mirror of
https://github.com/exo-explore/exo.git
synced 2026-01-20 20:10:10 -05:00
Compare commits
1 Commits
ciaran/ima
...
new-bridge
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1bca96747d |
@@ -1,7 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
if "TOKENIZERS_PARALLELISM" not in os.environ: ...
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,47 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import PIL.Image
|
||||
import tqdm
|
||||
from typing import Protocol
|
||||
from mflux.models.common.config.config import Config
|
||||
|
||||
class BeforeLoopCallback(Protocol):
|
||||
def call_before_loop(
|
||||
self,
|
||||
seed: int,
|
||||
prompt: str,
|
||||
latents: mx.array,
|
||||
config: Config,
|
||||
canny_image: PIL.Image.Image | None = ...,
|
||||
depth_image: PIL.Image.Image | None = ...,
|
||||
) -> None: ...
|
||||
|
||||
class InLoopCallback(Protocol):
|
||||
def call_in_loop(
|
||||
self,
|
||||
t: int,
|
||||
seed: int,
|
||||
prompt: str,
|
||||
latents: mx.array,
|
||||
config: Config,
|
||||
time_steps: tqdm,
|
||||
) -> None: ...
|
||||
|
||||
class AfterLoopCallback(Protocol):
|
||||
def call_after_loop(
|
||||
self, seed: int, prompt: str, latents: mx.array, config: Config
|
||||
) -> None: ...
|
||||
|
||||
class InterruptCallback(Protocol):
|
||||
def call_interrupt(
|
||||
self,
|
||||
t: int,
|
||||
seed: int,
|
||||
prompt: str,
|
||||
latents: mx.array,
|
||||
config: Config,
|
||||
time_steps: tqdm,
|
||||
) -> None: ...
|
||||
@@ -1,24 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.callbacks.callback import (
|
||||
AfterLoopCallback,
|
||||
BeforeLoopCallback,
|
||||
InLoopCallback,
|
||||
InterruptCallback,
|
||||
)
|
||||
from mflux.callbacks.generation_context import GenerationContext
|
||||
from mflux.models.common.config.config import Config
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class CallbackRegistry:
|
||||
def __init__(self) -> None: ...
|
||||
def register(self, callback) -> None: ...
|
||||
def start(self, seed: int, prompt: str, config: Config) -> GenerationContext: ...
|
||||
def before_loop_callbacks(self) -> list[BeforeLoopCallback]: ...
|
||||
def in_loop_callbacks(self) -> list[InLoopCallback]: ...
|
||||
def after_loop_callbacks(self) -> list[AfterLoopCallback]: ...
|
||||
def interrupt_callbacks(self) -> list[InterruptCallback]: ...
|
||||
@@ -1,29 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import PIL.Image
|
||||
import tqdm
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.callbacks.callback_registry import CallbackRegistry
|
||||
from mflux.models.common.config.config import Config
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class GenerationContext:
|
||||
def __init__(
|
||||
self, registry: CallbackRegistry, seed: int, prompt: str, config: Config
|
||||
) -> None: ...
|
||||
def before_loop(
|
||||
self,
|
||||
latents: mx.array,
|
||||
*,
|
||||
canny_image: PIL.Image.Image | None = ...,
|
||||
depth_image: PIL.Image.Image | None = ...,
|
||||
) -> None: ...
|
||||
def in_loop(self, t: int, latents: mx.array, time_steps: tqdm = ...) -> None: ...
|
||||
def after_loop(self, latents: mx.array) -> None: ...
|
||||
def interruption(
|
||||
self, t: int, latents: mx.array, time_steps: tqdm = ...
|
||||
) -> None: ...
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,22 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
BATTERY_PERCENTAGE_STOP_LIMIT = ...
|
||||
CONTROLNET_STRENGTH = ...
|
||||
DEFAULT_DEV_FILL_GUIDANCE = ...
|
||||
DEFAULT_DEPTH_GUIDANCE = ...
|
||||
DIMENSION_STEP_PIXELS = ...
|
||||
GUIDANCE_SCALE = ...
|
||||
GUIDANCE_SCALE_KONTEXT = ...
|
||||
IMAGE_STRENGTH = ...
|
||||
MODEL_CHOICES = ...
|
||||
MODEL_INFERENCE_STEPS = ...
|
||||
QUANTIZE_CHOICES = ...
|
||||
if os.environ.get("MFLUX_CACHE_DIR"):
|
||||
MFLUX_CACHE_DIR = ...
|
||||
else:
|
||||
MFLUX_CACHE_DIR = ...
|
||||
MFLUX_LORA_CACHE_DIR = ...
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,8 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.common.config.config import Config
|
||||
from mflux.models.common.config.model_config import ModelConfig
|
||||
|
||||
__all__ = ["Config", "ModelConfig"]
|
||||
@@ -1,66 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from tqdm import tqdm
|
||||
from mflux.models.common.config.model_config import ModelConfig
|
||||
|
||||
logger = ...
|
||||
|
||||
class Config:
|
||||
def __init__(
|
||||
self,
|
||||
model_config: ModelConfig,
|
||||
num_inference_steps: int = ...,
|
||||
height: int = ...,
|
||||
width: int = ...,
|
||||
guidance: float = ...,
|
||||
image_path: Path | str | None = ...,
|
||||
image_strength: float | None = ...,
|
||||
depth_image_path: Path | str | None = ...,
|
||||
redux_image_paths: list[Path | str] | None = ...,
|
||||
redux_image_strengths: list[float] | None = ...,
|
||||
masked_image_path: Path | str | None = ...,
|
||||
controlnet_strength: float | None = ...,
|
||||
scheduler: str = ...,
|
||||
) -> None: ...
|
||||
@property
|
||||
def height(self) -> int: ...
|
||||
@property
|
||||
def width(self) -> int: ...
|
||||
@width.setter
|
||||
def width(self, value): # -> None:
|
||||
...
|
||||
@property
|
||||
def image_seq_len(self) -> int: ...
|
||||
@property
|
||||
def guidance(self) -> float: ...
|
||||
@property
|
||||
def num_inference_steps(self) -> int: ...
|
||||
@property
|
||||
def precision(self) -> mx.Dtype: ...
|
||||
@property
|
||||
def num_train_steps(self) -> int: ...
|
||||
@property
|
||||
def image_path(self) -> Path | None: ...
|
||||
@property
|
||||
def image_strength(self) -> float | None: ...
|
||||
@property
|
||||
def depth_image_path(self) -> Path | None: ...
|
||||
@property
|
||||
def redux_image_paths(self) -> list[Path] | None: ...
|
||||
@property
|
||||
def redux_image_strengths(self) -> list[float] | None: ...
|
||||
@property
|
||||
def masked_image_path(self) -> Path | None: ...
|
||||
@property
|
||||
def init_time_step(self) -> int: ...
|
||||
@property
|
||||
def time_steps(self) -> tqdm: ...
|
||||
@property
|
||||
def controlnet_strength(self) -> float | None: ...
|
||||
@property
|
||||
def scheduler(self) -> Any: ...
|
||||
@@ -1,86 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from functools import lru_cache
|
||||
from typing import Literal
|
||||
|
||||
class ModelConfig:
|
||||
precision: mx.Dtype = ...
|
||||
def __init__(
|
||||
self,
|
||||
priority: int,
|
||||
aliases: list[str],
|
||||
model_name: str,
|
||||
base_model: str | None,
|
||||
controlnet_model: str | None,
|
||||
custom_transformer_model: str | None,
|
||||
num_train_steps: int | None,
|
||||
max_sequence_length: int | None,
|
||||
supports_guidance: bool | None,
|
||||
requires_sigma_shift: bool | None,
|
||||
transformer_overrides: dict | None = ...,
|
||||
) -> None: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def schnell() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_kontext() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_fill() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_redux() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_depth() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_controlnet_canny() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def schnell_controlnet_canny() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_controlnet_upscaler() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def dev_fill_catvton() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def krea_dev() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def flux2_klein_4b() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def flux2_klein_9b() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def qwen_image() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def qwen_image_edit() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def fibo() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def z_image_turbo() -> ModelConfig: ...
|
||||
@staticmethod
|
||||
@lru_cache
|
||||
def seedvr2_3b() -> ModelConfig: ...
|
||||
def x_embedder_input_dim(self) -> int: ...
|
||||
def is_canny(self) -> bool: ...
|
||||
@staticmethod
|
||||
def from_name(
|
||||
model_name: str, base_model: Literal["dev", "schnell", "krea-dev"] | None = ...
|
||||
) -> ModelConfig: ...
|
||||
|
||||
AVAILABLE_MODELS = ...
|
||||
@@ -1,7 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,49 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, TypeAlias
|
||||
from mlx import nn
|
||||
from mflux.models.common.vae.tiling_config import TilingConfig
|
||||
from mflux.models.fibo.latent_creator.fibo_latent_creator import FiboLatentCreator
|
||||
from mflux.models.flux.latent_creator.flux_latent_creator import FluxLatentCreator
|
||||
from mflux.models.qwen.latent_creator.qwen_latent_creator import QwenLatentCreator
|
||||
from mflux.models.z_image.latent_creator.z_image_latent_creator import (
|
||||
ZImageLatentCreator,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
LatentCreatorType: TypeAlias = type[
|
||||
FiboLatentCreator | FluxLatentCreator | QwenLatentCreator | ZImageLatentCreator
|
||||
]
|
||||
|
||||
class Img2Img:
|
||||
def __init__(
|
||||
self,
|
||||
vae: nn.Module,
|
||||
latent_creator: LatentCreatorType,
|
||||
sigmas: mx.array,
|
||||
init_time_step: int,
|
||||
image_path: str | Path | None,
|
||||
tiling_config: TilingConfig | None = ...,
|
||||
) -> None: ...
|
||||
|
||||
class LatentCreator:
|
||||
@staticmethod
|
||||
def create_for_txt2img_or_img2img(
|
||||
seed: int, height: int, width: int, img2img: Img2Img
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def encode_image(
|
||||
vae: nn.Module,
|
||||
image_path: str | Path,
|
||||
height: int,
|
||||
width: int,
|
||||
tiling_config: TilingConfig | None = ...,
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def add_noise_by_interpolation(
|
||||
clean: mx.array, noise: mx.array, sigma: float
|
||||
) -> mx.array: ...
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,13 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mlx import nn
|
||||
from mflux.models.common.lora.layer.linear_lora_layer import LoRALinear
|
||||
|
||||
class FusedLoRALinear(nn.Module):
|
||||
def __init__(
|
||||
self, base_linear: nn.Linear | nn.QuantizedLinear, loras: list[LoRALinear]
|
||||
) -> None: ...
|
||||
def __call__(self, x): # -> array:
|
||||
...
|
||||
@@ -1,22 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mlx import nn
|
||||
|
||||
class LoRALinear(nn.Module):
|
||||
@staticmethod
|
||||
def from_linear(
|
||||
linear: nn.Linear | nn.QuantizedLinear, r: int = ..., scale: float = ...
|
||||
): # -> LoRALinear:
|
||||
...
|
||||
def __init__(
|
||||
self,
|
||||
input_dims: int,
|
||||
output_dims: int,
|
||||
r: int = ...,
|
||||
scale: float = ...,
|
||||
bias: bool = ...,
|
||||
) -> None: ...
|
||||
def __call__(self, x): # -> array:
|
||||
...
|
||||
@@ -1,26 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass
|
||||
from mflux.models.common.lora.mapping.lora_mapping import LoRATarget
|
||||
|
||||
@dataclass
|
||||
class PatternMatch:
|
||||
source_pattern: str
|
||||
target_path: str
|
||||
matrix_name: str
|
||||
transpose: bool
|
||||
transform: Callable[[mx.array], mx.array] | None = ...
|
||||
|
||||
class LoRALoader:
|
||||
@staticmethod
|
||||
def load_and_apply_lora(
|
||||
lora_mapping: list[LoRATarget],
|
||||
transformer: nn.Module,
|
||||
lora_paths: list[str] | None = ...,
|
||||
lora_scales: list[float] | None = ...,
|
||||
) -> tuple[list[str], list[float]]: ...
|
||||
@@ -1,21 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Protocol
|
||||
|
||||
@dataclass
|
||||
class LoRATarget:
|
||||
model_path: str
|
||||
possible_up_patterns: List[str]
|
||||
possible_down_patterns: List[str]
|
||||
possible_alpha_patterns: List[str] = ...
|
||||
up_transform: Callable[[mx.array], mx.array] | None = ...
|
||||
down_transform: Callable[[mx.array], mx.array] | None = ...
|
||||
|
||||
class LoRAMapping(Protocol):
|
||||
@staticmethod
|
||||
def get_mapping() -> List[LoRATarget]: ...
|
||||
@@ -1,9 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.nn as nn
|
||||
|
||||
class LoRASaver:
|
||||
@staticmethod
|
||||
def bake_and_strip_lora(module: nn.Module) -> nn.Module: ...
|
||||
@@ -1,35 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
class LoraTransforms:
|
||||
@staticmethod
|
||||
def split_q_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_k_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_v_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_q_down(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_k_down(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_v_down(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_q_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_k_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_v_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_mlp_up(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_q_down(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_k_down(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_v_down(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def split_single_mlp_down(tensor: mx.array) -> mx.array: ...
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.common.resolution.config_resolution import ConfigResolution
|
||||
from mflux.models.common.resolution.lora_resolution import LoraResolution
|
||||
from mflux.models.common.resolution.path_resolution import PathResolution
|
||||
from mflux.models.common.resolution.quantization_resolution import (
|
||||
QuantizationResolution,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"ConfigResolution",
|
||||
"LoraResolution",
|
||||
"PathResolution",
|
||||
"QuantizationResolution",
|
||||
]
|
||||
@@ -1,39 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from enum import Enum
|
||||
from typing import NamedTuple
|
||||
|
||||
class QuantizationAction(Enum):
|
||||
NONE = ...
|
||||
STORED = ...
|
||||
REQUESTED = ...
|
||||
|
||||
class PathAction(Enum):
|
||||
LOCAL = ...
|
||||
HUGGINGFACE_CACHED = ...
|
||||
HUGGINGFACE = ...
|
||||
ERROR = ...
|
||||
|
||||
class LoraAction(Enum):
|
||||
LOCAL = ...
|
||||
REGISTRY = ...
|
||||
HUGGINGFACE_COLLECTION_CACHED = ...
|
||||
HUGGINGFACE_COLLECTION = ...
|
||||
HUGGINGFACE_REPO_CACHED = ...
|
||||
HUGGINGFACE_REPO = ...
|
||||
ERROR = ...
|
||||
|
||||
class ConfigAction(Enum):
|
||||
EXACT_MATCH = ...
|
||||
EXPLICIT_BASE = ...
|
||||
INFER_SUBSTRING = ...
|
||||
ERROR = ...
|
||||
|
||||
class Rule(NamedTuple):
|
||||
priority: int
|
||||
name: str
|
||||
check: str
|
||||
action: QuantizationAction | PathAction | LoraAction | ConfigAction
|
||||
...
|
||||
@@ -1,14 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.config.model_config import ModelConfig
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
logger = ...
|
||||
|
||||
class ConfigResolution:
|
||||
RULES = ...
|
||||
@staticmethod
|
||||
def resolve(model_name: str, base_model: str | None = ...) -> ModelConfig: ...
|
||||
@@ -1,21 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
logger = ...
|
||||
|
||||
class LoraResolution:
|
||||
RULES = ...
|
||||
_registry: dict[str, Path] = ...
|
||||
@staticmethod
|
||||
def resolve(path: str) -> str: ...
|
||||
@staticmethod
|
||||
def resolve_paths(paths: list[str] | None) -> list[str]: ...
|
||||
@staticmethod
|
||||
def resolve_scales(scales: list[float] | None, num_paths: int) -> list[float]: ...
|
||||
@staticmethod
|
||||
def get_registry() -> dict[str, Path]: ...
|
||||
@staticmethod
|
||||
def discover_files(library_paths: list[Path]) -> dict[str, Path]: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
logger = ...
|
||||
|
||||
class PathResolution:
|
||||
RULES = ...
|
||||
@staticmethod
|
||||
def resolve(path: str | None, patterns: list[str] | None = ...) -> Path | None: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
logger = ...
|
||||
|
||||
class QuantizationResolution:
|
||||
RULES = ...
|
||||
@staticmethod
|
||||
def resolve(
|
||||
stored: int | None, requested: int | None
|
||||
) -> tuple[int | None, str | None]: ...
|
||||
@@ -1,26 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from .flow_match_euler_discrete_scheduler import FlowMatchEulerDiscreteScheduler
|
||||
from .linear_scheduler import LinearScheduler
|
||||
from .seedvr2_euler_scheduler import SeedVR2EulerScheduler
|
||||
|
||||
__all__ = [
|
||||
"LinearScheduler",
|
||||
"FlowMatchEulerDiscreteScheduler",
|
||||
"SeedVR2EulerScheduler",
|
||||
]
|
||||
|
||||
class SchedulerModuleNotFound(ValueError): ...
|
||||
class SchedulerClassNotFound(ValueError): ...
|
||||
class InvalidSchedulerType(TypeError): ...
|
||||
|
||||
SCHEDULER_REGISTRY = ...
|
||||
|
||||
def register_contrib(scheduler_object, scheduler_name=...): # -> None:
|
||||
...
|
||||
def try_import_external_scheduler(
|
||||
scheduler_object_path: str,
|
||||
): # -> type[BaseScheduler]:
|
||||
...
|
||||
@@ -1,16 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class BaseScheduler(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def sigmas(self) -> mx.array: ...
|
||||
@abstractmethod
|
||||
def step(
|
||||
self, noise: mx.array, timestep: int, latents: mx.array, **kwargs
|
||||
) -> mx.array: ...
|
||||
def scale_model_input(self, latents: mx.array, t: int) -> mx.array: ...
|
||||
@@ -1,26 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.config.config import Config
|
||||
from mflux.models.common.schedulers.base_scheduler import BaseScheduler
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class FlowMatchEulerDiscreteScheduler(BaseScheduler):
|
||||
def __init__(self, config: Config) -> None: ...
|
||||
@property
|
||||
def sigmas(self) -> mx.array: ...
|
||||
@property
|
||||
def timesteps(self) -> mx.array: ...
|
||||
def set_image_seq_len(self, image_seq_len: int) -> None: ...
|
||||
@staticmethod
|
||||
def get_timesteps_and_sigmas(
|
||||
image_seq_len: int, num_inference_steps: int, num_train_timesteps: int = ...
|
||||
) -> tuple[mx.array, mx.array]: ...
|
||||
def step(
|
||||
self, noise: mx.array, timestep: int, latents: mx.array, **kwargs
|
||||
) -> mx.array: ...
|
||||
def scale_model_input(self, latents: mx.array, t: int) -> mx.array: ...
|
||||
@@ -1,20 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.config.config import Config
|
||||
from mflux.models.common.schedulers.base_scheduler import BaseScheduler
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class LinearScheduler(BaseScheduler):
|
||||
def __init__(self, config: Config) -> None: ...
|
||||
@property
|
||||
def sigmas(self) -> mx.array: ...
|
||||
@property
|
||||
def timesteps(self) -> mx.array: ...
|
||||
def step(
|
||||
self, noise: mx.array, timestep: int, latents: mx.array, **kwargs
|
||||
) -> mx.array: ...
|
||||
@@ -1,20 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.config.config import Config
|
||||
from mflux.models.common.schedulers.base_scheduler import BaseScheduler
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class SeedVR2EulerScheduler(BaseScheduler):
|
||||
def __init__(self, config: Config) -> None: ...
|
||||
@property
|
||||
def timesteps(self) -> mx.array: ...
|
||||
@property
|
||||
def sigmas(self) -> mx.array: ...
|
||||
def step(
|
||||
self, noise: mx.array, timestep: int, latents: mx.array, **kwargs
|
||||
) -> mx.array: ...
|
||||
@@ -1,24 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.common.tokenizer.tokenizer import (
|
||||
BaseTokenizer,
|
||||
LanguageTokenizer,
|
||||
Tokenizer,
|
||||
VisionLanguageTokenizer,
|
||||
)
|
||||
from mflux.models.common.tokenizer.tokenizer_loader import TokenizerLoader
|
||||
from mflux.models.common.tokenizer.tokenizer_output import TokenizerOutput
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
__all__ = [
|
||||
"Tokenizer",
|
||||
"BaseTokenizer",
|
||||
"LanguageTokenizer",
|
||||
"VisionLanguageTokenizer",
|
||||
"TokenizerLoader",
|
||||
"TokenizerOutput",
|
||||
]
|
||||
@@ -1,74 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Protocol, runtime_checkable
|
||||
from PIL import Image
|
||||
from transformers import PreTrainedTokenizer
|
||||
from mflux.models.common.tokenizer.tokenizer_output import TokenizerOutput
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
@runtime_checkable
|
||||
class Tokenizer(Protocol):
|
||||
tokenizer: PreTrainedTokenizer
|
||||
def tokenize(
|
||||
self,
|
||||
prompt: str | list[str],
|
||||
images: list[Image.Image] | None = ...,
|
||||
max_length: int | None = ...,
|
||||
**kwargs,
|
||||
) -> TokenizerOutput: ...
|
||||
|
||||
class BaseTokenizer(ABC):
|
||||
def __init__(
|
||||
self, tokenizer: PreTrainedTokenizer, max_length: int = ...
|
||||
) -> None: ...
|
||||
@abstractmethod
|
||||
def tokenize(
|
||||
self,
|
||||
prompt: str | list[str],
|
||||
images: list[Image.Image] | None = ...,
|
||||
max_length: int | None = ...,
|
||||
**kwargs,
|
||||
) -> TokenizerOutput: ...
|
||||
|
||||
class LanguageTokenizer(BaseTokenizer):
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
max_length: int = ...,
|
||||
padding: str = ...,
|
||||
return_attention_mask: bool = ...,
|
||||
template: str | None = ...,
|
||||
use_chat_template: bool = ...,
|
||||
chat_template_kwargs: dict | None = ...,
|
||||
add_special_tokens: bool = ...,
|
||||
) -> None: ...
|
||||
def tokenize(
|
||||
self,
|
||||
prompt: str | list[str],
|
||||
images: list[Image.Image] | None = ...,
|
||||
max_length: int | None = ...,
|
||||
**kwargs,
|
||||
) -> TokenizerOutput: ...
|
||||
|
||||
class VisionLanguageTokenizer(BaseTokenizer):
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
processor,
|
||||
max_length: int = ...,
|
||||
template: str | None = ...,
|
||||
image_token: str = ...,
|
||||
) -> None: ...
|
||||
def tokenize(
|
||||
self,
|
||||
prompt: str | list[str],
|
||||
images: list[Image.Image] | None = ...,
|
||||
max_length: int | None = ...,
|
||||
**kwargs,
|
||||
) -> TokenizerOutput: ...
|
||||
@@ -1,22 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.tokenizer.tokenizer import BaseTokenizer
|
||||
from mflux.models.common.weights.loading.weight_definition import TokenizerDefinition
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class TokenizerLoader:
|
||||
@staticmethod
|
||||
def load(definition: TokenizerDefinition, model_path: str) -> BaseTokenizer: ...
|
||||
@staticmethod
|
||||
def load_all(
|
||||
definitions: list[TokenizerDefinition],
|
||||
model_path: str,
|
||||
max_length_overrides: dict[str, int] | None = ...,
|
||||
) -> dict[str, BaseTokenizer]: ...
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from dataclasses import dataclass
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
@dataclass
|
||||
class TokenizerOutput:
|
||||
input_ids: mx.array
|
||||
attention_mask: mx.array
|
||||
pixel_values: mx.array | None = ...
|
||||
image_grid_thw: mx.array | None = ...
|
||||
@@ -1,8 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.common.vae.tiling_config import TilingConfig
|
||||
from mflux.models.common.vae.vae_tiler import VAETiler
|
||||
|
||||
__all__ = ["TilingConfig", "VAETiler"]
|
||||
@@ -1,13 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class TilingConfig:
|
||||
vae_decode_tiles_per_dim: int | None = ...
|
||||
vae_decode_overlap: int = ...
|
||||
vae_encode_tiled: bool = ...
|
||||
vae_encode_tile_size: int = ...
|
||||
vae_encode_tile_overlap: int = ...
|
||||
@@ -1,27 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from typing import Callable
|
||||
|
||||
class VAETiler:
|
||||
@staticmethod
|
||||
def encode_image_tiled(
|
||||
*,
|
||||
image: mx.array,
|
||||
encode_fn: Callable[[mx.array], mx.array],
|
||||
latent_channels: int,
|
||||
tile_size: tuple[int, int] = ...,
|
||||
tile_overlap: tuple[int, int] = ...,
|
||||
spatial_scale: int = ...,
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def decode_image_tiled(
|
||||
*,
|
||||
latent: mx.array,
|
||||
decode_fn: Callable[[mx.array], mx.array],
|
||||
tile_size: tuple[int, int] = ...,
|
||||
tile_overlap: tuple[int, int] = ...,
|
||||
spatial_scale: int = ...,
|
||||
) -> mx.array: ...
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
from mflux.models.common.vae.tiling_config import TilingConfig
|
||||
|
||||
class VAEUtil:
|
||||
@staticmethod
|
||||
def encode(
|
||||
vae: nn.Module, image: mx.array, tiling_config: TilingConfig | None = ...
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def decode(
|
||||
vae: nn.Module, latent: mx.array, tiling_config: TilingConfig | None = ...
|
||||
) -> mx.array: ...
|
||||
@@ -1,18 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.common.weights.loading.loaded_weights import LoadedWeights, MetaData
|
||||
from mflux.models.common.weights.loading.weight_applier import WeightApplier
|
||||
from mflux.models.common.weights.loading.weight_definition import ComponentDefinition
|
||||
from mflux.models.common.weights.loading.weight_loader import WeightLoader
|
||||
from mflux.models.common.weights.saving.model_saver import ModelSaver
|
||||
|
||||
__all__ = [
|
||||
"ComponentDefinition",
|
||||
"LoadedWeights",
|
||||
"MetaData",
|
||||
"ModelSaver",
|
||||
"WeightApplier",
|
||||
"WeightLoader",
|
||||
]
|
||||
@@ -1,18 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
@dataclass
|
||||
class MetaData:
|
||||
quantization_level: int | None = ...
|
||||
mflux_version: str | None = ...
|
||||
|
||||
@dataclass
|
||||
class LoadedWeights:
|
||||
components: dict[str, dict]
|
||||
meta_data: MetaData
|
||||
def __getattr__(self, name: str) -> dict | None: ...
|
||||
def num_transformer_blocks(self, component_name: str = ...) -> int: ...
|
||||
def num_single_transformer_blocks(self, component_name: str = ...) -> int: ...
|
||||
@@ -1,30 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.nn as nn
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.weights.loading.loaded_weights import LoadedWeights
|
||||
from mflux.models.common.weights.loading.weight_definition import (
|
||||
ComponentDefinition,
|
||||
WeightDefinitionType,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class WeightApplier:
|
||||
@staticmethod
|
||||
def apply_and_quantize_single(
|
||||
weights: LoadedWeights,
|
||||
model: nn.Module,
|
||||
component: ComponentDefinition,
|
||||
quantize_arg: int | None,
|
||||
quantization_predicate=...,
|
||||
) -> int | None: ...
|
||||
@staticmethod
|
||||
def apply_and_quantize(
|
||||
weights: LoadedWeights,
|
||||
models: dict[str, nn.Module],
|
||||
quantize_arg: int | None,
|
||||
weight_definition: WeightDefinitionType,
|
||||
) -> int | None: ...
|
||||
@@ -1,73 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, List, TYPE_CHECKING, TypeAlias
|
||||
from mflux.models.common.weights.mapping.weight_mapping import WeightTarget
|
||||
from mflux.models.common.tokenizer.tokenizer import BaseTokenizer
|
||||
from mflux.models.depth_pro.weights.depth_pro_weight_definition import (
|
||||
DepthProWeightDefinition,
|
||||
)
|
||||
from mflux.models.fibo.weights.fibo_weight_definition import FIBOWeightDefinition
|
||||
from mflux.models.fibo_vlm.weights.fibo_vlm_weight_definition import (
|
||||
FIBOVLMWeightDefinition,
|
||||
)
|
||||
from mflux.models.flux.weights.flux_weight_definition import FluxWeightDefinition
|
||||
from mflux.models.qwen.weights.qwen_weight_definition import QwenWeightDefinition
|
||||
from mflux.models.seedvr2.weights.seedvr2_weight_definition import (
|
||||
SeedVR2WeightDefinition,
|
||||
)
|
||||
from mflux.models.z_image.weights.z_image_weight_definition import (
|
||||
ZImageWeightDefinition,
|
||||
)
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
if TYPE_CHECKING:
|
||||
WeightDefinitionType: TypeAlias = type[
|
||||
FluxWeightDefinition
|
||||
| FIBOWeightDefinition
|
||||
| FIBOVLMWeightDefinition
|
||||
| QwenWeightDefinition
|
||||
| ZImageWeightDefinition
|
||||
| SeedVR2WeightDefinition
|
||||
| DepthProWeightDefinition
|
||||
]
|
||||
|
||||
@dataclass
|
||||
class ComponentDefinition:
|
||||
name: str
|
||||
hf_subdir: str
|
||||
mapping_getter: Callable[[], List[WeightTarget]] | None = ...
|
||||
model_attr: str | None = ...
|
||||
num_blocks: int | None = ...
|
||||
num_layers: int | None = ...
|
||||
loading_mode: str = ...
|
||||
precision: mx.Dtype | None = ...
|
||||
skip_quantization: bool = ...
|
||||
bulk_transform: Callable[[mx.array], mx.array] | None = ...
|
||||
weight_subkey: str | None = ...
|
||||
download_url: str | None = ...
|
||||
weight_prefix_filters: List[str] | None = ...
|
||||
weight_files: List[str] | None = ...
|
||||
|
||||
@dataclass
|
||||
class TokenizerDefinition:
|
||||
name: str
|
||||
hf_subdir: str
|
||||
tokenizer_class: str = ...
|
||||
fallback_subdirs: List[str] | None = ...
|
||||
download_patterns: List[str] | None = ...
|
||||
encoder_class: type[BaseTokenizer] | None = ...
|
||||
max_length: int = ...
|
||||
padding: str = ...
|
||||
template: str | None = ...
|
||||
use_chat_template: bool = ...
|
||||
chat_template_kwargs: dict | None = ...
|
||||
add_special_tokens: bool = ...
|
||||
processor_class: type | None = ...
|
||||
image_token: str = ...
|
||||
chat_template: str | None = ...
|
||||
@@ -1,23 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
from mflux.models.common.weights.loading.loaded_weights import LoadedWeights
|
||||
from mflux.models.common.weights.loading.weight_definition import (
|
||||
ComponentDefinition,
|
||||
WeightDefinitionType,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
logger = ...
|
||||
|
||||
class WeightLoader:
|
||||
@staticmethod
|
||||
def load_single(
|
||||
component: ComponentDefinition, repo_id: str, file_pattern: str = ...
|
||||
) -> LoadedWeights: ...
|
||||
@staticmethod
|
||||
def load(
|
||||
weight_definition: WeightDefinitionType, model_path: str | None = ...
|
||||
) -> LoadedWeights: ...
|
||||
@@ -1,16 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from typing import Dict, List, Optional
|
||||
from mflux.models.common.weights.mapping.weight_mapping import WeightTarget
|
||||
|
||||
class WeightMapper:
|
||||
@staticmethod
|
||||
def apply_mapping(
|
||||
hf_weights: Dict[str, mx.array],
|
||||
mapping: List[WeightTarget],
|
||||
num_blocks: Optional[int] = ...,
|
||||
num_layers: Optional[int] = ...,
|
||||
) -> Dict: ...
|
||||
@@ -1,23 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, List, Optional, Protocol
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
@dataclass
|
||||
class WeightTarget:
|
||||
to_pattern: str
|
||||
from_pattern: List[str]
|
||||
transform: Optional[Callable[[mx.array], mx.array]] = ...
|
||||
required: bool = ...
|
||||
max_blocks: Optional[int] = ...
|
||||
|
||||
class WeightMapping(Protocol):
|
||||
@staticmethod
|
||||
def get_mapping() -> List[WeightTarget]: ...
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
class WeightTransforms:
|
||||
@staticmethod
|
||||
def reshape_gamma_to_1d(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def transpose_patch_embed(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def transpose_conv3d_weight(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def transpose_conv2d_weight(tensor: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def transpose_conv_transpose2d_weight(tensor: mx.array) -> mx.array: ...
|
||||
@@ -1,14 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Any, TYPE_CHECKING
|
||||
from mflux.models.common.weights.loading.weight_definition import WeightDefinitionType
|
||||
|
||||
if TYPE_CHECKING: ...
|
||||
|
||||
class ModelSaver:
|
||||
@staticmethod
|
||||
def save_model(
|
||||
model: Any, bits: int, base_path: str, weight_definition: WeightDefinitionType
|
||||
) -> None: ...
|
||||
@@ -1,9 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.depth_pro.model.depth_pro_model import DepthProModel
|
||||
|
||||
class DepthProInitializer:
|
||||
@staticmethod
|
||||
def init(model: DepthProModel, quantize: int | None = ...) -> None: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class FeatureFusionBlock2d(nn.Module):
|
||||
def __init__(self, num_features: int, deconv: bool = ...) -> None: ...
|
||||
def __call__(self, x0: mx.array, x1: mx.array | None = ...) -> mx.array: ...
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class MultiresConvDecoder(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(
|
||||
self,
|
||||
x0_latent: mx.array,
|
||||
x1_latent: mx.array,
|
||||
x0_features: mx.array,
|
||||
x1_features: mx.array,
|
||||
x_global_features: mx.array,
|
||||
) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, num_features: int) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,20 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from PIL import Image
|
||||
|
||||
@dataclass
|
||||
class DepthResult:
|
||||
depth_image: Image.Image
|
||||
depth_array: mx.array
|
||||
min_depth: float
|
||||
max_depth: float
|
||||
...
|
||||
|
||||
class DepthPro:
|
||||
def __init__(self, quantize: int | None = ...) -> None: ...
|
||||
def create_depth_map(self, image_path: str | Path) -> DepthResult: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class DepthProModel(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(
|
||||
self, x0: mx.array, x1: mx.array, x2: mx.array
|
||||
) -> tuple[mx.array, mx.array]: ...
|
||||
@@ -1,15 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class DepthProUtil:
|
||||
@staticmethod
|
||||
def split(x: mx.array, overlap_ratio: float = ...) -> mx.array: ...
|
||||
@staticmethod
|
||||
def interpolate(x: mx.array, size=..., scale_factor=...): # -> array:
|
||||
...
|
||||
@staticmethod
|
||||
def apply_conv(x: mx.array, conv_module: nn.Module) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self, dim: int = ..., head_dim: int = ..., num_heads: int = ...
|
||||
) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class DinoVisionTransformer(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, x: mx.array) -> tuple[mx.array, mx.array, mx.array]: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
def __init__(self, dims: int, init_values: float = ...) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class DepthProEncoder(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(
|
||||
self, x0: mx.array, x1: mx.array, x2: mx.array
|
||||
) -> tuple[mx.array, mx.array, mx.array, mx.array, mx.array]: ...
|
||||
@@ -1,16 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class UpSampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_in: int = ...,
|
||||
dim_int: int = ...,
|
||||
dim_out: int = ...,
|
||||
upsample_layers: int = ...,
|
||||
) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
class FOVHead(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, x: mx.array) -> mx.array: ...
|
||||
@@ -1,23 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from mflux.models.common.weights.loading.weight_definition import (
|
||||
ComponentDefinition,
|
||||
TokenizerDefinition,
|
||||
)
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class DepthProWeightDefinition:
|
||||
@staticmethod
|
||||
def get_components() -> List[ComponentDefinition]: ...
|
||||
@staticmethod
|
||||
def get_tokenizers() -> List[TokenizerDefinition]: ...
|
||||
@staticmethod
|
||||
def get_download_patterns() -> List[str]: ...
|
||||
@staticmethod
|
||||
def quantization_predicate(path: str, module) -> bool: ...
|
||||
@@ -1,13 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from mflux.models.common.weights.mapping.weight_mapping import (
|
||||
WeightMapping,
|
||||
WeightTarget,
|
||||
)
|
||||
|
||||
class DepthProWeightMapping(WeightMapping):
|
||||
@staticmethod
|
||||
def get_mapping() -> List[WeightTarget]: ...
|
||||
@@ -1,13 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
class FiboLatentCreator:
|
||||
@staticmethod
|
||||
def create_noise(seed: int, height: int, width: int) -> mx.array: ...
|
||||
@staticmethod
|
||||
def pack_latents(latents: mx.array, height: int, width: int) -> mx.array: ...
|
||||
@staticmethod
|
||||
def unpack_latents(latents: mx.array, height: int, width: int) -> mx.array: ...
|
||||
@@ -1,23 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from mflux.models.common.weights.loading.weight_definition import (
|
||||
ComponentDefinition,
|
||||
TokenizerDefinition,
|
||||
)
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class FIBOWeightDefinition:
|
||||
@staticmethod
|
||||
def get_components() -> List[ComponentDefinition]: ...
|
||||
@staticmethod
|
||||
def get_tokenizers() -> List[TokenizerDefinition]: ...
|
||||
@staticmethod
|
||||
def get_download_patterns() -> List[str]: ...
|
||||
@staticmethod
|
||||
def quantization_predicate(path: str, module) -> bool: ...
|
||||
@@ -1,17 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from mflux.models.common.weights.mapping.weight_mapping import (
|
||||
WeightMapping,
|
||||
WeightTarget,
|
||||
)
|
||||
|
||||
class FIBOWeightMapping(WeightMapping):
|
||||
@staticmethod
|
||||
def get_transformer_mapping() -> List[WeightTarget]: ...
|
||||
@staticmethod
|
||||
def get_text_encoder_mapping() -> List[WeightTarget]: ...
|
||||
@staticmethod
|
||||
def get_vae_mapping() -> List[WeightTarget]: ...
|
||||
@@ -1,8 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.qwen.tokenizer.qwen_image_processor import QwenImageProcessor
|
||||
|
||||
class Qwen2VLImageProcessor(QwenImageProcessor):
|
||||
def __init__(self) -> None: ...
|
||||
@@ -1,28 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Optional, Union
|
||||
from PIL import Image
|
||||
|
||||
class Qwen2VLProcessor:
|
||||
def __init__(self, tokenizer) -> None: ...
|
||||
def apply_chat_template(
|
||||
self,
|
||||
messages,
|
||||
tokenize: bool = ...,
|
||||
add_generation_prompt: bool = ...,
|
||||
return_tensors: Optional[str] = ...,
|
||||
return_dict: bool = ...,
|
||||
**kwargs,
|
||||
): # -> dict[Any, Any]:
|
||||
...
|
||||
def __call__(
|
||||
self,
|
||||
text: Optional[Union[str, list[str]]] = ...,
|
||||
images: Optional[Union[Image.Image, list[Image.Image]]] = ...,
|
||||
padding: bool = ...,
|
||||
return_tensors: Optional[str] = ...,
|
||||
**kwargs,
|
||||
): # -> dict[Any, Any]:
|
||||
...
|
||||
@@ -1,24 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from mflux.models.common.weights.loading.weight_definition import (
|
||||
ComponentDefinition,
|
||||
TokenizerDefinition,
|
||||
)
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
QWEN2VL_CHAT_TEMPLATE = ...
|
||||
|
||||
class FIBOVLMWeightDefinition:
|
||||
@staticmethod
|
||||
def get_components() -> List[ComponentDefinition]: ...
|
||||
@staticmethod
|
||||
def get_tokenizers() -> List[TokenizerDefinition]: ...
|
||||
@staticmethod
|
||||
def get_download_patterns() -> List[str]: ...
|
||||
@staticmethod
|
||||
def quantization_predicate(path: str, module) -> bool: ...
|
||||
@@ -1,15 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from mflux.models.common.weights.mapping.weight_mapping import (
|
||||
WeightMapping,
|
||||
WeightTarget,
|
||||
)
|
||||
|
||||
class FIBOVLMWeightMapping(WeightMapping):
|
||||
@staticmethod
|
||||
def get_vlm_decoder_mapping(num_layers: int = ...) -> List[WeightTarget]: ...
|
||||
@staticmethod
|
||||
def get_vlm_visual_mapping(depth: int = ...) -> List[WeightTarget]: ...
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,3 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,53 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from mflux.models.common.config import ModelConfig
|
||||
|
||||
class FluxInitializer:
|
||||
@staticmethod
|
||||
def init(
|
||||
model,
|
||||
model_config: ModelConfig,
|
||||
quantize: int | None,
|
||||
model_path: str | None = ...,
|
||||
lora_paths: list[str] | None = ...,
|
||||
lora_scales: list[float] | None = ...,
|
||||
custom_transformer=...,
|
||||
) -> None: ...
|
||||
@staticmethod
|
||||
def init_depth(
|
||||
model,
|
||||
model_config: ModelConfig,
|
||||
quantize: int | None,
|
||||
model_path: str | None = ...,
|
||||
lora_paths: list[str] | None = ...,
|
||||
lora_scales: list[float] | None = ...,
|
||||
) -> None: ...
|
||||
@staticmethod
|
||||
def init_redux(
|
||||
model,
|
||||
model_config: ModelConfig,
|
||||
quantize: int | None,
|
||||
model_path: str | None = ...,
|
||||
lora_paths: list[str] | None = ...,
|
||||
lora_scales: list[float] | None = ...,
|
||||
) -> None: ...
|
||||
@staticmethod
|
||||
def init_controlnet(
|
||||
model,
|
||||
model_config: ModelConfig,
|
||||
quantize: int | None,
|
||||
model_path: str | None = ...,
|
||||
lora_paths: list[str] | None = ...,
|
||||
lora_scales: list[float] | None = ...,
|
||||
) -> None: ...
|
||||
@staticmethod
|
||||
def init_concept(
|
||||
model,
|
||||
model_config: ModelConfig,
|
||||
quantize: int | None,
|
||||
model_path: str | None = ...,
|
||||
lora_paths: list[str] | None = ...,
|
||||
lora_scales: list[float] | None = ...,
|
||||
) -> None: ...
|
||||
@@ -1,7 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,19 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class FluxLatentCreator:
|
||||
@staticmethod
|
||||
def create_noise(seed: int, height: int, width: int) -> mx.array: ...
|
||||
@staticmethod
|
||||
def pack_latents(
|
||||
latents: mx.array, height: int, width: int, num_channels_latents: int = ...
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def unpack_latents(latents: mx.array, height: int, width: int) -> mx.array: ...
|
||||
@@ -1,7 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class CLIPEmbeddings(nn.Module):
|
||||
def __init__(self, dims: int) -> None: ...
|
||||
def __call__(self, tokens: mx.array) -> mx.array: ...
|
||||
@@ -1,14 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class CLIPEncoder(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, tokens: mx.array) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class CLIPEncoderLayer(nn.Module):
|
||||
def __init__(self, layer: int) -> None: ...
|
||||
def __call__(
|
||||
self, hidden_states: mx.array, causal_attention_mask: mx.array
|
||||
) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class CLIPMLP(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def quick_gelu(input_array: mx.array) -> mx.array: ...
|
||||
@@ -1,18 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class CLIPSdpaAttention(nn.Module):
|
||||
head_dimension = ...
|
||||
batch_size = ...
|
||||
num_heads = ...
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(
|
||||
self, hidden_states: mx.array, causal_attention_mask: mx.array
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def reshape_and_transpose(x, batch_size, num_heads, head_dim): # -> array:
|
||||
...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class CLIPTextModel(nn.Module):
|
||||
def __init__(self, dims: int, num_encoder_layers: int) -> None: ...
|
||||
def __call__(self, tokens: mx.array) -> tuple[mx.array, mx.array]: ...
|
||||
@staticmethod
|
||||
def create_causal_attention_mask(input_shape: tuple) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class EncoderCLIP(nn.Module):
|
||||
def __init__(self, num_encoder_layers: int) -> None: ...
|
||||
def __call__(
|
||||
self, tokens: mx.array, causal_attention_mask: mx.array
|
||||
) -> mx.array: ...
|
||||
@@ -1,25 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mflux.models.common.tokenizer import Tokenizer
|
||||
from mflux.models.flux.model.flux_text_encoder.clip_encoder.clip_encoder import (
|
||||
CLIPEncoder,
|
||||
)
|
||||
from mflux.models.flux.model.flux_text_encoder.t5_encoder.t5_encoder import T5Encoder
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class PromptEncoder:
|
||||
@staticmethod
|
||||
def encode_prompt(
|
||||
prompt: str,
|
||||
prompt_cache: dict[str, tuple[mx.array, mx.array]],
|
||||
t5_tokenizer: Tokenizer,
|
||||
clip_tokenizer: Tokenizer,
|
||||
t5_text_encoder: T5Encoder,
|
||||
clip_text_encoder: CLIPEncoder,
|
||||
) -> tuple[mx.array, mx.array]: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class T5Attention(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class T5Block(nn.Module):
|
||||
def __init__(self, layer: int) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class T5DenseReluDense(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def new_gelu(input_array: mx.array) -> mx.array: ...
|
||||
@@ -1,14 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class T5Encoder(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, tokens: mx.array): ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class T5FeedForward(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class T5LayerNorm(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@@ -1,16 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class T5SelfAttention(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, hidden_states: mx.array) -> mx.array: ...
|
||||
@staticmethod
|
||||
def shape(states): # -> array:
|
||||
...
|
||||
@staticmethod
|
||||
def un_shape(states): # -> array:
|
||||
...
|
||||
@@ -1,10 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class AdaLayerNormContinuous(nn.Module):
|
||||
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int) -> None: ...
|
||||
def __call__(self, x: mx.array, text_embeddings: mx.array) -> mx.array: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class AdaLayerNormZero(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(
|
||||
self, hidden_states: mx.array, text_embeddings: mx.array
|
||||
) -> tuple[mx.array, mx.array, mx.array, mx.array, mx.array]: ...
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class AdaLayerNormZeroSingle(nn.Module):
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(
|
||||
self, hidden_states: mx.array, text_embeddings: mx.array
|
||||
) -> tuple[mx.array, mx.array]: ...
|
||||
@@ -1,41 +0,0 @@
|
||||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx import nn
|
||||
|
||||
class AttentionUtils:
|
||||
@staticmethod
|
||||
def process_qkv(
|
||||
hidden_states: mx.array,
|
||||
to_q: nn.Linear,
|
||||
to_k: nn.Linear,
|
||||
to_v: nn.Linear,
|
||||
norm_q: nn.RMSNorm,
|
||||
norm_k: nn.RMSNorm,
|
||||
num_heads: int,
|
||||
head_dim: int,
|
||||
) -> tuple[mx.array, mx.array, mx.array]: ...
|
||||
@staticmethod
|
||||
def compute_attention(
|
||||
query: mx.array,
|
||||
key: mx.array,
|
||||
value: mx.array,
|
||||
batch_size: int,
|
||||
num_heads: int,
|
||||
head_dim: int,
|
||||
mask: mx.array | None = ...,
|
||||
) -> mx.array: ...
|
||||
@staticmethod
|
||||
def convert_key_padding_mask_to_additive_mask(
|
||||
mask: mx.array | None, joint_seq_len: int, txt_seq_len: int
|
||||
) -> mx.array | None: ...
|
||||
@staticmethod
|
||||
def apply_rope(
|
||||
xq: mx.array, xk: mx.array, freqs_cis: mx.array
|
||||
) -> tuple[mx.array, mx.array]: ...
|
||||
@staticmethod
|
||||
def apply_rope_bshd(
|
||||
xq: mx.array, xk: mx.array, cos: mx.array, sin: mx.array
|
||||
) -> tuple[mx.array, mx.array]: ...
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user