mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-04 19:22:39 -05:00
Compare commits
1 Commits
alexcheema
...
test-app
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e4256fa284 |
2
.github/workflows/pipeline.yml
vendored
2
.github/workflows/pipeline.yml
vendored
@@ -142,4 +142,4 @@ jobs:
|
||||
# Run pytest outside sandbox (needs GPU access for MLX)
|
||||
export HOME="$RUNNER_TEMP"
|
||||
export EXO_TESTS=1
|
||||
EXO_RESOURCES_DIR="$PWD/resources" $TEST_ENV/bin/python -m pytest src -m "not slow" --import-mode=importlib
|
||||
$TEST_ENV/bin/python -m pytest src -m "not slow" --import-mode=importlib
|
||||
|
||||
@@ -10,7 +10,6 @@ PROJECT_ROOT = Path.cwd()
|
||||
SOURCE_ROOT = PROJECT_ROOT / "src"
|
||||
ENTRYPOINT = SOURCE_ROOT / "exo" / "__main__.py"
|
||||
DASHBOARD_DIR = PROJECT_ROOT / "dashboard" / "build"
|
||||
RESOURCES_DIR = PROJECT_ROOT / "resources"
|
||||
EXO_SHARED_MODELS_DIR = SOURCE_ROOT / "exo" / "shared" / "models"
|
||||
|
||||
if not ENTRYPOINT.is_file():
|
||||
@@ -19,9 +18,6 @@ if not ENTRYPOINT.is_file():
|
||||
if not DASHBOARD_DIR.is_dir():
|
||||
raise SystemExit(f"Dashboard assets are missing: {DASHBOARD_DIR}")
|
||||
|
||||
if not RESOURCES_DIR.is_dir():
|
||||
raise SystemExit(f"Resource assets are missing: {RESOURCES_DIR}")
|
||||
|
||||
if not EXO_SHARED_MODELS_DIR.is_dir():
|
||||
raise SystemExit(f"Shared model assets are missing: {EXO_SHARED_MODELS_DIR}")
|
||||
|
||||
@@ -62,7 +58,6 @@ HIDDEN_IMPORTS = sorted(
|
||||
|
||||
DATAS: list[tuple[str, str]] = [
|
||||
(str(DASHBOARD_DIR), "dashboard"),
|
||||
(str(RESOURCES_DIR), "resources"),
|
||||
(str(MLX_LIB_DIR), "mlx/lib"),
|
||||
(str(EXO_SHARED_MODELS_DIR), "exo/shared/models"),
|
||||
]
|
||||
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-Krea-dev-4bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 15475325472
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 5950704160
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-Krea-dev-8bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 21426029632
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 11901408320
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-Krea-dev"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33327437952
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 23802816640
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-dev-4bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 15475325472
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 5950704160
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-dev-8bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 21426029632
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 11901408320
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-dev"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33327437952
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 23802816640
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-schnell-4bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 15470210592
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 5945589280
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-schnell-8bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 21415799872
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 11891178560
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,45 +0,0 @@
|
||||
model_id = "exolabs/FLUX.1-schnell"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33306978432
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 23782357120
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,35 +0,0 @@
|
||||
model_id = "exolabs/Qwen-Image-4bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 26799533856
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 10215200544
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,35 +0,0 @@
|
||||
model_id = "exolabs/Qwen-Image-8bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 37014734400
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 20430401088
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,35 +0,0 @@
|
||||
model_id = "exolabs/Qwen-Image-Edit-2509-4bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["ImageToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 26799533856
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 10215200544
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,35 +0,0 @@
|
||||
model_id = "exolabs/Qwen-Image-Edit-2509-8bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["ImageToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 37014734400
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 20430401088
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,35 +0,0 @@
|
||||
model_id = "exolabs/Qwen-Image-Edit-2509"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["ImageToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 57445135488
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 40860802176
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,35 +0,0 @@
|
||||
model_id = "exolabs/Qwen-Image"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 57445135488
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 40860802176
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/DeepSeek-V3.1-4bit"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 405874409472
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/DeepSeek-V3.1-8bit"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 765577920512
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.5-Air-8bit"
|
||||
n_layers = 46
|
||||
hidden_size = 4096
|
||||
supports_tensor = false
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 122406567936
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.5-Air-bf16"
|
||||
n_layers = 46
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 229780750336
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-4bit"
|
||||
n_layers = 91
|
||||
hidden_size = 5120
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 198556925568
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-6bit"
|
||||
n_layers = 91
|
||||
hidden_size = 5120
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 286737579648
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-8bit-gs32"
|
||||
n_layers = 91
|
||||
hidden_size = 5120
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 396963397248
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-4bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 19327352832
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-5bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 22548578304
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-6bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 26843545600
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-8bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 34359738368
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 620622774272
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Kimi-K2-Thinking"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 706522120192
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Kimi-K2.5"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 662498705408
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
|
||||
n_layers = 16
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 729808896
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
n_layers = 28
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 1863319552
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
|
||||
n_layers = 28
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 3501195264
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 40652242944
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 76799803392
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 40652242944
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
|
||||
n_layers = 32
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 4637851648
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
|
||||
n_layers = 32
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 8954839040
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
|
||||
n_layers = 32
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 16882073600
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/MiniMax-M2.1-3bit"
|
||||
n_layers = 61
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 100086644736
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/MiniMax-M2.1-8bit"
|
||||
n_layers = 61
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 242986745856
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-0.6B-4bit"
|
||||
n_layers = 28
|
||||
hidden_size = 1024
|
||||
supports_tensor = false
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 342884352
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-0.6B-8bit"
|
||||
n_layers = 28
|
||||
hidden_size = 1024
|
||||
supports_tensor = false
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 698351616
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
|
||||
n_layers = 94
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 141733920768
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
|
||||
n_layers = 94
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 268435456000
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 17612931072
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33279705088
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
|
||||
n_layers = 62
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 289910292480
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
|
||||
n_layers = 62
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 579820584960
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 46976204800
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 88814387200
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 47080074240
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 88814387200
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Step-3.5-Flash-4bit"
|
||||
n_layers = 45
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 114572190076
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Step-3.5-Flash-6bit"
|
||||
n_layers = 45
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 159039627774
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/Step-3.5-Flash-8Bit"
|
||||
n_layers = 45
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 209082699847
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
|
||||
n_layers = 36
|
||||
hidden_size = 2880
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 70652212224
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q8"
|
||||
n_layers = 24
|
||||
hidden_size = 2880
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 12025908224
|
||||
@@ -1,8 +0,0 @@
|
||||
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 144383672320
|
||||
@@ -7,7 +7,7 @@ from loguru import logger
|
||||
|
||||
from exo.download.download_utils import RepoDownloadProgress, download_shard
|
||||
from exo.download.shard_downloader import ShardDownloader
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
|
||||
from exo.shared.types.worker.shards import (
|
||||
PipelineShardMetadata,
|
||||
ShardMetadata,
|
||||
@@ -160,7 +160,7 @@ class ResumableShardDownloader(ShardDownloader):
|
||||
# Kick off download status coroutines concurrently
|
||||
tasks = [
|
||||
asyncio.create_task(_status_for_model(model_card.model_id))
|
||||
for model_card in await get_model_cards()
|
||||
for model_card in MODEL_CARDS.values()
|
||||
]
|
||||
|
||||
for task in asyncio.as_completed(tasks):
|
||||
|
||||
@@ -40,7 +40,6 @@ from exo.master.image_store import ImageStore
|
||||
from exo.master.placement import place_instance as get_instance_placements
|
||||
from exo.shared.apply import apply
|
||||
from exo.shared.constants import (
|
||||
DASHBOARD_DIR,
|
||||
EXO_IMAGE_CACHE_DIR,
|
||||
EXO_MAX_CHUNK_SIZE,
|
||||
EXO_TRACING_CACHE_DIR,
|
||||
@@ -48,9 +47,9 @@ from exo.shared.constants import (
|
||||
from exo.shared.election import ElectionMessage
|
||||
from exo.shared.logging import InterceptLogger
|
||||
from exo.shared.models.model_cards import (
|
||||
MODEL_CARDS,
|
||||
ModelCard,
|
||||
ModelId,
|
||||
get_model_cards,
|
||||
)
|
||||
from exo.shared.tracing import TraceEvent, compute_stats, export_trace, load_trace_file
|
||||
from exo.shared.types.api import (
|
||||
@@ -139,6 +138,7 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
from exo.utils.banner import print_startup_banner
|
||||
from exo.utils.channels import Receiver, Sender, channel
|
||||
from exo.utils.dashboard_path import find_dashboard
|
||||
from exo.utils.event_buffer import OrderedBuffer
|
||||
|
||||
|
||||
@@ -146,6 +146,18 @@ def _format_to_content_type(image_format: Literal["png", "jpeg", "webp"] | None)
|
||||
return f"image/{image_format or 'png'}"
|
||||
|
||||
|
||||
async def resolve_model_card(model_id: ModelId) -> ModelCard:
|
||||
if model_id in MODEL_CARDS:
|
||||
model_card = MODEL_CARDS[model_id]
|
||||
return model_card
|
||||
|
||||
for card in MODEL_CARDS.values():
|
||||
if card.model_id == ModelId(model_id):
|
||||
return card
|
||||
|
||||
return await ModelCard.from_hf(model_id)
|
||||
|
||||
|
||||
class API:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -192,7 +204,7 @@ class API:
|
||||
self.app.mount(
|
||||
"/",
|
||||
StaticFiles(
|
||||
directory=DASHBOARD_DIR,
|
||||
directory=find_dashboard(),
|
||||
html=True,
|
||||
),
|
||||
name="dashboard",
|
||||
@@ -369,7 +381,10 @@ class API:
|
||||
if len(list(self.state.topology.list_nodes())) == 0:
|
||||
return PlacementPreviewResponse(previews=[])
|
||||
|
||||
model_card = await ModelCard.load(model_id)
|
||||
cards = [card for card in MODEL_CARDS.values() if card.model_id == model_id]
|
||||
if not cards:
|
||||
raise HTTPException(status_code=404, detail=f"Model {model_id} not found")
|
||||
|
||||
instance_combinations: list[tuple[Sharding, InstanceMeta, int]] = []
|
||||
for sharding in (Sharding.Pipeline, Sharding.Tensor):
|
||||
for instance_meta in (InstanceMeta.MlxRing, InstanceMeta.MlxJaccl):
|
||||
@@ -384,93 +399,96 @@ class API:
|
||||
# TODO: PDD
|
||||
# instance_combinations.append((Sharding.PrefillDecodeDisaggregation, InstanceMeta.MlxRing, 1))
|
||||
|
||||
for sharding, instance_meta, min_nodes in instance_combinations:
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
PlaceInstance(
|
||||
model_card=model_card,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
min_nodes=min_nodes,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
topology=self.state.topology,
|
||||
current_instances=self.state.instances,
|
||||
required_nodes=required_nodes,
|
||||
)
|
||||
except ValueError as exc:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
for model_card in cards:
|
||||
for sharding, instance_meta, min_nodes in instance_combinations:
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
PlaceInstance(
|
||||
model_card=model_card,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error=str(exc),
|
||||
min_nodes=min_nodes,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
topology=self.state.topology,
|
||||
current_instances=self.state.instances,
|
||||
required_nodes=required_nodes,
|
||||
)
|
||||
except ValueError as exc:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error=str(exc),
|
||||
)
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
current_ids = set(self.state.instances.keys())
|
||||
new_instances = [
|
||||
instance
|
||||
for instance_id, instance in placements.items()
|
||||
if instance_id not in current_ids
|
||||
]
|
||||
current_ids = set(self.state.instances.keys())
|
||||
new_instances = [
|
||||
instance
|
||||
for instance_id, instance in placements.items()
|
||||
if instance_id not in current_ids
|
||||
]
|
||||
|
||||
if len(new_instances) != 1:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error="Expected exactly one new instance from placement",
|
||||
if len(new_instances) != 1:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error="Expected exactly one new instance from placement",
|
||||
)
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
instance = new_instances[0]
|
||||
shard_assignments = instance.shard_assignments
|
||||
placement_node_ids = list(shard_assignments.node_to_runner.keys())
|
||||
instance = new_instances[0]
|
||||
shard_assignments = instance.shard_assignments
|
||||
placement_node_ids = list(shard_assignments.node_to_runner.keys())
|
||||
|
||||
memory_delta_by_node: dict[str, int] = {}
|
||||
if placement_node_ids:
|
||||
total_bytes = model_card.storage_size.in_bytes
|
||||
per_node = total_bytes // len(placement_node_ids)
|
||||
remainder = total_bytes % len(placement_node_ids)
|
||||
for index, node_id in enumerate(sorted(placement_node_ids, key=str)):
|
||||
extra = 1 if index < remainder else 0
|
||||
memory_delta_by_node[str(node_id)] = per_node + extra
|
||||
memory_delta_by_node: dict[str, int] = {}
|
||||
if placement_node_ids:
|
||||
total_bytes = model_card.storage_size.in_bytes
|
||||
per_node = total_bytes // len(placement_node_ids)
|
||||
remainder = total_bytes % len(placement_node_ids)
|
||||
for index, node_id in enumerate(
|
||||
sorted(placement_node_ids, key=str)
|
||||
):
|
||||
extra = 1 if index < remainder else 0
|
||||
memory_delta_by_node[str(node_id)] = per_node + extra
|
||||
|
||||
if (
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=instance,
|
||||
memory_delta_by_node=memory_delta_by_node or None,
|
||||
error=None,
|
||||
)
|
||||
)
|
||||
seen.add(
|
||||
(
|
||||
if (
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=instance,
|
||||
memory_delta_by_node=memory_delta_by_node or None,
|
||||
error=None,
|
||||
)
|
||||
)
|
||||
seen.add(
|
||||
(
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
return PlacementPreviewResponse(previews=previews)
|
||||
|
||||
@@ -634,21 +652,23 @@ class API:
|
||||
response = await self._collect_text_generation_with_stats(command.command_id)
|
||||
return response
|
||||
|
||||
async def _resolve_and_validate_text_model(self, model_id: ModelId) -> ModelId:
|
||||
async def _resolve_and_validate_text_model(self, model: ModelId) -> ModelId:
|
||||
"""Validate a text model exists and return the resolved model ID.
|
||||
|
||||
Raises HTTPException 404 if no instance is found for the model.
|
||||
"""
|
||||
model_card = await resolve_model_card(model)
|
||||
resolved = model_card.model_id
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == model_id
|
||||
instance.shard_assignments.model_id == resolved
|
||||
for instance in self.state.instances.values()
|
||||
):
|
||||
await self._trigger_notify_user_to_download_model(model_id)
|
||||
await self._trigger_notify_user_to_download_model(resolved)
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"No instance found for model {model_id}",
|
||||
detail=f"No instance found for model {resolved}",
|
||||
)
|
||||
return model_id
|
||||
return resolved
|
||||
|
||||
async def _validate_image_model(self, model: ModelId) -> ModelId:
|
||||
"""Validate model exists and return resolved model ID.
|
||||
@@ -1217,7 +1237,7 @@ class API:
|
||||
supports_tensor=card.supports_tensor,
|
||||
tasks=[task.value for task in card.tasks],
|
||||
)
|
||||
for card in await get_model_cards()
|
||||
for card in MODEL_CARDS.values()
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -2,8 +2,6 @@ import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from exo.utils.dashboard_path import find_dashboard, find_resources
|
||||
|
||||
_EXO_HOME_ENV = os.environ.get("EXO_HOME", None)
|
||||
|
||||
|
||||
@@ -33,14 +31,6 @@ EXO_MODELS_DIR = (
|
||||
if _EXO_MODELS_DIR_ENV is None
|
||||
else Path.home() / _EXO_MODELS_DIR_ENV
|
||||
)
|
||||
_RESOURCES_DIR_ENV = os.environ.get("EXO_RESOURCES_DIR", None)
|
||||
RESOURCES_DIR = (
|
||||
find_resources() if _RESOURCES_DIR_ENV is None else Path.home() / _RESOURCES_DIR_ENV
|
||||
)
|
||||
_DASHBOARD_DIR_ENV = os.environ.get("EXO_DASHBOARD_DIR", None)
|
||||
DASHBOARD_DIR = (
|
||||
find_dashboard() if _RESOURCES_DIR_ENV is None else Path.home() / _RESOURCES_DIR_ENV
|
||||
)
|
||||
|
||||
# Log files (data/logs or cache)
|
||||
EXO_LOG = EXO_CACHE_HOME / "exo.log"
|
||||
|
||||
@@ -12,42 +12,16 @@ from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
PositiveInt,
|
||||
ValidationError,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from tomlkit.exceptions import TOMLKitError
|
||||
|
||||
from exo.shared.constants import EXO_ENABLE_IMAGE_MODELS, RESOURCES_DIR
|
||||
from exo.shared.constants import EXO_ENABLE_IMAGE_MODELS
|
||||
from exo.shared.types.common import ModelId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
|
||||
# kinda ugly...
|
||||
# TODO: load search path from config.toml
|
||||
_csp = [Path(RESOURCES_DIR) / "inference_model_cards"]
|
||||
if EXO_ENABLE_IMAGE_MODELS:
|
||||
_csp.append(Path(RESOURCES_DIR) / "image_model_cards")
|
||||
|
||||
CARD_SEARCH_PATH = _csp
|
||||
|
||||
_card_cache: dict[ModelId, "ModelCard"] = {}
|
||||
|
||||
|
||||
async def _refresh_card_cache():
|
||||
for path in CARD_SEARCH_PATH:
|
||||
async for toml_file in path.rglob("*.toml"):
|
||||
try:
|
||||
card = await ModelCard.load_from_path(toml_file)
|
||||
_card_cache[card.model_id] = card
|
||||
except (ValidationError, TOMLKitError):
|
||||
pass
|
||||
|
||||
|
||||
async def get_model_cards() -> list["ModelCard"]:
|
||||
if len(_card_cache) == 0:
|
||||
await _refresh_card_cache()
|
||||
return list(_card_cache.values())
|
||||
_card_cache: dict[str, "ModelCard"] = {}
|
||||
|
||||
|
||||
class ModelTask(str, Enum):
|
||||
@@ -81,33 +55,28 @@ class ModelCard(CamelCaseModel):
|
||||
|
||||
async def save(self, path: Path) -> None:
|
||||
async with await open_file(path, "w") as f:
|
||||
py = self.model_dump(exclude_none=True)
|
||||
py = self.model_dump()
|
||||
data = tomlkit.dumps(py) # pyright: ignore[reportUnknownMemberType]
|
||||
await f.write(data)
|
||||
|
||||
async def save_to_default_path(self):
|
||||
await self.save(Path(RESOURCES_DIR) / (self.model_id.normalize() + ".toml"))
|
||||
|
||||
@staticmethod
|
||||
async def load_from_path(path: Path) -> "ModelCard":
|
||||
async with await open_file(path, "r") as f:
|
||||
py = tomlkit.loads(await f.read())
|
||||
return ModelCard.model_validate(py)
|
||||
|
||||
# Is it okay that model card.load defaults to network access if the card doesn't exist? do we want to be more explicit here?
|
||||
@staticmethod
|
||||
async def load(model_id: ModelId) -> "ModelCard":
|
||||
if model_id not in _card_cache:
|
||||
await _refresh_card_cache()
|
||||
if (mc := _card_cache.get(model_id)) is not None:
|
||||
return mc
|
||||
|
||||
return await ModelCard.fetch_from_hf(model_id)
|
||||
for card in MODEL_CARDS.values():
|
||||
if card.model_id == model_id:
|
||||
return card
|
||||
return await ModelCard.from_hf(model_id)
|
||||
|
||||
@staticmethod
|
||||
async def fetch_from_hf(model_id: ModelId) -> "ModelCard":
|
||||
async def from_hf(model_id: ModelId) -> "ModelCard":
|
||||
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
|
||||
# TODO: failure if files do not exist
|
||||
if (mc := _card_cache.get(model_id)) is not None:
|
||||
return mc
|
||||
config_data = await get_config_data(model_id)
|
||||
num_layers = config_data.layer_count
|
||||
mem_size_bytes = await get_safetensors_size(model_id)
|
||||
@@ -120,13 +89,544 @@ class ModelCard(CamelCaseModel):
|
||||
supports_tensor=config_data.supports_tensor,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
)
|
||||
await mc.save_to_default_path()
|
||||
_card_cache[model_id] = mc
|
||||
return mc
|
||||
|
||||
|
||||
# TODO: quantizing and dynamically creating model cards
|
||||
def _generate_image_model_quant_variants( # pyright: ignore[reportUnusedFunction]
|
||||
MODEL_CARDS: dict[str, ModelCard] = {
|
||||
# deepseek v3
|
||||
"deepseek-v3.1-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
|
||||
storage_size=Memory.from_gb(378),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"deepseek-v3.1-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
|
||||
storage_size=Memory.from_gb(713),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# kimi k2
|
||||
"kimi-k2-instruct-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
|
||||
storage_size=Memory.from_gb(578),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"kimi-k2-thinking": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
|
||||
storage_size=Memory.from_gb(658),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"kimi-k2.5": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2.5"),
|
||||
storage_size=Memory.from_gb(617),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.1
|
||||
"llama-3.1-8b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(4423),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.1-8b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(8540),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.1-8b-bf16": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
|
||||
storage_size=Memory.from_mb(16100),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.1-70b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.2
|
||||
"llama-3.2-1b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(696),
|
||||
n_layers=16,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.2-3b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(1777),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.2-3b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(3339),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.3
|
||||
"llama-3.3-70b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.3-70b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(73242),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.3-70b-fp16": ModelCard(
|
||||
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
|
||||
storage_size=Memory.from_mb(137695),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# qwen3
|
||||
"qwen3-0.6b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
|
||||
storage_size=Memory.from_mb(327),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-0.6b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
|
||||
storage_size=Memory.from_mb(666),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-30b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
|
||||
storage_size=Memory.from_mb(16797),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-30b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
|
||||
storage_size=Memory.from_mb(31738),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(44800),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
|
||||
storage_size=Memory.from_mb(44900),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-235b-a22b-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
|
||||
storage_size=Memory.from_gb(132),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-235b-a22b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
|
||||
storage_size=Memory.from_gb(250),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-coder-480b-a35b-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
|
||||
storage_size=Memory.from_gb(270),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-coder-480b-a35b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
|
||||
storage_size=Memory.from_gb(540),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# gpt-oss
|
||||
"gpt-oss-120b-MXFP4-Q8": ModelCard(
|
||||
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
storage_size=Memory.from_kb(68_996_301),
|
||||
n_layers=36,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"gpt-oss-20b-MXFP4-Q8": ModelCard(
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
|
||||
storage_size=Memory.from_kb(11_744_051),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# glm 4.5
|
||||
"glm-4.5-air-8bit": ModelCard(
|
||||
# Needs to be quantized g32 or g16 to work with tensor parallel
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
storage_size=Memory.from_gb(114),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.5-air-bf16": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
|
||||
storage_size=Memory.from_gb(214),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# glm 4.7
|
||||
"glm-4.7-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
|
||||
storage_size=Memory.from_bytes(198556925568),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-6bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
|
||||
storage_size=Memory.from_bytes(286737579648),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-8bit-gs32": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
|
||||
storage_size=Memory.from_bytes(396963397248),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# glm 4.7 flash
|
||||
"glm-4.7-flash-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
|
||||
storage_size=Memory.from_gb(18),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-flash-5bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-5bit"),
|
||||
storage_size=Memory.from_gb(21),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-flash-6bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-6bit"),
|
||||
storage_size=Memory.from_gb(25),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-flash-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-8bit"),
|
||||
storage_size=Memory.from_gb(32),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# minimax-m2
|
||||
"minimax-m2.1-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
|
||||
storage_size=Memory.from_bytes(242986745856),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"minimax-m2.1-3bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
|
||||
storage_size=Memory.from_bytes(100086644736),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
}
|
||||
|
||||
_IMAGE_BASE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
"flux1-schnell": ModelCard(
|
||||
model_id=ModelId("exolabs/FLUX.1-schnell"),
|
||||
storage_size=Memory.from_bytes(23782357120 + 9524621312),
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
component_path="text_encoder_2/",
|
||||
storage_size=Memory.from_bytes(9524621312),
|
||||
n_layers=24,
|
||||
can_shard=False,
|
||||
safetensors_index_filename="model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23782357120),
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"flux1-dev": ModelCard(
|
||||
model_id=ModelId("exolabs/FLUX.1-dev"),
|
||||
storage_size=Memory.from_bytes(23782357120 + 9524621312),
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
component_path="text_encoder_2/",
|
||||
storage_size=Memory.from_bytes(9524621312),
|
||||
n_layers=24,
|
||||
can_shard=False,
|
||||
safetensors_index_filename="model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23802816640),
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"flux1-krea-dev": ModelCard(
|
||||
model_id=ModelId("exolabs/FLUX.1-Krea-dev"),
|
||||
storage_size=Memory.from_bytes(23802816640 + 9524621312), # Same as dev
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
component_path="text_encoder_2/",
|
||||
storage_size=Memory.from_bytes(9524621312),
|
||||
n_layers=24,
|
||||
can_shard=False,
|
||||
safetensors_index_filename="model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23802816640),
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"qwen-image": ModelCard(
|
||||
model_id=ModelId("exolabs/Qwen-Image"),
|
||||
storage_size=Memory.from_bytes(16584333312 + 40860802176),
|
||||
n_layers=60,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_bytes(16584333312),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(40860802176),
|
||||
n_layers=60,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"qwen-image-edit-2509": ModelCard(
|
||||
model_id=ModelId("exolabs/Qwen-Image-Edit-2509"),
|
||||
storage_size=Memory.from_bytes(16584333312 + 40860802176),
|
||||
n_layers=60,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.ImageToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_bytes(16584333312),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(40860802176),
|
||||
n_layers=60,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def _generate_image_model_quant_variants(
|
||||
base_name: str,
|
||||
base_card: ModelCard,
|
||||
) -> dict[str, ModelCard]:
|
||||
@@ -206,6 +706,15 @@ def _generate_image_model_quant_variants( # pyright: ignore[reportUnusedFunctio
|
||||
return variants
|
||||
|
||||
|
||||
_image_model_cards: dict[str, ModelCard] = {}
|
||||
for _base_name, _base_card in _IMAGE_BASE_MODEL_CARDS.items():
|
||||
_image_model_cards |= _generate_image_model_quant_variants(_base_name, _base_card)
|
||||
_IMAGE_MODEL_CARDS = _image_model_cards
|
||||
|
||||
if EXO_ENABLE_IMAGE_MODELS:
|
||||
MODEL_CARDS.update(_IMAGE_MODEL_CARDS)
|
||||
|
||||
|
||||
class ConfigData(BaseModel):
|
||||
model_config = {"extra": "ignore"} # Allow unknown fields
|
||||
|
||||
@@ -233,7 +742,6 @@ class ConfigData(BaseModel):
|
||||
["MiniMaxM2ForCausalLM"],
|
||||
["LlamaForCausalLM"],
|
||||
["GptOssForCausalLM"],
|
||||
["Step3p5ForCausalLM"],
|
||||
]
|
||||
|
||||
@model_validator(mode="before")
|
||||
|
||||
@@ -1,45 +1,31 @@
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import cast
|
||||
|
||||
|
||||
def find_resources() -> Path:
|
||||
resources = _find_resources_in_repo() or _find_resources_in_bundle()
|
||||
if resources is None:
|
||||
raise FileNotFoundError(
|
||||
"Unable to locate resources. Did you clone the repo properly?"
|
||||
)
|
||||
return resources
|
||||
|
||||
|
||||
def _find_resources_in_repo() -> Path | None:
|
||||
current_module = Path(__file__).resolve()
|
||||
for parent in current_module.parents:
|
||||
build = parent / "resources"
|
||||
if build.is_dir():
|
||||
return build
|
||||
return None
|
||||
|
||||
|
||||
def _find_resources_in_bundle() -> Path | None:
|
||||
frozen_root = cast(str | None, getattr(sys, "_MEIPASS", None))
|
||||
if frozen_root is None:
|
||||
return None
|
||||
candidate = Path(frozen_root) / "resources"
|
||||
if candidate.is_dir():
|
||||
return candidate
|
||||
return None
|
||||
|
||||
|
||||
def find_dashboard() -> Path:
|
||||
dashboard = _find_dashboard_in_repo() or _find_dashboard_in_bundle()
|
||||
dashboard = (
|
||||
_find_dashboard_in_env()
|
||||
or _find_dashboard_in_repo()
|
||||
or _find_dashboard_in_bundle()
|
||||
)
|
||||
if not dashboard:
|
||||
raise FileNotFoundError(
|
||||
"Unable to locate dashboard assets - you probably forgot to run `cd dashboard && npm install && npm run build && cd ..`"
|
||||
"Unable to locate dashboard assets - make sure the dashboard has been built, or export DASHBOARD_DIR if you've built the dashboard elsewhere."
|
||||
)
|
||||
return dashboard
|
||||
|
||||
|
||||
def _find_dashboard_in_env() -> Path | None:
|
||||
env = os.environ.get("DASHBOARD_DIR")
|
||||
if not env:
|
||||
return None
|
||||
resolved_env = Path(env).expanduser().resolve()
|
||||
|
||||
return resolved_env
|
||||
|
||||
|
||||
def _find_dashboard_in_repo() -> Path | None:
|
||||
current_module = Path(__file__).resolve()
|
||||
for parent in current_module.parents:
|
||||
|
||||
@@ -31,8 +31,6 @@ from mlx_lm.models.qwen3_moe import Model as Qwen3MoeModel
|
||||
from mlx_lm.models.qwen3_moe import Qwen3MoeSparseMoeBlock
|
||||
from mlx_lm.models.qwen3_next import Model as Qwen3NextModel
|
||||
from mlx_lm.models.qwen3_next import Qwen3NextSparseMoeBlock
|
||||
from mlx_lm.models.step3p5 import Model as Step3p5Model
|
||||
from mlx_lm.models.step3p5 import Step3p5MLP
|
||||
|
||||
from exo.shared.logging import logger
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata
|
||||
@@ -382,14 +380,6 @@ def tensor_auto_parallel(
|
||||
all_to_sharded_linear_in_place,
|
||||
sharded_to_all_linear_in_place,
|
||||
)
|
||||
elif isinstance(model, Step3p5Model):
|
||||
tensor_parallel_sharding_strategy = Step3p5ShardingStrategy(
|
||||
group,
|
||||
all_to_sharded_linear,
|
||||
sharded_to_all_linear,
|
||||
all_to_sharded_linear_in_place,
|
||||
sharded_to_all_linear_in_place,
|
||||
)
|
||||
elif isinstance(model, GptOssModel):
|
||||
tensor_parallel_sharding_strategy = GptOssShardingStrategy(
|
||||
group,
|
||||
@@ -784,57 +774,3 @@ class ShardedGptOssMoE(CustomMlxLayer):
|
||||
if self.sharding_group is not None:
|
||||
y = mx.distributed.all_sum(y, group=self.sharding_group)
|
||||
return y
|
||||
|
||||
|
||||
class Step3p5ShardingStrategy(TensorParallelShardingStrategy):
|
||||
def shard_model(
|
||||
self,
|
||||
model: nn.Module,
|
||||
timeout_seconds: float,
|
||||
on_timeout: TimeoutCallback | None,
|
||||
) -> nn.Module:
|
||||
model = cast(Step3p5Model, model)
|
||||
for layer in model.layers:
|
||||
eval_with_timeout(
|
||||
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
|
||||
)
|
||||
# Shard attention
|
||||
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
|
||||
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
|
||||
layer.self_attn.v_proj = self.all_to_sharded_linear(layer.self_attn.v_proj)
|
||||
layer.self_attn.o_proj = self.sharded_to_all_linear(layer.self_attn.o_proj)
|
||||
layer.self_attn.num_heads //= self.N # pyright: ignore[reportUnknownMemberType]
|
||||
layer.self_attn.num_kv_heads //= self.N # pyright: ignore[reportUnknownMemberType]
|
||||
|
||||
if isinstance(layer.mlp, Step3p5MLP):
|
||||
# Dense MLP layer
|
||||
layer.mlp.gate_proj = self.all_to_sharded_linear(layer.mlp.gate_proj)
|
||||
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
|
||||
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
|
||||
else:
|
||||
# MoE layer: shared expert + routed experts
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.share_expert.gate_proj)
|
||||
self.sharded_to_all_linear_in_place(layer.mlp.share_expert.down_proj)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.share_expert.up_proj)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
|
||||
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.up_proj)
|
||||
layer.mlp = ShardedStep3p5MoE(layer.mlp) # pyright: ignore[reportAttributeAccessIssue, reportArgumentType]
|
||||
layer.mlp.sharding_group = self.group # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
mx.eval(layer)
|
||||
return model
|
||||
|
||||
|
||||
class ShardedStep3p5MoE(CustomMlxLayer):
|
||||
def __init__(self, layer: _LayerCallable):
|
||||
super().__init__(layer)
|
||||
self.sharding_group: mx.distributed.Group | None = None
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
if self.sharding_group is not None:
|
||||
x = sum_gradients(self.sharding_group)(x)
|
||||
y = self.original_layer.__call__(x)
|
||||
if self.sharding_group is not None:
|
||||
y = mx.distributed.all_sum(y, group=self.sharding_group)
|
||||
return y
|
||||
|
||||
@@ -16,7 +16,7 @@ from exo.download.download_utils import (
|
||||
ensure_models_dir,
|
||||
fetch_file_list_with_cache,
|
||||
)
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
get_eos_token_ids_for_model,
|
||||
load_tokenizer_for_model_id,
|
||||
@@ -76,7 +76,7 @@ def get_test_models() -> list[ModelCard]:
|
||||
"""Get a representative sample of models to test."""
|
||||
# Pick one model from each family to test
|
||||
families: dict[str, ModelCard] = {}
|
||||
for card in asyncio.run(get_model_cards()):
|
||||
for card in MODEL_CARDS.values():
|
||||
# Extract family name (e.g., "llama-3.1" from "llama-3.1-8b")
|
||||
parts = card.model_id.short().split("-")
|
||||
family = "-".join(parts[:2]) if len(parts) >= 2 else parts[0]
|
||||
@@ -296,7 +296,7 @@ async def test_tokenizer_special_tokens(model_card: ModelCard) -> None:
|
||||
async def test_kimi_tokenizer_specifically():
|
||||
"""Test Kimi tokenizer with its specific patches and quirks."""
|
||||
kimi_models = [
|
||||
card for card in await get_model_cards() if "kimi" in card.model_id.lower()
|
||||
card for card in MODEL_CARDS.values() if "kimi" in card.model_id.lower()
|
||||
]
|
||||
|
||||
if not kimi_models:
|
||||
@@ -343,7 +343,7 @@ async def test_kimi_tokenizer_specifically():
|
||||
async def test_glm_tokenizer_specifically():
|
||||
"""Test GLM tokenizer with its specific EOS tokens."""
|
||||
glm_model_cards = [
|
||||
card for card in await get_model_cards() if "glm" in card.model_id.lower()
|
||||
card for card in MODEL_CARDS.values() if "glm" in card.model_id.lower()
|
||||
]
|
||||
|
||||
if not glm_model_cards:
|
||||
|
||||
@@ -1,20 +1,25 @@
|
||||
import multiprocessing as mp
|
||||
import socket
|
||||
from typing import Literal
|
||||
import time
|
||||
import typing
|
||||
|
||||
import anyio
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import Response, StreamingResponse
|
||||
from fastapi.responses import StreamingResponse
|
||||
from hypercorn import Config
|
||||
from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType]
|
||||
from loguru import logger
|
||||
from pydantic import BaseModel
|
||||
|
||||
from exo.shared.constants import EXO_MODELS_DIR
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.chunks import TokenChunk
|
||||
from exo.download.impl_shard_downloader import (
|
||||
build_full_shard,
|
||||
exo_shard_downloader,
|
||||
)
|
||||
from exo.shared.logging import InterceptLogger, logger_setup
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelId
|
||||
from exo.shared.types.commands import CommandId
|
||||
from exo.shared.types.common import Host, NodeId
|
||||
from exo.shared.types.events import ChunkGenerated, Event, RunnerStatusUpdated
|
||||
from exo.shared.types.events import Event
|
||||
from exo.shared.types.tasks import (
|
||||
ConnectToGroup,
|
||||
LoadModel,
|
||||
@@ -31,14 +36,9 @@ from exo.shared.types.worker.instances import (
|
||||
MlxJacclInstance,
|
||||
MlxRingInstance,
|
||||
)
|
||||
from exo.shared.types.worker.runners import (
|
||||
RunnerFailed,
|
||||
RunnerId,
|
||||
RunnerShutdown,
|
||||
ShardAssignments,
|
||||
)
|
||||
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
|
||||
from exo.utils.channels import channel, mp_channel
|
||||
from exo.utils.channels import MpReceiver, MpSender, channel, mp_channel
|
||||
from exo.utils.info_gatherer.info_gatherer import GatheredInfo, InfoGatherer
|
||||
from exo.worker.runner.bootstrap import entrypoint
|
||||
|
||||
@@ -46,37 +46,36 @@ from exo.worker.runner.bootstrap import entrypoint
|
||||
class Tests(BaseModel):
|
||||
# list[hostname, ip addr]
|
||||
devs: list[list[str]]
|
||||
ibv_devs: list[list[str | None]] | None
|
||||
model_id: ModelId
|
||||
kind: Literal["ring", "jaccl", "both"]
|
||||
model_id: str
|
||||
kind: typing.Literal["init", "warmup", "inference"]
|
||||
|
||||
|
||||
iid = InstanceId("im testing here")
|
||||
mp.set_start_method("spawn", force=True)
|
||||
logger_setup(None)
|
||||
|
||||
|
||||
async def main():
|
||||
logger.info("starting cool server majig")
|
||||
await assert_downloads()
|
||||
cfg = Config()
|
||||
cfg.bind = "0.0.0.0:52414"
|
||||
cfg.bind = "0.0.0.0:52415"
|
||||
# nb: shared.logging needs updating if any of this changes
|
||||
cfg.accesslog = "-"
|
||||
cfg.errorlog = "-"
|
||||
ev = anyio.Event()
|
||||
cfg.logger_class = InterceptLogger
|
||||
app = FastAPI()
|
||||
app.post("/run_test")(run_test)
|
||||
app.post("/kill")(lambda: kill(ev))
|
||||
app.get("/tb_detection")(tb_detection)
|
||||
app.get("/models")(list_models)
|
||||
app.post("/ring")(ring_backend)
|
||||
app.post("/jaccl")(jaccl_backend)
|
||||
app.post("/tb_detection")(tb_detection)
|
||||
shutdown = anyio.Event()
|
||||
await serve(
|
||||
app, # type: ignore
|
||||
cfg,
|
||||
shutdown_trigger=lambda: ev.wait(),
|
||||
shutdown_trigger=lambda: shutdown.wait(),
|
||||
)
|
||||
|
||||
|
||||
def kill(ev: anyio.Event):
|
||||
ev.set()
|
||||
return Response(status_code=204)
|
||||
await anyio.sleep_forever()
|
||||
# gracefully shutdown the api
|
||||
shutdown.set()
|
||||
|
||||
|
||||
async def tb_detection():
|
||||
@@ -88,19 +87,29 @@ async def tb_detection():
|
||||
return recv.collect()
|
||||
|
||||
|
||||
def list_models():
|
||||
sent = set[str]()
|
||||
for path in EXO_MODELS_DIR.rglob("model-*.safetensors"):
|
||||
if "--" not in path.parent.name:
|
||||
continue
|
||||
name = path.parent.name.replace("--", "/")
|
||||
if name in sent:
|
||||
continue
|
||||
sent.add(name)
|
||||
yield ModelId(path.parent.name.replace("--", "/"))
|
||||
async def assert_downloads():
|
||||
sd = exo_shard_downloader()
|
||||
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
|
||||
)
|
||||
|
||||
|
||||
async def run_test(test: Tests):
|
||||
async def ring_backend(test: Tests):
|
||||
iid = InstanceId(str(hash(str(test.devs))))
|
||||
weird_hn = socket.gethostname()
|
||||
for dev in test.devs:
|
||||
if weird_hn.startswith(dev[0]) or dev[0].startswith(weird_hn):
|
||||
@@ -108,63 +117,31 @@ async def run_test(test: Tests):
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"{weird_hn} not in {test.devs}")
|
||||
|
||||
async def run():
|
||||
logger.info(f"testing {test.model_id}")
|
||||
|
||||
instances: list[Instance] = []
|
||||
if test.kind in ["ring", "both"]:
|
||||
i = await ring_instance(test, hn)
|
||||
if i is None:
|
||||
yield "no model found"
|
||||
return
|
||||
instances.append(i)
|
||||
if test.kind in ["jaccl", "both"]:
|
||||
i = await jaccl_instance(test)
|
||||
if i is None:
|
||||
yield "no model found"
|
||||
return
|
||||
instances.append(i)
|
||||
|
||||
for instance in instances:
|
||||
recv = await execute_test(test, instance, hn)
|
||||
|
||||
str_out = ""
|
||||
|
||||
for item in recv:
|
||||
if isinstance(item, ChunkGenerated):
|
||||
assert isinstance(item.chunk, TokenChunk)
|
||||
str_out += item.chunk.text
|
||||
|
||||
if isinstance(item, RunnerStatusUpdated) and isinstance(
|
||||
item.runner_status, (RunnerFailed, RunnerShutdown)
|
||||
):
|
||||
yield str_out + "\n"
|
||||
yield item.model_dump_json() + "\n"
|
||||
|
||||
return StreamingResponse(run())
|
||||
return await execute_test(test, ring_instance(test, iid, hn), hn)
|
||||
|
||||
|
||||
async def ring_instance(test: Tests, hn: str) -> Instance | None:
|
||||
hbn = [Host(ip="198.51.100.0", port=52417) for _ in test.devs]
|
||||
def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
|
||||
hbn = [Host(ip="i dont care", port=52416) for _ in test.devs]
|
||||
world_size = len(test.devs)
|
||||
for i in range(world_size):
|
||||
if test.devs[i][0] == hn:
|
||||
hn = test.devs[i][0]
|
||||
hbn[(i - 1) % world_size] = Host(ip=test.devs[i - 1][1], port=52417)
|
||||
hbn[(i + 1) % world_size] = Host(ip=test.devs[i + 1][1], port=52417)
|
||||
hbn[i] = Host(ip="0.0.0.0", port=52417)
|
||||
break
|
||||
if i - 1 >= 0:
|
||||
hbn[i - 1] = Host(ip=test.devs[i - 1][1], port=52416)
|
||||
if i + 1 < len(test.devs):
|
||||
hbn[i + 1] = Host(ip=test.devs[i + 1][1], port=52416)
|
||||
hbn[i] = Host(ip="0.0.0.0", port=52416)
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"{hn} not in {test.devs}")
|
||||
|
||||
card = await ModelCard.load(test.model_id)
|
||||
card = MODEL_CARDS[test.model_id]
|
||||
instance = MlxRingInstance(
|
||||
instance_id=iid,
|
||||
ephemeral_port=52417,
|
||||
ephemeral_port=52416,
|
||||
hosts_by_node={NodeId(hn): hbn},
|
||||
shard_assignments=ShardAssignments(
|
||||
model_id=test.model_id,
|
||||
model_id=ModelId(test.model_id),
|
||||
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
|
||||
runner_to_shard={
|
||||
RunnerId(test.devs[i][0]): PipelineShardMetadata(
|
||||
@@ -186,75 +163,113 @@ async def ring_instance(test: Tests, hn: str) -> Instance | None:
|
||||
return instance
|
||||
|
||||
|
||||
async def execute_test(test: Tests, instance: Instance, hn: str) -> list[Event]:
|
||||
async def execute_test(test: Tests, instance: Instance, hn: str):
|
||||
world_size = len(test.devs)
|
||||
commands: list[Task] = [
|
||||
(LoadModel(instance_id=iid)),
|
||||
(StartWarmup(instance_id=iid)),
|
||||
(
|
||||
TextGeneration(
|
||||
task_params=TextGenerationTaskParams(
|
||||
model=test.model_id,
|
||||
instructions="You are a helpful assistant",
|
||||
input="What is the capital of France?",
|
||||
),
|
||||
command_id=CommandId("yo"),
|
||||
instance_id=iid,
|
||||
)
|
||||
),
|
||||
(Shutdown(runner_id=RunnerId(hn), instance_id=iid)),
|
||||
]
|
||||
iid = InstanceId(str(hash(str(test.devs))))
|
||||
_handle, recv, send = new_runner(instance, hn)
|
||||
if world_size > 1:
|
||||
commands.insert(0, ConnectToGroup(instance_id=iid))
|
||||
bound_instance = BoundInstance(
|
||||
instance=instance, bound_runner_id=RunnerId(hn), bound_node_id=NodeId(hn)
|
||||
)
|
||||
ev_send, _ev_recv = mp_channel[Event]()
|
||||
task_send, task_recv = mp_channel[Task]()
|
||||
send.send(ConnectToGroup(instance_id=iid))
|
||||
send.send(LoadModel(instance_id=iid))
|
||||
|
||||
for command in commands:
|
||||
task_send.send(command)
|
||||
match test.kind:
|
||||
case "init":
|
||||
pass
|
||||
case "warmup":
|
||||
send.send(StartWarmup(instance_id=iid))
|
||||
case "inference":
|
||||
send.send(StartWarmup(instance_id=iid))
|
||||
send.send(
|
||||
TextGeneration(
|
||||
task_params=TextGenerationTaskParams(
|
||||
model=test.model_id,
|
||||
instructions="You are a helpful assistant",
|
||||
input="What is the capital of France?",
|
||||
),
|
||||
command_id=CommandId("yo"),
|
||||
instance_id=iid,
|
||||
)
|
||||
)
|
||||
|
||||
entrypoint(
|
||||
bound_instance,
|
||||
ev_send,
|
||||
task_recv,
|
||||
logger,
|
||||
)
|
||||
send.send(Shutdown(runner_id=RunnerId(hn), instance_id=iid))
|
||||
|
||||
# TODO(evan): return ev_recv.collect()
|
||||
return []
|
||||
async def map_recv():
|
||||
with recv:
|
||||
try:
|
||||
async for item in recv:
|
||||
yield item.model_dump_json() + "\n"
|
||||
except anyio.ClosedResourceError:
|
||||
pass
|
||||
|
||||
ret = StreamingResponse(map_recv())
|
||||
ret._pls_dont_gc = _handle # type: ignore
|
||||
return ret
|
||||
|
||||
|
||||
async def jaccl_instance(test: Tests) -> MlxJacclInstance | None:
|
||||
card = await ModelCard.load(test.model_id)
|
||||
async def jaccl_backend(test: Tests):
|
||||
iid = InstanceId(str(hash(str(test.devs))))
|
||||
weird_hn = socket.gethostname()
|
||||
for dev in test.devs:
|
||||
if weird_hn.startswith(dev[0]) or dev[0].startswith(weird_hn):
|
||||
hn = dev[0]
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"{weird_hn} not in {test.devs}")
|
||||
return await execute_test(test, jaccl_instance(test, iid), hn)
|
||||
|
||||
|
||||
def jaccl_instance(test: Tests, iid: InstanceId):
|
||||
card = MODEL_CARDS[test.model_id]
|
||||
world_size = len(test.devs)
|
||||
assert test.ibv_devs
|
||||
|
||||
return MlxJacclInstance(
|
||||
instance_id=iid,
|
||||
jaccl_devices=test.ibv_devs,
|
||||
jaccl_devices=[[None, "rdma_en3"], ["rdma_en3", None]],
|
||||
# rank 0 is always coordinator
|
||||
jaccl_coordinators={
|
||||
NodeId(host[0]): test.devs[0][1] + ":52417" for host in test.devs
|
||||
NodeId(host[0]): test.devs[0][1] + ":52416" for host in test.devs
|
||||
},
|
||||
shard_assignments=ShardAssignments(
|
||||
model_id=test.model_id,
|
||||
model_id=ModelId(test.model_id),
|
||||
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
|
||||
runner_to_shard={
|
||||
RunnerId(host[0]): TensorShardMetadata(
|
||||
RunnerId(test.devs[i][0]): TensorShardMetadata(
|
||||
model_card=card,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=0,
|
||||
start_layer=card.n_layers,
|
||||
end_layer=card.n_layers,
|
||||
n_layers=card.n_layers,
|
||||
)
|
||||
for i, host in enumerate(test.devs)
|
||||
for i in range(world_size)
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def new_runner(
|
||||
instance: Instance,
|
||||
hn: str,
|
||||
) -> tuple[mp.Process, MpReceiver[Event], MpSender[Task]]:
|
||||
bound_instance = BoundInstance(
|
||||
instance=instance, bound_runner_id=RunnerId(hn), bound_node_id=NodeId(hn)
|
||||
)
|
||||
ev_send, ev_recv = mp_channel[Event]()
|
||||
task_send, task_recv = mp_channel[Task]()
|
||||
|
||||
runner_process = mp.Process(
|
||||
target=entrypoint,
|
||||
args=(
|
||||
bound_instance,
|
||||
ev_send,
|
||||
task_recv,
|
||||
logger,
|
||||
),
|
||||
)
|
||||
runner_process._pls_dont_gc = (ev_send, task_recv) # type: ignore
|
||||
runner_process.start()
|
||||
time.sleep(0.1)
|
||||
return (runner_process, ev_recv, task_send)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
anyio.run(main)
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
[ $# -lt 1 ] && {
|
||||
echo "Usage: $0 host1 [host2 ...]"
|
||||
exit 1
|
||||
}
|
||||
|
||||
[ -z "$(git status --porcelain)" ] || {
|
||||
echo "Uncommitted changes"
|
||||
exit 1
|
||||
}
|
||||
|
||||
commit=$(git rev-parse HEAD)
|
||||
git fetch -q origin
|
||||
git branch -r --contains "$commit" | grep -qE '^\s*origin/' || {
|
||||
echo "Not pushed to origin"
|
||||
exit 1
|
||||
}
|
||||
|
||||
echo "Deploying $commit to $# hosts..."
|
||||
hosts=("$@")
|
||||
cleanup() {
|
||||
for host in "${hosts[@]}"; do
|
||||
ssh -T -o BatchMode=yes "$host@$host" "pkill -SIGINT -of exo-env" &
|
||||
done
|
||||
wait
|
||||
jobs -pr | xargs -r kill 2>/dev/null || true
|
||||
}
|
||||
trap 'cleanup' EXIT INT TERM
|
||||
|
||||
colours=($'\e[31m' $'\e[32m' $'\e[33m' $'\e[34m')
|
||||
reset=$'\e[0m'
|
||||
i=0
|
||||
for host; do
|
||||
colour=${colours[i++ % 4]}
|
||||
{
|
||||
ssh -T -o BatchMode=yes -o ServerAliveInterval=30 "$host@$host" \
|
||||
"/nix/var/nix/profiles/default/bin/nix shell nixpkgs#git -c bash -s -- '$commit'" \
|
||||
2>&1 | awk -v p="${colour}[${host}]${reset}" '{ print p $0; fflush() }' &
|
||||
} <<'EOF'
|
||||
set -euo pipefail
|
||||
cd exo
|
||||
git fetch -q origin
|
||||
git checkout -q "$1"
|
||||
EXO_LIBP2P_NAMESPACE="$1" /nix/var/nix/profiles/default/bin/nix run .#exo
|
||||
EOF
|
||||
done
|
||||
|
||||
for host; do
|
||||
echo "Waiting for $host..."
|
||||
until curl -sf "http://$host:52415/models"; do sleep 1; done
|
||||
done
|
||||
wait
|
||||
@@ -1,85 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import itertools
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any, cast
|
||||
from urllib.request import Request, urlopen
|
||||
|
||||
if not (args := sys.argv[1:]):
|
||||
sys.exit(
|
||||
f"USAGE: {sys.argv[0]} <kind> [host1] [host2] ...\nkind is optional, and should be jaccl or ring"
|
||||
)
|
||||
|
||||
kind = args[0] if args[0] in ("jaccl", "ring") else "both"
|
||||
hosts = args[1:] if kind != "both" else args
|
||||
ts = subprocess.run(
|
||||
["tailscale", "status"], check=True, text=True, capture_output=True
|
||||
).stdout.splitlines()
|
||||
ip = {sl[1]: sl[0] for line in ts if len(sl := line.split()) >= 2}
|
||||
ips = [ip[h] for h in hosts]
|
||||
devs = [[h, ip[h]] for h in hosts]
|
||||
n = len(hosts)
|
||||
|
||||
|
||||
def get_tb(a: str) -> list[dict[str, Any]]:
|
||||
with urlopen(f"http://{a}:52414/tb_detection", timeout=5) as r: # pyright: ignore[reportAny]
|
||||
return json.loads(r.read()) # pyright: ignore[reportAny]
|
||||
|
||||
|
||||
def get_models(a: str) -> set[str]:
|
||||
with urlopen(f"http://{a}:52414/models", timeout=5) as r: # pyright: ignore[reportAny]
|
||||
return set(json.loads(r.read())) # pyright: ignore[reportAny]
|
||||
|
||||
|
||||
def run(h: str, a: str, body: bytes) -> None:
|
||||
with urlopen(
|
||||
Request(
|
||||
f"http://{a}:52414/run_test",
|
||||
data=body,
|
||||
method="POST",
|
||||
headers={"Content-Type": "application/json"},
|
||||
),
|
||||
timeout=300,
|
||||
) as r: # pyright: ignore[reportAny]
|
||||
for line in r.read().decode(errors="replace").splitlines(): # pyright: ignore[reportAny]
|
||||
print(f"\n{h}@{a}: {line}", flush=True)
|
||||
|
||||
|
||||
with ThreadPoolExecutor(n) as exctr:
|
||||
if kind in ("jaccl", "both"):
|
||||
payloads = list(exctr.map(get_tb, ips))
|
||||
|
||||
u2e = {
|
||||
ident["domainUuid"]: (i, ident["rdmaInterface"])
|
||||
for i, p in enumerate(payloads)
|
||||
for d in p
|
||||
for ident in cast(
|
||||
list[dict[str, str]],
|
||||
d.get("MacThunderboltIdentifiers", {}).get("idents", []), # pyright: ignore[reportAny]
|
||||
)
|
||||
}
|
||||
edges = {
|
||||
(u2e[s][0], u2e[t][0]): u2e[t][1]
|
||||
for p in payloads
|
||||
for d in p
|
||||
for c in d.get("MacThunderboltConnections", {}).get("conns", []) # pyright: ignore[reportAny]
|
||||
if (s := c["sourceUuid"]) in u2e and (t := c["sinkUuid"]) in u2e # pyright: ignore[reportAny]
|
||||
}
|
||||
ibv_devs = [[edges.get((i, j)) for j in range(n)] for i in range(n)]
|
||||
else:
|
||||
ibv_devs = None
|
||||
|
||||
models = set[str].intersection(*exctr.map(get_models, ips))
|
||||
|
||||
print("\n")
|
||||
print("=" * 70)
|
||||
print(f"Starting test with {models}")
|
||||
print("=" * 70)
|
||||
print("\n")
|
||||
for model in models:
|
||||
body = json.dumps(
|
||||
{"devs": devs, "model_id": model, "ibv_devs": ibv_devs, "kind": kind}
|
||||
).encode()
|
||||
list(exctr.map(run, hosts, ips, itertools.repeat(body)))
|
||||
54
tests/start_distributed_test.sh
Executable file
54
tests/start_distributed_test.sh
Executable file
@@ -0,0 +1,54 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
query() {
|
||||
tailscale status | awk -v find="$1" '$2 == find { print $1 }'
|
||||
}
|
||||
|
||||
if [[ $# -lt 2 ]]; then
|
||||
echo "USAGE: $0 <test kind> [host1] [host2] ..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
kind=$1
|
||||
shift
|
||||
|
||||
test_kinds="ring jaccl"
|
||||
|
||||
if ! echo "$test_kinds" | grep -q "$kind"; then
|
||||
printf "%s is not a known test kind.\nCurrent test kinds are %s" "$kind" "$test_kinds"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
hostnames=("$@")
|
||||
weaved=()
|
||||
ips=()
|
||||
for name in "${hostnames[@]}"; do
|
||||
ip=$(query "$name")
|
||||
ips+=("$ip")
|
||||
weaved+=("$name" "$ip")
|
||||
done
|
||||
|
||||
devs_raw=$(printf '["%s", "%s"], ' "${weaved[@]}")
|
||||
devs="[${devs_raw%, }]"
|
||||
|
||||
model_ids=("qwen3-30b" "gpt-oss-120b-MXFP4-Q8" "kimi-k2-thinking")
|
||||
|
||||
for model_id in "${model_ids[@]}"; do
|
||||
for i in "${!ips[@]}"; do
|
||||
{
|
||||
req="{
|
||||
\"model_id\": \"${model_id}\",
|
||||
\"devs\": ${devs},
|
||||
\"kind\": \"inference\"
|
||||
}"
|
||||
echo "req $req"
|
||||
curl -sN \
|
||||
-X POST "http://${ips[$i]}:52415/${kind}" \
|
||||
-H "Content-Type: application/json" -d "$req" \
|
||||
2>&1 | sed "s/^/\n${hostnames[$i]}@${ips[$i]}: /" || echo "curl to ${hostnames[$i]} failed" && exit 1
|
||||
} &
|
||||
done
|
||||
wait
|
||||
done
|
||||
4
uv.lock
generated
4
uv.lock
generated
@@ -1072,8 +1072,8 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "mlx-lm"
|
||||
version = "0.30.6"
|
||||
source = { git = "https://github.com/ml-explore/mlx-lm?branch=main#ab050d1fac2ef1d7bea6b8d870f1e5717d7f59f5" }
|
||||
version = "0.30.5"
|
||||
source = { git = "https://github.com/ml-explore/mlx-lm?branch=main#96699e6dadb13b82b28285bb131a0741997d19ae" }
|
||||
dependencies = [
|
||||
{ name = "jinja2", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mlx", marker = "sys_platform == 'darwin'" },
|
||||
|
||||
Reference in New Issue
Block a user