mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-18 23:06:23 -05:00
Compare commits
5 Commits
iroh
...
remove-nig
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
487013c908 | ||
|
|
24e99ce197 | ||
|
|
315992549b | ||
|
|
ce5a65d3b9 | ||
|
|
c2f2111b88 |
@@ -200,7 +200,7 @@ class Module(dict):
|
||||
) -> mx.MX_ARRAY_TREE: # -> dict[Any, Any | dict[Any, Any | dict[Any, Any] | list[Any]] | dict[Any, Any] | list[Any]]:
|
||||
"""Return the submodules that do not contain other modules."""
|
||||
|
||||
def update(self, parameters: dict, strict: bool = ...) -> Module:
|
||||
def update(self, parameters: dict[str, Any], strict: bool = ...) -> Module:
|
||||
"""Replace the parameters of this Module with the provided ones in the
|
||||
dict of dicts and lists.
|
||||
|
||||
|
||||
@@ -7,7 +7,10 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from mlx.core import MX_ARRAY_TREE
|
||||
|
||||
def tree_map(
|
||||
fn: Callable, tree: Any, *rest: Any, is_leaf: Optional[Callable] = ...
|
||||
fn: Callable[..., Any],
|
||||
tree: Any,
|
||||
*rest: Any,
|
||||
is_leaf: Callable[..., bool] | None = ...,
|
||||
) -> Any:
|
||||
"""Applies ``fn`` to the leaves of the Python tree ``tree`` and
|
||||
returns a new collection with the results.
|
||||
@@ -44,11 +47,11 @@ def tree_map(
|
||||
"""
|
||||
|
||||
def tree_map_with_path(
|
||||
fn: Callable,
|
||||
fn: Callable[..., Any],
|
||||
tree: Any,
|
||||
*rest: Any,
|
||||
is_leaf: Optional[Callable] = ...,
|
||||
path: Optional[Any] = ...,
|
||||
is_leaf: Callable[..., bool] | None = ...,
|
||||
path: str | None = ...,
|
||||
) -> Any:
|
||||
"""Applies ``fn`` to the path and leaves of the Python tree ``tree`` and
|
||||
returns a new collection with the results.
|
||||
@@ -80,9 +83,9 @@ def tree_map_with_path(
|
||||
def tree_flatten(
|
||||
tree: Any,
|
||||
prefix: str = ...,
|
||||
is_leaf: Optional[Callable] = ...,
|
||||
destination: Optional[Union[List[Tuple[str, Any]], Dict[str, Any]]] = ...,
|
||||
) -> Union[List[Tuple[str, Any]], Dict[str, Any]]:
|
||||
is_leaf: Callable[..., bool] | None = ...,
|
||||
destination: list[tuple[str, Any]] | dict[str, Any] | None = ...,
|
||||
) -> list[tuple[str, Any]] | dict[str, Any]:
|
||||
"""Flattens a Python tree to a list of key, value tuples.
|
||||
|
||||
The keys are using the dot notation to define trees of arbitrary depth and
|
||||
@@ -118,7 +121,7 @@ def tree_flatten(
|
||||
the Python tree.
|
||||
"""
|
||||
|
||||
def tree_unflatten(tree: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> Any:
|
||||
def tree_unflatten(tree: list[tuple[str, Any]] | dict[str, Any]) -> Any:
|
||||
"""Recreate a Python tree from its flat representation.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
13
Cargo.lock
generated
13
Cargo.lock
generated
@@ -890,7 +890,7 @@ dependencies = [
|
||||
"delegate",
|
||||
"env_logger",
|
||||
"extend",
|
||||
"futures",
|
||||
"futures-lite",
|
||||
"libp2p",
|
||||
"log",
|
||||
"networking",
|
||||
@@ -914,6 +914,12 @@ dependencies = [
|
||||
"syn 2.0.111",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fastrand"
|
||||
version = "2.3.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "37909eebbb50d72f9059c3b6d82c0463f2ff062c9e95845c43a6c9c0355411be"
|
||||
|
||||
[[package]]
|
||||
name = "ff"
|
||||
version = "0.13.1"
|
||||
@@ -1022,7 +1028,10 @@ version = "2.6.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f78e10609fe0e0b3f4157ffab1876319b5b0db102a2c60dc4626306dc46b44ad"
|
||||
dependencies = [
|
||||
"fastrand",
|
||||
"futures-core",
|
||||
"futures-io",
|
||||
"parking",
|
||||
"pin-project-lite",
|
||||
]
|
||||
|
||||
@@ -2753,7 +2762,7 @@ dependencies = [
|
||||
"delegate",
|
||||
"either",
|
||||
"extend",
|
||||
"futures",
|
||||
"futures-lite",
|
||||
"futures-timer",
|
||||
"keccak-const",
|
||||
"libp2p",
|
||||
|
||||
@@ -29,14 +29,13 @@ util = { path = "rust/util" }
|
||||
# Macro dependecies
|
||||
extend = "1.2"
|
||||
delegate = "0.13"
|
||||
pin-project = "1"
|
||||
|
||||
# Utility dependencies
|
||||
keccak-const = "0.2"
|
||||
|
||||
# Async dependencies
|
||||
tokio = "1.46"
|
||||
futures = "0.3"
|
||||
futures-lite = "2.6.1"
|
||||
futures-timer = "3.0"
|
||||
|
||||
# Data structures
|
||||
|
||||
1046
bench/eval_tool_calls.py
Normal file
1046
bench/eval_tool_calls.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,29 +1,47 @@
|
||||
# type: ignore
|
||||
#!/usr/bin/env python3
|
||||
# pyright: reportAny=false, reportUnknownMemberType=false, reportUnknownVariableType=false, reportUnknownArgumentType=false
|
||||
"""Tool-calling eval for exo's OpenAI-compatible API.
|
||||
|
||||
Tests whether models correctly:
|
||||
- Trigger tool calls when appropriate
|
||||
- Return valid JSON arguments matching function schemas
|
||||
- Handle multi-turn tool use (call -> result -> final answer)
|
||||
- Avoid calling tools when unnecessary
|
||||
|
||||
Start exo with a model first, then run:
|
||||
uv run python tool_call_eval.py --model <model-id>
|
||||
uv run python tool_call_eval.py --model <model-id> --host 10.0.0.5 --port 52415
|
||||
uv run python tool_call_eval.py --model <model-id> --repeat 3
|
||||
uv run python tool_call_eval.py --model <model-id> --scenarios weather_simple calculator_multi_turn
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import contextlib
|
||||
import http.client
|
||||
import itertools
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
from statistics import mean
|
||||
from typing import Any
|
||||
from urllib.parse import urlencode
|
||||
|
||||
from harness import (
|
||||
ExoClient,
|
||||
ExoHttpError,
|
||||
add_common_instance_args,
|
||||
instance_id_from_instance,
|
||||
nodes_used_in_instance,
|
||||
resolve_model_short_id,
|
||||
settle_and_fetch_placements,
|
||||
wait_for_instance_gone,
|
||||
wait_for_instance_ready,
|
||||
)
|
||||
from loguru import logger
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# Backoff constants for cluster settling retry
|
||||
_SETTLE_INITIAL_BACKOFF_S = 1.0
|
||||
_SETTLE_MAX_BACKOFF_S = 60.0
|
||||
_SETTLE_BACKOFF_MULTIPLIER = 2.0
|
||||
|
||||
# Monkey-patch for transformers 5.x compatibility
|
||||
# Kimi's tokenization_kimi.py imports bytes_to_unicode from the old location
|
||||
# which was moved in transformers 5.0.0rc2
|
||||
@@ -103,154 +121,6 @@ def load_tokenizer_for_bench(model_id: str) -> Any:
|
||||
return AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
||||
|
||||
|
||||
class ExoHttpError(RuntimeError):
|
||||
def __init__(self, status: int, reason: str, body_preview: str):
|
||||
super().__init__(f"HTTP {status} {reason}: {body_preview}")
|
||||
self.status = status
|
||||
|
||||
|
||||
class ExoClient:
|
||||
def __init__(self, host: str, port: int, timeout_s: float = 7200.0):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.timeout_s = timeout_s
|
||||
|
||||
def request_json(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
params: dict[str, Any] | None = None,
|
||||
body: dict[str, Any] | None = None,
|
||||
headers: dict[str, str] | None = None,
|
||||
) -> Any:
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
if params:
|
||||
path = path + "?" + urlencode(params)
|
||||
|
||||
conn = http.client.HTTPConnection(self.host, self.port, timeout=self.timeout_s)
|
||||
try:
|
||||
payload: bytes | None = None
|
||||
hdrs: dict[str, str] = {"Accept": "application/json"}
|
||||
|
||||
if body is not None:
|
||||
payload = json.dumps(body).encode("utf-8")
|
||||
hdrs["Content-Type"] = "application/json"
|
||||
if headers:
|
||||
hdrs.update(headers)
|
||||
|
||||
conn.request(method.upper(), path, body=payload, headers=hdrs)
|
||||
resp = conn.getresponse()
|
||||
raw = resp.read()
|
||||
text = raw.decode("utf-8", errors="replace") if raw else ""
|
||||
|
||||
if resp.status >= 400:
|
||||
raise ExoHttpError(resp.status, resp.reason, text[:300])
|
||||
|
||||
if not text:
|
||||
return None
|
||||
return json.loads(text)
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def post_bench_chat_completions(self, payload: dict[str, Any]) -> dict[str, Any]:
|
||||
return self.request_json("POST", "/bench/chat/completions", body=payload)
|
||||
|
||||
|
||||
def unwrap_instance(instance: dict[str, Any]) -> dict[str, Any]:
|
||||
if len(instance) != 1:
|
||||
raise KeyError(f"Expected 1 key, got keys={list(instance.keys())}")
|
||||
|
||||
tag = next(iter(instance))
|
||||
inner = instance[tag]
|
||||
if not isinstance(inner, dict):
|
||||
raise TypeError(f"payload for {tag} must be dict, got {type(inner)}")
|
||||
return inner
|
||||
|
||||
|
||||
def instance_id_from_instance(instance: dict[str, Any]) -> str:
|
||||
inner = unwrap_instance(instance)
|
||||
return str(inner["instanceId"])
|
||||
|
||||
|
||||
def nodes_used_in_instance(instance: dict[str, Any]) -> int:
|
||||
inner = unwrap_instance(instance)
|
||||
return len(inner["shardAssignments"]["nodeToRunner"])
|
||||
|
||||
|
||||
def runner_ids_from_instance(instance: dict[str, Any]) -> list[str]:
|
||||
inner = unwrap_instance(instance)
|
||||
runner_to_shard = inner["shardAssignments"]["runnerToShard"]
|
||||
return list(runner_to_shard.keys())
|
||||
|
||||
|
||||
def runner_ready(runner: dict[str, Any]) -> bool:
|
||||
return "RunnerReady" in runner
|
||||
|
||||
|
||||
def runner_failed(runner: dict[str, Any]) -> bool:
|
||||
return "RunnerFailed" in runner
|
||||
|
||||
|
||||
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
|
||||
if "RunnerFailed" in runner:
|
||||
return runner["RunnerFailed"].get("errorMessage")
|
||||
return None
|
||||
|
||||
|
||||
def wait_for_instance_ready(
|
||||
client: ExoClient, instance_id: str, timeout: float = 24000.0
|
||||
) -> None:
|
||||
start_time = time.time()
|
||||
instance_existed = False
|
||||
while time.time() - start_time < timeout:
|
||||
state = client.request_json("GET", "/state")
|
||||
instances = state.get("instances", {})
|
||||
|
||||
if instance_id not in instances:
|
||||
if instance_existed:
|
||||
# Instance was deleted after being created - likely due to runner failure
|
||||
raise RuntimeError(
|
||||
f"Instance {instance_id} was deleted (runner may have failed)"
|
||||
)
|
||||
time.sleep(0.1)
|
||||
continue
|
||||
|
||||
instance_existed = True
|
||||
instance = instances[instance_id]
|
||||
runner_ids = runner_ids_from_instance(instance)
|
||||
runners = state.get("runners", {})
|
||||
|
||||
# Check for failed runners first
|
||||
for rid in runner_ids:
|
||||
runner = runners.get(rid, {})
|
||||
if runner_failed(runner):
|
||||
error_msg = get_runner_failed_message(runner) or "Unknown error"
|
||||
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
|
||||
|
||||
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
|
||||
return
|
||||
|
||||
time.sleep(0.1)
|
||||
|
||||
raise TimeoutError(f"Instance {instance_id} did not become ready within {timeout=}")
|
||||
|
||||
|
||||
def wait_for_instance_gone(
|
||||
client: ExoClient, instance_id: str, timeout: float = 3.0
|
||||
) -> None:
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < timeout:
|
||||
try:
|
||||
client.request_json("GET", f"/instance/{instance_id}")
|
||||
time.sleep(0.4)
|
||||
except ExoHttpError as e:
|
||||
if e.status == 404:
|
||||
return
|
||||
|
||||
raise TimeoutError(f"Instance {instance_id} did not get deleted within {timeout=}")
|
||||
|
||||
|
||||
def format_peak_memory(b: float) -> str:
|
||||
for unit in ["B", "KB", "MB", "GB", "TB"]:
|
||||
if b < 1024.0:
|
||||
@@ -269,184 +139,6 @@ def parse_int_list(values: list[str]) -> list[int]:
|
||||
return items
|
||||
|
||||
|
||||
def resolve_model_short_id(client: ExoClient, model_arg: str) -> tuple[str, str]:
|
||||
models = client.request_json("GET", "/models") or {}
|
||||
data = models.get("data") or []
|
||||
|
||||
for m in data:
|
||||
if m.get("name").lower() == model_arg.lower():
|
||||
short_id = str(m["name"])
|
||||
full_id = str(m.get("hugging_face_id") or m["name"])
|
||||
return short_id, full_id
|
||||
|
||||
for m in data:
|
||||
if m.get("hugging_face_id") == model_arg:
|
||||
short_id = str(m["name"])
|
||||
full_id = str(m["hugging_face_id"])
|
||||
return short_id, full_id
|
||||
|
||||
raise ValueError(f"Model not found in /models: {model_arg}")
|
||||
|
||||
|
||||
def run_planning_phase(
|
||||
client: ExoClient,
|
||||
full_model_id: str,
|
||||
preview: dict[str, Any],
|
||||
danger_delete: bool,
|
||||
timeout: float,
|
||||
settle_deadline: float | None,
|
||||
) -> None:
|
||||
"""Check disk space and ensure model is downloaded before benchmarking."""
|
||||
# Get model size from /models
|
||||
models = client.request_json("GET", "/models") or {}
|
||||
model_bytes = 0
|
||||
for m in models.get("data", []):
|
||||
if m.get("hugging_face_id") == full_model_id:
|
||||
model_bytes = m.get("storage_size_megabytes", 0) * 1024 * 1024
|
||||
break
|
||||
|
||||
if not model_bytes:
|
||||
logger.warning(
|
||||
f"Could not determine size for {full_model_id}, skipping disk check"
|
||||
)
|
||||
return
|
||||
|
||||
# Get nodes from preview
|
||||
inner = unwrap_instance(preview["instance"])
|
||||
node_ids = list(inner["shardAssignments"]["nodeToRunner"].keys())
|
||||
runner_to_shard = inner["shardAssignments"]["runnerToShard"]
|
||||
|
||||
state = client.request_json("GET", "/state")
|
||||
downloads = state.get("downloads", {})
|
||||
node_disk = state.get("nodeDisk", {})
|
||||
|
||||
for node_id in node_ids:
|
||||
node_downloads = downloads.get(node_id, [])
|
||||
|
||||
# Check if model already downloaded on this node
|
||||
already_downloaded = any(
|
||||
"DownloadCompleted" in p
|
||||
and unwrap_instance(p["DownloadCompleted"]["shardMetadata"])["modelCard"][
|
||||
"modelId"
|
||||
]
|
||||
== full_model_id
|
||||
for p in node_downloads
|
||||
)
|
||||
if already_downloaded:
|
||||
continue
|
||||
|
||||
# Wait for disk info if settle_deadline is set
|
||||
disk_info = node_disk.get(node_id, {})
|
||||
backoff = _SETTLE_INITIAL_BACKOFF_S
|
||||
while not disk_info and settle_deadline and time.monotonic() < settle_deadline:
|
||||
remaining = settle_deadline - time.monotonic()
|
||||
logger.info(
|
||||
f"Waiting for disk info on {node_id} ({remaining:.0f}s remaining)..."
|
||||
)
|
||||
time.sleep(min(backoff, remaining))
|
||||
backoff = min(backoff * _SETTLE_BACKOFF_MULTIPLIER, _SETTLE_MAX_BACKOFF_S)
|
||||
state = client.request_json("GET", "/state")
|
||||
node_disk = state.get("nodeDisk", {})
|
||||
disk_info = node_disk.get(node_id, {})
|
||||
|
||||
if not disk_info:
|
||||
logger.warning(f"No disk info for {node_id}, skipping space check")
|
||||
continue
|
||||
|
||||
avail = disk_info.get("available", {}).get("inBytes", 0)
|
||||
if avail >= model_bytes:
|
||||
continue
|
||||
|
||||
if not danger_delete:
|
||||
raise RuntimeError(
|
||||
f"Insufficient disk on {node_id}: need {model_bytes // (1024**3)}GB, "
|
||||
f"have {avail // (1024**3)}GB. Use --danger-delete-downloads to free space."
|
||||
)
|
||||
|
||||
# Delete from smallest to largest
|
||||
completed = [
|
||||
(
|
||||
unwrap_instance(p["DownloadCompleted"]["shardMetadata"])["modelCard"][
|
||||
"modelId"
|
||||
],
|
||||
p["DownloadCompleted"]["totalBytes"]["inBytes"],
|
||||
)
|
||||
for p in node_downloads
|
||||
if "DownloadCompleted" in p
|
||||
]
|
||||
for del_model, size in sorted(completed, key=lambda x: x[1]):
|
||||
logger.info(f"Deleting {del_model} from {node_id} ({size // (1024**2)}MB)")
|
||||
client.request_json("DELETE", f"/download/{node_id}/{del_model}")
|
||||
avail += size
|
||||
if avail >= model_bytes:
|
||||
break
|
||||
|
||||
if avail < model_bytes:
|
||||
raise RuntimeError(f"Could not free enough space on {node_id}")
|
||||
|
||||
# Start downloads (idempotent)
|
||||
for node_id in node_ids:
|
||||
runner_id = inner["shardAssignments"]["nodeToRunner"][node_id]
|
||||
shard = runner_to_shard[runner_id]
|
||||
client.request_json(
|
||||
"POST",
|
||||
"/download/start",
|
||||
body={
|
||||
"targetNodeId": node_id,
|
||||
"shardMetadata": shard,
|
||||
},
|
||||
)
|
||||
logger.info(f"Started download on {node_id}")
|
||||
|
||||
# Wait for downloads
|
||||
start = time.time()
|
||||
while time.time() - start < timeout:
|
||||
state = client.request_json("GET", "/state")
|
||||
downloads = state.get("downloads", {})
|
||||
all_done = True
|
||||
for node_id in node_ids:
|
||||
done = any(
|
||||
"DownloadCompleted" in p
|
||||
and unwrap_instance(p["DownloadCompleted"]["shardMetadata"])[
|
||||
"modelCard"
|
||||
]["modelId"]
|
||||
== full_model_id
|
||||
for p in downloads.get(node_id, [])
|
||||
)
|
||||
failed = [
|
||||
p["DownloadFailed"]["errorMessage"]
|
||||
for p in downloads.get(node_id, [])
|
||||
if "DownloadFailed" in p
|
||||
and unwrap_instance(p["DownloadFailed"]["shardMetadata"])["modelCard"][
|
||||
"modelId"
|
||||
]
|
||||
== full_model_id
|
||||
]
|
||||
if failed:
|
||||
raise RuntimeError(f"Download failed on {node_id}: {failed[0]}")
|
||||
if not done:
|
||||
all_done = False
|
||||
if all_done:
|
||||
return
|
||||
time.sleep(1)
|
||||
|
||||
raise TimeoutError("Downloads did not complete in time")
|
||||
|
||||
|
||||
def placement_filter(instance_meta: str, wanted: str) -> bool:
|
||||
s = (instance_meta or "").lower()
|
||||
if wanted == "both":
|
||||
return ("ring" in s) or ("jaccl" in s)
|
||||
return wanted in s
|
||||
|
||||
|
||||
def sharding_filter(sharding: str, wanted: str) -> bool:
|
||||
s = (sharding or "").lower()
|
||||
if wanted == "both":
|
||||
return ("pipeline" in s) or ("tensor" in s)
|
||||
return wanted in s
|
||||
|
||||
|
||||
def run_one_completion(
|
||||
client: ExoClient, model_id: str, pp_hint: int, tg: int, prompt_sizer: PromptSizer
|
||||
) -> tuple[dict[str, Any], int]:
|
||||
@@ -538,76 +230,12 @@ class PromptSizer:
|
||||
return content, tok
|
||||
|
||||
|
||||
def fetch_and_filter_placements(
|
||||
client: ExoClient, full_model_id: str, args: argparse.Namespace
|
||||
) -> list[dict[str, Any]]:
|
||||
previews_resp = client.request_json(
|
||||
"GET", "/instance/previews", params={"model_id": full_model_id}
|
||||
)
|
||||
previews = previews_resp.get("previews") or []
|
||||
|
||||
selected: list[dict[str, Any]] = []
|
||||
for p in previews:
|
||||
if p.get("error") is not None:
|
||||
continue
|
||||
if not placement_filter(str(p.get("instance_meta", "")), args.instance_meta):
|
||||
continue
|
||||
if not sharding_filter(str(p.get("sharding", "")), args.sharding):
|
||||
continue
|
||||
|
||||
instance = p.get("instance")
|
||||
if not isinstance(instance, dict):
|
||||
continue
|
||||
|
||||
n = nodes_used_in_instance(instance)
|
||||
# Skip tensor ring single node as it is pointless when pipeline ring
|
||||
if n == 1 and (
|
||||
(args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
|
||||
or (
|
||||
args.instance_meta == "both"
|
||||
and "jaccl" in p.get("instance_meta", "").lower()
|
||||
)
|
||||
):
|
||||
continue
|
||||
|
||||
if (
|
||||
args.skip_pipeline_jaccl
|
||||
and (
|
||||
args.instance_meta == "both"
|
||||
and "jaccl" in p.get("instance_meta", "").lower()
|
||||
)
|
||||
and (
|
||||
args.sharding == "both" and "pipeline" in p.get("sharding", "").lower()
|
||||
)
|
||||
):
|
||||
continue
|
||||
|
||||
if (
|
||||
args.skip_tensor_ring
|
||||
and (
|
||||
args.instance_meta == "both"
|
||||
and "ring" in p.get("instance_meta", "").lower()
|
||||
)
|
||||
and (args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
|
||||
):
|
||||
continue
|
||||
|
||||
if args.min_nodes <= n <= args.max_nodes:
|
||||
selected.append(p)
|
||||
|
||||
return selected
|
||||
|
||||
|
||||
def main() -> int:
|
||||
ap = argparse.ArgumentParser(
|
||||
prog="exo-bench",
|
||||
description="Benchmark exo model throughput across placement previews.",
|
||||
)
|
||||
ap.add_argument("--host", default=os.environ.get("EXO_HOST", "localhost"))
|
||||
ap.add_argument(
|
||||
"--port", type=int, default=int(os.environ.get("EXO_PORT", "52415"))
|
||||
)
|
||||
ap.add_argument("--model", required=True, help="Model short id or huggingface id")
|
||||
add_common_instance_args(ap)
|
||||
ap.add_argument(
|
||||
"--pp",
|
||||
nargs="+",
|
||||
@@ -620,34 +248,6 @@ def main() -> int:
|
||||
required=True,
|
||||
help="Generation lengths (ints). Accepts commas.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--max-nodes",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Only consider placements using <= this many nodes.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--min-nodes",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Only consider placements using >= this many nodes.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
|
||||
)
|
||||
ap.add_argument(
|
||||
"--sharding", choices=["pipeline", "tensor", "both"], default="both"
|
||||
)
|
||||
ap.add_argument(
|
||||
"--skip-pipeline-jaccl",
|
||||
action="store_true",
|
||||
help="Skip pipeline+jaccl placements, as it's often pointless.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--skip-tensor-ring",
|
||||
action="store_true",
|
||||
help="Skip tensor+ring placements, as it's so slow.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--repeat", type=int, default=1, help="Repetitions per (pp,tg) pair."
|
||||
)
|
||||
@@ -657,9 +257,6 @@ def main() -> int:
|
||||
default=0,
|
||||
help="Warmup runs per placement (uses first pp/tg).",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--timeout", type=float, default=7200.0, help="HTTP timeout (seconds)."
|
||||
)
|
||||
ap.add_argument(
|
||||
"--json-out",
|
||||
default="bench/results.json",
|
||||
@@ -674,17 +271,6 @@ def main() -> int:
|
||||
action="store_true",
|
||||
help="Force all pp×tg combinations (cartesian product) even when lists have equal length.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--settle-timeout",
|
||||
type=float,
|
||||
default=0,
|
||||
help="Max seconds to wait for the cluster to produce valid placements (0 = try once).",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--danger-delete-downloads",
|
||||
action="store_true",
|
||||
help="Delete existing models from smallest to largest to make room for benchmark model.",
|
||||
)
|
||||
args = ap.parse_args()
|
||||
|
||||
pp_list = parse_int_list(args.pp)
|
||||
@@ -719,24 +305,10 @@ def main() -> int:
|
||||
logger.error("[exo-bench] tokenizer usable but prompt sizing failed")
|
||||
raise
|
||||
|
||||
settle_deadline = (
|
||||
time.monotonic() + args.settle_timeout if args.settle_timeout > 0 else None
|
||||
selected = settle_and_fetch_placements(
|
||||
client, full_model_id, args, settle_timeout=args.settle_timeout
|
||||
)
|
||||
|
||||
selected = fetch_and_filter_placements(client, full_model_id, args)
|
||||
|
||||
if not selected and settle_deadline:
|
||||
backoff = _SETTLE_INITIAL_BACKOFF_S
|
||||
while not selected and time.monotonic() < settle_deadline:
|
||||
remaining = settle_deadline - time.monotonic()
|
||||
logger.warning(
|
||||
f"No valid placements yet (cluster may still be settling). "
|
||||
f"Retrying in {backoff:.1f}s ({remaining:.0f}s remaining)..."
|
||||
)
|
||||
time.sleep(min(backoff, remaining))
|
||||
backoff = min(backoff * _SETTLE_BACKOFF_MULTIPLIER, _SETTLE_MAX_BACKOFF_S)
|
||||
selected = fetch_and_filter_placements(client, full_model_id, args)
|
||||
|
||||
if not selected:
|
||||
logger.error("No valid placements matched your filters.")
|
||||
return 1
|
||||
@@ -760,16 +332,6 @@ def main() -> int:
|
||||
if args.dry_run:
|
||||
return 0
|
||||
|
||||
logger.info("Planning phase: checking downloads...")
|
||||
run_planning_phase(
|
||||
client,
|
||||
full_model_id,
|
||||
selected[0],
|
||||
args.danger_delete_downloads,
|
||||
args.timeout,
|
||||
settle_deadline,
|
||||
)
|
||||
|
||||
all_rows: list[dict[str, Any]] = []
|
||||
|
||||
for preview in selected:
|
||||
|
||||
327
bench/harness.py
Normal file
327
bench/harness.py
Normal file
@@ -0,0 +1,327 @@
|
||||
# type: ignore
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import http.client
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from typing import Any
|
||||
from urllib.parse import urlencode
|
||||
|
||||
from loguru import logger
|
||||
|
||||
_SETTLE_INITIAL_BACKOFF_S = 1.0
|
||||
_SETTLE_MAX_BACKOFF_S = 60.0
|
||||
_SETTLE_BACKOFF_MULTIPLIER = 2.0
|
||||
|
||||
|
||||
class ExoHttpError(RuntimeError):
|
||||
def __init__(self, status: int, reason: str, body_preview: str):
|
||||
super().__init__(f"HTTP {status} {reason}: {body_preview}")
|
||||
self.status = status
|
||||
|
||||
|
||||
class ExoClient:
|
||||
def __init__(self, host: str, port: int, timeout_s: float = 7200.0):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.timeout_s = timeout_s
|
||||
|
||||
def request_json(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
params: dict[str, Any] | None = None,
|
||||
body: dict[str, Any] | None = None,
|
||||
headers: dict[str, str] | None = None,
|
||||
) -> Any:
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
if params:
|
||||
path = path + "?" + urlencode(params)
|
||||
|
||||
conn = http.client.HTTPConnection(self.host, self.port, timeout=self.timeout_s)
|
||||
try:
|
||||
payload: bytes | None = None
|
||||
hdrs: dict[str, str] = {"Accept": "application/json"}
|
||||
|
||||
if body is not None:
|
||||
payload = json.dumps(body).encode("utf-8")
|
||||
hdrs["Content-Type"] = "application/json"
|
||||
if headers:
|
||||
hdrs.update(headers)
|
||||
|
||||
conn.request(method.upper(), path, body=payload, headers=hdrs)
|
||||
resp = conn.getresponse()
|
||||
raw = resp.read()
|
||||
text = raw.decode("utf-8", errors="replace") if raw else ""
|
||||
|
||||
if resp.status >= 400:
|
||||
raise ExoHttpError(resp.status, resp.reason, text[:300])
|
||||
|
||||
if not text:
|
||||
return None
|
||||
return json.loads(text)
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def post_bench_chat_completions(self, payload: dict[str, Any]) -> dict[str, Any]:
|
||||
return self.request_json("POST", "/bench/chat/completions", body=payload)
|
||||
|
||||
|
||||
def unwrap_instance(instance: dict[str, Any]) -> dict[str, Any]:
|
||||
if len(instance) != 1:
|
||||
raise KeyError(f"Expected 1 key, got keys={list(instance.keys())}")
|
||||
|
||||
tag = next(iter(instance))
|
||||
inner = instance[tag]
|
||||
if not isinstance(inner, dict):
|
||||
raise TypeError(f"payload for {tag} must be dict, got {type(inner)}")
|
||||
return inner
|
||||
|
||||
|
||||
def instance_id_from_instance(instance: dict[str, Any]) -> str:
|
||||
inner = unwrap_instance(instance)
|
||||
return str(inner["instanceId"])
|
||||
|
||||
|
||||
def nodes_used_in_instance(instance: dict[str, Any]) -> int:
|
||||
inner = unwrap_instance(instance)
|
||||
return len(inner["shardAssignments"]["nodeToRunner"])
|
||||
|
||||
|
||||
def runner_ids_from_instance(instance: dict[str, Any]) -> list[str]:
|
||||
inner = unwrap_instance(instance)
|
||||
runner_to_shard = inner["shardAssignments"]["runnerToShard"]
|
||||
return list(runner_to_shard.keys())
|
||||
|
||||
|
||||
def runner_ready(runner: dict[str, Any]) -> bool:
|
||||
return "RunnerReady" in runner
|
||||
|
||||
|
||||
def runner_failed(runner: dict[str, Any]) -> bool:
|
||||
return "RunnerFailed" in runner
|
||||
|
||||
|
||||
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
|
||||
if "RunnerFailed" in runner:
|
||||
return runner["RunnerFailed"].get("errorMessage")
|
||||
return None
|
||||
|
||||
|
||||
def wait_for_instance_ready(
|
||||
client: ExoClient, instance_id: str, timeout: float = 24000.0
|
||||
) -> None:
|
||||
start_time = time.time()
|
||||
instance_existed = False
|
||||
while time.time() - start_time < timeout:
|
||||
state = client.request_json("GET", "/state")
|
||||
instances = state.get("instances", {})
|
||||
|
||||
if instance_id not in instances:
|
||||
if instance_existed:
|
||||
# Instance was deleted after being created - likely due to runner failure
|
||||
raise RuntimeError(
|
||||
f"Instance {instance_id} was deleted (runner may have failed)"
|
||||
)
|
||||
time.sleep(0.1)
|
||||
continue
|
||||
|
||||
instance_existed = True
|
||||
instance = instances[instance_id]
|
||||
runner_ids = runner_ids_from_instance(instance)
|
||||
runners = state.get("runners", {})
|
||||
|
||||
# Check for failed runners first
|
||||
for rid in runner_ids:
|
||||
runner = runners.get(rid, {})
|
||||
if runner_failed(runner):
|
||||
error_msg = get_runner_failed_message(runner) or "Unknown error"
|
||||
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
|
||||
|
||||
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
|
||||
return
|
||||
|
||||
time.sleep(0.1)
|
||||
|
||||
raise TimeoutError(f"Instance {instance_id} did not become ready within {timeout=}")
|
||||
|
||||
|
||||
def wait_for_instance_gone(
|
||||
client: ExoClient, instance_id: str, timeout: float = 3.0
|
||||
) -> None:
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < timeout:
|
||||
try:
|
||||
client.request_json("GET", f"/instance/{instance_id}")
|
||||
time.sleep(0.4)
|
||||
except ExoHttpError as e:
|
||||
if e.status == 404:
|
||||
return
|
||||
raise
|
||||
|
||||
raise TimeoutError(f"Instance {instance_id} did not get deleted within {timeout=}")
|
||||
|
||||
|
||||
def resolve_model_short_id(client: ExoClient, model_arg: str) -> tuple[str, str]:
|
||||
models = client.request_json("GET", "/models") or {}
|
||||
data = models.get("data") or []
|
||||
|
||||
for m in data:
|
||||
if (m.get("name") or "").lower() == model_arg.lower():
|
||||
short_id = str(m["name"])
|
||||
full_id = str(m.get("hugging_face_id") or m["name"])
|
||||
return short_id, full_id
|
||||
|
||||
for m in data:
|
||||
if m.get("hugging_face_id") == model_arg:
|
||||
short_id = str(m["name"])
|
||||
full_id = str(m["hugging_face_id"])
|
||||
return short_id, full_id
|
||||
|
||||
raise ValueError(f"Model not found in /models: {model_arg}")
|
||||
|
||||
|
||||
def placement_filter(instance_meta: str, wanted: str) -> bool:
|
||||
s = (instance_meta or "").lower()
|
||||
if wanted == "both":
|
||||
return ("ring" in s) or ("jaccl" in s)
|
||||
return wanted in s
|
||||
|
||||
|
||||
def sharding_filter(sharding: str, wanted: str) -> bool:
|
||||
s = (sharding or "").lower()
|
||||
if wanted == "both":
|
||||
return ("pipeline" in s) or ("tensor" in s)
|
||||
return wanted in s
|
||||
|
||||
|
||||
def fetch_and_filter_placements(
|
||||
client: ExoClient, full_model_id: str, args: argparse.Namespace
|
||||
) -> list[dict[str, Any]]:
|
||||
previews_resp = client.request_json(
|
||||
"GET", "/instance/previews", params={"model_id": full_model_id}
|
||||
)
|
||||
previews = previews_resp.get("previews") or []
|
||||
|
||||
selected: list[dict[str, Any]] = []
|
||||
for p in previews:
|
||||
if p.get("error") is not None:
|
||||
continue
|
||||
if not placement_filter(str(p.get("instance_meta", "")), args.instance_meta):
|
||||
continue
|
||||
if not sharding_filter(str(p.get("sharding", "")), args.sharding):
|
||||
continue
|
||||
|
||||
instance = p.get("instance")
|
||||
if not isinstance(instance, dict):
|
||||
continue
|
||||
|
||||
n = nodes_used_in_instance(instance)
|
||||
# Skip tensor ring single node as it is pointless when pipeline ring
|
||||
if n == 1 and (
|
||||
(args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
|
||||
or (
|
||||
args.instance_meta == "both"
|
||||
and "jaccl" in p.get("instance_meta", "").lower()
|
||||
)
|
||||
):
|
||||
continue
|
||||
|
||||
if (
|
||||
args.skip_pipeline_jaccl
|
||||
and (
|
||||
args.instance_meta == "both"
|
||||
and "jaccl" in p.get("instance_meta", "").lower()
|
||||
)
|
||||
and (
|
||||
args.sharding == "both" and "pipeline" in p.get("sharding", "").lower()
|
||||
)
|
||||
):
|
||||
continue
|
||||
|
||||
if (
|
||||
args.skip_tensor_ring
|
||||
and (
|
||||
args.instance_meta == "both"
|
||||
and "ring" in p.get("instance_meta", "").lower()
|
||||
)
|
||||
and (args.sharding == "both" and "tensor" in p.get("sharding", "").lower())
|
||||
):
|
||||
continue
|
||||
|
||||
if args.min_nodes <= n <= args.max_nodes:
|
||||
selected.append(p)
|
||||
|
||||
return selected
|
||||
|
||||
|
||||
def settle_and_fetch_placements(
|
||||
client: ExoClient,
|
||||
full_model_id: str,
|
||||
args: argparse.Namespace,
|
||||
settle_timeout: float = 0,
|
||||
) -> list[dict[str, Any]]:
|
||||
selected = fetch_and_filter_placements(client, full_model_id, args)
|
||||
|
||||
if not selected and settle_timeout > 0:
|
||||
backoff = _SETTLE_INITIAL_BACKOFF_S
|
||||
deadline = time.monotonic() + settle_timeout
|
||||
while not selected and time.monotonic() < deadline:
|
||||
remaining = deadline - time.monotonic()
|
||||
logger.warning(
|
||||
f"No valid placements yet (cluster may still be settling). "
|
||||
f"Retrying in {backoff:.1f}s ({remaining:.0f}s remaining)..."
|
||||
)
|
||||
time.sleep(min(backoff, remaining))
|
||||
backoff = min(backoff * _SETTLE_BACKOFF_MULTIPLIER, _SETTLE_MAX_BACKOFF_S)
|
||||
selected = fetch_and_filter_placements(client, full_model_id, args)
|
||||
|
||||
return selected
|
||||
|
||||
|
||||
def add_common_instance_args(ap: argparse.ArgumentParser) -> None:
|
||||
ap.add_argument("--host", default=os.environ.get("EXO_HOST", "localhost"))
|
||||
ap.add_argument(
|
||||
"--port", type=int, default=int(os.environ.get("EXO_PORT", "52415"))
|
||||
)
|
||||
ap.add_argument("--model", required=True, help="Model short id or huggingface id")
|
||||
ap.add_argument(
|
||||
"--max-nodes",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Only consider placements using <= this many nodes.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--min-nodes",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Only consider placements using >= this many nodes.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
|
||||
)
|
||||
ap.add_argument(
|
||||
"--sharding", choices=["pipeline", "tensor", "both"], default="both"
|
||||
)
|
||||
ap.add_argument(
|
||||
"--skip-pipeline-jaccl",
|
||||
action="store_true",
|
||||
help="Skip pipeline+jaccl placements, as it's often pointless.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--skip-tensor-ring",
|
||||
action="store_true",
|
||||
help="Skip tensor+ring placements, as it's so slow.",
|
||||
)
|
||||
ap.add_argument(
|
||||
"--timeout", type=float, default=7200.0, help="HTTP timeout (seconds)."
|
||||
)
|
||||
ap.add_argument(
|
||||
"--settle-timeout",
|
||||
type=float,
|
||||
default=0,
|
||||
help="Max seconds to wait for the cluster to produce valid placements (0 = try once).",
|
||||
)
|
||||
@@ -4,6 +4,7 @@ version = "0.1.0"
|
||||
description = "Benchmarking tool for exo distributed inference"
|
||||
requires-python = ">=3.13"
|
||||
dependencies = [
|
||||
"httpx>=0.27.0",
|
||||
"loguru>=0.7.3",
|
||||
"transformers>=5.0.0",
|
||||
"huggingface-hub>=0.33.4",
|
||||
|
||||
240
bench/scenarios.toml
Normal file
240
bench/scenarios.toml
Normal file
@@ -0,0 +1,240 @@
|
||||
# Tool definitions — each becomes an OpenAI function tool.
|
||||
# All scenarios get all tools unless they specify a `tools` list.
|
||||
|
||||
[tools.get_current_weather]
|
||||
description = "Get the current weather in a given location"
|
||||
required = ["location"]
|
||||
|
||||
[tools.get_current_weather.properties.location]
|
||||
type = "string"
|
||||
description = "City and state, e.g. San Francisco, CA"
|
||||
|
||||
[tools.get_current_weather.properties.unit]
|
||||
type = "string"
|
||||
enum = ["celsius", "fahrenheit"]
|
||||
description = "Temperature unit"
|
||||
|
||||
[tools.calculate]
|
||||
description = "Evaluate a mathematical expression and return the numeric result"
|
||||
required = ["expression"]
|
||||
|
||||
[tools.calculate.properties.expression]
|
||||
type = "string"
|
||||
description = "The math expression to evaluate, e.g. '2 + 3 * 4'"
|
||||
|
||||
[tools.search_products]
|
||||
description = "Search for products in a catalog by query, category, and price"
|
||||
required = ["query"]
|
||||
|
||||
[tools.search_products.properties.query]
|
||||
type = "string"
|
||||
description = "Search query string"
|
||||
|
||||
[tools.search_products.properties.category]
|
||||
type = "string"
|
||||
enum = ["electronics", "clothing", "food", "books"]
|
||||
description = "Product category to filter by"
|
||||
|
||||
[tools.search_products.properties.max_price]
|
||||
type = "number"
|
||||
description = "Maximum price in USD"
|
||||
|
||||
# -- Should call a tool --
|
||||
|
||||
[[scenarios]]
|
||||
name = "weather_simple"
|
||||
description = "Basic weather query -> get_current_weather"
|
||||
expect_tool_call = true
|
||||
expected_function = "get_current_weather"
|
||||
required_arg_keys = ["location"]
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "What's the weather like in Tokyo right now?"
|
||||
|
||||
[[scenarios]]
|
||||
name = "calculator_simple"
|
||||
description = "Math question -> calculate"
|
||||
expect_tool_call = true
|
||||
expected_function = "calculate"
|
||||
required_arg_keys = ["expression"]
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Use the calculator to compute 3847 * 926 + 17293"
|
||||
|
||||
[[scenarios]]
|
||||
name = "search_with_filters"
|
||||
description = "Product search with category and price filter"
|
||||
expect_tool_call = true
|
||||
expected_function = "search_products"
|
||||
required_arg_keys = ["query"]
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Find me electronics under $50"
|
||||
|
||||
# -- Multi-turn: tool call then follow-up --
|
||||
|
||||
[[scenarios]]
|
||||
name = "weather_multi_turn"
|
||||
description = "Weather query -> tool result -> natural language summary"
|
||||
expect_tool_call = true
|
||||
expected_function = "get_current_weather"
|
||||
required_arg_keys = ["location"]
|
||||
|
||||
[scenarios.tool_result]
|
||||
temperature = "18C"
|
||||
condition = "partly cloudy"
|
||||
humidity = "65%"
|
||||
wind = "12 km/h NW"
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "What's the weather in Paris?"
|
||||
|
||||
[[scenarios]]
|
||||
name = "calculator_multi_turn"
|
||||
description = "Math query -> tool result -> model reports the answer"
|
||||
expect_tool_call = true
|
||||
expected_function = "calculate"
|
||||
required_arg_keys = ["expression"]
|
||||
|
||||
[scenarios.tool_result]
|
||||
result = 491682
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Use the calculator to compute 1847 * 263 + 5921"
|
||||
|
||||
[[scenarios]]
|
||||
name = "search_multi_turn"
|
||||
description = "Search query -> tool result -> model summarizes products"
|
||||
expect_tool_call = true
|
||||
expected_function = "search_products"
|
||||
required_arg_keys = ["query"]
|
||||
|
||||
[[scenarios.tool_result.results]]
|
||||
name = "Hands-On Machine Learning"
|
||||
price = 45.99
|
||||
rating = 4.8
|
||||
|
||||
[[scenarios.tool_result.results]]
|
||||
name = "Deep Learning with Python"
|
||||
price = 39.99
|
||||
rating = 4.6
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Search for books about machine learning"
|
||||
|
||||
# -- Sequential tool calls --
|
||||
|
||||
[[scenarios]]
|
||||
name = "chained_tool_calls_same"
|
||||
description = "Thinking + weather(Tokyo) -> result -> model must call weather(London)"
|
||||
expect_tool_call = true
|
||||
expected_function = "get_current_weather"
|
||||
required_arg_keys = ["location"]
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Compare the weather in Tokyo and London."
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "assistant"
|
||||
content = "I'll check both cities. Let me start with Tokyo."
|
||||
|
||||
[[scenarios.messages.tool_calls]]
|
||||
id = "call_1"
|
||||
name = "get_current_weather"
|
||||
arguments = { location = "Tokyo" }
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "tool"
|
||||
tool_call_id = "call_1"
|
||||
content = '{"temperature": "25C", "condition": "sunny"}'
|
||||
|
||||
[[scenarios]]
|
||||
name = "chained_tool_calls_different"
|
||||
description = "Thinking + weather(Berlin) -> result -> model must call calculator"
|
||||
expect_tool_call = true
|
||||
expected_function = "calculate"
|
||||
required_arg_keys = ["expression"]
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "What's the weather in Berlin, and also use the calculator to compute 4819 * 37 + 291."
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "assistant"
|
||||
content = "I'll handle both. Let me check Berlin's weather first."
|
||||
|
||||
[[scenarios.messages.tool_calls]]
|
||||
id = "call_2"
|
||||
name = "get_current_weather"
|
||||
arguments = { location = "Berlin" }
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "tool"
|
||||
tool_call_id = "call_2"
|
||||
content = '{"temperature": "12C", "condition": "rainy"}'
|
||||
|
||||
[[scenarios]]
|
||||
name = "chained_tool_calls_three"
|
||||
description = "Two prior thinking+tool calls -> results -> model must make a third"
|
||||
expect_tool_call = true
|
||||
expected_function = "get_current_weather"
|
||||
required_arg_keys = ["location"]
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Compare weather in Tokyo, Paris, and London."
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "assistant"
|
||||
content = "I'll check all three cities. Starting with Tokyo."
|
||||
|
||||
[[scenarios.messages.tool_calls]]
|
||||
id = "call_3"
|
||||
name = "get_current_weather"
|
||||
arguments = { location = "Tokyo" }
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "tool"
|
||||
tool_call_id = "call_3"
|
||||
content = '{"temperature": "25C", "condition": "sunny"}'
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "assistant"
|
||||
content = "Got Tokyo. Now checking Paris."
|
||||
|
||||
[[scenarios.messages.tool_calls]]
|
||||
id = "call_4"
|
||||
name = "get_current_weather"
|
||||
arguments = { location = "Paris" }
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "tool"
|
||||
tool_call_id = "call_4"
|
||||
content = '{"temperature": "18C", "condition": "cloudy"}'
|
||||
|
||||
# -- Should NOT call a tool --
|
||||
|
||||
[[scenarios]]
|
||||
name = "no_tool_joke"
|
||||
description = "Joke request should NOT trigger any tool"
|
||||
expect_tool_call = false
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "Tell me a funny joke about cats."
|
||||
|
||||
[[scenarios]]
|
||||
name = "no_tool_factual"
|
||||
description = "Factual question answerable from training data"
|
||||
expect_tool_call = false
|
||||
|
||||
[[scenarios.messages]]
|
||||
role = "user"
|
||||
content = "What is the capital of Japan?"
|
||||
@@ -74,7 +74,6 @@
|
||||
perSystem =
|
||||
{ config, self', inputs', pkgs, lib, system, ... }:
|
||||
let
|
||||
fenixToolchain = inputs'.fenix.packages.complete;
|
||||
# Use pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
|
||||
pkgsSwift = import inputs.nixpkgs-swift { inherit system; };
|
||||
in
|
||||
|
||||
@@ -158,6 +158,7 @@
|
||||
exo-test-env = testVenv;
|
||||
} // {
|
||||
exo-bench = mkBenchScript "exo-bench" (inputs.self + /bench/exo_bench.py);
|
||||
exo-eval-tool-calls = mkBenchScript "exo-eval-tool-calls" (inputs.self + /bench/eval_tool_calls.py);
|
||||
exo-get-all-models-on-cluster = mkSimplePythonScript "exo-get-all-models-on-cluster" (inputs.self + /tests/get_all_models_on_cluster.py);
|
||||
};
|
||||
|
||||
|
||||
@@ -0,0 +1,12 @@
|
||||
model_id = "mlx-community/MiniMax-M2.5-4bit"
|
||||
n_layers = 62
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
family = "minimax"
|
||||
quantization = "4bit"
|
||||
base_model = "MiniMax M2.5"
|
||||
capabilities = ["text", "thinking"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 128666664960
|
||||
@@ -0,0 +1,12 @@
|
||||
model_id = "mlx-community/MiniMax-M2.5-6bit"
|
||||
n_layers = 62
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
family = "minimax"
|
||||
quantization = "6bit"
|
||||
base_model = "MiniMax M2.5"
|
||||
capabilities = ["text", "thinking"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 185826705408
|
||||
@@ -0,0 +1,12 @@
|
||||
model_id = "mlx-community/MiniMax-M2.5-8bit"
|
||||
n_layers = 62
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
family = "minimax"
|
||||
quantization = "8bit"
|
||||
base_model = "MiniMax M2.5"
|
||||
capabilities = ["text", "thinking"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 242986745856
|
||||
@@ -1,2 +0,0 @@
|
||||
# we can manually exclude false-positive lint errors for dual packages (if in dependencies)
|
||||
#allowed-duplicate-crates = ["hashbrown"]
|
||||
@@ -27,7 +27,7 @@ networking = { workspace = true }
|
||||
# interop
|
||||
pyo3 = { version = "0.27.2", features = [
|
||||
# "abi3-py313", # tells pyo3 (and maturin) to build using the stable ABI with minimum Python version 3.13
|
||||
"nightly", # enables better-supported GIL integration
|
||||
# "nightly", # enables better-supported GIL integration
|
||||
"experimental-async", # async support in #[pyfunction] & #[pymethods]
|
||||
#"experimental-inspect", # inspection of generated binary => easier to automate type-hint generation
|
||||
#"py-clone", # adding Clone-ing of `Py<T>` without GIL (may cause panics - remove if panics happen)
|
||||
@@ -45,11 +45,10 @@ pyo3-log = "0.13.2"
|
||||
# macro dependencies
|
||||
extend = { workspace = true }
|
||||
delegate = { workspace = true }
|
||||
pin-project = { workspace = true }
|
||||
|
||||
# async runtime
|
||||
tokio = { workspace = true, features = ["full", "tracing"] }
|
||||
futures = { workspace = true }
|
||||
futures-lite = { workspace = true }
|
||||
|
||||
# utility dependencies
|
||||
util = { workspace = true }
|
||||
@@ -60,3 +59,4 @@ env_logger = "0.11"
|
||||
|
||||
# Networking
|
||||
libp2p = { workspace = true, features = ["full"] }
|
||||
pin-project = "1.1.10"
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
//!
|
||||
|
||||
use pin_project::pin_project;
|
||||
use pyo3::marker::Ungil;
|
||||
use pyo3::prelude::*;
|
||||
use std::{
|
||||
future::Future,
|
||||
@@ -26,8 +25,8 @@ where
|
||||
|
||||
impl<F> Future for AllowThreads<F>
|
||||
where
|
||||
F: Future + Ungil,
|
||||
F::Output: Ungil,
|
||||
F: Future + Send,
|
||||
F::Output: Send,
|
||||
{
|
||||
type Output = F::Output;
|
||||
|
||||
|
||||
@@ -4,25 +4,12 @@
|
||||
//!
|
||||
//!
|
||||
|
||||
// enable Rust-unstable features for convenience
|
||||
#![feature(trait_alias)]
|
||||
#![feature(tuple_trait)]
|
||||
#![feature(unboxed_closures)]
|
||||
// #![feature(stmt_expr_attributes)]
|
||||
// #![feature(assert_matches)]
|
||||
// #![feature(async_fn_in_dyn_trait)]
|
||||
// #![feature(async_for_loop)]
|
||||
// #![feature(auto_traits)]
|
||||
// #![feature(negative_impls)]
|
||||
|
||||
extern crate core;
|
||||
mod allow_threading;
|
||||
pub(crate) mod networking;
|
||||
pub(crate) mod pylibp2p;
|
||||
mod ident;
|
||||
mod networking;
|
||||
|
||||
use crate::ident::ident_submodule;
|
||||
use crate::networking::networking_submodule;
|
||||
use crate::pylibp2p::ident::ident_submodule;
|
||||
use crate::pylibp2p::multiaddr::multiaddr_submodule;
|
||||
use pyo3::prelude::PyModule;
|
||||
use pyo3::{Bound, PyResult, pyclass, pymodule};
|
||||
use pyo3_stub_gen::define_stub_info_gatherer;
|
||||
@@ -32,14 +19,6 @@ pub(crate) mod r#const {
|
||||
pub const MPSC_CHANNEL_SIZE: usize = 1024;
|
||||
}
|
||||
|
||||
/// Namespace for all the type/trait aliases used by this crate.
|
||||
pub(crate) mod alias {
|
||||
use std::marker::Tuple;
|
||||
|
||||
pub trait SendFn<Args: Tuple + Send + 'static, Output> =
|
||||
Fn<Args, Output = Output> + Send + 'static;
|
||||
}
|
||||
|
||||
/// Namespace for crate-wide extension traits/methods
|
||||
pub(crate) mod ext {
|
||||
use crate::allow_threading::AllowThreads;
|
||||
@@ -180,7 +159,6 @@ fn main_module(m: &Bound<'_, PyModule>) -> PyResult<()> {
|
||||
// work with maturin, where the types generate correctly, in the right folder, without
|
||||
// too many importing issues...
|
||||
ident_submodule(m)?;
|
||||
multiaddr_submodule(m)?;
|
||||
networking_submodule(m)?;
|
||||
|
||||
// top-level constructs
|
||||
|
||||
@@ -8,8 +8,8 @@
|
||||
use crate::r#const::MPSC_CHANNEL_SIZE;
|
||||
use crate::ext::{ByteArrayExt as _, FutureExt, PyErrExt as _};
|
||||
use crate::ext::{ResultExt as _, TokioMpscReceiverExt as _, TokioMpscSenderExt as _};
|
||||
use crate::ident::{PyKeypair, PyPeerId};
|
||||
use crate::pyclass;
|
||||
use crate::pylibp2p::ident::{PyKeypair, PyPeerId};
|
||||
use libp2p::futures::StreamExt as _;
|
||||
use libp2p::gossipsub;
|
||||
use libp2p::gossipsub::{IdentTopic, Message, MessageId, PublishError};
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
//! A module for exposing Rust's libp2p datatypes over Pyo3
|
||||
//!
|
||||
//! TODO: right now we are coupled to libp2p's identity, but eventually we want to create our own
|
||||
//! independent identity type of some kind or another. This may require handshaking.
|
||||
//!
|
||||
|
||||
pub mod ident;
|
||||
pub mod multiaddr;
|
||||
@@ -1,81 +0,0 @@
|
||||
use crate::ext::ResultExt as _;
|
||||
use libp2p::Multiaddr;
|
||||
use pyo3::prelude::{PyBytesMethods as _, PyModule, PyModuleMethods as _};
|
||||
use pyo3::types::PyBytes;
|
||||
use pyo3::{Bound, PyResult, Python, pyclass, pymethods};
|
||||
use pyo3_stub_gen::derive::{gen_stub_pyclass, gen_stub_pymethods};
|
||||
use std::str::FromStr as _;
|
||||
|
||||
/// Representation of a Multiaddr.
|
||||
#[gen_stub_pyclass]
|
||||
#[pyclass(name = "Multiaddr", frozen)]
|
||||
#[derive(Debug, Clone)]
|
||||
#[repr(transparent)]
|
||||
pub struct PyMultiaddr(pub Multiaddr);
|
||||
|
||||
#[gen_stub_pymethods]
|
||||
#[pymethods]
|
||||
#[allow(clippy::needless_pass_by_value)]
|
||||
impl PyMultiaddr {
|
||||
/// Create a new, empty multiaddress.
|
||||
#[staticmethod]
|
||||
fn empty() -> Self {
|
||||
Self(Multiaddr::empty())
|
||||
}
|
||||
|
||||
/// Create a new, empty multiaddress with the given capacity.
|
||||
#[staticmethod]
|
||||
fn with_capacity(n: usize) -> Self {
|
||||
Self(Multiaddr::with_capacity(n))
|
||||
}
|
||||
|
||||
/// Parse a `Multiaddr` value from its byte slice representation.
|
||||
#[staticmethod]
|
||||
fn from_bytes(bytes: Bound<'_, PyBytes>) -> PyResult<Self> {
|
||||
let bytes = Vec::from(bytes.as_bytes());
|
||||
Ok(Self(Multiaddr::try_from(bytes).pyerr()?))
|
||||
}
|
||||
|
||||
/// Parse a `Multiaddr` value from its string representation.
|
||||
#[staticmethod]
|
||||
fn from_string(string: String) -> PyResult<Self> {
|
||||
Ok(Self(Multiaddr::from_str(&string).pyerr()?))
|
||||
}
|
||||
|
||||
/// Return the length in bytes of this multiaddress.
|
||||
fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
/// Returns true if the length of this multiaddress is 0.
|
||||
fn is_empty(&self) -> bool {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Return a copy of this [`Multiaddr`]'s byte representation.
|
||||
fn to_bytes<'py>(&self, py: Python<'py>) -> Bound<'py, PyBytes> {
|
||||
let bytes = self.0.to_vec();
|
||||
PyBytes::new(py, &bytes)
|
||||
}
|
||||
|
||||
/// Convert a Multiaddr to a string.
|
||||
fn to_string(&self) -> String {
|
||||
self.0.to_string()
|
||||
}
|
||||
|
||||
#[gen_stub(skip)]
|
||||
fn __repr__(&self) -> String {
|
||||
format!("Multiaddr({})", self.0)
|
||||
}
|
||||
|
||||
#[gen_stub(skip)]
|
||||
fn __str__(&self) -> String {
|
||||
self.to_string()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn multiaddr_submodule(m: &Bound<'_, PyModule>) -> PyResult<()> {
|
||||
m.add_class::<PyMultiaddr>()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -22,7 +22,7 @@ delegate = { workspace = true }
|
||||
|
||||
# async
|
||||
tokio = { workspace = true, features = ["full"] }
|
||||
futures = { workspace = true }
|
||||
futures-lite = { workspace = true }
|
||||
futures-timer = { workspace = true }
|
||||
|
||||
# utility dependencies
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use futures::stream::StreamExt as _;
|
||||
use futures_lite::StreamExt;
|
||||
use libp2p::{gossipsub, identity, swarm::SwarmEvent};
|
||||
use networking::{discovery, swarm};
|
||||
use tokio::{io, io::AsyncBufReadExt as _, select};
|
||||
@@ -38,19 +38,19 @@ async fn main() {
|
||||
println!("Publish error: {e:?}");
|
||||
}
|
||||
}
|
||||
event = swarm.select_next_some() => match event {
|
||||
event = swarm.next() => match event {
|
||||
// on gossipsub incoming
|
||||
SwarmEvent::Behaviour(swarm::BehaviourEvent::Gossipsub(gossipsub::Event::Message {
|
||||
Some(SwarmEvent::Behaviour(swarm::BehaviourEvent::Gossipsub(gossipsub::Event::Message {
|
||||
propagation_source: peer_id,
|
||||
message_id: id,
|
||||
message,
|
||||
})) => println!(
|
||||
}))) => println!(
|
||||
"\n\nGot message: '{}' with id: {id} from peer: {peer_id}\n\n",
|
||||
String::from_utf8_lossy(&message.data),
|
||||
),
|
||||
|
||||
// on discovery
|
||||
SwarmEvent::Behaviour(swarm::BehaviourEvent::Discovery(e)) => match e {
|
||||
Some(SwarmEvent::Behaviour(swarm::BehaviourEvent::Discovery(e)) )=> match e {
|
||||
discovery::Event::ConnectionEstablished {
|
||||
peer_id, connection_id, remote_ip, remote_tcp_port
|
||||
} => {
|
||||
@@ -64,7 +64,7 @@ async fn main() {
|
||||
}
|
||||
|
||||
// ignore outgoing errors: those are normal
|
||||
e@SwarmEvent::OutgoingConnectionError { .. } => { log::debug!("Outgoing connection error: {e:?}"); }
|
||||
e@Some(SwarmEvent::OutgoingConnectionError { .. }) => { log::debug!("Outgoing connection error: {e:?}"); }
|
||||
|
||||
// otherwise log any other event
|
||||
e => { log::info!("Other event {e:?}"); }
|
||||
|
||||
@@ -1,127 +0,0 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
use futures::stream::StreamExt;
|
||||
use libp2p::{
|
||||
gossipsub, mdns, noise,
|
||||
swarm::{NetworkBehaviour, SwarmEvent},
|
||||
tcp, yamux,
|
||||
};
|
||||
use std::error::Error;
|
||||
use std::time::Duration;
|
||||
use tokio::{io, io::AsyncBufReadExt, select};
|
||||
use tracing_subscriber::EnvFilter;
|
||||
|
||||
// We create a custom network behaviour that combines Gossipsub and Mdns.
|
||||
#[derive(NetworkBehaviour)]
|
||||
struct MyBehaviour {
|
||||
gossipsub: gossipsub::Behaviour,
|
||||
mdns: mdns::tokio::Behaviour,
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<(), Box<dyn Error>> {
|
||||
let _ = tracing_subscriber::fmt()
|
||||
.with_env_filter(EnvFilter::from_default_env())
|
||||
.try_init();
|
||||
|
||||
let mut swarm = libp2p::SwarmBuilder::with_new_identity()
|
||||
.with_tokio()
|
||||
.with_tcp(
|
||||
tcp::Config::default(),
|
||||
noise::Config::new,
|
||||
yamux::Config::default,
|
||||
)?
|
||||
.with_behaviour(|key| {
|
||||
// Set a custom gossipsub configuration
|
||||
let gossipsub_config = gossipsub::ConfigBuilder::default()
|
||||
.heartbeat_interval(Duration::from_secs(10))
|
||||
.validation_mode(gossipsub::ValidationMode::Strict) // This sets the kind of message validation. The default is Strict (enforce message signing)
|
||||
.build()
|
||||
.map_err(io::Error::other)?; // Temporary hack because `build` does not return a proper `std::error::Error`.
|
||||
|
||||
// build a gossipsub network behaviour
|
||||
let gossipsub = gossipsub::Behaviour::new(
|
||||
gossipsub::MessageAuthenticity::Signed(key.clone()),
|
||||
gossipsub_config,
|
||||
)?;
|
||||
|
||||
let mdns =
|
||||
mdns::tokio::Behaviour::new(mdns::Config::default(), key.public().to_peer_id())?;
|
||||
Ok(MyBehaviour { gossipsub, mdns })
|
||||
})?
|
||||
.build();
|
||||
|
||||
println!("Running swarm with identity {}", swarm.local_peer_id());
|
||||
|
||||
// Create a Gossipsub topic
|
||||
let topic = gossipsub::IdentTopic::new("test-net");
|
||||
// subscribes to our topic
|
||||
swarm.behaviour_mut().gossipsub.subscribe(&topic)?;
|
||||
|
||||
// Read full lines from stdin
|
||||
let mut stdin = io::BufReader::new(io::stdin()).lines();
|
||||
|
||||
// Listen on all interfaces and whatever port the OS assigns
|
||||
swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;
|
||||
|
||||
println!("Enter messages via STDIN and they will be sent to connected peers using Gossipsub");
|
||||
|
||||
// Kick it off
|
||||
loop {
|
||||
select! {
|
||||
Ok(Some(line)) = stdin.next_line() => {
|
||||
if let Err(e) = swarm
|
||||
.behaviour_mut().gossipsub
|
||||
.publish(topic.clone(), line.as_bytes()) {
|
||||
println!("Publish error: {e:?}");
|
||||
}
|
||||
}
|
||||
event = swarm.select_next_some() => match event {
|
||||
SwarmEvent::Behaviour(MyBehaviourEvent::Mdns(mdns::Event::Discovered(list))) => {
|
||||
for (peer_id, multiaddr) in list {
|
||||
println!("mDNS discovered a new peer: {peer_id} on {multiaddr}");
|
||||
swarm.behaviour_mut().gossipsub.add_explicit_peer(&peer_id);
|
||||
}
|
||||
},
|
||||
SwarmEvent::Behaviour(MyBehaviourEvent::Mdns(mdns::Event::Expired(list))) => {
|
||||
for (peer_id, multiaddr) in list {
|
||||
println!("mDNS discover peer has expired: {peer_id} on {multiaddr}");
|
||||
swarm.behaviour_mut().gossipsub.remove_explicit_peer(&peer_id);
|
||||
}
|
||||
},
|
||||
SwarmEvent::Behaviour(MyBehaviourEvent::Gossipsub(gossipsub::Event::Message {
|
||||
propagation_source: peer_id,
|
||||
message_id: id,
|
||||
message,
|
||||
})) => println!(
|
||||
"Got message: '{}' with id: {id} from peer: {peer_id}",
|
||||
String::from_utf8_lossy(&message.data),
|
||||
),
|
||||
SwarmEvent::NewListenAddr { address, .. } => {
|
||||
println!("Local node is listening on {address}");
|
||||
}
|
||||
e => {
|
||||
println!("Other swarm event: {:?}", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
use crate::ext::MultiaddrExt;
|
||||
use delegate::delegate;
|
||||
use either::Either;
|
||||
use futures::FutureExt;
|
||||
use futures_lite::FutureExt;
|
||||
use futures_timer::Delay;
|
||||
use libp2p::core::transport::PortUse;
|
||||
use libp2p::core::{ConnectedPoint, Endpoint};
|
||||
@@ -362,7 +362,7 @@ impl NetworkBehaviour for Behaviour {
|
||||
}
|
||||
|
||||
// retry connecting to all mDNS peers periodically (fails safely if already connected)
|
||||
if self.retry_delay.poll_unpin(cx).is_ready() {
|
||||
if self.retry_delay.poll(cx).is_ready() {
|
||||
for (p, mas) in self.mdns_discovered.clone() {
|
||||
for ma in mas {
|
||||
self.dial(p, ma)
|
||||
|
||||
@@ -31,7 +31,7 @@ pub fn create_swarm(keypair: identity::Keypair) -> alias::AnyResult<Swarm> {
|
||||
mod transport {
|
||||
use crate::alias;
|
||||
use crate::swarm::{NETWORK_VERSION, OVERRIDE_VERSION_ENV_VAR};
|
||||
use futures::{AsyncRead, AsyncWrite};
|
||||
use futures_lite::{AsyncRead, AsyncWrite};
|
||||
use keccak_const::Sha3_256;
|
||||
use libp2p::core::muxing;
|
||||
use libp2p::core::transport::Boxed;
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
{ inputs, ... }:
|
||||
{
|
||||
perSystem =
|
||||
{ config, self', inputs', pkgs, lib, ... }:
|
||||
{ inputs', pkgs, lib, ... }:
|
||||
let
|
||||
# Fenix nightly toolchain with all components
|
||||
fenixPkgs = inputs'.fenix.packages;
|
||||
rustToolchain = fenixPkgs.complete.withComponents [
|
||||
rustToolchain = inputs'.fenix.packages.stable.withComponents [
|
||||
"cargo"
|
||||
"rustc"
|
||||
"clippy"
|
||||
|
||||
@@ -1,2 +0,0 @@
|
||||
[toolchain]
|
||||
channel = "nightly"
|
||||
@@ -4,10 +4,13 @@ from collections.abc import Sequence
|
||||
|
||||
from mlx_lm.models.cache import (
|
||||
ArraysCache,
|
||||
CacheList,
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
)
|
||||
|
||||
# This list contains one cache entry per transformer layer
|
||||
KVCacheType = Sequence[KVCache | RotatingKVCache | QuantizedKVCache | ArraysCache]
|
||||
KVCacheType = Sequence[
|
||||
KVCache | RotatingKVCache | QuantizedKVCache | ArraysCache | CacheList
|
||||
]
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import contextlib
|
||||
import multiprocessing as mp
|
||||
from dataclasses import dataclass, field
|
||||
from math import inf
|
||||
@@ -132,7 +133,8 @@ class MpSender[T]:
|
||||
def close(self) -> None:
|
||||
if not self._state.closed.is_set():
|
||||
self._state.closed.set()
|
||||
self._state.buffer.put(_MpEndOfStream())
|
||||
with contextlib.suppress(Exception):
|
||||
self._state.buffer.put_nowait(_MpEndOfStream())
|
||||
self._state.buffer.close()
|
||||
|
||||
# == unique to Mp channels ==
|
||||
@@ -204,6 +206,8 @@ class MpReceiver[T]:
|
||||
def close(self) -> None:
|
||||
if not self._state.closed.is_set():
|
||||
self._state.closed.set()
|
||||
with contextlib.suppress(Exception):
|
||||
self._state.buffer.put_nowait(_MpEndOfStream())
|
||||
self._state.buffer.close()
|
||||
|
||||
# == unique to Mp channels ==
|
||||
|
||||
@@ -5,6 +5,7 @@ import mlx.core as mx
|
||||
import psutil
|
||||
from mlx_lm.models.cache import (
|
||||
ArraysCache,
|
||||
CacheList,
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
@@ -17,10 +18,22 @@ from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.constants import CACHE_GROUP_SIZE, KV_CACHE_BITS
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
# Fraction of device memory above which LRU eviction kicks in
|
||||
_DEFAULT_MEMORY_THRESHOLD = 0.9
|
||||
|
||||
# Fraction of device memory above which LRU eviction kicks in.
|
||||
# Smaller machines need more aggressive eviction.
|
||||
def _default_memory_threshold() -> float:
|
||||
total_gb = psutil.virtual_memory().total / (1024**3)
|
||||
if total_gb >= 128:
|
||||
return 0.85
|
||||
if total_gb >= 64:
|
||||
return 0.80
|
||||
if total_gb >= 32:
|
||||
return 0.75
|
||||
return 0.70
|
||||
|
||||
|
||||
_MEMORY_THRESHOLD = float(
|
||||
os.environ.get("EXO_MEMORY_THRESHOLD", _DEFAULT_MEMORY_THRESHOLD)
|
||||
os.environ.get("EXO_MEMORY_THRESHOLD", _default_memory_threshold())
|
||||
)
|
||||
|
||||
|
||||
@@ -64,7 +77,7 @@ def has_non_kv_caches(cache: KVCacheType) -> bool:
|
||||
|
||||
|
||||
class KVPrefixCache:
|
||||
def __init__(self, group: mx.distributed.Group | None = None):
|
||||
def __init__(self, group: mx.distributed.Group | None):
|
||||
self.prompts: list[mx.array] = [] # mx array of tokens (ints)
|
||||
self.caches: list[KVCacheType] = []
|
||||
self._snapshots: list[list[CacheSnapshot] | None] = []
|
||||
@@ -156,15 +169,15 @@ class KVPrefixCache:
|
||||
best_length = 0
|
||||
is_exact = False
|
||||
|
||||
# Find best cache
|
||||
# Find best cache match
|
||||
for i, cached_prompt in enumerate(self.prompts):
|
||||
length = get_prefix_length(prompt_tokens, cached_prompt)
|
||||
if length >= max_length - 1:
|
||||
best_index, best_length = i, length
|
||||
is_exact = True
|
||||
break
|
||||
if length > best_length:
|
||||
best_index, best_length = i, length
|
||||
if length == max_length:
|
||||
is_exact = True
|
||||
best_index, best_length = i, length
|
||||
break
|
||||
|
||||
if best_index is None:
|
||||
return make_kv_cache(model), prompt_tokens, None
|
||||
@@ -172,11 +185,12 @@ class KVPrefixCache:
|
||||
# For exact match: trim to max_length-1 so remaining has the last token
|
||||
# For partial match: trim to best_length, remaining has suffix to prefill
|
||||
# This ensures stream_generate always has at least one token to start with
|
||||
target = (max_length - 1) if is_exact else best_length
|
||||
has_ssm = has_non_kv_caches(self.caches[best_index])
|
||||
target = (max_length - 1) if is_exact and not has_ssm else best_length
|
||||
restore_pos, restore_snap = self._get_snapshot(best_index, target)
|
||||
|
||||
# No usable snapshot — need fresh cache
|
||||
if restore_snap is None and has_non_kv_caches(self.caches[best_index]):
|
||||
if restore_snap is None and has_ssm:
|
||||
return make_kv_cache(model), prompt_tokens, None
|
||||
|
||||
prompt_cache = deepcopy(self.caches[best_index])
|
||||
@@ -257,10 +271,21 @@ def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
return mx.array(prompt_tokens)
|
||||
|
||||
|
||||
def _entry_length(
|
||||
c: KVCache | RotatingKVCache | QuantizedKVCache | ArraysCache | CacheList,
|
||||
) -> int:
|
||||
# Use .offset attribute which KVCache types have (len() not implemented in older QuantizedKVCache).
|
||||
if hasattr(c, "offset"):
|
||||
return c.offset
|
||||
# For CacheList
|
||||
if hasattr(c, "size"):
|
||||
return int(c.size()) # type: ignore
|
||||
return 0
|
||||
|
||||
|
||||
def cache_length(cache: KVCacheType) -> int:
|
||||
"""Get the number of tokens in a KV cache."""
|
||||
# Use .offset attribute which KVCache types have (len() not implemented in older QuantizedKVCache).
|
||||
return max(getattr(c, "offset", 0) for c in cache)
|
||||
return max(_entry_length(c) for c in cache)
|
||||
|
||||
|
||||
def get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
|
||||
|
||||
@@ -48,7 +48,7 @@ from exo.worker.runner.bootstrap import logger
|
||||
|
||||
generation_stream = mx.new_stream(mx.default_device())
|
||||
|
||||
_MIN_PREFIX_HIT_TO_UPDATE = 1000
|
||||
_MIN_PREFIX_HIT_RATIO_TO_UPDATE = 0.5
|
||||
|
||||
|
||||
def prefill(
|
||||
@@ -57,7 +57,7 @@ def prefill(
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt_tokens: mx.array,
|
||||
cache: KVCacheType,
|
||||
group: mx.distributed.Group | None = None,
|
||||
group: mx.distributed.Group | None,
|
||||
) -> tuple[float, int, list[CacheSnapshot]]:
|
||||
"""Prefill the KV cache with prompt tokens.
|
||||
|
||||
@@ -133,7 +133,7 @@ def prefill(
|
||||
def warmup_inference(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
group: mx.distributed.Group | None = None,
|
||||
group: mx.distributed.Group | None,
|
||||
) -> int:
|
||||
content = "Prompt to warm up the inference engine. Repeat this."
|
||||
|
||||
@@ -255,8 +255,8 @@ def mlx_generate(
|
||||
tokenizer: TokenizerWrapper,
|
||||
task: TextGenerationTaskParams,
|
||||
prompt: str,
|
||||
kv_prefix_cache: KVPrefixCache | None = None,
|
||||
group: mx.distributed.Group | None = None,
|
||||
kv_prefix_cache: KVPrefixCache | None,
|
||||
group: mx.distributed.Group | None,
|
||||
) -> Generator[GenerationResponse]:
|
||||
# Ensure that generation stats only contains peak memory for this generation
|
||||
mx.reset_peak_memory()
|
||||
@@ -436,9 +436,14 @@ def mlx_generate(
|
||||
full_prompt_tokens = mx.concatenate(
|
||||
[all_prompt_tokens, generated_tokens_array]
|
||||
)
|
||||
hit_ratio = (
|
||||
prefix_hit_length / len(all_prompt_tokens)
|
||||
if len(all_prompt_tokens) > 0
|
||||
else 0.0
|
||||
)
|
||||
if (
|
||||
matched_index is not None
|
||||
and prefix_hit_length >= _MIN_PREFIX_HIT_TO_UPDATE
|
||||
and hit_ratio >= _MIN_PREFIX_HIT_RATIO_TO_UPDATE
|
||||
):
|
||||
kv_prefix_cache.update_kv_cache(
|
||||
matched_index,
|
||||
|
||||
@@ -292,6 +292,8 @@ def get_eos_token_ids_for_model(model_id: ModelId) -> list[int] | None:
|
||||
elif "glm" in model_id_lower:
|
||||
# For GLM-4.5 and older
|
||||
return [151336, 151329, 151338]
|
||||
elif "gpt-oss" in model_id_lower:
|
||||
return [200002, 200012]
|
||||
return None
|
||||
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
HarmonyEncodingName,
|
||||
HarmonyError, # pyright: ignore[reportUnknownVariableType]
|
||||
Role,
|
||||
StreamableParser,
|
||||
load_harmony_encoding,
|
||||
@@ -588,7 +589,11 @@ def parse_gpt_oss(
|
||||
|
||||
for response in responses:
|
||||
assert isinstance(response, GenerationResponse)
|
||||
stream.process(response.token)
|
||||
try:
|
||||
stream.process(response.token)
|
||||
except HarmonyError:
|
||||
logger.error("Encountered critical Harmony Error, returning early")
|
||||
return
|
||||
|
||||
delta = stream.last_content_delta
|
||||
ch = stream.current_channel
|
||||
|
||||
@@ -103,7 +103,7 @@ class RunnerSupervisor:
|
||||
self._event_sender.close()
|
||||
self._cancel_sender.send(TaskId("CANCEL_CURRENT_TASK"))
|
||||
self._cancel_sender.close()
|
||||
self.runner_process.join(1)
|
||||
self.runner_process.join(5)
|
||||
if not self.runner_process.is_alive():
|
||||
logger.info("Runner process succesfully terminated")
|
||||
return
|
||||
|
||||
@@ -123,7 +123,12 @@ def run_gpt_oss_pipeline_device(
|
||||
generated_text = ""
|
||||
|
||||
for response in mlx_generate(
|
||||
model=model, tokenizer=tokenizer, task=task, prompt=prompt
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=None,
|
||||
group=group,
|
||||
):
|
||||
generated_text += response.text
|
||||
if response.finish_reason is not None:
|
||||
@@ -194,6 +199,8 @@ def run_gpt_oss_tensor_parallel_device(
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=None,
|
||||
group=group,
|
||||
):
|
||||
generated_text += response.text
|
||||
if response.finish_reason is not None:
|
||||
|
||||
@@ -88,12 +88,12 @@ class TestKVPrefix:
|
||||
return tokenizer
|
||||
|
||||
def test_starts_empty(self, mock_tokenizer):
|
||||
cache = KVPrefixCache()
|
||||
cache = KVPrefixCache(None)
|
||||
assert len(cache.prompts) == 0
|
||||
assert len(cache.caches) == 0
|
||||
|
||||
def test_clear_empties_cache(self, mock_tokenizer):
|
||||
cache = KVPrefixCache()
|
||||
cache = KVPrefixCache(None)
|
||||
cache.prompts.append(mx.array([1, 2, 3]))
|
||||
cache.caches.append([KVCache()])
|
||||
cache.clear()
|
||||
@@ -101,7 +101,7 @@ class TestKVPrefix:
|
||||
assert len(cache.caches) == 0
|
||||
|
||||
def test_clear_on_empty_cache(self, mock_tokenizer):
|
||||
cache = KVPrefixCache()
|
||||
cache = KVPrefixCache(None)
|
||||
cache.clear()
|
||||
assert len(cache.prompts) == 0
|
||||
|
||||
@@ -142,7 +142,9 @@ class TestKVPrefixCacheWithModel:
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
_, _, snapshots = prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
_, _, snapshots = prefill(
|
||||
model, tokenizer, make_sampler(0.0), tokens, cache, group=None
|
||||
)
|
||||
|
||||
# Cache should now hold the prompt tokens minus one
|
||||
assert cache_length(cache) == len(tokens) - 1
|
||||
@@ -161,9 +163,11 @@ class TestKVPrefixCacheWithModel:
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
_, _, snapshots = prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
_, _, snapshots = prefill(
|
||||
model, tokenizer, make_sampler(0.0), tokens, cache, group=None
|
||||
)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
kv_prefix_cache.add_kv_cache(tokens, cache, snapshots)
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
@@ -176,9 +180,11 @@ class TestKVPrefixCacheWithModel:
|
||||
)
|
||||
assert matched_index == 0
|
||||
|
||||
# Exact match returns only last token
|
||||
assert len(remaining_tokens) == 1
|
||||
assert mx.array_equal(remaining_tokens, tokens[-1:])
|
||||
# Exact match returns last token(s) — for models with SSM/rotating caches,
|
||||
# snapshot availability constrains how far back we can trim, so remaining
|
||||
# may be 1 or 2 tokens depending on the model.
|
||||
assert len(remaining_tokens) >= 1
|
||||
assert mx.array_equal(remaining_tokens, tokens[-len(remaining_tokens) :])
|
||||
|
||||
def test_add_and_get_prefix_match(self, model_and_tokenizer):
|
||||
"""get_kv_cache with a longer prompt sharing prefix should return partial match."""
|
||||
@@ -194,10 +200,10 @@ class TestKVPrefixCacheWithModel:
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
_, _, snapshots = prefill(
|
||||
model, tokenizer, make_sampler(0.0), short_tokens, cache
|
||||
model, tokenizer, make_sampler(0.0), short_tokens, cache, group=None
|
||||
)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
kv_prefix_cache.add_kv_cache(short_tokens, cache, snapshots)
|
||||
|
||||
# Query with longer prompt that shares the chat template prefix
|
||||
@@ -238,9 +244,11 @@ class TestKVPrefixCacheWithModel:
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
_, _, snapshots = prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
_, _, snapshots = prefill(
|
||||
model, tokenizer, make_sampler(0.0), tokens, cache, group=None
|
||||
)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
kv_prefix_cache.add_kv_cache(tokens, cache, snapshots)
|
||||
|
||||
stored_length = cache_length(kv_prefix_cache.caches[0])
|
||||
@@ -276,9 +284,11 @@ class TestKVPrefixCacheWithModel:
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
_, _, snapshots = prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
_, _, snapshots = prefill(
|
||||
model, tokenizer, make_sampler(0.0), tokens, cache, group=None
|
||||
)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
kv_prefix_cache.add_kv_cache(tokens, cache, snapshots)
|
||||
|
||||
stored_length = cache_length(kv_prefix_cache.caches[0])
|
||||
@@ -301,7 +311,7 @@ class TestKVPrefixCacheWithModel:
|
||||
"""mlx_generate should save the cache after generation completes."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
task = TextGenerationTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
input=[InputMessage(role="user", content="Hello")],
|
||||
@@ -318,6 +328,7 @@ class TestKVPrefixCacheWithModel:
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
generated_tokens += 1
|
||||
|
||||
@@ -331,7 +342,7 @@ class TestKVPrefixCacheWithModel:
|
||||
"""Second mlx_generate call with same prompt should get a prefix hit from stored cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
task = TextGenerationTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
input=[InputMessage(role="user", content="Reuse test")],
|
||||
@@ -347,6 +358,7 @@ class TestKVPrefixCacheWithModel:
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
pass
|
||||
|
||||
@@ -368,7 +380,7 @@ class TestKVPrefixCacheWithModel:
|
||||
"""With a prompt > 1000 tokens, second generation should update the cache entry in-place."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
|
||||
# Build a long user message (> 1000 tokens) to exceed _MIN_PREFIX_HIT_TO_UPDATE
|
||||
base_text = "The quick brown fox jumps over the lazy dog. "
|
||||
@@ -395,6 +407,7 @@ class TestKVPrefixCacheWithModel:
|
||||
task=task1,
|
||||
prompt=prompt1,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
pass
|
||||
first_gen_time = time.perf_counter() - t0
|
||||
@@ -427,6 +440,7 @@ class TestKVPrefixCacheWithModel:
|
||||
task=task2,
|
||||
prompt=prompt2,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
pass
|
||||
second_gen_time = time.perf_counter() - t0
|
||||
@@ -447,7 +461,7 @@ class TestKVPrefixCacheWithModel:
|
||||
"""After mlx_generate saves a cache, a second generation must not corrupt the stored copy."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
task = TextGenerationTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
input=[InputMessage(role="user", content="Immutable test")],
|
||||
@@ -462,6 +476,7 @@ class TestKVPrefixCacheWithModel:
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
pass
|
||||
|
||||
@@ -474,6 +489,7 @@ class TestKVPrefixCacheWithModel:
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
pass
|
||||
|
||||
@@ -484,7 +500,7 @@ class TestKVPrefixCacheWithModel:
|
||||
"""Under memory pressure, adding a new cache entry evicts the least recently used one."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache()
|
||||
kv_prefix_cache = KVPrefixCache(None)
|
||||
|
||||
# Add three cache entries with different prompts
|
||||
prompts = ["First entry", "Second entry", "Third entry"]
|
||||
@@ -497,7 +513,7 @@ class TestKVPrefixCacheWithModel:
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache, group=None)
|
||||
kv_prefix_cache.add_kv_cache(tokens, cache)
|
||||
# Stagger _last_used so LRU order is deterministic
|
||||
kv_prefix_cache._last_used[i] = float(i)
|
||||
@@ -522,7 +538,7 @@ class TestKVPrefixCacheWithModel:
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache, group=None)
|
||||
kv_prefix_cache.add_kv_cache(tokens, cache)
|
||||
|
||||
# LRU entries should have been evicted (entries 0, 1, 2 in order of _last_used)
|
||||
|
||||
@@ -0,0 +1,297 @@
|
||||
import copy
|
||||
import gc
|
||||
import importlib
|
||||
import json
|
||||
import shutil
|
||||
import tempfile
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Any, cast
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import pytest
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.shared.types.common import ModelId
|
||||
from exo.shared.types.text_generation import InputMessage, TextGenerationTaskParams
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import KVPrefixCache
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
apply_chat_template,
|
||||
load_tokenizer_for_model_id,
|
||||
)
|
||||
|
||||
HF_CACHE = Path.home() / ".cache" / "huggingface" / "hub"
|
||||
|
||||
# ── Config reduction ──────────────────────────────────────────────────────── #
|
||||
|
||||
_REDUCE = {
|
||||
"num_hidden_layers": 4,
|
||||
"hidden_size": 256,
|
||||
"num_attention_heads": 4,
|
||||
"num_key_value_heads": 4,
|
||||
"intermediate_size": 512,
|
||||
"moe_intermediate_size": 128,
|
||||
"num_experts": 4,
|
||||
"num_experts_per_tok": 2,
|
||||
"n_routed_experts": 4,
|
||||
"num_local_experts": 4,
|
||||
"num_nextn_predict_layers": 0,
|
||||
"first_k_dense_replace": 0,
|
||||
"linear_num_key_heads": 2,
|
||||
"linear_num_value_heads": 2,
|
||||
"num_attention_groups": 4,
|
||||
}
|
||||
|
||||
|
||||
def _reduce_dict(cfg: dict[str, Any]) -> dict[str, Any]:
|
||||
result = dict(cfg)
|
||||
for key, val in _REDUCE.items():
|
||||
if key in result:
|
||||
result[key] = val
|
||||
return result
|
||||
|
||||
|
||||
def _reduce_config(cfg: dict[str, Any]) -> dict[str, Any]:
|
||||
result = _reduce_dict(cfg)
|
||||
n_layers = cast(int, result.get("num_hidden_layers", 4))
|
||||
|
||||
if "text_config" in result and isinstance(result["text_config"], dict):
|
||||
result["text_config"] = _reduce_dict(
|
||||
cast(dict[str, Any], result["text_config"])
|
||||
)
|
||||
tc: dict[str, Any] = result["text_config"]
|
||||
if "num_nextn_predict_layers" in tc:
|
||||
tc["num_nextn_predict_layers"] = 0
|
||||
|
||||
if "layer_types" in result and isinstance(result["layer_types"], list):
|
||||
result["layer_types"] = result["layer_types"][:n_layers]
|
||||
|
||||
if "attention_other_setting" in result and isinstance(
|
||||
result["attention_other_setting"], dict
|
||||
):
|
||||
aos: dict[str, Any] = dict(
|
||||
cast(dict[str, Any], result["attention_other_setting"])
|
||||
)
|
||||
if "num_attention_heads" in aos:
|
||||
aos["num_attention_heads"] = result.get("num_attention_heads", 4)
|
||||
if "num_attention_groups" in aos:
|
||||
aos["num_attention_groups"] = result.get(
|
||||
"num_attention_groups", cast(int, aos["num_attention_groups"])
|
||||
)
|
||||
result["attention_other_setting"] = aos
|
||||
|
||||
if "moe_layers_enum" in result and isinstance(result["moe_layers_enum"], str):
|
||||
indices = [int(x) for x in result["moe_layers_enum"].split(",") if x.strip()]
|
||||
valid = [i for i in indices if i < n_layers]
|
||||
result["moe_layers_enum"] = ",".join(str(i) for i in valid) if valid else ""
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# ── Helpers ───────────────────────────────────────────────────────────────── #
|
||||
|
||||
|
||||
def _find_snapshot(hub_name: str) -> Path | None:
|
||||
model_dir = HF_CACHE / f"models--mlx-community--{hub_name}"
|
||||
snaps = model_dir / "snapshots"
|
||||
if not snaps.exists():
|
||||
return None
|
||||
children = sorted(snaps.iterdir())
|
||||
return children[0] if children else None
|
||||
|
||||
|
||||
def _copy_tokenizer(src: Path, dst: Path) -> None:
|
||||
for f in src.iterdir():
|
||||
name = f.name
|
||||
if (
|
||||
"tokeniz" in name.lower()
|
||||
or "tiktoken" in name.lower()
|
||||
or name.startswith("vocab")
|
||||
or name.endswith(".jinja")
|
||||
or "tool_declaration" in name
|
||||
) and f.is_file():
|
||||
shutil.copy2(f, dst / name)
|
||||
|
||||
|
||||
def _build_model(module_name: str, cfg: dict[str, Any]) -> Model:
|
||||
mod = importlib.import_module(f"mlx_lm.models.{module_name}")
|
||||
args = mod.ModelArgs.from_dict(cfg) # pyright: ignore[reportAny]
|
||||
model: nn.Module = mod.Model(args) # pyright: ignore[reportAny]
|
||||
flat = cast(list[tuple[str, mx.array]], tree_flatten(model.parameters()))
|
||||
random_weights = [
|
||||
(k, mx.random.normal(shape=v.shape, dtype=mx.float16)) for k, v in flat
|
||||
]
|
||||
model.update(cast(dict[str, Any], tree_unflatten(random_weights)))
|
||||
mx.eval(model.parameters())
|
||||
return cast(Model, model)
|
||||
|
||||
|
||||
def _collect_tokens(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
task: TextGenerationTaskParams,
|
||||
prompt: str,
|
||||
kv_prefix_cache: KVPrefixCache | None,
|
||||
) -> list[int]:
|
||||
tokens: list[int] = []
|
||||
for resp in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
group=None,
|
||||
):
|
||||
tokens.append(resp.token)
|
||||
if resp.finish_reason is not None:
|
||||
break
|
||||
return tokens
|
||||
|
||||
|
||||
# ── Architecture definitions ──────────────────────────────────────────────── #
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class ArchSpec:
|
||||
name: str
|
||||
hub_name: str
|
||||
module: str
|
||||
tokenizer_hub: str | None = None # fallback for models without bundled tokenizer
|
||||
|
||||
|
||||
ARCHITECTURES: list[ArchSpec] = [
|
||||
ArchSpec("llama", "Llama-3.2-1B-Instruct-4bit", "llama"),
|
||||
ArchSpec("glm_moe_dsa", "GLM-5-MXFP4-Q8", "glm_moe_dsa"),
|
||||
ArchSpec(
|
||||
"glm4_moe", "GLM-4.5-Air-8bit", "glm4_moe", tokenizer_hub="GLM-4.7-8bit-gs32"
|
||||
),
|
||||
ArchSpec(
|
||||
"glm4_moe_lite",
|
||||
"GLM-4.7-Flash-8bit",
|
||||
"glm4_moe_lite",
|
||||
tokenizer_hub="GLM-4.7-8bit-gs32",
|
||||
),
|
||||
ArchSpec("glm4_moe_47", "GLM-4.7-8bit-gs32", "glm4_moe"),
|
||||
ArchSpec("qwen3", "Qwen3-4B-Instruct-2507-4bit", "qwen3"),
|
||||
ArchSpec("qwen3_moe", "Qwen3-30B-A3B-4bit", "qwen3_moe"),
|
||||
ArchSpec("qwen3_next", "Qwen3-Next-80B-A3B-Thinking-4bit", "qwen3_next"),
|
||||
ArchSpec("minimax", "MiniMax-M2.1-3bit", "minimax"),
|
||||
ArchSpec("gpt_oss", "gpt-oss-20b-MXFP4-Q8", "gpt_oss"),
|
||||
ArchSpec("step3p5", "Step-3.5-Flash-4bit", "step3p5"),
|
||||
ArchSpec("kimi_k25", "Kimi-K2.5", "kimi_k25"),
|
||||
]
|
||||
|
||||
|
||||
def _arch_available(spec: ArchSpec) -> bool:
|
||||
snap = _find_snapshot(spec.hub_name)
|
||||
if snap is None:
|
||||
return False
|
||||
if spec.tokenizer_hub is not None:
|
||||
return _find_snapshot(spec.tokenizer_hub) is not None
|
||||
return True
|
||||
|
||||
|
||||
def _make_task() -> TextGenerationTaskParams:
|
||||
return TextGenerationTaskParams(
|
||||
model=ModelId("test"),
|
||||
input=[
|
||||
InputMessage(
|
||||
role="user",
|
||||
content="Use the calculator to compute 1847 * 263 + 5921",
|
||||
)
|
||||
],
|
||||
max_output_tokens=20,
|
||||
temperature=0.0,
|
||||
tools=[
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "calculate",
|
||||
"description": "Evaluate a mathematical expression",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"expression": {"type": "string"}},
|
||||
"required": ["expression"],
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
# ── Test class ────────────────────────────────────────────────────────────── #
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
class TestPrefixCacheArchitectures:
|
||||
"""Verify prefix cache produces identical output to fresh generation for every architecture."""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _cleanup(self):
|
||||
yield
|
||||
mx.clear_cache()
|
||||
gc.collect()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"spec",
|
||||
ARCHITECTURES,
|
||||
ids=[a.name for a in ARCHITECTURES],
|
||||
)
|
||||
def test_prefix_cache_exact_hit(self, spec: ArchSpec) -> None:
|
||||
if not _arch_available(spec):
|
||||
pytest.skip(f"Model {spec.hub_name} not cached locally")
|
||||
|
||||
snapshot = _find_snapshot(spec.hub_name)
|
||||
assert snapshot is not None
|
||||
|
||||
tmpdir = Path(tempfile.mkdtemp(prefix=f"exo_test_{spec.name}_"))
|
||||
try:
|
||||
# Build reduced config
|
||||
with open(snapshot / "config.json") as f:
|
||||
cfg = cast(dict[str, Any], json.load(f))
|
||||
reduced = _reduce_config(copy.deepcopy(cfg))
|
||||
(tmpdir / "config.json").write_text(json.dumps(reduced))
|
||||
|
||||
# Copy tokenizer
|
||||
tok_src = snapshot
|
||||
if spec.tokenizer_hub is not None:
|
||||
alt = _find_snapshot(spec.tokenizer_hub)
|
||||
if alt is not None:
|
||||
tok_src = alt
|
||||
_copy_tokenizer(tok_src, tmpdir)
|
||||
|
||||
# Load tokenizer and model
|
||||
model_id = ModelId(f"mlx-community/{spec.hub_name}")
|
||||
tokenizer = load_tokenizer_for_model_id(model_id, tmpdir)
|
||||
mx.random.seed(0)
|
||||
model = _build_model(spec.module, reduced)
|
||||
|
||||
task = _make_task()
|
||||
prompt = apply_chat_template(tokenizer=tokenizer, task_params=task)
|
||||
|
||||
# Run 1: fresh
|
||||
mx.random.seed(42)
|
||||
fresh = _collect_tokens(model, tokenizer, task, prompt, None)
|
||||
assert len(fresh) > 0, "Fresh generation produced no tokens"
|
||||
|
||||
# Run 2: populate cache
|
||||
kv = KVPrefixCache(None)
|
||||
mx.random.seed(42)
|
||||
populate = _collect_tokens(model, tokenizer, task, prompt, kv)
|
||||
|
||||
# Run 3: exact cache hit
|
||||
mx.random.seed(42)
|
||||
cached = _collect_tokens(model, tokenizer, task, prompt, kv)
|
||||
|
||||
assert fresh == populate, (
|
||||
f"Fresh vs populate mismatch: {fresh[:5]} vs {populate[:5]}"
|
||||
)
|
||||
assert fresh == cached, (
|
||||
f"Fresh vs cached mismatch: {fresh[:5]} vs {cached[:5]}"
|
||||
)
|
||||
finally:
|
||||
shutil.rmtree(tmpdir, ignore_errors=True)
|
||||
@@ -343,8 +343,16 @@ async def test_kimi_tokenizer_specifically():
|
||||
@pytest.mark.asyncio
|
||||
async def test_glm_tokenizer_specifically():
|
||||
"""Test GLM tokenizer with its specific EOS tokens."""
|
||||
|
||||
def contains(card: ModelCard, x: str):
|
||||
return x in card.model_id.lower()
|
||||
|
||||
glm_model_cards = [
|
||||
card for card in await get_model_cards() if "glm" in card.model_id.lower()
|
||||
card
|
||||
for card in await get_model_cards()
|
||||
if contains(card, "glm")
|
||||
and not contains(card, "-5")
|
||||
and not contains(card, "4.7")
|
||||
]
|
||||
|
||||
if not glm_model_cards:
|
||||
|
||||
162
src/exo/worker/tests/unittests/test_runner/test_parse_gpt_oss.py
Normal file
162
src/exo/worker/tests/unittests/test_runner/test_parse_gpt_oss.py
Normal file
@@ -0,0 +1,162 @@
|
||||
from collections.abc import Generator
|
||||
|
||||
from exo.shared.types.worker.runner_response import (
|
||||
GenerationResponse,
|
||||
ToolCallResponse,
|
||||
)
|
||||
from exo.worker.runner.runner import parse_gpt_oss
|
||||
|
||||
# Token IDs from mlx-community/gpt-oss-20b-MXFP4-Q8 tokenizer.
|
||||
# These are stable since they come from the model's vocabulary.
|
||||
_CHANNEL = 200005 # <|channel|>
|
||||
_START = 200006 # <|start|>
|
||||
_MESSAGE = 200008 # <|message|>
|
||||
_CALL = 200012 # <|call|>
|
||||
_END = 200007 # <|end|>
|
||||
_ASSISTANT = 173781 # "assistant"
|
||||
|
||||
# fmt: off
|
||||
# " to=functions.get_current_weather<|channel|>commentary json<|message|>{\"location\": \"Tokyo\"}<|call|>"
|
||||
FORMAT_A_TOKENS: list[tuple[int, str]] = [
|
||||
(316, " to"),
|
||||
(28, "="),
|
||||
(44580, "functions"),
|
||||
(775, ".get"),
|
||||
(23981, "_current"),
|
||||
(170154, "_weather"),
|
||||
(_CHANNEL, "<|channel|>"),
|
||||
(12606, "comment"),
|
||||
(815, "ary"),
|
||||
(5701, " json"),
|
||||
(_MESSAGE, "<|message|>"),
|
||||
(10848, '{"'),
|
||||
(7693, "location"),
|
||||
(1243, '":'),
|
||||
(392, ' "'),
|
||||
(173844, "Tokyo"),
|
||||
(18583, '"}'),
|
||||
(_CALL, "<|call|>"),
|
||||
]
|
||||
|
||||
# "<|channel|>commentary to=functions.get_current_weather json<|message|>{\"location\": \"Tokyo\"}<|call|>"
|
||||
FORMAT_B_TOKENS: list[tuple[int, str]] = [
|
||||
(_CHANNEL, "<|channel|>"),
|
||||
(12606, "comment"),
|
||||
(815, "ary"),
|
||||
(316, " to"),
|
||||
(28, "="),
|
||||
(44580, "functions"),
|
||||
(775, ".get"),
|
||||
(23981, "_current"),
|
||||
(170154, "_weather"),
|
||||
(5701, " json"),
|
||||
(_MESSAGE, "<|message|>"),
|
||||
(10848, '{"'),
|
||||
(7693, "location"),
|
||||
(1243, '":'),
|
||||
(392, ' "'),
|
||||
(173844, "Tokyo"),
|
||||
(18583, '"}'),
|
||||
(_CALL, "<|call|>"),
|
||||
]
|
||||
|
||||
# "<|channel|>analysis<|message|>Let me think...<|end|><|start|>assistant<|channel|>commentary to=functions.X ..."
|
||||
# Full analysis-then-tool-call as the model actually generates it.
|
||||
THINKING_THEN_TOOL_TOKENS: list[tuple[int, str]] = [
|
||||
(_CHANNEL, "<|channel|>"),
|
||||
(35644, "analysis"),
|
||||
(_MESSAGE, "<|message|>"),
|
||||
(12845, "Let"),
|
||||
(668, " me"),
|
||||
(2411, " think"),
|
||||
(1078, " about"),
|
||||
(495, " this"),
|
||||
(13, "."),
|
||||
(_END, "<|end|>"),
|
||||
# Model generates a new message header for the tool call:
|
||||
(_START, "<|start|>"),
|
||||
(_ASSISTANT, "assistant"),
|
||||
*FORMAT_B_TOKENS,
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
|
||||
def _make_gen_responses(
|
||||
tokens: list[tuple[int, str]],
|
||||
) -> list[GenerationResponse]:
|
||||
"""Build GenerationResponse list from (token_id, text) pairs."""
|
||||
responses: list[GenerationResponse] = []
|
||||
for i, (tid, text) in enumerate(tokens):
|
||||
is_last = i == len(tokens) - 1
|
||||
responses.append(
|
||||
GenerationResponse(
|
||||
text=text,
|
||||
token=tid,
|
||||
finish_reason="stop" if is_last else None,
|
||||
usage=None,
|
||||
)
|
||||
)
|
||||
return responses
|
||||
|
||||
|
||||
def _collect(
|
||||
tokens: list[tuple[int, str]],
|
||||
) -> list[GenerationResponse | ToolCallResponse]:
|
||||
"""Feed tokens through parse_gpt_oss and collect all yielded responses."""
|
||||
|
||||
def _gen() -> Generator[GenerationResponse, None, None]:
|
||||
yield from _make_gen_responses(tokens)
|
||||
|
||||
return list(parse_gpt_oss(_gen()))
|
||||
|
||||
|
||||
def _get_tool_call(
|
||||
results: list[GenerationResponse | ToolCallResponse],
|
||||
) -> ToolCallResponse:
|
||||
"""Extract the single ToolCallResponse from results."""
|
||||
tool_calls = [r for r in results if isinstance(r, ToolCallResponse)]
|
||||
assert len(tool_calls) == 1, f"Expected 1 ToolCallResponse, got {len(tool_calls)}"
|
||||
return tool_calls[0]
|
||||
|
||||
|
||||
class TestParseGptOssRecipientPlacement:
|
||||
"""Both Harmony recipient placements must produce identical tool calls."""
|
||||
|
||||
def test_format_a_yields_tool_call(self):
|
||||
results = _collect(FORMAT_A_TOKENS)
|
||||
tc = _get_tool_call(results)
|
||||
assert tc.tool_calls[0].name == "get_current_weather"
|
||||
assert '"location"' in tc.tool_calls[0].arguments
|
||||
assert "Tokyo" in tc.tool_calls[0].arguments
|
||||
|
||||
def test_format_b_yields_tool_call(self):
|
||||
results = _collect(FORMAT_B_TOKENS)
|
||||
tc = _get_tool_call(results)
|
||||
assert tc.tool_calls[0].name == "get_current_weather"
|
||||
assert '"location"' in tc.tool_calls[0].arguments
|
||||
assert "Tokyo" in tc.tool_calls[0].arguments
|
||||
|
||||
def test_both_formats_produce_identical_tool_calls(self):
|
||||
tc_a = _get_tool_call(_collect(FORMAT_A_TOKENS))
|
||||
tc_b = _get_tool_call(_collect(FORMAT_B_TOKENS))
|
||||
assert tc_a.tool_calls[0].name == tc_b.tool_calls[0].name
|
||||
assert tc_a.tool_calls[0].arguments == tc_b.tool_calls[0].arguments
|
||||
|
||||
|
||||
class TestParseGptOssThinkingThenToolCall:
|
||||
"""Analysis (thinking) followed by a tool call must yield both."""
|
||||
|
||||
def test_thinking_then_tool_call(self):
|
||||
results = _collect(THINKING_THEN_TOOL_TOKENS)
|
||||
|
||||
# Should have thinking tags + content + tool call
|
||||
text_parts = [r.text for r in results if isinstance(r, GenerationResponse)]
|
||||
combined = "".join(text_parts)
|
||||
assert "<think>" in combined
|
||||
assert "</think>" in combined
|
||||
assert "Let me think about this." in combined
|
||||
|
||||
# And the tool call
|
||||
tc = _get_tool_call(results)
|
||||
assert tc.tool_calls[0].name == "get_current_weather"
|
||||
assert "Tokyo" in tc.tool_calls[0].arguments
|
||||
55
tests/eval_tool_calls.sh
Executable file
55
tests/eval_tool_calls.sh
Executable file
@@ -0,0 +1,55 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
[ $# -lt 1 ] && {
|
||||
echo "Usage: $0 host1 [host2 ...]"
|
||||
exit 1
|
||||
}
|
||||
|
||||
[ -z "$(git status --porcelain)" ] || {
|
||||
echo "Uncommitted changes"
|
||||
exit 1
|
||||
}
|
||||
|
||||
commit=$(git rev-parse HEAD)
|
||||
git fetch -q origin
|
||||
git branch -r --contains "$commit" | grep -qE '^\s*origin/' || {
|
||||
echo "Not pushed to origin"
|
||||
exit 1
|
||||
}
|
||||
hosts=("$@")
|
||||
cleanup() {
|
||||
for host in "${hosts[@]}"; do
|
||||
ssh -T -o BatchMode=yes "$host@$host" "pkill -f bin/exo" &
|
||||
done
|
||||
sleep 1
|
||||
jobs -pr | xargs -r kill 2>/dev/null || true
|
||||
}
|
||||
trap 'cleanup' EXIT INT TERM
|
||||
|
||||
for host; do
|
||||
ssh -T -o BatchMode=yes -o ServerAliveInterval=30 "$host@$host" \
|
||||
"EXO_LIBP2P_NAMESPACE=$commit /nix/var/nix/profiles/default/bin/nix build github:exo-explore/exo/$commit" &
|
||||
done
|
||||
wait
|
||||
for host; do
|
||||
ssh -T -o BatchMode=yes -o ServerAliveInterval=30 "$host@$host" \
|
||||
"EXO_LIBP2P_NAMESPACE=$commit /nix/var/nix/profiles/default/bin/nix run github:exo-explore/exo/$commit" &>/dev/null &
|
||||
done
|
||||
|
||||
for host; do
|
||||
echo "Waiting for $host..." 1>&2
|
||||
until curl -sf "http://$host:52415/models" &>/dev/null; do sleep 1; done
|
||||
done
|
||||
|
||||
echo "Waiting 30s for cluster setup" 1>&2
|
||||
sleep 30
|
||||
echo "EXO loaded" 1>&2
|
||||
eval_runner="${hosts[0]}"
|
||||
mkdir -p "./bench/$commit"
|
||||
nix run .#exo-get-all-models-on-cluster -- "$eval_runner" | while IFS= read -r model; do
|
||||
echo "running eval for $model" 1>&2
|
||||
ssh -Tn -o BatchMode=yes -o ServerAliveInterval=30 "$eval_runner@$eval_runner" \
|
||||
"/nix/var/nix/profiles/default/bin/nix run github:exo-explore/exo/$commit#exo-eval-tool-calls -- --model $model --stdout" \
|
||||
>>"./bench/$commit/${model//\//--}-eval.json"
|
||||
echo
|
||||
done
|
||||
2
uv.lock
generated
2
uv.lock
generated
@@ -447,6 +447,7 @@ name = "exo-bench"
|
||||
version = "0.1.0"
|
||||
source = { editable = "bench" }
|
||||
dependencies = [
|
||||
{ name = "httpx", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "huggingface-hub", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "jinja2", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "loguru", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
@@ -456,6 +457,7 @@ dependencies = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "httpx", specifier = ">=0.27.0" },
|
||||
{ name = "huggingface-hub", specifier = ">=0.33.4" },
|
||||
{ name = "jinja2", specifier = ">=3.1.0" },
|
||||
{ name = "loguru", specifier = ">=0.7.3" },
|
||||
|
||||
Reference in New Issue
Block a user