Compare commits

..

1 Commits

Author SHA1 Message Date
Alex Cheema
7e3030221e feat: add continuous batching with TimeBudget pattern for distributed sync
- Add BatchGenerationEngine using mlx_lm's BatchGenerator for continuous batching
- Add TimeBudget class for sync at time boundaries (0.5s) instead of per-token
- Add share_object() for broadcasting data from rank 0 to all ranks
- Modify runner.py to use batched generation with distributed sync
- Only rank 0 queues ChatCompletionTask in distributed mode
- Add debug logging to share_object for distributed sync tracing
- Add log file location to AGENTS.md

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-14 19:08:43 +00:00
59 changed files with 2646 additions and 1452 deletions

View File

@@ -276,24 +276,23 @@ class BatchGenerator:
logprobs: mx.array
finish_reason: Optional[str]
unprocessed_prompts: List[Any]
def __init__(
self,
model,
model: nn.Module,
max_tokens: int = ...,
stop_tokens: Optional[set] = ...,
stop_tokens: Optional[set[int]] = ...,
sampler: Optional[Callable[[mx.array], mx.array]] = ...,
completion_batch_size: int = ...,
prefill_batch_size: int = ...,
prefill_step_size: int = ...,
) -> None: ...
def insert(
self, prompts, max_tokens: Union[List[int], int, None] = ...
): # -> list[Any]:
...
def stats(self): # -> BatchStats:
...
def next(self): # -> list[Any]:
...
self, prompts: List[List[int]], max_tokens: Union[List[int], int, None] = ...
) -> List[int]: ...
def stats(self) -> BatchStats: ...
def next(self) -> List[Response]: ...
def batch_generate(
model,

View File

@@ -39,12 +39,18 @@ class StreamingDetokenizer:
"""
__slots__ = ...
def reset(self): ...
def add_token(self, token): ...
def finalize(self): ...
tokens: list[int]
def reset(self) -> None: ...
def add_token(self, token: int) -> None: ...
def finalize(self) -> None: ...
@property
def last_segment(self):
def text(self) -> str:
"""The full text decoded so far."""
...
@property
def last_segment(self) -> str:
"""Return the last segment of readable text since last time this property was accessed."""
...
class NaiveStreamingDetokenizer(StreamingDetokenizer):
"""NaiveStreamingDetokenizer relies on the underlying tokenizer
@@ -108,6 +114,7 @@ class TokenizerWrapper:
_tokenizer: PreTrainedTokenizerFast
eos_token_id: int | None
eos_token: str | None
eos_token_ids: list[int] | None
bos_token_id: int | None
bos_token: str | None
vocab_size: int

View File

@@ -91,6 +91,45 @@ From .cursorrules:
- Catch exceptions only where you can handle them meaningfully
- Use `@final` and immutability wherever applicable
## Model Storage
Downloaded models are stored in `~/.exo/models/` (not the standard HuggingFace cache location).
## Creating Model Instances via API
When testing with the API, you must first create a model instance before sending chat completions:
```bash
# 1. Get instance previews for a model
curl "http://localhost:52415/instance/previews?model_id=llama-3.2-1b"
# 2. Create an instance from the first valid preview
INSTANCE=$(curl -s "http://localhost:52415/instance/previews?model_id=llama-3.2-1b" | jq -c '.previews[] | select(.error == null) | .instance' | head -n1)
curl -X POST http://localhost:52415/instance -H 'Content-Type: application/json' -d "{\"instance\": $INSTANCE}"
# 3. Wait for the runner to become ready (check logs for "runner ready")
# 4. Send chat completions using the full model ID
curl -X POST http://localhost:52415/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"model": "mlx-community/Llama-3.2-1B-Instruct-4bit", "messages": [{"role": "user", "content": "Hello"}], "max_tokens": 50}'
```
## Logs
Exo logs are stored in `~/.exo/exo.log`. This is useful for debugging runner crashes and distributed issues.
## Testing
Tests use pytest-asyncio with `asyncio_mode = "auto"`. Tests are in `tests/` subdirectories alongside the code they test. The `EXO_TESTS=1` env var is set during tests.
### Distributed Testing
When running distributed tests across multiple machines, use `EXO_LIBP2P_NAMESPACE` to isolate your test cluster from other exo instances on the same network:
```bash
# On each machine in the test cluster, use the same unique namespace
EXO_LIBP2P_NAMESPACE=my-test-cluster uv run exo
```
This prevents your test cluster from discovering and interfering with production or other developers' exo clusters.

View File

@@ -19,7 +19,6 @@
25. Rethink retry logic
26. Task cancellation. When API http request gets cancelled, it should cancel corresponding task.
27. Log cleanup - per-module log filters and default to DEBUG log levels
28. Validate RDMA connections with ibv_devinfo in the info gatherer
Potential refactors:

View File

@@ -6,7 +6,7 @@ enum NetworkSetupHelper {
private static let logger = Logger(subsystem: "io.exo.EXO", category: "NetworkSetup")
private static let daemonLabel = "io.exo.networksetup"
private static let scriptDestination =
"/Library/Application Support/EXO/disable_bridge.sh"
"/Library/Application Support/EXO/disable_bridge_enable_dhcp.sh"
private static let plistDestination = "/Library/LaunchDaemons/io.exo.networksetup.plist"
private static let requiredStartInterval: Int = 1791
@@ -28,6 +28,35 @@ enum NetworkSetupHelper {
# Remove Thunderbolt Bridge from VirtualNetworkInterfaces in preferences.plist
/usr/libexec/PlistBuddy -c "Delete :VirtualNetworkInterfaces:Bridge:bridge0" "$PREFS" 2>/dev/null || true
networksetup -listlocations | grep -q exo || {
networksetup -createlocation exo
}
networksetup -switchtolocation exo
networksetup -listallhardwareports \\
| awk -F': ' '/Hardware Port: / {print $2}' \\
| while IFS=":" read -r name; do
case "$name" in
"Ethernet Adapter"*)
;;
"Thunderbolt Bridge")
;;
"Thunderbolt "*)
networksetup -listallnetworkservices \\
| grep -q "EXO $name" \\
|| networksetup -createnetworkservice "EXO $name" "$name" 2>/dev/null \\
|| continue
networksetup -setdhcp "EXO $name"
;;
*)
networksetup -listallnetworkservices \\
| grep -q "$name" \\
|| networksetup -createnetworkservice "$name" "$name" 2>/dev/null \\
|| continue
;;
esac
done
networksetup -listnetworkservices | grep -q "Thunderbolt Bridge" && {
networksetup -setnetworkserviceenabled "Thunderbolt Bridge" off
} || true

View File

@@ -197,7 +197,7 @@ function toggleNodeDetails(nodeId: string): void {
// Uses API preview data when available, falls back to local estimation
const placementPreview = $derived(() => {
const nodeArray = nodeList();
if (nodeArray.length === 0) return { nodes: [], canFit: false, totalAvailable: 0, topoWidth: 260, topoHeight: 90, error: null };
if (nodeArray.length === 0) return { nodes: [], canFit: false, totalAvailable: 0, error: null };
const numNodes = nodeArray.length;
const iconSize = numNodes === 1 ? 50 : 36;

View File

@@ -1,7 +1,7 @@
<script lang="ts">
import { onMount, onDestroy } from 'svelte';
import * as d3 from 'd3';
import { topologyData, isTopologyMinimized, debugMode, type NodeInfo } from '$lib/stores/app.svelte';
import { topologyData, isTopologyMinimized, debugMode } from '$lib/stores/app.svelte';
interface Props {
class?: string;
@@ -24,14 +24,14 @@ function getNodeLabel(nodeId: string): string {
function getInterfaceLabel(nodeId: string, ip?: string): { label: string; missing: boolean } {
if (!ip) return { label: '?', missing: true };
// Strip port if present (e.g., "192.168.1.1:8080" -> "192.168.1.1")
const cleanIp = ip.includes(':') && !ip.includes('[') ? ip.split(':')[0] : ip;
// Helper to check a node's interfaces
function checkNode(node: NodeInfo | undefined): string | null {
function checkNode(node: typeof data.nodes[string]): string | null {
if (!node) return null;
const matchFromInterfaces = node.network_interfaces?.find((iface) =>
(iface.addresses || []).some((addr) => addr === cleanIp || addr === ip)
);
@@ -39,19 +39,17 @@ function getInterfaceLabel(nodeId: string, ip?: string): { label: string; missin
return matchFromInterfaces.name;
}
if (node.ip_to_interface) {
const mapped = node.ip_to_interface[cleanIp] || (ip ? node.ip_to_interface[ip] : undefined);
if (mapped && mapped.trim().length > 0) {
return mapped;
}
const mapped = node.ip_to_interface?.[cleanIp] || node.ip_to_interface?.[ip];
if (mapped && mapped.trim().length > 0) {
return mapped;
}
return null;
}
// Try specified node first
const result = checkNode(data?.nodes?.[nodeId]);
if (result) return { label: result, missing: false };
// Fallback: search all nodes for this IP
for (const [, otherNode] of Object.entries(data?.nodes || {})) {
const otherResult = checkNode(otherNode);
@@ -257,24 +255,21 @@ function wrapLine(text: string, maxLen: number): string[] {
const arrowsGroup = svg.append('g').attr('class', 'arrows-group');
const debugLabelsGroup = svg.append('g').attr('class', 'debug-edge-labels');
type ConnectionInfo = { from: string; to: string; ip: string; ifaceLabel: string; missingIface: boolean };
type PairEntry = { a: string; b: string; aToB: boolean; bToA: boolean; connections: ConnectionInfo[] };
type DebugEdgeLabelEntry = { connections: ConnectionInfo[]; isLeft: boolean; isTop: boolean; mx: number; my: number };
const pairMap = new Map<string, PairEntry>();
const debugEdgeLabels: DebugEdgeLabelEntry[] = [];
const pairMap = new Map<string, { a: string; b: string; aToB: boolean; bToA: boolean; connections: Array<{ from: string; to: string; ip: string; ifaceLabel: string; missingIface: boolean }> }>();
let debugEdgeLabels: Array<{ connections: typeof pairMap extends Map<string, infer V> ? V['connections'] : never; isLeft: boolean; isTop: boolean; mx: number; my: number }> | null = null;
edges.forEach(edge => {
if (!edge.source || !edge.target || edge.source === edge.target) return;
if (!positionById[edge.source] || !positionById[edge.target]) return;
const a = edge.source < edge.target ? edge.source : edge.target;
const b = edge.source < edge.target ? edge.target : edge.source;
const key = `${a}|${b}`;
const entry = pairMap.get(key) || { a, b, aToB: false, bToA: false, connections: [] };
if (edge.source === a) entry.aToB = true;
else entry.bToA = true;
const ip = edge.sendBackIp || '?';
const ip = edge.sendBackIp || edge.sendBackMultiaddr?.ip_address || '?';
const ifaceInfo = getInterfaceLabel(edge.source, ip);
entry.connections.push({
from: edge.source,
@@ -343,8 +338,9 @@ function wrapLine(text: string, maxLen: number): string[] {
// Determine which side of viewport based on edge midpoint
const isLeft = mx < centerX;
const isTop = my < safeCenterY;
// Store for batch rendering after all edges processed
if (!debugEdgeLabels) debugEdgeLabels = [];
debugEdgeLabels.push({
connections: entry.connections,
isLeft,
@@ -385,32 +381,32 @@ function wrapLine(text: string, maxLen: number): string[] {
}
// Group by quadrant: topLeft, topRight, bottomLeft, bottomRight
const quadrants: Record<string, DebugEdgeLabelEntry[]> = {
const quadrants: Record<string, typeof debugEdgeLabels> = {
topLeft: [],
topRight: [],
bottomLeft: [],
bottomRight: []
};
debugEdgeLabels.forEach(edge => {
const key = (edge.isTop ? 'top' : 'bottom') + (edge.isLeft ? 'Left' : 'Right');
quadrants[key].push(edge);
});
// Render each quadrant
Object.entries(quadrants).forEach(([quadrant, quadrantEdges]) => {
if (quadrantEdges.length === 0) return;
Object.entries(quadrants).forEach(([quadrant, edges]) => {
if (edges.length === 0) return;
const isLeft = quadrant.includes('Left');
const isTop = quadrant.includes('top');
let baseX = isLeft ? padding : width - padding;
let baseY = isTop ? padding : height - padding;
const textAnchor = isLeft ? 'start' : 'end';
let currentY = baseY;
quadrantEdges.forEach(edge => {
edges.forEach(edge => {
edge.connections.forEach(conn => {
const arrow = getArrow(conn.from, conn.to);
const label = `${arrow} ${conn.ip} ${conn.ifaceLabel}`;

View File

@@ -99,7 +99,7 @@ interface RawNodeProfile {
interface RawTopologyNode {
nodeId: string;
nodeProfile?: RawNodeProfile;
nodeProfile: RawNodeProfile;
}
interface RawTopologyConnection {
@@ -110,19 +110,9 @@ interface RawTopologyConnection {
| string;
}
// Connection can be an object or a tuple [source, target, metadata]
type RawConnectionItem =
| RawTopologyConnection
| [
string,
string,
{ sinkMultiaddr?: { ip_address?: string; address?: string } }?,
];
interface RawTopology {
// nodes can be array of strings (node IDs) or array of objects with nodeId/nodeProfile
nodes: (string | RawTopologyNode)[];
connections?: RawConnectionItem[];
nodes: RawTopologyNode[];
connections?: RawTopologyConnection[];
}
type RawNodeProfiles = Record<string, RawNodeProfile>;
@@ -223,18 +213,9 @@ function transformTopology(
const nodes: Record<string, NodeInfo> = {};
const edges: TopologyEdge[] = [];
// Handle nodes - can be array of strings (node IDs) or array of objects with nodeId/nodeProfile
for (const node of raw.nodes || []) {
// Determine the node ID - could be a string or an object with nodeId property
const nodeId = typeof node === "string" ? node : node.nodeId;
if (!nodeId) continue;
// Get the profile - from the separate profiles map or from the node object itself
const profileFromMap = profiles?.[nodeId];
const profileFromNode =
typeof node === "object" ? node.nodeProfile : undefined;
const profile = { ...(profileFromNode ?? {}), ...(profileFromMap ?? {}) };
const mergedProfile = profiles?.[node.nodeId];
const profile = { ...(node.nodeProfile ?? {}), ...(mergedProfile ?? {}) };
const ramTotal = profile?.memory?.ramTotal?.inBytes ?? 0;
const ramAvailable = profile?.memory?.ramAvailable?.inBytes ?? 0;
const ramUsage = Math.max(ramTotal - ramAvailable, 0);
@@ -283,7 +264,7 @@ function transformTopology(
}
}
nodes[nodeId] = {
nodes[node.nodeId] = {
system_info: {
model_id: profile?.modelId ?? "Unknown",
chip: profile?.chipId,
@@ -311,39 +292,14 @@ function transformTopology(
};
}
// Handle connections - can be objects with localNodeId/sendBackNodeId or tuples [source, target, metadata]
for (const conn of raw.connections || []) {
let localNodeId: string | undefined;
let sendBackNodeId: string | undefined;
let sendBackMultiaddr:
| { multiaddr?: string; address?: string; ip_address?: string }
| string
| undefined;
// Check if it's a tuple format [source, target, metadata]
if (Array.isArray(conn)) {
localNodeId = conn[0] as string;
sendBackNodeId = conn[1] as string;
const metadata = conn[2] as
| { sinkMultiaddr?: { ip_address?: string; address?: string } }
| undefined;
if (metadata?.sinkMultiaddr) {
sendBackMultiaddr = metadata.sinkMultiaddr;
}
} else {
// Object format with localNodeId/sendBackNodeId
localNodeId = conn.localNodeId;
sendBackNodeId = conn.sendBackNodeId;
sendBackMultiaddr = conn.sendBackMultiaddr;
}
if (!localNodeId || !sendBackNodeId) continue;
if (localNodeId === sendBackNodeId) continue;
if (!nodes[localNodeId] || !nodes[sendBackNodeId]) continue;
if (!conn.localNodeId || !conn.sendBackNodeId) continue;
if (conn.localNodeId === conn.sendBackNodeId) continue;
if (!nodes[conn.localNodeId] || !nodes[conn.sendBackNodeId]) continue;
let sendBackIp: string | undefined;
if (sendBackMultiaddr) {
const multi = sendBackMultiaddr;
if (conn.sendBackMultiaddr) {
const multi = conn.sendBackMultiaddr;
if (typeof multi === "string") {
sendBackIp = extractIpFromMultiaddr(multi);
} else {
@@ -355,8 +311,8 @@ function transformTopology(
}
edges.push({
source: localNodeId,
target: sendBackNodeId,
source: conn.localNodeId,
target: conn.sendBackNodeId,
sendBackIp,
});
}

View File

@@ -895,7 +895,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const runnerEntries = Object.entries(runnerToShard).map(([runnerId, shardWrapped]) => {
const [tag, shard] = getTagged(shardWrapped);
const meta = (shard as { modelMeta?: { worldSize?: number; nLayers?: number; deviceRank?: number } } | undefined);
const deviceRank = meta?.modelMeta?.deviceRank ?? 0;
const deviceRank = (meta?.deviceRank as number | undefined) ?? 0;
return { runnerId, tag, deviceRank };
});

37
flake.lock generated
View File

@@ -8,11 +8,11 @@
"rust-analyzer-src": "rust-analyzer-src"
},
"locked": {
"lastModified": 1768287139,
"narHash": "sha256-nsXFt0OzUi6K7dUzzJD5/v9e0Ic+fvclfIW936/43ZM=",
"lastModified": 1761893049,
"narHash": "sha256-1TtFDPhC+ZsrOOtBnry1EZC+WipTTvsOVjIEVugqji8=",
"owner": "nix-community",
"repo": "fenix",
"rev": "a4a3aa956931f90f35453cb519e4545e9ad7f773",
"rev": "c2ac9a5c0d6d16630c3b225b874bd14528d1abe6",
"type": "github"
},
"original": {
@@ -42,22 +42,6 @@
}
},
"nixpkgs": {
"locked": {
"lastModified": 1768127708,
"narHash": "sha256-1Sm77VfZh3mU0F5OqKABNLWxOuDeHIlcFjsXeeiPazs=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "ffbc9f8cbaacfb331b6017d5a5abb21a492c9a38",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-swift": {
"locked": {
"lastModified": 1761672384,
"narHash": "sha256-o9KF3DJL7g7iYMZq9SWgfS1BFlNbsm6xplRjVlOCkXI=",
@@ -68,8 +52,8 @@
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"rev": "08dacfca559e1d7da38f3cf05f1f45ee9bfd213c",
"type": "github"
}
},
@@ -78,18 +62,17 @@
"fenix": "fenix",
"flake-parts": "flake-parts",
"nixpkgs": "nixpkgs",
"nixpkgs-swift": "nixpkgs-swift",
"treefmt-nix": "treefmt-nix"
}
},
"rust-analyzer-src": {
"flake": false,
"locked": {
"lastModified": 1768224240,
"narHash": "sha256-Pp1dDrXKPBUJReZnnDElFyHYn67XTd48zRhToheLjtk=",
"lastModified": 1761849405,
"narHash": "sha256-igXdvC+WCUN+3gnfk+ptT7rMmxQuY6WbIg1rXMUN1DM=",
"owner": "rust-lang",
"repo": "rust-analyzer",
"rev": "725349602e525df37f377701e001fe8aab807878",
"rev": "f7de8ae045a5fe80f1203c5a1c3015b05f7c3550",
"type": "github"
},
"original": {
@@ -106,11 +89,11 @@
]
},
"locked": {
"lastModified": 1768158989,
"narHash": "sha256-67vyT1+xClLldnumAzCTBvU0jLZ1YBcf4vANRWP3+Ak=",
"lastModified": 1762938485,
"narHash": "sha256-AlEObg0syDl+Spi4LsZIBrjw+snSVU4T8MOeuZJUJjM=",
"owner": "numtide",
"repo": "treefmt-nix",
"rev": "e96d59dff5c0d7fddb9d113ba108f03c3ef99eca",
"rev": "5b4ee75aeefd1e2d5a1cc43cf6ba65eba75e83e4",
"type": "github"
},
"original": {

View File

@@ -18,9 +18,6 @@
url = "github:numtide/treefmt-nix";
inputs.nixpkgs.follows = "nixpkgs";
};
# Pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
nixpkgs-swift.url = "github:NixOS/nixpkgs/08dacfca559e1d7da38f3cf05f1f45ee9bfd213c";
};
nixConfig = {
@@ -42,11 +39,9 @@
];
perSystem =
{ config, inputs', pkgs, lib, system, ... }:
{ config, inputs', pkgs, lib, ... }:
let
fenixToolchain = inputs'.fenix.packages.complete;
# Use pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
pkgsSwift = import inputs.nixpkgs-swift { inherit system; };
in
{
treefmt = {
@@ -65,10 +60,7 @@
enable = true;
includes = [ "*.ts" ];
};
swift-format = {
enable = true;
package = pkgsSwift.swiftPackages.swift-format;
};
swift-format.enable = true;
};
};
@@ -131,6 +123,9 @@
export PKG_CONFIG_PATH="${pkgs.openssl.dev}/lib/pkgconfig:$PKG_CONFIG_PATH"
export LD_LIBRARY_PATH="${pkgs.openssl.out}/lib:$LD_LIBRARY_PATH"
''}
echo
echo "🍎🍎 Run 'just <recipe>' to get started"
just --list
'';
};
};

View File

@@ -236,7 +236,6 @@ class API:
instance_meta=instance_meta,
min_nodes=min_nodes,
),
node_profiles=self.state.node_profiles,
topology=self.state.topology,
current_instances=self.state.instances,
)
@@ -292,7 +291,6 @@ class API:
instance_meta=instance_meta,
min_nodes=min_nodes,
),
node_profiles=self.state.node_profiles,
topology=self.state.topology,
current_instances=self.state.instances,
)
@@ -601,8 +599,9 @@ class API:
"""Calculate total available memory across all nodes in bytes."""
total_available = Memory()
for profile in self.state.node_profiles.values():
total_available += profile.memory.ram_available
for node in self.state.topology.list_nodes():
if node.node_profile is not None:
total_available += node.node_profile.memory.ram_available
return total_available

View File

@@ -158,7 +158,6 @@ class Master:
command,
self.state.topology,
self.state.instances,
self.state.node_profiles,
)
transition_events = get_transition_events(
self.state.instances, placement
@@ -201,7 +200,9 @@ class Master:
async def _plan(self) -> None:
while True:
# kill broken instances
connected_node_ids = set([x for x in self.state.topology.list_nodes()])
connected_node_ids = set(
[x.node_id for x in self.state.topology.list_nodes()]
)
for instance_id, instance in self.state.instances.items():
for node_id in instance.shard_assignments.node_to_runner:
if node_id not in connected_node_ids:

View File

@@ -6,10 +6,9 @@ from typing import Sequence
from loguru import logger
from exo.master.placement_utils import (
NodeWithProfile,
filter_cycles_by_memory,
get_mlx_ibv_devices_matrix,
get_mlx_jaccl_coordinators,
get_mlx_jaccl_devices_matrix,
get_mlx_ring_hosts_by_node,
get_shard_assignments,
get_smallest_cycles,
@@ -20,11 +19,10 @@ from exo.shared.types.commands import (
DeleteInstance,
PlaceInstance,
)
from exo.shared.types.common import NodeId
from exo.shared.types.events import Event, InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId
from exo.shared.types.profiling import NodePerformanceProfile
from exo.shared.types.topology import NodeInfo
from exo.shared.types.worker.instances import (
Instance,
InstanceId,
@@ -54,16 +52,19 @@ def place_instance(
command: PlaceInstance,
topology: Topology,
current_instances: Mapping[InstanceId, Instance],
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> dict[InstanceId, Instance]:
all_nodes = list(topology.list_nodes())
cycles = topology.get_cycles() + [[node] for node in all_nodes]
candidate_cycles = list(filter(lambda it: len(it) >= command.min_nodes, cycles))
cycles_with_sufficient_memory = filter_cycles_by_memory(
candidate_cycles, node_profiles, command.model_meta.storage_size
logger.info("finding cycles:")
cycles = topology.get_cycles()
singleton_cycles = [[node] for node in all_nodes]
candidate_cycles = list(
filter(lambda it: len(it) >= command.min_nodes, cycles + singleton_cycles)
)
if len(cycles_with_sufficient_memory) == 0:
cycles_with_sufficient_memory = filter_cycles_by_memory(
candidate_cycles, command.model_meta.storage_size
)
if not cycles_with_sufficient_memory:
raise ValueError("No cycles found with sufficient memory")
if command.sharding == Sharding.Tensor:
@@ -93,15 +94,13 @@ def place_instance(
smallest_tb_cycles = [
cycle
for cycle in smallest_cycles
if topology.get_subgraph_from_nodes(
[node.node_id for node in cycle]
).is_thunderbolt_cycle([node.node_id for node in cycle])
if topology.get_subgraph_from_nodes(cycle).is_thunderbolt_cycle(cycle)
]
if smallest_tb_cycles != []:
smallest_cycles = smallest_tb_cycles
cycles_with_leaf_nodes: list[list[NodeWithProfile]] = [
cycles_with_leaf_nodes: list[list[NodeInfo]] = [
cycle
for cycle in smallest_cycles
if any(topology.node_is_leaf(node.node_id) for node in cycle)
@@ -110,7 +109,11 @@ def place_instance(
selected_cycle = max(
cycles_with_leaf_nodes if cycles_with_leaf_nodes != [] else smallest_cycles,
key=lambda cycle: sum(
(node.node_profile.memory.ram_available for node in cycle),
(
node.node_profile.memory.ram_available
for node in cycle
if node.node_profile is not None
),
start=Memory(),
),
)
@@ -119,16 +122,14 @@ def place_instance(
command.model_meta, selected_cycle, command.sharding
)
cycle_digraph: Topology = topology.get_subgraph_from_nodes(
[node.node_id for node in selected_cycle]
)
cycle_digraph: Topology = topology.get_subgraph_from_nodes(selected_cycle)
instance_id = InstanceId()
target_instances = dict(deepcopy(current_instances))
if len(selected_cycle) == 1:
logger.warning(
"You have likely selected jaccl for a single node instance; falling back to MlxRing"
"You have likely selected ibv for a single node instance; falling back to MlxRing"
)
command.instance_meta = InstanceMeta.MlxRing
@@ -136,19 +137,19 @@ def place_instance(
# TODO: Single node instances
match command.instance_meta:
case InstanceMeta.MlxJaccl:
mlx_jaccl_devices = get_mlx_jaccl_devices_matrix(
[node.node_id for node in selected_cycle],
mlx_ibv_devices = get_mlx_ibv_devices_matrix(
selected_cycle,
cycle_digraph,
)
mlx_jaccl_coordinators = get_mlx_jaccl_coordinators(
coordinator=selected_cycle[0].node_id,
selected_cycle,
coordinator_port=random_ephemeral_port(),
cycle_digraph=cycle_digraph,
)
target_instances[instance_id] = MlxJacclInstance(
instance_id=instance_id,
shard_assignments=shard_assignments,
jaccl_devices=mlx_jaccl_devices,
ibv_devices=mlx_ibv_devices,
jaccl_coordinators=mlx_jaccl_coordinators,
)
case InstanceMeta.MlxRing:

View File

@@ -1,4 +1,5 @@
from collections.abc import Generator, Mapping
from collections.abc import Generator
from typing import TypeGuard, cast
from loguru import logger
from pydantic import BaseModel
@@ -8,7 +9,7 @@ from exo.shared.types.common import Host, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelMetadata
from exo.shared.types.profiling import NodePerformanceProfile
from exo.shared.types.topology import RDMAConnection, SocketConnection
from exo.shared.types.topology import NodeInfo
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
@@ -23,32 +24,27 @@ class NodeWithProfile(BaseModel):
node_profile: NodePerformanceProfile
def narrow_all_nodes(nodes: list[NodeInfo]) -> TypeGuard[list[NodeWithProfile]]:
return all(node.node_profile is not None for node in nodes)
def filter_cycles_by_memory(
cycles: list[list[NodeId]],
node_profiles: Mapping[NodeId, NodePerformanceProfile],
required_memory: Memory,
) -> list[list[NodeWithProfile]]:
filtered_cycles: list[list[NodeWithProfile]] = []
cycles: list[list[NodeInfo]], required_memory: Memory
) -> list[list[NodeInfo]]:
filtered_cycles: list[list[NodeInfo]] = []
for cycle in cycles:
if not all(node in node_profiles for node in cycle):
if not narrow_all_nodes(cycle):
continue
total_mem = sum(
(node_profiles[node].memory.ram_available for node in cycle), start=Memory()
(node.node_profile.memory.ram_available for node in cycle), start=Memory()
)
if total_mem >= required_memory:
filtered_cycles.append(
[
NodeWithProfile(node_id=node, node_profile=node_profiles[node])
for node in cycle
]
)
filtered_cycles.append(cast(list[NodeInfo], cycle))
return filtered_cycles
def get_smallest_cycles(
cycles: list[list[NodeWithProfile]],
) -> list[list[NodeWithProfile]]:
def get_smallest_cycles(cycles: list[list[NodeInfo]]) -> list[list[NodeInfo]]:
min_nodes = min(len(cycle) for cycle in cycles)
return [cycle for cycle in cycles if len(cycle) == min_nodes]
@@ -139,9 +135,11 @@ def get_shard_assignments_for_tensor_parallel(
def get_shard_assignments(
model_meta: ModelMetadata,
selected_cycle: list[NodeWithProfile],
selected_cycle: list[NodeInfo],
sharding: Sharding,
) -> ShardAssignments:
if not narrow_all_nodes(selected_cycle):
raise ValueError("All nodes must have profiles to create shard assignments")
match sharding:
case Sharding.Pipeline:
return get_shard_assignments_for_pipeline_parallel(
@@ -178,16 +176,17 @@ def get_hosts_from_subgraph(cycle_digraph: Topology) -> list[Host]:
current_node = cycle[i]
next_node = cycle[(i + 1) % len(cycle)]
for src, sink, connection in cycle_digraph.list_connections():
if not isinstance(connection, SocketConnection):
continue
if src == current_node and sink == next_node:
for connection in cycle_digraph.list_connections():
if (
connection.local_node_id == current_node.node_id
and connection.send_back_node_id == next_node.node_id
):
if get_thunderbolt and not connection.is_thunderbolt():
continue
assert connection.send_back_multiaddr is not None
host = Host(
ip=connection.sink_multiaddr.ip_address,
port=connection.sink_multiaddr.port,
ip=connection.send_back_multiaddr.ip_address,
port=connection.send_back_multiaddr.port,
)
hosts.append(host)
break
@@ -195,8 +194,8 @@ def get_hosts_from_subgraph(cycle_digraph: Topology) -> list[Host]:
return hosts
def get_mlx_jaccl_devices_matrix(
selected_cycle: list[NodeId],
def get_mlx_ibv_devices_matrix(
selected_cycle: list[NodeInfo],
cycle_digraph: Topology,
) -> list[list[str | None]]:
"""Build connectivity matrix mapping device i to device j via RDMA interface names.
@@ -215,38 +214,71 @@ def get_mlx_jaccl_devices_matrix(
if i == j:
continue
for conn in cycle_digraph.get_all_connections_between(node_i, node_j):
if isinstance(conn, RDMAConnection):
matrix[i][j] = conn.source_rdma_iface
# Find the IP J uses to talk to I
for connection_ip, _ in _find_connection_ip(node_j, node_i, cycle_digraph):
# This is a local IP on I, which is attached to an interface: find that interface
if interface_name := _find_rdma_interface_name_for_ip(
connection_ip, node_i
):
matrix[i][j] = interface_name
logger.info(
f"Interface name for {connection_ip} on {node_i.node_id}: {interface_name}"
)
break
else:
logger.warning(
f"Failed to find interface name between {node_i} and {node_j}"
f"Failed to find interface name between {node_i.node_id} and {node_j.node_id}"
)
raise ValueError(
"Current jaccl backend requires all-to-all RDMA connections"
"Current ibv backend requires all-to-all rdma connections"
)
return matrix
def _find_connection_ip(
node_i: NodeId,
node_j: NodeId,
node_i: NodeInfo,
node_j: NodeInfo,
cycle_digraph: Topology,
) -> Generator[tuple[str, bool]]:
"""Find all IP addresses that connect node i to node j."""
# TODO: Prioritise ETHERNET > ??WIFI > TB for coordinator
for connection in cycle_digraph.get_all_connections_between(node_i, node_j):
if isinstance(connection, SocketConnection):
yield connection.sink_multiaddr.ip_address, connection.is_thunderbolt()
"""Find all IP addresses that connect node i to node j, with thunderbolt flag."""
for connection in cycle_digraph.list_connections():
if (
connection.local_node_id == node_i.node_id
and connection.send_back_node_id == node_j.node_id
):
yield connection.send_back_multiaddr.ip_address, connection.is_thunderbolt()
def _find_rdma_interface_name_for_ip(
ip_address: str,
node_info: NodeInfo,
) -> str | None:
if node_info.node_profile is None:
return None
logger.info(f"Searching {node_info.node_id} for ip {ip_address}:")
for interface in node_info.node_profile.network_interfaces:
if interface.name not in ["en2", "en3", "en4", "en5", "en6", "en7"]:
continue
logger.info(f" | {interface.name}: {interface.ip_address}")
if interface.ip_address != ip_address:
continue
logger.info("Found")
return f"rdma_{interface.name}"
return None
def _find_interface_name_for_ip(
ip_address: str,
node_info: NodeWithProfile,
node_info: NodeInfo,
) -> str | None:
"""Find the interface name for an IP address on a node (any interface)."""
if node_info.node_profile is None:
return None
for interface in node_info.node_profile.network_interfaces:
if interface.ip_address == ip_address:
return interface.name
@@ -255,7 +287,7 @@ def _find_interface_name_for_ip(
def _find_ip_prioritised(
node: NodeWithProfile, other_node: NodeWithProfile, cycle_digraph: Topology
node: NodeInfo, other_node: NodeInfo, cycle_digraph: Topology
) -> str | None:
# TODO: Actually prioritize in the correct Ethernet > Wifi > Non-TB > TB order.
"""Find an IP address between nodes with prioritization.
@@ -266,7 +298,7 @@ def _find_ip_prioritised(
3. Non-Thunderbolt connections
4. Any other IP address
"""
ips = list(_find_connection_ip(node.node_id, other_node.node_id, cycle_digraph))
ips = list(_find_connection_ip(node, other_node, cycle_digraph))
# We expect a unique iface -> ip mapping
iface_map = {_find_interface_name_for_ip(ip, other_node): ip for ip, _ in ips}
@@ -292,7 +324,7 @@ def _find_ip_prioritised(
def get_mlx_ring_hosts_by_node(
selected_cycle: list[NodeWithProfile],
selected_cycle: list[NodeInfo],
cycle_digraph: Topology,
ephemeral_port: int,
) -> dict[NodeId, list[Host]]:
@@ -329,7 +361,7 @@ def get_mlx_ring_hosts_by_node(
connection_ip = _find_ip_prioritised(node, other_node, cycle_digraph)
if connection_ip is None:
logger.warning(
f"Failed to find prioritised connection IP between {node_id} and {other_node}"
f"Failed to find prioritised connection IP between {node_id} and {other_node.node_id}"
)
raise ValueError(
"MLX ring backend requires connectivity between neighbouring nodes"
@@ -343,32 +375,31 @@ def get_mlx_ring_hosts_by_node(
def get_mlx_jaccl_coordinators(
coordinator: NodeId,
selected_cycle: list[NodeInfo],
coordinator_port: int,
cycle_digraph: Topology,
) -> dict[NodeId, str]:
"""Get the coordinator addresses for MLX JACCL (rank 0 device).
"""Get the coordinator addresses for MLX Jaccl (rank 0 device).
Select an IP address that each node can reach for the rank 0 node. Returns
address in format "X.X.X.X:PORT" per node.
"""
logger.info(f"Selecting coordinator: {coordinator}")
rank_0_node = selected_cycle[0]
logger.debug(f"Selecting coordinator from rank 0 node: {rank_0_node.node_id}")
def get_ip_for_node(n: NodeId) -> str:
if n == coordinator:
def get_ip_for_node(n: NodeInfo) -> str:
if n.node_id == rank_0_node.node_id:
return "0.0.0.0"
for ip, _ in _find_connection_ip(n, coordinator, cycle_digraph):
ip = _find_ip_prioritised(n, rank_0_node, cycle_digraph)
if ip:
return ip
logger.warning(
f"Failed to find directly connected ip between {n} and {coordinator}"
)
raise ValueError(
"Current jaccl backend requires all participating devices to be able to communicate"
f"Failed to find directly connected ip between {n.node_id} and {rank_0_node.node_id}"
)
raise ValueError("Current ibv backend requires all-to-all rdma connections")
return {
n: f"{get_ip_for_node(n)}:{coordinator_port}"
for n in cycle_digraph.list_nodes()
n.node_id: f"{get_ip_for_node(n)}:{coordinator_port}" for n in selected_cycle
}

View File

@@ -1,36 +1,67 @@
from typing import Callable
import pytest
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import (
MemoryUsage,
MemoryPerformanceProfile,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from exo.shared.types.topology import RDMAConnection, SocketConnection
from exo.shared.types.topology import Connection, ConnectionProfile, NodeInfo
def create_node_profile(memory: int) -> NodePerformanceProfile:
return NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=MemoryUsage.from_bytes(
ram_total=1000,
ram_available=memory,
swap_total=1000,
swap_available=1000,
),
network_interfaces=[],
system=SystemPerformanceProfile(),
)
@pytest.fixture
def create_node():
def _create_node(memory: int, node_id: NodeId | None = None) -> NodeInfo:
if node_id is None:
node_id = NodeId()
return NodeInfo(
node_id=node_id,
node_profile=NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=MemoryPerformanceProfile.from_bytes(
ram_total=1000,
ram_available=memory,
swap_total=1000,
swap_available=1000,
),
network_interfaces=[],
system=SystemPerformanceProfile(),
),
)
return _create_node
# TODO: this is a hack to get the port for the send_back_multiaddr
def create_connection(ip: int, sink_port: int = 1234) -> SocketConnection:
return SocketConnection(
sink_multiaddr=Multiaddr(address=f"/ip4/169.254.0.{ip}/tcp/{sink_port}"),
)
@pytest.fixture
def create_connection() -> Callable[[NodeId, NodeId, int | None], Connection]:
port_counter = 1235
ip_counter = 1
def _create_connection(
source_node_id: NodeId, sink_node_id: NodeId, send_back_port: int | None = None
) -> Connection:
nonlocal port_counter
nonlocal ip_counter
# assign unique ips
ip_counter += 1
if send_back_port is None:
send_back_port = port_counter
port_counter += 1
return Connection(
local_node_id=source_node_id,
send_back_node_id=sink_node_id,
send_back_multiaddr=Multiaddr(
address=f"/ip4/169.254.0.{ip_counter}/tcp/{send_back_port}"
),
connection_profile=ConnectionProfile(
throughput=1000, latency=1000, jitter=1000
),
)
def create_rdma_connection(iface: int) -> RDMAConnection:
return RDMAConnection(
source_rdma_iface=f"rdma_en{iface}", sink_rdma_iface=f"rdma_en{iface}"
)
return _create_connection

View File

@@ -19,13 +19,15 @@ from exo.shared.types.events import (
ForwarderEvent,
IndexedEvent,
InstanceCreated,
NodeGatheredInfo,
NodePerformanceMeasured,
TaskCreated,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import (
MemoryUsage,
MemoryPerformanceProfile,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from exo.shared.types.tasks import ChatCompletion as ChatCompletionTask
from exo.shared.types.tasks import TaskStatus
@@ -81,14 +83,21 @@ async def test_master():
origin=sender_node_id,
session=session_id,
event=(
NodeGatheredInfo(
NodePerformanceMeasured(
when=str(datetime.now(tz=timezone.utc)),
node_id=node_id,
info=MemoryUsage(
ram_total=Memory.from_bytes(678948 * 1024),
ram_available=Memory.from_bytes(678948 * 1024),
swap_total=Memory.from_bytes(0),
swap_available=Memory.from_bytes(0),
node_profile=NodePerformanceProfile(
model_id="maccy",
chip_id="arm",
friendly_name="test",
memory=MemoryPerformanceProfile(
ram_total=Memory.from_bytes(678948 * 1024),
ram_available=Memory.from_bytes(678948 * 1024),
swap_total=Memory.from_bytes(0),
swap_available=Memory.from_bytes(0),
),
network_interfaces=[],
system=SystemPerformanceProfile(),
),
)
),
@@ -154,7 +163,7 @@ async def test_master():
assert events[0].idx == 0
assert events[1].idx == 1
assert events[2].idx == 2
assert isinstance(events[0].event, NodeGatheredInfo)
assert isinstance(events[0].event, NodePerformanceMeasured)
assert isinstance(events[1].event, InstanceCreated)
created_instance = events[1].event.instance
assert isinstance(created_instance, MlxRingInstance)

View File

@@ -1,3 +1,5 @@
from typing import Callable
import pytest
from loguru import logger
@@ -5,20 +7,14 @@ from exo.master.placement import (
get_transition_events,
place_instance,
)
from exo.master.tests.conftest import (
create_connection,
create_node_profile,
create_rdma_connection,
)
from exo.shared.topology import Topology
from exo.shared.types.commands import PlaceInstance
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.events import InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import NetworkInterfaceInfo
from exo.shared.types.topology import SocketConnection
from exo.shared.types.profiling import NetworkInterfaceInfo, NodePerformanceProfile
from exo.shared.types.topology import Connection, NodeInfo
from exo.shared.types.worker.instances import (
Instance,
InstanceId,
@@ -30,6 +26,11 @@ from exo.shared.types.worker.runners import ShardAssignments
from exo.shared.types.worker.shards import Sharding
@pytest.fixture
def topology() -> Topology:
return Topology()
@pytest.fixture
def instance() -> Instance:
return MlxRingInstance(
@@ -76,36 +77,34 @@ def test_get_instance_placements_create_instance(
available_memory: tuple[int, int, int],
total_layers: int,
expected_layers: tuple[int, int, int],
topology: Topology,
model_meta: ModelMetadata,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
model_meta.n_layers = total_layers
model_meta.storage_size.in_bytes = sum(
available_memory
) # make it exactly fit across all nodes
topology = Topology()
cic = place_instance_command(model_meta)
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
profiles = {
node_id_a: create_node_profile(available_memory[0]),
node_id_b: create_node_profile(available_memory[1]),
node_id_c: create_node_profile(available_memory[2]),
}
topology.add_node(node_id_a)
topology.add_node(node_id_b)
topology.add_node(node_id_c)
topology.add_connection(node_id_a, node_id_b, create_connection(1))
topology.add_connection(node_id_b, node_id_c, create_connection(2))
topology.add_connection(node_id_c, node_id_a, create_connection(3))
topology.add_connection(node_id_c, node_id_b, create_connection(4))
topology.add_connection(node_id_a, node_id_c, create_connection(5))
topology.add_connection(node_id_b, node_id_a, create_connection(6))
topology.add_node(create_node(available_memory[0], node_id_a))
topology.add_node(create_node(available_memory[1], node_id_b))
topology.add_node(create_node(available_memory[2], node_id_c))
# Add bidirectional connections for ring topology
topology.add_connection(create_connection(node_id_a, node_id_b))
topology.add_connection(create_connection(node_id_b, node_id_a))
topology.add_connection(create_connection(node_id_b, node_id_c))
topology.add_connection(create_connection(node_id_c, node_id_b))
topology.add_connection(create_connection(node_id_c, node_id_a))
topology.add_connection(create_connection(node_id_a, node_id_c))
# act
placements = place_instance(cic, topology, {}, profiles)
placements = place_instance(cic, topology, {})
# assert
assert len(placements) == 1
@@ -131,11 +130,12 @@ def test_get_instance_placements_create_instance(
assert shards_sorted[-1].end_layer == total_layers
def test_get_instance_placements_one_node_exact_fit() -> None:
def test_get_instance_placements_one_node_exact_fit(
create_node: Callable[[int, NodeId | None], NodeInfo],
) -> None:
topology = Topology()
node_id = NodeId()
topology.add_node(node_id)
profiles = {node_id: create_node_profile(1000 * 1024)}
topology.add_node(create_node(1000 * 1024, node_id))
cic = place_instance_command(
ModelMetadata(
model_id=ModelId("test-model"),
@@ -146,7 +146,7 @@ def test_get_instance_placements_one_node_exact_fit() -> None:
supports_tensor=True,
),
)
placements = place_instance(cic, topology, {}, profiles)
placements = place_instance(cic, topology, {})
assert len(placements) == 1
instance_id = list(placements.keys())[0]
@@ -157,11 +157,12 @@ def test_get_instance_placements_one_node_exact_fit() -> None:
assert len(instance.shard_assignments.runner_to_shard) == 1
def test_get_instance_placements_one_node_fits_with_extra_memory() -> None:
def test_get_instance_placements_one_node_fits_with_extra_memory(
create_node: Callable[[int, NodeId | None], NodeInfo],
) -> None:
topology = Topology()
node_id = NodeId()
topology.add_node(node_id)
profiles = {node_id: create_node_profile(1001 * 1024)}
topology.add_node(create_node(1001 * 1024, node_id))
cic = place_instance_command(
ModelMetadata(
model_id=ModelId("test-model"),
@@ -172,7 +173,7 @@ def test_get_instance_placements_one_node_fits_with_extra_memory() -> None:
supports_tensor=True,
),
)
placements = place_instance(cic, topology, {}, profiles)
placements = place_instance(cic, topology, {})
assert len(placements) == 1
instance_id = list(placements.keys())[0]
@@ -183,11 +184,12 @@ def test_get_instance_placements_one_node_fits_with_extra_memory() -> None:
assert len(instance.shard_assignments.runner_to_shard) == 1
def test_get_instance_placements_one_node_not_fit() -> None:
def test_get_instance_placements_one_node_not_fit(
create_node: Callable[[int, NodeId | None], NodeInfo],
) -> None:
topology = Topology()
node_id = NodeId()
topology.add_node(node_id)
profiles = {node_id: create_node_profile(1000 * 1024)}
topology.add_node(create_node(1000 * 1024, node_id))
cic = place_instance_command(
model_meta=ModelMetadata(
model_id=ModelId("test-model"),
@@ -200,7 +202,7 @@ def test_get_instance_placements_one_node_not_fit() -> None:
)
with pytest.raises(ValueError, match="No cycles found with sufficient memory"):
place_instance(cic, topology, {}, profiles)
place_instance(cic, topology, {})
def test_get_transition_events_no_change(instance: Instance):
@@ -245,103 +247,179 @@ def test_get_transition_events_delete_instance(instance: Instance):
assert events[0].instance_id == instance_id
def test_placement_selects_leaf_nodes(
def test_placement_selects_cycle_with_most_memory(
topology: Topology,
model_meta: ModelMetadata,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
topology = Topology()
# Arrange two 3-node cycles with different total memory.
# With bidirectional connections for ring topology, both cycles have non-leaf nodes.
# The algorithm should select the cycle with the most available memory.
model_meta.storage_size = Memory.from_bytes(1000)
# Model requires more than any single node but fits within a 3-node cycle
model_meta.storage_size.in_bytes = 1500
model_meta.n_layers = 12
# Create node ids
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
node_id_d = NodeId()
node_id_e = NodeId()
node_id_f = NodeId()
profiles = {
node_id_a: create_node_profile(500),
node_id_b: create_node_profile(600),
node_id_c: create_node_profile(600),
node_id_d: create_node_profile(500),
}
# A-B-C cycle total memory = 1600 (< D-E-F total)
topology.add_node(create_node(400, node_id_a))
topology.add_node(create_node(400, node_id_b))
topology.add_node(create_node(800, node_id_c))
topology.add_node(node_id_a)
topology.add_node(node_id_b)
topology.add_node(node_id_c)
topology.add_node(node_id_d)
# D-E-F cycle total memory = 1800 (> A-B-C total)
topology.add_node(create_node(600, node_id_d))
topology.add_node(create_node(600, node_id_e))
topology.add_node(create_node(600, node_id_f))
# Daisy chain topology
topology.add_connection(node_id_a, node_id_b, create_connection(1))
topology.add_connection(node_id_b, node_id_a, create_connection(1))
topology.add_connection(node_id_b, node_id_c, create_connection(1))
topology.add_connection(node_id_c, node_id_b, create_connection(1))
topology.add_connection(node_id_c, node_id_d, create_connection(1))
topology.add_connection(node_id_d, node_id_c, create_connection(1))
# Build bidirectional cycles for ring topology
topology.add_connection(create_connection(node_id_a, node_id_b))
topology.add_connection(create_connection(node_id_b, node_id_a))
topology.add_connection(create_connection(node_id_b, node_id_c))
topology.add_connection(create_connection(node_id_c, node_id_b))
topology.add_connection(create_connection(node_id_c, node_id_a))
topology.add_connection(create_connection(node_id_a, node_id_c))
logger.info(list(topology.list_connections()))
topology.add_connection(create_connection(node_id_d, node_id_e))
topology.add_connection(create_connection(node_id_e, node_id_d))
topology.add_connection(create_connection(node_id_e, node_id_f))
topology.add_connection(create_connection(node_id_f, node_id_e))
topology.add_connection(create_connection(node_id_f, node_id_d))
topology.add_connection(create_connection(node_id_d, node_id_f))
cic = place_instance_command(
model_meta=model_meta,
)
# act
placements = place_instance(cic, topology, {}, profiles)
# Act
placements = place_instance(cic, topology, {})
# assert
# Assert: D-E-F cycle should be selected as it has more total memory
assert len(placements) == 1
instance = list(placements.values())[0]
instance_id = list(placements.keys())[0]
instance = placements[instance_id]
assigned_nodes = set(instance.shard_assignments.node_to_runner.keys())
assert assigned_nodes == set((node_id_a, node_id_b)) or assigned_nodes == set(
(node_id_c, node_id_d)
)
less_memory_cycle_nodes = {node_id_a, node_id_b, node_id_c}
more_memory_cycle_nodes = {node_id_d, node_id_e, node_id_f}
assert more_memory_cycle_nodes.issubset(assigned_nodes)
assert assigned_nodes.isdisjoint(less_memory_cycle_nodes)
def test_tensor_rdma_backend_connectivity_matrix(
topology: Topology,
model_meta: ModelMetadata,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
topology = Topology()
model_meta.n_layers = 12
model_meta.storage_size.in_bytes = 1500
node_a = NodeId()
node_b = NodeId()
node_c = NodeId()
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
profiles = {
node_a: create_node_profile(500),
node_b: create_node_profile(500),
node_c: create_node_profile(500),
}
node_a = create_node(500, node_id_a)
node_b = create_node(500, node_id_b)
node_c = create_node(500, node_id_c)
ethernet_interface = NetworkInterfaceInfo(
name="en0",
ip_address="192.168.1.100",
)
ethernet_conn = SocketConnection(
sink_multiaddr=Multiaddr(address=f"/ip4/192.168.1.{100}/tcp/{8000}")
)
profiles[node_a].network_interfaces = [ethernet_interface]
profiles[node_b].network_interfaces = [ethernet_interface]
profiles[node_c].network_interfaces = [ethernet_interface]
assert node_a.node_profile is not None
assert node_b.node_profile is not None
assert node_c.node_profile is not None
conn_a_b = create_connection(node_id_a, node_id_b)
conn_b_c = create_connection(node_id_b, node_id_c)
conn_c_a = create_connection(node_id_c, node_id_a)
conn_b_a = create_connection(node_id_b, node_id_a)
conn_c_b = create_connection(node_id_c, node_id_b)
conn_a_c = create_connection(node_id_a, node_id_c)
assert conn_a_b.send_back_multiaddr is not None
assert conn_b_c.send_back_multiaddr is not None
assert conn_c_a.send_back_multiaddr is not None
assert conn_b_a.send_back_multiaddr is not None
assert conn_c_b.send_back_multiaddr is not None
assert conn_a_c.send_back_multiaddr is not None
node_a.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_a.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_c_a.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_b_a.send_back_multiaddr.ip_address,
),
ethernet_interface,
],
system=node_a.node_profile.system,
)
node_b.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_b.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_c_b.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_a_b.send_back_multiaddr.ip_address,
),
ethernet_interface,
],
system=node_b.node_profile.system,
)
node_c.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_c.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_a_c.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_b_c.send_back_multiaddr.ip_address,
),
ethernet_interface,
],
system=node_c.node_profile.system,
)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(node_a, node_b, create_rdma_connection(3))
topology.add_connection(node_b, node_c, create_rdma_connection(4))
topology.add_connection(node_c, node_a, create_rdma_connection(5))
topology.add_connection(node_b, node_a, create_rdma_connection(3))
topology.add_connection(node_c, node_b, create_rdma_connection(4))
topology.add_connection(node_a, node_c, create_rdma_connection(5))
topology.add_connection(node_a, node_b, ethernet_conn)
topology.add_connection(node_b, node_c, ethernet_conn)
topology.add_connection(node_c, node_a, ethernet_conn)
topology.add_connection(node_a, node_c, ethernet_conn)
topology.add_connection(node_b, node_a, ethernet_conn)
topology.add_connection(node_c, node_b, ethernet_conn)
topology.add_connection(conn_a_b)
topology.add_connection(conn_b_c)
topology.add_connection(conn_c_a)
topology.add_connection(conn_b_a)
topology.add_connection(conn_c_b)
topology.add_connection(conn_a_c)
cic = PlaceInstance(
sharding=Sharding.Tensor,
@@ -351,7 +429,7 @@ def test_tensor_rdma_backend_connectivity_matrix(
min_nodes=1,
)
placements = place_instance(cic, topology, {}, profiles)
placements = place_instance(cic, topology, {})
assert len(placements) == 1
instance_id = list(placements.keys())[0]
@@ -359,10 +437,10 @@ def test_tensor_rdma_backend_connectivity_matrix(
assert isinstance(instance, MlxJacclInstance)
assert instance.jaccl_devices is not None
assert instance.ibv_devices is not None
assert instance.jaccl_coordinators is not None
matrix = instance.jaccl_devices
matrix = instance.ibv_devices
assert len(matrix) == 3
for i in range(3):
@@ -371,15 +449,15 @@ def test_tensor_rdma_backend_connectivity_matrix(
assigned_nodes = list(instance.shard_assignments.node_to_runner.keys())
node_to_idx = {node_id: idx for idx, node_id in enumerate(assigned_nodes)}
idx_a = node_to_idx[node_a]
idx_b = node_to_idx[node_b]
idx_c = node_to_idx[node_c]
idx_a = node_to_idx[node_id_a]
idx_b = node_to_idx[node_id_b]
idx_c = node_to_idx[node_id_c]
logger.info(matrix)
assert matrix[idx_a][idx_b] == "rdma_en3"
assert matrix[idx_b][idx_c] == "rdma_en4"
assert matrix[idx_c][idx_a] == "rdma_en5"
assert matrix[idx_a][idx_b] == "rdma_en4"
assert matrix[idx_b][idx_c] == "rdma_en3"
assert matrix[idx_c][idx_a] == "rdma_en3"
# Verify coordinators are set for all nodes
assert len(instance.jaccl_coordinators) == 3

View File

@@ -1,48 +1,56 @@
from typing import Callable
import pytest
from exo.master.placement_utils import (
NodeWithProfile,
filter_cycles_by_memory,
get_hosts_from_subgraph,
get_mlx_jaccl_coordinators,
get_shard_assignments,
get_smallest_cycles,
)
from exo.master.tests.conftest import create_connection, create_node_profile
from exo.shared.topology import Topology
from exo.shared.types.common import Host, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import NetworkInterfaceInfo, NodePerformanceProfile
from exo.shared.types.topology import Connection, NodeInfo
from exo.shared.types.worker.shards import Sharding
def test_filter_cycles_by_memory():
@pytest.fixture
def topology() -> Topology:
topology = Topology()
return topology
def test_filter_cycles_by_memory(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
node1_id = NodeId()
node2_id = NodeId()
topology = Topology()
node1 = create_node_profile(1000 * 1024)
node2 = create_node_profile(1000 * 1024)
node_profiles = {node1_id: node1, node2_id: node2}
node1 = create_node(1000 * 1024, node1_id)
node2 = create_node(1000 * 1024, node2_id)
topology.add_node(node1_id)
topology.add_node(node2_id)
topology.add_node(node1)
topology.add_node(node2)
connection1 = create_connection(1)
connection2 = create_connection(2)
connection1 = create_connection(node1_id, node2_id)
connection2 = create_connection(node2_id, node1_id)
topology.add_connection(node1_id, node2_id, connection1)
topology.add_connection(node2_id, node1_id, connection2)
topology.add_connection(connection1)
topology.add_connection(connection2)
cycles = topology.get_cycles()
assert len(cycles) == 1
assert len(cycles[0]) == 2
# act
filtered_cycles = filter_cycles_by_memory(
cycles, node_profiles, Memory.from_bytes(1)
)
filtered_cycles = filter_cycles_by_memory(cycles, Memory.from_bytes(1))
# assert
assert len(filtered_cycles) == 1
@@ -50,65 +58,64 @@ def test_filter_cycles_by_memory():
assert set(n.node_id for n in filtered_cycles[0]) == {node1_id, node2_id}
def test_filter_cycles_by_insufficient_memory():
def test_filter_cycles_by_insufficient_memory(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
node1_id = NodeId()
node2_id = NodeId()
topology = Topology()
node1 = create_node_profile(1000 * 1024)
node2 = create_node_profile(1000 * 1024)
node_profiles = {node1_id: node1, node2_id: node2}
node1 = create_node(1000 * 1024, node1_id)
node2 = create_node(1000 * 1024, node2_id)
topology.add_node(node1_id)
topology.add_node(node2_id)
topology.add_node(node1)
topology.add_node(node2)
connection1 = create_connection(1)
connection2 = create_connection(2)
connection1 = create_connection(node1_id, node2_id)
connection2 = create_connection(node2_id, node1_id)
topology.add_connection(node1_id, node2_id, connection1)
topology.add_connection(node2_id, node1_id, connection2)
topology.add_connection(connection1)
topology.add_connection(connection2)
# act
filtered_cycles = filter_cycles_by_memory(
topology.get_cycles(), node_profiles, Memory.from_kb(2001)
topology.get_cycles(), Memory.from_kb(2001)
)
# assert
assert len(filtered_cycles) == 0
def test_filter_multiple_cycles_by_memory():
def test_filter_multiple_cycles_by_memory(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
node_a = create_node_profile(500 * 1024)
node_b = create_node_profile(500 * 1024)
node_c = create_node_profile(1000 * 1024)
node_profiles = {
node_a_id: node_a,
node_b_id: node_b,
node_c_id: node_c,
}
node_a = create_node(500 * 1024, node_a_id)
node_b = create_node(500 * 1024, node_b_id)
node_c = create_node(1000 * 1024, node_c_id)
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(node_a_id, node_b_id, create_connection(1))
topology.add_connection(node_b_id, node_a_id, create_connection(2))
topology.add_connection(node_a_id, node_c_id, create_connection(3))
topology.add_connection(node_c_id, node_b_id, create_connection(4))
topology.add_connection(create_connection(node_a_id, node_b_id))
topology.add_connection(create_connection(node_b_id, node_a_id))
topology.add_connection(create_connection(node_a_id, node_c_id))
topology.add_connection(create_connection(node_c_id, node_b_id))
cycles = topology.get_cycles()
# act
filtered_cycles = filter_cycles_by_memory(
cycles, node_profiles, Memory.from_kb(1500)
)
filtered_cycles = filter_cycles_by_memory(cycles, Memory.from_kb(1500))
# assert
assert len(filtered_cycles) == 1
@@ -120,38 +127,31 @@ def test_filter_multiple_cycles_by_memory():
}
def test_get_smallest_cycles():
def test_get_smallest_cycles(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
node_a = create_node_profile(500 * 1024)
node_b = create_node_profile(500 * 1024)
node_c = create_node_profile(1000 * 1024)
node_profiles = {
node_a_id: node_a,
node_b_id: node_b,
node_c_id: node_c,
}
node_a = create_node(500 * 1024, node_a_id)
node_b = create_node(500 * 1024, node_b_id)
node_c = create_node(1000 * 1024, node_c_id)
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(node_a_id, node_b_id, create_connection(1))
topology.add_connection(node_b_id, node_a_id, create_connection(2))
topology.add_connection(node_a_id, node_c_id, create_connection(3))
topology.add_connection(node_c_id, node_b_id, create_connection(4))
cycles = [
[NodeWithProfile(node_id=nid, node_profile=node_profiles[nid]) for nid in cycle]
for cycle in topology.get_cycles()
]
topology.add_connection(create_connection(node_a_id, node_b_id))
topology.add_connection(create_connection(node_b_id, node_c_id))
topology.add_connection(create_connection(node_c_id, node_a_id))
topology.add_connection(create_connection(node_b_id, node_a_id))
# act
smallest_cycles = get_smallest_cycles(cycles)
smallest_cycles = get_smallest_cycles(topology.get_cycles())
# assert
assert len(smallest_cycles) == 1
@@ -168,6 +168,9 @@ def test_get_smallest_cycles():
],
)
def test_get_shard_assignments(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
available_memory: tuple[int, int, int],
total_layers: int,
expected_layers: tuple[int, int, int],
@@ -176,25 +179,19 @@ def test_get_shard_assignments(
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
node_a = create_node_profile(available_memory[0] * 1024)
node_b = create_node_profile(available_memory[1] * 1024)
node_c = create_node_profile(available_memory[2] * 1024)
node_profiles = {
node_a_id: node_a,
node_b_id: node_b,
node_c_id: node_c,
}
node_a = create_node(available_memory[0] * 1024, node_a_id)
node_b = create_node(available_memory[1] * 1024, node_b_id)
node_c = create_node(available_memory[2] * 1024, node_c_id)
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(node_a_id, node_b_id, create_connection(1))
topology.add_connection(node_b_id, node_c_id, create_connection(2))
topology.add_connection(node_c_id, node_a_id, create_connection(3))
topology.add_connection(node_b_id, node_a_id, create_connection(4))
topology.add_connection(create_connection(node_a_id, node_b_id))
topology.add_connection(create_connection(node_b_id, node_c_id))
topology.add_connection(create_connection(node_c_id, node_a_id))
topology.add_connection(create_connection(node_b_id, node_a_id))
model_meta = ModelMetadata(
model_id=ModelId("test-model"),
@@ -204,11 +201,7 @@ def test_get_shard_assignments(
hidden_size=1000,
supports_tensor=True,
)
cycles = [
[NodeWithProfile(node_id=nid, node_profile=node_profiles[nid]) for nid in cycle]
for cycle in topology.get_cycles()
]
cycles = topology.get_cycles()
selected_cycle = cycles[0]
# act
@@ -237,21 +230,28 @@ def test_get_shard_assignments(
)
def test_get_hosts_from_subgraph():
def test_get_hosts_from_subgraph(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId, int | None], Connection],
):
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
node_a = create_node(500, node_a_id)
node_b = create_node(500, node_b_id)
node_c = create_node(1000, node_c_id)
topology.add_connection(node_a_id, node_b_id, create_connection(1))
topology.add_connection(node_b_id, node_a_id, create_connection(2))
topology.add_connection(node_a_id, node_c_id, create_connection(3))
topology.add_connection(node_c_id, node_b_id, create_connection(4))
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(create_connection(node_a_id, node_b_id, 5001))
topology.add_connection(create_connection(node_b_id, node_c_id, 5002))
topology.add_connection(create_connection(node_c_id, node_a_id, 5003))
topology.add_connection(create_connection(node_b_id, node_a_id, 5004))
# act
hosts = get_hosts_from_subgraph(topology)
@@ -259,47 +259,108 @@ def test_get_hosts_from_subgraph():
# assert
assert len(hosts) == 3
expected_hosts = [
Host(ip=("169.254.0.2"), port=1234),
Host(ip=("169.254.0.3"), port=1234),
Host(ip=("169.254.0.4"), port=1234),
Host(ip=("169.254.0.2"), port=5001),
Host(ip=("169.254.0.3"), port=5002),
Host(ip=("169.254.0.4"), port=5003),
]
for expected_host in expected_hosts:
assert expected_host in hosts
def test_get_mlx_jaccl_coordinators():
def test_get_mlx_jaccl_coordinators(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId, int | None], Connection],
):
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
node_a = create_node(500 * 1024, node_a_id)
node_b = create_node(500 * 1024, node_b_id)
node_c = create_node(1000 * 1024, node_c_id)
topology.add_connection(node_a_id, node_b_id, create_connection(1))
topology.add_connection(node_b_id, node_a_id, create_connection(2))
topology.add_connection(node_a_id, node_c_id, create_connection(3))
topology.add_connection(node_c_id, node_b_id, create_connection(4))
conn_a_b = create_connection(node_a_id, node_b_id, 5001)
conn_b_a = create_connection(node_b_id, node_a_id, 5002)
conn_b_c = create_connection(node_b_id, node_c_id, 5003)
conn_c_b = create_connection(node_c_id, node_b_id, 5004)
conn_c_a = create_connection(node_c_id, node_a_id, 5005)
conn_a_c = create_connection(node_a_id, node_c_id, 5006)
conn_a_b = create_connection(1)
conn_b_a = create_connection(2)
conn_b_c = create_connection(3)
conn_c_b = create_connection(4)
conn_c_a = create_connection(5)
conn_a_c = create_connection(6)
# Update node profiles with network interfaces before adding to topology
assert node_a.node_profile is not None
assert node_b.node_profile is not None
assert node_c.node_profile is not None
topology.add_connection(node_a_id, node_b_id, conn_a_b)
topology.add_connection(node_b_id, node_a_id, conn_b_a)
topology.add_connection(node_b_id, node_c_id, conn_b_c)
topology.add_connection(node_c_id, node_b_id, conn_c_b)
topology.add_connection(node_c_id, node_a_id, conn_c_a)
topology.add_connection(node_a_id, node_c_id, conn_a_c)
node_a.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_a.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_a_b.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_a_c.send_back_multiaddr.ip_address,
),
],
system=node_a.node_profile.system,
)
node_b.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_b.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_b_a.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_b_c.send_back_multiaddr.ip_address,
),
],
system=node_b.node_profile.system,
)
node_c.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_c.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_c_b.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_c_a.send_back_multiaddr.ip_address,
),
],
system=node_c.node_profile.system,
)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(conn_a_b)
topology.add_connection(conn_b_a)
topology.add_connection(conn_b_c)
topology.add_connection(conn_c_b)
topology.add_connection(conn_c_a)
topology.add_connection(conn_a_c)
cycle = [node_a, node_b, node_c]
# act
coordinators = get_mlx_jaccl_coordinators(
node_a_id, coordinator_port=5000, cycle_digraph=topology
cycle, coordinator_port=5000, cycle_digraph=topology
)
# assert
@@ -328,11 +389,11 @@ def test_get_mlx_jaccl_coordinators():
# Non-rank-0 nodes should use the specific IP from their connection to rank 0
# node_b uses the IP from conn_b_a (node_b -> node_a)
assert coordinators[node_b_id] == (f"{conn_b_a.sink_multiaddr.ip_address}:5000"), (
"node_b should use the IP from conn_b_a"
)
assert coordinators[node_b_id] == (
f"{conn_b_a.send_back_multiaddr.ip_address}:5000"
), "node_b should use the IP from conn_b_a"
# node_c uses the IP from conn_c_a (node_c -> node_a)
assert coordinators[node_c_id] == (f"{conn_c_a.sink_multiaddr.ip_address}:5000"), (
"node_c should use the IP from conn_c_a"
)
assert coordinators[node_c_id] == (
f"{conn_c_a.send_back_multiaddr.ip_address}:5000"
), "node_c should use the IP from conn_c_a"

View File

@@ -1,14 +1,13 @@
import pytest
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import (
MemoryUsage,
MemoryPerformanceProfile,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from exo.shared.types.topology import SocketConnection
from exo.shared.types.topology import Connection, ConnectionProfile, NodeId, NodeInfo
@pytest.fixture
@@ -17,15 +16,20 @@ def topology() -> Topology:
@pytest.fixture
def connection() -> SocketConnection:
return SocketConnection(
sink_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/1235"),
def connection() -> Connection:
return Connection(
local_node_id=NodeId(),
send_back_node_id=NodeId(),
send_back_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/1235"),
connection_profile=ConnectionProfile(
throughput=1000, latency=1000, jitter=1000
),
)
@pytest.fixture
def node_profile() -> NodePerformanceProfile:
memory_profile = MemoryUsage.from_bytes(
memory_profile = MemoryPerformanceProfile.from_bytes(
ram_total=1000, ram_available=1000, swap_total=1000, swap_available=1000
)
system_profile = SystemPerformanceProfile()
@@ -39,85 +43,162 @@ def node_profile() -> NodePerformanceProfile:
)
def test_add_node(topology: Topology):
@pytest.fixture
def connection_profile() -> ConnectionProfile:
return ConnectionProfile(throughput=1000, latency=1000, jitter=1000)
def test_add_node(topology: Topology, node_profile: NodePerformanceProfile):
# arrange
node_id = NodeId()
# act
topology.add_node(node_id)
topology.add_node(NodeInfo(node_id=node_id, node_profile=node_profile))
# assert
assert topology.node_is_leaf(node_id)
data = topology.get_node_profile(node_id)
assert data == node_profile
def test_add_connection(topology: Topology, connection: SocketConnection):
def test_add_connection(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
node_a = NodeId()
node_b = NodeId()
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(node_a, node_b, connection)
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
# act
data = list(conn for _, _, conn in topology.list_connections())
data = topology.get_connection_profile(connection)
# assert
assert data == [connection]
assert data == connection.connection_profile
assert topology.node_is_leaf(node_a)
assert topology.node_is_leaf(node_b)
def test_update_node_profile(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
new_node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=MemoryPerformanceProfile.from_bytes(
ram_total=1000, ram_available=1000, swap_total=1000, swap_available=1000
),
network_interfaces=[],
system=SystemPerformanceProfile(),
)
# act
topology.update_node_profile(
connection.local_node_id, node_profile=new_node_profile
)
# assert
data = topology.get_node_profile(connection.local_node_id)
assert data == new_node_profile
def test_update_connection_profile(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
new_connection_profile = ConnectionProfile(
throughput=2000, latency=2000, jitter=2000
)
connection = Connection(
local_node_id=connection.local_node_id,
send_back_node_id=connection.send_back_node_id,
send_back_multiaddr=connection.send_back_multiaddr,
connection_profile=new_connection_profile,
)
# act
topology.update_connection_profile(connection)
# assert
data = topology.get_connection_profile(connection)
assert data == new_connection_profile
def test_remove_connection_still_connected(
topology: Topology, connection: SocketConnection
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
node_a = NodeId()
node_b = NodeId()
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(node_a, node_b, connection)
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
# act
topology.remove_connection(node_a, node_b, connection)
topology.remove_connection(connection)
# assert
assert list(topology.get_all_connections_between(node_a, node_b)) == []
assert topology.get_connection_profile(connection) is None
def test_remove_node_still_connected(topology: Topology, connection: SocketConnection):
def test_remove_node_still_connected(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
node_a = NodeId()
node_b = NodeId()
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(node_a, node_b, connection)
assert list(topology.out_edges(node_a)) == [(node_b, connection)]
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
# act
topology.remove_node(node_b)
topology.remove_node(connection.local_node_id)
# assert
assert list(topology.out_edges(node_a)) == []
assert topology.get_node_profile(connection.local_node_id) is None
def test_list_nodes(topology: Topology, connection: SocketConnection):
def test_list_nodes(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
node_a = NodeId()
node_b = NodeId()
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(node_a, node_b, connection)
assert list(topology.out_edges(node_a)) == [(node_b, connection)]
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
# act
nodes = list(topology.list_nodes())
# assert
assert len(nodes) == 2
assert all(isinstance(node, NodeId) for node in nodes)
assert {node for node in nodes} == {node_a, node_b}
assert all(isinstance(node, NodeInfo) for node in nodes)
assert {node.node_id for node in nodes} == {
connection.local_node_id,
connection.send_back_node_id,
}

View File

@@ -11,8 +11,10 @@ from exo.shared.types.events import (
IndexedEvent,
InstanceCreated,
InstanceDeleted,
NodeCreated,
NodeDownloadProgress,
NodeGatheredInfo,
NodeMemoryMeasured,
NodePerformanceMeasured,
NodeTimedOut,
RunnerDeleted,
RunnerStatusUpdated,
@@ -25,23 +27,13 @@ from exo.shared.types.events import (
TopologyEdgeCreated,
TopologyEdgeDeleted,
)
from exo.shared.types.profiling import NodePerformanceProfile
from exo.shared.types.profiling import NodePerformanceProfile, SystemPerformanceProfile
from exo.shared.types.state import State
from exo.shared.types.tasks import Task, TaskId, TaskStatus
from exo.shared.types.topology import RDMAConnection
from exo.shared.types.topology import NodeInfo
from exo.shared.types.worker.downloads import DownloadProgress
from exo.shared.types.worker.instances import Instance, InstanceId
from exo.shared.types.worker.runners import RunnerId, RunnerStatus
from exo.utils.info_gatherer.info_gatherer import (
MacmonMetrics,
MacTBConnections,
MacTBIdentifiers,
MemoryUsage,
MiscData,
NodeConfig,
NodeNetworkInterfaces,
StaticNodeInformation,
)
def event_apply(event: Event, state: State) -> State:
@@ -55,12 +47,16 @@ def event_apply(event: Event, state: State) -> State:
return apply_instance_created(event, state)
case InstanceDeleted():
return apply_instance_deleted(event, state)
case NodeCreated():
return apply_topology_node_created(event, state)
case NodeTimedOut():
return apply_node_timed_out(event, state)
case NodePerformanceMeasured():
return apply_node_performance_measured(event, state)
case NodeDownloadProgress():
return apply_node_download_progress(event, state)
case NodeGatheredInfo():
return apply_node_gathered_info(event, state)
case NodeMemoryMeasured():
return apply_node_memory_measured(event, state)
case RunnerDeleted():
return apply_runner_deleted(event, state)
case RunnerStatusUpdated():
@@ -192,7 +188,7 @@ def apply_runner_deleted(event: RunnerDeleted, state: State) -> State:
def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
topology = copy.deepcopy(state.topology)
topology = copy.copy(state.topology)
state.topology.remove_node(event.node_id)
node_profiles = {
key: value for key, value in state.node_profiles.items() if key != event.node_id
@@ -200,12 +196,8 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
last_seen = {
key: value for key, value in state.last_seen.items() if key != event.node_id
}
downloads = {
key: value for key, value in state.downloads.items() if key != event.node_id
}
return state.model_copy(
update={
"downloads": downloads,
"topology": topology,
"node_profiles": node_profiles,
"last_seen": last_seen,
@@ -213,69 +205,103 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
)
def apply_node_gathered_info(event: NodeGatheredInfo, state: State) -> State:
topology = copy.deepcopy(state.topology)
topology.add_node(event.node_id)
info = event.info
profile = state.node_profiles.get(event.node_id, NodePerformanceProfile())
# TODO: should be broken up into individual events instead of this monster
match info:
case MacmonMetrics():
profile.system = info.system_profile
profile.memory = info.memory
case MemoryUsage():
profile.memory = info
case NodeConfig():
pass
case MiscData():
profile.friendly_name = info.friendly_name
case StaticNodeInformation():
profile.model_id = info.model
profile.chip_id = info.chip
# TODO: makes me slightly sad
case NodeNetworkInterfaces():
profile.network_interfaces = info.ifaces
case MacTBIdentifiers():
profile.tb_interfaces = info.idents
case MacTBConnections():
conn_map = {
tb_ident.domain_uuid: (nid, tb_ident.rdma_interface)
for nid in state.node_profiles
for tb_ident in state.node_profiles[nid].tb_interfaces
}
as_rdma_conns = [
(
conn_map[tb_conn.sink_uuid][0],
RDMAConnection(
source_rdma_iface=conn_map[tb_conn.source_uuid][1],
sink_rdma_iface=conn_map[tb_conn.sink_uuid][1],
),
)
for tb_conn in info.conns
if tb_conn.source_uuid in conn_map
if tb_conn.sink_uuid in conn_map
]
topology.replace_all_out_tb_connections(event.node_id, as_rdma_conns)
last_seen = {**state.last_seen, event.node_id: datetime.fromisoformat(event.when)}
new_profiles = {**state.node_profiles, event.node_id: profile}
def apply_node_performance_measured(
event: NodePerformanceMeasured, state: State
) -> State:
new_profiles: Mapping[NodeId, NodePerformanceProfile] = {
**state.node_profiles,
event.node_id: event.node_profile,
}
last_seen: Mapping[NodeId, datetime] = {
**state.last_seen,
event.node_id: datetime.fromisoformat(event.when),
}
state = state.model_copy(update={"node_profiles": new_profiles})
topology = copy.copy(state.topology)
# TODO: NodeCreated
if not topology.contains_node(event.node_id):
topology.add_node(NodeInfo(node_id=event.node_id))
topology.update_node_profile(event.node_id, event.node_profile)
return state.model_copy(
update={
"node_profiles": new_profiles,
"last_seen": last_seen,
"topology": topology,
"last_seen": last_seen,
}
)
def apply_node_memory_measured(event: NodeMemoryMeasured, state: State) -> State:
existing = state.node_profiles.get(event.node_id)
topology = copy.copy(state.topology)
if existing is None:
created = NodePerformanceProfile(
model_id="unknown",
chip_id="unknown",
friendly_name="Unknown",
memory=event.memory,
network_interfaces=[],
system=SystemPerformanceProfile(
# TODO: flops_fp16=0.0,
gpu_usage=0.0,
temp=0.0,
sys_power=0.0,
pcpu_usage=0.0,
ecpu_usage=0.0,
ane_power=0.0,
),
)
created_profiles: Mapping[NodeId, NodePerformanceProfile] = {
**state.node_profiles,
event.node_id: created,
}
last_seen: Mapping[NodeId, datetime] = {
**state.last_seen,
event.node_id: datetime.fromisoformat(event.when),
}
if not topology.contains_node(event.node_id):
topology.add_node(NodeInfo(node_id=event.node_id))
# TODO: NodeCreated
topology.update_node_profile(event.node_id, created)
return state.model_copy(
update={
"node_profiles": created_profiles,
"topology": topology,
"last_seen": last_seen,
}
)
updated = existing.model_copy(update={"memory": event.memory})
updated_profiles: Mapping[NodeId, NodePerformanceProfile] = {
**state.node_profiles,
event.node_id: updated,
}
# TODO: NodeCreated
if not topology.contains_node(event.node_id):
topology.add_node(NodeInfo(node_id=event.node_id))
topology.update_node_profile(event.node_id, updated)
return state.model_copy(
update={"node_profiles": updated_profiles, "topology": topology}
)
def apply_topology_node_created(event: NodeCreated, state: State) -> State:
topology = copy.copy(state.topology)
topology.add_node(NodeInfo(node_id=event.node_id))
return state.model_copy(update={"topology": topology})
def apply_topology_edge_created(event: TopologyEdgeCreated, state: State) -> State:
topology = copy.deepcopy(state.topology)
topology.add_connection(event.source, event.sink, event.edge)
topology = copy.copy(state.topology)
topology.add_connection(event.edge)
return state.model_copy(update={"topology": topology})
def apply_topology_edge_deleted(event: TopologyEdgeDeleted, state: State) -> State:
topology = copy.deepcopy(state.topology)
topology.remove_connection(event.sink, event.source, event.edge)
topology = copy.copy(state.topology)
if not topology.contains_connection(event.edge):
return state
topology.remove_connection(event.edge)
# TODO: Clean up removing the reverse connection
return state.model_copy(update={"topology": topology})

View File

@@ -38,7 +38,6 @@ EXO_TEST_LOG = EXO_CACHE_HOME / "exo_test.log"
# Identity (config)
EXO_NODE_ID_KEYPAIR = EXO_CONFIG_HOME / "node_id.keypair"
EXO_CONFIG_FILE = EXO_CONFIG_HOME / "config.toml"
# libp2p topics for event forwarding
LIBP2P_LOCAL_EVENTS_TOPIC = "worker_events"

View File

@@ -24,8 +24,6 @@ class _InterceptHandler(logging.Handler):
except ValueError:
level = record.levelno
return
logger.opt(depth=3, exception=record.exc_info).log(level, record.getMessage())

View File

@@ -43,4 +43,7 @@ def test_apply_two_node_download_progress():
NodeDownloadProgress(download_progress=event2), state
)
# TODO: This test is failing. We should support the following:
# 1. Downloading multiple models concurrently on the same node (one per runner is fine).
# 2. Downloading a model, it completes, then downloading a different model on the same node.
assert new_state.downloads == {NodeId("node-1"): [event1, event2]}

View File

@@ -1,7 +1,7 @@
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.state import State
from exo.shared.types.topology import SocketConnection
from exo.shared.types.topology import Connection
def test_state_serialization_roundtrip() -> None:
@@ -11,21 +11,17 @@ def test_state_serialization_roundtrip() -> None:
node_a = NodeId("node-a")
node_b = NodeId("node-b")
connection = SocketConnection(
sink_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/10001"),
connection = Connection(
local_node_id=node_a,
send_back_node_id=node_b,
send_back_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/10001"),
)
state = State()
state.topology.add_connection(node_a, node_b, connection)
state.topology.add_connection(connection)
json_repr = state.model_dump_json()
restored_state = State.model_validate_json(json_repr)
assert (
state.topology.to_snapshot().nodes
== restored_state.topology.to_snapshot().nodes
)
assert set(state.topology.to_snapshot().connections) == set(
restored_state.topology.to_snapshot().connections
)
assert state.topology.to_snapshot() == restored_state.topology.to_snapshot()
assert restored_state.model_dump_json() == json_repr

View File

@@ -1,215 +1,203 @@
import contextlib
from collections.abc import Mapping, Sequence
from dataclasses import dataclass, field
from typing import Iterable
import rustworkx as rx
from pydantic import BaseModel, ConfigDict
from exo.shared.types.common import NodeId
from exo.shared.types.topology import RDMAConnection, SocketConnection
from exo.shared.types.profiling import ConnectionProfile, NodePerformanceProfile
from exo.shared.types.topology import Connection, NodeInfo
class TopologySnapshot(BaseModel):
nodes: Sequence[NodeId]
connections: Iterable[tuple[NodeId, NodeId, SocketConnection | RDMAConnection]]
nodes: list[NodeInfo]
connections: list[Connection]
model_config = ConfigDict(frozen=True, extra="forbid")
model_config = ConfigDict(frozen=True, extra="forbid", strict=True)
@dataclass
class Topology:
# the _graph can be used as a int -> NodeId map.
_graph: rx.PyDiGraph[NodeId, SocketConnection | RDMAConnection] = field(
init=False, default_factory=rx.PyDiGraph
)
_vertex_indices: dict[NodeId, int] = field(init=False, default_factory=dict)
def __init__(self) -> None:
self._graph: rx.PyDiGraph[NodeInfo, Connection] = rx.PyDiGraph()
self._node_id_to_rx_id_map: dict[NodeId, int] = dict()
self._rx_id_to_node_id_map: dict[int, NodeId] = dict()
self._edge_id_to_rx_id_map: dict[Connection, int] = dict()
def to_snapshot(self) -> TopologySnapshot:
return TopologySnapshot(
nodes=list(self.list_nodes()), connections=self.list_connections()
nodes=list(self.list_nodes()),
connections=list(self.list_connections()),
)
@classmethod
def from_snapshot(cls, snapshot: TopologySnapshot) -> "Topology":
topology = cls()
for node_id in snapshot.nodes:
for node in snapshot.nodes:
with contextlib.suppress(ValueError):
topology.add_node(node_id)
topology.add_node(node)
for source, sink, conn in snapshot.connections:
topology.add_connection(source, sink, conn)
for connection in snapshot.connections:
topology.add_connection(connection)
return topology
def add_node(self, node_id: NodeId) -> None:
if node_id in self._vertex_indices:
def add_node(self, node: NodeInfo) -> None:
if node.node_id in self._node_id_to_rx_id_map:
return
rx_id = self._graph.add_node(node_id)
self._vertex_indices[node_id] = rx_id
rx_id = self._graph.add_node(node)
self._node_id_to_rx_id_map[node.node_id] = rx_id
self._rx_id_to_node_id_map[rx_id] = node.node_id
def node_is_leaf(self, node_id: NodeId) -> bool:
return (
node_id in self._vertex_indices
and len(self._graph.neighbors(self._vertex_indices[node_id])) <= 1
node_id in self._node_id_to_rx_id_map
and len(self._graph.neighbors(self._node_id_to_rx_id_map[node_id])) == 1
)
def neighbours(self, node_id: NodeId) -> list[NodeId]:
return [
self._graph[rx_id]
for rx_id in self._graph.neighbors(self._vertex_indices[node_id])
self._rx_id_to_node_id_map[rx_id]
for rx_id in self._graph.neighbors(self._node_id_to_rx_id_map[node_id])
]
def out_edges(
self, node_id: NodeId
) -> Iterable[tuple[NodeId, SocketConnection | RDMAConnection]]:
if node_id not in self._vertex_indices:
def out_edges(self, node_id: NodeId) -> list[tuple[NodeId, Connection]]:
if node_id not in self._node_id_to_rx_id_map:
return []
return (
(self._graph[nid], conn)
for _, nid, conn in self._graph.out_edges(self._vertex_indices[node_id])
)
return [
(self._rx_id_to_node_id_map[nid], conn)
for _, nid, conn in self._graph.out_edges(
self._node_id_to_rx_id_map[node_id]
)
]
def contains_node(self, node_id: NodeId) -> bool:
return node_id in self._vertex_indices
return node_id in self._node_id_to_rx_id_map
def contains_connection(self, connection: Connection) -> bool:
return connection in self._edge_id_to_rx_id_map
def add_connection(
self,
source: NodeId,
sink: NodeId,
connection: SocketConnection | RDMAConnection,
connection: Connection,
) -> None:
if connection in self.get_all_connections_between(source, sink):
if connection.local_node_id not in self._node_id_to_rx_id_map:
self.add_node(NodeInfo(node_id=connection.local_node_id))
if connection.send_back_node_id not in self._node_id_to_rx_id_map:
self.add_node(NodeInfo(node_id=connection.send_back_node_id))
if connection in self._edge_id_to_rx_id_map:
return
if source not in self._vertex_indices:
self.add_node(source)
if sink not in self._vertex_indices:
self.add_node(sink)
src_id = self._node_id_to_rx_id_map[connection.local_node_id]
sink_id = self._node_id_to_rx_id_map[connection.send_back_node_id]
src_id = self._vertex_indices[source]
sink_id = self._vertex_indices[sink]
rx_id = self._graph.add_edge(src_id, sink_id, connection)
self._edge_id_to_rx_id_map[connection] = rx_id
_ = self._graph.add_edge(src_id, sink_id, connection)
def list_nodes(self) -> Iterable[NodeInfo]:
return (self._graph[i] for i in self._graph.node_indices())
def get_all_connections_between(
self, source: NodeId, sink: NodeId
) -> Iterable[SocketConnection | RDMAConnection]:
if source not in self._vertex_indices:
return []
if sink not in self._vertex_indices:
return []
def list_connections(self) -> Iterable[Connection]:
return (connection for _, _, connection in self._graph.weighted_edge_list())
src_id = self._vertex_indices[source]
sink_id = self._vertex_indices[sink]
def get_node_profile(self, node_id: NodeId) -> NodePerformanceProfile | None:
try:
return self._graph.get_all_edge_data(src_id, sink_id)
except rx.NoEdgeBetweenNodes:
return []
rx_idx = self._node_id_to_rx_id_map[node_id]
return self._graph.get_node_data(rx_idx).node_profile
except KeyError:
return None
def list_nodes(self) -> Iterable[NodeId]:
return self._graph.nodes()
def update_node_profile(
self, node_id: NodeId, node_profile: NodePerformanceProfile
) -> None:
rx_idx = self._node_id_to_rx_id_map[node_id]
self._graph[rx_idx].node_profile = node_profile
def map_connections(
self,
) -> Mapping[NodeId, Mapping[NodeId, Sequence[SocketConnection | RDMAConnection]]]:
base: dict[NodeId, dict[NodeId, list[SocketConnection | RDMAConnection]]] = {}
for src_id, sink_id, connection in self._graph.weighted_edge_list():
source = self._graph[src_id]
sink = self._graph[sink_id]
if source not in base:
base[source] = {}
if sink not in base[source]:
base[source][sink] = []
base[source][sink].append(connection)
return base
def update_connection_profile(self, connection: Connection) -> None:
rx_idx = self._edge_id_to_rx_id_map[connection]
self._graph.update_edge_by_index(rx_idx, connection)
def list_connections(
self,
) -> Iterable[tuple[NodeId, NodeId, SocketConnection | RDMAConnection]]:
return (
(
self._graph[src_id],
self._graph[sink_id],
connection,
)
for src_id, sink_id, connection in self._graph.weighted_edge_list()
)
def get_connection_profile(
self, connection: Connection
) -> ConnectionProfile | None:
try:
rx_idx = self._edge_id_to_rx_id_map[connection]
return self._graph.get_edge_data_by_index(rx_idx).connection_profile
except KeyError:
return None
def remove_node(self, node_id: NodeId) -> None:
if node_id not in self._vertex_indices:
if node_id not in self._node_id_to_rx_id_map:
return
rx_idx = self._vertex_indices[node_id]
for connection in self.list_connections():
if (
connection.local_node_id == node_id
or connection.send_back_node_id == node_id
):
self.remove_connection(connection)
rx_idx = self._node_id_to_rx_id_map[node_id]
self._graph.remove_node(rx_idx)
del self._vertex_indices[node_id]
del self._node_id_to_rx_id_map[node_id]
del self._rx_id_to_node_id_map[rx_idx]
def replace_all_out_tb_connections(
self, source: NodeId, new_connections: Sequence[tuple[NodeId, RDMAConnection]]
) -> None:
for conn_idx in self._graph.out_edge_indices(self._vertex_indices[source]):
if isinstance(self._graph.get_edge_data_by_index(conn_idx), RDMAConnection):
self._graph.remove_edge_from_index(conn_idx)
for sink, conn in new_connections:
self.add_connection(source, sink, conn)
def remove_connection(
self, source: NodeId, sink: NodeId, edge: SocketConnection | RDMAConnection
) -> None:
if source not in self._vertex_indices or sink not in self._vertex_indices:
def remove_connection(self, connection: Connection) -> None:
if connection not in self._edge_id_to_rx_id_map:
return
for conn_idx in self._graph.edge_indices_from_endpoints(
self._vertex_indices[source], self._vertex_indices[sink]
):
if self._graph.get_edge_data_by_index(conn_idx) == edge:
self._graph.remove_edge_from_index(conn_idx)
rx_idx = self._edge_id_to_rx_id_map[connection]
self._graph.remove_edge_from_index(rx_idx)
del self._edge_id_to_rx_id_map[connection]
def get_cycles(self) -> list[list[NodeId]]:
def get_cycles(self) -> list[list[NodeInfo]]:
cycle_idxs = rx.simple_cycles(self._graph)
cycles: list[list[NodeId]] = []
cycles: list[list[NodeInfo]] = []
for cycle_idx in cycle_idxs:
cycle = [self._graph[idx] for idx in cycle_idx]
cycles.append(cycle)
return cycles
def get_cycles_tb(self) -> list[list[NodeId]]:
def get_cycles_tb(self) -> list[list[NodeInfo]]:
tb_edges = [
(u, v, conn)
for u, v, conn in self._graph.weighted_edge_list()
if conn.is_thunderbolt()
]
tb_graph: rx.PyDiGraph[NodeId, SocketConnection] = rx.PyDiGraph()
tb_graph: rx.PyDiGraph[NodeInfo, Connection] = rx.PyDiGraph()
tb_graph.add_nodes_from(self._graph.nodes())
for u, v, conn in tb_edges:
if isinstance(conn, SocketConnection):
tb_graph.add_edge(u, v, conn)
tb_graph.add_edge(u, v, conn)
cycle_idxs = rx.simple_cycles(tb_graph)
cycles: list[list[NodeId]] = []
cycles: list[list[NodeInfo]] = []
for cycle_idx in cycle_idxs:
cycle = [tb_graph[idx] for idx in cycle_idx]
cycles.append(cycle)
return cycles
def get_subgraph_from_nodes(self, node_ids: list[NodeId]) -> "Topology":
rx_idxs = [self._vertex_indices[idx] for idx in node_ids]
def get_subgraph_from_nodes(self, nodes: list[NodeInfo]) -> "Topology":
node_idxs = [node.node_id for node in nodes]
rx_idxs = [self._node_id_to_rx_id_map[idx] for idx in node_idxs]
topology = Topology()
for rx_idx in rx_idxs:
topology.add_node(self._graph[rx_idx])
for source, sink, connection in self.list_connections():
if source in node_ids and sink in node_ids:
topology.add_connection(source, sink, connection)
for connection in self.list_connections():
if (
connection.local_node_id in node_idxs
and connection.send_back_node_id in node_idxs
):
topology.add_connection(connection)
return topology
def is_thunderbolt_cycle(self, cycle: list[NodeId]) -> bool:
node_idxs = [node for node in cycle]
rx_idxs = [self._vertex_indices[idx] for idx in node_idxs]
def is_thunderbolt_cycle(self, cycle: list[NodeInfo]) -> bool:
node_idxs = [node.node_id for node in cycle]
rx_idxs = [self._node_id_to_rx_id_map[idx] for idx in node_idxs]
for rid in rx_idxs:
for neighbor_rid in self._graph.neighbors(rid):
if neighbor_rid not in rx_idxs:

View File

@@ -2,14 +2,14 @@ from datetime import datetime
from pydantic import Field
from exo.shared.topology import SocketConnection
from exo.shared.topology import Connection, NodePerformanceProfile
from exo.shared.types.chunks import GenerationChunk
from exo.shared.types.common import CommandId, Id, NodeId, SessionId
from exo.shared.types.profiling import MemoryPerformanceProfile
from exo.shared.types.tasks import Task, TaskId, TaskStatus
from exo.shared.types.worker.downloads import DownloadProgress
from exo.shared.types.worker.instances import Instance, InstanceId
from exo.shared.types.worker.runners import RunnerId, RunnerStatus
from exo.utils.info_gatherer.info_gatherer import GatheredInfo
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
@@ -76,15 +76,25 @@ class RunnerDeleted(BaseEvent):
runner_id: RunnerId
# TODO
class NodeCreated(BaseEvent):
node_id: NodeId
class NodeTimedOut(BaseEvent):
node_id: NodeId
# TODO: bikeshed this naem
class NodeGatheredInfo(BaseEvent):
class NodePerformanceMeasured(BaseEvent):
node_id: NodeId
when: str # this is a manually cast datetime overrode by the master when the event is indexed, rather than the local time on the device
info: GatheredInfo # NB: this model is UNTAGGED!!! be warned for ser/de errors.
node_profile: NodePerformanceProfile
class NodeMemoryMeasured(BaseEvent):
node_id: NodeId
when: str # this is a manually cast datetime overrode by the master when the event is indexed, rather than the local time on the device
memory: MemoryPerformanceProfile
class NodeDownloadProgress(BaseEvent):
@@ -97,15 +107,11 @@ class ChunkGenerated(BaseEvent):
class TopologyEdgeCreated(BaseEvent):
source: NodeId
sink: NodeId
edge: SocketConnection
edge: Connection
class TopologyEdgeDeleted(BaseEvent):
source: NodeId
sink: NodeId
edge: SocketConnection
edge: Connection
Event = (
@@ -119,8 +125,10 @@ Event = (
| InstanceDeleted
| RunnerStatusUpdated
| RunnerDeleted
| NodeCreated
| NodeTimedOut
| NodeGatheredInfo
| NodePerformanceMeasured
| NodeMemoryMeasured
| NodeDownloadProgress
| ChunkGenerated
| TopologyEdgeCreated

View File

@@ -1,11 +1,10 @@
import re
from typing import ClassVar
from pydantic import BaseModel, ConfigDict, computed_field, field_validator
from pydantic import BaseModel, computed_field, field_validator
class Multiaddr(BaseModel):
model_config = ConfigDict(frozen=True)
address: str
PATTERNS: ClassVar[list[str]] = [

View File

@@ -1,14 +1,12 @@
from collections.abc import Sequence
from typing import Self
import psutil
from exo.shared.types.memory import Memory
from exo.shared.types.thunderbolt import TBIdentifier
from exo.utils.pydantic_ext import CamelCaseModel
class MemoryUsage(CamelCaseModel):
class MemoryPerformanceProfile(CamelCaseModel):
ram_total: Memory
ram_available: Memory
swap_total: Memory
@@ -46,6 +44,7 @@ class SystemPerformanceProfile(CamelCaseModel):
sys_power: float = 0.0
pcpu_usage: float = 0.0
ecpu_usage: float = 0.0
ane_power: float = 0.0
class NetworkInterfaceInfo(CamelCaseModel):
@@ -54,16 +53,15 @@ class NetworkInterfaceInfo(CamelCaseModel):
class NodePerformanceProfile(CamelCaseModel):
model_id: str = "Unknown"
chip_id: str = "Unknown"
friendly_name: str = "Unknown"
memory: MemoryUsage = MemoryUsage.from_bytes(
ram_total=0, ram_available=0, swap_total=0, swap_available=0
)
network_interfaces: Sequence[NetworkInterfaceInfo] = []
tb_interfaces: Sequence[TBIdentifier] = []
system: SystemPerformanceProfile = SystemPerformanceProfile()
model_id: str
chip_id: str
friendly_name: str
memory: MemoryPerformanceProfile
network_interfaces: list[NetworkInterfaceInfo] = []
system: SystemPerformanceProfile
class ConnectionProfile(CamelCaseModel):
pass
throughput: float
latency: float
jitter: float

View File

@@ -1,75 +0,0 @@
import anyio
from pydantic import BaseModel, Field
from exo.utils.pydantic_ext import CamelCaseModel
class TBConnection(CamelCaseModel):
source_uuid: str
sink_uuid: str
class TBIdentifier(CamelCaseModel):
rdma_interface: str
domain_uuid: str
## Intentionally minimal, only collecting data we care about - there's a lot more
class TBReceptacleTag(BaseModel, extra="ignore"):
receptacle_id_key: str | None = None
class TBConnectivityItem(BaseModel, extra="ignore"):
domain_uuid_key: str | None = None
class TBConnectivityData(BaseModel, extra="ignore"):
domain_uuid_key: str | None = None
items: list[TBConnectivityItem] | None = Field(None, alias="_items")
receptacle_1_tag: TBReceptacleTag | None = None
def ident(self, ifaces: dict[str, str]) -> TBIdentifier | None:
if (
self.domain_uuid_key is None
or self.receptacle_1_tag is None
or self.receptacle_1_tag.receptacle_id_key is None
):
return
tag = f"Thunderbolt {self.receptacle_1_tag.receptacle_id_key}"
assert tag in ifaces # doesn't need to be an assertion but im confident
# if tag not in ifaces: return None
iface = f"rdma_{ifaces[tag]}"
return TBIdentifier(rdma_interface=iface, domain_uuid=self.domain_uuid_key)
def conn(self) -> TBConnection | None:
if self.domain_uuid_key is None or self.items is None:
return
sink_key = next(
(
item.domain_uuid_key
for item in self.items
if item.domain_uuid_key is not None
),
None,
)
if sink_key is None:
return None
return TBConnection(source_uuid=self.domain_uuid_key, sink_uuid=sink_key)
class TBConnectivity(BaseModel, extra="ignore"):
SPThunderboltDataType: list[TBConnectivityData] = []
@classmethod
async def gather(cls) -> list[TBConnectivityData] | None:
proc = await anyio.run_process(
["system_profiler", "SPThunderboltDataType", "-json"], check=False
)
if proc.returncode != 0:
return None
# Saving you from PascalCase while avoiding too much pydantic
return TBConnectivity.model_validate_json(proc.stdout).SPThunderboltDataType

View File

@@ -1,32 +1,37 @@
from enum import Enum
from loguru import logger
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.utils.pydantic_ext import FrozenModel
from exo.shared.types.profiling import ConnectionProfile, NodePerformanceProfile
from exo.utils.pydantic_ext import CamelCaseModel
class RDMAConnection(FrozenModel):
source_rdma_iface: str
sink_rdma_iface: str
class NodeInfo(CamelCaseModel):
node_id: NodeId
node_profile: NodePerformanceProfile | None = None
class Connection(CamelCaseModel):
local_node_id: NodeId
send_back_node_id: NodeId
send_back_multiaddr: Multiaddr
connection_profile: ConnectionProfile | None = None
def __hash__(self) -> int:
return hash(
(
self.local_node_id,
self.send_back_node_id,
self.send_back_multiaddr.address,
)
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, Connection):
raise ValueError("Cannot compare Connection with non-Connection")
return (
self.local_node_id == other.local_node_id
and self.send_back_node_id == other.send_back_node_id
and self.send_back_multiaddr == other.send_back_multiaddr
)
def is_thunderbolt(self) -> bool:
logger.warning("duh")
return True
# TODO
class LinkType(str, Enum):
Thunderbolt = "Thunderbolt"
Ethernet = "Ethernet"
WiFi = "WiFi"
class SocketConnection(FrozenModel):
sink_multiaddr: Multiaddr
def __hash__(self):
return hash(self.sink_multiaddr.ip_address)
def is_thunderbolt(self) -> bool:
return str(self.sink_multiaddr.ipv4_address).startswith("169.254")
return str(self.send_back_multiaddr.ipv4_address).startswith("169.254")

View File

@@ -30,7 +30,7 @@ class MlxRingInstance(BaseInstance):
class MlxJacclInstance(BaseInstance):
jaccl_devices: list[list[str | None]]
ibv_devices: list[list[str | None]]
jaccl_coordinators: dict[NodeId, str]

View File

@@ -0,0 +1,43 @@
import asyncio
from abc import ABC, abstractmethod
from collections.abc import Coroutine
from typing import Callable
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
SystemPerformanceProfile,
)
class ResourceCollector(ABC):
@abstractmethod
async def collect(self) -> SystemPerformanceProfile | MemoryPerformanceProfile: ...
class SystemResourceCollector(ResourceCollector):
async def collect(self) -> SystemPerformanceProfile: ...
class MemoryResourceCollector(ResourceCollector):
async def collect(self) -> MemoryPerformanceProfile: ...
class ResourceMonitor:
data_collectors: list[ResourceCollector]
effect_handlers: set[
Callable[[SystemPerformanceProfile | MemoryPerformanceProfile], None]
]
async def _collect(
self,
) -> list[SystemPerformanceProfile | MemoryPerformanceProfile]:
tasks: list[
Coroutine[None, None, SystemPerformanceProfile | MemoryPerformanceProfile]
] = [collector.collect() for collector in self.data_collectors]
return await asyncio.gather(*tasks)
async def collect(self) -> None:
profiles = await self._collect()
for profile in profiles:
for effect_handler in self.effect_handlers:
effect_handler(profile)

View File

@@ -50,7 +50,9 @@ class RunnerReady(BaseRunnerStatus):
class RunnerRunning(BaseRunnerStatus):
pass
"""Runner is processing requests and can accept more (continuous batching)."""
active_requests: int = 0
class RunnerShuttingDown(BaseRunnerStatus):

View File

@@ -1,232 +0,0 @@
import os
import shutil
import sys
import tomllib
from collections.abc import Sequence
from dataclasses import dataclass, field
from subprocess import CalledProcessError
from typing import Self, cast
import anyio
from anyio import create_task_group, open_process
from anyio.abc import TaskGroup
from anyio.streams.buffered import BufferedByteReceiveStream
from anyio.streams.text import TextReceiveStream
from loguru import logger
from exo.shared.constants import EXO_CONFIG_FILE
from exo.shared.types.memory import Memory
from exo.shared.types.profiling import (
MemoryUsage,
NetworkInterfaceInfo,
)
from exo.shared.types.thunderbolt import TBConnection, TBConnectivity, TBIdentifier
from exo.utils.channels import Sender
from exo.utils.pydantic_ext import TaggedModel
from .macmon import MacmonMetrics
from .system_info import get_friendly_name, get_model_and_chip, get_network_interfaces
IS_DARWIN = sys.platform == "darwin"
class StaticNodeInformation(TaggedModel):
"""Node information that should NEVER change, to be gathered once at startup"""
model: str
chip: str
@classmethod
async def gather(cls) -> Self:
model, chip = await get_model_and_chip()
return cls(model=model, chip=chip)
class NodeNetworkInterfaces(TaggedModel):
ifaces: Sequence[NetworkInterfaceInfo]
class MacTBIdentifiers(TaggedModel):
idents: Sequence[TBIdentifier]
class MacTBConnections(TaggedModel):
conns: Sequence[TBConnection]
class NodeConfig(TaggedModel):
"""Node configuration from EXO_CONFIG_FILE, reloaded from the file only at startup. Other changes should come in through the API and propagate from there"""
# TODO
@classmethod
async def gather(cls) -> Self | None:
cfg_file = anyio.Path(EXO_CONFIG_FILE)
await cfg_file.touch(exist_ok=True)
async with await cfg_file.open("rb") as f:
try:
contents = (await f.read()).decode("utf-8")
data = tomllib.loads(contents)
return cls.model_validate(data)
except (tomllib.TOMLDecodeError, UnicodeDecodeError):
logger.warning("Invalid config file, skipping...")
return None
class MiscData(TaggedModel):
"""Node information that may slowly change that doesn't fall into the other categories"""
friendly_name: str
@classmethod
async def gather(cls) -> Self:
return cls(friendly_name=await get_friendly_name())
async def _gather_iface_map() -> dict[str, str] | None:
proc = await anyio.run_process(
["networksetup", "-listallhardwareports"], check=False
)
if proc.returncode != 0:
return None
ports: dict[str, str] = {}
port = ""
for line in proc.stdout.decode("utf-8").split("\n"):
if line.startswith("Hardware Port:"):
port = line.split(": ")[1]
elif line.startswith("Device:"):
ports[port] = line.split(": ")[1]
port = ""
if "" in ports:
del ports[""]
return ports
GatheredInfo = (
MacmonMetrics
| MemoryUsage
| NodeNetworkInterfaces
| MacTBIdentifiers
| MacTBConnections
| NodeConfig
| MiscData
| StaticNodeInformation
)
@dataclass
class InfoGatherer:
info_sender: Sender[GatheredInfo]
interface_watcher_interval: float | None = 10
misc_poll_interval: float | None = 60
system_profiler_interval: float | None = 5 if IS_DARWIN else None
memory_poll_rate: float | None = None if IS_DARWIN else 1
macmon_interval: float | None = 1 if IS_DARWIN else None
_tg: TaskGroup = field(init=False, default_factory=create_task_group)
async def run(self):
async with self._tg as tg:
if (macmon_path := shutil.which("macmon")) is not None:
tg.start_soon(self._monitor_macmon, macmon_path)
if IS_DARWIN:
tg.start_soon(self._monitor_system_profiler)
tg.start_soon(self._watch_system_info)
tg.start_soon(self._monitor_memory_usage)
tg.start_soon(self._monitor_misc)
nc = await NodeConfig.gather()
if nc is not None:
await self.info_sender.send(nc)
sni = await StaticNodeInformation.gather()
await self.info_sender.send(sni)
def shutdown(self):
self._tg.cancel_scope.cancel()
async def _monitor_misc(self):
if self.misc_poll_interval is None:
return
prev = await MiscData.gather()
await self.info_sender.send(prev)
while True:
curr = await MiscData.gather()
if prev != curr:
prev = curr
await self.info_sender.send(curr)
await anyio.sleep(self.misc_poll_interval)
async def _monitor_system_profiler(self):
if self.system_profiler_interval is None:
return
iface_map = await _gather_iface_map()
if iface_map is None:
return
old_idents = []
while True:
data = await TBConnectivity.gather()
assert data is not None
idents = [it for i in data if (it := i.ident(iface_map)) is not None]
if idents != old_idents:
await self.info_sender.send(MacTBIdentifiers(idents=idents))
old_idents = idents
conns = [it for i in data if (it := i.conn()) is not None]
await self.info_sender.send(MacTBConnections(conns=conns))
await anyio.sleep(self.system_profiler_interval)
async def _monitor_memory_usage(self):
override_memory_env = os.getenv("OVERRIDE_MEMORY_MB")
override_memory: int | None = (
Memory.from_mb(int(override_memory_env)).in_bytes
if override_memory_env
else None
)
if self.memory_poll_rate is None:
return
while True:
await self.info_sender.send(
MemoryUsage.from_psutil(override_memory=override_memory)
)
await anyio.sleep(self.memory_poll_rate)
async def _watch_system_info(self):
if self.interface_watcher_interval is None:
return
old_nics = []
while True:
nics = get_network_interfaces()
if nics != old_nics:
old_nics = nics
await self.info_sender.send(NodeNetworkInterfaces(ifaces=nics))
await anyio.sleep(self.interface_watcher_interval)
async def _monitor_macmon(self, macmon_path: str):
if self.macmon_interval is None:
return
# macmon pipe --interval [interval in ms]
try:
async with await open_process(
[macmon_path, "pipe", "--interval", str(self.macmon_interval * 1000)]
) as p:
if not p.stdout:
logger.critical("MacMon closed stdout")
return
async for text in TextReceiveStream(
BufferedByteReceiveStream(p.stdout)
):
await self.info_sender.send(MacmonMetrics.from_raw_json(text))
except CalledProcessError as e:
stderr_msg = "no stderr"
stderr_output = cast(bytes | str | None, e.stderr)
if stderr_output is not None:
stderr_msg = (
stderr_output.decode()
if isinstance(stderr_output, bytes)
else str(stderr_output)
)
logger.warning(
f"MacMon failed with return code {e.returncode}: {stderr_msg}"
)

View File

@@ -1,70 +0,0 @@
from typing import Self
from pydantic import BaseModel
from exo.shared.types.profiling import MemoryUsage, SystemPerformanceProfile
from exo.utils.pydantic_ext import TaggedModel
class _TempMetrics(BaseModel, extra="ignore"):
"""Temperature-related metrics returned by macmon."""
cpu_temp_avg: float
gpu_temp_avg: float
class _MemoryMetrics(BaseModel, extra="ignore"):
"""Memory-related metrics returned by macmon."""
ram_total: int
ram_usage: int
swap_total: int
swap_usage: int
class RawMacmonMetrics(BaseModel, extra="ignore"):
"""Complete set of metrics returned by macmon.
Unknown fields are ignored for forward-compatibility.
"""
timestamp: str # ignored
temp: _TempMetrics
memory: _MemoryMetrics
ecpu_usage: tuple[int, float] # freq mhz, usage %
pcpu_usage: tuple[int, float] # freq mhz, usage %
gpu_usage: tuple[int, float] # freq mhz, usage %
all_power: float
ane_power: float
cpu_power: float
gpu_power: float
gpu_ram_power: float
ram_power: float
sys_power: float
class MacmonMetrics(TaggedModel):
system_profile: SystemPerformanceProfile
memory: MemoryUsage
@classmethod
def from_raw(cls, raw: RawMacmonMetrics) -> Self:
return cls(
system_profile=SystemPerformanceProfile(
gpu_usage=raw.gpu_usage[1],
temp=raw.temp.gpu_temp_avg,
sys_power=raw.sys_power,
pcpu_usage=raw.pcpu_usage[1],
ecpu_usage=raw.ecpu_usage[1],
),
memory=MemoryUsage.from_bytes(
ram_total=raw.memory.ram_total,
ram_available=(raw.memory.ram_total - raw.memory.ram_usage),
swap_total=raw.memory.swap_total,
swap_available=(raw.memory.swap_total - raw.memory.swap_usage),
),
)
@classmethod
def from_raw_json(cls, json: str) -> Self:
return cls.from_raw(RawMacmonMetrics.model_validate_json(json))

View File

@@ -1,24 +0,0 @@
import sys
import pytest
from exo.shared.types.thunderbolt import (
TBConnectivity,
)
from exo.utils.info_gatherer.info_gatherer import (
_gather_iface_map, # pyright: ignore[reportPrivateUsage]
)
@pytest.mark.anyio
@pytest.mark.skipif(
sys.platform != "darwin", reason="TB info can only be gathered on macos"
)
async def test_tb_parsing():
data = await TBConnectivity.gather()
ifaces = await _gather_iface_map()
assert ifaces
assert data
for datum in data:
datum.ident(ifaces)
datum.conn()

View File

@@ -19,20 +19,11 @@ class CamelCaseModel(BaseModel):
alias_generator=to_camel,
validate_by_name=True,
extra="forbid",
# I want to reenable this ASAP, but it's causing an issue with TaskStatus
strict=True,
)
class FrozenModel(BaseModel):
model_config = ConfigDict(
alias_generator=to_camel,
validate_by_name=True,
extra="forbid",
strict=True,
frozen=True,
)
class TaggedModel(CamelCaseModel):
@model_serializer(mode="wrap")
def _serialize(self, handler: SerializerFunctionWrapHandler):

View File

@@ -28,8 +28,9 @@ def bar(send: MpSender[str]):
send.close()
# not async, just want the fail_after
@pytest.mark.anyio
async def test_channel_ipc():
async def test_channel_setup():
with fail_after(0.5):
s, r = mp_channel[str]()
p1 = mp.Process(target=foo, args=(r,))

View File

@@ -0,0 +1,282 @@
"""Batch generation engine using mlx_lm's BatchGenerator for continuous batching."""
import time
from dataclasses import dataclass, field
import mlx.core as mx
from mlx_lm.generate import BatchGenerator
from mlx_lm.sample_utils import make_sampler
from mlx_lm.tokenizer_utils import StreamingDetokenizer, TokenizerWrapper
from exo.shared.types.api import FinishReason, GenerationStats
from exo.shared.types.common import CommandId
from exo.shared.types.memory import Memory
from exo.shared.types.tasks import ChatCompletionTaskParams, TaskId
from exo.shared.types.worker.runner_response import GenerationResponse
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.constants import MAX_TOKENS
from exo.worker.engines.mlx.generator.distributed_sync import share_object
from exo.worker.engines.mlx.utils_mlx import apply_chat_template
from exo.worker.runner.bootstrap import logger
@dataclass
class ActiveRequest:
"""Tracks an active request in the batch."""
command_id: CommandId
task_id: TaskId
uid: int # BatchGenerator's internal ID
detokenizer: StreamingDetokenizer
tokens_generated: int = 0
prompt_tokens: int = 0
start_time: float = field(default_factory=time.perf_counter)
@dataclass
class BatchedGenerationResponse:
"""Response from batch engine, tagged with command_id and task_id."""
command_id: CommandId
task_id: TaskId
response: GenerationResponse
class BatchGenerationEngine:
"""Manages continuous batching using mlx_lm's BatchGenerator."""
def __init__(
self,
model: Model,
tokenizer: TokenizerWrapper,
group: mx.distributed.Group | None = None,
max_tokens: int = MAX_TOKENS,
completion_batch_size: int = 32,
prefill_batch_size: int = 8,
prefill_step_size: int = 2048,
):
self.model = model
self.tokenizer = tokenizer
self.max_tokens = max_tokens
self.active_requests: dict[int, ActiveRequest] = {}
self._pending_inserts: list[tuple[CommandId, TaskId, ChatCompletionTaskParams]] = []
self._pending_completions: list[int] = [] # UIDs completed but not yet synced/removed
self.group = group
self.rank = group.rank() if group else 0
self.is_distributed = group is not None and group.size() > 1
sampler = make_sampler(temp=0.7, top_p=1.0)
eos_tokens: set[int] = set(tokenizer.eos_token_ids or [])
self.batch_gen: BatchGenerator = BatchGenerator(
model=model,
max_tokens=max_tokens,
stop_tokens=eos_tokens,
sampler=sampler,
completion_batch_size=completion_batch_size,
prefill_batch_size=prefill_batch_size,
prefill_step_size=prefill_step_size,
)
logger.info(
f"BatchGenerationEngine initialized with completion_batch_size={completion_batch_size}, "
f"prefill_batch_size={prefill_batch_size}, distributed={self.is_distributed}"
)
def queue_request(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams,
) -> None:
"""Queue a request for insertion. Only rank 0 should call this.
In distributed mode, rank 0 receives tasks from the control plane and
queues them here. The actual insertion happens in sync_and_insert_pending()
which ensures all ranks insert the same requests together.
"""
assert self.rank == 0, "Only rank 0 should queue requests"
self._pending_inserts.append((command_id, task_id, task_params))
logger.info(f"Queued request {command_id} for insertion (pending={len(self._pending_inserts)})")
def sync_and_insert_pending(self) -> list[int]:
"""Sync pending inserts across ranks and insert them. Returns UIDs.
This method ensures all ranks insert the same requests in the same order.
In non-distributed mode, it simply inserts all pending requests.
In distributed mode, it broadcasts pending requests from rank 0 to all ranks.
Batches all pending inserts into a single batch_gen.insert() call for
efficient prefill batching.
"""
inserts_to_process: list[tuple[CommandId, TaskId, ChatCompletionTaskParams]]
if not self.is_distributed:
# Non-distributed: just insert directly from pending
inserts_to_process = list(self._pending_inserts)
else:
# Distributed: broadcast pending inserts from rank 0 to all ranks
assert self.group is not None
pending_data = self._pending_inserts if self.rank == 0 else None
synced_data = share_object(pending_data, self.rank, self.group)
if synced_data is None:
self._pending_inserts.clear()
return []
inserts_to_process = synced_data
if not inserts_to_process:
self._pending_inserts.clear()
return []
# Prepare all requests for batched insertion
all_tokens: list[list[int]] = []
all_max_tokens: list[int] = []
all_prompt_tokens: list[int] = []
request_info: list[tuple[CommandId, TaskId]] = []
for cmd_id, task_id, params in inserts_to_process:
prompt_str = apply_chat_template(self.tokenizer, params)
tokens: list[int] = self.tokenizer.encode(prompt_str, add_special_tokens=False)
max_tokens = params.max_tokens or self.max_tokens
all_tokens.append(tokens)
all_max_tokens.append(max_tokens)
all_prompt_tokens.append(len(tokens))
request_info.append((cmd_id, task_id))
# Single batched insert for efficient prefill
uids = self.batch_gen.insert(all_tokens, max_tokens=all_max_tokens)
# Track all inserted requests
for i, uid in enumerate(uids):
cmd_id, task_id = request_info[i]
self.active_requests[uid] = ActiveRequest(
command_id=cmd_id,
task_id=task_id,
uid=uid,
detokenizer=self.tokenizer.detokenizer,
prompt_tokens=all_prompt_tokens[i],
)
logger.info(f"Inserted request {cmd_id} with uid={uid}, prompt_tokens={all_prompt_tokens[i]}, max_tokens={all_max_tokens[i]}")
self._pending_inserts.clear()
return uids
def step(self) -> list[BatchedGenerationResponse]:
"""Run one decode step. Tracks completions but does not sync - call sync_completions() at budget boundaries."""
responses = self.batch_gen.next()
if not responses:
return []
results: list[BatchedGenerationResponse] = []
for r in responses:
uid: int = r.uid
req = self.active_requests.get(uid)
if req is None:
logger.warning(f"Received response for unknown uid={uid}")
continue
req.tokens_generated += 1
# Decode the token
token: int = r.token
req.detokenizer.add_token(token)
text: str = req.detokenizer.last_segment
stats: GenerationStats | None = None
finish_reason: FinishReason | None = None
raw_finish_reason: str | None = r.finish_reason
if raw_finish_reason is not None:
# Finalize to get remaining text
req.detokenizer.finalize()
text = req.detokenizer.last_segment
elapsed = time.perf_counter() - req.start_time
generation_tps = req.tokens_generated / elapsed if elapsed > 0 else 0.0
stats = GenerationStats(
prompt_tps=0.0, # Not tracked per-request in batch mode
generation_tps=generation_tps,
prompt_tokens=req.prompt_tokens,
generation_tokens=req.tokens_generated,
peak_memory_usage=Memory.from_gb(mx.get_peak_memory() / 1e9),
)
if raw_finish_reason == "stop":
finish_reason = "stop"
elif raw_finish_reason == "length":
finish_reason = "length"
else:
logger.warning(f"Unknown finish_reason: {raw_finish_reason}")
finish_reason = "stop"
# Track completion but don't remove yet - wait for sync_completions()
self._pending_completions.append(uid)
logger.info(f"Request {req.command_id} completed: {req.tokens_generated} tokens, {generation_tps:.2f} tps, reason={finish_reason}")
results.append(BatchedGenerationResponse(
command_id=req.command_id,
task_id=req.task_id,
response=GenerationResponse(text=text, token=token, finish_reason=finish_reason, stats=stats),
))
# In non-distributed mode, clean up completions immediately
if not self.is_distributed:
self._remove_completed()
return results
def sync_completions(self) -> None:
"""Sync and remove completed requests. Call at time budget boundaries in distributed mode."""
if not self._pending_completions:
return
if self.is_distributed:
assert self.group is not None
# Broadcast completions from rank 0 to ensure all ranks are in sync
synced_uids = share_object(
self._pending_completions if self.rank == 0 else None,
self.rank,
self.group,
)
if synced_uids:
self._pending_completions = synced_uids
self._remove_completed()
def _remove_completed(self) -> None:
"""Remove completed requests from tracking."""
for uid in self._pending_completions:
if uid in self.active_requests:
del self.active_requests[uid]
self._pending_completions.clear()
@property
def has_active_requests(self) -> bool:
return bool(self.active_requests or self.batch_gen.unprocessed_prompts)
@property
def has_pending_inserts(self) -> bool:
return bool(self._pending_inserts)
@property
def active_count(self) -> int:
return len(self.active_requests)
@property
def pending_count(self) -> int:
return len(self.batch_gen.unprocessed_prompts)
@property
def pending_insert_count(self) -> int:
return len(self._pending_inserts)
@property
def has_pending_completions(self) -> bool:
return bool(self._pending_completions)

View File

@@ -0,0 +1,42 @@
"""Distributed sync utilities using mx.distributed.all_sum() to broadcast from rank 0."""
# pyright: reportAny=false
import pickle
from typing import TypeVar, cast
import mlx.core as mx
from exo.worker.runner.bootstrap import logger
T = TypeVar("T")
def share_object(obj: T | None, rank: int, group: mx.distributed.Group) -> T | None:
"""Broadcast object from rank 0 to all ranks. Two-phase: size then data."""
logger.debug(f"share_object: rank={rank}, obj_type={type(obj).__name__ if obj else 'None'}")
if rank == 0:
if obj is None:
logger.debug("share_object: rank 0 broadcasting None (size=0)")
mx.eval(mx.distributed.all_sum(mx.array([0]), group=group))
logger.debug("share_object: rank 0 broadcast None complete")
return None
data = mx.array(list(pickle.dumps(obj)), dtype=mx.uint8)
logger.debug(f"share_object: rank 0 broadcasting size={data.size}")
mx.eval(mx.distributed.all_sum(mx.array([data.size]), group=group))
logger.debug("share_object: rank 0 broadcasting data")
mx.eval(mx.distributed.all_sum(data, group=group))
logger.debug("share_object: rank 0 broadcast complete")
return obj
else:
logger.debug("share_object: non-rank-0 waiting for size")
size = int(mx.distributed.all_sum(mx.array([0]), group=group).item())
logger.debug(f"share_object: non-rank-0 received size={size}")
if size == 0:
return None
data = mx.zeros(size, dtype=mx.uint8)
logger.debug("share_object: non-rank-0 waiting for data")
data = mx.distributed.all_sum(data, group=group)
mx.eval(data)
logger.debug("share_object: non-rank-0 received data")
return cast(T, pickle.loads(bytes(cast(list[int], data.tolist()))))

View File

@@ -0,0 +1,102 @@
"""Time budget iterator for controlling generation loop timing in distributed mode.
Based on mlx-lm's TimeBudget pattern - runs for a time budget then syncs,
rather than syncing every token. This reduces distributed sync overhead.
"""
import time
from typing import Iterator
import mlx.core as mx
from exo.worker.runner.bootstrap import logger
generation_stream = mx.new_stream(mx.default_device())
class TimeBudget(Iterator[None]):
"""Controls generation loop timing, syncing across ranks periodically.
In distributed mode, periodically syncs timing across all ranks to
dynamically adjust iteration count based on actual performance.
In non-distributed mode, simply runs for the time budget.
Usage:
for _ in TimeBudget(budget=0.5):
batch_engine.step()
# ... process responses ...
"""
def __init__(
self,
budget: float = 0.5,
iterations: int = 25,
sync_frequency: int = 10,
group: mx.distributed.Group | None = None,
):
"""Initialize TimeBudget.
Args:
budget: Time budget in seconds before yielding control
iterations: Initial number of iterations per budget period (distributed only)
sync_frequency: How often to sync timing across ranks (distributed only)
group: Distributed group, or None for non-distributed mode
"""
self._budget = budget
self._iterations = iterations
self._sync_frequency = sync_frequency
self._group = group
self._is_distributed = group is not None and group.size() > 1
# Runtime state
self._start: float = 0.0
self._current_iterations: int = 0
self._loops: int = 0
self._time_spent: float = 0.0
def __iter__(self) -> "TimeBudget":
self._start = time.perf_counter()
self._current_iterations = 0
return self
def __next__(self) -> None:
if not self._is_distributed:
# Non-distributed: just check time budget
if time.perf_counter() - self._start > self._budget:
raise StopIteration()
return None
# Distributed mode: iteration-based with periodic timing sync
self._current_iterations += 1
if self._current_iterations > self._iterations:
self._loops += 1
self._time_spent += time.perf_counter() - self._start
if self._loops % self._sync_frequency == 0:
# Sync timing across all ranks
assert self._group is not None
with mx.stream(generation_stream):
time_array = mx.array([self._time_spent], dtype=mx.float32)
total_time = mx.distributed.all_sum(time_array, group=self._group)
mx.eval(total_time)
loop_time = float(total_time.item())
avg_loop_time = loop_time / (self._group.size() * self._sync_frequency)
if avg_loop_time > 0:
factor = self._budget / avg_loop_time
self._iterations = max(round(self._iterations * factor), 1)
logger.debug(f"TimeBudget adjusted iterations to {self._iterations}")
self._loops = 0
self._time_spent = 0.0
raise StopIteration()
return None
@property
def iterations(self) -> int:
"""Current iterations per budget period."""
return self._iterations

View File

@@ -144,26 +144,20 @@ def mlx_distributed_init(
group = mx.distributed.init(backend="ring", strict=True)
case MlxJacclInstance(
jaccl_devices=jaccl_devices, jaccl_coordinators=jaccl_coordinators
ibv_devices=ibv_devices, jaccl_coordinators=jaccl_coordinators
):
assert all(
jaccl_devices[i][i] is None for i in range(len(jaccl_devices))
)
# Use RDMA connectivity matrix
coordination_file = (
f"./hosts_{bound_instance.instance.instance_id}_{rank}.json"
)
jaccl_devices_json = json.dumps(jaccl_devices)
ibv_devices_json = json.dumps(ibv_devices)
with open(coordination_file, "w") as f:
_ = f.write(jaccl_devices_json)
_ = f.write(ibv_devices_json)
jaccl_coordinator = jaccl_coordinators[bound_instance.bound_node_id]
# TODO: update once upstream fixes
logger.info(
f"rank {rank} MLX_IBV_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
)
logger.info(f"rank {rank} MLX_IBV_DEVICES: {ibv_devices_json}")
logger.info(f"rank {rank} MLX_JACCL_COORDINATOR: {jaccl_coordinator}")
os.environ["MLX_IBV_DEVICES"] = coordination_file
os.environ["MLX_RANK"] = str(rank)

View File

@@ -16,7 +16,8 @@ from exo.shared.types.events import (
ForwarderEvent,
IndexedEvent,
NodeDownloadProgress,
NodeGatheredInfo,
NodeMemoryMeasured,
NodePerformanceMeasured,
TaskCreated,
TaskStatusUpdated,
TopologyEdgeCreated,
@@ -24,6 +25,7 @@ from exo.shared.types.events import (
)
from exo.shared.types.models import ModelId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import MemoryPerformanceProfile, NodePerformanceProfile
from exo.shared.types.state import State
from exo.shared.types.tasks import (
CreateRunner,
@@ -32,7 +34,7 @@ from exo.shared.types.tasks import (
Task,
TaskStatus,
)
from exo.shared.types.topology import SocketConnection
from exo.shared.types.topology import Connection
from exo.shared.types.worker.downloads import (
DownloadCompleted,
DownloadOngoing,
@@ -43,14 +45,14 @@ from exo.shared.types.worker.runners import RunnerId
from exo.shared.types.worker.shards import ShardMetadata
from exo.utils.channels import Receiver, Sender, channel
from exo.utils.event_buffer import OrderedBuffer
from exo.utils.info_gatherer.info_gatherer import GatheredInfo, InfoGatherer
from exo.utils.info_gatherer.net_profile import check_reachable
from exo.worker.download.download_utils import (
map_repo_download_progress_to_download_progress_data,
)
from exo.worker.download.shard_downloader import RepoDownloadProgress, ShardDownloader
from exo.worker.plan import plan
from exo.worker.runner.runner_supervisor import RunnerSupervisor
from exo.worker.utils import start_polling_memory_metrics, start_polling_node_metrics
from exo.worker.utils.net_profile import check_reachable
class Worker:
@@ -84,7 +86,7 @@ class Worker:
self.state: State = State()
self.download_status: dict[ModelId, DownloadProgress] = {}
self.runners: dict[RunnerId, RunnerSupervisor] = {}
self._tg: TaskGroup = create_task_group()
self._tg: TaskGroup | None = None
self._nack_cancel_scope: CancelScope | None = None
self._nack_attempts: int = 0
@@ -96,13 +98,37 @@ class Worker:
async def run(self):
logger.info("Starting Worker")
info_send, info_recv = channel[GatheredInfo]()
info_gatherer: InfoGatherer = InfoGatherer(info_send)
# TODO: CLEANUP HEADER
async def resource_monitor_callback(
node_performance_profile: NodePerformanceProfile,
) -> None:
await self.event_sender.send(
NodePerformanceMeasured(
node_id=self.node_id,
node_profile=node_performance_profile,
when=str(datetime.now(tz=timezone.utc)),
),
)
async with self._tg as tg:
tg.start_soon(info_gatherer.run)
tg.start_soon(self._forward_info, info_recv)
async def memory_monitor_callback(
memory_profile: MemoryPerformanceProfile,
) -> None:
await self.event_sender.send(
NodeMemoryMeasured(
node_id=self.node_id,
memory=memory_profile,
when=str(datetime.now(tz=timezone.utc)),
)
)
# END CLEANUP
async with create_task_group() as tg:
self._tg = tg
tg.start_soon(self.plan_step)
tg.start_soon(start_polling_node_metrics, resource_monitor_callback)
tg.start_soon(start_polling_memory_metrics, memory_monitor_callback)
tg.start_soon(self._emit_existing_download_progress)
tg.start_soon(self._connection_message_event_writer)
tg.start_soon(self._resend_out_for_delivery)
@@ -116,17 +142,6 @@ class Worker:
for runner in self.runners.values():
runner.shutdown()
async def _forward_info(self, recv: Receiver[GatheredInfo]):
with recv as info_stream:
async for info in info_stream:
await self.event_sender.send(
NodeGatheredInfo(
node_id=self.node_id,
when=str(datetime.now(tz=timezone.utc)),
info=info,
)
)
async def _event_applier(self):
with self.global_event_receiver as events:
async for f_event in events:
@@ -146,6 +161,7 @@ class Worker:
self._nack_cancel_scope is None
or self._nack_cancel_scope.cancel_called
):
assert self._tg
# Request the next index.
self._tg.start_soon(
self._nack_request, self.state.last_event_applied_idx + 1
@@ -236,7 +252,8 @@ class Worker:
await self.runners[self._task_to_runner_id(task)].start_task(task)
def shutdown(self):
self._tg.cancel_scope.cancel()
if self._tg:
self._tg.cancel_scope.cancel()
def _task_to_runner_id(self, task: Task):
instance = self.state.instances[task.instance_id]
@@ -253,24 +270,24 @@ class Worker:
match msg.connection_type:
case ConnectionMessageType.Connected:
return TopologyEdgeCreated(
source=self.node_id,
sink=msg.node_id,
edge=SocketConnection(
sink_multiaddr=Multiaddr(
edge=Connection(
local_node_id=self.node_id,
send_back_node_id=msg.node_id,
send_back_multiaddr=Multiaddr(
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
),
),
)
)
case ConnectionMessageType.Disconnected:
return TopologyEdgeDeleted(
source=self.node_id,
sink=msg.node_id,
edge=SocketConnection(
sink_multiaddr=Multiaddr(
edge=Connection(
local_node_id=self.node_id,
send_back_node_id=msg.node_id,
send_back_multiaddr=Multiaddr(
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
),
),
)
)
async def _nack_request(self, since_idx: int) -> None:
@@ -319,6 +336,7 @@ class Worker:
event_sender=self.event_sender.clone(),
)
self.runners[task.bound_instance.bound_runner_id] = runner
assert self._tg
self._tg.start_soon(runner.run)
return runner
@@ -381,6 +399,7 @@ class Worker:
last_progress_time = current_time()
self.shard_downloader.on_progress(download_progress_callback)
assert self._tg
self._tg.start_soon(self.shard_downloader.ensure_shard, task.shard_metadata)
async def _forward_events(self) -> None:
@@ -403,9 +422,7 @@ class Worker:
while True:
# TODO: EdgeDeleted
edges = set(self.state.topology.list_connections())
conns = await check_reachable(
self.state.topology, self.state.node_profiles, self.node_id
)
conns = await check_reachable(self.state.topology, self.node_id)
for nid in conns:
for ip in conns[nid]:
if "127.0.0.1" in ip or "localhost" in ip:
@@ -413,31 +430,26 @@ class Worker:
f"Loopback connection should not happen: {ip=} for {nid=}"
)
edge = SocketConnection(
edge = Connection(
local_node_id=self.node_id,
send_back_node_id=nid,
# nonsense multiaddr
sink_multiaddr=Multiaddr(address=f"/ip4/{ip}/tcp/52415")
send_back_multiaddr=Multiaddr(address=f"/ip4/{ip}/tcp/52415")
if "." in ip
# nonsense multiaddr
else Multiaddr(address=f"/ip6/{ip}/tcp/52415"),
)
if edge not in edges:
logger.debug(f"ping discovered {edge=}")
await self.event_sender.send(
TopologyEdgeCreated(
source=self.node_id, sink=nid, edge=edge
)
)
await self.event_sender.send(TopologyEdgeCreated(edge=edge))
for nid, conn in self.state.topology.out_edges(self.node_id):
if not isinstance(conn, SocketConnection):
continue
if nid not in conns or conn.sink_multiaddr.ip_address not in conns.get(
nid, set()
if (
nid not in conns
or conn.send_back_multiaddr.ip_address not in conns.get(nid, set())
):
logger.debug(f"ping failed to discover {conn=}")
await self.event_sender.send(
TopologyEdgeDeleted(source=self.node_id, sink=nid, edge=conn)
)
await self.event_sender.send(TopologyEdgeDeleted(edge=conn))
await anyio.sleep(10)

View File

@@ -277,12 +277,14 @@ def _pending_tasks(
# I have a design point here; this is a state race in disguise as the task status doesn't get updated to completed fast enough
# however, realistically the task status should be set to completed by the LAST runner, so this is a true race
# the actual solution is somewhat deeper than this bypass - TODO!
if task.task_id in runner.completed:
# Also skip tasks in pending to prevent duplicate forwarding with continuous batching
if task.task_id in runner.completed or task.task_id in runner.pending:
continue
# TODO: Check ordering aligns with MLX distributeds expectations.
if isinstance(runner.status, RunnerReady) and all(
# Allow forwarding tasks when runner is Ready or Running (for continuous batching)
if isinstance(runner.status, (RunnerReady, RunnerRunning)) and all(
isinstance(all_runners[global_runner_id], (RunnerReady, RunnerRunning))
for global_runner_id in runner.bound_instance.instance.shard_assignments.runner_to_shard
):

View File

@@ -19,7 +19,7 @@ def entrypoint(
) -> None:
if (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.jaccl_devices) >= 2
and len(bound_instance.instance.ibv_devices) >= 2
):
os.environ["MLX_METAL_FAST_SYNCH"] = "1"

View File

@@ -1,6 +1,8 @@
import gc
import time
import mlx.core as mx
from anyio import WouldBlock
from exo.shared.types.api import ChatCompletionMessageText
from exo.shared.types.chunks import TokenChunk
@@ -11,6 +13,7 @@ from exo.shared.types.events import (
TaskAcknowledged,
TaskStatusUpdated,
)
from exo.shared.types.common import CommandId
from exo.shared.types.tasks import (
ChatCompletion,
ConnectToGroup,
@@ -18,12 +21,11 @@ from exo.shared.types.tasks import (
Shutdown,
StartWarmup,
Task,
TaskId,
TaskStatus,
)
from exo.shared.types.worker.instances import BoundInstance
from exo.shared.types.worker.runner_response import (
GenerationResponse,
)
from exo.shared.types.worker.runner_response import GenerationResponse
from exo.shared.types.worker.runners import (
RunnerConnected,
RunnerConnecting,
@@ -39,7 +41,10 @@ from exo.shared.types.worker.runners import (
RunnerWarmingUp,
)
from exo.utils.channels import MpReceiver, MpSender
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
from exo.worker.engines.mlx.generator.batch_engine import BatchGenerationEngine
from exo.worker.engines.mlx.generator.distributed_sync import share_object
from exo.worker.engines.mlx.generator.generate import warmup_inference
from exo.worker.engines.mlx.generator.time_budget import TimeBudget
from exo.worker.engines.mlx.utils_mlx import (
initialize_mlx,
load_mlx_items,
@@ -69,142 +74,258 @@ def main(
model = None
tokenizer = None
group = None
batch_engine: BatchGenerationEngine | None = None
pending_shutdown: Shutdown | None = None
current_status: RunnerStatus = RunnerIdle()
def send_status(status: RunnerStatus) -> None:
event_sender.send(RunnerStatusUpdated(runner_id=runner_id, runner_status=status))
logger.info("runner created")
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
with task_receiver as tasks:
for task in tasks:
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running)
)
event_sender.send(TaskAcknowledged(task_id=task.task_id))
match task:
case ConnectToGroup() if isinstance(
current_status, (RunnerIdle, RunnerFailed)
):
logger.info("runner connecting")
current_status = RunnerConnecting()
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
group = initialize_mlx(bound_instance)
send_status(current_status)
logger.info("runner connected")
current_status = RunnerConnected()
def handle_task(task: Task, is_deferred: bool = False) -> bool:
nonlocal current_status, model, tokenizer, group, batch_engine, pending_shutdown
# we load the model if it's connected with a group, or idle without a group. we should never tell a model to connect if it doesn't need to
case LoadModel() if (
isinstance(current_status, RunnerConnected) and group is not None
) or (isinstance(current_status, RunnerIdle) and group is None):
current_status = RunnerLoading()
logger.info("runner loading")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
# For Shutdown, check if we need to defer BEFORE sending Running/Acknowledged
if isinstance(task, Shutdown) and not is_deferred:
if batch_engine is not None and (batch_engine.has_active_requests or batch_engine.has_pending_inserts):
logger.info("deferring shutdown until active requests complete")
pending_shutdown = task
return True
model, tokenizer = load_mlx_items(bound_instance, group)
event_sender.send(TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running))
event_sender.send(TaskAcknowledged(task_id=task.task_id))
current_status = RunnerLoaded()
logger.info("runner loaded")
case StartWarmup() if isinstance(current_status, RunnerLoaded):
assert model
assert tokenizer
current_status = RunnerWarmingUp()
logger.info("runner warming up")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
match task:
case ConnectToGroup() if isinstance(
current_status, (RunnerIdle, RunnerFailed)
):
logger.info("runner connecting")
current_status = RunnerConnecting()
send_status(current_status)
group = initialize_mlx(bound_instance)
logger.info(f"warming up inference for instance: {instance}")
toks = warmup_inference(
model=model,
tokenizer=tokenizer,
# kv_prefix_cache=kv_prefix_cache, # supply for warmup-time prefix caching
)
logger.info(f"warmed up by generating {toks} tokens")
logger.info(
f"runner initialized in {time.time() - setup_start_time} seconds"
)
current_status = RunnerReady()
logger.info("runner ready")
case ChatCompletion(task_params=task_params, command_id=command_id) if (
isinstance(current_status, RunnerReady)
):
assert model
assert tokenizer
logger.info(f"received chat request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
assert task_params.messages[0].content is not None
logger.info("runner connected")
current_status = RunnerConnected()
event_sender.send(TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete))
send_status(current_status)
case LoadModel() if (
isinstance(current_status, RunnerConnected) and group is not None
) or (isinstance(current_status, RunnerIdle) and group is None):
current_status = RunnerLoading()
logger.info("runner loading")
send_status(current_status)
model, tokenizer = load_mlx_items(bound_instance, group)
current_status = RunnerLoaded()
logger.info("runner loaded")
event_sender.send(TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete))
send_status(current_status)
case StartWarmup() if isinstance(current_status, RunnerLoaded):
assert model is not None
assert tokenizer is not None
current_status = RunnerWarmingUp()
logger.info("runner warming up")
send_status(current_status)
logger.info(f"warming up inference for instance: {instance}")
toks = warmup_inference(model=model, tokenizer=tokenizer)
logger.info(f"warmed up by generating {toks} tokens")
logger.info(f"runner initialized in {time.time() - setup_start_time} seconds")
batch_engine = BatchGenerationEngine(model=model, tokenizer=tokenizer, group=group)
current_status = RunnerReady()
logger.info("runner ready")
event_sender.send(TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete))
send_status(current_status)
case ChatCompletion(
task_params=task_params, command_id=command_id
) if isinstance(current_status, (RunnerReady, RunnerRunning)):
assert batch_engine is not None
# In distributed mode, only rank 0 should queue requests
# Other ranks should skip - they'll participate in sync_and_insert_pending()
is_distributed_mode = group is not None and isinstance(group.size(), int) and group.size() > 1
if is_distributed_mode and shard_metadata.device_rank != 0:
logger.debug(f"Rank {shard_metadata.device_rank} skipping ChatCompletionTask (only rank 0 queues)")
return True
if task_params.messages and task_params.messages[0].content is not None:
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses using the actual MLX generation
for response in mlx_generate(
model=model,
tokenizer=tokenizer,
task=task_params,
):
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
)
)
# case TokenizedResponse():
# TODO: something here ig
# Queue the request - actual insertion happens in sync_and_insert_pending()
batch_engine.queue_request(command_id=command_id, task_id=task.task_id, task_params=task_params)
current_status = RunnerReady()
logger.info("runner ready")
case Shutdown():
current_status = RunnerShuttingDown()
logger.info("runner shutting down")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
current_status = RunnerShutdown()
case _:
raise ValueError(
f"Received {task.__class__.__name__} outside of state machine in {current_status=}"
)
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete)
)
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
if isinstance(current_status, RunnerShutdown):
del model, tokenizer, group
mx.clear_cache()
import gc
# Status will be updated after actual insertion in the main loop
# For now, set to RunnerRunning to indicate we're processing
current_status = RunnerRunning(active_requests=batch_engine.active_count + batch_engine.pending_insert_count)
send_status(current_status)
gc.collect()
break
case Shutdown():
current_status = RunnerShuttingDown()
logger.info("runner shutting down")
send_status(current_status)
event_sender.send(TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete))
current_status = RunnerShutdown()
send_status(current_status)
return False
case _:
raise ValueError(
f"Received {task.__class__.__name__} outside of state machine in {current_status=}"
)
return True
with task_receiver as tasks:
running = True
is_rank_0 = shard_metadata.device_rank == 0
is_distributed = group is not None and group.size() > 1
# Accumulated responses to send at budget boundary
pending_responses: list[tuple[CommandId, TaskId, GenerationResponse]] = []
while running:
if is_distributed:
assert group is not None
assert batch_engine is not None
# Distributed mode: sync at time budget boundaries, not per-token
# Step 1: Only rank 0 checks for new tasks
should_shutdown = False
if is_rank_0:
while True:
try:
task = tasks.receive_nowait()
task_result = handle_task(task)
if not task_result:
should_shutdown = True
break
except WouldBlock:
break
# Check for deferred shutdown when no more active requests
if pending_shutdown is not None and not batch_engine.has_active_requests and not batch_engine.has_pending_inserts:
should_shutdown = True
# Step 2: Sync shutdown flag across all ranks
synced_shutdown = share_object(should_shutdown if is_rank_0 else None, shard_metadata.device_rank, group)
if synced_shutdown:
running = False
if is_rank_0 and pending_shutdown is not None:
handle_task(pending_shutdown, is_deferred=True)
continue
# Step 3: Sync and insert any pending requests
# All ranks must participate in sync_and_insert_pending (collective op)
# If rank 0 has no pending, it broadcasts empty list and all return early
inserted = batch_engine.sync_and_insert_pending()
if is_rank_0 and inserted:
current_status = RunnerRunning(active_requests=batch_engine.active_count)
send_status(current_status)
# Step 4: Run generation for time budget (no per-token sync)
if batch_engine.has_active_requests:
time_budget = TimeBudget(budget=0.5, group=group)
for _ in time_budget:
if not batch_engine.has_active_requests:
break
for resp in batch_engine.step():
# Accumulate responses to send at budget boundary
pending_responses.append((resp.command_id, resp.task_id, resp.response))
# Step 5: Sync completions at budget boundary
batch_engine.sync_completions()
# Step 6: Send accumulated responses (only rank 0)
if is_rank_0:
for command_id, task_id, response in pending_responses:
event_sender.send(ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
))
if response.finish_reason is not None:
event_sender.send(TaskStatusUpdated(task_id=task_id, task_status=TaskStatus.Complete))
if batch_engine.has_active_requests:
current_status = RunnerRunning(active_requests=batch_engine.active_count)
else:
current_status = RunnerReady()
send_status(current_status)
pending_responses.clear()
# Short sleep if nothing to do (will check for new tasks on next iteration)
if not batch_engine.has_active_requests and not batch_engine.has_pending_inserts:
time.sleep(0.001)
else:
# Non-distributed mode: original logic with queue + insert
while True:
try:
task = tasks.receive_nowait()
running = handle_task(task)
if not running:
break
except WouldBlock:
break
if not running:
break
# Insert any queued requests (non-distributed just inserts directly)
# Status was already sent in handle_task when queueing
if batch_engine is not None and batch_engine.has_pending_inserts:
batch_engine.sync_and_insert_pending()
if batch_engine is not None and batch_engine.has_active_requests:
for resp in batch_engine.step():
if shard_metadata.device_rank == 0:
event_sender.send(ChunkGenerated(
command_id=resp.command_id,
chunk=TokenChunk(
idx=resp.response.token,
model=shard_metadata.model_meta.model_id,
text=resp.response.text,
token_id=resp.response.token,
finish_reason=resp.response.finish_reason,
stats=resp.response.stats,
),
))
if resp.response.finish_reason is not None:
event_sender.send(TaskStatusUpdated(task_id=resp.task_id, task_status=TaskStatus.Complete))
if batch_engine.has_active_requests:
current_status = RunnerRunning(active_requests=batch_engine.active_count)
else:
current_status = RunnerReady()
send_status(current_status)
# Process deferred shutdown after all requests complete
if pending_shutdown is not None and not batch_engine.has_active_requests and not batch_engine.has_pending_inserts:
running = handle_task(pending_shutdown, is_deferred=True)
else:
task = tasks.receive()
running = handle_task(task)
# Cleanup
del model, tokenizer, group, batch_engine
mx.clear_cache()
gc.collect()
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"

View File

@@ -105,7 +105,7 @@ class RunnerSupervisor:
return
# This is overkill but it's not technically bad, just unnecessary.
logger.warning("Runner process didn't shutdown succesfully, terminating")
logger.warning("Runner process didn't shutdown successfully, terminating")
self.runner_process.terminate()
await to_thread.run_sync(self.runner_process.join, 5)
if not self.runner_process.is_alive():
@@ -128,9 +128,11 @@ class RunnerSupervisor:
async def start_task(self, task: Task):
if task.task_id in self.completed:
logger.info(
f"Skipping invalid task {task} as it has already been completed"
)
logger.info(f"Skipping task {task.task_id} - already completed")
return
if task.task_id in self.pending:
logger.info(f"Skipping task {task.task_id} - already pending")
return
logger.info(f"Starting task {task}")
event = anyio.Event()
self.pending[task.task_id] = event
@@ -149,13 +151,17 @@ class RunnerSupervisor:
if isinstance(event, RunnerStatusUpdated):
self.status = event.runner_status
if isinstance(event, TaskAcknowledged):
self.pending.pop(event.task_id).set()
# Just set the event to unblock start_task, but keep in pending
# to prevent duplicate forwarding until completion
if event.task_id in self.pending:
self.pending[event.task_id].set()
continue
if (
isinstance(event, TaskStatusUpdated)
and event.task_status == TaskStatus.Complete
if isinstance(event, TaskStatusUpdated) and event.task_status in (
TaskStatus.Complete,
TaskStatus.TimedOut,
TaskStatus.Failed,
):
# If a task has just been completed, we should be working on it.
# If a task has just finished, we should be working on it.
assert isinstance(
self.status,
(
@@ -166,6 +172,8 @@ class RunnerSupervisor:
RunnerShuttingDown,
),
)
# Now safe to remove from pending and add to completed
self.pending.pop(event.task_id, None)
self.completed.add(event.task_id)
await self._event_sender.send(event)
except (ClosedResourceError, BrokenResourceError) as e:

View File

@@ -20,6 +20,7 @@ class FakeRunnerSupervisor:
bound_instance: BoundInstance
status: RunnerStatus
completed: set[TaskId] = field(default_factory=set)
pending: dict[TaskId, object] = field(default_factory=dict)
class OtherTask(BaseTask):

View File

@@ -0,0 +1,315 @@
"""
Tests for continuous batching behavior in the runner.
These tests verify that:
1. Single requests work through the batch path
2. Multiple concurrent requests batch together
3. Tokens are routed to the correct requests
4. Requests complete at different times appropriately
"""
# pyright: reportAny=false
# pyright: reportUnknownArgumentType=false
# pyright: reportUnknownMemberType=false
# pyright: reportAttributeAccessIssue=false
# pyright: reportInvalidTypeVarUse=false
from typing import Any
from unittest.mock import MagicMock
import pytest
import exo.worker.runner.runner as mlx_runner
from exo.shared.types.api import ChatCompletionMessage
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.events import (
Event,
RunnerStatusUpdated,
TaskStatusUpdated,
)
from exo.shared.types.tasks import (
ChatCompletion,
ChatCompletionTaskParams,
ConnectToGroup,
LoadModel,
Shutdown,
StartWarmup,
Task,
TaskId,
TaskStatus,
)
from exo.shared.types.worker.runner_response import GenerationResponse
from exo.shared.types.worker.runners import RunnerRunning
from exo.utils.channels import mp_channel
from exo.worker.engines.mlx.generator.batch_engine import (
BatchedGenerationResponse,
)
from exo.worker.tests.constants import (
INSTANCE_1_ID,
MODEL_A_ID,
NODE_A,
RUNNER_1_ID,
)
from exo.worker.tests.unittests.conftest import get_bound_mlx_ring_instance
class FakeBatchEngineWithTokens:
"""
Fake batch engine that generates a specified number of tokens per request.
This simulates realistic batch generation behavior where:
- Requests are queued on insert
- Each step() call generates one token for all active requests
- Requests complete when they've generated all their tokens
"""
def __init__(self, *_args: Any, **_kwargs: Any):
self._active_requests: dict[int, tuple[CommandId, TaskId, int, int]] = {}
self._pending_inserts: list[tuple[CommandId, TaskId, ChatCompletionTaskParams]] = []
self._uid_counter = 0
self._tokens_per_request = 3 # Default: generate 3 tokens before completing
self.rank = 0 # Fake rank for testing
def queue_request(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams,
) -> None:
"""Queue a request for insertion."""
self._pending_inserts.append((command_id, task_id, task_params))
def sync_and_insert_pending(self) -> list[int]:
"""Insert all pending requests."""
uids: list[int] = []
for command_id, task_id, task_params in self._pending_inserts:
uid = self._do_insert(command_id, task_id, task_params)
uids.append(uid)
self._pending_inserts.clear()
return uids
@property
def has_pending_inserts(self) -> bool:
return len(self._pending_inserts) > 0
def _do_insert(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams | None,
) -> int:
uid = self._uid_counter
self._uid_counter += 1
# Track: (command_id, task_id, tokens_generated, max_tokens)
max_tokens = task_params.max_tokens if task_params else self._tokens_per_request
self._active_requests[uid] = (command_id, task_id, 0, max_tokens or 3)
return uid
def step(self) -> list[BatchedGenerationResponse]:
results: list[BatchedGenerationResponse] = []
uids_to_remove: list[int] = []
for uid, (command_id, task_id, tokens_gen, max_tokens) in list(
self._active_requests.items()
):
tokens_gen += 1
finish_reason = "stop" if tokens_gen >= max_tokens else None
text = f"token{tokens_gen}"
if finish_reason:
uids_to_remove.append(uid)
else:
self._active_requests[uid] = (
command_id,
task_id,
tokens_gen,
max_tokens,
)
results.append(
BatchedGenerationResponse(
command_id=command_id,
task_id=task_id,
response=GenerationResponse(
token=tokens_gen,
text=text,
finish_reason=finish_reason,
),
)
)
for uid in uids_to_remove:
del self._active_requests[uid]
return results
@property
def has_active_requests(self) -> bool:
return len(self._active_requests) > 0
@property
def active_count(self) -> int:
return len(self._active_requests)
@property
def pending_insert_count(self) -> int:
return len(self._pending_inserts)
def make_nothin[T, U, V](res: T):
def nothin(*_1: U, **_2: V) -> T:
return res
return nothin
@pytest.fixture
def patch_batch_engine(monkeypatch: pytest.MonkeyPatch):
"""Patch MLX dependencies and use FakeBatchEngineWithTokens."""
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(MagicMock()))
monkeypatch.setattr(
mlx_runner, "load_mlx_items", make_nothin((MagicMock(), MagicMock()))
)
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", make_nothin(None))
monkeypatch.setattr(mlx_runner, "BatchGenerationEngine", FakeBatchEngineWithTokens)
def _run_with_tasks(tasks: list[Task]) -> list[Event]:
"""
Run tasks through the runner, adding shutdown at the end.
Tasks are sent in order, with shutdown sent last.
The batch engine processes between task handling.
"""
bound_instance = get_bound_mlx_ring_instance(
instance_id=INSTANCE_1_ID,
model_id=MODEL_A_ID,
runner_id=RUNNER_1_ID,
node_id=NodeId(NODE_A),
)
task_sender, task_receiver = mp_channel[Task]()
event_sender, event_receiver = mp_channel[Event]()
shutdown_task = Shutdown(
task_id=TaskId("shutdown"),
instance_id=INSTANCE_1_ID,
runner_id=RUNNER_1_ID,
)
with task_sender, event_receiver:
# Send all tasks including shutdown
for t in tasks:
task_sender.send(t)
task_sender.send(shutdown_task)
# Disable cleanup methods to prevent issues
event_sender.close = lambda: None
event_sender.join = lambda: None
task_receiver.close = lambda: None
task_receiver.join = lambda: None
mlx_runner.main(bound_instance, event_sender, task_receiver)
return event_receiver.collect()
INIT_TASK = ConnectToGroup(task_id=TaskId("init"), instance_id=INSTANCE_1_ID)
LOAD_TASK = LoadModel(task_id=TaskId("load"), instance_id=INSTANCE_1_ID)
WARMUP_TASK = StartWarmup(task_id=TaskId("warmup"), instance_id=INSTANCE_1_ID)
def make_chat_task(
task_id: str, command_id: str, max_tokens: int = 3
) -> ChatCompletion:
return ChatCompletion(
task_id=TaskId(task_id),
command_id=CommandId(command_id),
task_params=ChatCompletionTaskParams(
model=str(MODEL_A_ID),
messages=[ChatCompletionMessage(role="user", content="hello")],
stream=True,
max_tokens=max_tokens,
),
instance_id=INSTANCE_1_ID,
)
def test_single_request_generates_tokens(patch_batch_engine: None):
"""
Verify a single request generates the expected tokens through the batch path.
Note: With the current non-blocking design, shutdown is processed before
batch steps run when all tasks are queued together. This test verifies
the runner status reflects active requests.
"""
chat_task = make_chat_task("chat1", "cmd1", max_tokens=3)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat_task])
# Find RunnerRunning status events - this shows the request was inserted
running_events = [
e
for e in events
if isinstance(e, RunnerStatusUpdated)
and isinstance(e.runner_status, RunnerRunning)
]
assert len(running_events) >= 1, "Expected at least one RunnerRunning event"
assert running_events[0].runner_status.active_requests == 1
def test_runner_status_reflects_active_requests(patch_batch_engine: None):
"""Verify RunnerRunning status includes active_requests count."""
chat_task = make_chat_task("chat1", "cmd1", max_tokens=2)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat_task])
# Find RunnerRunning status events
running_events = [
e
for e in events
if isinstance(e, RunnerStatusUpdated)
and isinstance(e.runner_status, RunnerRunning)
]
assert len(running_events) > 0, "Expected at least one RunnerRunning event"
assert running_events[0].runner_status.active_requests == 1
def test_chat_task_acknowledged(patch_batch_engine: None):
"""Verify chat completion task is acknowledged with proper status updates."""
chat_task = make_chat_task("chat1", "cmd1", max_tokens=2)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat_task])
# Find the chat task status events
chat_running = [
e
for e in events
if isinstance(e, TaskStatusUpdated)
and e.task_id == TaskId("chat1")
and e.task_status == TaskStatus.Running
]
assert len(chat_running) == 1, "Expected exactly one chat task Running status"
def test_multiple_requests_tracked(patch_batch_engine: None):
"""Verify multiple concurrent requests are tracked in active_requests."""
chat1 = make_chat_task("chat1", "cmd1", max_tokens=2)
chat2 = make_chat_task("chat2", "cmd2", max_tokens=2)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat1, chat2])
# Find RunnerRunning status events
running_events = [
e
for e in events
if isinstance(e, RunnerStatusUpdated)
and isinstance(e.runner_status, RunnerRunning)
]
# Should have at least 2 RunnerRunning events (one per request inserted)
assert len(running_events) >= 2, f"Expected at least 2 RunnerRunning events, got {len(running_events)}"
# First should have 1 active request, second should have 2
assert running_events[0].runner_status.active_requests == 1
assert running_events[1].runner_status.active_requests == 2

View File

@@ -1,11 +1,16 @@
# Check tasks are complete before runner is ever ready.
# pyright: reportAny=false
from collections.abc import Iterable
from typing import Callable
from typing import Any, Callable
from unittest.mock import MagicMock
import pytest
import exo.worker.runner.runner as mlx_runner
from exo.shared.types.api import ChatCompletionMessage
from exo.shared.types.common import CommandId
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.events import (
ChunkGenerated,
@@ -22,6 +27,7 @@ from exo.shared.types.tasks import (
Shutdown,
StartWarmup,
Task,
TaskId,
TaskStatus,
)
from exo.shared.types.worker.runner_response import GenerationResponse
@@ -38,6 +44,9 @@ from exo.shared.types.worker.runners import (
RunnerWarmingUp,
)
from exo.utils.channels import mp_channel
from exo.worker.engines.mlx.generator.batch_engine import (
BatchedGenerationResponse,
)
from ...constants import (
CHAT_COMPLETION_TASK_ID,
@@ -107,18 +116,85 @@ def assert_events_equal(test_events: Iterable[Event], true_events: Iterable[Even
assert test_event == true_event, f"{test_event} != {true_event}"
class FakeBatchEngine:
"""
Fake batch engine for testing.
Queues requests on insert, returns one token per step.
The runner's non-blocking loop drains all tasks before running batch steps,
so this engine queues requests and has_active_requests returns True only
after at least one request has been inserted.
"""
def __init__(self, *_args: Any, **_kwargs: Any):
self._active_requests: dict[int, tuple[CommandId, TaskId]] = {}
self._pending_inserts: list[tuple[CommandId, TaskId, ChatCompletionTaskParams]] = []
self._uid_counter = 0
self.rank = 0 # Fake rank for testing
def queue_request(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams,
) -> None:
"""Queue a request for insertion."""
self._pending_inserts.append((command_id, task_id, task_params))
def sync_and_insert_pending(self) -> list[int]:
"""Insert all pending requests."""
uids: list[int] = []
for command_id, task_id, _task_params in self._pending_inserts:
uid = self._uid_counter
self._uid_counter += 1
self._active_requests[uid] = (command_id, task_id)
uids.append(uid)
self._pending_inserts.clear()
return uids
@property
def has_pending_inserts(self) -> bool:
return len(self._pending_inserts) > 0
def step(self) -> list[BatchedGenerationResponse]:
results: list[BatchedGenerationResponse] = []
# Process all active requests - return one token and complete
for uid, (command_id, task_id) in list(self._active_requests.items()):
results.append(
BatchedGenerationResponse(
command_id=command_id,
task_id=task_id,
response=GenerationResponse(
token=0,
text="hi",
finish_reason="stop",
),
)
)
del self._active_requests[uid]
return results
@property
def has_active_requests(self) -> bool:
return len(self._active_requests) > 0
@property
def active_count(self) -> int:
return len(self._active_requests)
@property
def pending_insert_count(self) -> int:
return len(self._pending_inserts)
@pytest.fixture
def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
# initialize_mlx returns a "group" equal to 1
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(1))
monkeypatch.setattr(mlx_runner, "load_mlx_items", make_nothin((1, 1)))
# initialize_mlx returns a fake "group" (non-None for state machine)
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(MagicMock()))
monkeypatch.setattr(mlx_runner, "load_mlx_items", make_nothin((MagicMock(), MagicMock())))
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", nothin)
def fake_generate(*_1: object, **_2: object):
yield GenerationResponse(token=0, text="hi", finish_reason="stop")
monkeypatch.setattr(mlx_runner, "mlx_generate", fake_generate)
monkeypatch.setattr(mlx_runner, "BatchGenerationEngine", FakeBatchEngine)
def _run(tasks: Iterable[Task]):
@@ -148,7 +224,8 @@ def _run(tasks: Iterable[Task]):
return event_receiver.collect()
def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
def test_chat_completion_generates_and_completes(patch_out_mlx: pytest.MonkeyPatch):
"""Verify chat completion generates tokens, completes, and runner returns to Ready."""
events = _run([INIT_TASK, LOAD_TASK, WARMUP_TASK, CHAT_TASK, SHUTDOWN_TASK])
expected_chunk = ChunkGenerated(
@@ -191,7 +268,9 @@ def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
task_id=CHAT_COMPLETION_TASK_ID, task_status=TaskStatus.Running
),
TaskAcknowledged(task_id=CHAT_COMPLETION_TASK_ID),
RunnerStatusUpdated(runner_id=RUNNER_1_ID, runner_status=RunnerRunning()),
RunnerStatusUpdated(
runner_id=RUNNER_1_ID, runner_status=RunnerRunning(active_requests=1)
),
expected_chunk,
TaskStatusUpdated(
task_id=CHAT_COMPLETION_TASK_ID, task_status=TaskStatus.Complete
@@ -206,7 +285,6 @@ def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
TaskStatusUpdated(
task_id=SHUTDOWN_TASK_ID, task_status=TaskStatus.Complete
),
# SPECIAL EXCEPTION FOR RUNNER SHUTDOWN
RunnerStatusUpdated(runner_id=RUNNER_1_ID, runner_status=RunnerShutdown()),
],
)

View File

@@ -0,0 +1,6 @@
from .profile import start_polling_memory_metrics, start_polling_node_metrics
__all__ = [
"start_polling_node_metrics",
"start_polling_memory_metrics",
]

View File

@@ -0,0 +1,103 @@
import platform
import shutil
from subprocess import CalledProcessError
from typing import cast
from anyio import run_process
from pydantic import BaseModel, ConfigDict, ValidationError
class MacMonError(Exception):
"""Exception raised for errors in the MacMon functions."""
def _get_binary_path() -> str:
"""
Get the path to the macmon binary.
Raises:
MacMonError: If the binary doesn't exist or can't be made executable.
"""
# Check for macOS with ARM chip
system = platform.system().lower()
machine = platform.machine().lower()
if system != "darwin" or not (
"arm" in machine or "m1" in machine or "m2" in machine
):
raise MacMonError("MacMon only supports macOS with Apple Silicon (ARM) chips")
path = shutil.which("macmon")
if path is None:
raise MacMonError("MacMon not found in PATH")
return path
class TempMetrics(BaseModel):
"""Temperature-related metrics returned by macmon."""
cpu_temp_avg: float
gpu_temp_avg: float
model_config = ConfigDict(extra="ignore")
class Metrics(BaseModel):
"""Complete set of metrics returned by macmon.
Unknown fields are ignored for forward-compatibility.
"""
all_power: float
ane_power: float
cpu_power: float
ecpu_usage: tuple[int, float]
gpu_power: float
gpu_ram_power: float
gpu_usage: tuple[int, float]
pcpu_usage: tuple[int, float]
ram_power: float
sys_power: float
temp: TempMetrics
timestamp: str
model_config = ConfigDict(extra="ignore")
async def get_metrics_async() -> Metrics:
"""
Asynchronously run the binary and return the metrics as a Python dictionary.
Args:
binary_path: Optional path to the binary. If not provided, will use the bundled binary.
Returns:
A mapping containing system metrics.
Raises:
MacMonError: If there's an error running the binary.
"""
path = _get_binary_path()
try:
# TODO: Keep Macmon running in the background?
result = await run_process([path, "pipe", "-s", "1"])
return Metrics.model_validate_json(result.stdout.decode().strip())
except ValidationError as e:
raise MacMonError(f"Error parsing JSON output: {e}") from e
except CalledProcessError as e:
stderr_msg = "no stderr"
stderr_output = cast(bytes | str | None, e.stderr)
if stderr_output is not None:
stderr_msg = (
stderr_output.decode()
if isinstance(stderr_output, bytes)
else str(stderr_output)
)
raise MacMonError(
f"MacMon failed with return code {e.returncode}: {stderr_msg}"
) from e

View File

@@ -1,12 +1,10 @@
import http.client
from collections.abc import Mapping
from anyio import create_task_group, to_thread
from loguru import logger
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
from exo.shared.types.profiling import NodePerformanceProfile
async def check_reachability(
@@ -60,20 +58,19 @@ async def check_reachability(
async def check_reachable(
topology: Topology,
profiles: Mapping[NodeId, NodePerformanceProfile],
self_node_id: NodeId,
topology: Topology, self_node_id: NodeId
) -> dict[NodeId, set[str]]:
"""Check which nodes are reachable and return their IPs."""
reachable: dict[NodeId, set[str]] = {}
async with create_task_group() as tg:
for node_id in topology.list_nodes():
if node_id not in profiles:
for node in topology.list_nodes():
if not node.node_profile:
continue
for iface in profiles[node_id].network_interfaces:
for iface in node.node_profile.network_interfaces:
tg.start_soon(
check_reachability,
iface.ip_address,
node_id,
node.node_id,
self_node_id,
reachable,
)

View File

@@ -0,0 +1,114 @@
import asyncio
import os
import platform
from typing import Any, Callable, Coroutine
import anyio
from loguru import logger
from exo.shared.types.memory import Memory
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from .macmon import (
MacMonError,
Metrics,
)
from .macmon import (
get_metrics_async as macmon_get_metrics_async,
)
from .system_info import (
get_friendly_name,
get_model_and_chip,
get_network_interfaces,
)
async def get_metrics_async() -> Metrics | None:
"""Return detailed Metrics on macOS or a minimal fallback elsewhere."""
if platform.system().lower() == "darwin":
return await macmon_get_metrics_async()
def get_memory_profile() -> MemoryPerformanceProfile:
"""Construct a MemoryPerformanceProfile using psutil"""
override_memory_env = os.getenv("OVERRIDE_MEMORY_MB")
override_memory: int | None = (
Memory.from_mb(int(override_memory_env)).in_bytes
if override_memory_env
else None
)
return MemoryPerformanceProfile.from_psutil(override_memory=override_memory)
async def start_polling_memory_metrics(
callback: Callable[[MemoryPerformanceProfile], Coroutine[Any, Any, None]],
*,
poll_interval_s: float = 0.5,
) -> None:
"""Continuously poll and emit memory-only metrics at a faster cadence.
Parameters
- callback: coroutine called with a fresh MemoryPerformanceProfile each tick
- poll_interval_s: interval between polls
"""
while True:
try:
mem = get_memory_profile()
await callback(mem)
except MacMonError as e:
logger.opt(exception=e).error("Memory Monitor encountered error")
finally:
await anyio.sleep(poll_interval_s)
async def start_polling_node_metrics(
callback: Callable[[NodePerformanceProfile], Coroutine[Any, Any, None]],
):
poll_interval_s = 1.0
while True:
try:
metrics = await get_metrics_async()
if metrics is None:
return
network_interfaces = get_network_interfaces()
# these awaits could be joined but realistically they should be cached
model_id, chip_id = await get_model_and_chip()
friendly_name = await get_friendly_name()
# do the memory profile last to get a fresh reading to not conflict with the other memory profiling loop
memory_profile = get_memory_profile()
await callback(
NodePerformanceProfile(
model_id=model_id,
chip_id=chip_id,
friendly_name=friendly_name,
network_interfaces=network_interfaces,
memory=memory_profile,
system=SystemPerformanceProfile(
gpu_usage=metrics.gpu_usage[1],
temp=metrics.temp.gpu_temp_avg,
sys_power=metrics.sys_power,
pcpu_usage=metrics.pcpu_usage[1],
ecpu_usage=metrics.ecpu_usage[1],
ane_power=metrics.ane_power,
),
)
)
except asyncio.TimeoutError:
logger.warning(
"[resource_monitor] Operation timed out after 30s, skipping this cycle."
)
except MacMonError as e:
logger.opt(exception=e).error("Resource Monitor encountered error")
return
finally:
await anyio.sleep(poll_interval_s)

View File

@@ -0,0 +1,77 @@
"""Tests for macmon error handling.
These tests verify that MacMon errors are handled gracefully without
crashing the application or spamming logs.
"""
import platform
from subprocess import CalledProcessError
from unittest.mock import AsyncMock, patch
import pytest
from exo.worker.utils.macmon import MacMonError, get_metrics_async
@pytest.mark.skipif(
platform.system().lower() != "darwin" or "arm" not in platform.machine().lower(),
reason="MacMon only supports macOS with Apple Silicon",
)
class TestMacMonErrorHandling:
"""Test MacMon error handling."""
async def test_called_process_error_wrapped_as_macmon_error(self) -> None:
"""CalledProcessError should be wrapped as MacMonError."""
mock_error = CalledProcessError(
returncode=1,
cmd=["macmon", "pipe", "-s", "1"],
stderr=b"some error message",
)
with (
patch(
"exo.worker.utils.macmon.shutil.which", return_value="/usr/bin/macmon"
),
patch(
"exo.worker.utils.macmon.run_process", new_callable=AsyncMock
) as mock_run,
):
mock_run.side_effect = mock_error
with pytest.raises(MacMonError) as exc_info:
await get_metrics_async()
assert "MacMon failed with return code 1" in str(exc_info.value)
assert "some error message" in str(exc_info.value)
async def test_called_process_error_with_no_stderr(self) -> None:
"""CalledProcessError with no stderr should be handled gracefully."""
mock_error = CalledProcessError(
returncode=1,
cmd=["macmon", "pipe", "-s", "1"],
stderr=None,
)
with (
patch(
"exo.worker.utils.macmon.shutil.which", return_value="/usr/bin/macmon"
),
patch(
"exo.worker.utils.macmon.run_process", new_callable=AsyncMock
) as mock_run,
):
mock_run.side_effect = mock_error
with pytest.raises(MacMonError) as exc_info:
await get_metrics_async()
assert "MacMon failed with return code 1" in str(exc_info.value)
assert "no stderr" in str(exc_info.value)
async def test_macmon_not_found_raises_macmon_error(self) -> None:
"""When macmon is not found in PATH, MacMonError should be raised."""
with patch("exo.worker.utils.macmon.shutil.which", return_value=None):
with pytest.raises(MacMonError) as exc_info:
await get_metrics_async()
assert "MacMon not found in PATH" in str(exc_info.value)

View File

@@ -34,8 +34,7 @@ from exo.shared.types.worker.instances import (
)
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
from exo.utils.channels import MpReceiver, MpSender, channel, mp_channel
from exo.utils.info_gatherer.info_gatherer import GatheredInfo, InfoGatherer
from exo.utils.channels import MpReceiver, MpSender, mp_channel
from exo.worker.download.impl_shard_downloader import (
build_full_shard,
exo_shard_downloader,
@@ -66,7 +65,6 @@ async def main():
app = FastAPI()
app.post("/ring")(ring_backend)
app.post("/jaccl")(jaccl_backend)
app.post("/tb_detection")(tb_detection)
shutdown = anyio.Event()
await serve(
app, # type: ignore
@@ -78,15 +76,6 @@ async def main():
shutdown.set()
async def tb_detection():
send, recv = channel[GatheredInfo]()
ig = InfoGatherer(send)
with anyio.move_on_after(1):
await ig._monitor_system_profiler() # pyright: ignore[reportPrivateUsage]
with recv:
return recv.collect()
async def assert_downloads():
sd = exo_shard_downloader()
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
@@ -220,16 +209,16 @@ async def jaccl_backend(test: Tests):
break
else:
raise ValueError(f"{weird_hn} not in {test.devs}")
return await execute_test(test, jaccl_instance(test, iid), hn)
return await execute_test(test, jaccl_instance(test, iid, hn), hn)
def jaccl_instance(test: Tests, iid: InstanceId):
def jaccl_instance(test: Tests, iid: InstanceId, hn: str):
meta = MODEL_CARDS[test.model_id].metadata
world_size = len(test.devs)
return MlxJacclInstance(
instance_id=iid,
jaccl_devices=[[None, "rdma_en3"], ["rdma_en3", None]],
ibv_devices=[[None, "rdma_en3"], ["rdma_en3", None]],
# rank 0 is always coordinator
jaccl_coordinators={
NodeId(host[0]): test.devs[0][1] + ":52416" for host in test.devs