mirror of
https://github.com/exo-explore/exo.git
synced 2026-01-28 07:50:06 -05:00
Compare commits
11 Commits
disable-md
...
v1.0.66
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9ce0d4602d | ||
|
|
4f24e33d30 | ||
|
|
a9ee2204ef | ||
|
|
054b296a51 | ||
|
|
281aaeb013 | ||
|
|
10fdc439a5 | ||
|
|
78a8c06d57 | ||
|
|
4c0c6dcae9 | ||
|
|
d885600a4c | ||
|
|
55b67e2be2 | ||
|
|
30cfad9b68 |
@@ -5,7 +5,7 @@
|
||||
<img alt="exo logo" src="/docs/imgs/exo-logo-transparent.png" width="50%" height="50%">
|
||||
</picture>
|
||||
|
||||
exo: Run frontier AI locally. Maintained by [exo labs](https://x.com/exolabs).
|
||||
exo: Run your own AI cluster at home with everyday devices. Maintained by [exo labs](https://x.com/exolabs).
|
||||
|
||||
<p align="center">
|
||||
<a href="https://discord.gg/TJ4P57arEm" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/Discord-Join%20Server-5865F2?logo=discord&logoColor=white" alt="Discord"></a>
|
||||
|
||||
@@ -18,6 +18,9 @@ enum NetworkSetupHelper {
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
# Wait for macOS to finish network setup after boot
|
||||
sleep 30
|
||||
|
||||
PREFS="/Library/Preferences/SystemConfiguration/preferences.plist"
|
||||
|
||||
# Remove bridge0 interface
|
||||
@@ -80,7 +83,7 @@ enum NetworkSetupHelper {
|
||||
let alert = NSAlert()
|
||||
alert.messageText = "EXO Network Configuration"
|
||||
alert.informativeText =
|
||||
"EXO needs to install a system service to automatically disable Thunderbolt Bridge on startup. This prevents network loops when connecting multiple Macs via Thunderbolt.\n\nYou will be prompted for your administrator password."
|
||||
"EXO needs to install a system service to configure local networking. This will disable Thunderbolt Bridge (preventing packet storms) and install a Network Location.\n\nYou will be prompted for your password."
|
||||
alert.alertStyle = .informational
|
||||
alert.addButton(withTitle: "Install")
|
||||
alert.addButton(withTitle: "Not Now")
|
||||
|
||||
2
justfile
2
justfile
@@ -1,7 +1,7 @@
|
||||
export NIX_CONFIG := "extra-experimental-features = nix-command flakes"
|
||||
|
||||
fmt:
|
||||
treefmt || nix fmt
|
||||
nix fmt
|
||||
|
||||
lint:
|
||||
uv run ruff check --fix
|
||||
|
||||
@@ -17,9 +17,9 @@ dependencies = [
|
||||
"loguru>=0.7.3",
|
||||
"exo_pyo3_bindings", # rust bindings
|
||||
"anyio==4.11.0",
|
||||
"mlx==0.30.4; sys_platform == 'darwin'",
|
||||
"mlx[cpu]==0.30.4; sys_platform == 'linux'",
|
||||
"mlx-lm",
|
||||
"mlx @ git+https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git; sys_platform == 'darwin'",
|
||||
"mlx[cpu]==0.30.3; sys_platform == 'linux'",
|
||||
"mlx-lm==0.30.5",
|
||||
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
|
||||
"hypercorn>=0.18.0",
|
||||
"openai-harmony>=0.0.8",
|
||||
@@ -63,7 +63,6 @@ members = [
|
||||
|
||||
[tool.uv.sources]
|
||||
exo_pyo3_bindings = { workspace = true }
|
||||
mlx-lm = { git = "https://github.com/ml-explore/mlx-lm", branch = "main" }
|
||||
# Uncomment to use local mlx/mlx-lm development versions:
|
||||
# mlx = { path = "/Users/Shared/mlx", editable=true }
|
||||
# mlx-lm = { path = "/Users/Shared/mlx-lm", editable=true }
|
||||
|
||||
@@ -90,6 +90,7 @@ class Node:
|
||||
worker = Worker(
|
||||
node_id,
|
||||
session_id,
|
||||
connection_message_receiver=router.receiver(topics.CONNECTION_MESSAGES),
|
||||
global_event_receiver=router.receiver(topics.GLOBAL_EVENTS),
|
||||
local_event_sender=router.sender(topics.LOCAL_EVENTS),
|
||||
command_sender=router.sender(topics.COMMANDS),
|
||||
@@ -226,6 +227,9 @@ class Node:
|
||||
self.worker = Worker(
|
||||
self.node_id,
|
||||
result.session_id,
|
||||
connection_message_receiver=self.router.receiver(
|
||||
topics.CONNECTION_MESSAGES
|
||||
),
|
||||
global_event_receiver=self.router.receiver(
|
||||
topics.GLOBAL_EVENTS
|
||||
),
|
||||
|
||||
@@ -121,14 +121,6 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"kimi-k2.5": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2.5"),
|
||||
storage_size=Memory.from_gb(617),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.1
|
||||
"llama-3.1-8b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
|
||||
|
||||
@@ -1,12 +0,0 @@
|
||||
"""Shared types for MLX-related functionality."""
|
||||
|
||||
from collections.abc import Sequence
|
||||
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
)
|
||||
|
||||
# This list contains one cache entry per transformer layer
|
||||
KVCacheType = Sequence[KVCache | RotatingKVCache | QuantizedKVCache]
|
||||
@@ -23,7 +23,6 @@ from mlx_lm.models.glm4_moe_lite import Glm4MoeLiteDecoderLayer, Glm4MoeLiteMLP
|
||||
from mlx_lm.models.glm4_moe_lite import Model as GLM4MoeLiteModel
|
||||
from mlx_lm.models.gpt_oss import GptOssMoeModel
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.models.kimi_k25 import Model as KimiK25Model
|
||||
from mlx_lm.models.llama import Model as LlamaModel
|
||||
from mlx_lm.models.minimax import Model as MiniMaxModel
|
||||
from mlx_lm.models.ministral3 import Model as Ministral3Model
|
||||
@@ -345,7 +344,7 @@ def tensor_auto_parallel(
|
||||
all_to_sharded_linear_in_place,
|
||||
sharded_to_all_linear_in_place,
|
||||
)
|
||||
elif isinstance(model, (DeepseekV3Model, DeepseekV32Model, KimiK25Model)):
|
||||
elif isinstance(model, (DeepseekV3Model, DeepseekV32Model)):
|
||||
tensor_parallel_sharding_strategy = DeepSeekShardingStrategy(
|
||||
group,
|
||||
all_to_sharded_linear,
|
||||
@@ -454,7 +453,7 @@ def _set_layers(model: nn.Module, layers: list[_LayerCallable]) -> None:
|
||||
|
||||
# Update DeepSeek V3 specific parameters when layers are shrunk
|
||||
if isinstance(
|
||||
model, (DeepseekV3Model, DeepseekV32Model, Glm4MoeModel, KimiK25Model)
|
||||
model, (DeepseekV3Model, DeepseekV32Model, Glm4MoeModel)
|
||||
) and hasattr(inner_model_instance, "num_layers"):
|
||||
logger.info(
|
||||
f"Setting num_layers to {len(layers)} for model {model.model.__class__.__name__}"
|
||||
@@ -623,7 +622,6 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
|
||||
on_timeout: TimeoutCallback | None,
|
||||
) -> nn.Module:
|
||||
model = cast(MiniMaxModel, model)
|
||||
rank = self.group.rank()
|
||||
for layer in model.layers:
|
||||
eval_with_timeout(
|
||||
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
|
||||
@@ -633,16 +631,6 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
|
||||
layer.self_attn.v_proj = self.all_to_sharded_linear(layer.self_attn.v_proj)
|
||||
layer.self_attn.o_proj = self.sharded_to_all_linear(layer.self_attn.o_proj)
|
||||
|
||||
# Shard qk_norm weights if present (must match sharded head count)
|
||||
if getattr(layer.self_attn, "use_qk_norm", False):
|
||||
layer.self_attn.q_norm.weight = layer.self_attn.q_norm.weight.split( # type: ignore
|
||||
self.N, axis=-1
|
||||
)[rank]
|
||||
layer.self_attn.k_norm.weight = layer.self_attn.k_norm.weight.split( # type: ignore
|
||||
self.N, axis=-1
|
||||
)[rank]
|
||||
|
||||
layer.self_attn.num_attention_heads //= self.N
|
||||
layer.self_attn.num_key_value_heads //= self.N
|
||||
|
||||
|
||||
@@ -1,81 +1,39 @@
|
||||
import os
|
||||
# type: ignore
|
||||
# TODO: Fix this file, including types!
|
||||
from copy import deepcopy
|
||||
from typing import Any, cast
|
||||
from typing import Callable
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
trim_prompt_cache,
|
||||
)
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm import stream_generate
|
||||
from mlx_lm.models.cache import _BaseCache, trim_prompt_cache
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.shared.types.mlx import KVCacheType
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.constants import CACHE_GROUP_SIZE, KV_CACHE_BITS
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
# Fraction of device memory above which LRU eviction kicks in
|
||||
_DEFAULT_MEMORY_THRESHOLD = 0.85
|
||||
_MEMORY_THRESHOLD = float(
|
||||
os.environ.get("EXO_MEMORY_THRESHOLD", _DEFAULT_MEMORY_THRESHOLD)
|
||||
)
|
||||
from exo.worker.engines.mlx.constants import KEEP_KV_SIZE, KV_BITS, KV_GROUP_SIZE
|
||||
from exo.worker.engines.mlx.utils_mlx import make_kv_cache
|
||||
|
||||
|
||||
class KVPrefixCache:
|
||||
def __init__(self, tokenizer: TokenizerWrapper):
|
||||
def __init__(self):
|
||||
# Only one prefix cache per runner.
|
||||
self.prompts: list[mx.array] = [] # mx array of tokens (ints)
|
||||
self.caches: list[KVCacheType] = []
|
||||
self._last_used: list[int] = [] # monotonic counter of last access per entry
|
||||
self._access_counter: int = 0
|
||||
self._tokenizer: TokenizerWrapper = tokenizer
|
||||
self.caches: list[list[_BaseCache]] = []
|
||||
|
||||
def clear(self):
|
||||
"""Clear all cached prompts and caches."""
|
||||
self.prompts.clear()
|
||||
self.caches.clear()
|
||||
self._last_used.clear()
|
||||
|
||||
def add_kv_cache(self, prompt: str, cache: KVCacheType):
|
||||
"""Add a new cache entry. Evicts LRU entries if memory is high."""
|
||||
self._evict_if_needed()
|
||||
tokenized_prompt = encode_prompt(self._tokenizer, prompt)
|
||||
def add_kv_cache(
|
||||
self, tokenizer: TokenizerWrapper, prompt: str, cache: list[_BaseCache]
|
||||
):
|
||||
tokenized_prompt = self.encode_prompt(tokenizer, prompt)
|
||||
self.prompts.append(tokenized_prompt)
|
||||
self.caches.append(deepcopy(cache))
|
||||
self._access_counter += 1
|
||||
self._last_used.append(self._access_counter)
|
||||
logger.info(f"KV cache added: {len(tokenized_prompt)} tokens")
|
||||
|
||||
def update_kv_cache(
|
||||
self,
|
||||
index: int,
|
||||
prompt: str,
|
||||
cache: KVCacheType,
|
||||
):
|
||||
"""Update an existing cache entry in-place."""
|
||||
tokenized_prompt = encode_prompt(self._tokenizer, prompt)
|
||||
self.prompts[index] = tokenized_prompt
|
||||
self.caches[index] = deepcopy(cache)
|
||||
self._access_counter += 1
|
||||
self._last_used[index] = self._access_counter
|
||||
logger.info(f"KV cache updated (index {index}): {len(tokenized_prompt)} tokens")
|
||||
|
||||
def get_kv_cache(
|
||||
self,
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt: str,
|
||||
) -> tuple[KVCacheType, mx.array, int | None]:
|
||||
"""Get KV cache for prompt, returning remaining tokens to prefill.
|
||||
|
||||
Returns:
|
||||
Tuple of (cache, remaining_tokens, matched_index) where:
|
||||
- cache: KV cache to use for generation
|
||||
- remaining_tokens: tokens that still need prefilling
|
||||
- matched_index: index of the matched entry (None if no match)
|
||||
"""
|
||||
tokenized_prompt = encode_prompt(self._tokenizer, prompt)
|
||||
) -> list[_BaseCache]:
|
||||
tokenized_prompt = self.encode_prompt(tokenizer, prompt)
|
||||
max_length = len(tokenized_prompt)
|
||||
|
||||
best_snapshot_index, best_snapshot_length = None, 0
|
||||
@@ -84,127 +42,63 @@ class KVPrefixCache:
|
||||
length = _get_prefix_length(tokenized_prompt, cached_prompt)
|
||||
|
||||
if length == max_length:
|
||||
# Exact match - cached prompt starts with our entire prompt
|
||||
# Trim cache to prompt length - 1, return last token for stream_generate
|
||||
prompt_cache = deepcopy(self.caches[i])
|
||||
cached_length = _cache_length(self.caches[i])
|
||||
tokens_to_trim = cached_length - (max_length - 1)
|
||||
if tokens_to_trim > 0:
|
||||
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
|
||||
self._access_counter += 1
|
||||
self._last_used[i] = self._access_counter
|
||||
logger.info(f"KV cache exact match: {max_length} tokens (instant)")
|
||||
return prompt_cache, tokenized_prompt[-1:], i
|
||||
return self.caches[i]
|
||||
|
||||
if length > best_snapshot_length:
|
||||
best_snapshot_index, best_snapshot_length = i, length
|
||||
|
||||
if best_snapshot_index is not None:
|
||||
new_tokens = max_length - best_snapshot_length
|
||||
logger.info(
|
||||
f"KV cache prefix match: {best_snapshot_length}/{max_length} tokens "
|
||||
f"(reusing {best_snapshot_length}, need to prefill {new_tokens})"
|
||||
)
|
||||
|
||||
prompt_cache = deepcopy(self.caches[best_snapshot_index])
|
||||
|
||||
# Trim removes tokens from the end, so we trim (cached_length - prefix_length) to keep the prefix
|
||||
cached_length = _cache_length(self.caches[best_snapshot_index])
|
||||
tokens_to_trim = cached_length - best_snapshot_length
|
||||
if tokens_to_trim > 0:
|
||||
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
|
||||
|
||||
self._access_counter += 1
|
||||
self._last_used[best_snapshot_index] = self._access_counter
|
||||
remaining_tokens = tokenized_prompt[best_snapshot_length:]
|
||||
return prompt_cache, remaining_tokens, best_snapshot_index
|
||||
trim_prompt_cache(prompt_cache, max_length - best_snapshot_length)
|
||||
tokenized_prompt = tokenized_prompt[best_snapshot_index:]
|
||||
|
||||
else:
|
||||
prompt_cache = make_kv_cache(model)
|
||||
if len(self.prompts) == 0:
|
||||
logger.info(f"KV cache empty, need to prefill {max_length} tokens")
|
||||
else:
|
||||
logger.info(
|
||||
f"KV cache no prefix match, need to prefill {max_length} tokens"
|
||||
)
|
||||
|
||||
return prompt_cache, tokenized_prompt, None
|
||||
|
||||
def _evict_if_needed(self):
|
||||
"""Evict least recently used entries while memory pressure is high."""
|
||||
if len(self.caches) == 0:
|
||||
return
|
||||
|
||||
active: int = mx.metal.get_active_memory()
|
||||
limit = int(mx.metal.device_info()["max_recommended_working_set_size"])
|
||||
if active < limit * _MEMORY_THRESHOLD:
|
||||
return
|
||||
|
||||
# Evict LRU entries until below threshold or only one entry left
|
||||
while len(self.caches) > 0:
|
||||
lru_index = self._last_used.index(min(self._last_used))
|
||||
evicted_tokens = len(self.prompts[lru_index])
|
||||
self.prompts.pop(lru_index)
|
||||
self.caches.pop(lru_index)
|
||||
self._last_used.pop(lru_index)
|
||||
logger.info(
|
||||
f"KV cache evicted LRU entry ({evicted_tokens} tokens) due to memory pressure"
|
||||
prompt_cache = make_kv_cache(
|
||||
model,
|
||||
# max_kv_size=MAX_KV_SIZE,
|
||||
# keep=KEEP_KV_SIZE
|
||||
)
|
||||
|
||||
active = mx.metal.get_active_memory()
|
||||
if active < limit * _MEMORY_THRESHOLD:
|
||||
break
|
||||
prefill(model, tokenizer, sampler, tokenized_prompt, prompt_cache)
|
||||
|
||||
return prompt_cache
|
||||
|
||||
def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
"""Encode a prompt string to token array.
|
||||
|
||||
For chat-templated prompts (which have their own structure markers like
|
||||
<|im_user|>, <|im_middle|>, etc.), we should NOT add BOS/EOS tokens as
|
||||
that would corrupt the prompt structure.
|
||||
"""
|
||||
# Chat templates define their own structure - don't add BOS/EOS
|
||||
tokenized_prompt = tokenizer.encode(prompt, add_special_tokens=False)
|
||||
return mx.array(tokenized_prompt)
|
||||
|
||||
|
||||
def _cache_length(cache: KVCacheType) -> int:
|
||||
"""Get the number of tokens in a KV cache."""
|
||||
# Use .offset attribute which all cache types have (len() not implemented in older QuantizedKVCache)
|
||||
return max(c.offset for c in cache) # type: ignore
|
||||
def encode_prompt(self, tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
add_special_tokens = tokenizer.bos_token is None or not prompt.startswith(
|
||||
tokenizer.bos_token
|
||||
)
|
||||
tokenized_prompt = tokenizer.encode(
|
||||
prompt, add_special_tokens=add_special_tokens
|
||||
)
|
||||
return mx.array(tokenized_prompt)
|
||||
|
||||
|
||||
def _get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
|
||||
"""Find the length of the common prefix between two token arrays."""
|
||||
n = min(int(prompt.shape[0]), int(cached_prompt.shape[0]))
|
||||
n = min(int(prompt.shape[0]), int(cached_prompt.shape[0]), KEEP_KV_SIZE)
|
||||
if n == 0:
|
||||
return 0
|
||||
|
||||
equal = mx.equal(prompt[:n], cached_prompt[:n]).astype(mx.int32)
|
||||
equal = (prompt[:n] == cached_prompt[:n]).astype(mx.int32)
|
||||
prefix_mask = mx.cumprod(equal) # stays 1 until first mismatch, then 0 forever
|
||||
return int(mx.sum(prefix_mask).item())
|
||||
|
||||
|
||||
def make_kv_cache(
|
||||
model: Model, max_kv_size: int | None = None, keep: int = 0
|
||||
) -> KVCacheType:
|
||||
assert hasattr(model, "layers")
|
||||
|
||||
# TODO: Do this for all models
|
||||
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
|
||||
logger.info("Using MLX LM's make cache")
|
||||
return model.make_cache() # type: ignore
|
||||
|
||||
if max_kv_size is None:
|
||||
if KV_CACHE_BITS is None:
|
||||
logger.info("Using default KV cache")
|
||||
return [KVCache() for _ in model.layers]
|
||||
else:
|
||||
logger.info("Using quantized KV cache")
|
||||
return [
|
||||
QuantizedKVCache(group_size=CACHE_GROUP_SIZE, bits=KV_CACHE_BITS)
|
||||
for _ in model.layers
|
||||
]
|
||||
else:
|
||||
logger.info(f"Using rotating KV cache with {max_kv_size=} with {keep=}")
|
||||
return [RotatingKVCache(max_size=max_kv_size, keep=keep) for _ in model.layers]
|
||||
def prefill(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt: mx.array,
|
||||
cache: list[_BaseCache],
|
||||
) -> None:
|
||||
for _ in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=prompt,
|
||||
max_tokens=0,
|
||||
sampler=sampler,
|
||||
prompt_cache=cache,
|
||||
prefill_step_size=2048,
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
):
|
||||
pass
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
KV_GROUP_SIZE: int | None = 32
|
||||
KV_BITS: int | None = None
|
||||
ATTENTION_KV_BITS: int | None = 4
|
||||
MAX_TOKENS: int = 32168
|
||||
MAX_TOKENS: int = 8192
|
||||
MAX_KV_SIZE: int | None = 3200
|
||||
KEEP_KV_SIZE: int | None = 1600
|
||||
QUANTIZE_MODEL_MODE: str | None = "affine"
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import time
|
||||
from typing import Any, Callable, Generator, cast, get_args
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.generate import stream_generate
|
||||
from mlx_lm.models.cache import trim_prompt_cache
|
||||
from mlx_lm.models.cache import KVCache
|
||||
from mlx_lm.sample_utils import make_sampler
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
# from exo.engines.mlx.cache import KVPrefixCache
|
||||
from exo.shared.types.api import (
|
||||
BenchChatCompletionTaskParams,
|
||||
ChatCompletionMessage,
|
||||
@@ -14,78 +14,35 @@ from exo.shared.types.api import (
|
||||
GenerationStats,
|
||||
)
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.mlx import KVCacheType
|
||||
from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.shared.types.worker.runner_response import (
|
||||
GenerationResponse,
|
||||
)
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import KVPrefixCache, encode_prompt, make_kv_cache
|
||||
from exo.worker.engines.mlx.constants import KV_BITS, KV_GROUP_SIZE, MAX_TOKENS
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
apply_chat_template,
|
||||
make_kv_cache,
|
||||
mx_barrier,
|
||||
)
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
generation_stream = mx.new_stream(mx.default_device())
|
||||
|
||||
_MIN_PREFIX_HIT_TO_UPDATE = 1000
|
||||
|
||||
|
||||
def prefill(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt_tokens: mx.array,
|
||||
cache: KVCacheType,
|
||||
) -> float:
|
||||
"""Prefill the KV cache with prompt tokens.
|
||||
|
||||
This runs the model over the prompt tokens to populate the cache,
|
||||
then trims off the extra generated token.
|
||||
|
||||
Returns:
|
||||
tokens_per_sec
|
||||
"""
|
||||
num_tokens = len(prompt_tokens)
|
||||
if num_tokens == 0:
|
||||
return 0.0
|
||||
|
||||
logger.debug(f"Prefilling {num_tokens} tokens...")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
def progress_callback(processed: int, total: int) -> None:
|
||||
elapsed = time.time() - start_time
|
||||
tok_per_sec = processed / elapsed if elapsed > 0 else 0
|
||||
logger.debug(
|
||||
f"Prefill progress: {processed}/{total} tokens ({tok_per_sec:.1f} tok/s)"
|
||||
)
|
||||
|
||||
# Use max_tokens=1 because max_tokens=0 does not work.
|
||||
# We just throw away the generated token - we only care about filling the cache
|
||||
for _ in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=prompt_tokens,
|
||||
max_tokens=1,
|
||||
sampler=sampler,
|
||||
prompt_cache=cache,
|
||||
prefill_step_size=2048,
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
prompt_progress_callback=progress_callback,
|
||||
):
|
||||
break # Stop after first iteration - cache is now filled
|
||||
trim_prompt_cache(cast(list[Any], cache), 1)
|
||||
|
||||
elapsed = time.perf_counter() - start_time
|
||||
tokens_per_sec = num_tokens / elapsed if elapsed > 0 else 0.0
|
||||
logger.debug(
|
||||
f"Prefill complete: {num_tokens} tokens in {elapsed:.2f}s "
|
||||
f"({tokens_per_sec:.1f} tok/s)"
|
||||
)
|
||||
return tokens_per_sec
|
||||
def maybe_quantize_kv_cache(
|
||||
prompt_cache: list[KVCache | Any],
|
||||
quantized_kv_start: int,
|
||||
kv_group_size: int,
|
||||
kv_bits: int | None,
|
||||
) -> None:
|
||||
if kv_bits is None:
|
||||
return
|
||||
for e, c in enumerate(prompt_cache):
|
||||
if (
|
||||
hasattr(c, "to_quantized") and c.offset >= quantized_kv_start # type: ignore
|
||||
):
|
||||
prompt_cache[e] = c.to_quantized(group_size=kv_group_size, bits=kv_bits)
|
||||
|
||||
|
||||
def warmup_inference(
|
||||
@@ -163,7 +120,6 @@ def mlx_generate(
|
||||
tokenizer: TokenizerWrapper,
|
||||
task: ChatCompletionTaskParams,
|
||||
prompt: str,
|
||||
kv_prefix_cache: KVPrefixCache | None = None,
|
||||
) -> Generator[GenerationResponse]:
|
||||
# Ensure that generation stats only contains peak memory for this generation
|
||||
mx.reset_peak_memory()
|
||||
@@ -175,22 +131,7 @@ def mlx_generate(
|
||||
if task.seed is not None:
|
||||
mx.random.seed(task.seed)
|
||||
|
||||
# Do not use the prefix cache if we are trying to do benchmarks.
|
||||
if is_bench:
|
||||
kv_prefix_cache = None
|
||||
|
||||
# Use prefix cache if available, otherwise create fresh cache
|
||||
prefix_hit_length = 0
|
||||
matched_index: int | None = None
|
||||
if kv_prefix_cache is None:
|
||||
caches = make_kv_cache(model=model)
|
||||
prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
else:
|
||||
caches, prompt_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, prompt
|
||||
)
|
||||
all_prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
prefix_hit_length = len(all_prompt_tokens) - len(prompt_tokens)
|
||||
caches = make_kv_cache(model=model)
|
||||
|
||||
logits_processors: list[Callable[[mx.array, mx.array], mx.array]] = []
|
||||
if is_bench:
|
||||
@@ -203,19 +144,11 @@ def mlx_generate(
|
||||
top_p=task.top_p if task.top_p is not None else 1.0,
|
||||
)
|
||||
|
||||
# Prefill cache with all tokens except the last one
|
||||
prefill_tps = prefill(model, tokenizer, sampler, prompt_tokens[:-1], caches)
|
||||
|
||||
# stream_generate starts from the last token
|
||||
last_token = prompt_tokens[-1:]
|
||||
|
||||
max_tokens = task.max_tokens or MAX_TOKENS
|
||||
generated_text_parts: list[str] = []
|
||||
generation_start_time = time.perf_counter()
|
||||
for out in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=last_token,
|
||||
prompt=prompt,
|
||||
max_tokens=max_tokens,
|
||||
sampler=sampler,
|
||||
logits_processors=logits_processors,
|
||||
@@ -225,13 +158,12 @@ def mlx_generate(
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
):
|
||||
generated_text_parts.append(out.text)
|
||||
logger.info(out.text)
|
||||
|
||||
stats: GenerationStats | None = None
|
||||
if out.finish_reason is not None:
|
||||
stats = GenerationStats(
|
||||
prompt_tps=float(prefill_tps or out.prompt_tps),
|
||||
prompt_tps=float(out.prompt_tps),
|
||||
generation_tps=float(out.generation_tps),
|
||||
prompt_tokens=int(out.prompt_tokens),
|
||||
generation_tokens=int(out.generation_tokens),
|
||||
@@ -253,26 +185,6 @@ def mlx_generate(
|
||||
)
|
||||
|
||||
if out.finish_reason is not None:
|
||||
# Log generation stats
|
||||
generation_elapsed = time.perf_counter() - generation_start_time
|
||||
generated_tokens = len(generated_text_parts)
|
||||
generation_tps = (
|
||||
generated_tokens / generation_elapsed if generation_elapsed > 0 else 0.0
|
||||
)
|
||||
logger.debug(
|
||||
f"Generation complete: prefill {prompt_tokens} tokens @ "
|
||||
f"{prefill_tps:.1f} tok/s, generated {generated_tokens} tokens @ "
|
||||
f"{generation_tps:.1f} tok/s"
|
||||
)
|
||||
if kv_prefix_cache is not None:
|
||||
full_prompt = prompt + "".join(generated_text_parts)
|
||||
if (
|
||||
matched_index is not None
|
||||
and prefix_hit_length >= _MIN_PREFIX_HIT_TO_UPDATE
|
||||
):
|
||||
kv_prefix_cache.update_kv_cache(matched_index, full_prompt, caches)
|
||||
else:
|
||||
kv_prefix_cache.add_kv_cache(full_prompt, caches)
|
||||
break
|
||||
|
||||
# TODO: Do we want an mx_barrier?
|
||||
|
||||
@@ -18,12 +18,15 @@ try:
|
||||
except ImportError:
|
||||
pass # transformers < 5.0 or bytes_to_unicode not available
|
||||
|
||||
from mlx_lm.models.cache import KVCache
|
||||
from mlx_lm.models.cache import KVCache, QuantizedKVCache, RotatingKVCache
|
||||
from mlx_lm.models.deepseek_v3 import DeepseekV3Model
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.worker.engines.mlx.constants import (
|
||||
CACHE_GROUP_SIZE,
|
||||
KV_CACHE_BITS,
|
||||
TRUST_REMOTE_CODE,
|
||||
)
|
||||
|
||||
@@ -165,6 +168,7 @@ def mlx_distributed_init(
|
||||
|
||||
jaccl_coordinator = jaccl_coordinators[bound_instance.bound_node_id]
|
||||
|
||||
# TODO: update once upstream fixes
|
||||
logger.info(
|
||||
f"rank {rank} MLX_IBV_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
|
||||
)
|
||||
@@ -258,10 +262,10 @@ def shard_and_load(
|
||||
|
||||
logger.info(f"Group size: {group.size()}, group rank: {group.rank()}")
|
||||
|
||||
# Estimate timeout based on model size (5x default for large queued workloads)
|
||||
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "300"))
|
||||
# Estimate timeout based on model size
|
||||
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "60"))
|
||||
model_size_gb = get_weights_size(shard_metadata).in_bytes / (1024**3)
|
||||
timeout_seconds = base_timeout + model_size_gb
|
||||
timeout_seconds = base_timeout + model_size_gb / 5
|
||||
logger.info(
|
||||
f"Evaluating model parameters with timeout of {timeout_seconds:.0f}s "
|
||||
f"(model size: {model_size_gb:.1f}GB)"
|
||||
@@ -338,35 +342,8 @@ def load_tokenizer_for_model_id(
|
||||
|
||||
# Kimi uses a custom TikTokenTokenizer that transformers 5.x can't load via AutoTokenizer
|
||||
if "kimi-k2" in model_id_lower:
|
||||
import importlib.util
|
||||
import types
|
||||
|
||||
sys.path.insert(0, str(model_path))
|
||||
|
||||
# Load tool_declaration_ts first (tokenization_kimi imports it with relative import)
|
||||
tool_decl_path = model_path / "tool_declaration_ts.py"
|
||||
if tool_decl_path.exists():
|
||||
spec = importlib.util.spec_from_file_location(
|
||||
"tool_declaration_ts", tool_decl_path
|
||||
)
|
||||
if spec and spec.loader:
|
||||
tool_decl_module = importlib.util.module_from_spec(spec)
|
||||
sys.modules["tool_declaration_ts"] = tool_decl_module
|
||||
spec.loader.exec_module(tool_decl_module)
|
||||
|
||||
# Load tokenization_kimi with patched source (convert relative to absolute import)
|
||||
tok_path = model_path / "tokenization_kimi.py"
|
||||
source = tok_path.read_text()
|
||||
source = source.replace("from .tool_declaration_ts", "from tool_declaration_ts")
|
||||
spec = importlib.util.spec_from_file_location("tokenization_kimi", tok_path)
|
||||
if spec:
|
||||
tok_module = types.ModuleType("tokenization_kimi")
|
||||
tok_module.__file__ = str(tok_path)
|
||||
sys.modules["tokenization_kimi"] = tok_module
|
||||
exec(compile(source, tok_path, "exec"), tok_module.__dict__) # noqa: S102
|
||||
TikTokenTokenizer = tok_module.TikTokenTokenizer # type: ignore[attr-defined] # noqa: N806
|
||||
else:
|
||||
from tokenization_kimi import TikTokenTokenizer # type: ignore[import-not-found] # noqa: I001
|
||||
from tokenization_kimi import TikTokenTokenizer # type: ignore[import-not-found] # noqa: I001
|
||||
|
||||
hf_tokenizer: Any = TikTokenTokenizer.from_pretrained(model_path) # pyright: ignore[reportUnknownVariableType,reportUnknownMemberType]
|
||||
|
||||
@@ -489,6 +466,31 @@ class NullKVCache(KVCache):
|
||||
raise NotImplementedError("We should not be setting a NullKVCache.")
|
||||
|
||||
|
||||
def make_kv_cache(
|
||||
model: Model, max_kv_size: int | None = None, keep: int = 0
|
||||
) -> list[KVCache | RotatingKVCache | QuantizedKVCache]:
|
||||
assert hasattr(model, "layers")
|
||||
|
||||
# TODO: Do this for all models
|
||||
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
|
||||
logger.info("Using MLX LM's make cache")
|
||||
return model.make_cache() # type: ignore
|
||||
|
||||
if max_kv_size is None:
|
||||
if KV_CACHE_BITS is None:
|
||||
logger.info("Using default KV cache")
|
||||
return [KVCache() for _ in model.layers]
|
||||
else:
|
||||
logger.info("Using quantized KV cache")
|
||||
return [
|
||||
QuantizedKVCache(group_size=CACHE_GROUP_SIZE, bits=KV_CACHE_BITS)
|
||||
for _ in model.layers
|
||||
]
|
||||
else:
|
||||
logger.info(f"Using rotating KV cache with {max_kv_size=} with {keep=}")
|
||||
return [RotatingKVCache(max_size=max_kv_size, keep=keep) for _ in model.layers]
|
||||
|
||||
|
||||
def mlx_force_oom(size: int = 40000) -> None:
|
||||
"""
|
||||
Force an Out-Of-Memory (OOM) error in MLX by performing large tensor operations.
|
||||
|
||||
@@ -7,6 +7,7 @@ from anyio import CancelScope, create_task_group, fail_after
|
||||
from anyio.abc import TaskGroup
|
||||
from loguru import logger
|
||||
|
||||
from exo.routing.connection_message import ConnectionMessage, ConnectionMessageType
|
||||
from exo.shared.apply import apply
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.api import ImageEditsInternalParams
|
||||
@@ -56,6 +57,7 @@ class Worker:
|
||||
node_id: NodeId,
|
||||
session_id: SessionId,
|
||||
*,
|
||||
connection_message_receiver: Receiver[ConnectionMessage],
|
||||
global_event_receiver: Receiver[ForwarderEvent],
|
||||
local_event_sender: Sender[ForwarderEvent],
|
||||
# This is for requesting updates. It doesn't need to be a general command sender right now,
|
||||
@@ -72,6 +74,7 @@ class Worker:
|
||||
self.event_index_counter = event_index_counter
|
||||
self.command_sender = command_sender
|
||||
self.download_command_sender = download_command_sender
|
||||
self.connection_message_receiver = connection_message_receiver
|
||||
self.event_buffer = OrderedBuffer[Event]()
|
||||
self.out_for_delivery: dict[EventId, ForwarderEvent] = {}
|
||||
|
||||
@@ -102,6 +105,7 @@ class Worker:
|
||||
tg.start_soon(info_gatherer.run)
|
||||
tg.start_soon(self._forward_info, info_recv)
|
||||
tg.start_soon(self.plan_step)
|
||||
tg.start_soon(self._connection_message_event_writer)
|
||||
tg.start_soon(self._resend_out_for_delivery)
|
||||
tg.start_soon(self._event_applier)
|
||||
tg.start_soon(self._forward_events)
|
||||
@@ -275,6 +279,41 @@ class Worker:
|
||||
instance = self.state.instances[task.instance_id]
|
||||
return instance.shard_assignments.node_to_runner[self.node_id]
|
||||
|
||||
async def _connection_message_event_writer(self):
|
||||
with self.connection_message_receiver as connection_messages:
|
||||
async for msg in connection_messages:
|
||||
await self.event_sender.send(
|
||||
self._convert_connection_message_to_event(msg)
|
||||
)
|
||||
|
||||
def _convert_connection_message_to_event(self, msg: ConnectionMessage):
|
||||
match msg.connection_type:
|
||||
case ConnectionMessageType.Connected:
|
||||
return TopologyEdgeCreated(
|
||||
conn=Connection(
|
||||
source=self.node_id,
|
||||
sink=msg.node_id,
|
||||
edge=SocketConnection(
|
||||
sink_multiaddr=Multiaddr(
|
||||
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
case ConnectionMessageType.Disconnected:
|
||||
return TopologyEdgeDeleted(
|
||||
conn=Connection(
|
||||
source=self.node_id,
|
||||
sink=msg.node_id,
|
||||
edge=SocketConnection(
|
||||
sink_multiaddr=Multiaddr(
|
||||
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
async def _nack_request(self, since_idx: int) -> None:
|
||||
# We request all events after (and including) the missing index.
|
||||
# This function is started whenever we receive an event that is out of sequence.
|
||||
|
||||
@@ -70,7 +70,6 @@ from exo.worker.engines.image import (
|
||||
warmup_image_generator,
|
||||
)
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import KVPrefixCache
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
apply_chat_template,
|
||||
@@ -104,7 +103,6 @@ def main(
|
||||
model: Model | DistributedImageModel | None = None
|
||||
tokenizer = None
|
||||
group = None
|
||||
kv_prefix_cache: KVPrefixCache | None = None
|
||||
|
||||
current_status: RunnerStatus = RunnerIdle()
|
||||
logger.info("runner created")
|
||||
@@ -163,8 +161,6 @@ def main(
|
||||
logger.info(
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling}"
|
||||
)
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
|
||||
elif (
|
||||
ModelTask.TextToImage in shard_metadata.model_card.tasks
|
||||
or ModelTask.ImageToImage in shard_metadata.model_card.tasks
|
||||
@@ -174,6 +170,7 @@ def main(
|
||||
raise ValueError(
|
||||
f"Unknown model task(s): {shard_metadata.model_card.tasks}"
|
||||
)
|
||||
|
||||
current_status = RunnerLoaded()
|
||||
logger.info("runner loaded")
|
||||
case StartWarmup() if isinstance(current_status, RunnerLoaded):
|
||||
@@ -241,7 +238,6 @@ def main(
|
||||
tokenizer=tokenizer,
|
||||
task=task_params,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
)
|
||||
|
||||
# For other thinking models (GLM, etc.), check if we need to
|
||||
|
||||
@@ -1,545 +0,0 @@
|
||||
# type: ignore
|
||||
import time
|
||||
from typing import cast
|
||||
from unittest.mock import patch
|
||||
|
||||
import mlx.core as mx
|
||||
import pytest
|
||||
from mlx_lm.models.cache import KVCache
|
||||
from mlx_lm.sample_utils import make_sampler
|
||||
|
||||
from exo.shared.types.api import ChatCompletionMessage
|
||||
from exo.shared.types.common import ModelId
|
||||
from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import (
|
||||
KVPrefixCache,
|
||||
_cache_length,
|
||||
_get_prefix_length,
|
||||
encode_prompt,
|
||||
make_kv_cache,
|
||||
)
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate, prefill
|
||||
from exo.worker.engines.mlx.utils_mlx import apply_chat_template
|
||||
from exo.worker.tests.unittests.test_mlx.conftest import (
|
||||
DEFAULT_GPT_OSS_CONFIG,
|
||||
DEFAULT_GPT_OSS_MODEL_ID,
|
||||
)
|
||||
|
||||
|
||||
def _check_model_exists() -> bool:
|
||||
return DEFAULT_GPT_OSS_CONFIG.model_path.exists()
|
||||
|
||||
|
||||
class TestGetPrefixLength:
|
||||
def test_identical_arrays(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3, 4, 5])
|
||||
assert _get_prefix_length(a, b) == 5
|
||||
|
||||
def test_no_common_prefix(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([4, 5, 6])
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
def test_partial_prefix(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3, 7, 8])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
|
||||
def test_prompt_longer_than_cached(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
|
||||
def test_cached_longer_than_prompt(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([1, 2, 3, 4, 5])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
|
||||
def test_single_token_match(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([1, 5, 6])
|
||||
assert _get_prefix_length(a, b) == 1
|
||||
|
||||
def test_empty_prompt(self):
|
||||
a = mx.array([]).astype(mx.int32)
|
||||
b = mx.array([1, 2, 3])
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
def test_empty_cached(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([]).astype(mx.int32)
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
def test_both_empty(self):
|
||||
a = mx.array([]).astype(mx.int32)
|
||||
b = mx.array([]).astype(mx.int32)
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
|
||||
class TestKVPrefix:
|
||||
@pytest.fixture
|
||||
def mock_tokenizer(self):
|
||||
"""Create a minimal mock tokenizer for tests that don't need real tokenization."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
tokenizer = MagicMock()
|
||||
tokenizer.encode.return_value = [1, 2, 3]
|
||||
return tokenizer
|
||||
|
||||
def test_starts_empty(self, mock_tokenizer):
|
||||
cache = KVPrefixCache(mock_tokenizer)
|
||||
assert len(cache.prompts) == 0
|
||||
assert len(cache.caches) == 0
|
||||
|
||||
def test_clear_empties_cache(self, mock_tokenizer):
|
||||
cache = KVPrefixCache(mock_tokenizer)
|
||||
cache.prompts.append(mx.array([1, 2, 3]))
|
||||
cache.caches.append([KVCache()])
|
||||
cache.clear()
|
||||
assert len(cache.prompts) == 0
|
||||
assert len(cache.caches) == 0
|
||||
|
||||
def test_clear_on_empty_cache(self, mock_tokenizer):
|
||||
cache = KVPrefixCache(mock_tokenizer)
|
||||
cache.clear()
|
||||
assert len(cache.prompts) == 0
|
||||
|
||||
|
||||
def _load_gpt_oss() -> tuple[Model, object]:
|
||||
from mlx_lm.utils import load_model
|
||||
|
||||
from exo.worker.engines.mlx.utils_mlx import load_tokenizer_for_model_id
|
||||
|
||||
model_path = DEFAULT_GPT_OSS_CONFIG.model_path
|
||||
model_id = ModelId(DEFAULT_GPT_OSS_MODEL_ID)
|
||||
|
||||
model, _ = load_model(model_path, lazy=False)
|
||||
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
|
||||
return cast(Model, model), tokenizer
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
not _check_model_exists(),
|
||||
reason=f"GPT-OSS model not found at {DEFAULT_GPT_OSS_CONFIG.model_path}",
|
||||
)
|
||||
class TestKVPrefixCacheWithModel:
|
||||
@pytest.fixture(scope="class")
|
||||
def model_and_tokenizer(self):
|
||||
model, tokenizer = _load_gpt_oss()
|
||||
return model, tokenizer
|
||||
|
||||
def test_prefill_populates_cache(self, model_and_tokenizer):
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Hello!!")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
# Cache should now hold the prompt tokens
|
||||
assert _cache_length(cache) == len(tokens)
|
||||
|
||||
def test_add_and_get_exact_match(self, model_and_tokenizer):
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Test exact")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
assert stored_length > 0
|
||||
|
||||
# Retrieve with same prompt: exact match
|
||||
result_cache, remaining_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, prompt
|
||||
)
|
||||
assert matched_index == 0
|
||||
|
||||
# Exact match returns only last token
|
||||
assert len(remaining_tokens) == 1
|
||||
assert mx.array_equal(remaining_tokens, tokens[-1:])
|
||||
|
||||
def test_add_and_get_prefix_match(self, model_and_tokenizer):
|
||||
"""get_kv_cache with a longer prompt sharing prefix should return partial match."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
short_task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Hi")],
|
||||
max_tokens=1,
|
||||
)
|
||||
short_prompt = apply_chat_template(tokenizer, short_task)
|
||||
short_tokens = encode_prompt(tokenizer, short_prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), short_tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(short_prompt, cache)
|
||||
|
||||
# Query with longer prompt that shares the chat template prefix
|
||||
long_task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[
|
||||
ChatCompletionMessage(role="user", content="Hi there, how are you?")
|
||||
],
|
||||
max_tokens=1,
|
||||
)
|
||||
long_prompt = apply_chat_template(tokenizer, long_task)
|
||||
long_tokens = encode_prompt(tokenizer, long_prompt)
|
||||
|
||||
# The prompts share a prefix (chat template preamble + "Hi")
|
||||
expected_prefix = _get_prefix_length(long_tokens, short_tokens)
|
||||
assert expected_prefix > 0, (
|
||||
"Prompts should share a prefix from the chat template"
|
||||
)
|
||||
|
||||
result_cache, remaining_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, long_prompt
|
||||
)
|
||||
assert matched_index == 0
|
||||
|
||||
# remaining_tokens should be the suffix after the shared prefix
|
||||
assert len(remaining_tokens) == len(long_tokens) - expected_prefix
|
||||
assert mx.array_equal(remaining_tokens, long_tokens[expected_prefix:])
|
||||
|
||||
def test_stored_cache_not_mutated_after_get_and_generation(
|
||||
self, model_and_tokenizer
|
||||
):
|
||||
"""Getting a cache and then mutating it (as generation does) must not corrupt stored cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Mutation test")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Get cache and mutate it (simulating what generation does)
|
||||
result_cache, _, matched_index = kv_prefix_cache.get_kv_cache(model, prompt)
|
||||
assert matched_index == 0
|
||||
|
||||
# Simulate generation: feed many additional tokens through the cache
|
||||
head_dim = result_cache[0].keys.shape[-1]
|
||||
num_heads = result_cache[0].keys.shape[1]
|
||||
extra_keys = mx.random.normal((1, num_heads, 50, head_dim))
|
||||
extra_values = mx.random.normal((1, num_heads, 50, head_dim))
|
||||
for layer_cache in result_cache:
|
||||
layer_cache.update_and_fetch(extra_keys, extra_values)
|
||||
mx.eval([c.keys for c in result_cache])
|
||||
|
||||
# Stored cache must be unchanged
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length
|
||||
|
||||
def test_stored_cache_survives_repeated_get_mutate_cycles(
|
||||
self, model_and_tokenizer
|
||||
):
|
||||
"""Multiple get+mutate cycles (like repeated user requests) must not corrupt cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Repeat test")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
for i in range(3):
|
||||
result_cache, _, _ = kv_prefix_cache.get_kv_cache(model, prompt)
|
||||
|
||||
head_dim = result_cache[0].keys.shape[-1]
|
||||
num_heads = result_cache[0].keys.shape[1]
|
||||
extra = mx.random.normal((1, num_heads, 30, head_dim))
|
||||
for layer_cache in result_cache:
|
||||
layer_cache.update_and_fetch(extra, extra)
|
||||
mx.eval([c.keys for c in result_cache])
|
||||
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length, (
|
||||
f"Failed on loop {i}"
|
||||
)
|
||||
|
||||
def test_mlx_generate_populates_cache(self, model_and_tokenizer):
|
||||
"""mlx_generate should save the cache after generation completes."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Hello")],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
|
||||
# Consume the entire generator so the cache-saving code after yield runs
|
||||
generated_tokens = 0
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
generated_tokens += 1
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
assert len(kv_prefix_cache.caches) == 1
|
||||
# Cache should contain prompt + generated tokens
|
||||
expected_length = len(prompt_tokens) + generated_tokens
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == expected_length
|
||||
|
||||
def test_mlx_generate_second_call_gets_prefix_hit(self, model_and_tokenizer):
|
||||
"""Second mlx_generate call with same prompt should get a prefix hit from stored cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Reuse test")],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
|
||||
# First generation populates cache
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
|
||||
# Second call should find a prefix match (the stored cache contains
|
||||
# prompt + generated tokens, which shares the prompt prefix)
|
||||
result_cache, remaining_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, prompt
|
||||
)
|
||||
# The stored cache is longer than the prompt (it includes generated tokens),
|
||||
# so this is a prefix match where our prompt is fully contained
|
||||
assert matched_index == 0
|
||||
# Exact match: remaining_tokens is just the last token
|
||||
assert len(remaining_tokens) == 1
|
||||
assert mx.array_equal(remaining_tokens, prompt_tokens[-1:])
|
||||
|
||||
def test_mlx_generate_long_prompt_updates_cache_in_place(self, model_and_tokenizer):
|
||||
"""With a prompt > 1000 tokens, second generation should update the cache entry in-place."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
|
||||
# Build a long user message (> 1000 tokens) to exceed _MIN_PREFIX_HIT_TO_UPDATE
|
||||
base_text = "The quick brown fox jumps over the lazy dog. "
|
||||
base_tokens = tokenizer.encode(base_text)
|
||||
repeats = (1200 // len(base_tokens)) + 2
|
||||
long_content = base_text * repeats
|
||||
|
||||
task1 = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content=long_content)],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt1 = apply_chat_template(tokenizer, task1)
|
||||
prompt1_tokens = encode_prompt(tokenizer, prompt1)
|
||||
assert len(prompt1_tokens) > 1000, (
|
||||
"Prompt must exceed _MIN_PREFIX_HIT_TO_UPDATE"
|
||||
)
|
||||
|
||||
# First generation populates the cache (must prefill all tokens)
|
||||
t0 = time.perf_counter()
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task1,
|
||||
prompt=prompt1,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
first_gen_time = time.perf_counter() - t0
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Second generation: same long prompt + extra content (simulating multi-turn)
|
||||
task2 = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[
|
||||
ChatCompletionMessage(role="user", content=long_content),
|
||||
ChatCompletionMessage(role="assistant", content="Sure, I can help."),
|
||||
ChatCompletionMessage(role="user", content="Tell me more."),
|
||||
],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt2 = apply_chat_template(tokenizer, task2)
|
||||
prompt2_tokens = encode_prompt(tokenizer, prompt2)
|
||||
|
||||
# Verify the prompts share a long prefix
|
||||
prefix_len = _get_prefix_length(prompt2_tokens, prompt1_tokens)
|
||||
assert prefix_len > 1000, "Prompts must share > 1000 token prefix"
|
||||
|
||||
# Second generation should reuse the cached prefix (only prefill new tokens)
|
||||
t0 = time.perf_counter()
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task2,
|
||||
prompt=prompt2,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
second_gen_time = time.perf_counter() - t0
|
||||
|
||||
# Second generation should be significantly faster due to prefix cache hit - hopefully not flaky
|
||||
assert second_gen_time < first_gen_time * 0.5, (
|
||||
f"Expected prefix cache speedup: "
|
||||
f"first={first_gen_time:.2f}s, second={second_gen_time:.2f}s"
|
||||
)
|
||||
|
||||
# With prefix_hit > 1000, should update in-place (not add a second entry)
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
# Updated cache should be longer (prompt2 + generated > prompt1 + generated)
|
||||
updated_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
assert updated_cache_length > first_cache_length
|
||||
|
||||
def test_mlx_generate_stored_cache_not_mutated(self, model_and_tokenizer):
|
||||
"""After mlx_generate saves a cache, a second generation must not corrupt the stored copy."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Immutable test")],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
|
||||
# First generation populates cache
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
|
||||
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Second generation gets the cache and mutates it during generation
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
|
||||
# The first stored cache must not have been mutated by the second generation
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == first_cache_length
|
||||
|
||||
def test_evicts_lru_entry_under_memory_pressure(self, model_and_tokenizer):
|
||||
"""Under memory pressure, adding a new cache entry evicts the least recently used one."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
|
||||
# Add three cache entries with different prompts
|
||||
prompts = ["First entry", "Second entry", "Third entry"]
|
||||
for i, content in enumerate(prompts):
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content=content)],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
# Stagger _last_used so LRU order is deterministic
|
||||
kv_prefix_cache._last_used[i] = float(i)
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 3
|
||||
|
||||
# Access the third entry to make it most recently used
|
||||
kv_prefix_cache._last_used[2] = 100.0
|
||||
# Entry 0 (_last_used=0.0) is LRU, entry 1 (_last_used=1.0) is next
|
||||
|
||||
# Simulate memory pressure: active memory exceeds threshold
|
||||
fake_limit = 1000
|
||||
fake_active = int(fake_limit * 0.90) # Above _MEMORY_THRESHOLD (0.85)
|
||||
|
||||
with (
|
||||
patch(
|
||||
"exo.worker.engines.mlx.cache.mx.metal.get_active_memory",
|
||||
return_value=fake_active,
|
||||
),
|
||||
patch(
|
||||
"exo.worker.engines.mlx.cache.mx.metal.device_info",
|
||||
return_value={"max_recommended_working_set_size": fake_limit},
|
||||
),
|
||||
):
|
||||
# Trigger eviction by adding a new entry
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="New entry")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
# LRU entries should have been evicted (entries 0, 1, 2 in order of _last_used)
|
||||
# Since fake_active stays above threshold after each eviction (we don't change it),
|
||||
# all old entries get evicted, leaving only the newly added one
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
# The surviving entry should be the newly added one
|
||||
new_tokens = encode_prompt(tokenizer, prompt)
|
||||
assert _get_prefix_length(kv_prefix_cache.prompts[0], new_tokens) == len(
|
||||
new_tokens
|
||||
)
|
||||
Reference in New Issue
Block a user