Compare commits

..

6 Commits

Author SHA1 Message Date
Alex Cheema
3d4f8130c9 Merge remote-tracking branch 'origin/main' into alexcheema/speculative-decoding 2026-02-13 09:39:11 -08:00
Alex Cheema
6762a0a8ba Add draft_model and num_draft_tokens fields to PlaceInstance command
PlaceInstance was missing these fields that are accessed in placement.py
when creating MlxJaccl and MlxRing instances with speculative decoding
support, causing type errors after merging main.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-13 05:51:11 -08:00
Alex Cheema
6524820e5b Merge remote-tracking branch 'origin/main' into alexcheema/speculative-decoding
# Conflicts:
#	src/exo/shared/types/commands.py
2026-02-13 05:46:52 -08:00
Alex Cheema
90e2a20091 Merge remote-tracking branch 'origin/main' into alexcheema/speculative-decoding
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-05 06:09:50 -08:00
Alex Cheema
55152fa99d Merge remote-tracking branch 'origin/main' into alexcheema/speculative-decoding
# Conflicts:
#	dashboard/src/routes/+page.svelte
#	src/exo/master/api.py
#	src/exo/shared/types/api.py
#	src/exo/shared/types/commands.py
#	src/exo/worker/engines/mlx/generator/generate.py
#	src/exo/worker/main.py
#	src/exo/worker/plan.py
#	src/exo/worker/runner/runner.py
2026-02-05 06:07:51 -08:00
Alex Cheema
e7f61c3494 Add speculative decoding support with draft models
This adds support for speculative decoding using draft models to accelerate
inference. Key changes:

- Add draft_model and num_draft_tokens fields to Instance for configuration
- Add SetDraftModel task to load/clear draft models on running instances
- Add InstanceDraftModelUpdated event to propagate draft model changes
- Add SetInstanceDraftModel command and API endpoint for runtime updates
- Update plan.py to download draft models in parallel with main model
- Update runner to load draft model during LoadModel phase
- Add draft model UI to dashboard instances panel (both views)

The draft model can be configured when creating an instance or updated on
a running instance via the dashboard or API.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 13:09:26 +00:00
111 changed files with 2139 additions and 4401 deletions

View File

@@ -8,6 +8,33 @@ on:
- main
jobs:
typecheck:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
lfs: false
- uses: cachix/install-nix-action@v31
with:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
name: Configure Cachix
with:
name: exo
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
- name: Load nix develop environment
run: nix run github:nicknovitski/nix-develop/v1
- name: Sync dependencies
run: uv sync --all-packages
- name: Run type checker
run: uv run basedpyright --project pyproject.toml
nix:
name: Build and check (${{ matrix.system }})
runs-on: ${{ matrix.runner }}

View File

@@ -200,7 +200,7 @@ class Module(dict):
) -> mx.MX_ARRAY_TREE: # -> dict[Any, Any | dict[Any, Any | dict[Any, Any] | list[Any]] | dict[Any, Any] | list[Any]]:
"""Return the submodules that do not contain other modules."""
def update(self, parameters: dict[str, Any], strict: bool = ...) -> Module:
def update(self, parameters: dict, strict: bool = ...) -> Module:
"""Replace the parameters of this Module with the provided ones in the
dict of dicts and lists.

View File

@@ -7,10 +7,7 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from mlx.core import MX_ARRAY_TREE
def tree_map(
fn: Callable[..., Any],
tree: Any,
*rest: Any,
is_leaf: Callable[..., bool] | None = ...,
fn: Callable, tree: Any, *rest: Any, is_leaf: Optional[Callable] = ...
) -> Any:
"""Applies ``fn`` to the leaves of the Python tree ``tree`` and
returns a new collection with the results.
@@ -47,11 +44,11 @@ def tree_map(
"""
def tree_map_with_path(
fn: Callable[..., Any],
fn: Callable,
tree: Any,
*rest: Any,
is_leaf: Callable[..., bool] | None = ...,
path: str | None = ...,
is_leaf: Optional[Callable] = ...,
path: Optional[Any] = ...,
) -> Any:
"""Applies ``fn`` to the path and leaves of the Python tree ``tree`` and
returns a new collection with the results.
@@ -83,9 +80,9 @@ def tree_map_with_path(
def tree_flatten(
tree: Any,
prefix: str = ...,
is_leaf: Callable[..., bool] | None = ...,
destination: list[tuple[str, Any]] | dict[str, Any] | None = ...,
) -> list[tuple[str, Any]] | dict[str, Any]:
is_leaf: Optional[Callable] = ...,
destination: Optional[Union[List[Tuple[str, Any]], Dict[str, Any]]] = ...,
) -> Union[List[Tuple[str, Any]], Dict[str, Any]]:
"""Flattens a Python tree to a list of key, value tuples.
The keys are using the dot notation to define trees of arbitrary depth and
@@ -121,7 +118,7 @@ def tree_flatten(
the Python tree.
"""
def tree_unflatten(tree: list[tuple[str, Any]] | dict[str, Any]) -> Any:
def tree_unflatten(tree: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> Any:
"""Recreate a Python tree from its flat representation.
.. code-block:: python

View File

@@ -1,46 +0,0 @@
"""Type stubs for mlx_lm.models.glm_moe_dsa"""
from dataclasses import dataclass
from typing import Any, Dict, Optional
from .base import BaseModelArgs
from .deepseek_v32 import Model as DSV32Model
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
vocab_size: int
hidden_size: int
index_head_dim: int
index_n_heads: int
index_topk: int
intermediate_size: int
moe_intermediate_size: int
num_hidden_layers: int
num_attention_heads: int
num_key_value_heads: int
n_shared_experts: Optional[int]
n_routed_experts: Optional[int]
routed_scaling_factor: float
kv_lora_rank: int
q_lora_rank: int
qk_rope_head_dim: int
v_head_dim: int
qk_nope_head_dim: int
topk_method: str
scoring_func: str
norm_topk_prob: bool
n_group: int
topk_group: int
num_experts_per_tok: int
moe_layer_freq: int
first_k_dense_replace: int
max_position_embeddings: int
rms_norm_eps: float
rope_parameters: Dict[str, Any]
attention_bias: bool
rope_scaling: Dict[str, Any] | None
rope_theta: float | None
class Model(DSV32Model):
def __init__(self, config: ModelArgs) -> None: ...

123
Cargo.lock generated
View File

@@ -141,6 +141,12 @@ version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "76a2e8124351fda1ef8aaaa3bbd7ebbcb486bbcd4225aca0aa0d84bb2db8fecb"
[[package]]
name = "arrayvec"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]]
name = "asn1-rs"
version = "0.7.1"
@@ -298,6 +304,19 @@ version = "1.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "55248b47b0caf0546f7988906588779981c43bb1bc9d0c44087278f80cdb44ba"
[[package]]
name = "bigdecimal"
version = "0.4.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "560f42649de9fa436b73517378a147ec21f6c997a546581df4b4b31677828934"
dependencies = [
"autocfg",
"libm",
"num-bigint",
"num-integer",
"num-traits",
]
[[package]]
name = "bimap"
version = "0.6.3"
@@ -497,6 +516,15 @@ version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2f421161cb492475f1661ddc9815a745a1c894592070661180fdec3d4872e9c3"
[[package]]
name = "convert_case"
version = "0.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "633458d4ef8c78b72454de2d54fd6ab2e60f9e02be22f3c6104cdc8a4e0fceb9"
dependencies = [
"unicode-segmentation",
]
[[package]]
name = "core-foundation"
version = "0.9.4"
@@ -718,6 +746,29 @@ dependencies = [
"powerfmt",
]
[[package]]
name = "derive_more"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "10b768e943bed7bf2cab53df09f4bc34bfd217cdb57d971e769874c9a6710618"
dependencies = [
"derive_more-impl",
]
[[package]]
name = "derive_more-impl"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6d286bfdaf75e988b4a78e013ecd79c581e06399ab53fbacd2d916c2f904f30b"
dependencies = [
"convert_case",
"proc-macro2",
"quote",
"rustc_version",
"syn 2.0.111",
"unicode-xid",
]
[[package]]
name = "digest"
version = "0.10.7"
@@ -888,17 +939,22 @@ name = "exo_pyo3_bindings"
version = "0.0.1"
dependencies = [
"delegate",
"derive_more",
"env_logger",
"extend",
"futures",
"impl-trait-for-tuples",
"libp2p",
"log",
"networking",
"once_cell",
"pin-project",
"pyo3",
"pyo3-async-runtimes",
"pyo3-log",
"pyo3-stub-gen",
"thiserror 2.0.17",
"thread_local",
"tokio",
"util",
]
@@ -1584,6 +1640,17 @@ dependencies = [
"xmltree",
]
[[package]]
name = "impl-trait-for-tuples"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0eb5a3343abf848c0984fe4604b2b105da9539376e24fc0a3b0007411ae4fd9"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.111",
]
[[package]]
name = "indexmap"
version = "2.12.1"
@@ -1762,6 +1829,12 @@ version = "0.2.178"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37c93d8daa9d8a012fd8ab92f088405fb202ea0b6ab73ee2482ae66af4f42091"
[[package]]
name = "libm"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f9fbbcab51052fe104eb5e5d351cf728d30a5be1fe14d9be8a3b097481fb97de"
[[package]]
name = "libp2p"
version = "0.56.0"
@@ -2751,13 +2824,16 @@ name = "networking"
version = "0.0.1"
dependencies = [
"delegate",
"derive_more",
"either",
"extend",
"futures",
"futures-timer",
"impl-trait-for-tuples",
"keccak-const",
"libp2p",
"log",
"thiserror 2.0.17",
"tokio",
"tracing-subscriber",
"util",
@@ -2842,6 +2918,17 @@ dependencies = [
"num-traits",
]
[[package]]
name = "num-rational"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f83d14da390562dca69fc84082e73e548e1ad308d24accdedd2720017cb37824"
dependencies = [
"num-bigint",
"num-integer",
"num-traits",
]
[[package]]
name = "num-traits"
version = "0.2.19"
@@ -3192,14 +3279,28 @@ version = "0.27.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ab53c047fcd1a1d2a8820fe84f05d6be69e9526be40cb03b73f86b6b03e6d87d"
dependencies = [
"bigdecimal",
"either",
"hashbrown 0.16.1",
"indexmap",
"indoc",
"inventory",
"libc",
"lock_api",
"memoffset",
"num-bigint",
"num-complex",
"num-rational",
"num-traits",
"once_cell",
"ordered-float",
"parking_lot",
"portable-atomic",
"pyo3-build-config",
"pyo3-ffi",
"pyo3-macros",
"rust_decimal",
"smallvec",
"unindent",
]
@@ -3640,6 +3741,16 @@ dependencies = [
"tokio",
]
[[package]]
name = "rust_decimal"
version = "1.39.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "35affe401787a9bd846712274d97654355d21b2a2c092a3139aabe31e9022282"
dependencies = [
"arrayvec",
"num-traits",
]
[[package]]
name = "rustc-hash"
version = "1.1.0"
@@ -4504,12 +4615,24 @@ version = "1.0.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9312f7c4f6ff9069b165498234ce8be658059c6728633667c526e27dc2cf1df5"
[[package]]
name = "unicode-segmentation"
version = "1.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f6ccf251212114b54433ec949fd6a7841275f9ada20dddd2f29e9ceea4501493"
[[package]]
name = "unicode-width"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4ac048d71ede7ee76d585517add45da530660ef4390e49b098733c6e897f254"
[[package]]
name = "unicode-xid"
version = "0.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ebc1c04c71510c7f702b52b7c350734c9ff1295c464a03335b00bb84fc54f853"
[[package]]
name = "unicode_names2"
version = "1.3.0"

View File

@@ -26,21 +26,49 @@ opt-level = 3
networking = { path = "rust/networking" }
util = { path = "rust/util" }
# Proc-macro authoring tools
syn = "2.0"
quote = "1.0"
proc-macro2 = "1.0"
darling = "0.20"
# Macro dependecies
extend = "1.2"
delegate = "0.13"
impl-trait-for-tuples = "0.2"
clap = "4.5"
derive_more = { version = "2.0.1", features = ["display"] }
pin-project = "1"
# Utility dependencies
itertools = "0.14"
thiserror = "2"
internment = "0.8"
recursion = "0.5"
regex = "1.11"
once_cell = "1.21"
thread_local = "1.1"
bon = "3.4"
generativity = "1.1"
anyhow = "1.0"
keccak-const = "0.2"
# Functional generics/lenses frameworks
frunk_core = "0.4"
frunk = "0.4"
frunk_utils = "0.2"
frunk-enum-core = "0.3"
# Async dependencies
tokio = "1.46"
futures = "0.3"
futures-util = "0.3"
futures-timer = "3.0"
# Data structures
either = "1.15"
ordered-float = "5.0"
ahash = "0.8"
# Tracing/logging
log = "0.4"

View File

@@ -5,21 +5,21 @@
[X] Fetching download status of all models on start
[X] Deduplication of tasks in plan_step.
[X] resolve_allow_patterns should just be wildcard now.
[X] no mx_barrier in genreate.py mlx_generate at the end.
[] no mx_barrier in genreate.py mlx_generate at the end.
[] cache assertion not needed in auto_parallel.py PipelineLastLayer.
[X] GPTOSS support dropped in auto_parallel.py.
[X] sharding changed "all-to-sharded" became _all_to_sharded in auto_parallel.py.
[X] same as above with "sharded-to-all" became _sharded_to_all in auto_parallel.py.
[X] Dropped support for Ministral3Model, DeepseekV32Model, Glm4MoeModel, Qwen3NextModel, GptOssMode in auto_parallel.py.
[] GPTOSS support dropped in auto_parallel.py.
[] sharding changed "all-to-sharded" became _all_to_sharded in auto_parallel.py.
[] same as above with "sharded-to-all" became _sharded_to_all in auto_parallel.py.
[] Dropped support for Ministral3Model, DeepseekV32Model, Glm4MoeModel, Qwen3NextModel, GptOssMode in auto_parallel.py.
[] Dropped prefill/decode code in auto_parallel.py and utils_mlx.py.
[X] KV_CACHE_BITS should be None to disable quantized KV cache.
[X] Dropped _set_nofile_limit in utils_mlx.py.
[X] We have group optional in load_mlx_items in utils_mlx.py.
[X] Dropped add_missing_chat_templates for GptOss in load_mlx_items in utils_mlx.py.
[X] Dropped model.make_cache in make_kv_cache in utils_mlx.py.
[] Dropped _set_nofile_limit in utils_mlx.py.
[] We have group optional in load_mlx_items in utils_mlx.py.
[] Dropped add_missing_chat_templates for GptOss in load_mlx_items in utils_mlx.py.
[] Dropped model.make_cache in make_kv_cache in utils_mlx.py.
[X] We put cache limit back in utils_mlx.py.
[X] topology.py remove_node removes the connections after checking if node is is in self._node_id_to_rx_id_map. on beta_1 it checks after, so would remove stale connections I guess?
[X] Missing Glm 4.7 model cards (this isn't ready yet but should be picked up, probably create an issue... the blocker is transforemrs version doesn't support the tokenizer for Glm 4.7. rc-1 does but we can't upgrade as it breaks other things.)
[] topology.py remove_node removes the connections after checking if node is is in self._node_id_to_rx_id_map. on beta_1 it checks after, so would remove stale connections I guess?
[] Missing Glm 4.7 model cards (this isn't ready yet but should be picked up, probably create an issue... the blocker is transforemrs version doesn't support the tokenizer for Glm 4.7. rc-1 does but we can't upgrade as it breaks other things.)
[] try-except in _command_processor only excepts ValueError. This was silently failing leading to un-debuggable errors (we had a KeyError that was happening ). Changed this to catch Exception instead of ValueError. See exo-v2 89ae38405e0052e3c22405daf094b065878aa873 and fb99fea69b5a39017efc90c5dad0072e677455f0.
[X] In placement.py, place_instance no longer looks at model_meta.supports_tensor and check if this tensor parallel number of nodes is supported by the model's tensor dimensions.
[X] In placement.py, place_instanec, we no longer have the special case to exclude DeepSeek v3.1 pipeline parallel (it doesn't work).

View File

@@ -72,23 +72,16 @@ There are two ways to run exo:
### Run from Source (macOS)
If you have [Nix](https://nixos.org/) installed, you can skip most of the steps below and run exo directly (after accepting the Cachix cache):
```bash
nix run .#exo
```
**Prerequisites:**
- [Xcode](https://developer.apple.com/xcode/) (provides the Metal ToolChain required for MLX compilation)
- [brew](https://github.com/Homebrew/brew) (for simple package management on macOS)
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
- [uv](https://github.com/astral-sh/uv) (for Python dependency management)
- [macmon](https://github.com/vladkens/macmon) (for hardware monitoring on Apple Silicon)
- [node](https://github.com/nodejs/node) (for building the dashboard)
```bash
brew install uv macmon node
```

View File

@@ -126,37 +126,11 @@ final class ExoProcessController: ObservableObject {
return
}
process.terminationHandler = nil
status = .stopped
guard process.isRunning else {
self.process = nil
return
if process.isRunning {
process.terminate()
}
let proc = process
self.process = nil
Task.detached {
proc.interrupt()
for _ in 0..<50 {
if !proc.isRunning { return }
try? await Task.sleep(nanoseconds: 100_000_000)
}
if proc.isRunning {
proc.terminate()
}
for _ in 0..<30 {
if !proc.isRunning { return }
try? await Task.sleep(nanoseconds: 100_000_000)
}
if proc.isRunning {
kill(proc.processIdentifier, SIGKILL)
}
}
status = .stopped
}
func restart() {

View File

@@ -1,7 +0,0 @@
# Canary benchmark manifest
#
# Lists the suite files to include. Each file defines benchmarks
# with shared constraints, topology, and default args.
include = [
"single-m3-ultra.toml",
]

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,47 +1,29 @@
# type: ignore
#!/usr/bin/env python3
"""Tool-calling eval for exo's OpenAI-compatible API.
Tests whether models correctly:
- Trigger tool calls when appropriate
- Return valid JSON arguments matching function schemas
- Handle multi-turn tool use (call -> result -> final answer)
- Avoid calling tools when unnecessary
Start exo with a model first, then run:
uv run python tool_call_eval.py --model <model-id>
uv run python tool_call_eval.py --model <model-id> --host 10.0.0.5 --port 52415
uv run python tool_call_eval.py --model <model-id> --repeat 3
uv run python tool_call_eval.py --model <model-id> --scenarios weather_simple calculator_multi_turn
"""
# pyright: reportAny=false, reportUnknownMemberType=false, reportUnknownVariableType=false, reportUnknownArgumentType=false
from __future__ import annotations
import argparse
import contextlib
import http.client
import itertools
import json
import os
import sys
import time
from collections.abc import Callable
from pathlib import Path
from statistics import mean
from typing import Any
from urllib.parse import urlencode
from harness import (
ExoClient,
ExoHttpError,
add_common_instance_args,
instance_id_from_instance,
nodes_used_in_instance,
resolve_model_short_id,
settle_and_fetch_placements,
wait_for_instance_gone,
wait_for_instance_ready,
)
from loguru import logger
from transformers import AutoTokenizer
# Backoff constants for cluster settling retry
_SETTLE_INITIAL_BACKOFF_S = 1.0
_SETTLE_MAX_BACKOFF_S = 60.0
_SETTLE_BACKOFF_MULTIPLIER = 2.0
# Monkey-patch for transformers 5.x compatibility
# Kimi's tokenization_kimi.py imports bytes_to_unicode from the old location
# which was moved in transformers 5.0.0rc2
@@ -121,6 +103,154 @@ def load_tokenizer_for_bench(model_id: str) -> Any:
return AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
class ExoHttpError(RuntimeError):
def __init__(self, status: int, reason: str, body_preview: str):
super().__init__(f"HTTP {status} {reason}: {body_preview}")
self.status = status
class ExoClient:
def __init__(self, host: str, port: int, timeout_s: float = 7200.0):
self.host = host
self.port = port
self.timeout_s = timeout_s
def request_json(
self,
method: str,
path: str,
params: dict[str, Any] | None = None,
body: dict[str, Any] | None = None,
headers: dict[str, str] | None = None,
) -> Any:
if not path.startswith("/"):
path = "/" + path
if params:
path = path + "?" + urlencode(params)
conn = http.client.HTTPConnection(self.host, self.port, timeout=self.timeout_s)
try:
payload: bytes | None = None
hdrs: dict[str, str] = {"Accept": "application/json"}
if body is not None:
payload = json.dumps(body).encode("utf-8")
hdrs["Content-Type"] = "application/json"
if headers:
hdrs.update(headers)
conn.request(method.upper(), path, body=payload, headers=hdrs)
resp = conn.getresponse()
raw = resp.read()
text = raw.decode("utf-8", errors="replace") if raw else ""
if resp.status >= 400:
raise ExoHttpError(resp.status, resp.reason, text[:300])
if not text:
return None
return json.loads(text)
finally:
conn.close()
def post_bench_chat_completions(self, payload: dict[str, Any]) -> dict[str, Any]:
return self.request_json("POST", "/bench/chat/completions", body=payload)
def unwrap_instance(instance: dict[str, Any]) -> dict[str, Any]:
if len(instance) != 1:
raise KeyError(f"Expected 1 key, got keys={list(instance.keys())}")
tag = next(iter(instance))
inner = instance[tag]
if not isinstance(inner, dict):
raise TypeError(f"payload for {tag} must be dict, got {type(inner)}")
return inner
def instance_id_from_instance(instance: dict[str, Any]) -> str:
inner = unwrap_instance(instance)
return str(inner["instanceId"])
def nodes_used_in_instance(instance: dict[str, Any]) -> int:
inner = unwrap_instance(instance)
return len(inner["shardAssignments"]["nodeToRunner"])
def runner_ids_from_instance(instance: dict[str, Any]) -> list[str]:
inner = unwrap_instance(instance)
runner_to_shard = inner["shardAssignments"]["runnerToShard"]
return list(runner_to_shard.keys())
def runner_ready(runner: dict[str, Any]) -> bool:
return "RunnerReady" in runner
def runner_failed(runner: dict[str, Any]) -> bool:
return "RunnerFailed" in runner
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
if "RunnerFailed" in runner:
return runner["RunnerFailed"].get("errorMessage")
return None
def wait_for_instance_ready(
client: ExoClient, instance_id: str, timeout: float = 24000.0
) -> None:
start_time = time.time()
instance_existed = False
while time.time() - start_time < timeout:
state = client.request_json("GET", "/state")
instances = state.get("instances", {})
if instance_id not in instances:
if instance_existed:
# Instance was deleted after being created - likely due to runner failure
raise RuntimeError(
f"Instance {instance_id} was deleted (runner may have failed)"
)
time.sleep(0.1)
continue
instance_existed = True
instance = instances[instance_id]
runner_ids = runner_ids_from_instance(instance)
runners = state.get("runners", {})
# Check for failed runners first
for rid in runner_ids:
runner = runners.get(rid, {})
if runner_failed(runner):
error_msg = get_runner_failed_message(runner) or "Unknown error"
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
return
time.sleep(0.1)
raise TimeoutError(f"Instance {instance_id} did not become ready within {timeout=}")
def wait_for_instance_gone(
client: ExoClient, instance_id: str, timeout: float = 3.0
) -> None:
start_time = time.time()
while time.time() - start_time < timeout:
try:
client.request_json("GET", f"/instance/{instance_id}")
time.sleep(0.4)
except ExoHttpError as e:
if e.status == 404:
return
raise TimeoutError(f"Instance {instance_id} did not get deleted within {timeout=}")
def format_peak_memory(b: float) -> str:
for unit in ["B", "KB", "MB", "GB", "TB"]:
if b < 1024.0:
@@ -139,6 +269,39 @@ def parse_int_list(values: list[str]) -> list[int]:
return items
def resolve_model_short_id(client: ExoClient, model_arg: str) -> tuple[str, str]:
models = client.request_json("GET", "/models") or {}
data = models.get("data") or []
for m in data:
if m.get("name").lower() == model_arg.lower():
short_id = str(m["name"])
full_id = str(m.get("hugging_face_id") or m["name"])
return short_id, full_id
for m in data:
if m.get("hugging_face_id") == model_arg:
short_id = str(m["name"])
full_id = str(m["hugging_face_id"])
return short_id, full_id
raise ValueError(f"Model not found in /models: {model_arg}")
def placement_filter(instance_meta: str, wanted: str) -> bool:
s = (instance_meta or "").lower()
if wanted == "both":
return ("ring" in s) or ("jaccl" in s)
return wanted in s
def sharding_filter(sharding: str, wanted: str) -> bool:
s = (sharding or "").lower()
if wanted == "both":
return ("pipeline" in s) or ("tensor" in s)
return wanted in s
def run_one_completion(
client: ExoClient, model_id: str, pp_hint: int, tg: int, prompt_sizer: PromptSizer
) -> tuple[dict[str, Any], int]:
@@ -230,12 +393,76 @@ class PromptSizer:
return content, tok
def fetch_and_filter_placements(
client: ExoClient, full_model_id: str, args: argparse.Namespace
) -> list[dict[str, Any]]:
previews_resp = client.request_json(
"GET", "/instance/previews", params={"model_id": full_model_id}
)
previews = previews_resp.get("previews") or []
selected: list[dict[str, Any]] = []
for p in previews:
if p.get("error") is not None:
continue
if not placement_filter(str(p.get("instance_meta", "")), args.instance_meta):
continue
if not sharding_filter(str(p.get("sharding", "")), args.sharding):
continue
instance = p.get("instance")
if not isinstance(instance, dict):
continue
n = nodes_used_in_instance(instance)
# Skip tensor ring single node as it is pointless when pipeline ring
if n == 1 and (
(args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
or (
args.instance_meta == "both"
and "jaccl" in p.get("instance_meta", "").lower()
)
):
continue
if (
args.skip_pipeline_jaccl
and (
args.instance_meta == "both"
and "jaccl" in p.get("instance_meta", "").lower()
)
and (
args.sharding == "both" and "pipeline" in p.get("sharding", "").lower()
)
):
continue
if (
args.skip_tensor_ring
and (
args.instance_meta == "both"
and "ring" in p.get("instance_meta", "").lower()
)
and (args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
):
continue
if args.min_nodes <= n <= args.max_nodes:
selected.append(p)
return selected
def main() -> int:
ap = argparse.ArgumentParser(
prog="exo-bench",
description="Benchmark exo model throughput across placement previews.",
)
add_common_instance_args(ap)
ap.add_argument("--host", default=os.environ.get("EXO_HOST", "localhost"))
ap.add_argument(
"--port", type=int, default=int(os.environ.get("EXO_PORT", "52415"))
)
ap.add_argument("--model", required=True, help="Model short id or huggingface id")
ap.add_argument(
"--pp",
nargs="+",
@@ -248,6 +475,34 @@ def main() -> int:
required=True,
help="Generation lengths (ints). Accepts commas.",
)
ap.add_argument(
"--max-nodes",
type=int,
default=4,
help="Only consider placements using <= this many nodes.",
)
ap.add_argument(
"--min-nodes",
type=int,
default=1,
help="Only consider placements using >= this many nodes.",
)
ap.add_argument(
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
)
ap.add_argument(
"--sharding", choices=["pipeline", "tensor", "both"], default="both"
)
ap.add_argument(
"--skip-pipeline-jaccl",
action="store_true",
help="Skip pipeline+jaccl placements, as it's often pointless.",
)
ap.add_argument(
"--skip-tensor-ring",
action="store_true",
help="Skip tensor+ring placements, as it's so slow.",
)
ap.add_argument(
"--repeat", type=int, default=1, help="Repetitions per (pp,tg) pair."
)
@@ -257,6 +512,9 @@ def main() -> int:
default=0,
help="Warmup runs per placement (uses first pp/tg).",
)
ap.add_argument(
"--timeout", type=float, default=7200.0, help="HTTP timeout (seconds)."
)
ap.add_argument(
"--json-out",
default="bench/results.json",
@@ -271,6 +529,12 @@ def main() -> int:
action="store_true",
help="Force all pp×tg combinations (cartesian product) even when lists have equal length.",
)
ap.add_argument(
"--settle-timeout",
type=float,
default=0,
help="Max seconds to wait for the cluster to produce valid placements (0 = try once).",
)
args = ap.parse_args()
pp_list = parse_int_list(args.pp)
@@ -305,9 +569,20 @@ def main() -> int:
logger.error("[exo-bench] tokenizer usable but prompt sizing failed")
raise
selected = settle_and_fetch_placements(
client, full_model_id, args, settle_timeout=args.settle_timeout
)
selected = fetch_and_filter_placements(client, full_model_id, args)
if not selected and args.settle_timeout > 0:
backoff = _SETTLE_INITIAL_BACKOFF_S
deadline = time.monotonic() + args.settle_timeout
while not selected and time.monotonic() < deadline:
remaining = deadline - time.monotonic()
logger.warning(
f"No valid placements yet (cluster may still be settling). "
f"Retrying in {backoff:.1f}s ({remaining:.0f}s remaining)..."
)
time.sleep(min(backoff, remaining))
backoff = min(backoff * _SETTLE_BACKOFF_MULTIPLIER, _SETTLE_MAX_BACKOFF_S)
selected = fetch_and_filter_placements(client, full_model_id, args)
if not selected:
logger.error("No valid placements matched your filters.")

View File

@@ -1,327 +0,0 @@
# type: ignore
from __future__ import annotations
import argparse
import http.client
import json
import os
import time
from typing import Any
from urllib.parse import urlencode
from loguru import logger
_SETTLE_INITIAL_BACKOFF_S = 1.0
_SETTLE_MAX_BACKOFF_S = 60.0
_SETTLE_BACKOFF_MULTIPLIER = 2.0
class ExoHttpError(RuntimeError):
def __init__(self, status: int, reason: str, body_preview: str):
super().__init__(f"HTTP {status} {reason}: {body_preview}")
self.status = status
class ExoClient:
def __init__(self, host: str, port: int, timeout_s: float = 7200.0):
self.host = host
self.port = port
self.timeout_s = timeout_s
def request_json(
self,
method: str,
path: str,
params: dict[str, Any] | None = None,
body: dict[str, Any] | None = None,
headers: dict[str, str] | None = None,
) -> Any:
if not path.startswith("/"):
path = "/" + path
if params:
path = path + "?" + urlencode(params)
conn = http.client.HTTPConnection(self.host, self.port, timeout=self.timeout_s)
try:
payload: bytes | None = None
hdrs: dict[str, str] = {"Accept": "application/json"}
if body is not None:
payload = json.dumps(body).encode("utf-8")
hdrs["Content-Type"] = "application/json"
if headers:
hdrs.update(headers)
conn.request(method.upper(), path, body=payload, headers=hdrs)
resp = conn.getresponse()
raw = resp.read()
text = raw.decode("utf-8", errors="replace") if raw else ""
if resp.status >= 400:
raise ExoHttpError(resp.status, resp.reason, text[:300])
if not text:
return None
return json.loads(text)
finally:
conn.close()
def post_bench_chat_completions(self, payload: dict[str, Any]) -> dict[str, Any]:
return self.request_json("POST", "/bench/chat/completions", body=payload)
def unwrap_instance(instance: dict[str, Any]) -> dict[str, Any]:
if len(instance) != 1:
raise KeyError(f"Expected 1 key, got keys={list(instance.keys())}")
tag = next(iter(instance))
inner = instance[tag]
if not isinstance(inner, dict):
raise TypeError(f"payload for {tag} must be dict, got {type(inner)}")
return inner
def instance_id_from_instance(instance: dict[str, Any]) -> str:
inner = unwrap_instance(instance)
return str(inner["instanceId"])
def nodes_used_in_instance(instance: dict[str, Any]) -> int:
inner = unwrap_instance(instance)
return len(inner["shardAssignments"]["nodeToRunner"])
def runner_ids_from_instance(instance: dict[str, Any]) -> list[str]:
inner = unwrap_instance(instance)
runner_to_shard = inner["shardAssignments"]["runnerToShard"]
return list(runner_to_shard.keys())
def runner_ready(runner: dict[str, Any]) -> bool:
return "RunnerReady" in runner
def runner_failed(runner: dict[str, Any]) -> bool:
return "RunnerFailed" in runner
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
if "RunnerFailed" in runner:
return runner["RunnerFailed"].get("errorMessage")
return None
def wait_for_instance_ready(
client: ExoClient, instance_id: str, timeout: float = 24000.0
) -> None:
start_time = time.time()
instance_existed = False
while time.time() - start_time < timeout:
state = client.request_json("GET", "/state")
instances = state.get("instances", {})
if instance_id not in instances:
if instance_existed:
# Instance was deleted after being created - likely due to runner failure
raise RuntimeError(
f"Instance {instance_id} was deleted (runner may have failed)"
)
time.sleep(0.1)
continue
instance_existed = True
instance = instances[instance_id]
runner_ids = runner_ids_from_instance(instance)
runners = state.get("runners", {})
# Check for failed runners first
for rid in runner_ids:
runner = runners.get(rid, {})
if runner_failed(runner):
error_msg = get_runner_failed_message(runner) or "Unknown error"
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
return
time.sleep(0.1)
raise TimeoutError(f"Instance {instance_id} did not become ready within {timeout=}")
def wait_for_instance_gone(
client: ExoClient, instance_id: str, timeout: float = 3.0
) -> None:
start_time = time.time()
while time.time() - start_time < timeout:
try:
client.request_json("GET", f"/instance/{instance_id}")
time.sleep(0.4)
except ExoHttpError as e:
if e.status == 404:
return
raise
raise TimeoutError(f"Instance {instance_id} did not get deleted within {timeout=}")
def resolve_model_short_id(client: ExoClient, model_arg: str) -> tuple[str, str]:
models = client.request_json("GET", "/models") or {}
data = models.get("data") or []
for m in data:
if (m.get("name") or "").lower() == model_arg.lower():
short_id = str(m["name"])
full_id = str(m.get("hugging_face_id") or m["name"])
return short_id, full_id
for m in data:
if m.get("hugging_face_id") == model_arg:
short_id = str(m["name"])
full_id = str(m["hugging_face_id"])
return short_id, full_id
raise ValueError(f"Model not found in /models: {model_arg}")
def placement_filter(instance_meta: str, wanted: str) -> bool:
s = (instance_meta or "").lower()
if wanted == "both":
return ("ring" in s) or ("jaccl" in s)
return wanted in s
def sharding_filter(sharding: str, wanted: str) -> bool:
s = (sharding or "").lower()
if wanted == "both":
return ("pipeline" in s) or ("tensor" in s)
return wanted in s
def fetch_and_filter_placements(
client: ExoClient, full_model_id: str, args: argparse.Namespace
) -> list[dict[str, Any]]:
previews_resp = client.request_json(
"GET", "/instance/previews", params={"model_id": full_model_id}
)
previews = previews_resp.get("previews") or []
selected: list[dict[str, Any]] = []
for p in previews:
if p.get("error") is not None:
continue
if not placement_filter(str(p.get("instance_meta", "")), args.instance_meta):
continue
if not sharding_filter(str(p.get("sharding", "")), args.sharding):
continue
instance = p.get("instance")
if not isinstance(instance, dict):
continue
n = nodes_used_in_instance(instance)
# Skip tensor ring single node as it is pointless when pipeline ring
if n == 1 and (
(args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
or (
args.instance_meta == "both"
and "jaccl" in p.get("instance_meta", "").lower()
)
):
continue
if (
args.skip_pipeline_jaccl
and (
args.instance_meta == "both"
and "jaccl" in p.get("instance_meta", "").lower()
)
and (
args.sharding == "both" and "pipeline" in p.get("sharding", "").lower()
)
):
continue
if (
args.skip_tensor_ring
and (
args.instance_meta == "both"
and "ring" in p.get("instance_meta", "").lower()
)
and (args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
):
continue
if args.min_nodes <= n <= args.max_nodes:
selected.append(p)
return selected
def settle_and_fetch_placements(
client: ExoClient,
full_model_id: str,
args: argparse.Namespace,
settle_timeout: float = 0,
) -> list[dict[str, Any]]:
selected = fetch_and_filter_placements(client, full_model_id, args)
if not selected and settle_timeout > 0:
backoff = _SETTLE_INITIAL_BACKOFF_S
deadline = time.monotonic() + settle_timeout
while not selected and time.monotonic() < deadline:
remaining = deadline - time.monotonic()
logger.warning(
f"No valid placements yet (cluster may still be settling). "
f"Retrying in {backoff:.1f}s ({remaining:.0f}s remaining)..."
)
time.sleep(min(backoff, remaining))
backoff = min(backoff * _SETTLE_BACKOFF_MULTIPLIER, _SETTLE_MAX_BACKOFF_S)
selected = fetch_and_filter_placements(client, full_model_id, args)
return selected
def add_common_instance_args(ap: argparse.ArgumentParser) -> None:
ap.add_argument("--host", default=os.environ.get("EXO_HOST", "localhost"))
ap.add_argument(
"--port", type=int, default=int(os.environ.get("EXO_PORT", "52415"))
)
ap.add_argument("--model", required=True, help="Model short id or huggingface id")
ap.add_argument(
"--max-nodes",
type=int,
default=4,
help="Only consider placements using <= this many nodes.",
)
ap.add_argument(
"--min-nodes",
type=int,
default=1,
help="Only consider placements using >= this many nodes.",
)
ap.add_argument(
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
)
ap.add_argument(
"--sharding", choices=["pipeline", "tensor", "both"], default="both"
)
ap.add_argument(
"--skip-pipeline-jaccl",
action="store_true",
help="Skip pipeline+jaccl placements, as it's often pointless.",
)
ap.add_argument(
"--skip-tensor-ring",
action="store_true",
help="Skip tensor+ring placements, as it's so slow.",
)
ap.add_argument(
"--timeout", type=float, default=7200.0, help="HTTP timeout (seconds)."
)
ap.add_argument(
"--settle-timeout",
type=float,
default=0,
help="Max seconds to wait for the cluster to produce valid placements (0 = try once).",
)

View File

@@ -4,7 +4,6 @@ version = "0.1.0"
description = "Benchmarking tool for exo distributed inference"
requires-python = ">=3.13"
dependencies = [
"httpx>=0.27.0",
"loguru>=0.7.3",
"transformers>=5.0.0",
"huggingface-hub>=0.33.4",

View File

@@ -1,240 +0,0 @@
# Tool definitions — each becomes an OpenAI function tool.
# All scenarios get all tools unless they specify a `tools` list.
[tools.get_current_weather]
description = "Get the current weather in a given location"
required = ["location"]
[tools.get_current_weather.properties.location]
type = "string"
description = "City and state, e.g. San Francisco, CA"
[tools.get_current_weather.properties.unit]
type = "string"
enum = ["celsius", "fahrenheit"]
description = "Temperature unit"
[tools.calculate]
description = "Evaluate a mathematical expression and return the numeric result"
required = ["expression"]
[tools.calculate.properties.expression]
type = "string"
description = "The math expression to evaluate, e.g. '2 + 3 * 4'"
[tools.search_products]
description = "Search for products in a catalog by query, category, and price"
required = ["query"]
[tools.search_products.properties.query]
type = "string"
description = "Search query string"
[tools.search_products.properties.category]
type = "string"
enum = ["electronics", "clothing", "food", "books"]
description = "Product category to filter by"
[tools.search_products.properties.max_price]
type = "number"
description = "Maximum price in USD"
# -- Should call a tool --
[[scenarios]]
name = "weather_simple"
description = "Basic weather query -> get_current_weather"
expect_tool_call = true
expected_function = "get_current_weather"
required_arg_keys = ["location"]
[[scenarios.messages]]
role = "user"
content = "What's the weather like in Tokyo right now?"
[[scenarios]]
name = "calculator_simple"
description = "Math question -> calculate"
expect_tool_call = true
expected_function = "calculate"
required_arg_keys = ["expression"]
[[scenarios.messages]]
role = "user"
content = "Use the calculator to compute 3847 * 926 + 17293"
[[scenarios]]
name = "search_with_filters"
description = "Product search with category and price filter"
expect_tool_call = true
expected_function = "search_products"
required_arg_keys = ["query"]
[[scenarios.messages]]
role = "user"
content = "Find me electronics under $50"
# -- Multi-turn: tool call then follow-up --
[[scenarios]]
name = "weather_multi_turn"
description = "Weather query -> tool result -> natural language summary"
expect_tool_call = true
expected_function = "get_current_weather"
required_arg_keys = ["location"]
[scenarios.tool_result]
temperature = "18C"
condition = "partly cloudy"
humidity = "65%"
wind = "12 km/h NW"
[[scenarios.messages]]
role = "user"
content = "What's the weather in Paris?"
[[scenarios]]
name = "calculator_multi_turn"
description = "Math query -> tool result -> model reports the answer"
expect_tool_call = true
expected_function = "calculate"
required_arg_keys = ["expression"]
[scenarios.tool_result]
result = 491682
[[scenarios.messages]]
role = "user"
content = "Use the calculator to compute 1847 * 263 + 5921"
[[scenarios]]
name = "search_multi_turn"
description = "Search query -> tool result -> model summarizes products"
expect_tool_call = true
expected_function = "search_products"
required_arg_keys = ["query"]
[[scenarios.tool_result.results]]
name = "Hands-On Machine Learning"
price = 45.99
rating = 4.8
[[scenarios.tool_result.results]]
name = "Deep Learning with Python"
price = 39.99
rating = 4.6
[[scenarios.messages]]
role = "user"
content = "Search for books about machine learning"
# -- Sequential tool calls --
[[scenarios]]
name = "chained_tool_calls_same"
description = "Thinking + weather(Tokyo) -> result -> model must call weather(London)"
expect_tool_call = true
expected_function = "get_current_weather"
required_arg_keys = ["location"]
[[scenarios.messages]]
role = "user"
content = "Compare the weather in Tokyo and London."
[[scenarios.messages]]
role = "assistant"
content = "I'll check both cities. Let me start with Tokyo."
[[scenarios.messages.tool_calls]]
id = "call_1"
name = "get_current_weather"
arguments = { location = "Tokyo" }
[[scenarios.messages]]
role = "tool"
tool_call_id = "call_1"
content = '{"temperature": "25C", "condition": "sunny"}'
[[scenarios]]
name = "chained_tool_calls_different"
description = "Thinking + weather(Berlin) -> result -> model must call calculator"
expect_tool_call = true
expected_function = "calculate"
required_arg_keys = ["expression"]
[[scenarios.messages]]
role = "user"
content = "What's the weather in Berlin, and also use the calculator to compute 4819 * 37 + 291."
[[scenarios.messages]]
role = "assistant"
content = "I'll handle both. Let me check Berlin's weather first."
[[scenarios.messages.tool_calls]]
id = "call_2"
name = "get_current_weather"
arguments = { location = "Berlin" }
[[scenarios.messages]]
role = "tool"
tool_call_id = "call_2"
content = '{"temperature": "12C", "condition": "rainy"}'
[[scenarios]]
name = "chained_tool_calls_three"
description = "Two prior thinking+tool calls -> results -> model must make a third"
expect_tool_call = true
expected_function = "get_current_weather"
required_arg_keys = ["location"]
[[scenarios.messages]]
role = "user"
content = "Compare weather in Tokyo, Paris, and London."
[[scenarios.messages]]
role = "assistant"
content = "I'll check all three cities. Starting with Tokyo."
[[scenarios.messages.tool_calls]]
id = "call_3"
name = "get_current_weather"
arguments = { location = "Tokyo" }
[[scenarios.messages]]
role = "tool"
tool_call_id = "call_3"
content = '{"temperature": "25C", "condition": "sunny"}'
[[scenarios.messages]]
role = "assistant"
content = "Got Tokyo. Now checking Paris."
[[scenarios.messages.tool_calls]]
id = "call_4"
name = "get_current_weather"
arguments = { location = "Paris" }
[[scenarios.messages]]
role = "tool"
tool_call_id = "call_4"
content = '{"temperature": "18C", "condition": "cloudy"}'
# -- Should NOT call a tool --
[[scenarios]]
name = "no_tool_joke"
description = "Joke request should NOT trigger any tool"
expect_tool_call = false
[[scenarios.messages]]
role = "user"
content = "Tell me a funny joke about cats."
[[scenarios]]
name = "no_tool_factual"
description = "Factual question answerable from training data"
expect_tool_call = false
[[scenarios.messages]]
role = "user"
content = "What is the capital of Japan?"

View File

@@ -1,189 +0,0 @@
# Single-node M3 Ultra benchmarks
#
# Shared constraints applied to ALL benchmarks in this file.
constraints = [
"All(MacOsBuild(=25D125))",
"Hosts(=1)",
"All(Chip(m3_ultra))",
"All(GpuCores(=80))",
]
[topology]
type = "none"
# Default args merged into each benchmark's args (benchmark-level args win).
[defaults]
pp = [512, 2048, 8192, 16384]
tg = 128
[[benchmark]]
model = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/gpt-oss-120b-MXFP4-Q8"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-Flash-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Coder-Next-6bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-30B-A3B-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-0.6B-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-0.6B-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Llama-3.2-1B-Instruct-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Llama-3.2-3B-Instruct-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Llama-3.2-3B-Instruct-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/gpt-oss-20b-MXFP4-Q8"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-30B-A3B-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-Flash-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-Flash-5bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-Flash-6bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Llama-3.3-70B-Instruct-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Coder-Next-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Coder-Next-5bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Coder-Next-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
extra_constraints = ["All(Memory(>=96GiB))"]
[[benchmark]]
model = "mlx-community/Llama-3.3-70B-Instruct-8bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/llama-3.3-70b-instruct-fp16"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.5-Air-8bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.5-Air-bf16"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-4bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/MiniMax-M2.1-3bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/MiniMax-M2.1-8bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Coder-Next-bf16"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/Step-3.5-Flash-4bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/Step-3.5-Flash-6bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/Step-3.5-Flash-8Bit"
extra_constraints = ["All(Memory(>=256GiB))"]
[[benchmark]]
model = "mlx-community/DeepSeek-V3.1-4bit"
extra_constraints = ["All(Memory(>=512GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-6bit"
extra_constraints = ["All(Memory(>=512GiB))"]
[[benchmark]]
model = "mlx-community/GLM-4.7-8bit-gs32"
extra_constraints = ["All(Memory(>=512GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
extra_constraints = ["All(Memory(>=512GiB))"]
[[benchmark]]
model = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
extra_constraints = ["All(Memory(>=512GiB))"]

View File

@@ -103,7 +103,7 @@
const modelSupportsThinking = $derived(() => {
if (!currentModel) return false;
const caps = modelCapabilities[currentModel] || [];
return caps.includes("thinking_toggle") && caps.includes("text");
return caps.includes("thinking") && caps.includes("text");
});
const isEditOnlyWithoutImage = $derived(
@@ -265,7 +265,6 @@
function handleSubmit() {
if ((!message.trim() && uploadedFiles.length === 0) || loading) return;
if (isEditOnlyWithoutImage) return;
const content = message.trim();
const files = [...uploadedFiles];
@@ -290,11 +289,7 @@
if (imageFile.preview) {
editImage(content, imageFile.preview);
}
} else if (
currentModel &&
modelSupportsTextToImage(currentModel) &&
content
) {
} else if (isImageModel() && content) {
// Use image generation for text-to-image models
generateImage(content);
} else {

View File

@@ -225,7 +225,6 @@
}
function handleDeleteClick(messageId: string) {
if (loading) return;
deleteConfirmId = messageId;
}
@@ -256,7 +255,7 @@
</script>
<div class="flex flex-col gap-4 sm:gap-6 {className}">
{#each messageList as message, i (message.id)}
{#each messageList as message (message.id)}
<div
class="group flex {message.role === 'user'
? 'justify-end'
@@ -318,11 +317,9 @@
<!-- Delete confirmation -->
<div class="bg-red-500/10 border border-red-500/30 rounded-lg p-3">
<p class="text-xs text-red-400 mb-3">
{#if i === messageList.length - 1}
Delete this message?
{:else}
Delete this message and all messages after it?
{/if}
Delete this message{message.role === "user"
? " and all responses after it"
: ""}?
</p>
<div class="flex gap-2 justify-end">
<button
@@ -754,13 +751,8 @@
<!-- Delete button -->
<button
onclick={() => handleDeleteClick(message.id)}
disabled={loading}
class="p-1.5 transition-colors rounded {loading
? 'text-exo-light-gray/30 cursor-not-allowed'
: 'text-exo-light-gray hover:text-red-400 hover:bg-red-500/10 cursor-pointer'}"
title={loading
? "Cannot delete while generating"
: "Delete message"}
class="p-1.5 text-exo-light-gray hover:text-red-400 transition-colors rounded hover:bg-red-500/10 cursor-pointer"
title="Delete message"
>
<svg
class="w-3.5 h-3.5"

View File

@@ -59,14 +59,13 @@
}
const sizeOptions: ImageGenerationParams["size"][] = [
"auto",
"512x512",
"768x768",
"1024x1024",
"1024x768",
"768x1024",
"1024x1536",
"1536x1024",
"1024x1365",
"1365x1024",
];
const qualityOptions: ImageGenerationParams["quality"][] = [
@@ -177,90 +176,92 @@
<div class="border-b border-exo-medium-gray/30 px-3 py-2">
<!-- Basic params row -->
<div class="flex items-center gap-3 flex-wrap">
<!-- Size -->
<div class="flex items-center gap-1.5">
<span class="text-xs text-exo-light-gray uppercase tracking-wider"
>SIZE:</span
>
<div class="relative">
<button
bind:this={sizeButtonRef}
type="button"
onclick={() => (isSizeDropdownOpen = !isSizeDropdownOpen)}
class="bg-exo-medium-gray/50 border border-exo-yellow/30 rounded pl-2 pr-6 py-1 text-xs font-mono text-exo-yellow cursor-pointer transition-all duration-200 hover:border-exo-yellow/50 focus:outline-none focus:border-exo-yellow/70 {isSizeDropdownOpen
? 'border-exo-yellow/70'
: ''}"
<!-- Size (hidden in edit mode - output size comes from input image) -->
{#if !isEditMode}
<div class="flex items-center gap-1.5">
<span class="text-xs text-exo-light-gray uppercase tracking-wider"
>SIZE:</span
>
{params.size.toUpperCase()}
</button>
<div
class="absolute right-1.5 top-1/2 -translate-y-1/2 pointer-events-none transition-transform duration-200 {isSizeDropdownOpen
? 'rotate-180'
: ''}"
>
<svg
class="w-3 h-3 text-exo-yellow/60"
fill="none"
viewBox="0 0 24 24"
stroke="currentColor"
<div class="relative">
<button
bind:this={sizeButtonRef}
type="button"
onclick={() => (isSizeDropdownOpen = !isSizeDropdownOpen)}
class="bg-exo-medium-gray/50 border border-exo-yellow/30 rounded pl-2 pr-6 py-1 text-xs font-mono text-exo-yellow cursor-pointer transition-all duration-200 hover:border-exo-yellow/50 focus:outline-none focus:border-exo-yellow/70 {isSizeDropdownOpen
? 'border-exo-yellow/70'
: ''}"
>
<path
stroke-linecap="round"
stroke-linejoin="round"
stroke-width="2"
d="M19 9l-7 7-7-7"
/>
</svg>
</div>
</div>
{#if isSizeDropdownOpen}
<!-- Backdrop to close dropdown -->
<button
type="button"
class="fixed inset-0 z-[9998] cursor-default"
onclick={() => (isSizeDropdownOpen = false)}
aria-label="Close dropdown"
></button>
<!-- Dropdown Panel - fixed positioning to escape overflow:hidden -->
<div
class="fixed bg-exo-dark-gray border border-exo-yellow/30 rounded shadow-lg shadow-black/50 z-[9999] max-h-48 overflow-y-auto overflow-x-hidden min-w-max"
style="bottom: calc(100vh - {sizeDropdownPosition()
.top}px + 4px); left: {sizeDropdownPosition().left}px;"
>
<div class="py-1">
{#each sizeOptions as size}
<button
type="button"
onclick={() => selectSize(size)}
class="w-full px-3 py-1.5 text-left text-xs font-mono tracking-wide transition-colors duration-100 flex items-center gap-2 {params.size ===
size
? 'bg-transparent text-exo-yellow'
: 'text-exo-light-gray hover:text-exo-yellow'}"
>
{#if params.size === size}
<svg
class="w-3 h-3 flex-shrink-0"
fill="currentColor"
viewBox="0 0 20 20"
>
<path
fill-rule="evenodd"
d="M16.707 5.293a1 1 0 010 1.414l-8 8a1 1 0 01-1.414 0l-4-4a1 1 0 011.414-1.414L8 12.586l7.293-7.293a1 1 0 011.414 0z"
clip-rule="evenodd"
/>
</svg>
{:else}
<span class="w-3"></span>
{/if}
<span>{size.toUpperCase()}</span>
</button>
{/each}
{params.size}
</button>
<div
class="absolute right-1.5 top-1/2 -translate-y-1/2 pointer-events-none transition-transform duration-200 {isSizeDropdownOpen
? 'rotate-180'
: ''}"
>
<svg
class="w-3 h-3 text-exo-yellow/60"
fill="none"
viewBox="0 0 24 24"
stroke="currentColor"
>
<path
stroke-linecap="round"
stroke-linejoin="round"
stroke-width="2"
d="M19 9l-7 7-7-7"
/>
</svg>
</div>
</div>
{/if}
</div>
{#if isSizeDropdownOpen}
<!-- Backdrop to close dropdown -->
<button
type="button"
class="fixed inset-0 z-[9998] cursor-default"
onclick={() => (isSizeDropdownOpen = false)}
aria-label="Close dropdown"
></button>
<!-- Dropdown Panel - fixed positioning to escape overflow:hidden -->
<div
class="fixed bg-exo-dark-gray border border-exo-yellow/30 rounded shadow-lg shadow-black/50 z-[9999] max-h-48 overflow-y-auto min-w-max"
style="bottom: calc(100vh - {sizeDropdownPosition()
.top}px + 4px); left: {sizeDropdownPosition().left}px;"
>
<div class="py-1">
{#each sizeOptions as size}
<button
type="button"
onclick={() => selectSize(size)}
class="w-full px-3 py-1.5 text-left text-xs font-mono tracking-wide transition-colors duration-100 flex items-center gap-2 {params.size ===
size
? 'bg-transparent text-exo-yellow'
: 'text-exo-light-gray hover:text-exo-yellow'}"
>
{#if params.size === size}
<svg
class="w-3 h-3 flex-shrink-0"
fill="currentColor"
viewBox="0 0 20 20"
>
<path
fill-rule="evenodd"
d="M16.707 5.293a1 1 0 010 1.414l-8 8a1 1 0 01-1.414 0l-4-4a1 1 0 011.414-1.414L8 12.586l7.293-7.293a1 1 0 011.414 0z"
clip-rule="evenodd"
/>
</svg>
{:else}
<span class="w-3"></span>
{/if}
<span>{size}</span>
</button>
{/each}
</div>
</div>
{/if}
</div>
{/if}
<!-- Quality -->
<div class="flex items-center gap-1.5">
@@ -310,7 +311,7 @@
<!-- Dropdown Panel - fixed positioning to escape overflow:hidden -->
<div
class="fixed bg-exo-dark-gray border border-exo-yellow/30 rounded shadow-lg shadow-black/50 z-[9999] max-h-48 overflow-y-auto overflow-x-hidden min-w-max"
class="fixed bg-exo-dark-gray border border-exo-yellow/30 rounded shadow-lg shadow-black/50 z-[9999] max-h-48 overflow-y-auto min-w-max"
style="bottom: calc(100vh - {qualityDropdownPosition()
.top}px + 4px); left: {qualityDropdownPosition().left}px;"
>

View File

@@ -72,6 +72,8 @@ export interface Instance {
runnerToShard?: Record<string, unknown>;
nodeToRunner?: Record<string, string>;
};
draftModel?: string;
numDraftTokens?: number;
}
// Granular node state types from the new state structure
@@ -306,14 +308,13 @@ const IMAGE_PARAMS_STORAGE_KEY = "exo-image-generation-params";
export interface ImageGenerationParams {
// Basic params
size:
| "auto"
| "512x512"
| "768x768"
| "1024x1024"
| "1024x768"
| "768x1024"
| "1024x1536"
| "1536x1024";
| "1024x1365"
| "1365x1024";
quality: "low" | "medium" | "high";
outputFormat: "png" | "jpeg";
numImages: number;
@@ -337,7 +338,7 @@ export interface EditingImage {
}
const DEFAULT_IMAGE_PARAMS: ImageGenerationParams = {
size: "auto",
size: "1024x1024",
quality: "medium",
outputFormat: "png",
numImages: 1,

View File

File diff suppressed because it is too large Load Diff

View File

@@ -115,7 +115,7 @@
packages = lib.optionalAttrs pkgs.stdenv.hostPlatform.isDarwin (
let
uvLock = builtins.fromTOML (builtins.readFile ./uv.lock);
mlxPackage = builtins.head (builtins.filter (p: p.name == "mlx" && p.source ? git) uvLock.package);
mlxPackage = builtins.head (builtins.filter (p: p.name == "mlx") uvLock.package);
uvLockMlxVersion = mlxPackage.version;
in
{

View File

@@ -41,16 +41,16 @@ let
mlx = stdenv.mkDerivation rec {
pname = "mlx";
version = let v = "0.30.7.dev20260218+14841977"; in
version = let v = "0.30.6"; in
assert v == uvLockMlxVersion || throw "MLX version mismatch: nix/mlx.nix has ${v} but uv.lock has ${uvLockMlxVersion}. Update both the version and hash in nix/mlx.nix.";
v;
pyproject = true;
src = fetchFromGitHub {
owner = "rltakashige";
repo = "mlx-jaccl-fix-small-recv";
rev = "1484197707f35186ad3bd614357c7c47fdf86ebc";
hash = "sha256-FupCMoK/SF/ldfKuvMSAKECcOP8c+ANgkQlPZttDsLk=";
owner = "ml-explore";
repo = "mlx";
tag = "v${version}";
hash = "sha256-avD5EGhwgmPdXLAyQSqTO6AXk/W3ziH+f6AetjK3Sdo=";
};
patches = [

View File

@@ -17,9 +17,9 @@ dependencies = [
"loguru>=0.7.3",
"exo_pyo3_bindings", # rust bindings
"anyio==4.11.0",
"mlx; sys_platform == 'darwin'",
"mlx==0.30.6; sys_platform == 'darwin'",
"mlx[cpu]==0.30.6; sys_platform == 'linux'",
"mlx-lm==0.30.7",
"mlx-lm==0.30.6",
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
"hypercorn>=0.18.0",
"openai-harmony>=0.0.8",
@@ -64,7 +64,6 @@ members = [
[tool.uv.sources]
exo_pyo3_bindings = { workspace = true }
mlx = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git", branch = "address-rdma-gpu-locks", marker = "sys_platform == 'darwin'" }
#mlx-lm = { git = "https://github.com/davidmcc73/mlx-lm", branch = "stable" }
# Uncomment to use local mlx/mlx-lm development versions:
# mlx = { path = "/Users/Shared/mlx", editable=true }
@@ -133,7 +132,7 @@ markers = [
env = [
"EXO_TESTS=1"
]
addopts = "-m 'not slow' --ignore=tests/start_distributed_test.py"
addopts = "-m 'not slow'"
filterwarnings = [
"ignore:builtin type Swig:DeprecationWarning",
]

View File

@@ -14,9 +14,7 @@
# Override overlay to inject Nix-built components
exoOverlay = final: prev: {
# Replace workspace exo_pyo3_bindings with Nix-built wheel.
# Preserve passthru so mkVirtualEnv can resolve dependency groups.
# Copy .pyi stub + py.typed marker so basedpyright can find the types.
# Replace workspace exo_pyo3_bindings with Nix-built wheel
exo-pyo3-bindings = pkgs.stdenv.mkDerivation {
pname = "exo-pyo3-bindings";
version = "0.1.0";
@@ -24,12 +22,6 @@
# Install from pre-built wheel
nativeBuildInputs = [ final.pyprojectWheelHook ];
dontStrip = true;
passthru = prev.exo-pyo3-bindings.passthru or { };
postInstall = ''
local siteDir=$out/${final.python.sitePackages}/exo_pyo3_bindings
cp ${inputs.self}/rust/exo_pyo3_bindings/exo_pyo3_bindings.pyi $siteDir/
touch $siteDir/py.typed
'';
};
};
@@ -37,47 +29,17 @@
# Overlay to provide build systems and custom packages
buildSystemsOverlay = final: prev: {
# Use our pure Nix-built MLX with Metal support
mlx = self'.packages.mlx;
# mlx-lm is a git dependency that needs setuptools
mlx-lm = prev.mlx-lm.overrideAttrs (old: {
nativeBuildInputs = (old.nativeBuildInputs or [ ]) ++ [
final.setuptools
];
});
} // lib.optionalAttrs pkgs.stdenv.hostPlatform.isDarwin {
# Use our pure Nix-built MLX with Metal support (macOS only)
mlx = self'.packages.mlx;
};
# Additional overlay for Linux-specific fixes (type checking env).
# Native wheels have shared lib dependencies we don't need at type-check time.
linuxOverlay = final: prev:
let
ignoreMissing = drv: drv.overrideAttrs { autoPatchelfIgnoreMissingDeps = [ "*" ]; };
nvidiaPackages = lib.filterAttrs (name: _: lib.hasPrefix "nvidia-" name) prev;
in
lib.optionalAttrs pkgs.stdenv.hostPlatform.isLinux (
(lib.mapAttrs (_: ignoreMissing) nvidiaPackages) // {
mlx = ignoreMissing prev.mlx;
mlx-cuda-13 = prev.mlx-cuda-13.overrideAttrs (old: {
buildInputs = (old.buildInputs or [ ]) ++ [
final.nvidia-cublas
final.nvidia-cuda-nvrtc
final.nvidia-cudnn-cu13
final.nvidia-nccl-cu13
];
preFixup = ''
addAutoPatchelfSearchPath ${final.nvidia-cublas}
addAutoPatchelfSearchPath ${final.nvidia-cuda-nvrtc}
addAutoPatchelfSearchPath ${final.nvidia-cudnn-cu13}
addAutoPatchelfSearchPath ${final.nvidia-nccl-cu13}
'';
autoPatchelfIgnoreMissingDeps = [ "libcuda.so.1" ];
});
torch = ignoreMissing prev.torch;
triton = ignoreMissing prev.triton;
}
);
pythonSet = (pkgs.callPackage inputs.pyproject-nix.build.packages {
inherit python;
}).overrideScope (
@@ -86,28 +48,16 @@
overlay
exoOverlay
buildSystemsOverlay
linuxOverlay
]
);
# mlx-cpu and mlx-cuda-13 both ship mlx/ site-packages files; keep first.
# mlx-cpu/mlx-cuda-13 and nvidia-cudnn-cu12/cu13 ship overlapping files.
venvCollisionPaths = lib.optionals pkgs.stdenv.hostPlatform.isLinux [
"lib/python3.13/site-packages/mlx*"
"lib/python3.13/site-packages/nvidia*"
];
exoVenv = (pythonSet.mkVirtualEnv "exo-env" workspace.deps.default).overrideAttrs {
venvIgnoreCollisions = venvCollisionPaths;
};
exoVenv = pythonSet.mkVirtualEnv "exo-env" workspace.deps.default;
# Virtual environment with dev dependencies for testing
testVenv = (pythonSet.mkVirtualEnv "exo-test-env" (
testVenv = pythonSet.mkVirtualEnv "exo-test-env" (
workspace.deps.default // {
exo = [ "dev" ]; # Include pytest, pytest-asyncio, pytest-env
}
)).overrideAttrs {
venvIgnoreCollisions = venvCollisionPaths;
};
);
mkPythonScript = name: path: pkgs.writeShellApplication {
inherit name;
@@ -158,7 +108,6 @@
exo-test-env = testVenv;
} // {
exo-bench = mkBenchScript "exo-bench" (inputs.self + /bench/exo_bench.py);
exo-eval-tool-calls = mkBenchScript "exo-eval-tool-calls" (inputs.self + /bench/eval_tool_calls.py);
exo-get-all-models-on-cluster = mkSimplePythonScript "exo-get-all-models-on-cluster" (inputs.self + /tests/get_all_models_on_cluster.py);
};
@@ -169,21 +118,6 @@
${pkgs.ruff}/bin/ruff check ${inputs.self}
touch $out
'';
# Hermetic basedpyright type checking
typecheck = pkgs.runCommand "typecheck"
{
nativeBuildInputs = [
testVenv
pkgs.basedpyright
];
}
''
cd ${inputs.self}
export HOME=$TMPDIR
basedpyright --pythonpath ${testVenv}/bin/python
touch $out
'';
};
};
}

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "deepseek"
quantization = "4bit"
base_model = "DeepSeek V3.1"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 405874409472

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "deepseek"
quantization = "8bit"
base_model = "DeepSeek V3.1"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 765577920512

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "8bit"
base_model = "GLM 4.5 Air"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 122406567936

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "bf16"
base_model = "GLM 4.5 Air"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 229780750336

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "4bit"
base_model = "GLM 4.7"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 198556925568

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "6bit"
base_model = "GLM 4.7"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 286737579648

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "8bit"
base_model = "GLM 4.7"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 396963397248

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "4bit"
base_model = "GLM 4.7 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 19327352832

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "5bit"
base_model = "GLM 4.7 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 22548578304

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "6bit"
base_model = "GLM 4.7 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 26843545600

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "glm"
quantization = "8bit"
base_model = "GLM 4.7 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 34359738368

View File

@@ -1,12 +0,0 @@
model_id = "mlx-community/GLM-5-8bit-MXFP8"
n_layers = 78
hidden_size = 6144
supports_tensor = true
tasks = ["TextGeneration"]
family = "glm"
quantization = "8bit"
base_model = "GLM-5"
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 790517400864

View File

@@ -1,12 +0,0 @@
model_id = "mlx-community/GLM-5-MXFP4-Q8"
n_layers = 78
hidden_size = 6144
supports_tensor = true
tasks = ["TextGeneration"]
family = "glm"
quantization = "MXFP4-Q8"
base_model = "GLM-5"
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 405478939008

View File

@@ -1,12 +0,0 @@
model_id = "mlx-community/GLM-5"
n_layers = 78
hidden_size = 6144
supports_tensor = true
tasks = ["TextGeneration"]
family = "glm"
quantization = "bf16"
base_model = "GLM-5"
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 1487822475264

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "kimi"
quantization = ""
base_model = "Kimi K2"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 706522120192

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "kimi"
quantization = ""
base_model = "Kimi K2.5"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 662498705408

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "minimax"
quantization = "3bit"
base_model = "MiniMax M2.1"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 100086644736

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "minimax"
quantization = "8bit"
base_model = "MiniMax M2.1"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 242986745856

View File

@@ -1,12 +0,0 @@
model_id = "mlx-community/MiniMax-M2.5-4bit"
n_layers = 62
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
family = "minimax"
quantization = "4bit"
base_model = "MiniMax M2.5"
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 128666664960

View File

@@ -1,12 +0,0 @@
model_id = "mlx-community/MiniMax-M2.5-6bit"
n_layers = 62
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
family = "minimax"
quantization = "6bit"
base_model = "MiniMax M2.5"
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 185826705408

View File

@@ -1,12 +0,0 @@
model_id = "mlx-community/MiniMax-M2.5-8bit"
n_layers = 62
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
family = "minimax"
quantization = "8bit"
base_model = "MiniMax M2.5"
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 242986745856

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "4bit"
base_model = "Qwen3 0.6B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 342884352

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "8bit"
base_model = "Qwen3 0.6B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 698351616

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "4bit"
base_model = "Qwen3 235B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 141733920768

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "8bit"
base_model = "Qwen3 235B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 268435456000

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "4bit"
base_model = "Qwen3 30B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 17612931072

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "8bit"
base_model = "Qwen3 30B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 33279705088

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "4bit"
base_model = "Qwen3 Next 80B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 47080074240

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "qwen"
quantization = "8bit"
base_model = "Qwen3 Next 80B"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 88814387200

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "step"
quantization = "4bit"
base_model = "Step 3.5 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 114572190076

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "step"
quantization = "6bit"
base_model = "Step 3.5 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 159039627774

View File

@@ -6,7 +6,7 @@ tasks = ["TextGeneration"]
family = "step"
quantization = "8bit"
base_model = "Step 3.5 Flash"
capabilities = ["text", "thinking", "thinking_toggle"]
capabilities = ["text", "thinking"]
[storage_size]
in_bytes = 209082699847

View File

@@ -25,17 +25,17 @@ workspace = true
networking = { workspace = true }
# interop
pyo3 = { version = "0.27.2", features = [
# "abi3-py313", # tells pyo3 (and maturin) to build using the stable ABI with minimum Python version 3.13
pyo3 = { version = "0.27.1", features = [
# "abi3-py311", # tells pyo3 (and maturin) to build using the stable ABI with minimum Python version 3.11
"nightly", # enables better-supported GIL integration
"experimental-async", # async support in #[pyfunction] & #[pymethods]
#"experimental-inspect", # inspection of generated binary => easier to automate type-hint generation
#"py-clone", # adding Clone-ing of `Py<T>` without GIL (may cause panics - remove if panics happen)
# "multiple-pymethods", # allows multiple #[pymethods] sections per class
"multiple-pymethods", # allows multiple #[pymethods] sections per class
# integrations with other libraries
# "arc_lock", "bigdecimal", "either", "hashbrown", "indexmap", "num-bigint", "num-complex", "num-rational",
# "ordered-float", "rust_decimal", "smallvec",
"arc_lock", "bigdecimal", "either", "hashbrown", "indexmap", "num-bigint", "num-complex", "num-rational",
"ordered-float", "rust_decimal", "smallvec",
# "anyhow", "chrono", "chrono-local", "chrono-tz", "eyre", "jiff-02", "lock_api", "parking-lot", "time", "serde",
] }
pyo3-stub-gen = { version = "0.17.2" }
@@ -45,6 +45,8 @@ pyo3-log = "0.13.2"
# macro dependencies
extend = { workspace = true }
delegate = { workspace = true }
impl-trait-for-tuples = { workspace = true }
derive_more = { workspace = true }
pin-project = { workspace = true }
# async runtime
@@ -52,11 +54,24 @@ tokio = { workspace = true, features = ["full", "tracing"] }
futures = { workspace = true }
# utility dependencies
once_cell = "1.21.3"
thread_local = "1.1.9"
util = { workspace = true }
thiserror = { workspace = true }
#internment = { workspace = true }
#recursion = { workspace = true }
#generativity = { workspace = true }
#itertools = { workspace = true }
# Tracing
#tracing = "0.1"
#tracing-subscriber = "0.3"
#console-subscriber = "0.1.5"
#tracing-log = "0.2.0"
log = { workspace = true }
env_logger = "0.11"
# Networking
libp2p = { workspace = true, features = ["full"] }

View File

@@ -6,7 +6,7 @@ use pyo3::marker::Ungil;
use pyo3::prelude::*;
use std::{
future::Future,
pin::Pin,
pin::{Pin, pin},
task::{Context, Poll},
};
@@ -33,6 +33,8 @@ where
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let waker = cx.waker();
Python::attach(|py| py.detach(|| self.project().0.poll(&mut Context::from_waker(waker))))
Python::with_gil(|py| {
py.allow_threads(|| self.project().0.poll(&mut Context::from_waker(waker)))
})
}
}

View File

@@ -0,0 +1,240 @@
//! This module exists to hold examples of some pyo3 patterns that may be too complex to
//! re-create from scratch, but too inhomogenous to create an abstraction/wrapper around.
//!
//! Pattern examples include:
//! - Async task handles: with GC-integrated cleanup
//! - Sync/async callbacks from python: with propper eventloop handling
//!
//! Mutability pattern: https://pyo3.rs/v0.26.0/async-await.html#send--static-constraint
//! - Store mutable fields in tokio's `Mutex<T>`
//! - For async code: take `&self` and `.lock().await`
//! - For sync code: take `&mut self` and `.get_mut()`
use crate::ext::{PyResultExt as _, ResultExt as _, TokioRuntimeExt as _};
use futures::FutureExt as _;
use futures::future::BoxFuture;
use pyo3::exceptions::PyRuntimeError;
use pyo3::prelude::{PyModule, PyModuleMethods as _};
use pyo3::{
Bound, Py, PyAny, PyErr, PyResult, PyTraverseError, PyVisit, Python, pyclass, pymethods,
};
use std::time::Duration;
use tokio::sync::mpsc;
use tokio::sync::mpsc::error::TryRecvError;
fn needs_tokio_runtime() {
tokio::runtime::Handle::current();
}
type SyncCallback = Box<dyn Fn() + Send + Sync>;
type AsyncCallback = Box<dyn Fn() -> BoxFuture<'static, ()> + Send + Sync>;
enum AsyncTaskMessage {
SyncCallback(SyncCallback),
AsyncCallback(AsyncCallback),
}
async fn async_task(
sender: mpsc::UnboundedSender<()>,
mut receiver: mpsc::UnboundedReceiver<AsyncTaskMessage>,
) {
log::info!("RUST: async task started");
// task state
let mut interval = tokio::time::interval(Duration::from_secs(1));
let mut sync_cbs: Vec<SyncCallback> = vec![];
let mut async_cbs: Vec<AsyncCallback> = vec![];
loop {
tokio::select! {
// handle incoming messages from task-handle
message = receiver.recv() => {
// handle closed channel by exiting
let Some(message) = message else {
log::info!("RUST: channel closed");
break;
};
// dispatch incoming event
match message {
AsyncTaskMessage::SyncCallback(cb) => {
sync_cbs.push(cb);
}
AsyncTaskMessage::AsyncCallback(cb) => {
async_cbs.push(cb);
}
}
}
// handle all other events
_ = interval.tick() => {
log::info!("RUST: async task tick");
// call back all sync callbacks
for cb in &sync_cbs {
cb();
}
// call back all async callbacks
for cb in &async_cbs {
cb().await;
}
// send event on unbounded channel
sender.send(()).expect("handle receiver cannot be closed/dropped");
}
}
}
log::info!("RUST: async task stopped");
}
// #[gen_stub_pyclass]
#[pyclass(name = "AsyncTaskHandle")]
#[derive(Debug)]
struct PyAsyncTaskHandle {
sender: Option<mpsc::UnboundedSender<AsyncTaskMessage>>,
receiver: mpsc::UnboundedReceiver<()>,
}
#[allow(clippy::expect_used)]
impl PyAsyncTaskHandle {
const fn sender(&self) -> &mpsc::UnboundedSender<AsyncTaskMessage> {
self.sender
.as_ref()
.expect("The sender should only be None after de-initialization.")
}
const fn sender_mut(&mut self) -> &mpsc::UnboundedSender<AsyncTaskMessage> {
self.sender
.as_mut()
.expect("The sender should only be None after de-initialization.")
}
const fn new(
sender: mpsc::UnboundedSender<AsyncTaskMessage>,
receiver: mpsc::UnboundedReceiver<()>,
) -> Self {
Self {
sender: Some(sender),
receiver,
}
}
}
// #[gen_stub_pymethods]
#[pymethods]
impl PyAsyncTaskHandle {
#[new]
fn py_new(py: Python<'_>) -> PyResult<Self> {
use pyo3_async_runtimes::tokio::get_runtime;
// create communication channel TOWARDS our task
let (h_sender, t_receiver) = mpsc::unbounded_channel::<AsyncTaskMessage>();
// create communication channel FROM our task
let (t_sender, h_receiver) = mpsc::unbounded_channel::<()>();
// perform necessary setup within tokio context - or it crashes
let () = get_runtime().block_on(async { needs_tokio_runtime() });
// spawn tokio task with this thread's task-locals - without this, async callbacks on the new threads will not work!!
_ = get_runtime().spawn_with_scope(py, async move {
async_task(t_sender, t_receiver).await;
});
Ok(Self::new(h_sender, h_receiver))
}
/// NOTE: exceptions in callbacks are silently ignored until end of execution
fn add_sync_callback(
&self,
// #[gen_stub(override_type(
// type_repr="collections.abc.Callable[[], None]",
// imports=("collections.abc")
// ))]
callback: Py<PyAny>,
) -> PyResult<()> {
// blocking call to async method -> can do non-blocking if needed
self.sender()
.send(AsyncTaskMessage::SyncCallback(Box::new(move || {
_ = Python::with_gil(|py| callback.call0(py).write_unraisable_with(py));
})))
.pyerr()?;
Ok(())
}
/// NOTE: exceptions in callbacks are silently ignored until end of execution
fn add_async_callback(
&self,
// #[gen_stub(override_type(
// type_repr="collections.abc.Callable[[], collections.abc.Awaitable[None]]",
// imports=("collections.abc")
// ))]
callback: Py<PyAny>,
) -> PyResult<()> {
// blocking call to async method -> can do non-blocking if needed
self.sender()
.send(AsyncTaskMessage::AsyncCallback(Box::new(move || {
let c = Python::with_gil(|py| callback.clone_ref(py));
async move {
if let Some(f) = Python::with_gil(|py| {
let coroutine = c.call0(py).write_unraisable_with(py)?;
pyo3_async_runtimes::tokio::into_future(coroutine.into_bound(py))
.write_unraisable_with(py)
}) {
_ = f.await.write_unraisable();
}
}
.boxed()
})))
.pyerr()?;
Ok(())
}
async fn receive_unit(&mut self) -> PyResult<()> {
self.receiver
.recv()
.await
.ok_or(PyErr::new::<PyRuntimeError, _>(
"cannot receive unit on closed channel",
))
}
fn drain_units(&mut self) -> PyResult<i32> {
let mut cnt = 0;
loop {
match self.receiver.try_recv() {
Err(TryRecvError::Disconnected) => {
return Err(PyErr::new::<PyRuntimeError, _>(
"cannot receive unit on closed channel",
));
}
Err(TryRecvError::Empty) => return Ok(cnt),
Ok(()) => {
cnt += 1;
continue;
}
}
}
}
// #[gen_stub(skip)]
const fn __traverse__(&self, _visit: PyVisit<'_>) -> Result<(), PyTraverseError> {
Ok(()) // This is needed purely so `__clear__` can work
}
// #[gen_stub(skip)]
fn __clear__(&mut self) {
// TODO: may or may not need to await a "kill-signal" oneshot channel message,
// to ensure that the networking task is done BEFORE exiting the clear function...
// but this may require GIL?? and it may not be safe to call GIL here??
self.sender = None; // Using Option<T> as a trick to force `sender` channel to be dropped
}
}
pub fn examples_submodule(m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_class::<PyAsyncTaskHandle>()?;
Ok(())
}

View File

@@ -17,6 +17,7 @@
extern crate core;
mod allow_threading;
mod examples;
pub(crate) mod networking;
pub(crate) mod pylibp2p;
@@ -24,6 +25,7 @@ use crate::networking::networking_submodule;
use crate::pylibp2p::ident::ident_submodule;
use crate::pylibp2p::multiaddr::multiaddr_submodule;
use pyo3::prelude::PyModule;
use pyo3::prelude::*;
use pyo3::{Bound, PyResult, pyclass, pymodule};
use pyo3_stub_gen::define_stub_info_gatherer;
@@ -34,10 +36,14 @@ pub(crate) mod r#const {
/// Namespace for all the type/trait aliases used by this crate.
pub(crate) mod alias {
use std::error::Error;
use std::marker::Tuple;
pub trait SendFn<Args: Tuple + Send + 'static, Output> =
Fn<Args, Output = Output> + Send + 'static;
pub type AnyError = Box<dyn Error + Send + Sync + 'static>;
pub type AnyResult<T> = Result<T, AnyError>;
}
/// Namespace for crate-wide extension traits/methods
@@ -45,6 +51,7 @@ pub(crate) mod ext {
use crate::allow_threading::AllowThreads;
use extend::ext;
use pyo3::exceptions::{PyConnectionError, PyRuntimeError};
use pyo3::marker::Ungil;
use pyo3::types::PyBytes;
use pyo3::{Py, PyErr, PyResult, Python};
use tokio::runtime::Runtime;
@@ -55,7 +62,7 @@ pub(crate) mod ext {
#[ext(pub, name = ByteArrayExt)]
impl [u8] {
fn pybytes(&self) -> Py<PyBytes> {
Python::attach(|py| PyBytes::new(py, self).unbind())
Python::with_gil(|py| PyBytes::new(py, self).unbind())
}
}
@@ -91,7 +98,7 @@ pub(crate) mod ext {
#[ext(pub, name = PyResultExt)]
impl<T> PyResult<T> {
fn write_unraisable(self) -> Option<T> {
Python::attach(|py| self.write_unraisable_with(py))
Python::with_gil(|py| self.write_unraisable_with(py))
}
fn write_unraisable_with(self, py: Python<'_>) -> Option<T> {
@@ -168,6 +175,24 @@ pub(crate) mod ext {
}
}
pub(crate) mod private {
use std::marker::Sized;
/// Sealed traits support
pub trait Sealed {}
impl<T: ?Sized> Sealed for T {}
}
/// A wrapper around [`Py`] that implements [`Clone`] using [`Python::with_gil`].
#[repr(transparent)]
pub(crate) struct ClonePy<T>(pub Py<T>);
impl<T> Clone for ClonePy<T> {
fn clone(&self) -> Self {
Python::with_gil(|py| Self(self.0.clone_ref(py)))
}
}
/// A Python module implemented in Rust. The name of this function must match
/// the `lib.name` setting in the `Cargo.toml`, else Python will not be able to
/// import the module.

View File

@@ -11,9 +11,9 @@ use crate::ext::{ResultExt as _, TokioMpscReceiverExt as _, TokioMpscSenderExt a
use crate::pyclass;
use crate::pylibp2p::ident::{PyKeypair, PyPeerId};
use libp2p::futures::StreamExt as _;
use libp2p::gossipsub;
use libp2p::gossipsub::{IdentTopic, Message, MessageId, PublishError};
use libp2p::swarm::SwarmEvent;
use libp2p::{gossipsub, mdns};
use networking::discovery;
use networking::swarm::create_swarm;
use pyo3::prelude::{PyModule, PyModuleMethods as _};
@@ -25,7 +25,7 @@ use tokio::sync::{Mutex, mpsc, oneshot};
mod exception {
use pyo3::types::PyTuple;
use pyo3::{exceptions::PyException, prelude::*};
use pyo3::{PyErrArguments, exceptions::PyException, prelude::*};
use pyo3_stub_gen::derive::*;
#[gen_stub_pyclass]
@@ -155,6 +155,7 @@ async fn networking_task(
) {
use SwarmEvent::*;
use ToTask::*;
use mdns::Event::*;
use networking::swarm::BehaviourEvent::*;
log::info!("RUST: networking task started");
@@ -484,7 +485,7 @@ impl PyNetworkingHandle {
let (tx, rx) = oneshot::channel();
// send off request to subscribe
let data = Python::attach(|py| Vec::from(data.as_bytes(py)));
let data = Python::with_gil(|py| Vec::from(data.as_bytes(py)));
self.to_task_tx()
.send_py(ToTask::GossipsubPublish {
topic,

View File

@@ -19,6 +19,8 @@ either = { workspace = true }
# macro dependencies
extend = { workspace = true }
delegate = { workspace = true }
impl-trait-for-tuples = { workspace = true }
derive_more = { workspace = true }
# async
tokio = { workspace = true, features = ["full"] }
@@ -27,6 +29,11 @@ futures-timer = { workspace = true }
# utility dependencies
util = { workspace = true }
thiserror = { workspace = true }
#internment = { workspace = true }
#recursion = { workspace = true }
#generativity = { workspace = true }
#itertools = { workspace = true }
tracing-subscriber = { version = "0.3.19", features = ["default", "env-filter"] }
keccak-const = { workspace = true }
@@ -34,4 +41,4 @@ keccak-const = { workspace = true }
log = { workspace = true }
# networking
libp2p = { workspace = true, features = ["full"] }
libp2p = { workspace = true, features = ["full"] }

View File

@@ -24,8 +24,8 @@ use libp2p::{
swarm::{NetworkBehaviour, SwarmEvent},
tcp, yamux,
};
use std::error::Error;
use std::time::Duration;
use std::{error::Error, hash::Hash};
use tokio::{io, io::AsyncBufReadExt, select};
use tracing_subscriber::EnvFilter;

View File

@@ -1,4 +1,5 @@
use crate::ext::MultiaddrExt;
use crate::keep_alive;
use delegate::delegate;
use either::Either;
use futures::FutureExt;

View File

@@ -0,0 +1,44 @@
use delegate::delegate;
use libp2p::swarm::handler::ConnectionEvent;
use libp2p::swarm::{ConnectionHandlerEvent, SubstreamProtocol, dummy, handler};
use std::task::{Context, Poll};
/// An implementation of [`ConnectionHandler`] that doesn't handle any protocols, but it keeps
/// the connection alive.
#[derive(Clone)]
#[repr(transparent)]
pub struct ConnectionHandler(dummy::ConnectionHandler);
impl ConnectionHandler {
pub fn new() -> Self {
ConnectionHandler(dummy::ConnectionHandler)
}
}
impl handler::ConnectionHandler for ConnectionHandler {
// delegate types and implementation mostly to dummy handler
type FromBehaviour = <dummy::ConnectionHandler as handler::ConnectionHandler>::FromBehaviour;
type ToBehaviour = <dummy::ConnectionHandler as handler::ConnectionHandler>::ToBehaviour;
type InboundProtocol =
<dummy::ConnectionHandler as handler::ConnectionHandler>::InboundProtocol;
type OutboundProtocol =
<dummy::ConnectionHandler as handler::ConnectionHandler>::OutboundProtocol;
type InboundOpenInfo =
<dummy::ConnectionHandler as handler::ConnectionHandler>::InboundOpenInfo;
type OutboundOpenInfo =
<dummy::ConnectionHandler as handler::ConnectionHandler>::OutboundOpenInfo;
delegate! {
to self.0 {
fn listen_protocol(&self) -> SubstreamProtocol<Self::InboundProtocol, Self::InboundOpenInfo>;
fn poll(&mut self, cx: &mut Context<'_>) -> Poll<ConnectionHandlerEvent<Self::OutboundProtocol, Self::OutboundOpenInfo, Self::ToBehaviour>>;
fn on_behaviour_event(&mut self, event: Self::FromBehaviour);
fn on_connection_event(&mut self, event: ConnectionEvent<Self::InboundProtocol, Self::OutboundProtocol, Self::InboundOpenInfo, Self::OutboundOpenInfo>);
}
}
// specifically override this to force connection to stay alive
fn connection_keep_alive(&self) -> bool {
true
}
}

View File

@@ -3,7 +3,19 @@
//! this is here as a placeholder documentation
//!
//!
// enable Rust-unstable features for convenience
#![feature(trait_alias)]
// #![feature(stmt_expr_attributes)]
// #![feature(unboxed_closures)]
// #![feature(assert_matches)]
// #![feature(async_fn_in_dyn_trait)]
// #![feature(async_for_loop)]
// #![feature(auto_traits)]
// #![feature(negative_impls)]
pub mod discovery;
pub mod keep_alive;
pub mod swarm;
/// Namespace for all the type/trait aliases used by this crate.
@@ -42,3 +54,11 @@ pub(crate) mod ext {
}
}
}
pub(crate) mod private {
#![allow(dead_code)]
/// Sealed traits support
pub trait Sealed {}
impl<T: ?Sized> Sealed for T {}
}

View File

@@ -14,7 +14,6 @@ from exo.download.download_utils import (
map_repo_download_progress_to_download_progress_data,
)
from exo.download.shard_downloader import ShardDownloader
from exo.shared.constants import EXO_MODELS_DIR
from exo.shared.models.model_cards import ModelId
from exo.shared.types.commands import (
CancelDownload,
@@ -47,7 +46,6 @@ class DownloadCoordinator:
download_command_receiver: Receiver[ForwarderDownloadCommand]
local_event_sender: Sender[ForwarderEvent]
event_index_counter: Iterator[int]
offline: bool = False
# Local state
download_status: dict[ModelId, DownloadProgress] = field(default_factory=dict)
@@ -63,13 +61,8 @@ class DownloadCoordinator:
def __post_init__(self) -> None:
self.event_sender, self.event_receiver = channel[Event]()
if self.offline:
self.shard_downloader.set_internet_connection(False)
self.shard_downloader.on_progress(self._download_progress_callback)
def _model_dir(self, model_id: ModelId) -> str:
return str(EXO_MODELS_DIR / model_id.normalize())
async def _download_progress_callback(
self, callback_shard: ShardMetadata, progress: RepoDownloadProgress
) -> None:
@@ -81,7 +74,6 @@ class DownloadCoordinator:
shard_metadata=callback_shard,
node_id=self.node_id,
total_bytes=progress.total_bytes,
model_directory=self._model_dir(model_id),
)
self.download_status[model_id] = completed
await self.event_sender.send(
@@ -101,7 +93,6 @@ class DownloadCoordinator:
download_progress=map_repo_download_progress_to_download_progress_data(
progress
),
model_directory=self._model_dir(model_id),
)
self.download_status[model_id] = ongoing
await self.event_sender.send(
@@ -110,30 +101,23 @@ class DownloadCoordinator:
self._last_progress_time[model_id] = current_time()
async def run(self) -> None:
logger.info(
f"Starting DownloadCoordinator{' (offline mode)' if self.offline else ''}"
)
if not self.offline:
self._test_internet_connection()
logger.info("Starting DownloadCoordinator")
self._test_internet_connection()
async with self._tg as tg:
tg.start_soon(self._command_processor)
tg.start_soon(self._forward_events)
tg.start_soon(self._emit_existing_download_progress)
if not self.offline:
tg.start_soon(self._check_internet_connection)
tg.start_soon(self._check_internet_connection)
def _test_internet_connection(self) -> None:
# Try multiple endpoints since some ISPs/networks block specific IPs
for host in ("1.1.1.1", "8.8.8.8", "1.0.0.1"):
try:
socket.create_connection((host, 443), timeout=3).close()
self.shard_downloader.set_internet_connection(True)
logger.debug(f"Internet connectivity: True (via {host})")
return
except OSError:
continue
self.shard_downloader.set_internet_connection(False)
logger.debug("Internet connectivity: False")
try:
socket.create_connection(("1.1.1.1", 443), timeout=3).close()
self.shard_downloader.set_internet_connection(True)
except OSError:
self.shard_downloader.set_internet_connection(False)
logger.debug(
f"Internet connectivity: {self.shard_downloader.internet_connection}"
)
async def _check_internet_connection(self) -> None:
first_connection = True
@@ -186,11 +170,7 @@ class DownloadCoordinator:
return
# Emit pending status
progress = DownloadPending(
shard_metadata=shard,
node_id=self.node_id,
model_directory=self._model_dir(model_id),
)
progress = DownloadPending(shard_metadata=shard, node_id=self.node_id)
self.download_status[model_id] = progress
await self.event_sender.send(NodeDownloadProgress(download_progress=progress))
@@ -204,7 +184,6 @@ class DownloadCoordinator:
shard_metadata=shard,
node_id=self.node_id,
total_bytes=initial_progress.total_bytes,
model_directory=self._model_dir(model_id),
)
self.download_status[model_id] = completed
await self.event_sender.send(
@@ -212,20 +191,6 @@ class DownloadCoordinator:
)
return
if self.offline:
logger.warning(
f"Offline mode: model {model_id} is not fully available locally, cannot download"
)
failed = DownloadFailed(
shard_metadata=shard,
node_id=self.node_id,
error_message=f"Model files not found locally in offline mode: {model_id}",
model_directory=self._model_dir(model_id),
)
self.download_status[model_id] = failed
await self.event_sender.send(NodeDownloadProgress(download_progress=failed))
return
# Start actual download
self._start_download_task(shard, initial_progress)
@@ -241,7 +206,6 @@ class DownloadCoordinator:
download_progress=map_repo_download_progress_to_download_progress_data(
initial_progress
),
model_directory=self._model_dir(model_id),
)
self.download_status[model_id] = status
self.event_sender.send_nowait(NodeDownloadProgress(download_progress=status))
@@ -255,7 +219,6 @@ class DownloadCoordinator:
shard_metadata=shard,
node_id=self.node_id,
error_message=str(e),
model_directory=self._model_dir(model_id),
)
self.download_status[model_id] = failed
await self.event_sender.send(
@@ -290,7 +253,6 @@ class DownloadCoordinator:
pending = DownloadPending(
shard_metadata=current_status.shard_metadata,
node_id=self.node_id,
model_directory=self._model_dir(model_id),
)
await self.event_sender.send(
NodeDownloadProgress(download_progress=pending)
@@ -333,18 +295,11 @@ class DownloadCoordinator:
node_id=self.node_id,
shard_metadata=progress.shard,
total_bytes=progress.total_bytes,
model_directory=self._model_dir(
progress.shard.model_card.model_id
),
)
elif progress.status in ["in_progress", "not_started"]:
if progress.downloaded_bytes_this_session.in_bytes == 0:
status = DownloadPending(
node_id=self.node_id,
shard_metadata=progress.shard,
model_directory=self._model_dir(
progress.shard.model_card.model_id
),
node_id=self.node_id, shard_metadata=progress.shard
)
else:
status = DownloadOngoing(
@@ -353,9 +308,6 @@ class DownloadCoordinator:
download_progress=map_repo_download_progress_to_download_progress_data(
progress
),
model_directory=self._model_dir(
progress.shard.model_card.model_id
),
)
else:
continue

View File

@@ -448,13 +448,12 @@ async def download_file_with_retry(
target_dir: Path,
on_progress: Callable[[int, int, bool], None] = lambda _, __, ___: None,
on_connection_lost: Callable[[], None] = lambda: None,
skip_internet: bool = False,
) -> Path:
n_attempts = 3
for attempt in range(n_attempts):
try:
return await _download_file(
model_id, revision, path, target_dir, on_progress, skip_internet
model_id, revision, path, target_dir, on_progress
)
except HuggingFaceAuthenticationError:
raise
@@ -488,14 +487,10 @@ async def _download_file(
path: str,
target_dir: Path,
on_progress: Callable[[int, int, bool], None] = lambda _, __, ___: None,
skip_internet: bool = False,
) -> Path:
target_path = target_dir / path
if await aios.path.exists(target_path):
if skip_internet:
return target_path
local_size = (await aios.stat(target_path)).st_size
# Try to verify against remote, but allow offline operation
@@ -515,11 +510,6 @@ async def _download_file(
)
return target_path
if skip_internet:
raise FileNotFoundError(
f"File {path} not found locally and cannot download in offline mode"
)
await aios.makedirs((target_dir / path).parent, exist_ok=True)
length, etag = await file_meta(model_id, revision, path)
remote_hash = etag[:-5] if etag.endswith("-gzip") else etag
@@ -824,7 +814,6 @@ async def download_shard(
file, curr_bytes, total_bytes, is_renamed
),
on_connection_lost=on_connection_lost,
skip_internet=skip_internet,
)
if not skip_download:

View File

@@ -1,230 +0,0 @@
"""Tests for offline/air-gapped mode."""
from collections.abc import AsyncIterator
from pathlib import Path
from unittest.mock import AsyncMock, patch
import aiofiles
import aiofiles.os as aios
import pytest
from exo.download.download_utils import (
_download_file, # pyright: ignore[reportPrivateUsage]
download_file_with_retry,
fetch_file_list_with_cache,
)
from exo.shared.types.common import ModelId
from exo.shared.types.worker.downloads import FileListEntry
@pytest.fixture
def model_id() -> ModelId:
return ModelId("test-org/test-model")
@pytest.fixture
async def temp_models_dir(tmp_path: Path) -> AsyncIterator[Path]:
models_dir = tmp_path / "models"
await aios.makedirs(models_dir, exist_ok=True)
with patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir):
yield models_dir
class TestDownloadFileOffline:
"""Tests for _download_file with skip_internet=True."""
async def test_returns_local_file_without_http_verification(
self, model_id: ModelId, tmp_path: Path
) -> None:
"""When skip_internet=True and file exists locally, return it immediately
without making any HTTP calls (no file_meta verification)."""
target_dir = tmp_path / "downloads"
await aios.makedirs(target_dir, exist_ok=True)
local_file = target_dir / "model.safetensors"
async with aiofiles.open(local_file, "wb") as f:
await f.write(b"model weights data")
with patch(
"exo.download.download_utils.file_meta",
new_callable=AsyncMock,
) as mock_file_meta:
result = await _download_file(
model_id,
"main",
"model.safetensors",
target_dir,
skip_internet=True,
)
assert result == local_file
mock_file_meta.assert_not_called()
async def test_raises_file_not_found_for_missing_file(
self, model_id: ModelId, tmp_path: Path
) -> None:
"""When skip_internet=True and file does NOT exist locally,
raise FileNotFoundError instead of attempting download."""
target_dir = tmp_path / "downloads"
await aios.makedirs(target_dir, exist_ok=True)
with pytest.raises(FileNotFoundError, match="offline mode"):
await _download_file(
model_id,
"main",
"missing_model.safetensors",
target_dir,
skip_internet=True,
)
async def test_returns_local_file_in_subdirectory(
self, model_id: ModelId, tmp_path: Path
) -> None:
"""When skip_internet=True and file exists in a subdirectory,
return it without HTTP calls."""
target_dir = tmp_path / "downloads"
subdir = target_dir / "transformer"
await aios.makedirs(subdir, exist_ok=True)
local_file = subdir / "diffusion_pytorch_model.safetensors"
async with aiofiles.open(local_file, "wb") as f:
await f.write(b"weights")
with patch(
"exo.download.download_utils.file_meta",
new_callable=AsyncMock,
) as mock_file_meta:
result = await _download_file(
model_id,
"main",
"transformer/diffusion_pytorch_model.safetensors",
target_dir,
skip_internet=True,
)
assert result == local_file
mock_file_meta.assert_not_called()
class TestDownloadFileWithRetryOffline:
"""Tests for download_file_with_retry with skip_internet=True."""
async def test_propagates_skip_internet_to_download_file(
self, model_id: ModelId, tmp_path: Path
) -> None:
"""Verify skip_internet is passed through to _download_file."""
target_dir = tmp_path / "downloads"
await aios.makedirs(target_dir, exist_ok=True)
local_file = target_dir / "config.json"
async with aiofiles.open(local_file, "wb") as f:
await f.write(b'{"model_type": "qwen2"}')
with patch(
"exo.download.download_utils.file_meta",
new_callable=AsyncMock,
) as mock_file_meta:
result = await download_file_with_retry(
model_id,
"main",
"config.json",
target_dir,
skip_internet=True,
)
assert result == local_file
mock_file_meta.assert_not_called()
async def test_file_not_found_does_not_retry(
self, model_id: ModelId, tmp_path: Path
) -> None:
"""FileNotFoundError from offline mode should not trigger retries."""
target_dir = tmp_path / "downloads"
await aios.makedirs(target_dir, exist_ok=True)
with pytest.raises(FileNotFoundError):
await download_file_with_retry(
model_id,
"main",
"nonexistent.safetensors",
target_dir,
skip_internet=True,
)
class TestFetchFileListOffline:
"""Tests for fetch_file_list_with_cache with skip_internet=True."""
async def test_uses_cached_file_list(
self, model_id: ModelId, temp_models_dir: Path
) -> None:
"""When skip_internet=True and cache file exists, use it without network."""
from pydantic import TypeAdapter
cache_dir = temp_models_dir / "caches" / model_id.normalize()
await aios.makedirs(cache_dir, exist_ok=True)
cached_list = [
FileListEntry(type="file", path="model.safetensors", size=1000),
FileListEntry(type="file", path="config.json", size=200),
]
cache_file = cache_dir / f"{model_id.normalize()}--main--file_list.json"
async with aiofiles.open(cache_file, "w") as f:
await f.write(
TypeAdapter(list[FileListEntry]).dump_json(cached_list).decode()
)
with patch(
"exo.download.download_utils.fetch_file_list_with_retry",
new_callable=AsyncMock,
) as mock_fetch:
result = await fetch_file_list_with_cache(
model_id, "main", skip_internet=True
)
assert result == cached_list
mock_fetch.assert_not_called()
async def test_falls_back_to_local_directory_scan(
self, model_id: ModelId, temp_models_dir: Path
) -> None:
"""When skip_internet=True and no cache but local files exist,
build file list from local directory."""
import json
model_dir = temp_models_dir / model_id.normalize()
await aios.makedirs(model_dir, exist_ok=True)
async with aiofiles.open(model_dir / "config.json", "w") as f:
await f.write('{"model_type": "qwen2"}')
index_data = {
"metadata": {},
"weight_map": {"model.layers.0.weight": "model.safetensors"},
}
async with aiofiles.open(model_dir / "model.safetensors.index.json", "w") as f:
await f.write(json.dumps(index_data))
async with aiofiles.open(model_dir / "model.safetensors", "wb") as f:
await f.write(b"x" * 500)
with patch(
"exo.download.download_utils.fetch_file_list_with_retry",
new_callable=AsyncMock,
) as mock_fetch:
result = await fetch_file_list_with_cache(
model_id, "main", skip_internet=True
)
mock_fetch.assert_not_called()
paths = {entry.path for entry in result}
assert "config.json" in paths
assert "model.safetensors" in paths
async def test_raises_when_no_cache_and_no_local_files(
self, model_id: ModelId, temp_models_dir: Path
) -> None:
"""When skip_internet=True and neither cache nor local files exist,
raise FileNotFoundError."""
with pytest.raises(FileNotFoundError, match="No internet"):
await fetch_file_list_with_cache(model_id, "main", skip_internet=True)

View File

@@ -39,7 +39,6 @@ class Node:
node_id: NodeId
event_index_counter: Iterator[int]
offline: bool
_tg: TaskGroup = field(init=False, default_factory=anyio.create_task_group)
@classmethod
@@ -69,7 +68,6 @@ class Node:
download_command_receiver=router.receiver(topics.DOWNLOAD_COMMANDS),
local_event_sender=router.sender(topics.LOCAL_EVENTS),
event_index_counter=event_index_counter,
offline=args.offline,
)
else:
download_coordinator = None
@@ -134,13 +132,10 @@ class Node:
api,
node_id,
event_index_counter,
args.offline,
)
async def run(self):
async with self._tg as tg:
signal.signal(signal.SIGINT, lambda _, __: self.shutdown())
signal.signal(signal.SIGTERM, lambda _, __: self.shutdown())
tg.start_soon(self.router.run)
tg.start_soon(self.election.run)
if self.download_coordinator:
@@ -152,6 +147,8 @@ class Node:
if self.api:
tg.start_soon(self.api.run)
tg.start_soon(self._elect_loop)
signal.signal(signal.SIGINT, lambda _, __: self.shutdown())
signal.signal(signal.SIGTERM, lambda _, __: self.shutdown())
def shutdown(self):
# if this is our second call to shutdown, just sys.exit
@@ -225,7 +222,6 @@ class Node:
),
local_event_sender=self.router.sender(topics.LOCAL_EVENTS),
event_index_counter=self.event_index_counter,
offline=self.offline,
)
self._tg.start_soon(self.download_coordinator.run)
if self.worker:
@@ -264,9 +260,6 @@ def main():
logger.info("Starting EXO")
logger.info(f"EXO_LIBP2P_NAMESPACE: {os.getenv('EXO_LIBP2P_NAMESPACE')}")
if args.offline:
logger.info("Running in OFFLINE mode — no internet checks, local models only")
# Set FAST_SYNCH override env var for runner subprocesses
if args.fast_synch is True:
os.environ["EXO_FAST_SYNCH"] = "on"
@@ -289,7 +282,6 @@ class Args(CamelCaseModel):
tb_only: bool = False
no_worker: bool = False
no_downloads: bool = False
offline: bool = False
fast_synch: bool | None = None # None = auto, True = force on, False = force off
@classmethod
@@ -337,11 +329,6 @@ class Args(CamelCaseModel):
action="store_true",
help="Disable the download coordinator (node won't download models)",
)
parser.add_argument(
"--offline",
action="store_true",
help="Run in offline/air-gapped mode: skip internet checks, use only pre-staged local models",
)
fast_synch_group = parser.add_mutually_exclusive_group()
fast_synch_group.add_argument(
"--fast-synch",

View File

@@ -17,7 +17,6 @@ from exo.shared.types.api import (
LogprobsContentItem,
StreamingChoiceResponse,
ToolCall,
Usage,
)
from exo.shared.types.chunks import ErrorChunk, TokenChunk, ToolCallChunk
from exo.shared.types.common import CommandId
@@ -126,8 +125,6 @@ async def generate_chat_stream(
chunk_stream: AsyncGenerator[ErrorChunk | ToolCallChunk | TokenChunk, None],
) -> AsyncGenerator[str, None]:
"""Generate Chat Completions API streaming events from chunks."""
last_usage: Usage | None = None
async for chunk in chunk_stream:
if isinstance(chunk, ErrorChunk):
error_response = ErrorResponse(
@@ -141,8 +138,6 @@ async def generate_chat_stream(
yield "data: [DONE]\n\n"
return
last_usage = chunk.usage or last_usage
if isinstance(chunk, ToolCallChunk):
tool_call_deltas = [
ToolCall(
@@ -166,15 +161,12 @@ async def generate_chat_stream(
finish_reason="tool_calls",
)
],
usage=last_usage,
)
yield f"data: {tool_response.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
return
chunk_response = chunk_to_response(chunk, command_id)
if chunk.finish_reason is not None:
chunk_response = chunk_response.model_copy(update={"usage": last_usage})
yield f"data: {chunk_response.model_dump_json()}\n\n"
if chunk.finish_reason is not None:
@@ -184,9 +176,7 @@ async def generate_chat_stream(
async def collect_chat_response(
command_id: CommandId,
chunk_stream: AsyncGenerator[ErrorChunk | ToolCallChunk | TokenChunk, None],
) -> AsyncGenerator[str]:
# This is an AsyncGenerator[str] rather than returning a ChatCompletionReponse because
# FastAPI handles the cancellation better but wouldn't auto-serialize for some reason
) -> ChatCompletionResponse:
"""Collect all token chunks and return a single ChatCompletionResponse."""
text_parts: list[str] = []
tool_calls: list[ToolCall] = []
@@ -194,7 +184,6 @@ async def collect_chat_response(
model: str | None = None
finish_reason: FinishReason | None = None
error_message: str | None = None
last_usage: Usage | None = None
async for chunk in chunk_stream:
if isinstance(chunk, ErrorChunk):
@@ -204,8 +193,6 @@ async def collect_chat_response(
if model is None:
model = chunk.model
last_usage = chunk.usage or last_usage
if isinstance(chunk, TokenChunk):
text_parts.append(chunk.text)
if chunk.logprob is not None:
@@ -236,7 +223,7 @@ async def collect_chat_response(
combined_text = "".join(text_parts)
assert model is not None
yield ChatCompletionResponse(
return ChatCompletionResponse(
id=command_id,
created=int(time.time()),
model=model,
@@ -254,6 +241,4 @@ async def collect_chat_response(
finish_reason=finish_reason,
)
],
usage=last_usage,
).model_dump_json()
return
)

View File

@@ -4,7 +4,7 @@ import json
from collections.abc import AsyncGenerator
from typing import Any
from exo.shared.types.api import FinishReason, Usage
from exo.shared.types.api import FinishReason
from exo.shared.types.chunks import ErrorChunk, TokenChunk, ToolCallChunk
from exo.shared.types.claude_api import (
ClaudeContentBlock,
@@ -161,14 +161,12 @@ async def collect_claude_response(
command_id: CommandId,
model: str,
chunk_stream: AsyncGenerator[ErrorChunk | ToolCallChunk | TokenChunk, None],
) -> AsyncGenerator[str]:
# This is an AsyncGenerator[str] rather than returning a ChatCompletionReponse because
# FastAPI handles the cancellation better but wouldn't auto-serialize for some reason
) -> ClaudeMessagesResponse:
"""Collect all token chunks and return a single ClaudeMessagesResponse."""
text_parts: list[str] = []
tool_use_blocks: list[ClaudeToolUseBlock] = []
stop_reason: ClaudeStopReason | None = None
last_usage: Usage | None = None
last_stats = None
error_message: str | None = None
async for chunk in chunk_stream:
@@ -176,8 +174,6 @@ async def collect_claude_response(
error_message = chunk.error_message or "Internal server error"
break
last_usage = chunk.usage or last_usage
if isinstance(chunk, ToolCallChunk):
for tool in chunk.tool_calls:
tool_use_blocks.append(
@@ -187,10 +183,12 @@ async def collect_claude_response(
input=json.loads(tool.arguments), # pyright: ignore[reportAny]
)
)
last_stats = chunk.stats or last_stats
stop_reason = "tool_use"
continue
text_parts.append(chunk.text)
last_stats = chunk.stats or last_stats
if chunk.finish_reason is not None:
stop_reason = finish_reason_to_claude_stop_reason(chunk.finish_reason)
@@ -210,11 +208,11 @@ async def collect_claude_response(
if not content:
content.append(ClaudeTextBlock(text=""))
# Use actual usage data if available
input_tokens = last_usage.prompt_tokens if last_usage else 0
output_tokens = last_usage.completion_tokens if last_usage else 0
# Use actual usage data from stats if available
input_tokens = last_stats.prompt_tokens if last_stats else 0
output_tokens = last_stats.generation_tokens if last_stats else 0
yield ClaudeMessagesResponse(
return ClaudeMessagesResponse(
id=f"msg_{command_id}",
model=model,
content=content,
@@ -223,8 +221,7 @@ async def collect_claude_response(
input_tokens=input_tokens,
output_tokens=output_tokens,
),
).model_dump_json()
return
)
async def generate_claude_stream(
@@ -252,7 +249,7 @@ async def generate_claude_stream(
output_tokens = 0
stop_reason: ClaudeStopReason | None = None
last_usage: Usage | None = None
last_stats = None
next_block_index = 1 # text block is 0, tool blocks start at 1
async for chunk in chunk_stream:
@@ -260,9 +257,8 @@ async def generate_claude_stream(
# Close text block and bail
break
last_usage = chunk.usage or last_usage
if isinstance(chunk, ToolCallChunk):
last_stats = chunk.stats or last_stats
stop_reason = "tool_use"
# Emit tool_use content blocks
@@ -294,6 +290,7 @@ async def generate_claude_stream(
continue
output_tokens += 1 # Count each chunk as one token
last_stats = chunk.stats or last_stats
# content_block_delta
delta_event = ClaudeContentBlockDeltaEvent(
@@ -305,9 +302,9 @@ async def generate_claude_stream(
if chunk.finish_reason is not None:
stop_reason = finish_reason_to_claude_stop_reason(chunk.finish_reason)
# Use actual token count from usage if available
if last_usage is not None:
output_tokens = last_usage.completion_tokens
# Use actual token count from stats if available
if last_stats is not None:
output_tokens = last_stats.generation_tokens
# content_block_stop for text block
block_stop = ClaudeContentBlockStopEvent(index=0)

View File

@@ -4,7 +4,6 @@ from collections.abc import AsyncGenerator
from itertools import count
from typing import Any
from exo.shared.types.api import Usage
from exo.shared.types.chunks import ErrorChunk, TokenChunk, ToolCallChunk
from exo.shared.types.common import CommandId
from exo.shared.types.openai_responses import (
@@ -122,15 +121,13 @@ async def collect_responses_response(
command_id: CommandId,
model: str,
chunk_stream: AsyncGenerator[ErrorChunk | ToolCallChunk | TokenChunk, None],
) -> AsyncGenerator[str]:
# This is an AsyncGenerator[str] rather than returning a ChatCompletionReponse because
# FastAPI handles the cancellation better but wouldn't auto-serialize for some reason
) -> ResponsesResponse:
"""Collect all token chunks and return a single ResponsesResponse."""
response_id = f"resp_{command_id}"
item_id = f"item_{command_id}"
accumulated_text = ""
function_call_items: list[ResponseFunctionCallItem] = []
last_usage: Usage | None = None
last_stats = None
error_message: str | None = None
async for chunk in chunk_stream:
@@ -138,32 +135,32 @@ async def collect_responses_response(
error_message = chunk.error_message or "Internal server error"
break
last_usage = chunk.usage or last_usage
if isinstance(chunk, ToolCallChunk):
for tool in chunk.tool_calls:
function_call_items.append(
ResponseFunctionCallItem(
id=tool.id,
call_id=tool.id,
id=f"fc_{tool.id}",
call_id=f"call_{tool.id}",
name=tool.name,
arguments=tool.arguments,
)
)
last_stats = chunk.stats or last_stats
continue
accumulated_text += chunk.text
last_stats = chunk.stats or last_stats
if error_message is not None:
raise ValueError(error_message)
# Create usage from usage data if available
# Create usage from stats if available
usage = None
if last_usage is not None:
if last_stats is not None:
usage = ResponseUsage(
input_tokens=last_usage.prompt_tokens,
output_tokens=last_usage.completion_tokens,
total_tokens=last_usage.total_tokens,
input_tokens=last_stats.prompt_tokens,
output_tokens=last_stats.generation_tokens,
total_tokens=last_stats.prompt_tokens + last_stats.generation_tokens,
)
output: list[ResponseItem] = [
@@ -175,15 +172,14 @@ async def collect_responses_response(
]
output.extend(function_call_items)
yield ResponsesResponse(
return ResponsesResponse(
id=response_id,
model=model,
status="completed",
output=output,
output_text=accumulated_text,
usage=usage,
).model_dump_json()
return
)
async def generate_responses_stream(
@@ -239,16 +235,15 @@ async def generate_responses_stream(
accumulated_text = ""
function_call_items: list[ResponseFunctionCallItem] = []
last_usage: Usage | None = None
last_stats = None
next_output_index = 1 # message item is at 0
async for chunk in chunk_stream:
if isinstance(chunk, ErrorChunk):
break
last_usage = chunk.usage or last_usage
if isinstance(chunk, ToolCallChunk):
last_stats = chunk.stats or last_stats
for tool in chunk.tool_calls:
fc_id = f"fc_{tool.id}"
call_id = f"call_{tool.id}"
@@ -307,6 +302,7 @@ async def generate_responses_stream(
continue
accumulated_text += chunk.text
last_stats = chunk.stats or last_stats
# response.output_text.delta
delta_event = ResponseTextDeltaEvent(
@@ -350,13 +346,13 @@ async def generate_responses_stream(
)
yield f"event: response.output_item.done\ndata: {item_done.model_dump_json()}\n\n"
# Create usage from usage data if available
# Create usage from stats if available
usage = None
if last_usage is not None:
if last_stats is not None:
usage = ResponseUsage(
input_tokens=last_usage.prompt_tokens,
output_tokens=last_usage.completion_tokens,
total_tokens=last_usage.total_tokens,
input_tokens=last_stats.prompt_tokens,
output_tokens=last_stats.generation_tokens,
total_tokens=last_stats.prompt_tokens + last_stats.generation_tokens,
)
# response.completed

View File

@@ -85,7 +85,6 @@ from exo.shared.types.api import (
ImageGenerationTaskParams,
ImageListItem,
ImageListResponse,
ImageSize,
ModelList,
ModelListModel,
PlaceInstanceParams,
@@ -101,7 +100,6 @@ from exo.shared.types.api import (
TraceRankStats,
TraceResponse,
TraceStatsResponse,
normalize_image_size,
)
from exo.shared.types.chunks import (
ErrorChunk,
@@ -127,7 +125,6 @@ from exo.shared.types.commands import (
PlaceInstance,
SendInputChunk,
StartDownload,
TaskCancelled,
TaskFinished,
TextGeneration,
)
@@ -145,7 +142,6 @@ from exo.shared.types.openai_responses import (
ResponsesResponse,
)
from exo.shared.types.state import State
from exo.shared.types.worker.downloads import DownloadCompleted
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
from exo.utils.banner import print_startup_banner
@@ -544,14 +540,16 @@ class API:
break
except anyio.get_cancelled_exc_class():
command = TaskCancelled(cancelled_command_id=command_id)
with anyio.CancelScope(shield=True):
await self.command_sender.send(
ForwarderCommand(origin=self.node_id, command=command)
)
# TODO: TaskCancelled
"""
self.command_sender.send_nowait(
ForwarderCommand(origin=self.node_id, command=command)
)
"""
raise
finally:
await self._send(TaskFinished(finished_command_id=command_id))
command = TaskFinished(finished_command_id=command_id)
await self._send(command)
if command_id in self._text_generation_queues:
del self._text_generation_queues[command_id]
@@ -646,14 +644,11 @@ class API:
"X-Accel-Buffering": "no",
},
)
else:
return StreamingResponse(
collect_chat_response(
command.command_id,
self._token_chunk_stream(command.command_id),
),
media_type="application/json",
)
return await collect_chat_response(
command.command_id,
self._token_chunk_stream(command.command_id),
)
async def bench_chat_completions(
self, payload: BenchChatCompletionRequest
@@ -669,7 +664,8 @@ class API:
command = TextGeneration(task_params=task_params)
await self._send(command)
return await self._collect_text_generation_with_stats(command.command_id)
response = await self._collect_text_generation_with_stats(command.command_id)
return response
async def _resolve_and_validate_text_model(self, model_id: ModelId) -> ModelId:
"""Validate a text model exists and return the resolved model ID.
@@ -754,11 +750,9 @@ class API:
When stream=True and partial_images > 0, returns a StreamingResponse
with SSE-formatted events for partial and final images.
"""
payload.model = await self._validate_image_model(ModelId(payload.model))
payload = payload.model_copy(
update={
"model": await self._validate_image_model(ModelId(payload.model)),
"advanced_params": _ensure_seed(payload.advanced_params),
}
update={"advanced_params": _ensure_seed(payload.advanced_params)}
)
command = ImageGeneration(
@@ -889,11 +883,6 @@ class API:
del image_metadata[key]
except anyio.get_cancelled_exc_class():
command = TaskCancelled(cancelled_command_id=command_id)
with anyio.CancelScope(shield=True):
await self.command_sender.send(
ForwarderCommand(origin=self.node_id, command=command)
)
raise
finally:
await self._send(TaskFinished(finished_command_id=command_id))
@@ -975,11 +964,6 @@ class API:
return (images, stats if capture_stats else None)
except anyio.get_cancelled_exc_class():
command = TaskCancelled(cancelled_command_id=command_id)
with anyio.CancelScope(shield=True):
await self.command_sender.send(
ForwarderCommand(origin=self.node_id, command=command)
)
raise
finally:
await self._send(TaskFinished(finished_command_id=command_id))
@@ -1014,13 +998,12 @@ class API:
async def bench_image_generations(
self, request: Request, payload: BenchImageGenerationTaskParams
) -> BenchImageGenerationResponse:
payload.model = await self._validate_image_model(ModelId(payload.model))
payload.stream = False
payload.partial_images = 0
payload = payload.model_copy(
update={
"model": await self._validate_image_model(ModelId(payload.model)),
"stream": False,
"partial_images": 0,
"advanced_params": _ensure_seed(payload.advanced_params),
}
update={"advanced_params": _ensure_seed(payload.advanced_params)}
)
command = ImageGeneration(
@@ -1041,7 +1024,7 @@ class API:
prompt: str,
model: ModelId,
n: int,
size: ImageSize,
size: str,
response_format: Literal["url", "b64_json"],
input_fidelity: Literal["low", "high"],
stream: bool,
@@ -1111,7 +1094,7 @@ class API:
prompt: str = Form(...),
model: str = Form(...),
n: int = Form(1),
size: str | None = Form(None),
size: str = Form("1024x1024"),
response_format: Literal["url", "b64_json"] = Form("b64_json"),
input_fidelity: Literal["low", "high"] = Form("low"),
stream: str = Form("false"),
@@ -1137,7 +1120,7 @@ class API:
prompt=prompt,
model=ModelId(model),
n=n,
size=normalize_image_size(size),
size=size,
response_format=response_format,
input_fidelity=input_fidelity,
stream=stream_bool,
@@ -1173,7 +1156,7 @@ class API:
prompt: str = Form(...),
model: str = Form(...),
n: int = Form(1),
size: str | None = Form(None),
size: str = Form("1024x1024"),
response_format: Literal["url", "b64_json"] = Form("b64_json"),
input_fidelity: Literal["low", "high"] = Form("low"),
quality: Literal["high", "medium", "low"] = Form("medium"),
@@ -1193,7 +1176,7 @@ class API:
prompt=prompt,
model=ModelId(model),
n=n,
size=normalize_image_size(size),
size=size,
response_format=response_format,
input_fidelity=input_fidelity,
stream=False,
@@ -1238,15 +1221,12 @@ class API:
"X-Accel-Buffering": "no",
},
)
else:
return StreamingResponse(
collect_claude_response(
command.command_id,
payload.model,
self._token_chunk_stream(command.command_id),
),
media_type="application/json",
)
return await collect_claude_response(
command.command_id,
payload.model,
self._token_chunk_stream(command.command_id),
)
async def openai_responses(
self, payload: ResponsesRequest
@@ -1274,15 +1254,11 @@ class API:
},
)
else:
return StreamingResponse(
collect_responses_response(
command.command_id,
payload.model,
self._token_chunk_stream(command.command_id),
),
media_type="application/json",
)
return await collect_responses_response(
command.command_id,
payload.model,
self._token_chunk_stream(command.command_id),
)
def _calculate_total_available_memory(self) -> Memory:
"""Calculate total available memory across all nodes in bytes."""
@@ -1293,18 +1269,8 @@ class API:
return total_available
async def get_models(self, status: str | None = Query(default=None)) -> ModelList:
"""Returns list of available models, optionally filtered by being downloaded."""
cards = await get_model_cards()
if status == "downloaded":
downloaded_model_ids: set[str] = set()
for node_downloads in self.state.downloads.values():
for dl in node_downloads:
if isinstance(dl, DownloadCompleted):
downloaded_model_ids.add(dl.shard_metadata.model_card.model_id)
cards = [c for c in cards if c.model_id in downloaded_model_ids]
async def get_models(self) -> ModelList:
"""Returns list of available models."""
return ModelList(
data=[
ModelListModel(
@@ -1322,7 +1288,7 @@ class API:
base_model=card.base_model,
capabilities=card.capabilities,
)
for card in cards
for card in await get_model_cards()
]
)

View File

@@ -24,7 +24,7 @@ from exo.shared.types.commands import (
PlaceInstance,
RequestEventLog,
SendInputChunk,
TaskCancelled,
SetInstanceDraftModel,
TaskFinished,
TestCommand,
TextGeneration,
@@ -36,11 +36,11 @@ from exo.shared.types.events import (
IndexedEvent,
InputChunkReceived,
InstanceDeleted,
InstanceDraftModelUpdated,
NodeGatheredInfo,
NodeTimedOut,
TaskCreated,
TaskDeleted,
TaskStatusUpdated,
TraceEventData,
TracesCollected,
TracesMerged,
@@ -281,7 +281,7 @@ class Master:
case DeleteInstance():
placement = delete_instance(command, self.state.instances)
transition_events = get_transition_events(
self.state.instances, placement, self.state.tasks
self.state.instances, placement
)
for cmd in cancel_unnecessary_downloads(
placement, self.state.downloads
@@ -301,7 +301,7 @@ class Master:
self.state.node_network,
)
transition_events = get_transition_events(
self.state.instances, placement, self.state.tasks
self.state.instances, placement
)
generated_events.extend(transition_events)
case CreateInstance():
@@ -311,7 +311,7 @@ class Master:
self.state.instances,
)
transition_events = get_transition_events(
self.state.instances, placement, self.state.tasks
self.state.instances, placement
)
generated_events.extend(transition_events)
case SendInputChunk(chunk=chunk):
@@ -321,18 +321,14 @@ class Master:
chunk=chunk,
)
)
case TaskCancelled():
if (
task_id := self.command_task_mapping.get(
command.cancelled_command_id
)
) is not None:
generated_events.append(
TaskStatusUpdated(
task_status=TaskStatus.Cancelled,
task_id=task_id,
)
case SetInstanceDraftModel():
generated_events.append(
InstanceDraftModelUpdated(
instance_id=command.instance_id,
draft_model=command.draft_model,
num_draft_tokens=command.num_draft_tokens,
)
)
case TaskFinished():
generated_events.append(
TaskDeleted(
@@ -341,9 +337,10 @@ class Master:
]
)
)
self.command_task_mapping.pop(
command.finished_command_id, None
)
if command.finished_command_id in self.command_task_mapping:
del self.command_task_mapping[
command.finished_command_id
]
case RequestEventLog():
# We should just be able to send everything, since other buffers will ignore old messages
# rate limit to 1000 at a time

View File

@@ -22,15 +22,9 @@ from exo.shared.types.commands import (
PlaceInstance,
)
from exo.shared.types.common import NodeId
from exo.shared.types.events import (
Event,
InstanceCreated,
InstanceDeleted,
TaskStatusUpdated,
)
from exo.shared.types.events import Event, InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.profiling import MemoryUsage, NodeNetworkInfo
from exo.shared.types.tasks import Task, TaskId, TaskStatus
from exo.shared.types.worker.downloads import (
DownloadOngoing,
DownloadProgress,
@@ -159,6 +153,8 @@ def place_instance(
shard_assignments=shard_assignments,
jaccl_devices=mlx_jaccl_devices,
jaccl_coordinators=mlx_jaccl_coordinators,
draft_model=command.draft_model,
num_draft_tokens=command.num_draft_tokens,
)
case InstanceMeta.MlxRing:
ephemeral_port = random_ephemeral_port()
@@ -173,6 +169,8 @@ def place_instance(
shard_assignments=shard_assignments,
hosts_by_node=hosts_by_node,
ephemeral_port=ephemeral_port,
draft_model=command.draft_model,
num_draft_tokens=command.num_draft_tokens,
)
return target_instances
@@ -192,7 +190,6 @@ def delete_instance(
def get_transition_events(
current_instances: Mapping[InstanceId, Instance],
target_instances: Mapping[InstanceId, Instance],
tasks: Mapping[TaskId, Task],
) -> Sequence[Event]:
events: list[Event] = []
@@ -208,18 +205,6 @@ def get_transition_events(
# find instances to delete
for instance_id in current_instances:
if instance_id not in target_instances:
for task in tasks.values():
if task.instance_id == instance_id and task.task_status in [
TaskStatus.Pending,
TaskStatus.Running,
]:
events.append(
TaskStatusUpdated(
task_status=TaskStatus.Cancelled,
task_id=task.task_id,
)
)
events.append(
InstanceDeleted(
instance_id=instance_id,

View File

@@ -4,11 +4,7 @@ import json
from collections.abc import AsyncGenerator
from typing import Any, cast
from exo.master.adapters.claude import (
ClaudeMessagesResponse,
collect_claude_response,
generate_claude_stream,
)
from exo.master.adapters.claude import collect_claude_response, generate_claude_stream
from exo.shared.types.api import ToolCallItem
from exo.shared.types.chunks import ErrorChunk, TokenChunk, ToolCallChunk
from exo.shared.types.common import CommandId, ModelId
@@ -21,18 +17,6 @@ async def _chunks_to_stream(
yield chunk
async def _collect_response(
command_id: CommandId,
model: str,
chunk_stream: AsyncGenerator[ErrorChunk | ToolCallChunk | TokenChunk, None],
) -> ClaudeMessagesResponse:
"""Helper to consume the async generator and parse the JSON response."""
parts: list[str] = []
async for part in collect_claude_response(command_id, model, chunk_stream):
parts.append(part)
return ClaudeMessagesResponse.model_validate_json("".join(parts))
MODEL = ModelId("test-model")
COMMAND_ID = CommandId("cmd_test123")
@@ -63,7 +47,7 @@ class TestCollectClaudeResponseToolUse:
],
),
]
response = await _collect_response(
response = await collect_claude_response(
COMMAND_ID, "test-model", _chunks_to_stream(chunks)
)
@@ -93,7 +77,7 @@ class TestCollectClaudeResponseToolUse:
],
),
]
response = await _collect_response(
response = await collect_claude_response(
COMMAND_ID, "test-model", _chunks_to_stream(chunks)
)
@@ -118,7 +102,7 @@ class TestCollectClaudeResponseToolUse:
],
),
]
response = await _collect_response(
response = await collect_claude_response(
COMMAND_ID, "test-model", _chunks_to_stream(chunks)
)
@@ -132,7 +116,7 @@ class TestCollectClaudeResponseToolUse:
async def test_no_content_produces_empty_text_block(self):
chunks: list[ErrorChunk | ToolCallChunk | TokenChunk] = []
response = await _collect_response(
response = await collect_claude_response(
COMMAND_ID, "test-model", _chunks_to_stream(chunks)
)
assert len(response.content) == 1

View File

@@ -239,7 +239,7 @@ def test_get_transition_events_no_change(instance: Instance):
target_instances = {instance_id: instance}
# act
events = get_transition_events(current_instances, target_instances, {})
events = get_transition_events(current_instances, target_instances)
# assert
assert len(events) == 0
@@ -252,7 +252,7 @@ def test_get_transition_events_create_instance(instance: Instance):
target_instances: dict[InstanceId, Instance] = {instance_id: instance}
# act
events = get_transition_events(current_instances, target_instances, {})
events = get_transition_events(current_instances, target_instances)
# assert
assert len(events) == 1
@@ -266,7 +266,7 @@ def test_get_transition_events_delete_instance(instance: Instance):
target_instances: dict[InstanceId, Instance] = {}
# act
events = get_transition_events(current_instances, target_instances, {})
events = get_transition_events(current_instances, target_instances)
# assert
assert len(events) == 1

View File

@@ -12,6 +12,7 @@ from exo.shared.types.events import (
InputChunkReceived,
InstanceCreated,
InstanceDeleted,
InstanceDraftModelUpdated,
NodeDownloadProgress,
NodeGatheredInfo,
NodeTimedOut,
@@ -72,6 +73,8 @@ def event_apply(event: Event, state: State) -> State:
return apply_instance_created(event, state)
case InstanceDeleted():
return apply_instance_deleted(event, state)
case InstanceDraftModelUpdated():
return apply_instance_draft_model_updated(event, state)
case NodeTimedOut():
return apply_node_timed_out(event, state)
case NodeDownloadProgress():
@@ -190,6 +193,25 @@ def apply_instance_deleted(event: InstanceDeleted, state: State) -> State:
return state.model_copy(update={"instances": new_instances})
def apply_instance_draft_model_updated(
event: InstanceDraftModelUpdated, state: State
) -> State:
if event.instance_id not in state.instances:
return state
instance = state.instances[event.instance_id]
updated_instance = instance.model_copy(
update={
"draft_model": event.draft_model,
"num_draft_tokens": event.num_draft_tokens,
}
)
new_instances: Mapping[InstanceId, Instance] = {
**state.instances,
event.instance_id: updated_instance,
}
return state.model_copy(update={"instances": new_instances})
def apply_runner_status_updated(event: RunnerStatusUpdated, state: State) -> State:
new_runners: Mapping[RunnerId, RunnerStatus] = {
**state.runners,
@@ -218,6 +240,11 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
key: value for key, value in state.downloads.items() if key != event.node_id
}
# Clean up all granular node mappings
node_identities = {
key: value
for key, value in state.node_identities.items()
if key != event.node_id
}
node_memory = {
key: value for key, value in state.node_memory.items() if key != event.node_id
}
@@ -258,6 +285,7 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
"downloads": downloads,
"topology": topology,
"last_seen": last_seen,
"node_identities": node_identities,
"node_memory": node_memory,
"node_disk": node_disk,
"node_system": node_system,

View File

@@ -44,8 +44,7 @@ async def _refresh_card_cache():
async for toml_file in path.rglob("*.toml"):
try:
card = await ModelCard.load_from_path(toml_file)
if card.model_id not in _card_cache:
_card_cache[card.model_id] = card
_card_cache[card.model_id] = card
except (ValidationError, TOMLKitError):
pass
@@ -183,7 +182,6 @@ class ConfigData(BaseModel):
def supports_tensor(self) -> bool:
return self.architectures in [
["Glm4MoeLiteForCausalLM"],
["GlmMoeDsaForCausalLM"],
["DeepseekV32ForCausalLM"],
["DeepseekV3ForCausalLM"],
["Qwen3NextForCausalLM"],

View File

@@ -1,9 +1,10 @@
import time
from collections.abc import Generator
from typing import Annotated, Any, Literal, get_args
from typing import Annotated, Any, Literal
from uuid import uuid4
from pydantic import BaseModel, Field, field_validator
from pydantic_core import PydanticUseDefault
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.common import CommandId, NodeId
@@ -227,6 +228,13 @@ class PlaceInstanceParams(BaseModel):
instance_meta: InstanceMeta = InstanceMeta.MlxRing
min_nodes: int = 1
@field_validator("sharding", "instance_meta", mode="plain")
@classmethod
def use_default(cls, v: object):
if not v or not isinstance(v, (Sharding, InstanceMeta)):
raise PydanticUseDefault()
return v
class CreateInstanceParams(BaseModel):
instance: Instance
@@ -262,27 +270,6 @@ class DeleteInstanceResponse(BaseModel):
instance_id: InstanceId
ImageSize = Literal[
"auto",
"512x512",
"768x768",
"1024x768",
"768x1024",
"1024x1024",
"1024x1536",
"1536x1024",
]
def normalize_image_size(v: object) -> ImageSize:
"""Shared validator for ImageSize fields: maps None → "auto" and rejects invalid values."""
if v is None:
return "auto"
if v not in get_args(ImageSize):
raise ValueError(f"Invalid size: {v!r}. Must be one of {get_args(ImageSize)}")
return v # pyright: ignore[reportReturnType]
class AdvancedImageParams(BaseModel):
seed: Annotated[int, Field(ge=0)] | None = None
num_inference_steps: Annotated[int, Field(ge=1, le=100)] | None = None
@@ -302,7 +289,7 @@ class ImageGenerationTaskParams(BaseModel):
partial_images: int | None = 0
quality: Literal["high", "medium", "low"] | None = "medium"
response_format: Literal["url", "b64_json"] | None = "b64_json"
size: ImageSize = "auto"
size: str | None = "1024x1024"
stream: bool | None = False
style: str | None = "vivid"
user: str | None = None
@@ -310,11 +297,6 @@ class ImageGenerationTaskParams(BaseModel):
# Internal flag for benchmark mode - set by API, preserved through serialization
bench: bool = False
@field_validator("size", mode="before")
@classmethod
def normalize_size(cls, v: object) -> ImageSize:
return normalize_image_size(v)
class BenchImageGenerationTaskParams(ImageGenerationTaskParams):
bench: bool = True
@@ -331,18 +313,13 @@ class ImageEditsTaskParams(BaseModel):
quality: Literal["high", "medium", "low"] | None = "medium"
output_format: Literal["png", "jpeg", "webp"] = "png"
response_format: Literal["url", "b64_json"] | None = "b64_json"
size: ImageSize = "auto"
size: str | None = "1024x1024"
image_strength: float | None = 0.7
stream: bool = False
partial_images: int | None = 0
advanced_params: AdvancedImageParams | None = None
bench: bool = False
@field_validator("size", mode="before")
@classmethod
def normalize_size(cls, v: object) -> ImageSize:
return normalize_image_size(v)
def __repr_args__(self) -> Generator[tuple[str, Any], None, None]:
for name, value in super().__repr_args__(): # pyright: ignore[reportAny]
if name == "image_data":

View File

@@ -38,6 +38,8 @@ class PlaceInstance(BaseCommand):
sharding: Sharding
instance_meta: InstanceMeta
min_nodes: int
draft_model: ModelId | None = None
num_draft_tokens: int = 4
class CreateInstance(BaseCommand):
@@ -48,10 +50,6 @@ class DeleteInstance(BaseCommand):
instance_id: InstanceId
class TaskCancelled(BaseCommand):
cancelled_command_id: CommandId
class TaskFinished(BaseCommand):
finished_command_id: CommandId
@@ -76,6 +74,14 @@ class DeleteDownload(BaseCommand):
model_id: ModelId
class SetInstanceDraftModel(BaseCommand):
"""Set or update the draft model for an existing instance."""
instance_id: InstanceId
draft_model: ModelId | None # None to disable speculative decoding
num_draft_tokens: int = 4
class CancelDownload(BaseCommand):
target_node_id: NodeId
model_id: ModelId
@@ -93,7 +99,7 @@ Command = (
| PlaceInstance
| CreateInstance
| DeleteInstance
| TaskCancelled
| SetInstanceDraftModel
| TaskFinished
| SendInputChunk
)

View File

@@ -5,7 +5,7 @@ from pydantic import Field
from exo.shared.topology import Connection
from exo.shared.types.chunks import GenerationChunk, InputImageChunk
from exo.shared.types.common import CommandId, Id, NodeId, SessionId
from exo.shared.types.common import CommandId, Id, ModelId, NodeId, SessionId
from exo.shared.types.tasks import Task, TaskId, TaskStatus
from exo.shared.types.worker.downloads import DownloadProgress
from exo.shared.types.worker.instances import Instance, InstanceId
@@ -68,6 +68,14 @@ class InstanceDeleted(BaseEvent):
instance_id: InstanceId
class InstanceDraftModelUpdated(BaseEvent):
"""Draft model updated on an existing instance."""
instance_id: InstanceId
draft_model: ModelId | None
num_draft_tokens: int
class RunnerStatusUpdated(BaseEvent):
runner_id: RunnerId
runner_status: RunnerStatus
@@ -141,6 +149,7 @@ Event = (
| TaskAcknowledged
| InstanceCreated
| InstanceDeleted
| InstanceDraftModelUpdated
| RunnerStatusUpdated
| RunnerDeleted
| NodeTimedOut

View File

@@ -4,13 +4,10 @@ from collections.abc import Sequence
from mlx_lm.models.cache import (
ArraysCache,
CacheList,
KVCache,
QuantizedKVCache,
RotatingKVCache,
)
# This list contains one cache entry per transformer layer
KVCacheType = Sequence[
KVCache | RotatingKVCache | QuantizedKVCache | ArraysCache | CacheList
]
KVCacheType = Sequence[KVCache | RotatingKVCache | QuantizedKVCache | ArraysCache]

View File

@@ -24,7 +24,6 @@ class TaskStatus(str, Enum):
Complete = "Complete"
TimedOut = "TimedOut"
Failed = "Failed"
Cancelled = "Cancelled"
class BaseTask(TaggedModel):
@@ -41,6 +40,12 @@ class DownloadModel(BaseTask): # emitted by Worker
shard_metadata: ShardMetadata
class DownloadDraftModel(BaseTask): # emitted by Worker
"""Download a draft model for speculative decoding (rank 0 only)."""
model_id: str # HuggingFace model ID
class LoadModel(BaseTask): # emitted by Worker
pass
@@ -61,11 +66,6 @@ class TextGeneration(BaseTask): # emitted by Master
error_message: str | None = Field(default=None)
class CancelTask(BaseTask):
cancelled_task_id: TaskId
runner_id: RunnerId
class ImageGeneration(BaseTask): # emitted by Master
command_id: CommandId
task_params: ImageGenerationTaskParams
@@ -86,15 +86,23 @@ class Shutdown(BaseTask): # emitted by Worker
runner_id: RunnerId
class SetDraftModel(BaseTask): # emitted by Worker
"""Load or clear a draft model on an already-running instance."""
model_id: str | None # HuggingFace model ID, or None to clear
num_draft_tokens: int = 4
Task = (
CreateRunner
| DownloadModel
| DownloadDraftModel
| ConnectToGroup
| LoadModel
| StartWarmup
| TextGeneration
| CancelTask
| ImageGeneration
| ImageEdits
| Shutdown
| SetDraftModel
)

View File

@@ -26,7 +26,6 @@ class DownloadProgressData(CamelCaseModel):
class BaseDownloadProgress(TaggedModel):
node_id: NodeId
shard_metadata: ShardMetadata
model_directory: str = ""
class DownloadPending(BaseDownloadProgress):

View File

@@ -2,7 +2,7 @@ from enum import Enum
from pydantic import model_validator
from exo.shared.types.common import Host, Id, NodeId
from exo.shared.types.common import Host, Id, ModelId, NodeId
from exo.shared.types.worker.runners import RunnerId, ShardAssignments, ShardMetadata
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
@@ -19,6 +19,8 @@ class InstanceMeta(str, Enum):
class BaseInstance(TaggedModel):
instance_id: InstanceId
shard_assignments: ShardAssignments
draft_model: ModelId | None = None # For speculative decoding (rank 0 only)
num_draft_tokens: int = 4 # Tokens to draft per iteration (when draft_model is set)
def shard(self, runner_id: RunnerId) -> ShardMetadata | None:
return self.shard_assignments.runner_to_shard.get(runner_id, None)

View File

@@ -62,7 +62,6 @@ class PartialImageResponse(BaseRunnerResponse):
class ToolCallResponse(BaseRunnerResponse):
tool_calls: list[ToolCallItem]
usage: Usage | None
stats: GenerationStats | None = None
class FinishedResponse(BaseRunnerResponse):

View File

@@ -1,7 +1,5 @@
import sys
def print_startup_banner(port: int) -> None:
"""Print a prominent startup banner with API endpoint information."""
dashboard_url = f"http://localhost:{port}"
banner = f"""
╔═══════════════════════════════════════════════════════════════════════╗
@@ -29,4 +27,4 @@ def print_startup_banner(port: int) -> None:
"""
print(banner, file=sys.stderr)
print(banner)

View File

@@ -1,4 +1,3 @@
import contextlib
import multiprocessing as mp
from dataclasses import dataclass, field
from math import inf
@@ -126,15 +125,12 @@ class MpSender[T]:
self._state.buffer.put(item, block=True)
async def send_async(self, item: T) -> None:
await to_thread.run_sync(
self.send, item, limiter=CapacityLimiter(1), abandon_on_cancel=True
)
await to_thread.run_sync(self.send, item, limiter=CapacityLimiter(1))
def close(self) -> None:
if not self._state.closed.is_set():
self._state.closed.set()
with contextlib.suppress(Exception):
self._state.buffer.put_nowait(_MpEndOfStream())
self._state.buffer.put(_MpEndOfStream())
self._state.buffer.close()
# == unique to Mp channels ==
@@ -206,8 +202,6 @@ class MpReceiver[T]:
def close(self) -> None:
if not self._state.closed.is_set():
self._state.closed.set()
with contextlib.suppress(Exception):
self._state.buffer.put_nowait(_MpEndOfStream())
self._state.buffer.close()
# == unique to Mp channels ==

View File

@@ -14,7 +14,6 @@ from exo.shared.types.api import (
ImageEditsTaskParams,
ImageGenerationStats,
ImageGenerationTaskParams,
ImageSize,
)
from exo.shared.types.memory import Memory
from exo.shared.types.worker.runner_response import (
@@ -24,9 +23,9 @@ from exo.shared.types.worker.runner_response import (
from exo.worker.engines.image.distributed_model import DistributedImageModel
def parse_size(size_str: ImageSize) -> tuple[int, int]:
def parse_size(size_str: str | None) -> tuple[int, int]:
"""Parse size parameter like '1024x1024' to (width, height) tuple."""
if size_str == "auto":
if not size_str:
return (1024, 1024)
try:
@@ -110,9 +109,6 @@ def generate_image(
# Decode base64 image data and save to temp file
image_path = Path(tmpdir) / "input.png"
image_path.write_bytes(base64.b64decode(task.image_data))
if task.size == "auto":
with Image.open(image_path) as img:
width, height = img.size
for image_num in range(num_images):
# Increment seed for each image to ensure unique results

View File

@@ -163,14 +163,11 @@ class PipelineLastLayer(CustomMlxLayer):
output, (self.r + 1) % self.s, group=self.group
)
if cache is not None:
# CacheList (used by MLA models like DeepSeekV32, GLM MoE DSA)
# doesn't have .keys directly; access via first sub-cache.
_cache = cache[0] if hasattr(cache, "caches") else cache # type: ignore
_cache.keys = mx.depends(_cache.keys, output) # type: ignore
cache.keys = mx.depends(cache.keys, output) # type: ignore[reportUnknownMemberType]
if self.is_prefill:
mx.eval(output)
if cache is not None:
mx.eval(_cache.keys) # type: ignore
mx.eval(cache.keys) # type: ignore
if not self.is_prefill:
output = mx.distributed.all_gather(output, group=self.group)[
@@ -310,9 +307,7 @@ def patch_pipeline_model[T](model: T, group: mx.distributed.Group) -> T:
# Add dependency to last cache entry to ensure distributed ops are evaluated
if cache is not None:
last = cache[-1] # type: ignore
dep_cache = last[0] if hasattr(last, "caches") else last # type: ignore
dep_cache.keys = mx.depends(dep_cache.keys, logits) # type: ignore
cache[-1].state = mx.depends(cache[-1].state, logits) # type: ignore
return logits
@@ -338,9 +333,7 @@ def patch_tensor_model[T](model: T) -> T:
# Add dependency to last cache entry to ensure distributed ops are evaluated
if cache is not None and len(cache) > 0: # pyright: ignore[reportAny]
last = cache[-1] # pyright: ignore[reportAny]
dep_cache = last[0] if hasattr(last, "caches") else last # pyright: ignore[reportAny]
dep_cache.keys = mx.depends(dep_cache.keys, logits) # pyright: ignore[reportAny,reportUnknownMemberType]
cache[-1].state = mx.depends(cache[-1].state, logits) # pyright: ignore[reportAny,reportUnknownMemberType]
return logits
@@ -554,12 +547,10 @@ class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
on_timeout: TimeoutCallback | None,
) -> nn.Module:
model = cast(DeepseekV3Model, model)
for layer in model.layers:
eval_with_timeout(
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
)
# Shard the self attention
if layer.self_attn.q_lora_rank is None:
layer.self_attn.q_proj = self.all_to_sharded_linear(
@@ -590,18 +581,12 @@ class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
# Shard the MoE.
# Shard the MoE. Shard in place since the MoE should be responsible
# for aggregating the results.
else:
if getattr(layer.mlp, "shared_experts", None) is not None:
self.all_to_sharded_linear_in_place(
layer.mlp.shared_experts.gate_proj
)
self.sharded_to_all_linear_in_place(
layer.mlp.shared_experts.down_proj
)
self.all_to_sharded_linear_in_place(
layer.mlp.shared_experts.up_proj
)
self.all_to_sharded_linear_in_place(layer.mlp.shared_experts.gate_proj)
self.sharded_to_all_linear_in_place(layer.mlp.shared_experts.down_proj)
self.all_to_sharded_linear_in_place(layer.mlp.shared_experts.up_proj)
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.up_proj)
@@ -794,7 +779,8 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
layer.self_attn = WrappedMiniMaxAttention(layer.self_attn, self.group) # pyright: ignore[reportAttributeAccessIssue,reportArgumentType]
# Shard the MoE.
# Shard the MoE. Shard in place since the MoE should be responsible
# for aggregating the results.
self.all_to_sharded_linear_in_place(
layer.block_sparse_moe.switch_mlp.gate_proj
)
@@ -907,7 +893,8 @@ class QwenShardingStrategy(TensorParallelShardingStrategy):
layer.self_attn.num_attention_heads //= self.N
layer.self_attn.num_key_value_heads //= self.N
# Shard the MoE.
# Shard the MoE. Shard in place since the MoE should be responsible
# for aggregating the results.
if isinstance(layer.mlp, (Qwen3MoeSparseMoeBlock, Qwen3NextSparseMoeBlock)):
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)

View File

@@ -5,7 +5,6 @@ import mlx.core as mx
import psutil
from mlx_lm.models.cache import (
ArraysCache,
CacheList,
KVCache,
QuantizedKVCache,
RotatingKVCache,
@@ -18,22 +17,10 @@ from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.constants import CACHE_GROUP_SIZE, KV_CACHE_BITS
from exo.worker.runner.bootstrap import logger
# Fraction of device memory above which LRU eviction kicks in.
# Smaller machines need more aggressive eviction.
def _default_memory_threshold() -> float:
total_gb = psutil.virtual_memory().total / (1024**3)
if total_gb >= 128:
return 0.85
if total_gb >= 64:
return 0.80
if total_gb >= 32:
return 0.75
return 0.70
# Fraction of device memory above which LRU eviction kicks in
_DEFAULT_MEMORY_THRESHOLD = 0.9
_MEMORY_THRESHOLD = float(
os.environ.get("EXO_MEMORY_THRESHOLD", _default_memory_threshold())
os.environ.get("EXO_MEMORY_THRESHOLD", _DEFAULT_MEMORY_THRESHOLD)
)
@@ -77,7 +64,7 @@ def has_non_kv_caches(cache: KVCacheType) -> bool:
class KVPrefixCache:
def __init__(self, group: mx.distributed.Group | None):
def __init__(self, group: mx.distributed.Group | None = None):
self.prompts: list[mx.array] = [] # mx array of tokens (ints)
self.caches: list[KVCacheType] = []
self._snapshots: list[list[CacheSnapshot] | None] = []
@@ -169,15 +156,15 @@ class KVPrefixCache:
best_length = 0
is_exact = False
# Find best cache match
# Find best cache
for i, cached_prompt in enumerate(self.prompts):
length = get_prefix_length(prompt_tokens, cached_prompt)
if length >= max_length - 1:
best_index, best_length = i, length
is_exact = True
break
if length > best_length:
best_index, best_length = i, length
if length == max_length:
is_exact = True
best_index, best_length = i, length
break
if best_index is None:
return make_kv_cache(model), prompt_tokens, None
@@ -185,12 +172,11 @@ class KVPrefixCache:
# For exact match: trim to max_length-1 so remaining has the last token
# For partial match: trim to best_length, remaining has suffix to prefill
# This ensures stream_generate always has at least one token to start with
has_ssm = has_non_kv_caches(self.caches[best_index])
target = (max_length - 1) if is_exact and not has_ssm else best_length
target = (max_length - 1) if is_exact else best_length
restore_pos, restore_snap = self._get_snapshot(best_index, target)
# No usable snapshot — need fresh cache
if restore_snap is None and has_ssm:
if restore_snap is None and has_non_kv_caches(self.caches[best_index]):
return make_kv_cache(model), prompt_tokens, None
prompt_cache = deepcopy(self.caches[best_index])
@@ -271,21 +257,10 @@ def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
return mx.array(prompt_tokens)
def _entry_length(
c: KVCache | RotatingKVCache | QuantizedKVCache | ArraysCache | CacheList,
) -> int:
# Use .offset attribute which KVCache types have (len() not implemented in older QuantizedKVCache).
if hasattr(c, "offset"):
return c.offset
# For CacheList
if hasattr(c, "size"):
return int(c.size()) # type: ignore
return 0
def cache_length(cache: KVCacheType) -> int:
"""Get the number of tokens in a KV cache."""
return max(_entry_length(c) for c in cache)
# Use .offset attribute which KVCache types have (len() not implemented in older QuantizedKVCache).
return max(getattr(c, "offset", 0) for c in cache)
def get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:

View File

@@ -48,7 +48,7 @@ from exo.worker.runner.bootstrap import logger
generation_stream = mx.new_stream(mx.default_device())
_MIN_PREFIX_HIT_RATIO_TO_UPDATE = 0.5
_MIN_PREFIX_HIT_TO_UPDATE = 1000
def prefill(
@@ -57,7 +57,6 @@ def prefill(
sampler: Callable[[mx.array], mx.array],
prompt_tokens: mx.array,
cache: KVCacheType,
group: mx.distributed.Group | None,
) -> tuple[float, int, list[CacheSnapshot]]:
"""Prefill the KV cache with prompt tokens.
@@ -87,9 +86,6 @@ def prefill(
set_pipeline_prefill(model, is_prefill=True)
mx_barrier(group)
logger.info("Starting prefill")
# Use max_tokens=1 because max_tokens=0 does not work.
# We just throw away the generated token - we only care about filling the cache
for _ in stream_generate(
@@ -133,7 +129,7 @@ def prefill(
def warmup_inference(
model: Model,
tokenizer: TokenizerWrapper,
group: mx.distributed.Group | None,
group: mx.distributed.Group | None = None,
) -> int:
content = "Prompt to warm up the inference engine. Repeat this."
@@ -255,8 +251,8 @@ def mlx_generate(
tokenizer: TokenizerWrapper,
task: TextGenerationTaskParams,
prompt: str,
kv_prefix_cache: KVPrefixCache | None,
group: mx.distributed.Group | None,
kv_prefix_cache: KVPrefixCache | None = None,
group: mx.distributed.Group | None = None,
) -> Generator[GenerationResponse]:
# Ensure that generation stats only contains peak memory for this generation
mx.reset_peak_memory()
@@ -309,9 +305,16 @@ def mlx_generate(
)
max_stop_len = max((len(s) for s in stop_sequences), default=0)
mx_barrier(group)
logger.info("Ready to prefill")
# Prefill cache with all tokens except the last one
prefill_tps, prefill_tokens, ssm_snapshots_list = prefill(
model, tokenizer, sampler, prompt_tokens[:-1], caches, group
model,
tokenizer,
sampler,
prompt_tokens[:-1],
caches,
)
cache_snapshots: list[CacheSnapshot] | None = ssm_snapshots_list or None
@@ -328,7 +331,6 @@ def mlx_generate(
think_start = tokenizer.think_start
think_end = tokenizer.think_end
logger.info("Starting decode")
mx_barrier(group)
for completion_tokens, out in enumerate(
@@ -391,11 +393,10 @@ def mlx_generate(
f"Model generated unexpected finish_reason: {out.finish_reason}"
)
total_prompt_tokens = len(all_prompt_tokens)
usage = Usage(
prompt_tokens=total_prompt_tokens,
prompt_tokens=int(out.prompt_tokens),
completion_tokens=completion_tokens,
total_tokens=total_prompt_tokens + completion_tokens,
total_tokens=int(out.prompt_tokens) + completion_tokens,
prompt_tokens_details=PromptTokensDetails(
cached_tokens=prefix_hit_length
),
@@ -436,14 +437,9 @@ def mlx_generate(
full_prompt_tokens = mx.concatenate(
[all_prompt_tokens, generated_tokens_array]
)
hit_ratio = (
prefix_hit_length / len(all_prompt_tokens)
if len(all_prompt_tokens) > 0
else 0.0
)
if (
matched_index is not None
and hit_ratio >= _MIN_PREFIX_HIT_RATIO_TO_UPDATE
and prefix_hit_length >= _MIN_PREFIX_HIT_TO_UPDATE
):
kv_prefix_cache.update_kv_cache(
matched_index,

View File

@@ -64,6 +64,8 @@ from exo.worker.runner.bootstrap import logger
Group = mx.distributed.Group
# TODO: Test this
# ALSO https://github.com/exo-explore/exo/pull/233#discussion_r2549683673
def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
return Memory.from_float_kb(
(model_shard_meta.end_layer - model_shard_meta.start_layer)
@@ -81,6 +83,30 @@ class ModelLoadingTimeoutError(Exception):
pass
def mx_barrier(group: Group | None = None):
mx.eval(
mx.distributed.all_sum(
mx.array(1.0),
stream=mx.default_stream(mx.Device(mx.cpu)),
group=group,
)
)
def broadcast_from_zero(value: int, group: Group | None = None):
if group is None:
return value
if group.rank() == 0:
a = mx.array([value], dtype=mx.int32)
else:
a = mx.array([0], dtype=mx.int32)
m = mx.distributed.all_sum(a, stream=mx.Device(mx.DeviceType.cpu), group=group)
mx.eval(m)
return int(m.item())
class HostList(RootModel[list[str]]):
@classmethod
def from_hosts(cls, hosts: list[Host]) -> "HostList":
@@ -197,6 +223,27 @@ def load_mlx_items(
return cast(Model, model), tokenizer
def load_draft_model(model_id: ModelId) -> nn.Module:
"""Load a draft model for speculative decoding (rank 0 only).
Draft models are small models (typically 0.5B-2B parameters) used to
generate candidate tokens quickly, which are then verified by the main
model in a single forward pass.
Assumes the model has already been downloaded by the worker.
Args:
model_id: HuggingFace model ID for the draft model
Returns:
The loaded draft model
"""
model_path = build_model_path(model_id)
draft_model, _ = load_model(model_path, strict=True)
logger.info(f"Loaded draft model from {model_path}")
return draft_model
def shard_and_load(
shard_metadata: ShardMetadata,
group: Group,
@@ -285,15 +332,11 @@ def get_eos_token_ids_for_model(model_id: ModelId) -> list[int] | None:
model_id_lower = model_id.lower()
if "kimi-k2" in model_id_lower:
return [163586]
elif "glm-5" in model_id_lower or "glm-4.7" in model_id_lower:
# For GLM-5 and GLM-4.7
elif "glm-4.7-flash" in model_id_lower:
# 154820: <|endoftext|>, 154827: <|user|>, 154829: <|observation|>
return [154820, 154827, 154829]
elif "glm" in model_id_lower:
# For GLM-4.5 and older
return [151336, 151329, 151338]
elif "gpt-oss" in model_id_lower:
return [200002, 200012]
return None
@@ -357,13 +400,7 @@ def load_tokenizer_for_model_id(
return list(hf_tokenizer.model.encode(text, allowed_special="all")) # pyright: ignore[reportUnknownMemberType,reportUnknownArgumentType]
hf_tokenizer.encode = _patched_encode
return TokenizerWrapper(
hf_tokenizer,
eos_token_ids=eos_token_ids,
tool_call_start="<|tool_calls_section_begin|>",
tool_call_end="<|tool_calls_section_end|>",
tool_parser=_parse_kimi_tool_calls,
)
return TokenizerWrapper(hf_tokenizer, eos_token_ids=eos_token_ids)
tokenizer = load_tokenizer(
model_path,
@@ -575,61 +612,3 @@ def mlx_cleanup(
import gc
gc.collect()
def mx_any(bool_: bool, group: Group | None) -> bool:
if group is None:
return bool_
num_true = mx.distributed.all_sum(
mx.array(bool_), group=group, stream=mx.default_stream(mx.Device(mx.cpu))
)
mx.eval(num_true)
return num_true.item() > 0
def mx_barrier(group: Group | None):
if group is None:
return
mx.eval(
mx.distributed.all_sum(
mx.array(1.0), group=group, stream=mx.default_stream(mx.Device(mx.cpu))
)
)
def _parse_kimi_tool_calls(text: str):
import regex as re
# kimi has a fixed function naming scheme, with a json formatted arg
# functions.multiply:0<|tool_call_argument_begin|>{"a": 2, "b": 3}
_func_name_regex = re.compile(
r"^\s*((?:functions\.)?(.+?):\d+)\s*<\|tool_call_argument_begin\|>", re.DOTALL
)
_func_arg_regex = re.compile(r"<\|tool_call_argument_begin\|>\s*(.*)\s*", re.DOTALL)
_tool_call_split_regex = re.compile(
r"<\|tool_call_begin\|>(.*?)<\|tool_call_end\|>", re.DOTALL
)
def _parse_single_tool(text: str) -> dict[str, Any]:
func_name_match = _func_name_regex.search(text)
if func_name_match is None:
raise ValueError("No tool call found.")
tool_call_id = func_name_match.group(1) # e.g. "functions.get_weather:0"
func_name = func_name_match.group(2) # e.g. "get_weather"
func_args_match = _func_arg_regex.search(text)
if func_args_match is None:
raise ValueError("No tool call arguments found.")
func_args = func_args_match.group(1)
try:
arg_dct = json.loads(func_args) # pyright: ignore[reportAny]
except Exception:
arg_dct = None
return dict(id=tool_call_id, name=func_name, arguments=arg_dct)
tool_matches = _tool_call_split_regex.findall(text)
if tool_matches:
return [_parse_single_tool(match) for match in tool_matches] # pyright: ignore[reportAny]
else:
return [_parse_single_tool(text)]

View File

@@ -33,7 +33,6 @@ from exo.shared.types.events import (
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.state import State
from exo.shared.types.tasks import (
CancelTask,
CreateRunner,
DownloadModel,
ImageEdits,
@@ -225,22 +224,15 @@ class Worker:
)
)
case Shutdown(runner_id=runner_id):
runner = self.runners.pop(runner_id)
try:
with fail_after(3):
await runner.start_task(task)
await self.runners.pop(runner_id).start_task(task)
except TimeoutError:
await self.event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.TimedOut
)
)
finally:
runner.shutdown()
case CancelTask(
cancelled_task_id=cancelled_task_id, runner_id=runner_id
):
await self.runners[runner_id].cancel_task(cancelled_task_id)
case ImageEdits() if task.task_params.total_input_chunks > 0:
# Assemble image from chunks and inject into task
cmd_id = task.command_id
@@ -278,18 +270,18 @@ class Worker:
del self.input_chunk_buffer[cmd_id]
if cmd_id in self.input_chunk_counts:
del self.input_chunk_counts[cmd_id]
await self._start_runner_task(modified_task)
await self.runners[self._task_to_runner_id(task)].start_task(
modified_task
)
case task:
await self._start_runner_task(task)
await self.runners[self._task_to_runner_id(task)].start_task(task)
def shutdown(self):
self._tg.cancel_scope.cancel()
async def _start_runner_task(self, task: Task):
if (instance := self.state.instances.get(task.instance_id)) is not None:
await self.runners[
instance.shard_assignments.node_to_runner[self.node_id]
].start_task(task)
def _task_to_runner_id(self, task: Task):
instance = self.state.instances[task.instance_id]
return instance.shard_assignments.node_to_runner[self.node_id]
async def _nack_request(self, since_idx: int) -> None:
# We request all events after (and including) the missing index.
@@ -328,6 +320,8 @@ class Worker:
for event in self.out_for_delivery.copy().values():
await self.local_event_sender.send(event)
## Op Executors
def _create_supervisor(self, task: CreateRunner) -> RunnerSupervisor:
"""Creates and stores a new AssignedRunner with initial downloading status."""
runner = RunnerSupervisor.create(

View File

@@ -4,7 +4,6 @@ from collections.abc import Mapping, Sequence
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.tasks import (
CancelTask,
ConnectToGroup,
CreateRunner,
DownloadModel,
@@ -54,14 +53,13 @@ def plan(
) -> Task | None:
# Python short circuiting OR logic should evaluate these sequentially.
return (
_cancel_tasks(runners, tasks)
or _kill_runner(runners, all_runners, instances)
_kill_runner(runners, all_runners, instances)
or _create_runner(node_id, runners, instances)
or _model_needs_download(node_id, runners, global_download_status)
or _init_distributed_backend(runners, all_runners)
or _load_model(runners, all_runners, global_download_status)
or _ready_to_warmup(runners, all_runners)
or _pending_tasks(runners, tasks, all_runners, input_chunk_buffer or {})
or _pending_tasks(runners, tasks, all_runners, input_chunk_buffer)
)
@@ -272,7 +270,7 @@ def _pending_tasks(
runners: Mapping[RunnerId, RunnerSupervisor],
tasks: Mapping[TaskId, Task],
all_runners: Mapping[RunnerId, RunnerStatus],
input_chunk_buffer: Mapping[CommandId, dict[int, str]],
input_chunk_buffer: Mapping[CommandId, dict[int, str]] | None = None,
) -> Task | None:
for task in tasks.values():
# for now, just forward chat completions
@@ -286,7 +284,7 @@ def _pending_tasks(
if isinstance(task, ImageEdits) and task.task_params.total_input_chunks > 0:
cmd_id = task.command_id
expected = task.task_params.total_input_chunks
received = len(input_chunk_buffer.get(cmd_id, {}))
received = len((input_chunk_buffer or {}).get(cmd_id, {}))
if received < expected:
continue # Wait for all chunks to arrive
@@ -294,33 +292,16 @@ def _pending_tasks(
if task.instance_id != runner.bound_instance.instance.instance_id:
continue
# the task status _should_ be set to completed by the LAST runner
# it is currently set by the first
# this is definitely a hack
# I have a design point here; this is a state race in disguise as the task status doesn't get updated to completed fast enough
# however, realistically the task status should be set to completed by the LAST runner, so this is a true race
# the actual solution is somewhat deeper than this bypass - TODO!
if task.task_id in runner.completed:
continue
# TODO: Check ordering aligns with MLX distributeds expectations.
if isinstance(runner.status, RunnerReady) and all(
isinstance(all_runners[global_runner_id], (RunnerReady, RunnerRunning))
for global_runner_id in runner.bound_instance.instance.shard_assignments.runner_to_shard
):
return task
def _cancel_tasks(
runners: Mapping[RunnerId, RunnerSupervisor],
tasks: Mapping[TaskId, Task],
) -> Task | None:
for task in tasks.values():
if task.task_status != TaskStatus.Cancelled:
continue
for runner_id, runner in runners.items():
if task.instance_id != runner.bound_instance.instance.instance_id:
continue
if task.task_id in runner.cancelled:
continue
return CancelTask(
instance_id=task.instance_id,
cancelled_task_id=task.task_id,
runner_id=runner_id,
)

View File

@@ -3,7 +3,7 @@ import os
import loguru
from exo.shared.types.events import Event, RunnerStatusUpdated
from exo.shared.types.tasks import Task, TaskId
from exo.shared.types.tasks import Task
from exo.shared.types.worker.instances import BoundInstance, MlxJacclInstance
from exo.shared.types.worker.runners import RunnerFailed
from exo.utils.channels import ClosedResourceError, MpReceiver, MpSender
@@ -15,7 +15,6 @@ def entrypoint(
bound_instance: BoundInstance,
event_sender: MpSender[Event],
task_receiver: MpReceiver[Task],
cancel_receiver: MpReceiver[TaskId],
_logger: "loguru.Logger",
) -> None:
fast_synch_override = os.environ.get("EXO_FAST_SYNCH")
@@ -39,7 +38,7 @@ def entrypoint(
try:
from exo.worker.runner.runner import main
main(bound_instance, event_sender, task_receiver, cancel_receiver)
main(bound_instance, event_sender, task_receiver)
except ClosedResourceError:
logger.warning("Runner communication closed unexpectedly")
except Exception as e:

View File

@@ -1,21 +1,21 @@
import base64
import math
import json
import resource
import time
from collections.abc import Generator
from functools import cache
from typing import Literal
from typing import Any, Callable, Literal
import mlx.core as mx
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.tokenizer_utils import TokenizerWrapper
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
HarmonyEncodingName,
HarmonyError, # pyright: ignore[reportUnknownVariableType]
Role,
StreamableParser,
load_harmony_encoding,
)
from pydantic import ValidationError
from exo.shared.constants import EXO_MAX_CHUNK_SIZE, EXO_TRACING_ENABLED
from exo.shared.models.model_cards import ModelId, ModelTask
@@ -88,12 +88,9 @@ from exo.worker.engines.mlx.utils_mlx import (
initialize_mlx,
load_mlx_items,
mlx_force_oom,
mx_any,
)
from exo.worker.runner.bootstrap import logger
from .tool_parsers import ToolParser, make_mlx_parser
def _is_primary_output_node(shard_metadata: ShardMetadata) -> bool:
"""Check if this node is the primary output node for image generation.
@@ -115,7 +112,6 @@ def main(
bound_instance: BoundInstance,
event_sender: MpSender[Event],
task_receiver: MpReceiver[Task],
cancel_receiver: MpReceiver[TaskId],
):
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (min(max(soft, 2048), hard), hard))
@@ -133,16 +129,11 @@ def main(
time.sleep(timeout)
setup_start_time = time.time()
cancelled_tasks = set[TaskId]()
# type checker was unhappy with me - splitting these fixed it
inference_model: Model | None = None
image_model: DistributedImageModel | None = None
model: Model | DistributedImageModel | None = None
tokenizer = None
tool_parser: ToolParser | None = None
group = None
kv_prefix_cache: KVPrefixCache | None = None
check_for_cancel_every: int | None = None
current_status: RunnerStatus = RunnerIdle()
logger.info("runner created")
@@ -155,7 +146,6 @@ def main(
if task.task_id in seen:
logger.warning("repeat task - potential error")
seen.add(task.task_id)
cancelled_tasks.discard(TaskId("CANCEL_CURRENT_TASK"))
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running)
)
@@ -201,28 +191,19 @@ def main(
time.sleep(0.5)
if ModelTask.TextGeneration in shard_metadata.model_card.tasks:
inference_model, tokenizer = load_mlx_items(
model, tokenizer = load_mlx_items(
bound_instance, group, on_timeout=on_model_load_timeout
)
logger.info(
f"model has_tool_calling={tokenizer.has_tool_calling} using tokens {tokenizer.tool_call_start}, {tokenizer.tool_call_end}"
f"model has_tool_calling={tokenizer.has_tool_calling}"
)
if tokenizer.has_tool_calling:
assert tokenizer.tool_call_start
assert tokenizer.tool_call_end
assert tokenizer.tool_parser # pyright: ignore[reportAny]
tool_parser = make_mlx_parser(
tokenizer.tool_call_start,
tokenizer.tool_call_end,
tokenizer.tool_parser, # pyright: ignore[reportAny]
)
kv_prefix_cache = KVPrefixCache(group)
elif (
ModelTask.TextToImage in shard_metadata.model_card.tasks
or ModelTask.ImageToImage in shard_metadata.model_card.tasks
):
image_model = initialize_image_model(bound_instance)
model = initialize_image_model(bound_instance)
else:
raise ValueError(
f"Unknown model task(s): {shard_metadata.model_card.tasks}"
@@ -230,6 +211,8 @@ def main(
current_status = RunnerLoaded()
logger.info("runner loaded")
case StartWarmup() if isinstance(current_status, RunnerLoaded):
assert model
current_status = RunnerWarmingUp()
logger.info("runner warming up")
event_sender.send(
@@ -241,31 +224,16 @@ def main(
logger.info(f"warming up inference for instance: {instance}")
if ModelTask.TextGeneration in shard_metadata.model_card.tasks:
assert inference_model
assert not isinstance(model, DistributedImageModel)
assert tokenizer
t = time.monotonic()
toks = warmup_inference(
model=inference_model,
model=model,
tokenizer=tokenizer,
group=group,
# kv_prefix_cache=kv_prefix_cache, # supply for warmup-time prefix caching
)
logger.info(f"warmed up by generating {toks} tokens")
check_for_cancel_every = min(
math.ceil(toks / min(time.monotonic() - t, 0.001)), 100
)
if group is not None:
check_for_cancel_every = int(
mx.max(
mx.distributed.all_gather(
mx.array([check_for_cancel_every]), group=group
)
).item()
)
logger.info(
f"runner checking for cancellation every {check_for_cancel_every} tokens"
)
logger.info(
f"runner initialized in {time.time() - setup_start_time} seconds"
)
@@ -273,8 +241,8 @@ def main(
ModelTask.TextToImage in shard_metadata.model_card.tasks
or ModelTask.ImageToImage in shard_metadata.model_card.tasks
):
assert image_model
image = warmup_image_generator(model=image_model)
assert isinstance(model, DistributedImageModel)
image = warmup_image_generator(model=model)
if image is not None:
logger.info(f"warmed up by generating {image.size} image")
else:
@@ -294,9 +262,9 @@ def main(
)
)
event_sender.send(TaskAcknowledged(task_id=task.task_id))
assert inference_model
assert model and not isinstance(model, DistributedImageModel)
assert tokenizer
assert check_for_cancel_every
try:
_check_for_debug_prompts(task_params)
@@ -306,7 +274,7 @@ def main(
# Generate responses using the actual MLX generation
mlx_generator = mlx_generate(
model=inference_model,
model=model,
tokenizer=tokenizer,
task=task_params,
prompt=prompt,
@@ -321,25 +289,34 @@ def main(
mlx_generator, tokenizer
)
# Kimi-K2 has tool call sections - we don't care about them
if "kimi" in shard_metadata.model_card.model_id.lower():
mlx_generator = filter_kimi_tokens(mlx_generator)
patch_kimi_tokenizer(tokenizer)
# GLM models need patched parser (upstream has bug with None regex match)
elif "glm" in shard_metadata.model_card.model_id.lower():
patch_glm_tokenizer(tokenizer)
# GPT-OSS specific parsing to match other model formats.
if isinstance(inference_model, GptOssModel):
elif isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
elif tool_parser:
mlx_generator = parse_tool_calls(mlx_generator, tool_parser)
if tokenizer.has_tool_calling and not isinstance(
model, GptOssModel
):
assert tokenizer.tool_call_start
assert tokenizer.tool_call_end
assert tokenizer.tool_parser # pyright: ignore[reportAny]
mlx_generator = parse_tool_calls(
mlx_generator,
tokenizer.tool_call_start,
tokenizer.tool_call_end,
tokenizer.tool_parser, # pyright: ignore[reportAny]
)
completion_tokens = 0
tokens_since_last_cancel_check = 0
for response in mlx_generator:
tokens_since_last_cancel_check += 1
if tokens_since_last_cancel_check >= check_for_cancel_every:
tokens_since_last_cancel_check = 0
cancelled_tasks.update(cancel_receiver.collect())
want_to_cancel = (task.task_id in cancelled_tasks) or (
TaskId("CANCEL_CURRENT_TASK") in cancelled_tasks
)
if mx_any(want_to_cancel, group):
break
match response:
case GenerationResponse():
completion_tokens += 1
@@ -387,7 +364,6 @@ def main(
tool_calls=response.tool_calls,
model=shard_metadata.model_card.model_id,
usage=response.usage,
stats=response.stats,
),
)
)
@@ -412,7 +388,7 @@ def main(
case ImageGeneration(
task_params=task_params, command_id=command_id
) if isinstance(current_status, RunnerReady):
assert image_model
assert isinstance(model, DistributedImageModel)
logger.info(f"received image generation request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
@@ -425,9 +401,7 @@ def main(
try:
image_index = 0
for response in generate_image(
model=image_model, task=task_params
):
for response in generate_image(model=model, task=task_params):
is_primary_output = _is_primary_output_node(shard_metadata)
if is_primary_output:
@@ -477,7 +451,7 @@ def main(
case ImageEdits(task_params=task_params, command_id=command_id) if (
isinstance(current_status, RunnerReady)
):
assert image_model
assert isinstance(model, DistributedImageModel)
logger.info(f"received image edits request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
@@ -490,9 +464,7 @@ def main(
try:
image_index = 0
for response in generate_image(
model=image_model, task=task_params
):
for response in generate_image(model=model, task=task_params):
if _is_primary_output_node(shard_metadata):
match response:
case PartialImageResponse():
@@ -551,20 +523,14 @@ def main(
raise ValueError(
f"Received {task.__class__.__name__} outside of state machine in {current_status=}"
)
was_cancelled = (task.task_id in cancelled_tasks) or (
TaskId("CANCEL_CURRENT_TASK") in cancelled_tasks
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete)
)
if not was_cancelled:
event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.Complete
)
)
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
if isinstance(current_status, RunnerShutdown):
del inference_model, image_model, tokenizer, group
del model, tokenizer, group
mx.clear_cache()
import gc
@@ -578,8 +544,21 @@ def get_gpt_oss_encoding():
return encoding
def filter_kimi_tokens(
responses: Generator[GenerationResponse | ToolCallResponse],
) -> Generator[GenerationResponse]:
for resp in responses:
assert isinstance(resp, GenerationResponse)
if (
resp.text == "<|tool_calls_section_begin|>"
or resp.text == "<|tool_calls_section_end|>"
):
continue
yield resp
def parse_gpt_oss(
responses: Generator[GenerationResponse],
responses: Generator[GenerationResponse | ToolCallResponse],
) -> Generator[GenerationResponse | ToolCallResponse]:
encoding = get_gpt_oss_encoding()
stream = StreamableParser(encoding, role=Role.ASSISTANT)
@@ -589,11 +568,7 @@ def parse_gpt_oss(
for response in responses:
assert isinstance(response, GenerationResponse)
try:
stream.process(response.token)
except HarmonyError:
logger.error("Encountered critical Harmony Error, returning early")
return
stream.process(response.token)
delta = stream.last_content_delta
ch = stream.current_channel
@@ -640,9 +615,9 @@ def parse_gpt_oss(
def parse_thinking_models(
responses: Generator[GenerationResponse],
responses: Generator[GenerationResponse | ToolCallResponse],
tokenizer: TokenizerWrapper,
) -> Generator[GenerationResponse]:
) -> Generator[GenerationResponse | ToolCallResponse]:
"""
For models that inject thinking tags in the prompt (like GLM-4.7),
prepend the thinking tag to the output stream so the frontend
@@ -763,55 +738,218 @@ def _process_image_response(
def parse_tool_calls(
responses: Generator[GenerationResponse], tool_parser: ToolParser
responses: Generator[GenerationResponse | ToolCallResponse],
tool_call_start: str,
tool_call_end: str,
tool_parser: Callable[[str], dict[str, Any] | list[dict[str, Any]]],
) -> Generator[GenerationResponse | ToolCallResponse]:
in_tool_call = False
tool_call_text_parts: list[str] = []
for response in responses:
if response.text.startswith(tool_parser.start_parsing):
assert isinstance(response, GenerationResponse)
# assumption: the tool call start is one token
if response.text == tool_call_start:
in_tool_call = True
if in_tool_call:
tool_call_text_parts.append(response.text)
if response.text.endswith(tool_parser.end_parsing):
# parse the actual tool calls from the tool call text
parsed = tool_parser.parse_tool_calls(
"".join(tool_call_text_parts).strip()
)
continue
# assumption: the tool call end is one token
if in_tool_call and response.text == tool_call_end:
try:
# tool_parser returns an arbitrarily nested python dictionary
# we actually don't want the python dictionary, we just want to
# parse the top level { function: ..., arguments: ... } structure
# as we're just gonna hand it back to the api anyway
parsed = tool_parser("".join(tool_call_text_parts).strip())
logger.info(f"parsed {tool_call_text_parts=} into {parsed=}")
if parsed is not None:
yield ToolCallResponse(
tool_calls=parsed, usage=response.usage, stats=response.stats
)
if isinstance(parsed, list):
tools = [_validate_single_tool(tool) for tool in parsed]
else:
logger.warning(
f"tool call parsing failed for text {''.join(tool_call_text_parts)}"
)
response.text = "".join(tool_call_text_parts)
yield response
tools = [_validate_single_tool(parsed)]
yield ToolCallResponse(tool_calls=tools, usage=response.usage)
in_tool_call = False
tool_call_text_parts = []
continue
if response.finish_reason is not None:
logger.info(
"tool call parsing interrupted, yield partial tool call as text"
)
response = response.model_copy(
update={
"text": "".join(tool_call_text_parts),
"token": 0,
}
except (
json.JSONDecodeError,
ValidationError,
ValueError,
AttributeError,
) as e:
# ValueError: our parsers raise this for malformed tool calls
# AttributeError: upstream parsers (e.g. glm47) may raise this when regex doesn't match
logger.opt(exception=e).warning("tool call parsing failed")
# assumption: talking about tool calls, not making a tool call
response.text = (
tool_call_start + "".join(tool_call_text_parts) + tool_call_end
)
yield response
in_tool_call = False
tool_call_text_parts = []
continue
if in_tool_call:
tool_call_text_parts.append(response.text)
if response.finish_reason is not None:
logger.info(
"toll call parsing interrupted, yield partial tool call as text"
)
yield GenerationResponse(
text=tool_call_start + "".join(tool_call_text_parts),
token=0,
finish_reason=response.finish_reason,
usage=None,
)
continue
# fallthrough
yield response
def patch_kimi_tokenizer(tokenizer: TokenizerWrapper):
"""
Version of to-be-upstreamed kimi-k2 tool parser
"""
import ast
import json
from typing import Any
import regex as re
# kimi has a fixed function naming scheme, with a json formatted arg
# functions.multiply:0 <|tool_call_argument_begin|> {"a": 2, "b": 3}
# Also needs to handle tools like call_0<|tool_call_argument_begin|>{"filePath": "..."}
_func_name_regex = re.compile(
r"^\s*(.+)[:](\d+)\s*<\|tool_call_argument_begin\|>", re.DOTALL
)
_func_arg_regex = re.compile(r"<\|tool_call_argument_begin\|>\s*(.*)\s*", re.DOTALL)
# kimi has a tool_calls_section - we're leaving this up to the caller to handle
tool_call_start = "<|tool_call_begin|>"
tool_call_end = "<|tool_call_end|>"
def _deserialize(value: str) -> Any: # pyright: ignore[reportAny]
try:
return json.loads(value) # pyright: ignore[reportAny]
except Exception:
pass
try:
return ast.literal_eval(value) # pyright: ignore[reportAny]
except Exception:
pass
return value
def parse_tool_call(text: str, tools: Any | None = None):
func_name_match = _func_name_regex.search(text)
if func_name_match is None:
raise ValueError(f"Could not parse function name from tool call: {text!r}")
original_func_name = func_name_match.group(1)
tool_id = func_name_match.group(2)
# strip off the `functions.` prefix, if it exists.
func_name = original_func_name[original_func_name.find(".") + 1 :]
func_args_match = _func_arg_regex.search(text)
if func_args_match is None:
raise ValueError(f"Could not parse function args from tool call: {text!r}")
func_args = func_args_match.group(1)
# the args should be valid json - no need to check against our tools to deserialize
arg_dct = _deserialize(func_args) # pyright: ignore[reportAny]
return dict(
id=f"{original_func_name}:{tool_id}",
name=func_name,
arguments=arg_dct, # pyright: ignore[reportAny]
)
tokenizer._tool_call_start = tool_call_start
tokenizer._tool_call_end = tool_call_end
tokenizer._tool_parser = parse_tool_call
def patch_glm_tokenizer(tokenizer: TokenizerWrapper):
"""
Fixed version of mlx_lm's glm47 tool parser that handles regex match failures.
"""
import ast
import json
from typing import Any
import regex as re
_func_name_regex = re.compile(r"^(.*?)<arg_key>", re.DOTALL)
_func_arg_regex = re.compile(
r"<arg_key>(.*?)</arg_key>(?:\n|\s)*<arg_value>(.*?)(?:</arg_value>|(?=<arg_key>)|$)",
re.DOTALL,
)
tool_call_start = "<tool_call>"
tool_call_end = "</tool_call>"
def _is_string_type(
tool_name: str,
arg_name: str,
tools: list[Any] | None,
) -> bool:
if tools is None:
return False
for tool in tools: # pyright: ignore[reportAny]
func = tool["function"] # pyright: ignore[reportAny]
if func["name"] == tool_name:
params = func["parameters"] # pyright: ignore[reportAny]
if params is None:
return False
props = params.get("properties", {}) # pyright: ignore[reportAny]
arg_props = props.get(arg_name, {}) # pyright: ignore[reportAny]
arg_type = arg_props.get("type", None) # pyright: ignore[reportAny]
return arg_type == "string" # pyright: ignore[reportAny]
return False
def _deserialize(value: str) -> Any: # pyright: ignore[reportAny]
try:
return json.loads(value) # pyright: ignore[reportAny]
except Exception:
pass
try:
return ast.literal_eval(value) # pyright: ignore[reportAny]
except Exception:
pass
return value
def parse_tool_call(text: str, tools: list[Any] | None = None):
func_name_match = _func_name_regex.search(text)
if func_name_match is None:
raise ValueError(f"Could not parse function name from tool call: {text!r}")
func_name = func_name_match.group(1)
pairs = _func_arg_regex.findall(text)
arg_dct: dict[str, Any] = {}
for key, value in pairs: # pyright: ignore[reportAny]
arg_key = key.strip() # pyright: ignore[reportAny]
arg_val = value.strip() # pyright: ignore[reportAny]
if not _is_string_type(func_name, arg_key, tools): # pyright: ignore[reportAny]
arg_val = _deserialize(arg_val) # pyright: ignore[reportAny]
arg_dct[arg_key] = arg_val
return dict(name=func_name, arguments=arg_dct)
tokenizer._tool_call_start = tool_call_start
tokenizer._tool_call_end = tool_call_end
tokenizer._tool_parser = parse_tool_call
def _validate_single_tool(obj: dict[str, Any]) -> ToolCallItem:
if (
((name := obj.get("name")) is not None)
and ((args := obj.get("arguments")) is not None)
and isinstance(name, str)
):
raw_id: object = obj.get("id")
extra = {"id": str(raw_id)} if raw_id is not None else {}
return ToolCallItem(
**extra,
name=name,
arguments=json.dumps(args),
)
else:
raise ValidationError
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"

Some files were not shown because too many files have changed in this diff Show More