mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-18 23:06:23 -05:00
Compare commits
4 Commits
alexcheema
...
pr-1465-sc
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6d1ca6689b | ||
|
|
c01b6fff21 | ||
|
|
8392e78afe | ||
|
|
86735ece78 |
7
bench/bench.toml
Normal file
7
bench/bench.toml
Normal file
@@ -0,0 +1,7 @@
|
||||
# Canary benchmark manifest
|
||||
#
|
||||
# Lists the suite files to include. Each file defines benchmarks
|
||||
# with shared constraints, topology, and default args.
|
||||
include = [
|
||||
"single-m3-ultra.toml",
|
||||
]
|
||||
189
bench/single-m3-ultra.toml
Normal file
189
bench/single-m3-ultra.toml
Normal file
@@ -0,0 +1,189 @@
|
||||
# Single-node M3 Ultra benchmarks
|
||||
#
|
||||
# Shared constraints applied to ALL benchmarks in this file.
|
||||
constraints = [
|
||||
"All(MacOsBuild(=25D125))",
|
||||
"Hosts(=1)",
|
||||
"All(Chip(m3_ultra))",
|
||||
"All(GpuCores(=80))",
|
||||
]
|
||||
|
||||
[topology]
|
||||
type = "none"
|
||||
|
||||
# Default args merged into each benchmark's args (benchmark-level args win).
|
||||
[defaults]
|
||||
pp = [512, 2048, 8192, 16384]
|
||||
tg = 128
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/gpt-oss-120b-MXFP4-Q8"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-6bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-30B-A3B-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-0.6B-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-0.6B-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.2-1B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.2-3B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/gpt-oss-20b-MXFP4-Q8"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-30B-A3B-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-5bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-6bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.3-70B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-5bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.3-70B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/llama-3.3-70b-instruct-fp16"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.5-Air-8bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.5-Air-bf16"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-4bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/MiniMax-M2.1-3bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/MiniMax-M2.1-8bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-bf16"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Step-3.5-Flash-4bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Step-3.5-Flash-6bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Step-3.5-Flash-8Bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/DeepSeek-V3.1-4bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-6bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-8bit-gs32"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
@@ -144,8 +144,8 @@ async def collect_responses_response(
|
||||
for tool in chunk.tool_calls:
|
||||
function_call_items.append(
|
||||
ResponseFunctionCallItem(
|
||||
id=f"fc_{tool.id}",
|
||||
call_id=f"call_{tool.id}",
|
||||
id=tool.id,
|
||||
call_id=tool.id,
|
||||
name=tool.name,
|
||||
arguments=tool.arguments,
|
||||
)
|
||||
|
||||
@@ -218,11 +218,6 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
|
||||
key: value for key, value in state.downloads.items() if key != event.node_id
|
||||
}
|
||||
# Clean up all granular node mappings
|
||||
node_identities = {
|
||||
key: value
|
||||
for key, value in state.node_identities.items()
|
||||
if key != event.node_id
|
||||
}
|
||||
node_memory = {
|
||||
key: value for key, value in state.node_memory.items() if key != event.node_id
|
||||
}
|
||||
@@ -263,7 +258,6 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
|
||||
"downloads": downloads,
|
||||
"topology": topology,
|
||||
"last_seen": last_seen,
|
||||
"node_identities": node_identities,
|
||||
"node_memory": node_memory,
|
||||
"node_disk": node_disk,
|
||||
"node_system": node_system,
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import sys
|
||||
|
||||
|
||||
def print_startup_banner(port: int) -> None:
|
||||
"""Print a prominent startup banner with API endpoint information."""
|
||||
dashboard_url = f"http://localhost:{port}"
|
||||
banner = f"""
|
||||
╔═══════════════════════════════════════════════════════════════════════╗
|
||||
@@ -27,4 +29,4 @@ def print_startup_banner(port: int) -> None:
|
||||
|
||||
"""
|
||||
|
||||
print(banner)
|
||||
print(banner, file=sys.stderr)
|
||||
|
||||
@@ -306,7 +306,7 @@ def mlx_generate(
|
||||
max_stop_len = max((len(s) for s in stop_sequences), default=0)
|
||||
|
||||
mx_barrier(group)
|
||||
logger.info("Ready to prefill")
|
||||
logger.info("Starting prefill")
|
||||
|
||||
# Prefill cache with all tokens except the last one
|
||||
prefill_tps, prefill_tokens, ssm_snapshots_list = prefill(
|
||||
|
||||
@@ -353,7 +353,13 @@ def load_tokenizer_for_model_id(
|
||||
return list(hf_tokenizer.model.encode(text, allowed_special="all")) # pyright: ignore[reportUnknownMemberType,reportUnknownArgumentType]
|
||||
|
||||
hf_tokenizer.encode = _patched_encode
|
||||
return TokenizerWrapper(hf_tokenizer, eos_token_ids=eos_token_ids)
|
||||
return TokenizerWrapper(
|
||||
hf_tokenizer,
|
||||
eos_token_ids=eos_token_ids,
|
||||
tool_call_start="<|tool_calls_section_begin|>",
|
||||
tool_call_end="<|tool_calls_section_end|>",
|
||||
tool_parser=_parse_kimi_tool_calls,
|
||||
)
|
||||
|
||||
tokenizer = load_tokenizer(
|
||||
model_path,
|
||||
@@ -585,3 +591,41 @@ def mx_barrier(group: Group | None):
|
||||
mx.array(1.0), group=group, stream=mx.default_stream(mx.Device(mx.cpu))
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _parse_kimi_tool_calls(text: str):
|
||||
import regex as re
|
||||
|
||||
# kimi has a fixed function naming scheme, with a json formatted arg
|
||||
# functions.multiply:0<|tool_call_argument_begin|>{"a": 2, "b": 3}
|
||||
_func_name_regex = re.compile(
|
||||
r"^\s*((?:functions\.)?(.+?):\d+)\s*<\|tool_call_argument_begin\|>", re.DOTALL
|
||||
)
|
||||
_func_arg_regex = re.compile(r"<\|tool_call_argument_begin\|>\s*(.*)\s*", re.DOTALL)
|
||||
_tool_call_split_regex = re.compile(
|
||||
r"<\|tool_call_begin\|>(.*?)<\|tool_call_end\|>", re.DOTALL
|
||||
)
|
||||
|
||||
def _parse_single_tool(text: str) -> dict[str, Any]:
|
||||
func_name_match = _func_name_regex.search(text)
|
||||
if func_name_match is None:
|
||||
raise ValueError("No tool call found.")
|
||||
tool_call_id = func_name_match.group(1) # e.g. "functions.get_weather:0"
|
||||
func_name = func_name_match.group(2) # e.g. "get_weather"
|
||||
|
||||
func_args_match = _func_arg_regex.search(text)
|
||||
if func_args_match is None:
|
||||
raise ValueError("No tool call arguments found.")
|
||||
func_args = func_args_match.group(1)
|
||||
try:
|
||||
arg_dct = json.loads(func_args) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
arg_dct = None
|
||||
|
||||
return dict(id=tool_call_id, name=func_name, arguments=arg_dct)
|
||||
|
||||
tool_matches = _tool_call_split_regex.findall(text)
|
||||
if tool_matches:
|
||||
return [_parse_single_tool(match) for match in tool_matches] # pyright: ignore[reportAny]
|
||||
else:
|
||||
return [_parse_single_tool(text)]
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import base64
|
||||
import json
|
||||
import math
|
||||
import resource
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from functools import cache
|
||||
from typing import Any, Callable, Literal
|
||||
from typing import Literal
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
@@ -16,7 +15,6 @@ from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
StreamableParser,
|
||||
load_harmony_encoding,
|
||||
)
|
||||
from pydantic import ValidationError
|
||||
|
||||
from exo.shared.constants import EXO_MAX_CHUNK_SIZE, EXO_TRACING_ENABLED
|
||||
from exo.shared.models.model_cards import ModelId, ModelTask
|
||||
@@ -93,6 +91,8 @@ from exo.worker.engines.mlx.utils_mlx import (
|
||||
)
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
from .tool_parsers import ToolParser, make_mlx_parser
|
||||
|
||||
|
||||
def _is_primary_output_node(shard_metadata: ShardMetadata) -> bool:
|
||||
"""Check if this node is the primary output node for image generation.
|
||||
@@ -138,6 +138,7 @@ def main(
|
||||
inference_model: Model | None = None
|
||||
image_model: DistributedImageModel | None = None
|
||||
tokenizer = None
|
||||
tool_parser: ToolParser | None = None
|
||||
group = None
|
||||
kv_prefix_cache: KVPrefixCache | None = None
|
||||
check_for_cancel_every: int | None = None
|
||||
@@ -203,8 +204,17 @@ def main(
|
||||
bound_instance, group, on_timeout=on_model_load_timeout
|
||||
)
|
||||
logger.info(
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling}"
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling} using tokens {tokenizer.tool_call_start}, {tokenizer.tool_call_end}"
|
||||
)
|
||||
if tokenizer.has_tool_calling:
|
||||
assert tokenizer.tool_call_start
|
||||
assert tokenizer.tool_call_end
|
||||
assert tokenizer.tool_parser # pyright: ignore[reportAny]
|
||||
tool_parser = make_mlx_parser(
|
||||
tokenizer.tool_call_start,
|
||||
tokenizer.tool_call_end,
|
||||
tokenizer.tool_parser, # pyright: ignore[reportAny]
|
||||
)
|
||||
kv_prefix_cache = KVPrefixCache(group)
|
||||
|
||||
elif (
|
||||
@@ -310,31 +320,11 @@ def main(
|
||||
mlx_generator, tokenizer
|
||||
)
|
||||
|
||||
# Kimi-K2 has tool call sections - we don't care about them
|
||||
if "kimi" in shard_metadata.model_card.model_id.lower():
|
||||
mlx_generator = filter_kimi_tokens(mlx_generator)
|
||||
patch_kimi_tokenizer(tokenizer)
|
||||
|
||||
# GLM models need patched parser (upstream has bug with None regex match)
|
||||
elif "glm" in shard_metadata.model_card.model_id.lower():
|
||||
patch_glm_tokenizer(tokenizer)
|
||||
|
||||
# GPT-OSS specific parsing to match other model formats.
|
||||
elif isinstance(inference_model, GptOssModel):
|
||||
if isinstance(inference_model, GptOssModel):
|
||||
mlx_generator = parse_gpt_oss(mlx_generator)
|
||||
|
||||
if tokenizer.has_tool_calling and not isinstance(
|
||||
inference_model, GptOssModel
|
||||
):
|
||||
assert tokenizer.tool_call_start
|
||||
assert tokenizer.tool_call_end
|
||||
assert tokenizer.tool_parser # pyright: ignore[reportAny]
|
||||
mlx_generator = parse_tool_calls(
|
||||
mlx_generator,
|
||||
tokenizer.tool_call_start,
|
||||
tokenizer.tool_call_end,
|
||||
tokenizer.tool_parser, # pyright: ignore[reportAny]
|
||||
)
|
||||
elif tool_parser:
|
||||
mlx_generator = parse_tool_calls(mlx_generator, tool_parser)
|
||||
|
||||
completion_tokens = 0
|
||||
tokens_since_last_cancel_check = 0
|
||||
@@ -587,21 +577,8 @@ def get_gpt_oss_encoding():
|
||||
return encoding
|
||||
|
||||
|
||||
def filter_kimi_tokens(
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
) -> Generator[GenerationResponse]:
|
||||
for resp in responses:
|
||||
assert isinstance(resp, GenerationResponse)
|
||||
if (
|
||||
resp.text == "<|tool_calls_section_begin|>"
|
||||
or resp.text == "<|tool_calls_section_end|>"
|
||||
):
|
||||
continue
|
||||
yield resp
|
||||
|
||||
|
||||
def parse_gpt_oss(
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
responses: Generator[GenerationResponse],
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
encoding = get_gpt_oss_encoding()
|
||||
stream = StreamableParser(encoding, role=Role.ASSISTANT)
|
||||
@@ -658,9 +635,9 @@ def parse_gpt_oss(
|
||||
|
||||
|
||||
def parse_thinking_models(
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
responses: Generator[GenerationResponse],
|
||||
tokenizer: TokenizerWrapper,
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
) -> Generator[GenerationResponse]:
|
||||
"""
|
||||
For models that inject thinking tags in the prompt (like GLM-4.7),
|
||||
prepend the thinking tag to the output stream so the frontend
|
||||
@@ -781,221 +758,55 @@ def _process_image_response(
|
||||
|
||||
|
||||
def parse_tool_calls(
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
tool_call_start: str,
|
||||
tool_call_end: str,
|
||||
tool_parser: Callable[[str], dict[str, Any] | list[dict[str, Any]]],
|
||||
responses: Generator[GenerationResponse], tool_parser: ToolParser
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
in_tool_call = False
|
||||
tool_call_text_parts: list[str] = []
|
||||
for response in responses:
|
||||
assert isinstance(response, GenerationResponse)
|
||||
# assumption: the tool call start is one token
|
||||
if response.text == tool_call_start:
|
||||
if response.text.startswith(tool_parser.start_parsing):
|
||||
in_tool_call = True
|
||||
continue
|
||||
# assumption: the tool call end is one token
|
||||
if in_tool_call and response.text == tool_call_end:
|
||||
try:
|
||||
# tool_parser returns an arbitrarily nested python dictionary
|
||||
# we actually don't want the python dictionary, we just want to
|
||||
# parse the top level { function: ..., arguments: ... } structure
|
||||
# as we're just gonna hand it back to the api anyway
|
||||
parsed = tool_parser("".join(tool_call_text_parts).strip())
|
||||
logger.info(f"parsed {tool_call_text_parts=} into {parsed=}")
|
||||
if isinstance(parsed, list):
|
||||
tools = [_validate_single_tool(tool) for tool in parsed]
|
||||
else:
|
||||
tools = [_validate_single_tool(parsed)]
|
||||
yield ToolCallResponse(
|
||||
tool_calls=tools, usage=response.usage, stats=response.stats
|
||||
)
|
||||
|
||||
except (
|
||||
json.JSONDecodeError,
|
||||
ValidationError,
|
||||
ValueError,
|
||||
AttributeError,
|
||||
) as e:
|
||||
# ValueError: our parsers raise this for malformed tool calls
|
||||
# AttributeError: upstream parsers (e.g. glm47) may raise this when regex doesn't match
|
||||
logger.opt(exception=e).warning("tool call parsing failed")
|
||||
# assumption: talking about tool calls, not making a tool call
|
||||
response.text = (
|
||||
tool_call_start + "".join(tool_call_text_parts) + tool_call_end
|
||||
)
|
||||
yield response
|
||||
|
||||
in_tool_call = False
|
||||
tool_call_text_parts = []
|
||||
continue
|
||||
|
||||
if in_tool_call:
|
||||
tool_call_text_parts.append(response.text)
|
||||
if response.text.endswith(tool_parser.end_parsing):
|
||||
# parse the actual tool calls from the tool call text
|
||||
parsed = tool_parser.parse_tool_calls(
|
||||
"".join(tool_call_text_parts).strip()
|
||||
)
|
||||
logger.info(f"parsed {tool_call_text_parts=} into {parsed=}")
|
||||
if parsed is not None:
|
||||
yield ToolCallResponse(
|
||||
tool_calls=parsed, usage=response.usage, stats=response.stats
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"tool call parsing failed for text {''.join(tool_call_text_parts)}"
|
||||
)
|
||||
response.text = "".join(tool_call_text_parts)
|
||||
yield response
|
||||
|
||||
in_tool_call = False
|
||||
tool_call_text_parts = []
|
||||
continue
|
||||
|
||||
if response.finish_reason is not None:
|
||||
logger.info(
|
||||
"toll call parsing interrupted, yield partial tool call as text"
|
||||
"tool call parsing interrupted, yield partial tool call as text"
|
||||
)
|
||||
yield GenerationResponse(
|
||||
text=tool_call_start + "".join(tool_call_text_parts),
|
||||
token=0,
|
||||
finish_reason=response.finish_reason,
|
||||
usage=response.usage,
|
||||
stats=response.stats,
|
||||
response = response.model_copy(
|
||||
update={
|
||||
"text": "".join(tool_call_text_parts),
|
||||
"token": 0,
|
||||
}
|
||||
)
|
||||
yield response
|
||||
|
||||
continue
|
||||
|
||||
# fallthrough
|
||||
yield response
|
||||
|
||||
|
||||
def patch_kimi_tokenizer(tokenizer: TokenizerWrapper):
|
||||
"""
|
||||
Version of to-be-upstreamed kimi-k2 tool parser
|
||||
"""
|
||||
import ast
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import regex as re
|
||||
|
||||
# kimi has a fixed function naming scheme, with a json formatted arg
|
||||
# functions.multiply:0 <|tool_call_argument_begin|> {"a": 2, "b": 3}
|
||||
# Also needs to handle tools like call_0<|tool_call_argument_begin|>{"filePath": "..."}
|
||||
_func_name_regex = re.compile(
|
||||
r"^\s*(.+)[:](\d+)\s*<\|tool_call_argument_begin\|>", re.DOTALL
|
||||
)
|
||||
_func_arg_regex = re.compile(r"<\|tool_call_argument_begin\|>\s*(.*)\s*", re.DOTALL)
|
||||
|
||||
# kimi has a tool_calls_section - we're leaving this up to the caller to handle
|
||||
tool_call_start = "<|tool_call_begin|>"
|
||||
tool_call_end = "<|tool_call_end|>"
|
||||
|
||||
def _deserialize(value: str) -> Any: # pyright: ignore[reportAny]
|
||||
try:
|
||||
return json.loads(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
try:
|
||||
return ast.literal_eval(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
return value
|
||||
|
||||
def parse_tool_call(text: str, tools: Any | None = None):
|
||||
func_name_match = _func_name_regex.search(text)
|
||||
if func_name_match is None:
|
||||
raise ValueError(f"Could not parse function name from tool call: {text!r}")
|
||||
original_func_name = func_name_match.group(1)
|
||||
tool_id = func_name_match.group(2)
|
||||
# strip off the `functions.` prefix, if it exists.
|
||||
func_name = original_func_name[original_func_name.find(".") + 1 :]
|
||||
|
||||
func_args_match = _func_arg_regex.search(text)
|
||||
if func_args_match is None:
|
||||
raise ValueError(f"Could not parse function args from tool call: {text!r}")
|
||||
func_args = func_args_match.group(1)
|
||||
# the args should be valid json - no need to check against our tools to deserialize
|
||||
arg_dct = _deserialize(func_args) # pyright: ignore[reportAny]
|
||||
|
||||
return dict(
|
||||
id=f"{original_func_name}:{tool_id}",
|
||||
name=func_name,
|
||||
arguments=arg_dct, # pyright: ignore[reportAny]
|
||||
)
|
||||
|
||||
tokenizer._tool_call_start = tool_call_start
|
||||
tokenizer._tool_call_end = tool_call_end
|
||||
tokenizer._tool_parser = parse_tool_call
|
||||
|
||||
|
||||
def patch_glm_tokenizer(tokenizer: TokenizerWrapper):
|
||||
"""
|
||||
Fixed version of mlx_lm's glm47 tool parser that handles regex match failures.
|
||||
"""
|
||||
import ast
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import regex as re
|
||||
|
||||
_func_name_regex = re.compile(r"^(.*?)<arg_key>", re.DOTALL)
|
||||
_func_arg_regex = re.compile(
|
||||
r"<arg_key>(.*?)</arg_key>(?:\n|\s)*<arg_value>(.*?)(?:</arg_value>|(?=<arg_key>)|$)",
|
||||
re.DOTALL,
|
||||
)
|
||||
|
||||
tool_call_start = "<tool_call>"
|
||||
tool_call_end = "</tool_call>"
|
||||
|
||||
def _is_string_type(
|
||||
tool_name: str,
|
||||
arg_name: str,
|
||||
tools: list[Any] | None,
|
||||
) -> bool:
|
||||
if tools is None:
|
||||
return False
|
||||
for tool in tools: # pyright: ignore[reportAny]
|
||||
func = tool["function"] # pyright: ignore[reportAny]
|
||||
if func["name"] == tool_name:
|
||||
params = func["parameters"] # pyright: ignore[reportAny]
|
||||
if params is None:
|
||||
return False
|
||||
props = params.get("properties", {}) # pyright: ignore[reportAny]
|
||||
arg_props = props.get(arg_name, {}) # pyright: ignore[reportAny]
|
||||
arg_type = arg_props.get("type", None) # pyright: ignore[reportAny]
|
||||
return arg_type == "string" # pyright: ignore[reportAny]
|
||||
return False
|
||||
|
||||
def _deserialize(value: str) -> Any: # pyright: ignore[reportAny]
|
||||
try:
|
||||
return json.loads(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
return ast.literal_eval(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
return value
|
||||
|
||||
def parse_tool_call(text: str, tools: list[Any] | None = None):
|
||||
func_name_match = _func_name_regex.search(text)
|
||||
if func_name_match is None:
|
||||
raise ValueError(f"Could not parse function name from tool call: {text!r}")
|
||||
func_name = func_name_match.group(1)
|
||||
|
||||
pairs = _func_arg_regex.findall(text)
|
||||
arg_dct: dict[str, Any] = {}
|
||||
for key, value in pairs: # pyright: ignore[reportAny]
|
||||
arg_key = key.strip() # pyright: ignore[reportAny]
|
||||
arg_val = value.strip() # pyright: ignore[reportAny]
|
||||
if not _is_string_type(func_name, arg_key, tools): # pyright: ignore[reportAny]
|
||||
arg_val = _deserialize(arg_val) # pyright: ignore[reportAny]
|
||||
arg_dct[arg_key] = arg_val
|
||||
return dict(name=func_name, arguments=arg_dct)
|
||||
|
||||
tokenizer._tool_call_start = tool_call_start
|
||||
tokenizer._tool_call_end = tool_call_end
|
||||
tokenizer._tool_parser = parse_tool_call
|
||||
|
||||
|
||||
def _validate_single_tool(obj: dict[str, Any]) -> ToolCallItem:
|
||||
if (
|
||||
((name := obj.get("name")) is not None)
|
||||
and ((args := obj.get("arguments")) is not None)
|
||||
and isinstance(name, str)
|
||||
):
|
||||
raw_id: object = obj.get("id")
|
||||
extra = {"id": str(raw_id)} if raw_id is not None else {}
|
||||
return ToolCallItem(
|
||||
**extra,
|
||||
name=name,
|
||||
arguments=json.dumps(args),
|
||||
)
|
||||
else:
|
||||
raise ValidationError
|
||||
|
||||
|
||||
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
|
||||
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
|
||||
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"
|
||||
|
||||
72
src/exo/worker/runner/tool_parsers.py
Normal file
72
src/exo/worker/runner/tool_parsers.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable
|
||||
|
||||
from exo.shared.types.api import ToolCallItem
|
||||
|
||||
|
||||
@dataclass
|
||||
class ToolParser:
|
||||
start_parsing: str
|
||||
end_parsing: str
|
||||
parse_tool_calls: Callable[[str], list[ToolCallItem] | None]
|
||||
|
||||
|
||||
def make_mlx_parser(
|
||||
tool_call_start: str,
|
||||
tool_call_end: str,
|
||||
tool_parser: Callable[[str], dict[str, Any] | list[dict[str, Any]]],
|
||||
) -> ToolParser:
|
||||
def parse_tool_calls(text: str) -> list[ToolCallItem] | None:
|
||||
try:
|
||||
text = text.removeprefix(tool_call_start)
|
||||
text = text.removesuffix(tool_call_end)
|
||||
parsed = tool_parser(text)
|
||||
if isinstance(parsed, list):
|
||||
return [ToolCallItem.model_validate(_flatten(p)) for p in parsed]
|
||||
else:
|
||||
return [ToolCallItem.model_validate(_flatten(parsed))]
|
||||
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
return ToolParser(
|
||||
start_parsing=tool_call_start,
|
||||
end_parsing=tool_call_end,
|
||||
parse_tool_calls=parse_tool_calls,
|
||||
)
|
||||
|
||||
|
||||
# TODO / example code:
|
||||
def _parse_json_calls(text: str) -> list[ToolCallItem] | None:
|
||||
try:
|
||||
text = text.removeprefix("<tool_call>")
|
||||
text = text.removesuffix("</tool_call>")
|
||||
top_level = {
|
||||
k: json.dumps(v) if isinstance(v, (dict, list)) else v
|
||||
for k, v in json.loads(text).items() # pyright: ignore[reportAny]
|
||||
}
|
||||
return [ToolCallItem.model_validate(top_level)]
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def _flatten(p: dict[str, Any]) -> dict[str, str]:
|
||||
return {
|
||||
k: json.dumps(v) if isinstance(v, (dict, list)) else str(v) # pyright: ignore[reportAny]
|
||||
for k, v in p.items() # pyright: ignore[reportAny]
|
||||
}
|
||||
|
||||
|
||||
json_tool_parser = ToolParser(
|
||||
start_parsing="<tool_call>",
|
||||
end_parsing="</tool_call>",
|
||||
parse_tool_calls=_parse_json_calls,
|
||||
)
|
||||
|
||||
|
||||
def infer_tool_parser(chat_template: str) -> ToolParser | None:
|
||||
"""Attempt to auto-infer a tool parser from the chat template."""
|
||||
if "<tool_call>" in chat_template and "tool_call.name" in chat_template:
|
||||
return json_tool_parser
|
||||
return None
|
||||
@@ -5,12 +5,13 @@ from typing import Any
|
||||
|
||||
from exo.shared.types.worker.runner_response import GenerationResponse, ToolCallResponse
|
||||
from exo.worker.runner.runner import parse_tool_calls
|
||||
from exo.worker.runner.tool_parsers import make_mlx_parser
|
||||
|
||||
|
||||
def _make_responses(
|
||||
texts: list[str],
|
||||
finish_on_last: bool = True,
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
) -> Generator[GenerationResponse]:
|
||||
"""Create a sequence of GenerationResponses from text strings."""
|
||||
for i, text in enumerate(texts):
|
||||
is_last = i == len(texts) - 1
|
||||
@@ -22,10 +23,13 @@ def _make_responses(
|
||||
)
|
||||
|
||||
|
||||
def _dummy_parser(text: str) -> dict[str, Any]:
|
||||
def _dummier_parser(text: str) -> dict[str, Any]:
|
||||
return {"name": "test_fn", "arguments": {"arg": text}}
|
||||
|
||||
|
||||
_dummy_parser = make_mlx_parser("<tool_call>", "</tool_call>", _dummier_parser)
|
||||
|
||||
|
||||
class TestParseToolCalls:
|
||||
"""Tests for parse_tool_calls generator."""
|
||||
|
||||
@@ -35,8 +39,6 @@ class TestParseToolCalls:
|
||||
results = list(
|
||||
parse_tool_calls(
|
||||
_make_responses(texts, finish_on_last=False),
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
_dummy_parser,
|
||||
)
|
||||
)
|
||||
@@ -50,8 +52,6 @@ class TestParseToolCalls:
|
||||
results = list(
|
||||
parse_tool_calls(
|
||||
_make_responses(texts),
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
_dummy_parser,
|
||||
)
|
||||
)
|
||||
@@ -76,9 +76,7 @@ class TestParseToolCalls:
|
||||
results = list(
|
||||
parse_tool_calls(
|
||||
_make_responses(texts, finish_on_last=False),
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
_failing_parser,
|
||||
make_mlx_parser("<tool_call>", "</tool_call>", _failing_parser),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user