Compare commits

...

7 Commits

Author SHA1 Message Date
Evan
92b24196c3 wrrg 2026-01-20 11:14:20 +00:00
Evan
3bf7770988 add model cards 2026-01-20 10:56:29 +00:00
Evan
8392463a70 introduce resources folder 2026-01-20 10:56:29 +00:00
Evan
9c1f6224b0 Merge branch 'main' into simplify-model-cards 2026-01-20 10:56:29 +00:00
Evan
f370dbd1e0 Merge branch 'main' into simplify-model-cards
merge fix
2026-01-20 10:56:17 +00:00
rltakashige
6a38f9efba Merge branch 'main' into simplify-model-cards 2026-01-19 17:43:59 +00:00
Evan
0475de6431 wuff 2026-01-19 17:07:03 +00:00
68 changed files with 702 additions and 879 deletions

View File

@@ -434,8 +434,8 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const shardData = shardObj[shardKeys[0]] as Record<string, unknown>;
if (!shardData) return null;
// Model meta is nested: shard.model_meta.model_id
const modelMeta = shardData.model_meta ?? shardData.modelMeta;
// Model meta is nested: shard.model_card.model_id
const modelMeta = shardData.model_card ?? shardData.modelCard;
if (!modelMeta || typeof modelMeta !== 'object') return null;
const meta = modelMeta as Record<string, unknown>;

View File

@@ -98,7 +98,7 @@
const shardData = shardObj[shardKeys[0]] as Record<string, unknown>;
if (!shardData) return null;
const modelMeta = shardData.model_meta ?? shardData.modelMeta;
const modelMeta = shardData.model_card ?? shardData.modelCard;
if (!modelMeta || typeof modelMeta !== 'object') return null;
const meta = modelMeta as Record<string, unknown>;
@@ -190,7 +190,7 @@
const shardKeys = Object.keys(shardObj);
if (shardKeys.length !== 1) return null;
const shardData = shardObj[shardKeys[0]] as Record<string, unknown>;
const modelMeta = shardData?.model_meta ?? shardData?.modelMeta;
const modelMeta = shardData?.model_card ?? shardData?.modelCard;
if (!modelMeta || typeof modelMeta !== 'object') return null;
const meta = modelMeta as Record<string, unknown>;
return (meta.prettyName as string) ?? null;

View File

@@ -10,6 +10,7 @@ PROJECT_ROOT = Path.cwd()
SOURCE_ROOT = PROJECT_ROOT / "src"
ENTRYPOINT = SOURCE_ROOT / "exo" / "__main__.py"
DASHBOARD_DIR = PROJECT_ROOT / "dashboard" / "build"
RESOURCES_DIR = PROJECT_ROOT / "resources"
EXO_SHARED_MODELS_DIR = SOURCE_ROOT / "exo" / "shared" / "models"
if not ENTRYPOINT.is_file():
@@ -18,6 +19,9 @@ if not ENTRYPOINT.is_file():
if not DASHBOARD_DIR.is_dir():
raise SystemExit(f"Dashboard assets are missing: {DASHBOARD_DIR}")
if not RESOURCES_DIR.is_dir():
raise SystemExit(f"Resources are missing: {RESOURCES_DIR}")
if not EXO_SHARED_MODELS_DIR.is_dir():
raise SystemExit(f"Shared model assets are missing: {EXO_SHARED_MODELS_DIR}")
@@ -58,6 +62,7 @@ HIDDEN_IMPORTS = sorted(
DATAS: list[tuple[str, str]] = [
(str(DASHBOARD_DIR), "dashboard"),
(str(RESOURCES_DIR), "resources"),
(str(MLX_LIB_DIR), "mlx/lib"),
(str(EXO_SHARED_MODELS_DIR), "exo/shared/models"),
]

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/DeepSeek-V3.1-4bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 405874409472

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/DeepSeek-V3.1-8bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 765577920512

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.5-Air-8bit"
n_layers = 46
hidden_size = 4096
supports_tensor = false
[storage_size]
in_bytes = 122406567936

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.5-Air-bf16"
n_layers = 46
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 229780750336

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.7-4bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[storage_size]
in_bytes = 198556925568

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.7-6bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[storage_size]
in_bytes = 286737579648

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.7-8bit-gs32"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[storage_size]
in_bytes = 396963397248

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 620622774272

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Kimi-K2-Thinking"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 706522120192

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
n_layers = 16
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 729808896

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
n_layers = 28
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 1863319552

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
n_layers = 28
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 3501195264

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 40652242944

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 76799803392

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 40652242944

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 4637851648

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 8954839040

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 16882073600

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/MiniMax-M2.1-3bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 100086644736

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/MiniMax-M2.1-8bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 242986745856

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-0.6B-4bit"
n_layers = 28
hidden_size = 1024
supports_tensor = false
[storage_size]
in_bytes = 342884352

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-0.6B-8bit"
n_layers = 28
hidden_size = 1024
supports_tensor = false
[storage_size]
in_bytes = 698351616

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
n_layers = 94
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 141733920768

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
n_layers = 94
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 268435456000

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 17612931072

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 33279705088

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
n_layers = 62
hidden_size = 6144
supports_tensor = true
[storage_size]
in_bytes = 289910292480

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
n_layers = 62
hidden_size = 6144
supports_tensor = true
[storage_size]
in_bytes = 579820584960

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 46976204800

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
n_layers = 36
hidden_size = 2880
supports_tensor = true
[storage_size]
in_bytes = 70652212224

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q8"
n_layers = 24
hidden_size = 2880
supports_tensor = true
[storage_size]
in_bytes = 12025908224

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 144383672320

View File

@@ -1,5 +1,6 @@
import time
from collections.abc import AsyncGenerator
from dataclasses import dataclass, field
from http import HTTPStatus
from typing import cast
@@ -19,8 +20,7 @@ from exo.master.placement import place_instance as get_instance_placements
from exo.shared.apply import apply
from exo.shared.election import ElectionMessage
from exo.shared.logging import InterceptLogger
from exo.shared.models.model_cards import MODEL_CARDS
from exo.shared.models.model_meta import get_model_meta
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
from exo.shared.types.api import (
BenchChatCompletionResponse,
BenchChatCompletionTaskParams,
@@ -59,14 +59,13 @@ from exo.shared.types.events import (
IndexedEvent,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.state import State
from exo.shared.types.tasks import ChatCompletionTaskParams
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
from exo.utils.banner import print_startup_banner
from exo.utils.channels import Receiver, Sender, channel
from exo.utils.dashboard_path import find_dashboard
from exo.utils.dashboard_path import RuntimeResources, find_directory
from exo.utils.event_buffer import OrderedBuffer
@@ -87,57 +86,52 @@ def chunk_to_response(
)
async def resolve_model_meta(model_id: str) -> ModelMetadata:
if model_id in MODEL_CARDS:
model_card = MODEL_CARDS[model_id]
return model_card.metadata
else:
return await get_model_meta(model_id)
@dataclass(eq=False)
class API:
def __init__(
self,
node_id: NodeId
session_id: SessionId
port: int
app: FastAPI
global_event_receiver: Receiver[ForwarderEvent]
command_sender: Sender[ForwarderCommand]
election_receiver: Receiver[ElectionMessage]
state = field(init=False, default_factory=State)
_event_log: list[Event] = field(init=False, default_factory=list)
event_buffer: OrderedBuffer[Event] = field(init=False, default_factory=OrderedBuffer)
_chat_completion_queues: dict[CommandId, Sender[TokenChunk]] = field(init=False, default_factory=dict)
_tg: TaskGroup = field(init=False, default_factory=create_task_group)
last_completed_election: int = field(init=False, default=0)
paused: bool = field(init=False, default = False)
paused_ev: anyio.Event = field(init=False, default_factory=anyio.Event)
@classmethod
async def create(
cls,
node_id: NodeId,
session_id: SessionId,
*,
port: int,
# Ideally this would be a MasterForwarderEvent but type system says no :(
global_event_receiver: Receiver[ForwarderEvent],
command_sender: Sender[ForwarderCommand],
# This lets us pause the API if an election is running
election_receiver: Receiver[ElectionMessage],
) -> None:
self.state = State()
self._event_log: list[Event] = []
self.command_sender = command_sender
self.global_event_receiver = global_event_receiver
self.election_receiver = election_receiver
self.event_buffer: OrderedBuffer[Event] = OrderedBuffer[Event]()
self.node_id: NodeId = node_id
self.session_id: SessionId = session_id
self.last_completed_election: int = 0
self.port = port
self.paused: bool = False
self.paused_ev: anyio.Event = anyio.Event()
self.app = FastAPI()
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
self.app.mount(
app = FastAPI()
app.mount(
"/",
StaticFiles(
directory=find_dashboard(),
directory=await find_directory(RuntimeResources.Dashboard),
html=True,
),
name="dashboard",
)
self._chat_completion_queues: dict[CommandId, Sender[TokenChunk]] = {}
self._tg: TaskGroup | None = None
cls(node_id, session_id, port, app, global_event_receiver, command_sender, election_receiver)
def __post_init__(self) -> None:
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
def reset(self, new_session_id: SessionId, result_clock: int):
logger.info("Resetting API State")
@@ -197,7 +191,7 @@ class API:
async def place_instance(self, payload: PlaceInstanceParams):
command = PlaceInstance(
model_meta=await resolve_model_meta(payload.model_id),
model_card=await resolve_model_card(payload.model_id),
sharding=payload.sharding,
instance_meta=payload.instance_meta,
min_nodes=payload.min_nodes,
@@ -207,15 +201,15 @@ class API:
return CreateInstanceResponse(
message="Command received.",
command_id=command.command_id,
model_meta=command.model_meta,
model_card=command.model_card,
)
async def create_instance(
self, payload: CreateInstanceParams
) -> CreateInstanceResponse:
instance = payload.instance
model_meta = await resolve_model_meta(instance.shard_assignments.model_id)
required_memory = model_meta.storage_size
model_card = await ModelCard.from_hf(instance.shard_assignments.model_id)
required_memory = model_card.storage_size
available_memory = self._calculate_total_available_memory()
if required_memory > available_memory:
@@ -232,7 +226,7 @@ class API:
return CreateInstanceResponse(
message="Command received.",
command_id=command.command_id,
model_meta=model_meta,
model_card=model_card,
)
async def get_placement(
@@ -242,12 +236,12 @@ class API:
instance_meta: InstanceMeta = InstanceMeta.MlxRing,
min_nodes: int = 1,
) -> Instance:
model_meta = await resolve_model_meta(model_id)
model_card = await resolve_model_card(model_id)
try:
placements = get_instance_placements(
PlaceInstance(
model_meta=model_meta,
model_card=model_card,
sharding=sharding,
instance_meta=instance_meta,
min_nodes=min_nodes,
@@ -280,7 +274,7 @@ class API:
if len(list(self.state.topology.list_nodes())) == 0:
return PlacementPreviewResponse(previews=[])
cards = [card for card in MODEL_CARDS.values() if card.short_id == model_id]
cards = [card for card in await get_model_cards() if card.short_id == model_id]
if not cards:
raise HTTPException(status_code=404, detail=f"Model {model_id} not found")
@@ -298,13 +292,12 @@ class API:
# TODO: PDD
# instance_combinations.append((Sharding.PrefillDecodeDisaggregation, InstanceMeta.MlxRing, 1))
for card in cards:
model_meta = card.metadata
for model_card in cards:
for sharding, instance_meta, min_nodes in instance_combinations:
try:
placements = get_instance_placements(
PlaceInstance(
model_meta=model_meta,
model_card=model_card,
sharding=sharding,
instance_meta=instance_meta,
min_nodes=min_nodes,
@@ -315,17 +308,17 @@ class API:
current_instances=self.state.instances,
)
except ValueError as exc:
if (card.model_id, sharding, instance_meta, 0) not in seen:
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
previews.append(
PlacementPreview(
model_id=card.model_id,
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=None,
error=str(exc),
)
)
seen.add((card.model_id, sharding, instance_meta, 0))
seen.add((model_card.model_id, sharding, instance_meta, 0))
continue
current_ids = set(self.state.instances.keys())
@@ -336,17 +329,17 @@ class API:
]
if len(new_instances) != 1:
if (card.model_id, sharding, instance_meta, 0) not in seen:
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
previews.append(
PlacementPreview(
model_id=card.model_id,
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=None,
error="Expected exactly one new instance from placement",
)
)
seen.add((card.model_id, sharding, instance_meta, 0))
seen.add((model_card.model_id, sharding, instance_meta, 0))
continue
instance = new_instances[0]
@@ -355,7 +348,7 @@ class API:
memory_delta_by_node: dict[str, int] = {}
if node_ids:
total_bytes = model_meta.storage_size.in_bytes
total_bytes = model_card.storage_size.in_bytes
per_node = total_bytes // len(node_ids)
remainder = total_bytes % len(node_ids)
for index, node_id in enumerate(sorted(node_ids, key=str)):
@@ -363,14 +356,14 @@ class API:
memory_delta_by_node[str(node_id)] = per_node + extra
if (
card.model_id,
model_card.model_id,
sharding,
instance_meta,
len(node_ids),
) not in seen:
previews.append(
PlacementPreview(
model_id=card.model_id,
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=instance,
@@ -378,7 +371,7 @@ class API:
error=None,
)
)
seen.add((card.model_id, sharding, instance_meta, len(node_ids)))
seen.add((model_card.model_id, sharding, instance_meta, len(node_ids)))
return PlacementPreviewResponse(previews=previews)
@@ -553,8 +546,8 @@ class API:
self, payload: ChatCompletionTaskParams
) -> ChatCompletionResponse | StreamingResponse:
"""Handle chat completions, supporting both streaming and non-streaming responses."""
model_meta = await resolve_model_meta(payload.model)
payload.model = model_meta.model_id
model_card = await resolve_model_card(payload.model)
payload.model = model_card.model_id
if not any(
instance.shard_assignments.model_id == payload.model
@@ -580,8 +573,8 @@ class API:
async def bench_chat_completions(
self, payload: BenchChatCompletionTaskParams
) -> BenchChatCompletionResponse:
model_meta = await resolve_model_meta(payload.model)
payload.model = model_meta.model_id
model_card = await resolve_model_card(payload.model)
payload.model = model_card.model_id
if not any(
instance.shard_assignments.model_id == payload.model
@@ -614,15 +607,15 @@ class API:
return ModelList(
data=[
ModelListModel(
id=card.short_id,
id=card.model_id,
hugging_face_id=card.model_id,
name=card.name,
description=card.description,
tags=card.tags,
storage_size_megabytes=int(card.metadata.storage_size.in_mb),
supports_tensor=card.metadata.supports_tensor,
name=card.model_id.short(),
description="",
tags=[],
storage_size_megabytes=int(card.storage_size.in_mb),
supports_tensor=card.supports_tensor,
)
for card in MODEL_CARDS.values()
for card in model_cards()
]
)

View File

@@ -14,6 +14,7 @@ from exo.master.placement_utils import (
get_shard_assignments,
get_smallest_cycles,
)
from exo.shared.models.model_cards import ModelId
from exo.shared.topology import Topology
from exo.shared.types.commands import (
CreateInstance,
@@ -23,7 +24,6 @@ from exo.shared.types.commands import (
from exo.shared.types.common import NodeId
from exo.shared.types.events import Event, InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId
from exo.shared.types.profiling import MemoryUsage, NodeNetworkInfo
from exo.shared.types.worker.instances import (
Instance,
@@ -60,27 +60,27 @@ def place_instance(
cycles = topology.get_cycles()
candidate_cycles = list(filter(lambda it: len(it) >= command.min_nodes, cycles))
cycles_with_sufficient_memory = filter_cycles_by_memory(
candidate_cycles, node_memory, command.model_meta.storage_size
candidate_cycles, node_memory, command.model_card.storage_size
)
if len(cycles_with_sufficient_memory) == 0:
raise ValueError("No cycles found with sufficient memory")
if command.sharding == Sharding.Tensor:
if not command.model_meta.supports_tensor:
if not command.model_card.supports_tensor:
raise ValueError(
f"Requested Tensor sharding but this model does not support tensor parallelism: {command.model_meta.model_id}"
f"Requested Tensor sharding but this model does not support tensor parallelism: {command.model_card.model_id}"
)
# TODO: the condition here for tensor parallel is not correct, but it works good enough for now.
cycles_with_sufficient_memory = [
cycle
for cycle in cycles_with_sufficient_memory
if command.model_meta.hidden_size % len(cycle) == 0
if command.model_card.hidden_size % len(cycle) == 0
]
if not cycles_with_sufficient_memory:
raise ValueError(
f"No tensor sharding found for model with hidden_size {command.model_meta.hidden_size} candidate cycles"
f"No tensor sharding found for model with hidden_size {command.model_card.hidden_size} candidate cycles"
)
if command.sharding == Sharding.Pipeline and command.model_meta.model_id == ModelId(
if command.sharding == Sharding.Pipeline and command.model_card.model_id == ModelId(
"mlx-community/DeepSeek-V3.1-8bit"
):
raise ValueError(
@@ -111,7 +111,7 @@ def place_instance(
)
shard_assignments = get_shard_assignments(
command.model_meta, selected_cycle, command.sharding, node_memory
command.model_card, selected_cycle, command.sharding, node_memory
)
cycle_digraph: Topology = topology.get_subgraph_from_nodes(selected_cycle.node_ids)

View File

@@ -2,10 +2,10 @@ from collections.abc import Generator, Mapping
from loguru import logger
from exo.shared.models.model_cards import ModelCard
from exo.shared.topology import Topology
from exo.shared.types.common import Host, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelMetadata
from exo.shared.types.profiling import MemoryUsage, NodeNetworkInfo
from exo.shared.types.topology import Cycle, RDMAConnection, SocketConnection
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
@@ -75,7 +75,7 @@ def allocate_layers_proportionally(
def get_shard_assignments_for_pipeline_parallel(
model_meta: ModelMetadata,
model_card: ModelCard,
cycle: Cycle,
node_memory: Mapping[NodeId, MemoryUsage],
):
@@ -86,11 +86,10 @@ def get_shard_assignments_for_pipeline_parallel(
(node_memory[node_id].ram_available for node_id in cycle.node_ids),
start=Memory(),
)
if cycle_memory.in_bytes == 0:
raise ValueError("Cannot create shard assignments: total available memory is 0")
total_layers = model_meta.n_layers
total_layers = model_card.n_layers
world_size = len(cycle)
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
node_to_runner: dict[NodeId, RunnerId] = {}
@@ -104,7 +103,7 @@ def get_shard_assignments_for_pipeline_parallel(
)
# Validate each node has sufficient memory for its assigned layers
memory_per_layer = model_meta.storage_size.in_bytes / total_layers
memory_per_layer = model_card.storage_size.in_bytes / total_layers
for i, (node_id, node_layers) in enumerate(
zip(cycle.node_ids, layer_allocations, strict=True)
):
@@ -124,7 +123,7 @@ def get_shard_assignments_for_pipeline_parallel(
runner_id = RunnerId()
shard = PipelineShardMetadata(
model_meta=model_meta,
model_card=model_card,
device_rank=i,
world_size=world_size,
start_layer=layers_assigned,
@@ -137,7 +136,7 @@ def get_shard_assignments_for_pipeline_parallel(
layers_assigned += node_layers
shard_assignments = ShardAssignments(
model_id=model_meta.model_id,
model_id=model_card.model_id,
runner_to_shard=runner_to_shard,
node_to_runner=node_to_runner,
)
@@ -146,17 +145,17 @@ def get_shard_assignments_for_pipeline_parallel(
def get_shard_assignments_for_tensor_parallel(
model_meta: ModelMetadata,
model_card: ModelCard,
cycle: Cycle,
):
total_layers = model_meta.n_layers
total_layers = model_card.n_layers
world_size = len(cycle)
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
node_to_runner: dict[NodeId, RunnerId] = {}
for i, node_id in enumerate(cycle):
shard = TensorShardMetadata(
model_meta=model_meta,
model_card=model_card,
device_rank=i,
world_size=world_size,
start_layer=0,
@@ -170,7 +169,7 @@ def get_shard_assignments_for_tensor_parallel(
node_to_runner[node_id] = runner_id
shard_assignments = ShardAssignments(
model_id=model_meta.model_id,
model_id=model_card.model_id,
runner_to_shard=runner_to_shard,
node_to_runner=node_to_runner,
)
@@ -179,7 +178,7 @@ def get_shard_assignments_for_tensor_parallel(
def get_shard_assignments(
model_meta: ModelMetadata,
model_card: ModelCard,
cycle: Cycle,
sharding: Sharding,
node_memory: Mapping[NodeId, MemoryUsage],
@@ -187,13 +186,13 @@ def get_shard_assignments(
match sharding:
case Sharding.Pipeline:
return get_shard_assignments_for_pipeline_parallel(
model_meta=model_meta,
model_card=model_card,
cycle=cycle,
node_memory=node_memory,
)
case Sharding.Tensor:
return get_shard_assignments_for_tensor_parallel(
model_meta=model_meta,
model_card=model_card,
cycle=cycle,
)

View File

@@ -7,6 +7,7 @@ from loguru import logger
from exo.master.main import Master
from exo.routing.router import get_node_id_keypair
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
from exo.shared.types.commands import (
ChatCompletion,
@@ -23,7 +24,6 @@ from exo.shared.types.events import (
TaskCreated,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import (
MemoryUsage,
)
@@ -109,9 +109,8 @@ async def test_master():
command=(
PlaceInstance(
command_id=CommandId(),
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=ModelId("llama-3.2-1b"),
pretty_name="Llama 3.2 1B",
n_layers=16,
storage_size=Memory.from_bytes(678948),
hidden_size=7168,
@@ -167,9 +166,8 @@ async def test_master():
start_layer=0,
end_layer=16,
n_layers=16,
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=ModelId("llama-3.2-1b"),
pretty_name="Llama 3.2 1B",
n_layers=16,
storage_size=Memory.from_bytes(678948),
hidden_size=7168,

View File

@@ -10,12 +10,12 @@ from exo.master.tests.conftest import (
create_rdma_connection,
create_socket_connection,
)
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.topology import Topology
from exo.shared.types.commands import PlaceInstance
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.events import InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import NetworkInterfaceInfo, NodeNetworkInfo
from exo.shared.types.topology import Connection, SocketConnection
@@ -43,21 +43,20 @@ def instance() -> Instance:
@pytest.fixture
def model_meta() -> ModelMetadata:
return ModelMetadata(
def model_card() -> ModelCard:
return ModelCard(
model_id=ModelId("test-model"),
storage_size=Memory.from_kb(1000),
pretty_name="Test Model",
n_layers=10,
hidden_size=30,
supports_tensor=True,
)
def place_instance_command(model_meta: ModelMetadata) -> PlaceInstance:
def place_instance_command(model_card: ModelCard) -> PlaceInstance:
return PlaceInstance(
command_id=CommandId(),
model_meta=model_meta,
model_card=model_card,
sharding=Sharding.Pipeline,
instance_meta=InstanceMeta.MlxRing,
min_nodes=1,
@@ -76,16 +75,16 @@ def test_get_instance_placements_create_instance(
available_memory: tuple[int, int, int],
total_layers: int,
expected_layers: tuple[int, int, int],
model_meta: ModelMetadata,
model_card: ModelCard,
):
# arrange
model_meta.n_layers = total_layers
model_meta.storage_size.in_bytes = sum(
model_card.n_layers = total_layers
model_card.storage_size.in_bytes = sum(
available_memory
) # make it exactly fit across all nodes
topology = Topology()
cic = place_instance_command(model_meta)
cic = place_instance_command(model_card)
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
@@ -137,7 +136,7 @@ def test_get_instance_placements_create_instance(
assert len(placements) == 1
instance_id = list(placements.keys())[0]
instance = placements[instance_id]
assert instance.shard_assignments.model_id == model_meta.model_id
assert instance.shard_assignments.model_id == model_card.model_id
runner_id_a = instance.shard_assignments.node_to_runner[node_id_a]
runner_id_b = instance.shard_assignments.node_to_runner[node_id_b]
@@ -164,10 +163,9 @@ def test_get_instance_placements_one_node_exact_fit() -> None:
node_memory = {node_id: create_node_memory(1000 * 1024)}
node_network = {node_id: create_node_network()}
cic = place_instance_command(
ModelMetadata(
ModelCard(
model_id=ModelId("test-model"),
storage_size=Memory.from_kb(1000),
pretty_name="Test Model",
n_layers=10,
hidden_size=1000,
supports_tensor=True,
@@ -191,10 +189,9 @@ def test_get_instance_placements_one_node_fits_with_extra_memory() -> None:
node_memory = {node_id: create_node_memory(1001 * 1024)}
node_network = {node_id: create_node_network()}
cic = place_instance_command(
ModelMetadata(
ModelCard(
model_id=ModelId("test-model"),
storage_size=Memory.from_kb(1000),
pretty_name="Test Model",
n_layers=10,
hidden_size=1000,
supports_tensor=True,
@@ -218,10 +215,9 @@ def test_get_instance_placements_one_node_not_fit() -> None:
node_memory = {node_id: create_node_memory(1000 * 1024)}
node_network = {node_id: create_node_network()}
cic = place_instance_command(
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=ModelId("test-model"),
storage_size=Memory.from_kb(1001),
pretty_name="Test Model",
n_layers=10,
hidden_size=1000,
supports_tensor=True,
@@ -275,12 +271,14 @@ def test_get_transition_events_delete_instance(instance: Instance):
def test_placement_selects_leaf_nodes(
model_meta: ModelMetadata,
model_card: ModelCard,
):
# arrange
topology = Topology()
model_meta.storage_size = Memory.from_bytes(1000)
# Model requires more than any single node but fits within a 3-node cycle
model_card.storage_size.in_bytes = 1500
model_card.n_layers = 12
node_id_a = NodeId()
node_id_b = NodeId()
@@ -325,7 +323,7 @@ def test_placement_selects_leaf_nodes(
Connection(source=node_id_d, sink=node_id_c, edge=create_socket_connection(1))
)
cic = place_instance_command(model_meta=model_meta)
cic = place_instance_command(model_card=model_card)
# act
placements = place_instance(cic, topology, {}, node_memory, node_network)
@@ -344,12 +342,12 @@ def test_placement_selects_leaf_nodes(
def test_tensor_rdma_backend_connectivity_matrix(
model_meta: ModelMetadata,
model_card: ModelCard,
):
# arrange
topology = Topology()
model_meta.n_layers = 12
model_meta.storage_size.in_bytes = 1500
model_card.n_layers = 12
model_card.storage_size.in_bytes = 1500
node_a = NodeId()
node_b = NodeId()
@@ -411,7 +409,7 @@ def test_tensor_rdma_backend_connectivity_matrix(
sharding=Sharding.Tensor,
instance_meta=InstanceMeta.MlxJaccl,
command_id=CommandId(),
model_meta=model_meta,
model_card=model_card,
min_nodes=1,
)

View File

@@ -12,10 +12,10 @@ from exo.master.tests.conftest import (
create_node_memory,
create_socket_connection,
)
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.topology import Topology
from exo.shared.types.common import Host, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import (
NetworkInterfaceInfo,
NodeNetworkInfo,
@@ -232,9 +232,8 @@ def test_get_shard_assignments(
node_c_id: node_c_mem,
}
model_meta = ModelMetadata(
model_card = ModelCard(
model_id=ModelId("test-model"),
pretty_name="Test Model",
n_layers=total_layers,
storage_size=Memory.from_kb(1000),
hidden_size=1000,
@@ -248,7 +247,7 @@ def test_get_shard_assignments(
# act
shard_assignments = get_shard_assignments(
model_meta, selected_cycle, Sharding.Pipeline, node_memory=node_memory
model_card, selected_cycle, Sharding.Pipeline, node_memory=node_memory
)
# assert
@@ -512,9 +511,8 @@ def test_get_shard_assignments_insufficient_memory_raises():
node_c_id: node_c_mem,
}
model_meta = ModelMetadata(
model_card = ModelCard(
model_id=ModelId("test-model"),
pretty_name="Test Model",
n_layers=20,
storage_size=Memory.from_kb(1000),
hidden_size=1000,
@@ -525,5 +523,5 @@ def test_get_shard_assignments_insufficient_memory_raises():
with pytest.raises(ValueError, match="insufficient memory"):
get_shard_assignments(
model_meta, selected_cycle, Sharding.Pipeline, node_memory
model_card, selected_cycle, Sharding.Pipeline, node_memory
)

View File

@@ -1,613 +1,209 @@
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.utils.pydantic_ext import CamelCaseModel
from typing import Annotated
import aiofiles
import aiofiles.os as aios
import tomlkit
from anyio import Path, open_file
from huggingface_hub import model_info
from loguru import logger
from pydantic import BaseModel, Field, PositiveInt, ValidationError
from tomlkit.exceptions import TOMLKitError
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.common import Id
from exo.shared.types.memory import Memory
from exo.utils.dashboard_path import RuntimeResources, find_directory
from exo.utils.pydantic_ext import CamelCaseModel
from exo.worker.download.download_utils import (
ModelSafetensorsIndex,
download_file_with_retry,
ensure_models_dir,
)
class ModelId(Id):
def normalize(self) -> str:
return self.replace("/", "--")
def short(self) -> str:
return self.split("/")[-1]
_card_cache: dict[str, ModelCard] = {}
class ModelCard(CamelCaseModel):
short_id: str
model_id: ModelId
name: str
description: str
tags: list[str]
metadata: ModelMetadata
storage_size: Memory
n_layers: PositiveInt
hidden_size: PositiveInt
supports_tensor: bool
async def save(self, path: Path) -> None:
async with await open_file(path, "w") as f:
py = self.model_dump()
data = tomlkit.dumps(py) # pyright: ignore[reportUnknownMemberType]
await f.write(data)
async def save_to_default_path(self) -> None:
dir = await find_directory(RuntimeResources.Resources)
await self.save(dir / self.model_id.normalize())
@staticmethod
async def load_from_path(path: Path) -> ModelCard:
async with await open_file(path, "r") as f:
py = tomlkit.loads(await f.read())
return ModelCard.model_validate(py)
@staticmethod
async def load_from_default_path(model_id: ModelId) -> ModelCard:
return await ModelCard.load_from_path(await find_directory(RuntimeResources.Resources) / model_id.normalize())
@staticmethod
async def load(model_id: ModelId) -> ModelCard:
try:
return await ModelCard.load_from_default_path(model_id)
except (ValidationError, TOMLKitError, FileNotFoundError):
return await ModelCard.from_hf(model_id)
@staticmethod
async def from_hf(model_id: ModelId) -> ModelCard:
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
if (mc := _card_cache.get(model_id, None)) is not None:
return mc
config_data = await get_config_data(model_id)
num_layers = config_data.layer_count
mem_size_bytes = await get_safetensors_size(model_id)
mc = ModelCard(
model_id=ModelId(model_id),
storage_size=mem_size_bytes,
n_layers=num_layers,
hidden_size=config_data.hidden_size or 0,
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
supports_tensor=False,
)
_card_cache[model_id] = mc
return mc
# TODO: should we cache this? how do we check for changes
async def get_model_cards() -> list[ModelCard]:
dir = await find_directory(RuntimeResources.Resources)
cards: list[ModelCard] = []
async for file in dir.glob("*.toml"):
try:
cards.append(await ModelCard.load_from_path(file))
except (TOMLKitError, ValidationError):
continue
return cards
MODEL_CARDS: dict[str, ModelCard] = {
# deepseek v3
"deepseek-v3.1-4bit": ModelCard(
short_id="deepseek-v3.1-4bit",
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
name="DeepSeek V3.1 (4-bit)",
description="""DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
pretty_name="DeepSeek V3.1 (4-bit)",
storage_size=Memory.from_gb(378),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
"deepseek-v3.1-8bit": ModelCard(
short_id="deepseek-v3.1-8bit",
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
name="DeepSeek V3.1 (8-bit)",
description="""DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
pretty_name="DeepSeek V3.1 (8-bit)",
storage_size=Memory.from_gb(713),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
# kimi k2
"kimi-k2-instruct-4bit": ModelCard(
short_id="kimi-k2-instruct-4bit",
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
name="Kimi K2 Instruct (4-bit)",
description="""Kimi K2 is a large language model trained on the Kimi K2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
pretty_name="Kimi K2 Instruct (4-bit)",
storage_size=Memory.from_gb(578),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
"kimi-k2-thinking": ModelCard(
short_id="kimi-k2-thinking",
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
name="Kimi K2 Thinking (4-bit)",
description="""Kimi K2 Thinking is the latest, most capable version of open-source thinking model.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
pretty_name="Kimi K2 Thinking (4-bit)",
storage_size=Memory.from_gb(658),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
# llama-3.1
"llama-3.1-8b": ModelCard(
short_id="llama-3.1-8b",
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
name="Llama 3.1 8B (4-bit)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
pretty_name="Llama 3.1 8B (4-bit)",
storage_size=Memory.from_mb(4423),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
),
"llama-3.1-8b-8bit": ModelCard(
short_id="llama-3.1-8b-8bit",
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
name="Llama 3.1 8B (8-bit)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
pretty_name="Llama 3.1 8B (8-bit)",
storage_size=Memory.from_mb(8540),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
),
"llama-3.1-8b-bf16": ModelCard(
short_id="llama-3.1-8b-bf16",
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
name="Llama 3.1 8B (BF16)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
pretty_name="Llama 3.1 8B (BF16)",
storage_size=Memory.from_mb(16100),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
),
"llama-3.1-70b": ModelCard(
short_id="llama-3.1-70b",
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
name="Llama 3.1 70B (4-bit)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
pretty_name="Llama 3.1 70B (4-bit)",
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
# llama-3.2
"llama-3.2-1b": ModelCard(
short_id="llama-3.2-1b",
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
name="Llama 3.2 1B (4-bit)",
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
pretty_name="Llama 3.2 1B (4-bit)",
storage_size=Memory.from_mb(696),
n_layers=16,
hidden_size=2048,
supports_tensor=True,
),
),
"llama-3.2-3b": ModelCard(
short_id="llama-3.2-3b",
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
name="Llama 3.2 3B (4-bit)",
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
pretty_name="Llama 3.2 3B (4-bit)",
storage_size=Memory.from_mb(1777),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
),
),
"llama-3.2-3b-8bit": ModelCard(
short_id="llama-3.2-3b-8bit",
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
name="Llama 3.2 3B (8-bit)",
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
pretty_name="Llama 3.2 3B (8-bit)",
storage_size=Memory.from_mb(3339),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
),
),
# llama-3.3
"llama-3.3-70b": ModelCard(
short_id="llama-3.3-70b",
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
name="Llama 3.3 70B (4-bit)",
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
pretty_name="Llama 3.3 70B",
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
"llama-3.3-70b-8bit": ModelCard(
short_id="llama-3.3-70b-8bit",
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
name="Llama 3.3 70B (8-bit)",
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
pretty_name="Llama 3.3 70B (8-bit)",
storage_size=Memory.from_mb(73242),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
"llama-3.3-70b-fp16": ModelCard(
short_id="llama-3.3-70b-fp16",
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
name="Llama 3.3 70B (FP16)",
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
pretty_name="Llama 3.3 70B (FP16)",
storage_size=Memory.from_mb(137695),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
# qwen3
"qwen3-0.6b": ModelCard(
short_id="qwen3-0.6b",
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
name="Qwen3 0.6B (4-bit)",
description="""Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
pretty_name="Qwen3 0.6B (4-bit)",
storage_size=Memory.from_mb(327),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
),
),
"qwen3-0.6b-8bit": ModelCard(
short_id="qwen3-0.6b-8bit",
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
name="Qwen3 0.6B (8-bit)",
description="""Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
pretty_name="Qwen3 0.6B (8-bit)",
storage_size=Memory.from_mb(666),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
),
),
"qwen3-30b": ModelCard(
short_id="qwen3-30b",
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
name="Qwen3 30B A3B (4-bit)",
description="""Qwen3 30B is a large language model trained on the Qwen3 30B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
pretty_name="Qwen3 30B A3B (4-bit)",
storage_size=Memory.from_mb(16797),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-30b-8bit": ModelCard(
short_id="qwen3-30b-8bit",
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
name="Qwen3 30B A3B (8-bit)",
description="""Qwen3 30B is a large language model trained on the Qwen3 30B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
pretty_name="Qwen3 30B A3B (8-bit)",
storage_size=Memory.from_mb(31738),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-4bit": ModelCard(
short_id="qwen3-80b-a3B-4bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
name="Qwen3 80B A3B (4-bit)",
description="""Qwen3 80B""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
pretty_name="Qwen3 80B A3B (4-bit)",
storage_size=Memory.from_mb(44800),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-8bit": ModelCard(
short_id="qwen3-80b-a3B-8bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
name="Qwen3 80B A3B (8-bit)",
description="""Qwen3 80B""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
pretty_name="Qwen3 80B A3B (8-bit)",
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-thinking-4bit": ModelCard(
short_id="qwen3-80b-a3B-thinking-4bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
name="Qwen3 80B A3B Thinking (4-bit)",
description="""Qwen3 80B Reasoning model""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
pretty_name="Qwen3 80B A3B (4-bit)",
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-thinking-8bit": ModelCard(
short_id="qwen3-80b-a3B-thinking-8bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
name="Qwen3 80B A3B Thinking (8-bit)",
description="""Qwen3 80B Reasoning model""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
pretty_name="Qwen3 80B A3B (8-bit)",
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-235b-a22b-4bit": ModelCard(
short_id="qwen3-235b-a22b-4bit",
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
name="Qwen3 235B A22B (4-bit)",
description="""Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
pretty_name="Qwen3 235B A22B (4-bit)",
storage_size=Memory.from_gb(132),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
),
),
"qwen3-235b-a22b-8bit": ModelCard(
short_id="qwen3-235b-a22b-8bit",
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
name="Qwen3 235B A22B (8-bit)",
description="""Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
pretty_name="Qwen3 235B A22B (8-bit)",
storage_size=Memory.from_gb(250),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
),
),
"qwen3-coder-480b-a35b-4bit": ModelCard(
short_id="qwen3-coder-480b-a35b-4bit",
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
name="Qwen3 Coder 480B A35B (4-bit)",
description="""Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
pretty_name="Qwen3 Coder 480B A35B (4-bit)",
storage_size=Memory.from_gb(270),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
),
),
"qwen3-coder-480b-a35b-8bit": ModelCard(
short_id="qwen3-coder-480b-a35b-8bit",
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
name="Qwen3 Coder 480B A35B (8-bit)",
description="""Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
pretty_name="Qwen3 Coder 480B A35B (8-bit)",
storage_size=Memory.from_gb(540),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
),
),
# gpt-oss
"gpt-oss-120b-MXFP4-Q8": ModelCard(
short_id="gpt-oss-120b-MXFP4-Q8",
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
name="GPT-OSS 120B (MXFP4-Q8, MLX)",
description="""OpenAI's GPT-OSS 120B is a 117B-parameter Mixture-of-Experts model designed for high-reasoning and general-purpose use; this variant is a 4-bit MLX conversion for Apple Silicon.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
pretty_name="GPT-OSS 120B (MXFP4-Q8, MLX)",
storage_size=Memory.from_kb(68_996_301),
n_layers=36,
hidden_size=2880,
supports_tensor=True,
),
),
"gpt-oss-20b-MXFP4-Q8": ModelCard(
short_id="gpt-oss-20b-MXFP4-Q8",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
name="GPT-OSS 20B (MXFP4-Q8, MLX)",
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this variant is a 4-bit MLX conversion for Apple Silicon.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
pretty_name="GPT-OSS 20B (MXFP4-Q8, MLX)",
storage_size=Memory.from_kb(11_744_051),
n_layers=24,
hidden_size=2880,
supports_tensor=True,
),
),
# glm 4.5
"glm-4.5-air-8bit": ModelCard(
# Needs to be quantized g32 or g16 to work with tensor parallel
short_id="glm-4.5-air-8bit",
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
name="GLM 4.5 Air 8bit",
description="""GLM 4.5 Air 8bit""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
pretty_name="GLM 4.5 Air 8bit",
storage_size=Memory.from_gb(114),
n_layers=46,
hidden_size=4096,
supports_tensor=False,
),
),
"glm-4.5-air-bf16": ModelCard(
short_id="glm-4.5-air-bf16",
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
name="GLM 4.5 Air bf16",
description="""GLM 4.5 Air bf16""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
pretty_name="GLM 4.5 Air bf16",
storage_size=Memory.from_gb(214),
n_layers=46,
hidden_size=4096,
supports_tensor=True,
),
),
# glm 4.7
"glm-4.7-4bit": ModelCard(
short_id="glm-4.7-4bit",
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
name="GLM 4.7 4bit",
description="GLM 4.7 4bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
pretty_name="GLM 4.7 4bit",
storage_size=Memory.from_bytes(198556925568),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
"glm-4.7-6bit": ModelCard(
short_id="glm-4.7-6bit",
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
name="GLM 4.7 6bit",
description="GLM 4.7 6bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
pretty_name="GLM 4.7 6bit",
storage_size=Memory.from_bytes(286737579648),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
"glm-4.7-8bit-gs32": ModelCard(
short_id="glm-4.7-8bit-gs32",
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
name="GLM 4.7 8bit (gs32)",
description="GLM 4.7 8bit (gs32)",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
pretty_name="GLM 4.7 8bit (gs32)",
storage_size=Memory.from_bytes(396963397248),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
# glm 4.7 flash
"glm-4.7-flash-4bit": ModelCard(
short_id="glm-4.7-flash-4bit",
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
name="GLM 4.7 Flash 4bit",
description="GLM 4.7 Flash 4bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
pretty_name="GLM 4.7 Flash 4bit",
storage_size=Memory.from_gb(18),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
storage_size=Memory.from_gb(18),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
"glm-4.7-flash-5bit": ModelCard(
short_id="glm-4.7-flash-5bit",
model_id=ModelId("mlx-community/GLM-4.7-Flash-5bit"),
name="GLM 4.7 Flash 5bit",
description="GLM 4.7 Flash 5bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-Flash-5bit"),
pretty_name="GLM 4.7 Flash 5bit",
storage_size=Memory.from_gb(21),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
storage_size=Memory.from_gb(21),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
"glm-4.7-flash-6bit": ModelCard(
short_id="glm-4.7-flash-6bit",
model_id=ModelId("mlx-community/GLM-4.7-Flash-6bit"),
name="GLM 4.7 Flash 6bit",
description="GLM 4.7 Flash 6bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-Flash-6bit"),
pretty_name="GLM 4.7 Flash 6bit",
storage_size=Memory.from_gb(25),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
storage_size=Memory.from_gb(25),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
"glm-4.7-flash-8bit": ModelCard(
short_id="glm-4.7-flash-8bit",
model_id=ModelId("mlx-community/GLM-4.7-Flash-8bit"),
name="GLM 4.7 Flash 8bit",
description="GLM 4.7 Flash 8bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-Flash-8bit"),
pretty_name="GLM 4.7 Flash 8bit",
storage_size=Memory.from_gb(32),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
),
# minimax-m2
"minimax-m2.1-8bit": ModelCard(
short_id="minimax-m2.1-8bit",
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
name="MiniMax M2.1 8bit",
description="MiniMax M2.1 8bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
pretty_name="MiniMax M2.1 8bit",
storage_size=Memory.from_bytes(242986745856),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
),
"minimax-m2.1-3bit": ModelCard(
short_id="minimax-m2.1-3bit",
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
name="MiniMax M2.1 3bit",
description="MiniMax M2.1 3bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
pretty_name="MiniMax M2.1 3bit",
storage_size=Memory.from_bytes(100086644736),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
storage_size=Memory.from_gb(32),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
),
}
class ConfigData(BaseModel):
model_config = {"extra": "ignore"} # Allow unknown fields
# Common field names for number of layers across different architectures
num_hidden_layers: Annotated[int, Field(ge=0)] | None = None
num_layers: Annotated[int, Field(ge=0)] | None = None
n_layer: Annotated[int, Field(ge=0)] | None = None
n_layers: Annotated[int, Field(ge=0)] | None = None # Sometimes used
num_decoder_layers: Annotated[int, Field(ge=0)] | None = None # Transformer models
decoder_layers: Annotated[int, Field(ge=0)] | None = None # Some architectures
hidden_size: Annotated[int, Field(ge=0)] | None = None
@property
def layer_count(self) -> int:
# Check common field names for layer count
layer_fields = [
self.num_hidden_layers,
self.num_layers,
self.n_layer,
self.n_layers,
self.num_decoder_layers,
self.decoder_layers,
]
for layer_count in layer_fields:
if layer_count is not None:
return layer_count
raise ValueError(
f"No layer count found in config.json: {self.model_dump_json()}"
)
async def get_config_data(model_id: ModelId) -> ConfigData:
"""Downloads and parses config.json for a model."""
target_dir = (await ensure_models_dir()) / model_id.normalize()
await aios.makedirs(target_dir, exist_ok=True)
config_path = await download_file_with_retry(
str(model_id),
"main",
"config.json",
target_dir,
lambda curr_bytes, total_bytes, is_renamed: logger.info(
f"Downloading config.json for {model_id}: {curr_bytes}/{total_bytes} ({is_renamed=})"
),
)
async with aiofiles.open(config_path, "r") as f:
return ConfigData.model_validate_json(await f.read())
async def get_safetensors_size(model_id: ModelId) -> Memory:
"""Gets model size from safetensors index or falls back to HF API."""
target_dir = (await ensure_models_dir()) / model_id.normalize()
await aios.makedirs(target_dir, exist_ok=True)
index_path = await download_file_with_retry(
str(model_id),
"main",
"model.safetensors.index.json",
target_dir,
lambda curr_bytes, total_bytes, is_renamed: logger.info(
f"Downloading model.safetensors.index.json for {model_id}: {curr_bytes}/{total_bytes} ({is_renamed=})"
),
)
async with aiofiles.open(index_path, "r") as f:
index_data = ModelSafetensorsIndex.model_validate_json(await f.read())
metadata = index_data.metadata
if metadata is not None:
return Memory.from_bytes(metadata.total_size)
info = model_info(model_id)
if info.safetensors is None:
raise ValueError(f"No safetensors info found for {model_id}")
return Memory.from_bytes(info.safetensors.total)

View File

@@ -6,9 +6,8 @@ from huggingface_hub import model_info
from loguru import logger
from pydantic import BaseModel, Field
from exo.shared.models.model_cards import MODEL_CARDS
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.worker.download.download_utils import (
ModelSafetensorsIndex,
download_file_with_retry,
@@ -91,36 +90,23 @@ async def get_safetensors_size(model_id: str) -> Memory:
raise ValueError(f"No safetensors info found for {model_id}")
return Memory.from_bytes(info.safetensors.total)
_model_card_cache: dict[str, ModelCard] = {}
_model_meta_cache: dict[str, ModelMetadata] = {}
async def get_model_meta(model_id: str) -> ModelMetadata:
if model_id in _model_meta_cache:
return _model_meta_cache[model_id]
model_meta = await _get_model_meta(model_id)
_model_meta_cache[model_id] = model_meta
return model_meta
async def _get_model_meta(model_id: str) -> ModelMetadata:
async def get_model_card(model_id: str) -> ModelCard:
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
if model_id in _model_card_cache:
return _model_card_cache[model_id]
config_data = await get_config_data(model_id)
num_layers = config_data.layer_count
mem_size_bytes = await get_safetensors_size(model_id)
model_card = next(
(card for card in MODEL_CARDS.values() if card.model_id == ModelId(model_id)),
None,
)
return ModelMetadata(
mc = ModelCard(
model_id=ModelId(model_id),
pretty_name=model_card.name if model_card is not None else model_id,
storage_size=mem_size_bytes,
n_layers=num_layers,
hidden_size=config_data.hidden_size or 0,
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
supports_tensor=model_card.metadata.supports_tensor
if model_card is not None
else False,
supports_tensor=False,
)
_model_card_cache[model_id] = mc
return mc

View File

@@ -7,8 +7,8 @@ import pytest
from _pytest.logging import LogCaptureFixture
from loguru import logger
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.worker.shards import PipelineShardMetadata, ShardMetadata
@@ -31,9 +31,8 @@ def get_pipeline_shard_metadata(
model_id: ModelId, device_rank: int, world_size: int = 1
) -> ShardMetadata:
return PipelineShardMetadata(
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=model_id,
pretty_name=str(model_id),
storage_size=Memory.from_mb(100000),
n_layers=32,
hidden_size=1000,

View File

@@ -4,9 +4,9 @@ from typing import Any, Literal
from pydantic import BaseModel, Field, field_validator
from pydantic_core import PydanticUseDefault
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.common import CommandId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
@@ -206,7 +206,7 @@ class DeleteInstanceTaskParams(BaseModel):
class CreateInstanceResponse(BaseModel):
message: str
command_id: CommandId
model_meta: ModelMetadata
model_card: ModelCard
class DeleteInstanceResponse(BaseModel):

View File

@@ -1,10 +1,10 @@
from enum import Enum
from exo.shared.models.model_cards import ModelId
from exo.shared.types.api import GenerationStats
from exo.utils.pydantic_ext import TaggedModel
from .api import FinishReason
from .models import ModelId
class ChunkType(str, Enum):

View File

@@ -1,8 +1,8 @@
from pydantic import Field
from exo.shared.models.model_cards import ModelCard
from exo.shared.types.api import ChatCompletionTaskParams
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.models import ModelMetadata
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
@@ -21,7 +21,7 @@ class ChatCompletion(BaseCommand):
class PlaceInstance(BaseCommand):
model_meta: ModelMetadata
model_card: ModelCard
sharding: Sharding
instance_meta: InstanceMeta
min_nodes: int

View File

@@ -16,7 +16,9 @@ class Id(str):
cls, _source: type, handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
# Just use a plain string schema
return core_schema.str_schema()
return core_schema.no_info_after_validator_function(
cls, core_schema.str_schema()
)
class NodeId(Id):

View File

@@ -1,18 +0,0 @@
from pydantic import PositiveInt
from exo.shared.types.common import Id
from exo.shared.types.memory import Memory
from exo.utils.pydantic_ext import CamelCaseModel
class ModelId(Id):
pass
class ModelMetadata(CamelCaseModel):
model_id: ModelId
pretty_name: str
storage_size: Memory
n_layers: PositiveInt
hidden_size: PositiveInt
supports_tensor: bool

View File

@@ -2,8 +2,8 @@ from collections.abc import Mapping
from pydantic import model_validator
from exo.shared.models.model_cards import ModelId
from exo.shared.types.common import Id, NodeId
from exo.shared.types.models import ModelId
from exo.shared.types.worker.shards import ShardMetadata
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel

View File

@@ -2,7 +2,7 @@ from enum import Enum
from pydantic import Field
from exo.shared.types.models import ModelMetadata
from exo.shared.models.model_cards import ModelCard
from exo.utils.pydantic_ext import TaggedModel
@@ -17,7 +17,7 @@ class BaseShardMetadata(TaggedModel):
Replaces previous `Shard` object.
"""
model_meta: ModelMetadata
model_card: ModelCard
device_rank: int
world_size: int
@@ -41,7 +41,7 @@ class BaseShardMetadata(TaggedModel):
def __hash__(self) -> int:
return hash(
(
self.model_meta.model_id,
self.model_card.model_id,
self.start_layer,
self.end_layer,
self.n_layers,

View File

@@ -1,45 +1,72 @@
import enum
import os
import sys
from pathlib import Path
from typing import cast
from anyio import Path
def find_dashboard() -> Path:
dashboard = (
_find_dashboard_in_env()
or _find_dashboard_in_repo()
or _find_dashboard_in_bundle()
class RuntimeResources(enum.Enum):
Dashboard = enum.auto
Resources = enum.auto
_dir_cache: dict[RuntimeResources, Path]
async def find_directory(rr: RuntimeResources) -> Path:
dir = (
_dir_cache.get(rr, None)
or await _find_in_env(rr)
or await _find_in_repo(rr)
or await _find_in_bundle(rr)
)
if not dashboard:
if not dir:
raise FileNotFoundError(
"Unable to locate dashboard assets - make sure the dashboard has been built, or export DASHBOARD_DIR if you've built the dashboard elsewhere."
"Unable to locate directory - make sure the dashboard has been built and the runtime resources (model cards) exist."
)
return dashboard
_dir_cache[rr] = dir
return dir
def _find_dashboard_in_env() -> Path | None:
env = os.environ.get("DASHBOARD_DIR")
async def _find_in_env(rr: RuntimeResources) -> Path | None:
match rr:
case RuntimeResources.Dashboard:
env = os.environ.get("DASHBOARD_DIR")
case RuntimeResources.Resources:
env = os.environ.get("RESOURCES_DIR")
if not env:
return None
resolved_env = Path(env).expanduser().resolve()
resolved_env = await (await Path(env).expanduser()).resolve()
return resolved_env
def _find_dashboard_in_repo() -> Path | None:
current_module = Path(__file__).resolve()
async def _find_in_repo(rr: RuntimeResources) -> Path | None:
current_module = await Path(__file__).resolve()
for parent in current_module.parents:
build = parent / "dashboard" / "build"
if build.is_dir() and (build / "index.html").exists():
return build
match rr:
case RuntimeResources.Dashboard:
build = parent / "dashboard" / "build"
if await build.is_dir() and await (build / "index.html").exists():
return build
case RuntimeResources.Resources:
res = parent / "resources"
if await res.is_dir():
return res
return None
def _find_dashboard_in_bundle() -> Path | None:
async def _find_in_bundle(rr: RuntimeResources) -> Path | None:
frozen_root = cast(str | None, getattr(sys, "_MEIPASS", None))
if frozen_root is None:
return None
candidate = Path(frozen_root) / "dashboard"
if candidate.is_dir():
return candidate
match rr:
case RuntimeResources.Dashboard:
candidate = Path(frozen_root) / "dashboard"
if await candidate.is_dir():
return candidate
case RuntimeResources.Resources:
candidate = Path(frozen_root) / "resources"
if await candidate.is_dir():
return candidate
return None

View File

@@ -460,10 +460,10 @@ async def resolve_allow_patterns(shard: ShardMetadata) -> list[str]:
# (iii) Tensor parallel requires all files.
return ["*"]
try:
weight_map = await get_weight_map(str(shard.model_meta.model_id))
weight_map = await get_weight_map(str(shard.model_card.model_id))
return get_allow_patterns(weight_map, shard)
except Exception:
logger.error(f"Error getting weight map for {shard.model_meta.model_id=}")
logger.error(f"Error getting weight map for {shard.model_card.model_id=}")
logger.error(traceback.format_exc())
return ["*"]
@@ -532,18 +532,18 @@ async def download_shard(
allow_patterns: list[str] | None = None,
) -> tuple[Path, RepoDownloadProgress]:
if not skip_download:
logger.info(f"Downloading {shard.model_meta.model_id=}")
logger.info(f"Downloading {shard.model_card.model_id=}")
# Handle local paths
if await aios.path.exists(str(shard.model_meta.model_id)):
logger.info(f"Using local model path {shard.model_meta.model_id}")
local_path = Path(str(shard.model_meta.model_id))
if await aios.path.exists(str(shard.model_card.model_id)):
logger.info(f"Using local model path {shard.model_card.model_id}")
local_path = Path(str(shard.model_card.model_id))
return local_path, await download_progress_for_local_path(
str(shard.model_meta.model_id), shard, local_path
str(shard.model_card.model_id), shard, local_path
)
revision = "main"
target_dir = await ensure_models_dir() / str(shard.model_meta.model_id).replace(
target_dir = await ensure_models_dir() / str(shard.model_card.model_id).replace(
"/", "--"
)
if not skip_download:
@@ -552,13 +552,13 @@ async def download_shard(
if not allow_patterns:
allow_patterns = await resolve_allow_patterns(shard)
logger.info(f"Downloading {shard.model_meta.model_id=} with {allow_patterns=}")
logger.info(f"Downloading {shard.model_card.model_id=} with {allow_patterns=}")
all_start_time = time.time()
# TODO: currently not recursive. Some models might require subdirectories - thus this will need to be changed.
# Update: <- This does not seem to be the case. Yay?
file_list = await fetch_file_list_with_cache(
str(shard.model_meta.model_id), revision, recursive=True
str(shard.model_card.model_id), revision, recursive=True
)
filtered_file_list = list(
filter_repo_objects(
@@ -592,7 +592,7 @@ async def download_shard(
else timedelta(seconds=0)
)
file_progress[file.path] = RepoFileDownloadProgress(
repo_id=str(shard.model_meta.model_id),
repo_id=str(shard.model_card.model_id),
repo_revision=revision,
file_path=file.path,
downloaded=Memory.from_bytes(curr_bytes),
@@ -609,7 +609,7 @@ async def download_shard(
shard,
calculate_repo_progress(
shard,
str(shard.model_meta.model_id),
str(shard.model_card.model_id),
revision,
file_progress,
all_start_time,
@@ -619,7 +619,7 @@ async def download_shard(
for file in filtered_file_list:
downloaded_bytes = await get_downloaded_size(target_dir / file.path)
file_progress[file.path] = RepoFileDownloadProgress(
repo_id=str(shard.model_meta.model_id),
repo_id=str(shard.model_card.model_id),
repo_revision=revision,
file_path=file.path,
downloaded=Memory.from_bytes(downloaded_bytes),
@@ -643,7 +643,7 @@ async def download_shard(
async def download_with_semaphore(file: FileListEntry) -> None:
async with semaphore:
await download_file_with_retry(
str(shard.model_meta.model_id),
str(shard.model_card.model_id),
revision,
file.path,
target_dir,
@@ -657,7 +657,7 @@ async def download_shard(
*[download_with_semaphore(file) for file in filtered_file_list]
)
final_repo_progress = calculate_repo_progress(
shard, str(shard.model_meta.model_id), revision, file_progress, all_start_time
shard, str(shard.model_card.model_id), revision, file_progress, all_start_time
)
await on_progress(shard, final_repo_progress)
if gguf := next((f for f in filtered_file_list if f.path.endswith(".gguf")), None):

View File

@@ -3,8 +3,7 @@ from collections.abc import Awaitable
from pathlib import Path
from typing import AsyncIterator, Callable
from exo.shared.models.model_cards import MODEL_CARDS
from exo.shared.models.model_meta import get_model_meta
from exo.shared.models.model_cards import ModelCard, get_model_cards
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
ShardMetadata,
@@ -20,21 +19,21 @@ def exo_shard_downloader(max_parallel_downloads: int = 8) -> ShardDownloader:
async def build_base_shard(model_id: str) -> ShardMetadata:
model_meta = await get_model_meta(model_id)
model_card = await ModelCard.from_hf(model_id)
return PipelineShardMetadata(
model_meta=model_meta,
model_card=model_card,
device_rank=0,
world_size=1,
start_layer=0,
end_layer=model_meta.n_layers,
n_layers=model_meta.n_layers,
end_layer=model_card.n_layers,
n_layers=model_card.n_layers,
)
async def build_full_shard(model_id: str) -> PipelineShardMetadata:
base_shard = await build_base_shard(model_id)
return PipelineShardMetadata(
model_meta=base_shard.model_meta,
model_card=base_shard.model_card,
device_rank=base_shard.device_rank,
world_size=base_shard.world_size,
start_layer=base_shard.start_layer,
@@ -93,11 +92,11 @@ class CachedShardDownloader(ShardDownloader):
async def ensure_shard(
self, shard: ShardMetadata, config_only: bool = False
) -> Path:
if (shard.model_meta.model_id, shard) in self.cache:
return self.cache[(shard.model_meta.model_id, shard)]
if (shard.model_card.model_id, shard) in self.cache:
return self.cache[(shard.model_card.model_id, shard)]
target_dir = await self.shard_downloader.ensure_shard(shard, config_only)
self.cache[(shard.model_meta.model_id, shard)] = target_dir
self.cache[(shard.model_card.model_id, shard)] = target_dir
return target_dir
async def get_shard_download_status(
@@ -159,7 +158,7 @@ class ResumableShardDownloader(ShardDownloader):
# Kick off download status coroutines concurrently
tasks = [
asyncio.create_task(_status_for_model(model_card.model_id))
for model_card in MODEL_CARDS.values()
for model_card in await get_model_cards()
]
for task in asyncio.as_completed(tasks):

View File

@@ -5,8 +5,8 @@ from datetime import timedelta
from pathlib import Path
from typing import AsyncIterator, Callable
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
ShardMetadata,
@@ -86,9 +86,8 @@ NOOP_DOWNLOAD_PROGRESS = RepoDownloadProgress(
repo_id="noop",
repo_revision="noop",
shard=PipelineShardMetadata(
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=ModelId("noop"),
pretty_name="noope",
storage_size=Memory.from_bytes(0),
n_layers=1,
hidden_size=1,

View File

@@ -75,7 +75,7 @@ def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
return Memory.from_float_kb(
(model_shard_meta.end_layer - model_shard_meta.start_layer)
/ model_shard_meta.n_layers
* model_shard_meta.model_meta.storage_size.in_kb
* model_shard_meta.model_card.storage_size.in_kb
/ (
1
if isinstance(model_shard_meta, PipelineShardMetadata)
@@ -206,7 +206,7 @@ def load_mlx_items(
) -> tuple[Model, TokenizerWrapper]:
if group is None:
logger.info(f"Single device used for {bound_instance.instance}")
model_path = build_model_path(bound_instance.bound_shard.model_meta.model_id)
model_path = build_model_path(bound_instance.bound_shard.model_card.model_id)
start_time = time.perf_counter()
model, _ = load_model(model_path, strict=True)
end_time = time.perf_counter()
@@ -234,7 +234,7 @@ def shard_and_load(
group: Group,
on_timeout: TimeoutCallback | None = None,
) -> tuple[nn.Module, TokenizerWrapper]:
model_path = build_model_path(shard_metadata.model_meta.model_id)
model_path = build_model_path(shard_metadata.model_card.model_id)
model, _ = load_model(model_path, lazy=True, strict=False)
logger.debug(model)
@@ -293,7 +293,7 @@ def shard_and_load(
def get_tokenizer(model_path: Path, shard_metadata: ShardMetadata) -> TokenizerWrapper:
"""Load tokenizer for a model shard. Delegates to load_tokenizer_for_model_id."""
return load_tokenizer_for_model_id(shard_metadata.model_meta.model_id, model_path)
return load_tokenizer_for_model_id(shard_metadata.model_card.model_id, model_path)
def get_eos_token_ids_for_model(model_id: str) -> list[int] | None:

View File

@@ -8,6 +8,7 @@ from loguru import logger
from exo.routing.connection_message import ConnectionMessage, ConnectionMessageType
from exo.shared.apply import apply
from exo.shared.models.model_cards import ModelId
from exo.shared.types.commands import ForwarderCommand, RequestEventLog
from exo.shared.types.common import NodeId, SessionId
from exo.shared.types.events import (
@@ -22,7 +23,6 @@ from exo.shared.types.events import (
TopologyEdgeCreated,
TopologyEdgeDeleted,
)
from exo.shared.types.models import ModelId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.state import State
from exo.shared.types.tasks import (
@@ -186,11 +186,11 @@ class Worker:
)
)
case DownloadModel(shard_metadata=shard):
if shard.model_meta.model_id not in self.download_status:
if shard.model_card.model_id not in self.download_status:
progress = DownloadPending(
shard_metadata=shard, node_id=self.node_id
)
self.download_status[shard.model_meta.model_id] = progress
self.download_status[shard.model_card.model_id] = progress
await self.event_sender.send(
NodeDownloadProgress(download_progress=progress)
)
@@ -205,7 +205,7 @@ class Worker:
node_id=self.node_id,
total_bytes=initial_progress.total_bytes,
)
self.download_status[shard.model_meta.model_id] = progress
self.download_status[shard.model_card.model_id] = progress
await self.event_sender.send(
NodeDownloadProgress(download_progress=progress)
)
@@ -339,7 +339,7 @@ class Worker:
initial_progress
),
)
self.download_status[task.shard_metadata.model_meta.model_id] = status
self.download_status[task.shard_metadata.model_card.model_id] = status
self.event_sender.send_nowait(NodeDownloadProgress(download_progress=status))
last_progress_time = 0.0
@@ -356,7 +356,7 @@ class Worker:
node_id=self.node_id,
total_bytes=progress.total_bytes,
)
self.download_status[shard.model_meta.model_id] = status
self.download_status[shard.model_card.model_id] = status
await self.event_sender.send(
NodeDownloadProgress(download_progress=status)
)
@@ -376,7 +376,7 @@ class Worker:
progress
),
)
self.download_status[shard.model_meta.model_id] = status
self.download_status[shard.model_card.model_id] = status
await self.event_sender.send(
NodeDownloadProgress(download_progress=status)
)
@@ -478,7 +478,7 @@ class Worker:
else:
continue
self.download_status[progress.shard.model_meta.model_id] = status
self.download_status[progress.shard.model_card.model_id] = status
await self.event_sender.send(
NodeDownloadProgress(download_progress=status)
)

View File

@@ -2,8 +2,8 @@
from collections.abc import Mapping, Sequence
from exo.shared.models.model_cards import ModelId
from exo.shared.types.common import NodeId
from exo.shared.types.models import ModelId
from exo.shared.types.tasks import (
ChatCompletion,
ConnectToGroup,
@@ -114,7 +114,7 @@ def _model_needs_download(
download_status: Mapping[ModelId, DownloadProgress],
) -> DownloadModel | None:
for runner in runners.values():
model_id = runner.bound_instance.bound_shard.model_meta.model_id
model_id = runner.bound_instance.bound_shard.model_card.model_id
if isinstance(runner.status, RunnerIdle) and (
model_id not in download_status
or not isinstance(
@@ -191,7 +191,7 @@ def _load_model(
nid in global_download_status
and any(
isinstance(dp, DownloadCompleted)
and dp.shard_metadata.model_meta.model_id == shard_assignments.model_id
and dp.shard_metadata.model_card.model_id == shard_assignments.model_id
for dp in global_download_status[nid]
)
for nid in shard_assignments.node_to_runner

View File

@@ -213,7 +213,7 @@ def main(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
model=shard_metadata.model_card.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
@@ -230,7 +230,7 @@ def main(
command_id=command_id,
chunk=TokenChunk(
idx=0,
model=shard_metadata.model_meta.model_id,
model=shard_metadata.model_card.model_id,
text="",
token_id=0,
finish_reason="error",

View File

@@ -1,7 +1,7 @@
from typing import Final
from exo.shared.models.model_cards import ModelId
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.models import ModelId
from exo.shared.types.tasks import TaskId
from exo.shared.types.worker.instances import InstanceId, RunnerId

View File

@@ -1,8 +1,8 @@
from dataclasses import dataclass, field
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.common import NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.tasks import BaseTask, TaskId
from exo.shared.types.worker.instances import (
BoundInstance,
@@ -32,9 +32,8 @@ def get_pipeline_shard_metadata(
model_id: ModelId, device_rank: int, world_size: int = 1
) -> ShardMetadata:
return PipelineShardMetadata(
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=model_id,
pretty_name=str(model_id),
storage_size=Memory.from_mb(100000),
n_layers=32,
hidden_size=2048,

View File

@@ -11,9 +11,9 @@ import mlx.core as mx
import mlx.nn as nn
from exo.shared.constants import EXO_MODELS_DIR
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.api import ChatCompletionMessage
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.tasks import ChatCompletionTaskParams
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
from exo.worker.engines.mlx import Model
@@ -81,9 +81,8 @@ def run_gpt_oss_pipeline_device(
start_layer, end_layer = layer_splits[rank]
shard_meta = PipelineShardMetadata(
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=ModelId(DEFAULT_GPT_OSS_MODEL_ID),
pretty_name="GPT-OSS 20B",
storage_size=Memory.from_gb(12),
n_layers=24,
hidden_size=2880,
@@ -151,9 +150,8 @@ def run_gpt_oss_tensor_parallel_device(
# For tensor parallelism, all devices run all layers
shard_meta = TensorShardMetadata(
model_meta=ModelMetadata(
model_card=ModelCard(
model_id=ModelId(DEFAULT_GPT_OSS_MODEL_ID),
pretty_name="GPT-OSS 20B",
storage_size=Memory.from_gb(12),
n_layers=24,
hidden_size=2880,

View File

@@ -76,13 +76,13 @@ def get_test_models() -> list[tuple[str, ModelCard]]:
"""Get a representative sample of models to test."""
# Pick one model from each family to test
families: dict[str, tuple[str, ModelCard]] = {}
for short_id, card in MODEL_CARDS.items():
for _, card in MODEL_CARDS.items():
# Extract family name (e.g., "llama-3.1" from "llama-3.1-8b")
parts = short_id.split("-")
parts = card.model_id.short().split("-")
family = "-".join(parts[:2]) if len(parts) >= 2 else parts[0]
if family not in families:
families[family] = (short_id, card)
families[family] = (card.model_id.short(), card)
return list(families.values())

View File

@@ -1,7 +1,7 @@
import exo.worker.plan as plan_mod
from exo.shared.models.model_cards import ModelId
from exo.shared.types.common import NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId
from exo.shared.types.tasks import LoadModel
from exo.shared.types.worker.downloads import DownloadCompleted, DownloadProgress
from exo.shared.types.worker.instances import BoundInstance

View File

@@ -12,7 +12,7 @@ from loguru import logger
from pydantic import BaseModel
from exo.shared.logging import InterceptLogger, logger_setup
from exo.shared.models.model_cards import MODEL_CARDS, ModelId
from exo.shared.models.model_cards import ModelId
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
from exo.shared.types.commands import CommandId
from exo.shared.types.common import Host, NodeId
@@ -82,29 +82,29 @@ async def tb_detection():
send, recv = channel[GatheredInfo]()
ig = InfoGatherer(send)
with anyio.move_on_after(1):
await ig._monitor_system_profiler() # pyright: ignore[reportPrivateUsage]
await ig._monitor_system_profiler_thunderbolt_data() # pyright: ignore[reportPrivateUsage]
with recv:
return recv.collect()
async def assert_downloads():
sd = exo_shard_downloader()
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
# await sd.ensure_shard(ModelId("mlx-community/Qwen3-0.6B-8bit")))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
await build_full_shard(ModelId("mlx-community/Llama-3.1-8b-bf16"))
)
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
await sd.ensure_shard(await build_full_shard(ModelId("mlx-community/Qwen3-30b-A3B")))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
await build_full_shard(ModelId("mlx-commmunity/gpt-oss-120b-MXFP4-Q8"))
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
await build_full_shard(ModelId("mlx-community/gpt-oss-20b-4bit"))
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
await build_full_shard(ModelId("mlx-community/GLM-4.7-8bit-gs32"))
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
await build_full_shard(ModelId("mlx-community/MiniMax-M2.1-8bit"))
)
@@ -135,7 +135,7 @@ def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
else:
raise ValueError(f"{hn} not in {test.devs}")
meta = MODEL_CARDS[test.model_id].metadata
card = MODEL_CARDS[test.model_id]
instance = MlxRingInstance(
instance_id=iid,
ephemeral_port=52416,
@@ -145,15 +145,15 @@ def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
runner_to_shard={
RunnerId(test.devs[i][0]): PipelineShardMetadata(
model_meta=meta,
model_card=card,
device_rank=i,
world_size=world_size,
start_layer=(meta.n_layers // world_size) * i,
start_layer=(card.n_layers // world_size) * i,
end_layer=min(
meta.n_layers, (meta.n_layers // world_size) * (i + 1)
card.n_layers, (card.n_layers // world_size) * (i + 1)
),
n_layers=min(meta.n_layers, (meta.n_layers // world_size) * (i + 1))
- (meta.n_layers // world_size) * i,
n_layers=min(card.n_layers, (card.n_layers // world_size) * (i + 1))
- (card.n_layers // world_size) * i,
)
for i in range(world_size)
},
@@ -224,7 +224,7 @@ async def jaccl_backend(test: Tests):
def jaccl_instance(test: Tests, iid: InstanceId):
meta = MODEL_CARDS[test.model_id].metadata
card = MODEL_CARDS[test.model_id]
world_size = len(test.devs)
return MlxJacclInstance(
@@ -239,12 +239,12 @@ def jaccl_instance(test: Tests, iid: InstanceId):
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
runner_to_shard={
RunnerId(test.devs[i][0]): TensorShardMetadata(
model_meta=meta,
model_card=card,
device_rank=i,
world_size=world_size,
start_layer=meta.n_layers,
end_layer=meta.n_layers,
n_layers=meta.n_layers,
start_layer=card.n_layers,
end_layer=card.n_layers,
n_layers=card.n_layers,
)
for i in range(world_size)
},