Compare commits

..

1 Commits

Author SHA1 Message Date
Evan
c2f9f50f7e migrate model cards to .toml files 2026-01-16 14:38:01 +00:00
49 changed files with 691 additions and 6057 deletions

View File

@@ -1,378 +0,0 @@
#!/usr/bin/env python3
# pyright: reportAny=false, reportUnknownMemberType=false, reportUnknownVariableType=false, reportUnknownArgumentType=false, reportMissingTypeStubs=false
"""
exo-eval: Run SWE-bench evaluation against exo using OpenHands SDK (local, no Docker).
"""
from __future__ import annotations
import argparse
import json
import os
import subprocess
import tempfile
import time
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
from typing import Any
from datasets import load_dataset
from loguru import logger
from openhands.sdk import LLM, Agent, Conversation, Tool
from openhands.tools.file_editor import FileEditorTool
from openhands.tools.terminal import TerminalTool
class EvalStatus(str, Enum):
Resolved = "Resolved"
Failed = "Failed"
Error = "Error"
Timeout = "Timeout"
@dataclass
class EvalResult:
instance_id: str
repo: str
status: EvalStatus
elapsed_seconds: float
tests_passed: list[str]
tests_failed: list[str]
error_message: str | None = None
def load_swe_bench(
split: str = "lite",
limit: int | None = None,
instance_ids: list[str] | None = None,
) -> list[dict[str, Any]]:
"""Load SWE-bench dataset from HuggingFace."""
# SWE-bench Lite is a curated 300-instance subset
dataset_name = (
"princeton-nlp/SWE-bench_Lite" if split == "lite" else "princeton-nlp/SWE-bench"
)
actual_split = "test" if split == "lite" else split
ds = load_dataset(dataset_name, split=actual_split)
instances = [dict(row) for row in ds]
if instance_ids:
instances = [i for i in instances if i["instance_id"] in instance_ids]
if limit:
instances = instances[:limit]
return instances
def clone_repo_at_commit(repo: str, commit: str, dest: Path) -> None:
"""Clone a repo at a specific commit."""
repo_url = f"https://github.com/{repo}.git"
subprocess.run(
["git", "clone", "--depth", "1", repo_url, str(dest)],
check=True,
capture_output=True,
)
subprocess.run(
["git", "fetch", "--depth", "1", "origin", commit],
cwd=dest,
check=True,
capture_output=True,
)
subprocess.run(
["git", "checkout", commit],
cwd=dest,
check=True,
capture_output=True,
)
def build_agent_prompt(instance: dict[str, Any]) -> str:
"""Build the prompt for the agent."""
return f"""You are a software engineer fixing a bug in the {instance['repo']} repository.
## Problem Statement
{instance['problem_statement']}
## Instructions
1. Explore the codebase to understand the issue
2. Identify the files that need to be modified
3. Make the necessary changes to fix the issue
4. The fix should be minimal and targeted
You have access to:
- terminal: Run shell commands (git, grep, python, etc.)
- file_editor: View and edit files
Start by exploring the repository structure to understand where the relevant code is.
"""
def parse_fail_to_pass(fail_to_pass_str: str) -> list[str]:
"""Parse the FAIL_TO_PASS field into a list of test names."""
try:
return json.loads(fail_to_pass_str)
except json.JSONDecodeError:
return [t.strip() for t in fail_to_pass_str.split(",") if t.strip()]
def run_tests(workspace: Path, tests: list[str]) -> tuple[list[str], list[str]]:
"""Run tests and return (passed, failed) lists."""
passed = []
failed = []
for test in tests:
try:
result = subprocess.run(
["python", "-m", "pytest", "-xvs", test],
cwd=workspace,
capture_output=True,
timeout=300,
)
if result.returncode == 0:
passed.append(test)
else:
failed.append(test)
except subprocess.TimeoutExpired:
failed.append(test)
return passed, failed
def run_single_eval(
instance: dict[str, Any],
host: str,
port: int,
model: str,
max_turns: int = 30,
timeout: float = 600.0,
) -> EvalResult:
"""Evaluate a single SWE-bench instance."""
instance_id = instance["instance_id"]
repo = instance["repo"]
base_commit = instance["base_commit"]
fail_to_pass = parse_fail_to_pass(instance["FAIL_TO_PASS"])
start_time = time.perf_counter()
try:
with tempfile.TemporaryDirectory() as tmpdir:
workspace = Path(tmpdir) / "repo"
# Clone repo at base commit
logger.info(f"Cloning {repo} at {base_commit[:8]}...")
clone_repo_at_commit(repo, base_commit, workspace)
# Setup OpenHands agent
llm = LLM(
model=f"openai/{model}",
base_url=f"http://{host}:{port}/v1",
api_key="not-needed",
)
agent = Agent(
llm=llm,
tools=[
Tool(name=TerminalTool.name),
Tool(name=FileEditorTool.name),
],
)
# Run agent
conversation = Conversation(
agent=agent,
workspace=str(workspace),
)
logger.info(f"Running agent on {instance_id}...")
conversation.send_message(build_agent_prompt(instance))
for _turn in range(max_turns):
if time.perf_counter() - start_time > timeout:
return EvalResult(
instance_id=instance_id,
repo=repo,
status=EvalStatus.Timeout,
elapsed_seconds=time.perf_counter() - start_time,
tests_passed=[],
tests_failed=fail_to_pass,
)
result = conversation.run(max_turns=1)
if result.done:
break
# Run tests to verify
logger.info(f"Running tests for {instance_id}...")
passed, failed = run_tests(workspace, fail_to_pass)
elapsed = time.perf_counter() - start_time
status = EvalStatus.Resolved if not failed else EvalStatus.Failed
return EvalResult(
instance_id=instance_id,
repo=repo,
status=status,
elapsed_seconds=elapsed,
tests_passed=passed,
tests_failed=failed,
)
except Exception as e:
return EvalResult(
instance_id=instance_id,
repo=repo,
status=EvalStatus.Error,
elapsed_seconds=time.perf_counter() - start_time,
tests_passed=[],
tests_failed=[],
error_message=str(e),
)
def verify_exo_running(host: str, port: int, model: str) -> str:
"""Verify exo is running and return full model ID."""
import http.client
conn = http.client.HTTPConnection(host, port, timeout=10)
conn.request("GET", "/models")
resp = conn.getresponse()
if resp.status != 200:
raise RuntimeError(f"exo not responding at {host}:{port}")
data = json.loads(resp.read())
for m in data.get("data", []):
if m.get("id") == model or m.get("hugging_face_id") == model:
return m.get("hugging_face_id") or m.get("id")
raise ValueError(f"Model '{model}' not found in exo")
def main() -> int:
ap = argparse.ArgumentParser(
prog="exo-eval",
description="Run SWE-bench evaluation against exo (local, no Docker).",
)
ap.add_argument("--host", default=os.environ.get("EXO_HOST", "localhost"))
ap.add_argument(
"--port", type=int, default=int(os.environ.get("EXO_PORT", "52415"))
)
ap.add_argument("--model", required=True, help="exo model ID")
ap.add_argument(
"--split", default="lite", choices=["lite", "dev", "test", "train"]
)
ap.add_argument("--limit", type=int, default=10, help="Max instances")
ap.add_argument("--instance-ids", nargs="+", help="Specific instance IDs")
ap.add_argument("--max-turns", type=int, default=30)
ap.add_argument("--timeout", type=float, default=600.0)
ap.add_argument("--json-out", default="bench/eval_results.json")
ap.add_argument("-v", "--verbose", action="store_true")
ap.add_argument("--dry-run", action="store_true")
args = ap.parse_args()
# Load dataset first (doesn't require exo to be running)
logger.info(f"Loading SWE-bench {args.split} dataset...")
instances = load_swe_bench(
split=args.split,
limit=args.limit,
instance_ids=args.instance_ids,
)
logger.info(f"Loaded {len(instances)} instances")
if args.dry_run:
print(f"\nSWE-bench {args.split} instances ({len(instances)}):")
for inst in instances:
print(f" {inst['instance_id']} ({inst['repo']})")
return 0
# Verify exo is running
model_id = verify_exo_running(args.host, args.port, args.model)
logger.info(f"Using model: {model_id}")
# Run evaluation
results: list[EvalResult] = []
for i, instance in enumerate(instances):
logger.info(f"[{i+1}/{len(instances)}] {instance['instance_id']}")
result = run_single_eval(
instance=instance,
host=args.host,
port=args.port,
model=model_id,
max_turns=args.max_turns,
timeout=args.timeout,
)
results.append(result)
logger.info(f" Status: {result.status.value}")
if result.tests_passed:
logger.info(f" Passed: {len(result.tests_passed)} tests")
if result.tests_failed:
logger.info(f" Failed: {len(result.tests_failed)} tests")
if result.error_message:
logger.error(f" Error: {result.error_message}")
# Compute summary
total = len(results)
resolved = sum(1 for r in results if r.status == EvalStatus.Resolved)
failed = sum(1 for r in results if r.status == EvalStatus.Failed)
errors = sum(1 for r in results if r.status == EvalStatus.Error)
timeouts = sum(1 for r in results if r.status == EvalStatus.Timeout)
summary = {
"model": model_id,
"split": args.split,
"total": total,
"resolved": resolved,
"resolved_rate": resolved / total if total else 0,
"failed": failed,
"errors": errors,
"timeouts": timeouts,
}
output = {
"summary": summary,
"results": [
{
"instance_id": r.instance_id,
"repo": r.repo,
"status": r.status.value,
"elapsed_seconds": r.elapsed_seconds,
"tests_passed": r.tests_passed,
"tests_failed": r.tests_failed,
"error_message": r.error_message,
}
for r in results
],
}
Path(args.json_out).write_text(json.dumps(output, indent=2))
logger.info(f"Results written to {args.json_out}")
# Print summary
print("\n" + "=" * 60)
print("SWE-bench Evaluation Results")
print("=" * 60)
print(f"Model: {model_id}")
print(f"Split: {args.split}")
print(f"Total: {total}")
if total:
print(f"Resolved: {resolved} ({resolved/total*100:.1f}%)")
else:
print("Resolved: 0")
print(f"Failed: {failed}")
print(f"Errors: {errors}")
print(f"Timeouts: {timeouts}")
print("=" * 60)
return 0
if __name__ == "__main__":
raise SystemExit(main())

View File

@@ -60,39 +60,12 @@
return models;
});
// Track previous model IDs to detect newly added models (plain variable to avoid reactive loop)
let previousModelIds: Set<string> = new Set();
// Auto-select the first available model if none is selected, if current selection is stale, or if a new model is added
// Auto-select the first available model if none is selected
$effect(() => {
const models = availableModels();
const currentModelIds = new Set(models.map(m => m.id));
if (models.length > 0) {
// Find newly added models (in current but not in previous)
const newModels = models.filter(m => !previousModelIds.has(m.id));
// If no model selected, select the first available
if (!currentModel) {
setSelectedChatModel(models[0].id);
}
// If current model is stale (no longer has a running instance), reset to first available
else if (!models.some(m => m.id === currentModel)) {
setSelectedChatModel(models[0].id);
}
// If a new model was just added, select it
else if (newModels.length > 0 && previousModelIds.size > 0) {
setSelectedChatModel(newModels[0].id);
}
} else {
// No instances running - clear the selected model
if (currentModel) {
setSelectedChatModel('');
}
if (models.length > 0 && !currentModel) {
setSelectedChatModel(models[0].id);
}
// Update previous model IDs for next comparison
previousModelIds = currentModelIds;
});
function getInstanceModelId(instanceWrapped: unknown): string {

View File

@@ -400,8 +400,10 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const errorText = await response.text();
console.error('Failed to launch instance:', errorText);
} else {
// Always auto-select the newly launched model so the user chats to what they just launched
setSelectedChatModel(modelId);
// Auto-select the launched model only if no model is currently selected
if (!selectedChatModel()) {
setSelectedChatModel(modelId);
}
// Scroll to the bottom of instances container to show the new instance
// Use multiple attempts to ensure DOM has updated with the new instance
@@ -761,10 +763,6 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
async function deleteInstance(instanceId: string) {
if (!confirm(`Delete instance ${instanceId.slice(0, 8)}...?`)) return;
// Get the model ID of the instance being deleted before we delete it
const deletedInstanceModelId = getInstanceModelId(instanceData[instanceId]);
const wasSelected = selectedChatModel() === deletedInstanceModelId;
try {
const response = await fetch(`/instance/${instanceId}`, {
method: 'DELETE',
@@ -773,24 +771,6 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
if (!response.ok) {
console.error('Failed to delete instance:', response.status);
} else if (wasSelected) {
// If we deleted the currently selected model, switch to another available model
// Find another instance that isn't the one we just deleted
const remainingInstances = Object.entries(instanceData).filter(([id]) => id !== instanceId);
if (remainingInstances.length > 0) {
// Select the last instance (most recently added, since objects preserve insertion order)
const [, lastInstance] = remainingInstances[remainingInstances.length - 1];
const newModelId = getInstanceModelId(lastInstance);
if (newModelId && newModelId !== 'Unknown' && newModelId !== 'Unknown Model') {
setSelectedChatModel(newModelId);
} else {
// Clear selection if no valid model found
setSelectedChatModel('');
}
} else {
// No more instances, clear the selection
setSelectedChatModel('');
}
}
} catch (error) {
console.error('Error deleting instance:', error);

View File

@@ -1,5 +1,3 @@
export NIX_CONFIG := "extra-experimental-features = nix-command flakes"
fmt:
nix fmt

View File

@@ -23,9 +23,7 @@ dependencies = [
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
"hypercorn>=0.18.0",
"openai-harmony>=0.0.8",
"openhands-sdk>=0.1.0", # for exo-eval SWE-bench evaluation
"openhands-tools>=0.1.0", # tools for openhands agents
"datasets>=3.0.0", # for loading SWE-bench from HuggingFace
"tomlkit>=0.14.0",
]
[project.scripts]

View File

@@ -0,0 +1,15 @@
short_id = "deepseek-v3.1-4bit"
model_id = "mlx-community/DeepSeek-V3.1-4bit"
name = "DeepSeek V3.1 (4-bit)"
description = "DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset."
tags = []
[metadata]
model_id = "mlx-community/DeepSeek-V3.1-4bit"
pretty_name = "DeepSeek V3.1 (4-bit)"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[metadata.storage_size]
in_bytes = 405874409472

View File

@@ -0,0 +1,15 @@
short_id = "deepseek-v3.1-8bit"
model_id = "mlx-community/DeepSeek-V3.1-8bit"
name = "DeepSeek V3.1 (8-bit)"
description = "DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset."
tags = []
[metadata]
model_id = "mlx-community/DeepSeek-V3.1-8bit"
pretty_name = "DeepSeek V3.1 (8-bit)"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[metadata.storage_size]
in_bytes = 765577920512

View File

@@ -0,0 +1,15 @@
short_id = "glm-4.5-air-8bit"
model_id = "mlx-community/GLM-4.5-Air-8bit"
name = "GLM 4.5 Air 8bit"
description = "GLM 4.5 Air 8bit"
tags = []
[metadata]
model_id = "mlx-community/GLM-4.5-Air-8bit"
pretty_name = "GLM 4.5 Air 8bit"
n_layers = 46
hidden_size = 4096
supports_tensor = false
[metadata.storage_size]
in_bytes = 122406567936

View File

@@ -0,0 +1,15 @@
short_id = "glm-4.5-air-bf16"
model_id = "mlx-community/GLM-4.5-Air-bf16"
name = "GLM 4.5 Air bf16"
description = "GLM 4.5 Air bf16"
tags = []
[metadata]
model_id = "mlx-community/GLM-4.5-Air-bf16"
pretty_name = "GLM 4.5 Air bf16"
n_layers = 46
hidden_size = 4096
supports_tensor = true
[metadata.storage_size]
in_bytes = 229780750336

View File

@@ -0,0 +1,15 @@
short_id = "glm-4.7-4bit"
model_id = "mlx-community/GLM-4.7-4bit"
name = "GLM 4.7 4bit"
description = "GLM 4.7 4bit"
tags = []
[metadata]
model_id = "mlx-community/GLM-4.7-4bit"
pretty_name = "GLM 4.7 4bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[metadata.storage_size]
in_bytes = 198556925568

View File

@@ -0,0 +1,15 @@
short_id = "glm-4.7-6bit"
model_id = "mlx-community/GLM-4.7-6bit"
name = "GLM 4.7 6bit"
description = "GLM 4.7 6bit"
tags = []
[metadata]
model_id = "mlx-community/GLM-4.7-6bit"
pretty_name = "GLM 4.7 6bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[metadata.storage_size]
in_bytes = 286737579648

View File

@@ -0,0 +1,15 @@
short_id = "glm-4.7-8bit-gs32"
model_id = "mlx-community/GLM-4.7-8bit-gs32"
name = "GLM 4.7 8bit (gs32)"
description = "GLM 4.7 8bit (gs32)"
tags = []
[metadata]
model_id = "mlx-community/GLM-4.7-8bit-gs32"
pretty_name = "GLM 4.7 8bit (gs32)"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[metadata.storage_size]
in_bytes = 396963397248

View File

@@ -0,0 +1,15 @@
short_id = "gpt-oss-120b-MXFP4-Q8"
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
name = "GPT-OSS 120B (MXFP4-Q8, MLX)"
description = "OpenAI's GPT-OSS 120B is a 117B-parameter Mixture-of-Experts model designed for high-reasoning and general-purpose use; this variant is a 4-bit MLX conversion for Apple Silicon."
tags = []
[metadata]
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
pretty_name = "GPT-OSS 120B (MXFP4-Q8, MLX)"
n_layers = 36
hidden_size = 2880
supports_tensor = true
[metadata.storage_size]
in_bytes = 70652212224

View File

@@ -0,0 +1,15 @@
short_id = "gpt-oss-20b-4bit"
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q4"
name = "GPT-OSS 20B (MXFP4-Q4, MLX)"
description = "OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this MLX variant uses MXFP4 4-bit quantization."
tags = []
[metadata]
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q4"
pretty_name = "GPT-OSS 20B (MXFP4-Q4, MLX)"
n_layers = 24
hidden_size = 2880
supports_tensor = true
[metadata.storage_size]
in_bytes = 12025908224

View File

@@ -0,0 +1,15 @@
short_id = "kimi-k2-instruct-4bit"
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
name = "Kimi K2 Instruct (4-bit)"
description = "Kimi K2 is a large language model trained on the Kimi K2 dataset."
tags = []
[metadata]
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
pretty_name = "Kimi K2 Instruct (4-bit)"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[metadata.storage_size]
in_bytes = 620622774272

View File

@@ -0,0 +1,15 @@
short_id = "kimi-k2-thinking"
model_id = "mlx-community/Kimi-K2-Thinking"
name = "Kimi K2 Thinking (4-bit)"
description = "Kimi K2 Thinking is the latest, most capable version of open-source thinking model."
tags = []
[metadata]
model_id = "mlx-community/Kimi-K2-Thinking"
pretty_name = "Kimi K2 Thinking (4-bit)"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[metadata.storage_size]
in_bytes = 706522120192

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.1-70b"
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
name = "Llama 3.1 70B (4-bit)"
description = "Llama 3.1 is a large language model trained on the Llama 3.1 dataset."
tags = []
[metadata]
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
pretty_name = "Llama 3.1 70B (4-bit)"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[metadata.storage_size]
in_bytes = 40652242944

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.1-8b-8bit"
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
name = "Llama 3.1 8B (8-bit)"
description = "Llama 3.1 is a large language model trained on the Llama 3.1 dataset."
tags = []
[metadata]
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
pretty_name = "Llama 3.1 8B (8-bit)"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[metadata.storage_size]
in_bytes = 8954839040

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.1-8b-bf16"
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
name = "Llama 3.1 8B (BF16)"
description = "Llama 3.1 is a large language model trained on the Llama 3.1 dataset."
tags = []
[metadata]
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
pretty_name = "Llama 3.1 8B (BF16)"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[metadata.storage_size]
in_bytes = 16882073600

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.1-8b"
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
name = "Llama 3.1 8B (4-bit)"
description = "Llama 3.1 is a large language model trained on the Llama 3.1 dataset."
tags = []
[metadata]
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
pretty_name = "Llama 3.1 8B (4-bit)"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[metadata.storage_size]
in_bytes = 4637851648

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.2-1b"
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
name = "Llama 3.2 1B (4-bit)"
description = "Llama 3.2 is a large language model trained on the Llama 3.2 dataset."
tags = []
[metadata]
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
pretty_name = "Llama 3.2 1B (4-bit)"
n_layers = 16
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 729808896

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.2-3b-8bit"
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
name = "Llama 3.2 3B (8-bit)"
description = "Llama 3.2 is a large language model trained on the Llama 3.2 dataset."
tags = []
[metadata]
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
pretty_name = "Llama 3.2 3B (8-bit)"
n_layers = 28
hidden_size = 3072
supports_tensor = true
[metadata.storage_size]
in_bytes = 3501195264

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.2-3b"
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
name = "Llama 3.2 3B (4-bit)"
description = "Llama 3.2 is a large language model trained on the Llama 3.2 dataset."
tags = []
[metadata]
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
pretty_name = "Llama 3.2 3B (4-bit)"
n_layers = 28
hidden_size = 3072
supports_tensor = true
[metadata.storage_size]
in_bytes = 1863319552

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.3-70b-8bit"
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
name = "Llama 3.3 70B (8-bit)"
description = "The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)"
tags = []
[metadata]
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
pretty_name = "Llama 3.3 70B (8-bit)"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[metadata.storage_size]
in_bytes = 76799803392

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.3-70b-fp16"
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
name = "Llama 3.3 70B (FP16)"
description = "The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)"
tags = []
[metadata]
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
pretty_name = "Llama 3.3 70B (FP16)"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[metadata.storage_size]
in_bytes = 144383672320

View File

@@ -0,0 +1,15 @@
short_id = "llama-3.3-70b"
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
name = "Llama 3.3 70B (4-bit)"
description = "The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)"
tags = []
[metadata]
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
pretty_name = "Llama 3.3 70B"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[metadata.storage_size]
in_bytes = 40652242944

View File

@@ -0,0 +1,15 @@
short_id = "minimax-m2.1-3bit"
model_id = "mlx-community/MiniMax-M2.1-3bit"
name = "MiniMax M2.1 3bit"
description = "MiniMax M2.1 3bit"
tags = []
[metadata]
model_id = "mlx-community/MiniMax-M2.1-3bit"
pretty_name = "MiniMax M2.1 3bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
[metadata.storage_size]
in_bytes = 100086644736

View File

@@ -0,0 +1,15 @@
short_id = "minimax-m2.1-8bit"
model_id = "mlx-community/MiniMax-M2.1-8bit"
name = "MiniMax M2.1 8bit"
description = "MiniMax M2.1 8bit"
tags = []
[metadata]
model_id = "mlx-community/MiniMax-M2.1-8bit"
pretty_name = "MiniMax M2.1 8bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
[metadata.storage_size]
in_bytes = 242986745856

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-0.6b-8bit"
model_id = "mlx-community/Qwen3-0.6B-8bit"
name = "Qwen3 0.6B (8-bit)"
description = "Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-0.6B-8bit"
pretty_name = "Qwen3 0.6B (8-bit)"
n_layers = 28
hidden_size = 1024
supports_tensor = false
[metadata.storage_size]
in_bytes = 698351616

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-0.6b"
model_id = "mlx-community/Qwen3-0.6B-4bit"
name = "Qwen3 0.6B (4-bit)"
description = "Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-0.6B-4bit"
pretty_name = "Qwen3 0.6B (4-bit)"
n_layers = 28
hidden_size = 1024
supports_tensor = false
[metadata.storage_size]
in_bytes = 342884352

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-235b-a22b-4bit"
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
name = "Qwen3 235B A22B (4-bit)"
description = "Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
pretty_name = "Qwen3 235B A22B (4-bit)"
n_layers = 94
hidden_size = 4096
supports_tensor = true
[metadata.storage_size]
in_bytes = 141733920768

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-235b-a22b-8bit"
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
name = "Qwen3 235B A22B (8-bit)"
description = "Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
pretty_name = "Qwen3 235B A22B (8-bit)"
n_layers = 94
hidden_size = 4096
supports_tensor = true
[metadata.storage_size]
in_bytes = 268435456000

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-30b-8bit"
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
name = "Qwen3 30B A3B (8-bit)"
description = "Qwen3 30B is a large language model trained on the Qwen3 30B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
pretty_name = "Qwen3 30B A3B (8-bit)"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 33279705088

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-30b"
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
name = "Qwen3 30B A3B (4-bit)"
description = "Qwen3 30B is a large language model trained on the Qwen3 30B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
pretty_name = "Qwen3 30B A3B (4-bit)"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 17612931072

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-80b-a3B-4bit"
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
name = "Qwen3 80B A3B (4-bit)"
description = "Qwen3 80B"
tags = []
[metadata]
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
pretty_name = "Qwen3 80B A3B (4-bit)"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 46976204800

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-80b-a3B-8bit"
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
name = "Qwen3 80B A3B (8-bit)"
description = "Qwen3 80B"
tags = []
[metadata]
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
pretty_name = "Qwen3 80B A3B (8-bit)"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-80b-a3B-thinking-4bit"
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
name = "Qwen3 80B A3B Thinking (4-bit)"
description = "Qwen3 80B Reasoning model"
tags = []
[metadata]
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
pretty_name = "Qwen3 80B A3B (4-bit)"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-80b-a3B-thinking-8bit"
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
name = "Qwen3 80B A3B Thinking (8-bit)"
description = "Qwen3 80B Reasoning model"
tags = []
[metadata]
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
pretty_name = "Qwen3 80B A3B (8-bit)"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[metadata.storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-coder-480b-a35b-4bit"
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
name = "Qwen3 Coder 480B A35B (4-bit)"
description = "Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
pretty_name = "Qwen3 Coder 480B A35B (4-bit)"
n_layers = 62
hidden_size = 6144
supports_tensor = true
[metadata.storage_size]
in_bytes = 289910292480

View File

@@ -0,0 +1,15 @@
short_id = "qwen3-coder-480b-a35b-8bit"
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
name = "Qwen3 Coder 480B A35B (8-bit)"
description = "Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset."
tags = []
[metadata]
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
pretty_name = "Qwen3 Coder 480B A35B (8-bit)"
n_layers = 62
hidden_size = 6144
supports_tensor = true
[metadata.storage_size]
in_bytes = 579820584960

View File

@@ -1,6 +1,6 @@
import time
from collections.abc import AsyncGenerator
from typing import Any, cast
from typing import cast
import anyio
from anyio import create_task_group
@@ -13,6 +13,12 @@ from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType
from hypercorn.config import Config
from hypercorn.typing import ASGIFramework
from loguru import logger
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
HarmonyEncodingName,
Role,
StreamableParser,
load_harmony_encoding,
)
from exo.master.placement import place_instance as get_instance_placements
from exo.shared.apply import apply
@@ -61,6 +67,8 @@ from exo.utils.channels import Receiver, Sender, channel
from exo.utils.dashboard_path import find_dashboard
from exo.utils.event_buffer import OrderedBuffer
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
def chunk_to_response(
chunk: TokenChunk, command_id: CommandId
@@ -72,13 +80,7 @@ def chunk_to_response(
choices=[
StreamingChoiceResponse(
index=0,
delta=ChatCompletionMessage(
role="assistant",
content=chunk.text if chunk.text else None,
tool_calls=[tc.model_dump() for tc in chunk.tool_calls]
if chunk.tool_calls
else None,
),
delta=ChatCompletionMessage(role="assistant", content=chunk.text),
finish_reason=chunk.finish_reason,
)
],
@@ -379,8 +381,35 @@ class API:
instance_id=instance_id,
)
async def _process_gpt_oss(self, token_chunks: Receiver[TokenChunk]):
stream = StreamableParser(encoding, role=Role.ASSISTANT)
thinking = False
async for chunk in token_chunks:
stream.process(chunk.token_id)
delta = stream.last_content_delta
ch = stream.current_channel
if ch == "analysis" and not thinking:
thinking = True
yield chunk.model_copy(update={"text": "<think>"})
if ch != "analysis" and thinking:
thinking = False
yield chunk.model_copy(update={"text": "</think>"})
if delta:
yield chunk.model_copy(update={"text": delta})
if chunk.finish_reason is not None:
if thinking:
yield chunk.model_copy(update={"text": "</think>"})
yield chunk
break
async def _chat_chunk_stream(
self, command_id: CommandId
self, command_id: CommandId, parse_gpt_oss: bool
) -> AsyncGenerator[TokenChunk, None]:
"""Yield `TokenChunk`s for a given command until completion."""
@@ -388,10 +417,16 @@ class API:
self._chat_completion_queues[command_id], recv = channel[TokenChunk]()
with recv as token_chunks:
async for chunk in token_chunks:
yield chunk
if chunk.finish_reason is not None:
break
if parse_gpt_oss:
async for chunk in self._process_gpt_oss(token_chunks):
yield chunk
if chunk.finish_reason is not None:
break
else:
async for chunk in token_chunks:
yield chunk
if chunk.finish_reason is not None:
break
except anyio.get_cancelled_exc_class():
# TODO: TaskCancelled
@@ -407,11 +442,11 @@ class API:
del self._chat_completion_queues[command_id]
async def _generate_chat_stream(
self, command_id: CommandId
self, command_id: CommandId, parse_gpt_oss: bool
) -> AsyncGenerator[str, None]:
"""Generate chat completion stream as JSON strings."""
async for chunk in self._chat_chunk_stream(command_id):
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
chunk_response: ChatCompletionResponse = chunk_to_response(
chunk, command_id
)
@@ -423,35 +458,20 @@ class API:
yield "data: [DONE]\n\n"
async def _collect_chat_completion(
self, command_id: CommandId
self, command_id: CommandId, parse_gpt_oss: bool
) -> ChatCompletionResponse:
"""Collect all token chunks for a chat completion and return a single response."""
text_parts: list[str] = []
model: str | None = None
finish_reason: FinishReason | None = None
all_tool_calls: list[dict[str, Any]] = []
async for chunk in self._chat_chunk_stream(command_id):
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
if model is None:
model = chunk.model
text_parts.append(chunk.text)
# Collect tool calls
if chunk.tool_calls:
for tc in chunk.tool_calls:
all_tool_calls.append(
{
"id": tc.id,
"type": tc.type,
"function": {
"name": tc.function.name,
"arguments": tc.function.arguments,
},
}
)
if chunk.finish_reason is not None:
finish_reason = chunk.finish_reason
@@ -467,8 +487,7 @@ class API:
index=0,
message=ChatCompletionMessage(
role="assistant",
content=combined_text if combined_text else None,
tool_calls=all_tool_calls if all_tool_calls else None,
content=combined_text,
),
finish_reason=finish_reason,
)
@@ -476,36 +495,21 @@ class API:
)
async def _collect_chat_completion_with_stats(
self, command_id: CommandId
self, command_id: CommandId, parse_gpt_oss: bool
) -> BenchChatCompletionResponse:
text_parts: list[str] = []
model: str | None = None
finish_reason: FinishReason | None = None
all_tool_calls: list[dict[str, Any]] = []
stats: GenerationStats | None = None
async for chunk in self._chat_chunk_stream(command_id):
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
if model is None:
model = chunk.model
text_parts.append(chunk.text)
stats = chunk.stats or stats
# Collect tool calls
if chunk.tool_calls:
for tc in chunk.tool_calls:
all_tool_calls.append(
{
"id": tc.id,
"type": tc.type,
"function": {
"name": tc.function.name,
"arguments": tc.function.arguments,
},
}
)
if chunk.finish_reason is not None:
finish_reason = chunk.finish_reason
@@ -520,9 +524,7 @@ class API:
ChatCompletionChoice(
index=0,
message=ChatCompletionMessage(
role="assistant",
content=combined_text if combined_text else None,
tool_calls=all_tool_calls if all_tool_calls else None,
role="assistant", content=combined_text
),
finish_reason=finish_reason,
)
@@ -542,6 +544,8 @@ class API:
"""Handle chat completions, supporting both streaming and non-streaming responses."""
model_meta = await resolve_model_meta(payload.model)
payload.model = model_meta.model_id
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
logger.info(f"{parse_gpt_oss=}")
if not any(
instance.shard_assignments.model_id == payload.model
@@ -558,16 +562,17 @@ class API:
await self._send(command)
if payload.stream:
return StreamingResponse(
self._generate_chat_stream(command.command_id),
self._generate_chat_stream(command.command_id, parse_gpt_oss),
media_type="text/event-stream",
)
return await self._collect_chat_completion(command.command_id)
return await self._collect_chat_completion(command.command_id, parse_gpt_oss)
async def bench_chat_completions(
self, payload: BenchChatCompletionTaskParams
) -> BenchChatCompletionResponse:
model_meta = await resolve_model_meta(payload.model)
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
payload.model = model_meta.model_id
if not any(
@@ -584,7 +589,10 @@ class API:
command = ChatCompletion(request_params=payload)
await self._send(command)
response = await self._collect_chat_completion_with_stats(command.command_id)
response = await self._collect_chat_completion_with_stats(
command.command_id,
parse_gpt_oss,
)
return response
def _calculate_total_available_memory(self) -> Memory:

View File

@@ -1,5 +1,8 @@
from exo.shared.types.memory import Memory
from anyio import Path, open_file
import tomlkit
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.models.model_meta import get_model_meta
from exo.utils.pydantic_ext import CamelCaseModel
@@ -11,542 +14,27 @@ class ModelCard(CamelCaseModel):
tags: list[str]
metadata: ModelMetadata
@staticmethod
async def load(path: Path) -> "ModelCard":
async with await open_file(path) as f:
data = await f.read()
py = tomlkit.loads(data)
return ModelCard.model_validate(py)
MODEL_CARDS: dict[str, ModelCard] = {
# deepseek v3
"deepseek-v3.1-4bit": ModelCard(
short_id="deepseek-v3.1-4bit",
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
name="DeepSeek V3.1 (4-bit)",
description="""DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
pretty_name="DeepSeek V3.1 (4-bit)",
storage_size=Memory.from_gb(378),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
"deepseek-v3.1-8bit": ModelCard(
short_id="deepseek-v3.1-8bit",
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
name="DeepSeek V3.1 (8-bit)",
description="""DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
pretty_name="DeepSeek V3.1 (8-bit)",
storage_size=Memory.from_gb(713),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
# kimi k2
"kimi-k2-instruct-4bit": ModelCard(
short_id="kimi-k2-instruct-4bit",
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
name="Kimi K2 Instruct (4-bit)",
description="""Kimi K2 is a large language model trained on the Kimi K2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
pretty_name="Kimi K2 Instruct (4-bit)",
storage_size=Memory.from_gb(578),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
"kimi-k2-thinking": ModelCard(
short_id="kimi-k2-thinking",
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
name="Kimi K2 Thinking (4-bit)",
description="""Kimi K2 Thinking is the latest, most capable version of open-source thinking model.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
pretty_name="Kimi K2 Thinking (4-bit)",
storage_size=Memory.from_gb(658),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
),
# llama-3.1
"llama-3.1-8b": ModelCard(
short_id="llama-3.1-8b",
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
name="Llama 3.1 8B (4-bit)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
pretty_name="Llama 3.1 8B (4-bit)",
storage_size=Memory.from_mb(4423),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
),
"llama-3.1-8b-8bit": ModelCard(
short_id="llama-3.1-8b-8bit",
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
name="Llama 3.1 8B (8-bit)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
pretty_name="Llama 3.1 8B (8-bit)",
storage_size=Memory.from_mb(8540),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
),
"llama-3.1-8b-bf16": ModelCard(
short_id="llama-3.1-8b-bf16",
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
name="Llama 3.1 8B (BF16)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
pretty_name="Llama 3.1 8B (BF16)",
storage_size=Memory.from_mb(16100),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
),
"llama-3.1-70b": ModelCard(
short_id="llama-3.1-70b",
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
name="Llama 3.1 70B (4-bit)",
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
pretty_name="Llama 3.1 70B (4-bit)",
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
# llama-3.2
"llama-3.2-1b": ModelCard(
short_id="llama-3.2-1b",
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
name="Llama 3.2 1B (4-bit)",
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
pretty_name="Llama 3.2 1B (4-bit)",
storage_size=Memory.from_mb(696),
n_layers=16,
hidden_size=2048,
supports_tensor=True,
),
),
"llama-3.2-3b": ModelCard(
short_id="llama-3.2-3b",
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
name="Llama 3.2 3B (4-bit)",
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
pretty_name="Llama 3.2 3B (4-bit)",
storage_size=Memory.from_mb(1777),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
),
),
"llama-3.2-3b-8bit": ModelCard(
short_id="llama-3.2-3b-8bit",
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
name="Llama 3.2 3B (8-bit)",
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
pretty_name="Llama 3.2 3B (8-bit)",
storage_size=Memory.from_mb(3339),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
),
),
# llama-3.3
"llama-3.3-70b": ModelCard(
short_id="llama-3.3-70b",
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
name="Llama 3.3 70B (4-bit)",
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
pretty_name="Llama 3.3 70B",
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
"llama-3.3-70b-8bit": ModelCard(
short_id="llama-3.3-70b-8bit",
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
name="Llama 3.3 70B (8-bit)",
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
pretty_name="Llama 3.3 70B (8-bit)",
storage_size=Memory.from_mb(73242),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
"llama-3.3-70b-fp16": ModelCard(
short_id="llama-3.3-70b-fp16",
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
name="Llama 3.3 70B (FP16)",
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
pretty_name="Llama 3.3 70B (FP16)",
storage_size=Memory.from_mb(137695),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
),
# qwen3
"qwen3-0.6b": ModelCard(
short_id="qwen3-0.6b",
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
name="Qwen3 0.6B (4-bit)",
description="""Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
pretty_name="Qwen3 0.6B (4-bit)",
storage_size=Memory.from_mb(327),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
),
),
"qwen3-0.6b-8bit": ModelCard(
short_id="qwen3-0.6b-8bit",
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
name="Qwen3 0.6B (8-bit)",
description="""Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
pretty_name="Qwen3 0.6B (8-bit)",
storage_size=Memory.from_mb(666),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
),
),
"qwen3-30b": ModelCard(
short_id="qwen3-30b",
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
name="Qwen3 30B A3B (4-bit)",
description="""Qwen3 30B is a large language model trained on the Qwen3 30B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
pretty_name="Qwen3 30B A3B (4-bit)",
storage_size=Memory.from_mb(16797),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-30b-8bit": ModelCard(
short_id="qwen3-30b-8bit",
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
name="Qwen3 30B A3B (8-bit)",
description="""Qwen3 30B is a large language model trained on the Qwen3 30B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
pretty_name="Qwen3 30B A3B (8-bit)",
storage_size=Memory.from_mb(31738),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-4bit": ModelCard(
short_id="qwen3-80b-a3B-4bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
name="Qwen3 80B A3B (4-bit)",
description="""Qwen3 80B""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
pretty_name="Qwen3 80B A3B (4-bit)",
storage_size=Memory.from_mb(44800),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-8bit": ModelCard(
short_id="qwen3-80b-a3B-8bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
name="Qwen3 80B A3B (8-bit)",
description="""Qwen3 80B""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
pretty_name="Qwen3 80B A3B (8-bit)",
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-thinking-4bit": ModelCard(
short_id="qwen3-80b-a3B-thinking-4bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
name="Qwen3 80B A3B Thinking (4-bit)",
description="""Qwen3 80B Reasoning model""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
pretty_name="Qwen3 80B A3B (4-bit)",
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-80b-a3B-thinking-8bit": ModelCard(
short_id="qwen3-80b-a3B-thinking-8bit",
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
name="Qwen3 80B A3B Thinking (8-bit)",
description="""Qwen3 80B Reasoning model""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
pretty_name="Qwen3 80B A3B (8-bit)",
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
),
"qwen3-235b-a22b-4bit": ModelCard(
short_id="qwen3-235b-a22b-4bit",
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
name="Qwen3 235B A22B (4-bit)",
description="""Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
pretty_name="Qwen3 235B A22B (4-bit)",
storage_size=Memory.from_gb(132),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
),
),
"qwen3-235b-a22b-8bit": ModelCard(
short_id="qwen3-235b-a22b-8bit",
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
name="Qwen3 235B A22B (8-bit)",
description="""Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
pretty_name="Qwen3 235B A22B (8-bit)",
storage_size=Memory.from_gb(250),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
),
),
"qwen3-coder-480b-a35b-4bit": ModelCard(
short_id="qwen3-coder-480b-a35b-4bit",
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
name="Qwen3 Coder 480B A35B (4-bit)",
description="""Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
pretty_name="Qwen3 Coder 480B A35B (4-bit)",
storage_size=Memory.from_gb(270),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
),
),
"qwen3-coder-480b-a35b-8bit": ModelCard(
short_id="qwen3-coder-480b-a35b-8bit",
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
name="Qwen3 Coder 480B A35B (8-bit)",
description="""Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
pretty_name="Qwen3 Coder 480B A35B (8-bit)",
storage_size=Memory.from_gb(540),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
),
),
# gpt-oss
"gpt-oss-120b-MXFP4-Q8": ModelCard(
short_id="gpt-oss-120b-MXFP4-Q8",
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
name="GPT-OSS 120B (MXFP4-Q8, MLX)",
description="""OpenAI's GPT-OSS 120B is a 117B-parameter Mixture-of-Experts model designed for high-reasoning and general-purpose use; this variant is a 4-bit MLX conversion for Apple Silicon.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
pretty_name="GPT-OSS 120B (MXFP4-Q8, MLX)",
storage_size=Memory.from_kb(68_996_301),
n_layers=36,
hidden_size=2880,
supports_tensor=True,
),
),
"gpt-oss-20b-MXFP4-Q8": ModelCard(
short_id="gpt-oss-20b-MXFP4-Q8",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
name="GPT-OSS 20B (MXFP4-Q8, MLX)",
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this variant is a 4-bit MLX conversion for Apple Silicon.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
pretty_name="GPT-OSS 20B (MXFP4-Q8, MLX)",
storage_size=Memory.from_kb(11_744_051),
n_layers=24,
hidden_size=2880,
supports_tensor=True,
),
),
# glm 4.5
"glm-4.5-air-8bit": ModelCard(
# Needs to be quantized g32 or g16 to work with tensor parallel
short_id="glm-4.5-air-8bit",
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
name="GLM 4.5 Air 8bit",
description="""GLM 4.5 Air 8bit""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
pretty_name="GLM 4.5 Air 8bit",
storage_size=Memory.from_gb(114),
n_layers=46,
hidden_size=4096,
supports_tensor=False,
),
),
"glm-4.5-air-bf16": ModelCard(
short_id="glm-4.5-air-bf16",
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
name="GLM 4.5 Air bf16",
description="""GLM 4.5 Air bf16""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
pretty_name="GLM 4.5 Air bf16",
storage_size=Memory.from_gb(214),
n_layers=46,
hidden_size=4096,
supports_tensor=True,
),
),
# glm 4.7
"glm-4.7-4bit": ModelCard(
short_id="glm-4.7-4bit",
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
name="GLM 4.7 4bit",
description="GLM 4.7 4bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
pretty_name="GLM 4.7 4bit",
storage_size=Memory.from_bytes(198556925568),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
"glm-4.7-6bit": ModelCard(
short_id="glm-4.7-6bit",
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
name="GLM 4.7 6bit",
description="GLM 4.7 6bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
pretty_name="GLM 4.7 6bit",
storage_size=Memory.from_bytes(286737579648),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
"glm-4.7-8bit-gs32": ModelCard(
short_id="glm-4.7-8bit-gs32",
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
name="GLM 4.7 8bit (gs32)",
description="GLM 4.7 8bit (gs32)",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
pretty_name="GLM 4.7 8bit (gs32)",
storage_size=Memory.from_bytes(396963397248),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
# minimax-m2
"minimax-m2.1-8bit": ModelCard(
short_id="minimax-m2.1-8bit",
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
name="MiniMax M2.1 8bit",
description="MiniMax M2.1 8bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
pretty_name="MiniMax M2.1 8bit",
storage_size=Memory.from_bytes(242986745856),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
),
"minimax-m2.1-3bit": ModelCard(
short_id="minimax-m2.1-3bit",
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
name="MiniMax M2.1 3bit",
description="MiniMax M2.1 3bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
pretty_name="MiniMax M2.1 3bit",
storage_size=Memory.from_bytes(100086644736),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
),
}
async def save(self, path: Path):
async with await open_file(path, "w") as f:
py = self.model_dump()
data = tomlkit.dumps(py) # pyright: ignore[reportUnknownMemberType]
await f.write(data)
@staticmethod
async def from_hf(model_id: str) -> "ModelCard":
short_name = model_id.split("/")[-1]
return ModelCard(
short_id=short_name,
model_id=ModelId(model_id),
name=short_name,
description=f"Custom model from {model_id}",
tags=[],
metadata=await get_model_meta(model_id),
)

View File

@@ -6,7 +6,6 @@ from huggingface_hub import model_info
from loguru import logger
from pydantic import BaseModel, Field
from exo.shared.models.model_cards import MODEL_CARDS
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.worker.download.download_utils import (
@@ -108,19 +107,13 @@ async def _get_model_meta(model_id: str) -> ModelMetadata:
config_data = await get_config_data(model_id)
num_layers = config_data.layer_count
mem_size_bytes = await get_safetensors_size(model_id)
model_card = next(
(card for card in MODEL_CARDS.values() if card.model_id == ModelId(model_id)),
None,
)
return ModelMetadata(
model_id=ModelId(model_id),
pretty_name=model_card.name if model_card is not None else model_id,
pretty_name=model_id,
storage_size=mem_size_bytes,
n_layers=num_layers,
hidden_size=config_data.hidden_size or 0,
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
supports_tensor=model_card.metadata.supports_tensor
if model_card is not None
else False,
supports_tensor=False,
)

View File

@@ -1,7 +1,4 @@
from enum import Enum
from typing import Literal
from pydantic import BaseModel
from exo.shared.types.api import GenerationStats
from exo.utils.pydantic_ext import TaggedModel
@@ -15,17 +12,6 @@ class ChunkType(str, Enum):
Image = "Image"
class ToolCallFunction(BaseModel, frozen=True):
name: str
arguments: str
class ToolCall(BaseModel, frozen=True):
id: str
type: Literal["function"] = "function"
function: ToolCallFunction
class BaseChunk(TaggedModel):
idx: int
model: ModelId
@@ -36,7 +22,6 @@ class TokenChunk(BaseChunk):
token_id: int
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
tool_calls: list[ToolCall] | None = None
class ImageChunk(BaseChunk):

View File

@@ -1,5 +1,4 @@
from exo.shared.types.api import FinishReason, GenerationStats
from exo.shared.types.chunks import ToolCall
from exo.utils.pydantic_ext import TaggedModel
@@ -17,7 +16,6 @@ class GenerationResponse(BaseRunnerResponse):
# logprobs: list[float] | None = None # too big. we can change to be top-k
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
tool_calls: list[ToolCall] | None = None
class FinishedResponse(BaseRunnerResponse):

View File

@@ -20,7 +20,6 @@ except ImportError:
from mlx_lm.models.cache import KVCache, QuantizedKVCache, RotatingKVCache
from mlx_lm.models.deepseek_v3 import DeepseekV3Model
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.worker.engines.mlx.constants import (
@@ -366,8 +365,6 @@ def apply_chat_template(
tools=chat_task_data.tools,
)
logger.info(prompt)
return prompt
@@ -399,11 +396,6 @@ def make_kv_cache(
) -> list[KVCache | RotatingKVCache | QuantizedKVCache]:
assert hasattr(model, "layers")
# TODO: Do this for all models
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
logger.info("Using MLX LM's make cache")
return model.make_cache() # type: ignore
if max_kv_size is None:
if KV_CACHE_BITS is None:
logger.info("Using default KV cache")

View File

@@ -1,22 +1,9 @@
import json
import time
from collections.abc import Generator
from functools import cache
from typing import Any
from uuid import uuid4
import mlx.core as mx
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.tokenizer_utils import TokenizerWrapper
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
HarmonyEncodingName,
Role,
StreamableParser,
load_harmony_encoding,
)
from exo.shared.types.api import ChatCompletionMessageText
from exo.shared.types.chunks import TokenChunk, ToolCall, ToolCallFunction
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.events import (
ChunkGenerated,
Event,
@@ -166,22 +153,11 @@ def main(
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses using the actual MLX generation
mlx_generator = mlx_generate(
for response in mlx_generate(
model=model,
tokenizer=tokenizer,
task=task_params,
)
# GPT-OSS specific parsing to match other model formats.
if isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
# Parse tool calls to place them in the tool calls section
mlx_generator = parse_tool_calls(
mlx_generator, tokenizer, task_params.tools
)
for response in mlx_generator:
):
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
@@ -195,7 +171,6 @@ def main(
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
tool_calls=response.tool_calls,
),
)
)
@@ -232,135 +207,6 @@ def main(
break
@cache
def get_gpt_oss_encoding():
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
return encoding
def parse_gpt_oss(
responses: Generator[GenerationResponse],
) -> Generator[GenerationResponse]:
encoding = get_gpt_oss_encoding()
stream = StreamableParser(encoding, role=Role.ASSISTANT)
thinking = False
for response in responses:
stream.process(response.token)
delta = stream.last_content_delta
ch = stream.current_channel
if ch == "analysis" and not thinking:
thinking = True
yield response.model_copy(update={"text": "<think>"})
if ch != "analysis" and thinking:
thinking = False
yield response.model_copy(update={"text": "</think>"})
if delta:
yield response.model_copy(update={"text": delta})
if response.finish_reason is not None:
if thinking:
yield response.model_copy(update={"text": "</think>"})
yield response
break
def _generate_tool_call_id() -> str:
return f"call_{uuid4().hex[:24]}"
def _parse_tool_call_content(
content: str,
tokenizer: TokenizerWrapper,
tools: list[dict[str, Any]] | None,
) -> ToolCall | None:
content = content.strip()
if not content:
return None
tool_parser: Any = getattr(tokenizer, "tool_parser", None)
if tool_parser is None:
logger.warning("No tool_parser available for tokenizer")
return None
try:
parsed: dict[str, Any] = tool_parser(content, tools) # pyright: ignore[reportAny]
if parsed and "name" in parsed:
arguments: Any = parsed.get("arguments", {}) # pyright: ignore[reportAny]
arguments_str: str = (
json.dumps(arguments)
if not isinstance(arguments, str)
else arguments
)
return ToolCall(
id=_generate_tool_call_id(),
type="function",
function=ToolCallFunction(
name=str(parsed["name"]), # pyright: ignore[reportAny]
arguments=arguments_str,
),
)
except Exception as e:
logger.warning(f"tool_parser failed: {e}")
return None
def parse_tool_calls(
responses: Generator[GenerationResponse],
tokenizer: TokenizerWrapper,
tools: list[dict[str, Any]] | None,
) -> Generator[GenerationResponse]:
has_tool_calling = getattr(tokenizer, "has_tool_calling", False)
if not has_tool_calling or tools is None:
yield from responses
return
tool_call_start: str | None = getattr(tokenizer, "tool_call_start", None)
tool_call_end: str | None = getattr(tokenizer, "tool_call_end", None)
if tool_call_start is None or tool_call_end is None:
yield from responses
return
in_tool_call = False
tool_call_buffer: list[str] = []
pending_tool_calls: list[ToolCall] = []
for response in responses:
if response.text == tool_call_start:
in_tool_call = True
tool_call_buffer = []
continue
if response.text == tool_call_end:
in_tool_call = False
parsed = _parse_tool_call_content(
"".join(tool_call_buffer), tokenizer, tools
)
if parsed is not None:
pending_tool_calls.append(parsed)
continue
if in_tool_call:
tool_call_buffer.append(response.text)
continue
if response.finish_reason is None or not pending_tool_calls:
yield response
else:
yield response.model_copy(
update={
"finish_reason": "tool_calls",
"tool_calls": pending_tool_calls if pending_tool_calls else None,
}
)
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"

View File

@@ -1,5 +1,4 @@
import http.client
import time
from anyio import create_task_group, to_thread
from loguru import logger
@@ -7,8 +6,6 @@ from loguru import logger
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
BAD_STATUSLINE_ATTEMPTS = 3
async def check_reachability(
target_ip: str,
@@ -18,9 +15,8 @@ async def check_reachability(
) -> None:
"""Check if a node is reachable at the given IP and verify its identity."""
# TODO: use an async http client
def _fetch_remote_node_id(*, attempt: int = 1) -> NodeId | None:
connection = http.client.HTTPConnection(target_ip, 52415, timeout=3)
def _fetch_remote_node_id() -> NodeId | None:
connection = http.client.HTTPConnection(target_ip, 52415, timeout=1)
try:
connection.request("GET", "/node_id")
response = connection.getresponse()
@@ -36,16 +32,7 @@ async def check_reachability(
return NodeId(body) or None
except OSError:
return None
except http.client.BadStatusLine:
if attempt >= BAD_STATUSLINE_ATTEMPTS:
logger.warning(
f"BadStatusLine from {target_ip}, after {attempt} attempts, assuming connection to {expected_node_id} has dropped"
)
return None
time.sleep(1)
return _fetch_remote_node_id(attempt=attempt + 1)
except http.client.HTTPException as e:
logger.warning(f"HTTPException from {target_ip}: {type(e).__name__}: {e}")
except http.client.HTTPException:
return None
finally:
connection.close()

4875
uv.lock generated
View File

File diff suppressed because it is too large Load Diff