.574Z" },
{ url = "https://files.pythonhosted.org/packages/54/0a/4349d540d4a883863191be6eb9a928846d4ec0ea007d3dcd36323bb058ac/multidict-6.7.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:4ef089f985b8c194d341eb2c24ae6e7408c9a0e2e5658699c92f497437d88c3c", size = 252312, upload-time = "2025-10-06T14:50:41.612Z" },
{ url = "https://files.pythonhosted.org/packages/26/64/d5416038dbda1488daf16b676e4dbfd9674dde10a0cc8f4fc2b502d8125d/multidict-6.7.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:e93a0617cd16998784bf4414c7e40f17a35d2350e5c6f0bd900d3a8e02bd3762", size = 246935, upload-time = "2025-10-06T14:50:43.972Z" },
{ url = "https://files.pythonhosted.org/packages/9f/8c/8290c50d14e49f35e0bd4abc25e1bc7711149ca9588ab7d04f886cdf03d9/multidict-6.7.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:f0feece2ef8ebc42ed9e2e8c78fc4aa3cf455733b507c09ef7406364c94376c6", size = 243385, upload-time = "2025-10-06T14:50:45.648Z" },
{ url = "https://files.pythonhosted.org/packages/e2/b1/3da6934455dd4b261d4c72f897e3a5728eba81db59959f3a639245891baa/multidict-6.7.0-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:3bab1e4aff7adaa34410f93b1f8e57c4b36b9af0426a76003f441ee1d3c7e842", size = 75128, upload-time = "2025-10-06T14:50:51.92Z" },
{ url = "https://files.pythonhosted.org/packages/14/2c/f069cab5b51d175a1a2cb4ccdf7a2c2dabd58aa5bd933fa036a8d15e2404/multidict-6.7.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:b8512bac933afc3e45fb2b18da8e59b78d4f408399a960339598374d4ae3b56b", size = 44410, upload-time = "2025-10-06T14:50:53.275Z" },
{ url = "https://files.pythonhosted.org/packages/42/e2/64bb41266427af6642b6b128e8774ed84c11b80a90702c13ac0a86bb10cc/multidict-6.7.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:79dcf9e477bc65414ebfea98ffd013cb39552b5ecd62908752e0e413d6d06e38", size = 43205, upload-time = "2025-10-06T14:50:54.911Z" },
{ url = "https://files.pythonhosted.org/packages/02/68/6b086fef8a3f1a8541b9236c594f0c9245617c29841f2e0395d979485cde/multidict-6.7.0-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:31bae522710064b5cbeddaf2e9f32b1abab70ac6ac91d42572502299e9953128", size = 245084, upload-time = "2025-10-06T14:50:56.369Z" },
{ url = "https://files.pythonhosted.org/packages/15/ee/f524093232007cd7a75c1d132df70f235cfd590a7c9eaccd7ff422ef4ae8/multidict-6.7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4a0df7ff02397bb63e2fd22af2c87dfa39e8c7f12947bc524dbdc528282c7e34", size = 252667, upload-time = "2025-10-06T14:50:57.991Z" },
{ url = "https://files.pythonhosted.org/packages/02/a5/eeb3f43ab45878f1895118c3ef157a480db58ede3f248e29b5354139c2c9/multidict-6.7.0-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:7a0222514e8e4c514660e182d5156a415c13ef0aabbd71682fc714e327b95e99", size = 233590, upload-time = "2025-10-06T14:50:59.589Z" },
{ url = "https://files.pythonhosted.org/packages/6a/1e/76d02f8270b97269d7e3dbd45644b1785bda457b474315f8cf999525a193/multidict-6.7.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2397ab4daaf2698eb51a76721e98db21ce4f52339e535725de03ea962b5a3202", size = 264112, upload-time = "2025-10-06T14:51:01.183Z" },
{ url = "https://files.pythonhosted.org/packages/76/0b/c28a70ecb58963847c2a8efe334904cd254812b10e535aefb3bcce513918/multidict-6.7.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:8891681594162635948a636c9fe0ff21746aeb3dd5463f6e25d9bea3a8a39ca1", size = 261194, upload-time = "2025-10-06T14:51:02.794Z" },
{ url = "https://files.pythonhosted.org/packages/b4/63/2ab26e4209773223159b83aa32721b4021ffb08102f8ac7d689c943fded1/multidict-6.7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:18706cc31dbf402a7945916dd5cddf160251b6dab8a2c5f3d6d5a55949f676b3", size = 248510, upload-time = "2025-10-06T14:51:04.724Z" },
{ url = "https://files.pythonhosted.org/packages/93/cd/06c1fa8282af1d1c46fd55c10a7930af652afdce43999501d4d68664170c/multidict-6.7.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:f844a1bbf1d207dd311a56f383f7eda2d0e134921d45751842d8235e7778965d", size = 248395, upload-time = "2025-10-06T14:51:06.306Z" },
{ url = "https://files.pythonhosted.org/packages/99/ac/82cb419dd6b04ccf9e7e61befc00c77614fc8134362488b553402ecd55ce/multidict-6.7.0-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:d4393e3581e84e5645506923816b9cc81f5609a778c7e7534054091acc64d1c6", size = 239520, upload-time = "2025-10-06T14:51:08.091Z" },
{ url = "https://files.pythonhosted.org/packages/fa/f3/a0f9bf09493421bd8716a362e0cd1d244f5a6550f5beffdd6b47e885b331/multidict-6.7.0-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:fbd18dc82d7bf274b37aa48d664534330af744e03bccf696d6f4c6042e7d19e7", size = 245479, upload-time = "2025-10-06T14:51:10.365Z" },
{ url = "https://files.pythonhosted.org/packages/8d/01/476d38fc73a212843f43c852b0eee266b6971f0e28329c2184a8df90c376/multidict-6.7.0-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:b6234e14f9314731ec45c42fc4554b88133ad53a09092cc48a88e771c125dadb", size = 258903, upload-time = "2025-10-06T14:51:12.466Z" },
{ url = "https://files.pythonhosted.org/packages/49/6d/23faeb0868adba613b817d0e69c5f15531b24d462af8012c4f6de4fa8dc3/multidict-6.7.0-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:08d4379f9744d8f78d98c8673c06e202ffa88296f009c71bbafe8a6bf847d01f", size = 252333, upload-time = "2025-10-06T14:51:14.48Z" },
{ url = "https://files.pythonhosted.org/packages/1e/cc/48d02ac22b30fa247f7dad82866e4b1015431092f4ba6ebc7e77596e0b18/multidict-6.7.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:9fe04da3f79387f450fd0061d4dd2e45a72749d31bf634aecc9e27f24fdc4b3f", size = 243411, upload-time = "2025-10-06T14:51:16.072Z" },
{ url = "https://files.pythonhosted.org/packages/8b/40/cd499bd0dbc5f1136726db3153042a735fffd0d77268e2ee20d5f33c010f/multidict-6.7.0-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:c1dcc7524066fa918c6a27d61444d4ee7900ec635779058571f70d042d86ed63", size = 82326, upload-time = "2025-10-06T14:51:21.588Z" },
{ url = "https://files.pythonhosted.org/packages/13/8a/18e031eca251c8df76daf0288e6790561806e439f5ce99a170b4af30676b/multidict-6.7.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:27e0b36c2d388dc7b6ced3406671b401e84ad7eb0656b8f3a2f46ed0ce483718", size = 48065, upload-time = "2025-10-06T14:51:22.93Z" },
{ url = "https://files.pythonhosted.org/packages/40/71/5e6701277470a87d234e433fb0a3a7deaf3bcd92566e421e7ae9776319de/multidict-6.7.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:2a7baa46a22e77f0988e3b23d4ede5513ebec1929e34ee9495be535662c0dfe2", size = 46475, upload-time = "2025-10-06T14:51:24.352Z" },
{ url = "https://files.pythonhosted.org/packages/fe/6a/bab00cbab6d9cfb57afe1663318f72ec28289ea03fd4e8236bb78429893a/multidict-6.7.0-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:7bf77f54997a9166a2f5675d1201520586439424c2511723a7312bdb4bcc034e", size = 239324, upload-time = "2025-10-06T14:51:25.822Z" },
{ url = "https://files.pythonhosted.org/packages/2a/5f/8de95f629fc22a7769ade8b41028e3e5a822c1f8904f618d175945a81ad3/multidict-6.7.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e011555abada53f1578d63389610ac8a5400fc70ce71156b0aa30d326f1a5064", size = 246877, upload-time = "2025-10-06T14:51:27.604Z" },
{ url = "https://files.pythonhosted.org/packages/23/b4/38881a960458f25b89e9f4a4fdcb02ac101cfa710190db6e5528841e67de/multidict-6.7.0-cp314-cp314t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:28b37063541b897fd6a318007373930a75ca6d6ac7c940dbe14731ffdd8d498e", size = 225824, upload-time = "2025-10-06T14:51:29.664Z" },
{ url = "https://files.pythonhosted.org/packages/1e/39/6566210c83f8a261575f18e7144736059f0c460b362e96e9cf797a24b8e7/multidict-6.7.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:05047ada7a2fde2631a0ed706f1fd68b169a681dfe5e4cf0f8e4cb6618bbc2cd", size = 253558, upload-time = "2025-10-06T14:51:31.684Z" },
{ url = "https://files.pythonhosted.org/packages/00/a3/67f18315100f64c269f46e6c0319fa87ba68f0f64f2b8e7fd7c72b913a0b/multidict-6.7.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:716133f7d1d946a4e1b91b1756b23c088881e70ff180c24e864c26192ad7534a", size = 252339, upload-time = "2025-10-06T14:51:33.699Z" },
{ url = "https://files.pythonhosted.org/packages/c8/2a/1cb77266afee2458d82f50da41beba02159b1d6b1f7973afc9a1cad1499b/multidict-6.7.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d1bed1b467ef657f2a0ae62844a607909ef1c6889562de5e1d505f74457d0b96", size = 244895, upload-time = "2025-10-06T14:51:36.189Z" },
{ url = "https://files.pythonhosted.org/packages/dd/72/09fa7dd487f119b2eb9524946ddd36e2067c08510576d43ff68469563b3b/multidict-6.7.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:ca43bdfa5d37bd6aee89d85e1d0831fb86e25541be7e9d376ead1b28974f8e5e", size = 241862, upload-time = "2025-10-06T14:51:41.291Z" },
{ url = "https://files.pythonhosted.org/packages/65/92/bc1f8bd0853d8669300f732c801974dfc3702c3eeadae2f60cef54dc69d7/multidict-6.7.0-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:44b546bd3eb645fd26fb949e43c02a25a2e632e2ca21a35e2e132c8105dc8599", size = 232376, upload-time = "2025-10-06T14:51:43.55Z" },
{ url = "https://files.pythonhosted.org/packages/09/86/ac39399e5cb9d0c2ac8ef6e10a768e4d3bc933ac808d49c41f9dc23337eb/multidict-6.7.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:a6ef16328011d3f468e7ebc326f24c1445f001ca1dec335b2f8e66bed3006394", size = 240272, upload-time = "2025-10-06T14:51:45.265Z" },
{ url = "https://files.pythonhosted.org/packages/3d/b6/fed5ac6b8563ec72df6cb1ea8dac6d17f0a4a1f65045f66b6d3bf1497c02/multidict-6.7.0-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:5aa873cbc8e593d361ae65c68f85faadd755c3295ea2c12040ee146802f23b38", size = 248774, upload-time = "2025-10-06T14:51:46.836Z" },
{ url = "https://files.pythonhosted.org/packages/6b/8d/b954d8c0dc132b68f760aefd45870978deec6818897389dace00fcde32ff/multidict-6.7.0-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:3d7b6ccce016e29df4b7ca819659f516f0bc7a4b3efa3bb2012ba06431b044f9", size = 242731, upload-time = "2025-10-06T14:51:48.541Z" },
{ url = "https://files.pythonhosted.org/packages/16/9d/a2dac7009125d3540c2f54e194829ea18ac53716c61b655d8ed300120b0f/multidict-6.7.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:171b73bd4ee683d307599b66793ac80981b06f069b62eea1c9e29c9241aa66b0", size = 240193, upload-time = "2025-10-06T14:51:50.355Z" },
{ url = "https://files.pythonhosted.org/packages/b7/da/7d22601b625e241d4f23ef1ebff8acfc60da633c9e7e7922e24d10f592b3/multidict-6.7.0-py3-none-any.whl", hash = "sha256:394fc5c42a333c9ffc3e421a4c85e08580d990e08b99f6bf35b4132114c5dcb3", size = 12317, upload-time = "2025-10-06T14:52:29.272Z" },
]
[[package]]
name = "nodejs-wheel-binaries"
version = "25.2.1rc0"
@@ -634,6 +860,63 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/5e/5f/82c8074f7e84978129347c2c6ec8b6c59f3584ff1a20bc3c940a3e061790/priority-2.0.0-py3-none-any.whl", hash = "sha256:6f8eefce5f3ad59baf2c080a664037bb4725cd0a790d53d59ab4059288faf6aa", size = 8946, upload-time = "2021-06-27T10:15:03.856Z" },
]
[[package]]
name = "propcache"
version = "0.4.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/9e/da/e9fc233cf63743258bff22b3dfa7ea5baef7b5bc324af47a0ad89b8ffc6f/propcache-0.4.1.tar.gz", hash = "sha256:f48107a8c637e80362555f37ecf49abe20370e557cc4ab374f04ec4423c97c3d", size = 46442, upload-time = "2025-10-08T19:49:02.291Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/bf/df/6d9c1b6ac12b003837dde8a10231a7344512186e87b36e855bef32241942/propcache-0.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:43eedf29202c08550aac1d14e0ee619b0430aaef78f85864c1a892294fbc28cf", size = 77750, upload-time = "2025-10-08T19:47:07.648Z" },
{ url = "https://files.pythonhosted.org/packages/8b/e8/677a0025e8a2acf07d3418a2e7ba529c9c33caf09d3c1f25513023c1db56/propcache-0.4.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d62cdfcfd89ccb8de04e0eda998535c406bf5e060ffd56be6c586cbcc05b3311", size = 44780, upload-time = "2025-10-08T19:47:08.851Z" },
{ url = "https://files.pythonhosted.org/packages/89/a4/92380f7ca60f99ebae761936bc48a72a639e8a47b29050615eef757cb2a7/propcache-0.4.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cae65ad55793da34db5f54e4029b89d3b9b9490d8abe1b4c7ab5d4b8ec7ebf74", size = 46308, upload-time = "2025-10-08T19:47:09.982Z" },
{ url = "https://files.pythonhosted.org/packages/2d/48/c5ac64dee5262044348d1d78a5f85dd1a57464a60d30daee946699963eb3/propcache-0.4.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:333ddb9031d2704a301ee3e506dc46b1fe5f294ec198ed6435ad5b6a085facfe", size = 208182, upload-time = "2025-10-08T19:47:11.319Z" },
{ url = "https://files.pythonhosted.org/packages/c6/0c/cd762dd011a9287389a6a3eb43aa30207bde253610cca06824aeabfe9653/propcache-0.4.1-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:fd0858c20f078a32cf55f7e81473d96dcf3b93fd2ccdb3d40fdf54b8573df3af", size = 211215, upload-time = "2025-10-08T19:47:13.146Z" },
{ url = "https://files.pythonhosted.org/packages/30/3e/49861e90233ba36890ae0ca4c660e95df565b2cd15d4a68556ab5865974e/propcache-0.4.1-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:678ae89ebc632c5c204c794f8dab2837c5f159aeb59e6ed0539500400577298c", size = 218112, upload-time = "2025-10-08T19:47:14.913Z" },
{ url = "https://files.pythonhosted.org/packages/f1/8b/544bc867e24e1bd48f3118cecd3b05c694e160a168478fa28770f22fd094/propcache-0.4.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d472aeb4fbf9865e0c6d622d7f4d54a4e101a89715d8904282bb5f9a2f476c3f", size = 204442, upload-time = "2025-10-08T19:47:16.277Z" },
{ url = "https://files.pythonhosted.org/packages/50/a6/4282772fd016a76d3e5c0df58380a5ea64900afd836cec2c2f662d1b9bb3/propcache-0.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:4d3df5fa7e36b3225954fba85589da77a0fe6a53e3976de39caf04a0db4c36f1", size = 199398, upload-time = "2025-10-08T19:47:17.962Z" },
{ url = "https://files.pythonhosted.org/packages/3e/ec/d8a7cd406ee1ddb705db2139f8a10a8a427100347bd698e7014351c7af09/propcache-0.4.1-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:ee17f18d2498f2673e432faaa71698032b0127ebf23ae5974eeaf806c279df24", size = 196920, upload-time = "2025-10-08T19:47:19.355Z" },
{ url = "https://files.pythonhosted.org/packages/f6/6c/f38ab64af3764f431e359f8baf9e0a21013e24329e8b85d2da32e8ed07ca/propcache-0.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:580e97762b950f993ae618e167e7be9256b8353c2dcd8b99ec100eb50f5286aa", size = 203748, upload-time = "2025-10-08T19:47:21.338Z" },
{ url = "https://files.pythonhosted.org/packages/d6/e3/fa846bd70f6534d647886621388f0a265254d30e3ce47e5c8e6e27dbf153/propcache-0.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:501d20b891688eb8e7aa903021f0b72d5a55db40ffaab27edefd1027caaafa61", size = 205877, upload-time = "2025-10-08T19:47:23.059Z" },
{ url = "https://files.pythonhosted.org/packages/e2/39/8163fc6f3133fea7b5f2827e8eba2029a0277ab2c5beee6c1db7b10fc23d/propcache-0.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9a0bd56e5b100aef69bd8562b74b46254e7c8812918d3baa700c8a8009b0af66", size = 199437, upload-time = "2025-10-08T19:47:24.445Z" },
{ url = "https://files.pythonhosted.org/packages/83/ce/a31bbdfc24ee0dcbba458c8175ed26089cf109a55bbe7b7640ed2470cfe9/propcache-0.4.1-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:92d1935ee1f8d7442da9c0c4fa7ac20d07e94064184811b685f5c4fada64553b", size = 81451, upload-time = "2025-10-08T19:47:29.445Z" },
{ url = "https://files.pythonhosted.org/packages/25/9c/442a45a470a68456e710d96cacd3573ef26a1d0a60067e6a7d5e655621ed/propcache-0.4.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:473c61b39e1460d386479b9b2f337da492042447c9b685f28be4f74d3529e566", size = 46374, upload-time = "2025-10-08T19:47:30.579Z" },
{ url = "https://files.pythonhosted.org/packages/f4/bf/b1d5e21dbc3b2e889ea4327044fb16312a736d97640fb8b6aa3f9c7b3b65/propcache-0.4.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:c0ef0aaafc66fbd87842a3fe3902fd889825646bc21149eafe47be6072725835", size = 48396, upload-time = "2025-10-08T19:47:31.79Z" },
{ url = "https://files.pythonhosted.org/packages/f4/04/5b4c54a103d480e978d3c8a76073502b18db0c4bc17ab91b3cb5092ad949/propcache-0.4.1-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f95393b4d66bfae908c3ca8d169d5f79cd65636ae15b5e7a4f6e67af675adb0e", size = 275950, upload-time = "2025-10-08T19:47:33.481Z" },
{ url = "https://files.pythonhosted.org/packages/b4/c1/86f846827fb969c4b78b0af79bba1d1ea2156492e1b83dea8b8a6ae27395/propcache-0.4.1-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:c07fda85708bc48578467e85099645167a955ba093be0a2dcba962195676e859", size = 273856, upload-time = "2025-10-08T19:47:34.906Z" },
{ url = "https://files.pythonhosted.org/packages/36/1d/fc272a63c8d3bbad6878c336c7a7dea15e8f2d23a544bda43205dfa83ada/propcache-0.4.1-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:af223b406d6d000830c6f65f1e6431783fc3f713ba3e6cc8c024d5ee96170a4b", size = 280420, upload-time = "2025-10-08T19:47:36.338Z" },
{ url = "https://files.pythonhosted.org/packages/07/0c/01f2219d39f7e53d52e5173bcb09c976609ba30209912a0680adfb8c593a/propcache-0.4.1-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a78372c932c90ee474559c5ddfffd718238e8673c340dc21fe45c5b8b54559a0", size = 263254, upload-time = "2025-10-08T19:47:37.692Z" },
{ url = "https://files.pythonhosted.org/packages/2d/18/cd28081658ce597898f0c4d174d4d0f3c5b6d4dc27ffafeef835c95eb359/propcache-0.4.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:564d9f0d4d9509e1a870c920a89b2fec951b44bf5ba7d537a9e7c1ccec2c18af", size = 261205, upload-time = "2025-10-08T19:47:39.659Z" },
{ url = "https://files.pythonhosted.org/packages/7a/71/1f9e22eb8b8316701c2a19fa1f388c8a3185082607da8e406a803c9b954e/propcache-0.4.1-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:17612831fda0138059cc5546f4d12a2aacfb9e47068c06af35c400ba58ba7393", size = 247873, upload-time = "2025-10-08T19:47:41.084Z" },
{ url = "https://files.pythonhosted.org/packages/4a/65/3d4b61f36af2b4eddba9def857959f1016a51066b4f1ce348e0cf7881f58/propcache-0.4.1-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:41a89040cb10bd345b3c1a873b2bf36413d48da1def52f268a055f7398514874", size = 262739, upload-time = "2025-10-08T19:47:42.51Z" },
{ url = "https://files.pythonhosted.org/packages/2a/42/26746ab087faa77c1c68079b228810436ccd9a5ce9ac85e2b7307195fd06/propcache-0.4.1-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:e35b88984e7fa64aacecea39236cee32dd9bd8c55f57ba8a75cf2399553f9bd7", size = 263514, upload-time = "2025-10-08T19:47:43.927Z" },
{ url = "https://files.pythonhosted.org/packages/94/13/630690fe201f5502d2403dd3cfd451ed8858fe3c738ee88d095ad2ff407b/propcache-0.4.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:6f8b465489f927b0df505cbe26ffbeed4d6d8a2bbc61ce90eb074ff129ef0ab1", size = 257781, upload-time = "2025-10-08T19:47:45.448Z" },
{ url = "https://files.pythonhosted.org/packages/8e/5c/bca52d654a896f831b8256683457ceddd490ec18d9ec50e97dfd8fc726a8/propcache-0.4.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:3f7124c9d820ba5548d431afb4632301acf965db49e666aa21c305cbe8c6de12", size = 78152, upload-time = "2025-10-08T19:47:51.051Z" },
{ url = "https://files.pythonhosted.org/packages/65/9b/03b04e7d82a5f54fb16113d839f5ea1ede58a61e90edf515f6577c66fa8f/propcache-0.4.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:c0d4b719b7da33599dfe3b22d3db1ef789210a0597bc650b7cee9c77c2be8c5c", size = 44869, upload-time = "2025-10-08T19:47:52.594Z" },
{ url = "https://files.pythonhosted.org/packages/b2/fa/89a8ef0468d5833a23fff277b143d0573897cf75bd56670a6d28126c7d68/propcache-0.4.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:9f302f4783709a78240ebc311b793f123328716a60911d667e0c036bc5dcbded", size = 46596, upload-time = "2025-10-08T19:47:54.073Z" },
{ url = "https://files.pythonhosted.org/packages/86/bd/47816020d337f4a746edc42fe8d53669965138f39ee117414c7d7a340cfe/propcache-0.4.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c80ee5802e3fb9ea37938e7eecc307fb984837091d5fd262bb37238b1ae97641", size = 206981, upload-time = "2025-10-08T19:47:55.715Z" },
{ url = "https://files.pythonhosted.org/packages/df/f6/c5fa1357cc9748510ee55f37173eb31bfde6d94e98ccd9e6f033f2fc06e1/propcache-0.4.1-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ed5a841e8bb29a55fb8159ed526b26adc5bdd7e8bd7bf793ce647cb08656cdf4", size = 211490, upload-time = "2025-10-08T19:47:57.499Z" },
{ url = "https://files.pythonhosted.org/packages/80/1e/e5889652a7c4a3846683401a48f0f2e5083ce0ec1a8a5221d8058fbd1adf/propcache-0.4.1-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:55c72fd6ea2da4c318e74ffdf93c4fe4e926051133657459131a95c846d16d44", size = 215371, upload-time = "2025-10-08T19:47:59.317Z" },
{ url = "https://files.pythonhosted.org/packages/b2/f2/889ad4b2408f72fe1a4f6a19491177b30ea7bf1a0fd5f17050ca08cfc882/propcache-0.4.1-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8326e144341460402713f91df60ade3c999d601e7eb5ff8f6f7862d54de0610d", size = 201424, upload-time = "2025-10-08T19:48:00.67Z" },
{ url = "https://files.pythonhosted.org/packages/27/73/033d63069b57b0812c8bd19f311faebeceb6ba31b8f32b73432d12a0b826/propcache-0.4.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:060b16ae65bc098da7f6d25bf359f1f31f688384858204fe5d652979e0015e5b", size = 197566, upload-time = "2025-10-08T19:48:02.604Z" },
{ url = "https://files.pythonhosted.org/packages/dc/89/ce24f3dc182630b4e07aa6d15f0ff4b14ed4b9955fae95a0b54c58d66c05/propcache-0.4.1-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:89eb3fa9524f7bec9de6e83cf3faed9d79bffa560672c118a96a171a6f55831e", size = 193130, upload-time = "2025-10-08T19:48:04.499Z" },
{ url = "https://files.pythonhosted.org/packages/a9/24/ef0d5fd1a811fb5c609278d0209c9f10c35f20581fcc16f818da959fc5b4/propcache-0.4.1-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:dee69d7015dc235f526fe80a9c90d65eb0039103fe565776250881731f06349f", size = 202625, upload-time = "2025-10-08T19:48:06.213Z" },
{ url = "https://files.pythonhosted.org/packages/f5/02/98ec20ff5546f68d673df2f7a69e8c0d076b5abd05ca882dc7ee3a83653d/propcache-0.4.1-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:5558992a00dfd54ccbc64a32726a3357ec93825a418a401f5cc67df0ac5d9e49", size = 204209, upload-time = "2025-10-08T19:48:08.432Z" },
{ url = "https://files.pythonhosted.org/packages/a0/87/492694f76759b15f0467a2a93ab68d32859672b646aa8a04ce4864e7932d/propcache-0.4.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:c9b822a577f560fbd9554812526831712c1436d2c046cedee4c3796d3543b144", size = 197797, upload-time = "2025-10-08T19:48:09.968Z" },
{ url = "https://files.pythonhosted.org/packages/99/85/9ff785d787ccf9bbb3f3106f79884a130951436f58392000231b4c737c80/propcache-0.4.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:824e908bce90fb2743bd6b59db36eb4f45cd350a39637c9f73b1c1ea66f5b75f", size = 81455, upload-time = "2025-10-08T19:48:15.16Z" },
{ url = "https://files.pythonhosted.org/packages/90/85/2431c10c8e7ddb1445c1f7c4b54d886e8ad20e3c6307e7218f05922cad67/propcache-0.4.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:c2b5e7db5328427c57c8e8831abda175421b709672f6cfc3d630c3b7e2146393", size = 46372, upload-time = "2025-10-08T19:48:16.424Z" },
{ url = "https://files.pythonhosted.org/packages/01/20/b0972d902472da9bcb683fa595099911f4d2e86e5683bcc45de60dd05dc3/propcache-0.4.1-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:6f6ff873ed40292cd4969ef5310179afd5db59fdf055897e282485043fc80ad0", size = 48411, upload-time = "2025-10-08T19:48:17.577Z" },
{ url = "https://files.pythonhosted.org/packages/e2/e3/7dc89f4f21e8f99bad3d5ddb3a3389afcf9da4ac69e3deb2dcdc96e74169/propcache-0.4.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:49a2dc67c154db2c1463013594c458881a069fcf98940e61a0569016a583020a", size = 275712, upload-time = "2025-10-08T19:48:18.901Z" },
{ url = "https://files.pythonhosted.org/packages/20/67/89800c8352489b21a8047c773067644e3897f02ecbbd610f4d46b7f08612/propcache-0.4.1-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:005f08e6a0529984491e37d8dbc3dd86f84bd78a8ceb5fa9a021f4c48d4984be", size = 273557, upload-time = "2025-10-08T19:48:20.762Z" },
{ url = "https://files.pythonhosted.org/packages/e2/a1/b52b055c766a54ce6d9c16d9aca0cad8059acd9637cdf8aa0222f4a026ef/propcache-0.4.1-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5c3310452e0d31390da9035c348633b43d7e7feb2e37be252be6da45abd1abcc", size = 280015, upload-time = "2025-10-08T19:48:22.592Z" },
{ url = "https://files.pythonhosted.org/packages/48/c8/33cee30bd890672c63743049f3c9e4be087e6780906bfc3ec58528be59c1/propcache-0.4.1-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4c3c70630930447f9ef1caac7728c8ad1c56bc5015338b20fed0d08ea2480b3a", size = 262880, upload-time = "2025-10-08T19:48:23.947Z" },
{ url = "https://files.pythonhosted.org/packages/0c/b1/8f08a143b204b418285c88b83d00edbd61afbc2c6415ffafc8905da7038b/propcache-0.4.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:8e57061305815dfc910a3634dcf584f08168a8836e6999983569f51a8544cd89", size = 260938, upload-time = "2025-10-08T19:48:25.656Z" },
{ url = "https://files.pythonhosted.org/packages/cf/12/96e4664c82ca2f31e1c8dff86afb867348979eb78d3cb8546a680287a1e9/propcache-0.4.1-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:521a463429ef54143092c11a77e04056dd00636f72e8c45b70aaa3140d639726", size = 247641, upload-time = "2025-10-08T19:48:27.207Z" },
{ url = "https://files.pythonhosted.org/packages/18/ed/e7a9cfca28133386ba52278136d42209d3125db08d0a6395f0cba0c0285c/propcache-0.4.1-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:120c964da3fdc75e3731aa392527136d4ad35868cc556fd09bb6d09172d9a367", size = 262510, upload-time = "2025-10-08T19:48:28.65Z" },
{ url = "https://files.pythonhosted.org/packages/f5/76/16d8bf65e8845dd62b4e2b57444ab81f07f40caa5652b8969b87ddcf2ef6/propcache-0.4.1-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:d8f353eb14ee3441ee844ade4277d560cdd68288838673273b978e3d6d2c8f36", size = 263161, upload-time = "2025-10-08T19:48:30.133Z" },
{ url = "https://files.pythonhosted.org/packages/e7/70/c99e9edb5d91d5ad8a49fa3c1e8285ba64f1476782fed10ab251ff413ba1/propcache-0.4.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ab2943be7c652f09638800905ee1bab2c544e537edb57d527997a24c13dc1455", size = 257393, upload-time = "2025-10-08T19:48:31.567Z" },
{ url = "https://files.pythonhosted.org/packages/5b/5a/bc7b4a4ef808fa59a816c17b20c4bef6884daebbdf627ff2a161da67da19/propcache-0.4.1-py3-none-any.whl", hash = "sha256:af2a6052aeb6cf17d3e46ee169099044fd8224cbaf75c76a2ef596e8163e2237", size = 13305, upload-time = "2025-10-08T19:49:00.792Z" },
]
[[package]]
name = "protobuf"
version = "6.33.3"
@@ -1141,6 +1424,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c8/0a/4aca634faf693e33004796b6cee0ae2e1dba375a800c16ab8d3eff4bb800/typer_slim-0.21.1-py3-none-any.whl", hash = "sha256:6e6c31047f171ac93cc5a973c9e617dbc5ab2bddc4d0a3135dc161b4e2020e0d", size = 47444, upload-time = "2026-01-06T11:21:12.441Z" },
]
[[package]]
name = "types-aiofiles"
version = "25.1.0.20251011"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/84/6c/6d23908a8217e36704aa9c79d99a620f2fdd388b66a4b7f72fbc6b6ff6c6/types_aiofiles-25.1.0.20251011.tar.gz", hash = "sha256:1c2b8ab260cb3cd40c15f9d10efdc05a6e1e6b02899304d80dfa0410e028d3ff", size = 14535, upload-time = "2025-10-11T02:44:51.237Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/71/0f/76917bab27e270bb6c32addd5968d69e558e5b6f7fb4ac4cbfa282996a96/types_aiofiles-25.1.0.20251011-py3-none-any.whl", hash = "sha256:8ff8de7f9d42739d8f0dadcceeb781ce27cd8d8c4152d4a7c52f6b20edb8149c", size = 14338, upload-time = "2025-10-11T02:44:50.054Z" },
]
[[package]]
name = "typing-extensions"
version = "4.15.0"
@@ -1182,3 +1474,69 @@ sdist = { url = "https://files.pythonhosted.org/packages/c7/79/12135bdf8b9c9367b
wheels = [
{ url = "https://files.pythonhosted.org/packages/a4/f5/10b68b7b1544245097b2a1b8238f66f2fc6dcaeb24ba5d917f52bd2eed4f/wsproto-1.3.2-py3-none-any.whl", hash = "sha256:61eea322cdf56e8cc904bd3ad7573359a242ba65688716b0710a5eb12beab584", size = 24405, upload-time = "2025-11-20T18:18:00.454Z" },
]
[[package]]
name = "yarl"
version = "1.22.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "idna", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "multidict", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
{ name = "propcache", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/57/63/0c6ebca57330cd313f6102b16dd57ffaf3ec4c83403dcb45dbd15c6f3ea1/yarl-1.22.0.tar.gz", hash = "sha256:bebf8557577d4401ba8bd9ff33906f1376c877aa78d1fe216ad01b4d6745af71", size = 187169, upload-time = "2025-10-06T14:12:55.963Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ea/f3/d67de7260456ee105dc1d162d43a019ecad6b91e2f51809d6cddaa56690e/yarl-1.22.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8dee9c25c74997f6a750cd317b8ca63545169c098faee42c84aa5e506c819b53", size = 139980, upload-time = "2025-10-06T14:10:14.601Z" },
{ url = "https://files.pythonhosted.org/packages/01/88/04d98af0b47e0ef42597b9b28863b9060bb515524da0a65d5f4db160b2d5/yarl-1.22.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:01e73b85a5434f89fc4fe27dcda2aff08ddf35e4d47bbbea3bdcd25321af538a", size = 93424, upload-time = "2025-10-06T14:10:16.115Z" },
{ url = "https://files.pythonhosted.org/packages/18/91/3274b215fd8442a03975ce6bee5fe6aa57a8326b29b9d3d56234a1dca244/yarl-1.22.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:22965c2af250d20c873cdbee8ff958fb809940aeb2e74ba5f20aaf6b7ac8c70c", size = 93821, upload-time = "2025-10-06T14:10:17.993Z" },
{ url = "https://files.pythonhosted.org/packages/61/3a/caf4e25036db0f2da4ca22a353dfeb3c9d3c95d2761ebe9b14df8fc16eb0/yarl-1.22.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4f15793aa49793ec8d1c708ab7f9eded1aa72edc5174cae703651555ed1b601", size = 373243, upload-time = "2025-10-06T14:10:19.44Z" },
{ url = "https://files.pythonhosted.org/packages/6e/9e/51a77ac7516e8e7803b06e01f74e78649c24ee1021eca3d6a739cb6ea49c/yarl-1.22.0-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:e5542339dcf2747135c5c85f68680353d5cb9ffd741c0f2e8d832d054d41f35a", size = 342361, upload-time = "2025-10-06T14:10:21.124Z" },
{ url = "https://files.pythonhosted.org/packages/d4/f8/33b92454789dde8407f156c00303e9a891f1f51a0330b0fad7c909f87692/yarl-1.22.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:5c401e05ad47a75869c3ab3e35137f8468b846770587e70d71e11de797d113df", size = 387036, upload-time = "2025-10-06T14:10:22.902Z" },
{ url = "https://files.pythonhosted.org/packages/d9/9a/c5db84ea024f76838220280f732970aa4ee154015d7f5c1bfb60a267af6f/yarl-1.22.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:243dda95d901c733f5b59214d28b0120893d91777cb8aa043e6ef059d3cddfe2", size = 397671, upload-time = "2025-10-06T14:10:24.523Z" },
{ url = "https://files.pythonhosted.org/packages/11/c9/cd8538dc2e7727095e0c1d867bad1e40c98f37763e6d995c1939f5fdc7b1/yarl-1.22.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bec03d0d388060058f5d291a813f21c011041938a441c593374da6077fe21b1b", size = 377059, upload-time = "2025-10-06T14:10:26.406Z" },
{ url = "https://files.pythonhosted.org/packages/a1/b9/ab437b261702ced75122ed78a876a6dec0a1b0f5e17a4ac7a9a2482d8abe/yarl-1.22.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b0748275abb8c1e1e09301ee3cf90c8a99678a4e92e4373705f2a2570d581273", size = 365356, upload-time = "2025-10-06T14:10:28.461Z" },
{ url = "https://files.pythonhosted.org/packages/b2/9d/8e1ae6d1d008a9567877b08f0ce4077a29974c04c062dabdb923ed98e6fe/yarl-1.22.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:47fdb18187e2a4e18fda2c25c05d8251a9e4a521edaed757fef033e7d8498d9a", size = 361331, upload-time = "2025-10-06T14:10:30.541Z" },
{ url = "https://files.pythonhosted.org/packages/ca/5a/09b7be3905962f145b73beb468cdd53db8aa171cf18c80400a54c5b82846/yarl-1.22.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c7044802eec4524fde550afc28edda0dd5784c4c45f0be151a2d3ba017daca7d", size = 382590, upload-time = "2025-10-06T14:10:33.352Z" },
{ url = "https://files.pythonhosted.org/packages/aa/7f/59ec509abf90eda5048b0bc3e2d7b5099dffdb3e6b127019895ab9d5ef44/yarl-1.22.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:139718f35149ff544caba20fce6e8a2f71f1e39b92c700d8438a0b1d2a631a02", size = 385316, upload-time = "2025-10-06T14:10:35.034Z" },
{ url = "https://files.pythonhosted.org/packages/e5/84/891158426bc8036bfdfd862fabd0e0fa25df4176ec793e447f4b85cf1be4/yarl-1.22.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e1b51bebd221006d3d2f95fbe124b22b247136647ae5dcc8c7acafba66e5ee67", size = 374431, upload-time = "2025-10-06T14:10:37.76Z" },
{ url = "https://files.pythonhosted.org/packages/88/fc/6908f062a2f77b5f9f6d69cecb1747260831ff206adcbc5b510aff88df91/yarl-1.22.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:719ae08b6972befcba4310e49edb1161a88cdd331e3a694b84466bd938a6ab10", size = 146209, upload-time = "2025-10-06T14:10:44.643Z" },
{ url = "https://files.pythonhosted.org/packages/65/47/76594ae8eab26210b4867be6f49129861ad33da1f1ebdf7051e98492bf62/yarl-1.22.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:47d8a5c446df1c4db9d21b49619ffdba90e77c89ec6e283f453856c74b50b9e3", size = 95966, upload-time = "2025-10-06T14:10:46.554Z" },
{ url = "https://files.pythonhosted.org/packages/ab/ce/05e9828a49271ba6b5b038b15b3934e996980dd78abdfeb52a04cfb9467e/yarl-1.22.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:cfebc0ac8333520d2d0423cbbe43ae43c8838862ddb898f5ca68565e395516e9", size = 97312, upload-time = "2025-10-06T14:10:48.007Z" },
{ url = "https://files.pythonhosted.org/packages/d1/c5/7dffad5e4f2265b29c9d7ec869c369e4223166e4f9206fc2243ee9eea727/yarl-1.22.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4398557cbf484207df000309235979c79c4356518fd5c99158c7d38203c4da4f", size = 361967, upload-time = "2025-10-06T14:10:49.997Z" },
{ url = "https://files.pythonhosted.org/packages/50/b2/375b933c93a54bff7fc041e1a6ad2c0f6f733ffb0c6e642ce56ee3b39970/yarl-1.22.0-cp313-cp313t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:2ca6fd72a8cd803be290d42f2dec5cdcd5299eeb93c2d929bf060ad9efaf5de0", size = 323949, upload-time = "2025-10-06T14:10:52.004Z" },
{ url = "https://files.pythonhosted.org/packages/66/50/bfc2a29a1d78644c5a7220ce2f304f38248dc94124a326794e677634b6cf/yarl-1.22.0-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca1f59c4e1ab6e72f0a23c13fca5430f889634166be85dbf1013683e49e3278e", size = 361818, upload-time = "2025-10-06T14:10:54.078Z" },
{ url = "https://files.pythonhosted.org/packages/46/96/f3941a46af7d5d0f0498f86d71275696800ddcdd20426298e572b19b91ff/yarl-1.22.0-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c5010a52015e7c70f86eb967db0f37f3c8bd503a695a49f8d45700144667708", size = 372626, upload-time = "2025-10-06T14:10:55.767Z" },
{ url = "https://files.pythonhosted.org/packages/c1/42/8b27c83bb875cd89448e42cd627e0fb971fa1675c9ec546393d18826cb50/yarl-1.22.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9d7672ecf7557476642c88497c2f8d8542f8e36596e928e9bcba0e42e1e7d71f", size = 341129, upload-time = "2025-10-06T14:10:57.985Z" },
{ url = "https://files.pythonhosted.org/packages/49/36/99ca3122201b382a3cf7cc937b95235b0ac944f7e9f2d5331d50821ed352/yarl-1.22.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3b7c88eeef021579d600e50363e0b6ee4f7f6f728cd3486b9d0f3ee7b946398d", size = 346776, upload-time = "2025-10-06T14:10:59.633Z" },
{ url = "https://files.pythonhosted.org/packages/85/b4/47328bf996acd01a4c16ef9dcd2f59c969f495073616586f78cd5f2efb99/yarl-1.22.0-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:f4afb5c34f2c6fecdcc182dfcfc6af6cccf1aa923eed4d6a12e9d96904e1a0d8", size = 334879, upload-time = "2025-10-06T14:11:01.454Z" },
{ url = "https://files.pythonhosted.org/packages/c2/ad/b77d7b3f14a4283bffb8e92c6026496f6de49751c2f97d4352242bba3990/yarl-1.22.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:59c189e3e99a59cf8d83cbb31d4db02d66cda5a1a4374e8a012b51255341abf5", size = 350996, upload-time = "2025-10-06T14:11:03.452Z" },
{ url = "https://files.pythonhosted.org/packages/81/c8/06e1d69295792ba54d556f06686cbd6a7ce39c22307100e3fb4a2c0b0a1d/yarl-1.22.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:5a3bf7f62a289fa90f1990422dc8dff5a458469ea71d1624585ec3a4c8d6960f", size = 356047, upload-time = "2025-10-06T14:11:05.115Z" },
{ url = "https://files.pythonhosted.org/packages/4b/b8/4c0e9e9f597074b208d18cef227d83aac36184bfbc6eab204ea55783dbc5/yarl-1.22.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:de6b9a04c606978fdfe72666fa216ffcf2d1a9f6a381058d4378f8d7b1e5de62", size = 342947, upload-time = "2025-10-06T14:11:08.137Z" },
{ url = "https://files.pythonhosted.org/packages/46/b3/e20ef504049f1a1c54a814b4b9bed96d1ac0e0610c3b4da178f87209db05/yarl-1.22.0-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:34b36c2c57124530884d89d50ed2c1478697ad7473efd59cfd479945c95650e4", size = 140520, upload-time = "2025-10-06T14:11:15.465Z" },
{ url = "https://files.pythonhosted.org/packages/e4/04/3532d990fdbab02e5ede063676b5c4260e7f3abea2151099c2aa745acc4c/yarl-1.22.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:0dd9a702591ca2e543631c2a017e4a547e38a5c0f29eece37d9097e04a7ac683", size = 93504, upload-time = "2025-10-06T14:11:17.106Z" },
{ url = "https://files.pythonhosted.org/packages/11/63/ff458113c5c2dac9a9719ac68ee7c947cb621432bcf28c9972b1c0e83938/yarl-1.22.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:594fcab1032e2d2cc3321bb2e51271e7cd2b516c7d9aee780ece81b07ff8244b", size = 94282, upload-time = "2025-10-06T14:11:19.064Z" },
{ url = "https://files.pythonhosted.org/packages/a7/bc/315a56aca762d44a6aaaf7ad253f04d996cb6b27bad34410f82d76ea8038/yarl-1.22.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f3d7a87a78d46a2e3d5b72587ac14b4c16952dd0887dbb051451eceac774411e", size = 372080, upload-time = "2025-10-06T14:11:20.996Z" },
{ url = "https://files.pythonhosted.org/packages/3f/3f/08e9b826ec2e099ea6e7c69a61272f4f6da62cb5b1b63590bb80ca2e4a40/yarl-1.22.0-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:852863707010316c973162e703bddabec35e8757e67fcb8ad58829de1ebc8590", size = 338696, upload-time = "2025-10-06T14:11:22.847Z" },
{ url = "https://files.pythonhosted.org/packages/e3/9f/90360108e3b32bd76789088e99538febfea24a102380ae73827f62073543/yarl-1.22.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:131a085a53bfe839a477c0845acf21efc77457ba2bcf5899618136d64f3303a2", size = 387121, upload-time = "2025-10-06T14:11:24.889Z" },
{ url = "https://files.pythonhosted.org/packages/98/92/ab8d4657bd5b46a38094cfaea498f18bb70ce6b63508fd7e909bd1f93066/yarl-1.22.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:078a8aefd263f4d4f923a9677b942b445a2be970ca24548a8102689a3a8ab8da", size = 394080, upload-time = "2025-10-06T14:11:27.307Z" },
{ url = "https://files.pythonhosted.org/packages/f5/e7/d8c5a7752fef68205296201f8ec2bf718f5c805a7a7e9880576c67600658/yarl-1.22.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bca03b91c323036913993ff5c738d0842fc9c60c4648e5c8d98331526df89784", size = 372661, upload-time = "2025-10-06T14:11:29.387Z" },
{ url = "https://files.pythonhosted.org/packages/b6/2e/f4d26183c8db0bb82d491b072f3127fb8c381a6206a3a56332714b79b751/yarl-1.22.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:68986a61557d37bb90d3051a45b91fa3d5c516d177dfc6dd6f2f436a07ff2b6b", size = 364645, upload-time = "2025-10-06T14:11:31.423Z" },
{ url = "https://files.pythonhosted.org/packages/80/7c/428e5812e6b87cd00ee8e898328a62c95825bf37c7fa87f0b6bb2ad31304/yarl-1.22.0-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:4792b262d585ff0dff6bcb787f8492e40698443ec982a3568c2096433660c694", size = 355361, upload-time = "2025-10-06T14:11:33.055Z" },
{ url = "https://files.pythonhosted.org/packages/ec/2a/249405fd26776f8b13c067378ef4d7dd49c9098d1b6457cdd152a99e96a9/yarl-1.22.0-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ebd4549b108d732dba1d4ace67614b9545b21ece30937a63a65dd34efa19732d", size = 381451, upload-time = "2025-10-06T14:11:35.136Z" },
{ url = "https://files.pythonhosted.org/packages/67/a8/fb6b1adbe98cf1e2dd9fad71003d3a63a1bc22459c6e15f5714eb9323b93/yarl-1.22.0-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:f87ac53513d22240c7d59203f25cc3beac1e574c6cd681bbfd321987b69f95fd", size = 383814, upload-time = "2025-10-06T14:11:37.094Z" },
{ url = "https://files.pythonhosted.org/packages/d9/f9/3aa2c0e480fb73e872ae2814c43bc1e734740bb0d54e8cb2a95925f98131/yarl-1.22.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:22b029f2881599e2f1b06f8f1db2ee63bd309e2293ba2d566e008ba12778b8da", size = 370799, upload-time = "2025-10-06T14:11:38.83Z" },
{ url = "https://files.pythonhosted.org/packages/06/5e/a15eb13db90abd87dfbefb9760c0f3f257ac42a5cac7e75dbc23bed97a9f/yarl-1.22.0-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:45c2842ff0e0d1b35a6bf1cd6c690939dacb617a70827f715232b2e0494d55d1", size = 146223, upload-time = "2025-10-06T14:11:46.796Z" },
{ url = "https://files.pythonhosted.org/packages/18/82/9665c61910d4d84f41a5bf6837597c89e665fa88aa4941080704645932a9/yarl-1.22.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:d947071e6ebcf2e2bee8fce76e10faca8f7a14808ca36a910263acaacef08eca", size = 95981, upload-time = "2025-10-06T14:11:48.845Z" },
{ url = "https://files.pythonhosted.org/packages/5d/9a/2f65743589809af4d0a6d3aa749343c4b5f4c380cc24a8e94a3c6625a808/yarl-1.22.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:334b8721303e61b00019474cc103bdac3d7b1f65e91f0bfedeec2d56dfe74b53", size = 97303, upload-time = "2025-10-06T14:11:50.897Z" },
{ url = "https://files.pythonhosted.org/packages/b0/ab/5b13d3e157505c43c3b43b5a776cbf7b24a02bc4cccc40314771197e3508/yarl-1.22.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1e7ce67c34138a058fd092f67d07a72b8e31ff0c9236e751957465a24b28910c", size = 361820, upload-time = "2025-10-06T14:11:52.549Z" },
{ url = "https://files.pythonhosted.org/packages/fb/76/242a5ef4677615cf95330cfc1b4610e78184400699bdda0acb897ef5e49a/yarl-1.22.0-cp314-cp314t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:d77e1b2c6d04711478cb1c4ab90db07f1609ccf06a287d5607fcd90dc9863acf", size = 323203, upload-time = "2025-10-06T14:11:54.225Z" },
{ url = "https://files.pythonhosted.org/packages/8c/96/475509110d3f0153b43d06164cf4195c64d16999e0c7e2d8a099adcd6907/yarl-1.22.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:c4647674b6150d2cae088fc07de2738a84b8bcedebef29802cf0b0a82ab6face", size = 363173, upload-time = "2025-10-06T14:11:56.069Z" },
{ url = "https://files.pythonhosted.org/packages/c9/66/59db471aecfbd559a1fd48aedd954435558cd98c7d0da8b03cc6c140a32c/yarl-1.22.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:efb07073be061c8f79d03d04139a80ba33cbd390ca8f0297aae9cce6411e4c6b", size = 373562, upload-time = "2025-10-06T14:11:58.783Z" },
{ url = "https://files.pythonhosted.org/packages/03/1f/c5d94abc91557384719da10ff166b916107c1b45e4d0423a88457071dd88/yarl-1.22.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e51ac5435758ba97ad69617e13233da53908beccc6cfcd6c34bbed8dcbede486", size = 339828, upload-time = "2025-10-06T14:12:00.686Z" },
{ url = "https://files.pythonhosted.org/packages/5f/97/aa6a143d3afba17b6465733681c70cf175af89f76ec8d9286e08437a7454/yarl-1.22.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:33e32a0dd0c8205efa8e83d04fc9f19313772b78522d1bdc7d9aed706bfd6138", size = 347551, upload-time = "2025-10-06T14:12:02.628Z" },
{ url = "https://files.pythonhosted.org/packages/43/3c/45a2b6d80195959239a7b2a8810506d4eea5487dce61c2a3393e7fc3c52e/yarl-1.22.0-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:bf4a21e58b9cde0e401e683ebd00f6ed30a06d14e93f7c8fd059f8b6e8f87b6a", size = 334512, upload-time = "2025-10-06T14:12:04.871Z" },
{ url = "https://files.pythonhosted.org/packages/86/a0/c2ab48d74599c7c84cb104ebd799c5813de252bea0f360ffc29d270c2caa/yarl-1.22.0-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:e4b582bab49ac33c8deb97e058cd67c2c50dac0dd134874106d9c774fd272529", size = 352400, upload-time = "2025-10-06T14:12:06.624Z" },
{ url = "https://files.pythonhosted.org/packages/32/75/f8919b2eafc929567d3d8411f72bdb1a2109c01caaab4ebfa5f8ffadc15b/yarl-1.22.0-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:0b5bcc1a9c4839e7e30b7b30dd47fe5e7e44fb7054ec29b5bb8d526aa1041093", size = 357140, upload-time = "2025-10-06T14:12:08.362Z" },
{ url = "https://files.pythonhosted.org/packages/cf/72/6a85bba382f22cf78add705d8c3731748397d986e197e53ecc7835e76de7/yarl-1.22.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:c0232bce2170103ec23c454e54a57008a9a72b5d1c3105dc2496750da8cfa47c", size = 341473, upload-time = "2025-10-06T14:12:10.994Z" },
{ url = "https://files.pythonhosted.org/packages/73/ae/b48f95715333080afb75a4504487cbe142cae1268afc482d06692d605ae6/yarl-1.22.0-py3-none-any.whl", hash = "sha256:1380560bdba02b6b6c90de54133c81c9f2a453dee9912fe58c1dcced1edb7cff", size = 46814, upload-time = "2025-10-06T14:12:53.872Z" },
]