Compare commits

..

19 Commits

Author SHA1 Message Date
ciaranbor
92de82bdf6 Add traces page to UI 2026-01-30 18:59:02 +00:00
ciaranbor
e792b19f5d Integrate trace collection with exo runners 2026-01-30 18:59:02 +00:00
ciaranbor
edc3a88b12 Minor tweaks 2026-01-30 18:58:30 +00:00
ciaranbor
0ae0c788d5 Average per step 2026-01-30 18:58:30 +00:00
ciaranbor
09abf44d49 Add statistics interpretation 2026-01-30 18:58:30 +00:00
ciaranbor
ac4b78349b Require external evals 2026-01-30 18:58:30 +00:00
ciaranbor
96c440c3b1 Instrument distributed runner 2026-01-30 18:58:30 +00:00
ciaranbor
c14d63cf61 Add tracing utils 2026-01-30 18:58:30 +00:00
Evan Quiney
cd946742f7 fix skipping logic in worker plan (#1342)
the worker plan function had some skipping logic missing, leading to
double-submitting tasks.
2026-01-30 14:31:40 +00:00
rltakashige
a5bc38ad1f Check all nodes to evict (#1341)
## Motivation

If nodes have uneven memory, one node may evict cache that remains on
another node. This will break prefill on some setups.

## Changes

<!-- Describe what you changed in detail -->

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
<!-- Hardware: (e.g., MacBook Pro M1 Max 32GB, Mac Mini M2 16GB,
connected via Thunderbolt 4) -->
<!-- What you did: -->
<!-- - -->

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-30 13:42:09 +00:00
Evan Quiney
2a4e0d4629 make node-ids unique per-session (#1338)
we currently have no strict reuqirements that node ids persist across
sessions, so we can generate fresh nodeids each time

this avoids issues like #1332, but prevents further features such as
caching downloads or node-id dialling

Co-authored-by: rltakashige <rl.takashige@gmail.com>
2026-01-30 13:33:31 +00:00
Evan Quiney
46a14153dd switch to ModelCard.load outside of download log (#1339)
some attempts to load model cards (i.e. build_base_shard) always went
through networking rather than using downloaded model cards. we should
always default to ModelCard.load in these scenarios
2026-01-30 11:20:20 +00:00
Evan
9ba61f3733 improve log message in shard downloader
closes #1336
2026-01-30 10:35:01 +00:00
rltakashige
d9eca75895 Add usage stats (#1333)
## Motivation

(Probably) the final missing piece of the Chat Completions API 

## Changes

Add UsageStats 

## Why It Works

OpenCode reviewed my PR and gave me stats:

<img width="1150" height="802" alt="image"
src="https://github.com/user-attachments/assets/ebc06bae-797f-4087-87d5-2f26cf60fc48"
/>


## Test Plan

### Automated Testing
No tests were broken.
2026-01-30 10:23:08 +00:00
rltakashige
9dabde7e57 Fix bench after recent updates (#1331)
## Motivation

A lot of changes happened without much attention to the state of exo
bench.

## Changes

Use TaggedModel for BenchChatCompletion so it serialises properly.
Don't break after gpt oss tool call to preserve parity with the rest of
the codebase.

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
<img width="2856" height="678" alt="image"
src="https://github.com/user-attachments/assets/2e18cf0d-c0f8-467c-9763-1a6a59c8a327"
/>

Also tested GPT OSS tool calling in OpenCode
2026-01-29 19:14:40 +00:00
ciaranbor
a31942ce12 Ciaran/image non streaming (#1328)
## Motivation

The dashboard UI attempted to parse all image generation responses as
SSE streams, even when streaming was disabled. This broke non-streaming
image generation.

## Changes

- Parse JSON responses directly when not streaming, use SSE parser only
when stream=true AND partialImages > 0
- explicitly disable partial images when not streaming

## Why It Works

Both API and dashboard now use the same condition (stream &&
partialImages > 0) to determine response format, ensuring correct
parsing.

## Test Plan

### Manual Testing

Non-streamed image generation results appear in the UI. Streamed image
generation still works
2026-01-29 17:24:32 +00:00
Alex Cheema
7cc313b22a Treat Swift/Xcode build warnings as errors (#1322)
## Motivation

Warnings that go unchecked tend to accumulate and hide real issues.
Treating them as errors ensures they are addressed immediately, both
locally during development and in CI.

## Changes

Added `SWIFT_TREAT_WARNINGS_AS_ERRORS = YES` and
`GCC_TREAT_WARNINGS_AS_ERRORS = YES` to the **project-level** Debug and
Release build configurations in `project.pbxproj`. This applies to all
targets (EXO, EXOTests, EXOUITests).

## Why It Works

Xcode's `SWIFT_TREAT_WARNINGS_AS_ERRORS` and
`GCC_TREAT_WARNINGS_AS_ERRORS` build settings promote Swift and C/ObjC
warnings to errors at compile time. Setting them at the project level
means all targets inherit the policy without needing per-target or
CI-level overrides.

## Test Plan

### Manual Testing
- Built the EXO scheme in Release configuration with `xcodebuild` — no
warning-as-error failures from Swift or C/ObjC sources.

### Automated Testing
- CI already builds with `-configuration Release`, so it will
automatically enforce warnings-as-errors via the inherited project
settings — no CI changes needed.
2026-01-29 17:15:49 +00:00
rltakashige
2837225dc7 Load pipeline layers sequentially (#1329)
## Motivation

Slightly annoyed by needing this change, but same story as for tensor
loading...
2026-01-29 17:08:38 +00:00
Jake Hillion
e4c6a7dbb4 nix: add Python packaging with uv2nix
Add uv2nix to build Python packages from uv.lock. This creates a fully
Nix-managed Python environment with the Rust bindings injected via overlay.

Changes:
- Add pyproject-nix, uv2nix, and pyproject-build-systems flake inputs
- Create python/parts.nix with overlays to inject Nix-built Rust wheel
- Export packages.exo on macOS (wraps exo/exo-master/exo-worker with dashboard)
- Add checks.lint (ruff, all platforms) and checks.pytest (macOS only)
- Simplify CI typecheck job using nicknovitski/nix-develop action
- Delete .github/actions/typecheck composite action (no longer needed)
- Add no-build-package for MLX packages in pyproject.toml (use wheels)

The Python build is currently macOS-only since MLX requires Metal. Linux
support will be added once the pyproject dependencies are simplified.

Test plan:
- Run `nix flake check` on macOS to verify pytest and lint pass
- Build exo package on macOS: `nix build .#exo`
- Verify CI pipeline passes with simplified typecheck job
2026-01-29 16:35:58 +00:00
94 changed files with 2880 additions and 1603 deletions

View File

@@ -1,12 +0,0 @@
name: Type Check
description: "Run type checker"
runs:
using: "composite"
steps:
- name: Run type checker
run: |
nix --extra-experimental-features nix-command --extra-experimental-features flakes develop -c just sync
nix --extra-experimental-features nix-command --extra-experimental-features flakes develop -c just check
shell: bash

View File

@@ -26,73 +26,14 @@ jobs:
name: exo
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
- name: Configure git user
run: |
git config --local user.email "github-actions@users.noreply.github.com"
git config --local user.name "github-actions bot"
shell: bash
- name: Load nix develop environment
run: nix run github:nicknovitski/nix-develop/v1
- name: Pull LFS files
run: |
echo "Pulling Git LFS files..."
git lfs pull
shell: bash
- name: Sync dependencies
run: uv sync --all-packages
- name: Setup Nix Environment
run: |
echo "Checking for nix installation..."
# Check if nix binary exists directly
if [ -f /nix/var/nix/profiles/default/bin/nix ]; then
echo "Found nix binary at /nix/var/nix/profiles/default/bin/nix"
export PATH="/nix/var/nix/profiles/default/bin:$PATH"
echo "PATH=$PATH" >> $GITHUB_ENV
nix --version
elif [ -f /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh ]; then
echo "Found nix profile script, sourcing..."
source /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh
nix --version
elif command -v nix >/dev/null 2>&1; then
echo "Nix already in PATH"
nix --version
else
echo "Nix not found. Debugging info:"
echo "Contents of /nix/var/nix/profiles/default/:"
ls -la /nix/var/nix/profiles/default/ 2>/dev/null || echo "Directory not found"
echo "Contents of /nix/var/nix/profiles/default/bin/:"
ls -la /nix/var/nix/profiles/default/bin/ 2>/dev/null || echo "Directory not found"
exit 1
fi
shell: bash
- name: Configure basedpyright include for local MLX
run: |
RUNNER_LABELS='${{ toJSON(runner.labels) }}'
if echo "$RUNNER_LABELS" | grep -q "local_mlx"; then
if [ -d "/Users/Shared/mlx" ]; then
echo "Updating [tool.basedpyright].include to use /Users/Shared/mlx"
awk '
BEGIN { in=0 }
/^\[tool\.basedpyright\]/ { in=1; print; next }
in && /^\[/ { in=0 } # next section
in && /^[ \t]*include[ \t]*=/ {
print "include = [\"/Users/Shared/mlx\"]"
next
}
{ print }
' pyproject.toml > pyproject.toml.tmp && mv pyproject.toml.tmp pyproject.toml
echo "New [tool.basedpyright] section:"
sed -n '/^\[tool\.basedpyright\]/,/^\[/p' pyproject.toml | sed '$d' || true
else
echo "local_mlx tag present but /Users/Shared/mlx not found; leaving pyproject unchanged."
fi
else
echo "Runner does not have 'local_mlx' tag; leaving pyproject unchanged."
fi
shell: bash
- uses: ./.github/actions/typecheck
- name: Run type checker
run: uv run basedpyright --project pyproject.toml
nix:
name: Build and check (${{ matrix.system }})
@@ -191,3 +132,14 @@ jobs:
- name: Run nix flake check
run: nix flake check
- name: Run pytest (macOS only)
if: runner.os == 'macOS'
run: |
# Build the test environment (requires relaxed sandbox for uv2nix on macOS)
TEST_ENV=$(nix build '.#exo-test-env' --option sandbox relaxed --print-out-paths)
# Run pytest outside sandbox (needs GPU access for MLX)
export HOME="$RUNNER_TEMP"
export EXO_TESTS=1
$TEST_ENV/bin/python -m pytest src -m "not slow" --import-mode=importlib

View File

@@ -342,6 +342,8 @@
SDKROOT = macosx;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_TREAT_WARNINGS_AS_ERRORS = YES;
GCC_TREAT_WARNINGS_AS_ERRORS = YES;
};
name = Debug;
};
@@ -397,6 +399,8 @@
MTL_FAST_MATH = YES;
SDKROOT = macosx;
SWIFT_COMPILATION_MODE = wholemodule;
SWIFT_TREAT_WARNINGS_AS_ERRORS = YES;
GCC_TREAT_WARNINGS_AS_ERRORS = YES;
};
name = Release;
};

View File

@@ -865,7 +865,6 @@
"integrity": "sha512-oH8tXw7EZnie8FdOWYrF7Yn4IKrqTFHhXvl8YxXxbKwTMcD/5NNCryUSEXRk2ZR4ojnub0P8rNrsVGHXWqIDtA==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"@standard-schema/spec": "^1.0.0",
"@sveltejs/acorn-typescript": "^1.0.5",
@@ -905,7 +904,6 @@
"integrity": "sha512-Y1Cs7hhTc+a5E9Va/xwKlAJoariQyHY+5zBgCZg4PFWNYQ1nMN9sjK1zhw1gK69DuqVP++sht/1GZg1aRwmAXQ==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"@sveltejs/vite-plugin-svelte-inspector": "^4.0.1",
"debug": "^4.4.1",
@@ -1522,7 +1520,6 @@
"integrity": "sha512-LCCV0HdSZZZb34qifBsyWlUmok6W7ouER+oQIGBScS8EsZsQbrtFTUrDX4hOl+CS6p7cnNC4td+qrSVGSCTUfQ==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"undici-types": "~6.21.0"
}
@@ -1532,7 +1529,6 @@
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz",
"integrity": "sha512-NZyJarBfL7nWwIq+FDL6Zp/yHEhePMNnnJ0y3qfieCrmNvYct8uvtiV41UvlSe6apAfk0fY1FbWx+NwfmpvtTg==",
"license": "MIT",
"peer": true,
"bin": {
"acorn": "bin/acorn"
},
@@ -1945,7 +1941,6 @@
"integrity": "sha512-fmTRWbNMmsmWq6xJV8D19U/gw/bwrHfNXxrIN+HfZgnzqTHp9jOmKMhsTUjXOJnZOdZY9Q28y4yebKzqDKlxlQ==",
"dev": true,
"license": "ISC",
"peer": true,
"engines": {
"node": ">=12"
}
@@ -2653,7 +2648,6 @@
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
"dev": true,
"license": "MIT",
"peer": true,
"engines": {
"node": ">=12"
},
@@ -2696,7 +2690,6 @@
"integrity": "sha512-UOnG6LftzbdaHZcKoPFtOcCKztrQ57WkHDeRD9t/PTQtmT0NHSeWWepj6pS0z/N7+08BHFDQVUrfmfMRcZwbMg==",
"dev": true,
"license": "MIT",
"peer": true,
"bin": {
"prettier": "bin/prettier.cjs"
},
@@ -2869,7 +2862,6 @@
"resolved": "https://registry.npmjs.org/svelte/-/svelte-5.45.3.tgz",
"integrity": "sha512-ngKXNhNvwPzF43QqEhDOue7TQTrG09em1sd4HBxVF0Wr2gopAmdEWan+rgbdgK4fhBtSOTJO8bYU4chUG7VXZQ==",
"license": "MIT",
"peer": true,
"dependencies": {
"@jridgewell/remapping": "^2.3.4",
"@jridgewell/sourcemap-codec": "^1.5.0",
@@ -3014,7 +3006,6 @@
"integrity": "sha512-jl1vZzPDinLr9eUt3J/t7V6FgNEw9QjvBPdysz9KfQDD41fQrC2Y4vKQdiaUpFT4bXlb1RHhLpp8wtm6M5TgSw==",
"dev": true,
"license": "Apache-2.0",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
@@ -3036,7 +3027,6 @@
"integrity": "sha512-+Oxm7q9hDoLMyJOYfUYBuHQo+dkAloi33apOPP56pzj+vsdJDzr+j1NISE5pyaAuKL4A3UD34qd0lx5+kfKp2g==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"esbuild": "^0.25.0",
"fdir": "^6.4.4",

View File

@@ -173,6 +173,41 @@ export interface PlacementPreviewResponse {
previews: PlacementPreview[];
}
interface ImageApiResponse {
created: number;
data: Array<{ b64_json?: string; url?: string }>;
}
// Trace API response types
export interface TraceCategoryStats {
totalUs: number;
count: number;
minUs: number;
maxUs: number;
avgUs: number;
}
export interface TraceRankStats {
byCategory: Record<string, TraceCategoryStats>;
}
export interface TraceStatsResponse {
taskId: string;
totalWallTimeUs: number;
byCategory: Record<string, TraceCategoryStats>;
byRank: Record<number, TraceRankStats>;
}
export interface TraceListItem {
taskId: string;
createdAt: string;
fileSize: number;
}
export interface TraceListResponse {
traces: TraceListItem[];
}
interface RawStateResponse {
topology?: RawTopology;
instances?: Record<
@@ -2095,107 +2130,137 @@ class AppStore {
throw new Error(`API error: ${response.status} - ${errorText}`);
}
const reader = response.body?.getReader();
if (!reader) {
throw new Error("No response body");
}
// Streaming requires both stream=true AND partialImages > 0
const isStreaming = params.stream && params.partialImages > 0;
interface ImageGenerationChunk {
data?: { b64_json?: string };
format?: string;
type?: "partial" | "final";
image_index?: number;
partial_index?: number;
total_partials?: number;
}
if (!isStreaming) {
// Non-streaming: parse JSON response directly
const jsonResponse = (await response.json()) as ImageApiResponse;
const format = params.outputFormat || "png";
const mimeType = `image/${format}`;
const numImages = params.numImages;
const attachments: MessageAttachment[] = jsonResponse.data
.filter((img) => img.b64_json)
.map((img, index) => ({
type: "generated-image" as const,
name: `generated-image-${index + 1}.${format}`,
preview: `data:${mimeType};base64,${img.b64_json}`,
mimeType,
}));
await this.parseSSEStream<ImageGenerationChunk>(
reader,
targetConversationId,
(parsed) => {
const imageData = parsed.data?.b64_json;
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = "";
msg.attachments = attachments;
},
);
this.syncActiveMessagesIfNeeded(targetConversationId);
} else {
// Streaming mode: use SSE parser
const reader = response.body?.getReader();
if (!reader) {
throw new Error("No response body");
}
if (imageData) {
const format = parsed.format || "png";
const mimeType = `image/${format}`;
const imageIndex = parsed.image_index ?? 0;
interface ImageGenerationChunk {
data?: { b64_json?: string };
format?: string;
type?: "partial" | "final";
image_index?: number;
partial_index?: number;
total_partials?: number;
}
if (parsed.type === "partial") {
// Update with partial image and progress
const partialNum = (parsed.partial_index ?? 0) + 1;
const totalPartials = parsed.total_partials ?? 3;
const progressText =
numImages > 1
? `Generating image ${imageIndex + 1}/${numImages}... ${partialNum}/${totalPartials}`
: `Generating... ${partialNum}/${totalPartials}`;
const numImages = params.numImages;
const partialAttachment: MessageAttachment = {
type: "generated-image",
name: `generated-image.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
};
await this.parseSSEStream<ImageGenerationChunk>(
reader,
targetConversationId,
(parsed) => {
const imageData = parsed.data?.b64_json;
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = progressText;
if (imageIndex === 0) {
// First image - safe to replace attachments with partial preview
msg.attachments = [partialAttachment];
} else {
// Subsequent images - keep existing finals, show partial at current position
const existingAttachments = msg.attachments || [];
// Keep only the completed final images (up to current imageIndex)
const finals = existingAttachments.slice(0, imageIndex);
msg.attachments = [...finals, partialAttachment];
}
},
);
} else if (parsed.type === "final") {
// Final image - replace partial at this position
const newAttachment: MessageAttachment = {
type: "generated-image",
name: `generated-image-${imageIndex + 1}.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
};
if (imageData) {
const format = parsed.format || "png";
const mimeType = `image/${format}`;
const imageIndex = parsed.image_index ?? 0;
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
if (imageIndex === 0) {
// First final image - replace any partial preview
msg.attachments = [newAttachment];
} else {
// Subsequent images - keep previous finals, replace partial at current position
const existingAttachments = msg.attachments || [];
// Slice keeps indices 0 to imageIndex-1 (the previous final images)
const previousFinals = existingAttachments.slice(
0,
imageIndex,
);
msg.attachments = [...previousFinals, newAttachment];
}
if (parsed.type === "partial") {
// Update with partial image and progress
const partialNum = (parsed.partial_index ?? 0) + 1;
const totalPartials = parsed.total_partials ?? 3;
const progressText =
numImages > 1
? `Generating image ${imageIndex + 1}/${numImages}... ${partialNum}/${totalPartials}`
: `Generating... ${partialNum}/${totalPartials}`;
// Update progress message for multiple images
if (numImages > 1 && imageIndex < numImages - 1) {
msg.content = `Generating image ${imageIndex + 2}/${numImages}...`;
} else {
msg.content = "";
}
},
);
const partialAttachment: MessageAttachment = {
type: "generated-image",
name: `generated-image.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
};
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = progressText;
if (imageIndex === 0) {
// First image - safe to replace attachments with partial preview
msg.attachments = [partialAttachment];
} else {
// Subsequent images - keep existing finals, show partial at current position
const existingAttachments = msg.attachments || [];
// Keep only the completed final images (up to current imageIndex)
const finals = existingAttachments.slice(0, imageIndex);
msg.attachments = [...finals, partialAttachment];
}
},
);
} else if (parsed.type === "final") {
// Final image - replace partial at this position
const newAttachment: MessageAttachment = {
type: "generated-image",
name: `generated-image-${imageIndex + 1}.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
};
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
if (imageIndex === 0) {
// First final image - replace any partial preview
msg.attachments = [newAttachment];
} else {
// Subsequent images - keep previous finals, replace partial at current position
const existingAttachments = msg.attachments || [];
// Slice keeps indices 0 to imageIndex-1 (the previous final images)
const previousFinals = existingAttachments.slice(
0,
imageIndex,
);
msg.attachments = [...previousFinals, newAttachment];
}
// Update progress message for multiple images
if (numImages > 1 && imageIndex < numImages - 1) {
msg.content = `Generating image ${imageIndex + 2}/${numImages}...`;
} else {
msg.content = "";
}
},
);
}
this.syncActiveMessagesIfNeeded(targetConversationId);
}
this.syncActiveMessagesIfNeeded(targetConversationId);
}
},
);
},
);
}
} catch (error) {
console.error("Error generating image:", error);
this.handleStreamingError(
@@ -2343,69 +2408,98 @@ class AppStore {
throw new Error(`API error: ${apiResponse.status} - ${errorText}`);
}
const reader = apiResponse.body?.getReader();
if (!reader) {
throw new Error("No response body");
}
// Streaming requires both stream=true AND partialImages > 0
const isStreaming = params.stream && params.partialImages > 0;
interface ImageEditChunk {
data?: { b64_json?: string };
format?: string;
type?: "partial" | "final";
partial_index?: number;
total_partials?: number;
}
if (!isStreaming) {
// Non-streaming: parse JSON response directly
const jsonResponse = (await apiResponse.json()) as ImageApiResponse;
const format = params.outputFormat || "png";
const mimeType = `image/${format}`;
const attachments: MessageAttachment[] = jsonResponse.data
.filter((img) => img.b64_json)
.map((img) => ({
type: "generated-image" as const,
name: `edited-image.${format}`,
preview: `data:${mimeType};base64,${img.b64_json}`,
mimeType,
}));
await this.parseSSEStream<ImageEditChunk>(
reader,
targetConversationId,
(parsed) => {
const imageData = parsed.data?.b64_json;
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = "";
msg.attachments = attachments;
},
);
this.syncActiveMessagesIfNeeded(targetConversationId);
} else {
// Streaming mode: use SSE parser
const reader = apiResponse.body?.getReader();
if (!reader) {
throw new Error("No response body");
}
if (imageData) {
const format = parsed.format || "png";
const mimeType = `image/${format}`;
if (parsed.type === "partial") {
// Update with partial image and progress
const partialNum = (parsed.partial_index ?? 0) + 1;
const totalPartials = parsed.total_partials ?? 3;
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = `Editing... ${partialNum}/${totalPartials}`;
msg.attachments = [
{
type: "generated-image",
name: `edited-image.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
},
];
},
);
} else if (parsed.type === "final") {
// Final image
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = "";
msg.attachments = [
{
type: "generated-image",
name: `edited-image.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
},
];
},
);
interface ImageEditChunk {
data?: { b64_json?: string };
format?: string;
type?: "partial" | "final";
partial_index?: number;
total_partials?: number;
}
await this.parseSSEStream<ImageEditChunk>(
reader,
targetConversationId,
(parsed) => {
const imageData = parsed.data?.b64_json;
if (imageData) {
const format = parsed.format || "png";
const mimeType = `image/${format}`;
if (parsed.type === "partial") {
// Update with partial image and progress
const partialNum = (parsed.partial_index ?? 0) + 1;
const totalPartials = parsed.total_partials ?? 3;
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = `Editing... ${partialNum}/${totalPartials}`;
msg.attachments = [
{
type: "generated-image",
name: `edited-image.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
},
];
},
);
} else if (parsed.type === "final") {
// Final image
this.updateConversationMessage(
targetConversationId,
assistantMessage.id,
(msg) => {
msg.content = "";
msg.attachments = [
{
type: "generated-image",
name: `edited-image.${format}`,
preview: `data:${mimeType};base64,${imageData}`,
mimeType,
},
];
},
);
}
this.syncActiveMessagesIfNeeded(targetConversationId);
}
this.syncActiveMessagesIfNeeded(targetConversationId);
}
},
);
},
);
}
} catch (error) {
console.error("Error editing image:", error);
this.handleStreamingError(
@@ -2491,6 +2585,49 @@ class AppStore {
throw error;
}
}
/**
* List all available traces
*/
async listTraces(): Promise<TraceListResponse> {
const response = await fetch("/v1/traces");
if (!response.ok) {
throw new Error(`Failed to list traces: ${response.status}`);
}
return (await response.json()) as TraceListResponse;
}
/**
* Check if a trace exists for a given task ID
*/
async checkTraceExists(taskId: string): Promise<boolean> {
try {
const response = await fetch(`/v1/traces/${encodeURIComponent(taskId)}`);
return response.ok;
} catch {
return false;
}
}
/**
* Get computed statistics for a task's trace
*/
async fetchTraceStats(taskId: string): Promise<TraceStatsResponse> {
const response = await fetch(
`/v1/traces/${encodeURIComponent(taskId)}/stats`,
);
if (!response.ok) {
throw new Error(`Failed to fetch trace stats: ${response.status}`);
}
return (await response.json()) as TraceStatsResponse;
}
/**
* Get the URL for the raw trace file (for Perfetto)
*/
getTraceRawUrl(taskId: string): string {
return `/v1/traces/${encodeURIComponent(taskId)}/raw`;
}
}
export const appStore = new AppStore();
@@ -2602,3 +2739,12 @@ export const startDownload = (nodeId: string, shardMetadata: object) =>
appStore.startDownload(nodeId, shardMetadata);
export const deleteDownload = (nodeId: string, modelId: string) =>
appStore.deleteDownload(nodeId, modelId);
// Trace actions
export const listTraces = () => appStore.listTraces();
export const checkTraceExists = (taskId: string) =>
appStore.checkTraceExists(taskId);
export const fetchTraceStats = (taskId: string) =>
appStore.fetchTraceStats(taskId);
export const getTraceRawUrl = (taskId: string) =>
appStore.getTraceRawUrl(taskId);

View File

@@ -0,0 +1,172 @@
<script lang="ts">
import { onMount } from "svelte";
import {
listTraces,
getTraceRawUrl,
type TraceListItem,
} from "$lib/stores/app.svelte";
import HeaderNav from "$lib/components/HeaderNav.svelte";
let traces = $state<TraceListItem[]>([]);
let loading = $state(true);
let error = $state<string | null>(null);
function formatBytes(bytes: number): string {
if (!bytes || bytes <= 0) return "0B";
const units = ["B", "KB", "MB", "GB"];
const i = Math.min(
Math.floor(Math.log(bytes) / Math.log(1024)),
units.length - 1,
);
const val = bytes / Math.pow(1024, i);
return `${val.toFixed(val >= 10 ? 0 : 1)}${units[i]}`;
}
function formatDate(isoString: string): string {
const date = new Date(isoString);
return date.toLocaleString();
}
async function openInPerfetto(taskId: string) {
// Fetch trace data from our local API
const response = await fetch(getTraceRawUrl(taskId));
const traceData = await response.arrayBuffer();
// Open Perfetto UI
const perfettoWindow = window.open("https://ui.perfetto.dev");
if (!perfettoWindow) {
alert("Failed to open Perfetto. Please allow popups.");
return;
}
// Wait for Perfetto to be ready, then send trace via postMessage
const onMessage = (e: MessageEvent) => {
if (e.data === "PONG") {
window.removeEventListener("message", onMessage);
perfettoWindow.postMessage(
{
perfetto: {
buffer: traceData,
title: `Trace ${taskId}`,
},
},
"https://ui.perfetto.dev",
);
}
};
window.addEventListener("message", onMessage);
// Ping Perfetto until it responds
const pingInterval = setInterval(() => {
perfettoWindow.postMessage("PING", "https://ui.perfetto.dev");
}, 50);
// Clean up after 10 seconds
setTimeout(() => {
clearInterval(pingInterval);
window.removeEventListener("message", onMessage);
}, 10000);
}
async function refresh() {
loading = true;
error = null;
try {
const response = await listTraces();
traces = response.traces;
} catch (e) {
error = e instanceof Error ? e.message : "Failed to load traces";
} finally {
loading = false;
}
}
onMount(() => {
refresh();
});
</script>
<div class="min-h-screen bg-exo-dark-gray text-white">
<HeaderNav showHome={true} />
<div class="max-w-7xl mx-auto px-4 lg:px-8 py-6 space-y-6">
<div class="flex items-center justify-between gap-4 flex-wrap">
<div>
<h1
class="text-2xl font-mono tracking-[0.2em] uppercase text-exo-yellow"
>
Traces
</h1>
</div>
<div class="flex items-center gap-3">
<button
type="button"
class="text-xs font-mono text-exo-light-gray hover:text-exo-yellow transition-colors uppercase border border-exo-medium-gray/40 px-2 py-1 rounded"
onclick={refresh}
disabled={loading}
>
Refresh
</button>
</div>
</div>
{#if loading}
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-6 text-center text-exo-light-gray"
>
<div class="text-sm">Loading traces...</div>
</div>
{:else if error}
<div
class="rounded border border-red-500/30 bg-red-500/10 p-6 text-center text-red-400"
>
<div class="text-sm">{error}</div>
</div>
{:else if traces.length === 0}
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-6 text-center text-exo-light-gray space-y-2"
>
<div class="text-sm">No traces found.</div>
<div class="text-xs text-exo-light-gray/70">
Run exo with EXO_TRACING_ENABLED=1 to collect traces.
</div>
</div>
{:else}
<div class="space-y-3">
{#each traces as trace}
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-4 flex items-center justify-between gap-4"
>
<div class="min-w-0 flex-1">
<a
href="#/traces/{trace.taskId}"
class="text-sm font-mono text-white hover:text-exo-yellow transition-colors truncate block"
>
{trace.taskId}
</a>
<div class="text-xs text-exo-light-gray font-mono mt-1">
{formatDate(trace.createdAt)} &bull; {formatBytes(
trace.fileSize,
)}
</div>
</div>
<div class="flex items-center gap-2 shrink-0">
<a
href="#/traces/{trace.taskId}"
class="text-xs font-mono text-exo-light-gray hover:text-exo-yellow transition-colors uppercase border border-exo-medium-gray/40 px-2 py-1 rounded"
>
View Stats
</a>
<button
type="button"
class="text-xs font-mono text-exo-dark-gray bg-exo-yellow hover:bg-exo-yellow/90 transition-colors uppercase px-2 py-1 rounded font-semibold"
onclick={() => openInPerfetto(trace.taskId)}
>
View Trace
</button>
</div>
</div>
{/each}
</div>
{/if}
</div>
</div>

View File

@@ -0,0 +1,347 @@
<script lang="ts">
import { page } from "$app/stores";
import { onMount } from "svelte";
import {
fetchTraceStats,
getTraceRawUrl,
type TraceStatsResponse,
type TraceCategoryStats,
} from "$lib/stores/app.svelte";
import HeaderNav from "$lib/components/HeaderNav.svelte";
const taskId = $derived($page.params.taskId);
let stats = $state<TraceStatsResponse | null>(null);
let loading = $state(true);
let error = $state<string | null>(null);
function formatDuration(us: number): string {
if (us < 1000) return `${us.toFixed(0)}us`;
if (us < 1_000_000) return `${(us / 1000).toFixed(2)}ms`;
return `${(us / 1_000_000).toFixed(2)}s`;
}
function formatPercentage(part: number, total: number): string {
if (total === 0) return "0.0%";
return `${((part / total) * 100).toFixed(1)}%`;
}
// Parse hierarchical categories like "sync/compute" into phases
type PhaseData = {
name: string;
subcategories: { name: string; stats: TraceCategoryStats }[];
totalUs: number; // From outer span (e.g., "sync" category)
stepCount: number; // Count of outer span events
};
function parsePhases(
byCategory: Record<string, TraceCategoryStats>,
): PhaseData[] {
const phases = new Map<
string,
{
subcats: Map<string, TraceCategoryStats>;
outerStats: TraceCategoryStats | null;
}
>();
for (const [category, catStats] of Object.entries(byCategory)) {
if (category.includes("/")) {
const [phase, subcat] = category.split("/", 2);
if (!phases.has(phase)) {
phases.set(phase, { subcats: new Map(), outerStats: null });
}
phases.get(phase)!.subcats.set(subcat, catStats);
} else {
// Outer span - this IS the phase total
if (!phases.has(category)) {
phases.set(category, { subcats: new Map(), outerStats: null });
}
phases.get(category)!.outerStats = catStats;
}
}
return Array.from(phases.entries())
.filter(([_, data]) => data.outerStats !== null) // Only phases with outer spans
.map(([name, data]) => ({
name,
subcategories: Array.from(data.subcats.entries())
.map(([subName, subStats]) => ({ name: subName, stats: subStats }))
.sort((a, b) => b.stats.totalUs - a.stats.totalUs),
totalUs: data.outerStats!.totalUs, // Outer span total
stepCount: data.outerStats!.count, // Number of steps
}))
.sort((a, b) => b.totalUs - a.totalUs);
}
async function openInPerfetto() {
if (!taskId) return;
// Fetch trace data from our local API
const response = await fetch(getTraceRawUrl(taskId));
const traceData = await response.arrayBuffer();
// Open Perfetto UI
const perfettoWindow = window.open("https://ui.perfetto.dev");
if (!perfettoWindow) {
alert("Failed to open Perfetto. Please allow popups.");
return;
}
// Wait for Perfetto to be ready, then send trace via postMessage
const onMessage = (e: MessageEvent) => {
if (e.data === "PONG") {
window.removeEventListener("message", onMessage);
perfettoWindow.postMessage(
{
perfetto: {
buffer: traceData,
title: `Trace ${taskId}`,
},
},
"https://ui.perfetto.dev",
);
}
};
window.addEventListener("message", onMessage);
// Ping Perfetto until it responds
const pingInterval = setInterval(() => {
perfettoWindow.postMessage("PING", "https://ui.perfetto.dev");
}, 50);
// Clean up after 10 seconds
setTimeout(() => {
clearInterval(pingInterval);
window.removeEventListener("message", onMessage);
}, 10000);
}
onMount(async () => {
if (!taskId) {
error = "No task ID provided";
loading = false;
return;
}
try {
stats = await fetchTraceStats(taskId);
} catch (e) {
error = e instanceof Error ? e.message : "Failed to load trace";
} finally {
loading = false;
}
});
const phases = $derived(stats ? parsePhases(stats.byCategory) : []);
const sortedRanks = $derived(
stats
? Object.keys(stats.byRank)
.map(Number)
.sort((a, b) => a - b)
: [],
);
const nodeCount = $derived(sortedRanks.length || 1);
</script>
<div class="min-h-screen bg-exo-dark-gray text-white">
<HeaderNav showHome={true} />
<div class="max-w-7xl mx-auto px-4 lg:px-8 py-6 space-y-6">
<div class="flex items-center justify-between gap-4 flex-wrap">
<div>
<h1
class="text-2xl font-mono tracking-[0.2em] uppercase text-exo-yellow"
>
Trace
</h1>
<p class="text-sm text-exo-light-gray font-mono truncate max-w-lg">
{taskId}
</p>
</div>
<div class="flex items-center gap-3">
<a
href="#/traces"
class="text-xs font-mono text-exo-light-gray hover:text-exo-yellow transition-colors uppercase border border-exo-medium-gray/40 px-3 py-1.5 rounded"
>
All Traces
</a>
<button
type="button"
class="text-xs font-mono text-exo-dark-gray bg-exo-yellow hover:bg-exo-yellow/90 transition-colors uppercase px-3 py-1.5 rounded font-semibold"
onclick={openInPerfetto}
disabled={loading || !!error}
>
View Trace
</button>
</div>
</div>
{#if loading}
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-6 text-center text-exo-light-gray"
>
<div class="text-sm">Loading trace data...</div>
</div>
{:else if error}
<div
class="rounded border border-red-500/30 bg-red-500/10 p-6 text-center text-red-400"
>
<div class="text-sm">{error}</div>
</div>
{:else if stats}
<!-- Wall Time Summary -->
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-4 space-y-2"
>
<h2
class="text-sm font-mono uppercase tracking-wider text-exo-light-gray"
>
Summary
</h2>
<div class="text-3xl font-mono text-exo-yellow">
{formatDuration(stats.totalWallTimeUs)}
</div>
<div class="text-xs text-exo-light-gray">Total wall time</div>
</div>
<!-- By Phase -->
{#if phases.length > 0}
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-4 space-y-4"
>
<h2
class="text-sm font-mono uppercase tracking-wider text-exo-light-gray"
>
By Phase <span class="text-exo-light-gray/50">(avg per node)</span>
</h2>
<div class="space-y-4">
{#each phases as phase}
{@const normalizedTotal = phase.totalUs / nodeCount}
{@const normalizedStepCount = phase.stepCount / nodeCount}
<div class="space-y-2">
<div class="flex items-center justify-between">
<span class="text-sm font-mono text-white">{phase.name}</span>
<span class="text-sm font-mono">
<span class="text-exo-yellow"
>{formatDuration(normalizedTotal)}</span
>
<span class="text-exo-light-gray ml-2">
({normalizedStepCount} steps, {formatDuration(
normalizedTotal / normalizedStepCount,
)}/step)
</span>
</span>
</div>
{#if phase.subcategories.length > 0}
<div class="pl-4 space-y-1.5">
{#each phase.subcategories as subcat}
{@const normalizedSubcat =
subcat.stats.totalUs / nodeCount}
{@const pct = formatPercentage(
normalizedSubcat,
normalizedTotal,
)}
{@const perStep = normalizedSubcat / normalizedStepCount}
<div
class="flex items-center justify-between text-xs font-mono"
>
<span class="text-exo-light-gray">{subcat.name}</span>
<span class="text-white">
{formatDuration(normalizedSubcat)}
<span class="text-exo-light-gray ml-2">({pct})</span>
<span class="text-exo-light-gray/60 ml-2"
>{formatDuration(perStep)}/step</span
>
</span>
</div>
<!-- Progress bar -->
<div
class="relative h-1.5 bg-exo-black/60 rounded-sm overflow-hidden"
>
<div
class="absolute inset-y-0 left-0 bg-gradient-to-r from-exo-yellow to-exo-yellow/70 transition-all duration-300"
style="width: {pct}"
></div>
</div>
{/each}
</div>
{/if}
</div>
{/each}
</div>
</div>
{/if}
<!-- By Rank -->
{#if sortedRanks.length > 0}
<div
class="rounded border border-exo-medium-gray/30 bg-exo-black/30 p-4 space-y-4"
>
<h2
class="text-sm font-mono uppercase tracking-wider text-exo-light-gray"
>
By Rank
</h2>
<div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-4">
{#each sortedRanks as rank}
{@const rankStats = stats.byRank[rank]}
{@const rankPhases = parsePhases(rankStats.byCategory)}
<div
class="rounded border border-exo-medium-gray/20 bg-exo-dark-gray/60 p-3 space-y-3"
>
<div class="text-sm font-mono text-exo-yellow">
Rank {rank}
</div>
<div class="space-y-2">
{#each rankPhases as phase}
<div class="space-y-1">
<div class="flex items-center justify-between text-xs">
<span class="font-mono text-exo-light-gray"
>{phase.name}</span
>
<span class="font-mono text-white">
{formatDuration(phase.totalUs)}
<span class="text-exo-light-gray/50 ml-1">
({phase.stepCount}x)
</span>
</span>
</div>
{#if phase.subcategories.length > 0}
<div class="pl-2 space-y-0.5">
{#each phase.subcategories as subcat}
{@const pct = formatPercentage(
subcat.stats.totalUs,
phase.totalUs,
)}
{@const perStep =
subcat.stats.totalUs / phase.stepCount}
<div
class="flex items-center justify-between text-[10px] font-mono"
>
<span class="text-exo-light-gray/70"
>{subcat.name}</span
>
<span class="text-exo-light-gray">
{formatDuration(subcat.stats.totalUs)}
<span class="text-exo-light-gray/50"
>({pct})</span
>
<span class="text-exo-light-gray/30 ml-1"
>{formatDuration(perStep)}/step</span
>
</span>
</div>
{/each}
</div>
{/if}
</div>
{/each}
</div>
</div>
{/each}
</div>
</div>
{/if}
{/if}
</div>
</div>

65
flake.lock generated
View File

@@ -21,7 +21,9 @@
"nixpkgs"
],
"purescript-overlay": "purescript-overlay",
"pyproject-nix": "pyproject-nix"
"pyproject-nix": [
"pyproject-nix"
]
},
"locked": {
"lastModified": 1765953015,
@@ -149,19 +151,44 @@
"type": "github"
}
},
"pyproject-build-systems": {
"inputs": {
"nixpkgs": [
"nixpkgs"
],
"pyproject-nix": [
"pyproject-nix"
],
"uv2nix": [
"uv2nix"
]
},
"locked": {
"lastModified": 1763662255,
"narHash": "sha256-4bocaOyLa3AfiS8KrWjZQYu+IAta05u3gYZzZ6zXbT0=",
"owner": "pyproject-nix",
"repo": "build-system-pkgs",
"rev": "042904167604c681a090c07eb6967b4dd4dae88c",
"type": "github"
},
"original": {
"owner": "pyproject-nix",
"repo": "build-system-pkgs",
"type": "github"
}
},
"pyproject-nix": {
"inputs": {
"nixpkgs": [
"dream2nix",
"nixpkgs"
]
},
"locked": {
"lastModified": 1763017646,
"narHash": "sha256-Z+R2lveIp6Skn1VPH3taQIuMhABg1IizJd8oVdmdHsQ=",
"lastModified": 1764134915,
"narHash": "sha256-xaKvtPx6YAnA3HQVp5LwyYG1MaN4LLehpQI8xEdBvBY=",
"owner": "pyproject-nix",
"repo": "pyproject.nix",
"rev": "47bd6f296502842643078d66128f7b5e5370790c",
"rev": "2c8df1383b32e5443c921f61224b198a2282a657",
"type": "github"
},
"original": {
@@ -178,7 +205,10 @@
"flake-parts": "flake-parts",
"nixpkgs": "nixpkgs",
"nixpkgs-swift": "nixpkgs-swift",
"treefmt-nix": "treefmt-nix"
"pyproject-build-systems": "pyproject-build-systems",
"pyproject-nix": "pyproject-nix",
"treefmt-nix": "treefmt-nix",
"uv2nix": "uv2nix"
}
},
"rust-analyzer-src": {
@@ -239,6 +269,29 @@
"repo": "treefmt-nix",
"type": "github"
}
},
"uv2nix": {
"inputs": {
"nixpkgs": [
"nixpkgs"
],
"pyproject-nix": [
"pyproject-nix"
]
},
"locked": {
"lastModified": 1767701098,
"narHash": "sha256-CJhKZnWb3gumR9oTRjFvCg/6lYTGbZRU7xtvcyWIRwU=",
"owner": "pyproject-nix",
"repo": "uv2nix",
"rev": "9d357f0d2ce6f5f35ec7959d7e704452352eb4da",
"type": "github"
},
"original": {
"owner": "pyproject-nix",
"repo": "uv2nix",
"type": "github"
}
}
},
"root": "root",

View File

@@ -24,6 +24,26 @@
dream2nix = {
url = "github:nix-community/dream2nix";
inputs.nixpkgs.follows = "nixpkgs";
inputs.pyproject-nix.follows = "pyproject-nix";
};
# Python packaging with uv2nix
pyproject-nix = {
url = "github:pyproject-nix/pyproject.nix";
inputs.nixpkgs.follows = "nixpkgs";
};
uv2nix = {
url = "github:pyproject-nix/uv2nix";
inputs.pyproject-nix.follows = "pyproject-nix";
inputs.nixpkgs.follows = "nixpkgs";
};
pyproject-build-systems = {
url = "github:pyproject-nix/build-system-pkgs";
inputs.pyproject-nix.follows = "pyproject-nix";
inputs.uv2nix.follows = "uv2nix";
inputs.nixpkgs.follows = "nixpkgs";
};
# Pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
@@ -48,6 +68,7 @@
inputs.treefmt-nix.flakeModule
./dashboard/parts.nix
./rust/parts.nix
./python/parts.nix
];
perSystem =
@@ -88,12 +109,6 @@
};
};
checks.lint = pkgs.runCommand "lint-check" { } ''
export RUFF_CACHE_DIR="$TMPDIR/ruff-cache"
${pkgs.ruff}/bin/ruff check ${inputs.self}/
touch $out
'';
packages = lib.optionalAttrs pkgs.stdenv.hostPlatform.isDarwin (
let
uvLock = builtins.fromTOML (builtins.readFile ./uv.lock);

View File

@@ -10,7 +10,6 @@ PROJECT_ROOT = Path.cwd()
SOURCE_ROOT = PROJECT_ROOT / "src"
ENTRYPOINT = SOURCE_ROOT / "exo" / "__main__.py"
DASHBOARD_DIR = PROJECT_ROOT / "dashboard" / "build"
RESOURCES_DIR = PROJECT_ROOT / "resources"
EXO_SHARED_MODELS_DIR = SOURCE_ROOT / "exo" / "shared" / "models"
if not ENTRYPOINT.is_file():
@@ -19,9 +18,6 @@ if not ENTRYPOINT.is_file():
if not DASHBOARD_DIR.is_dir():
raise SystemExit(f"Dashboard assets are missing: {DASHBOARD_DIR}")
if not RESOURCES_DIR.is_dir():
raise SystemExit(f"Resource assets are missing: {RESOURCES_DIR}")
if not EXO_SHARED_MODELS_DIR.is_dir():
raise SystemExit(f"Shared model assets are missing: {EXO_SHARED_MODELS_DIR}")
@@ -62,7 +58,6 @@ HIDDEN_IMPORTS = sorted(
DATAS: list[tuple[str, str]] = [
(str(DASHBOARD_DIR), "dashboard"),
(str(RESOURCES_DIR), "resources"),
(str(MLX_LIB_DIR), "mlx/lib"),
(str(EXO_SHARED_MODELS_DIR), "exo/shared/models"),
]

93
python/parts.nix Normal file
View File

@@ -0,0 +1,93 @@
{ inputs, ... }:
{
perSystem =
{ config, self', pkgs, lib, system, ... }:
let
# Load workspace from uv.lock
workspace = inputs.uv2nix.lib.workspace.loadWorkspace {
workspaceRoot = inputs.self;
};
# Create overlay from workspace
# Use wheels from PyPI for most packages; we override mlx with our pure Nix Metal build
overlay = workspace.mkPyprojectOverlay { sourcePreference = "wheel"; };
# Override overlay to inject Nix-built components
exoOverlay = final: prev: {
# Replace workspace exo_pyo3_bindings with Nix-built wheel
exo-pyo3-bindings = pkgs.stdenv.mkDerivation {
pname = "exo-pyo3-bindings";
version = "0.1.0";
src = self'.packages.exo_pyo3_bindings;
# Install from pre-built wheel
nativeBuildInputs = [ final.pyprojectWheelHook ];
dontStrip = true;
};
};
python = pkgs.python313;
# Overlay to provide build systems and custom packages
buildSystemsOverlay = final: prev: {
# Use our pure Nix-built MLX with Metal support
mlx = self'.packages.mlx;
# mlx-lm is a git dependency that needs setuptools
mlx-lm = prev.mlx-lm.overrideAttrs (old: {
nativeBuildInputs = (old.nativeBuildInputs or [ ]) ++ [
final.setuptools
];
});
};
pythonSet = (pkgs.callPackage inputs.pyproject-nix.build.packages {
inherit python;
}).overrideScope (
lib.composeManyExtensions [
inputs.pyproject-build-systems.overlays.default
overlay
exoOverlay
buildSystemsOverlay
]
);
exoVenv = pythonSet.mkVirtualEnv "exo-env" workspace.deps.default;
# Virtual environment with dev dependencies for testing
testVenv = pythonSet.mkVirtualEnv "exo-test-env" (
workspace.deps.default // {
exo = [ "dev" ]; # Include pytest, pytest-asyncio, pytest-env
}
);
exoPackage = pkgs.runCommand "exo"
{
nativeBuildInputs = [ pkgs.makeWrapper ];
}
''
mkdir -p $out/bin
# Create wrapper scripts
for script in exo exo-master exo-worker; do
makeWrapper ${exoVenv}/bin/$script $out/bin/$script \
--set DASHBOARD_DIR ${self'.packages.dashboard}
done
'';
in
{
# Python package only available on macOS (requires MLX/Metal)
packages = lib.optionalAttrs pkgs.stdenv.hostPlatform.isDarwin {
exo = exoPackage;
# Test environment for running pytest outside of Nix sandbox (needs GPU access)
exo-test-env = testVenv;
};
checks = {
# Ruff linting (works on all platforms)
lint = pkgs.runCommand "ruff-lint" { } ''
export RUFF_CACHE_DIR="$TMPDIR/ruff-cache"
${pkgs.ruff}/bin/ruff check ${inputs.self}/
touch $out
'';
};
};
}

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-Krea-dev-4bit"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 15475325472
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 5950704160
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-Krea-dev-8bit"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 21426029632
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 11901408320
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-Krea-dev"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 33327437952
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 23802816640
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-dev-4bit"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 15475325472
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 5950704160
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-dev-8bit"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 21426029632
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 11901408320
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-dev"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 33327437952
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 23802816640
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-schnell-4bit"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 15470210592
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 5945589280
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-schnell-8bit"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 21415799872
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 11891178560
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,45 +0,0 @@
model_id = "exolabs/FLUX.1-schnell"
n_layers = 57
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 33306978432
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 0
[[components]]
component_name = "text_encoder_2"
component_path = "text_encoder_2/"
n_layers = 24
can_shard = false
safetensors_index_filename = "model.safetensors.index.json"
[components.storage_size]
in_bytes = 9524621312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 57
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 23782357120
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,35 +0,0 @@
model_id = "exolabs/Qwen-Image-4bit"
n_layers = 60
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 26799533856
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 16584333312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 60
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 10215200544
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,35 +0,0 @@
model_id = "exolabs/Qwen-Image-8bit"
n_layers = 60
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 37014734400
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 16584333312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 60
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 20430401088
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,35 +0,0 @@
model_id = "exolabs/Qwen-Image-Edit-2509-4bit"
n_layers = 60
hidden_size = 1
supports_tensor = false
tasks = ["ImageToImage"]
[storage_size]
in_bytes = 26799533856
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 16584333312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 60
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 10215200544
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,35 +0,0 @@
model_id = "exolabs/Qwen-Image-Edit-2509-8bit"
n_layers = 60
hidden_size = 1
supports_tensor = false
tasks = ["ImageToImage"]
[storage_size]
in_bytes = 37014734400
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 16584333312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 60
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 20430401088
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,35 +0,0 @@
model_id = "exolabs/Qwen-Image-Edit-2509"
n_layers = 60
hidden_size = 1
supports_tensor = false
tasks = ["ImageToImage"]
[storage_size]
in_bytes = 57445135488
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 16584333312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 60
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 40860802176
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,35 +0,0 @@
model_id = "exolabs/Qwen-Image"
n_layers = 60
hidden_size = 1
supports_tensor = false
tasks = ["TextToImage"]
[storage_size]
in_bytes = 57445135488
[[components]]
component_name = "text_encoder"
component_path = "text_encoder/"
n_layers = 12
can_shard = false
[components.storage_size]
in_bytes = 16584333312
[[components]]
component_name = "transformer"
component_path = "transformer/"
n_layers = 60
can_shard = true
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
[components.storage_size]
in_bytes = 40860802176
[[components]]
component_name = "vae"
component_path = "vae/"
can_shard = false
[components.storage_size]
in_bytes = 0

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/DeepSeek-V3.1-4bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 405874409472

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/DeepSeek-V3.1-8bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 765577920512

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.5-Air-8bit"
n_layers = 46
hidden_size = 4096
supports_tensor = false
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 122406567936

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.5-Air-bf16"
n_layers = 46
hidden_size = 4096
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 229780750336

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-4bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 198556925568

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-6bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 286737579648

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-8bit-gs32"
n_layers = 91
hidden_size = 5120
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 396963397248

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-Flash-4bit"
n_layers = 47
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 19327352832

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-Flash-5bit"
n_layers = 47
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 22548578304

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-Flash-6bit"
n_layers = 47
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 26843545600

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/GLM-4.7-Flash-8bit"
n_layers = 47
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 34359738368

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 620622774272

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Kimi-K2-Thinking"
n_layers = 61
hidden_size = 7168
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 706522120192

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Kimi-K2.5"
n_layers = 61
hidden_size = 7168
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 662498705408

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
n_layers = 16
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 729808896

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
n_layers = 28
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 1863319552

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
n_layers = 28
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 3501195264

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 40652242944

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 76799803392

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 40652242944

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
n_layers = 32
hidden_size = 4096
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 4637851648

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
n_layers = 32
hidden_size = 4096
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 8954839040

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
n_layers = 32
hidden_size = 4096
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 16882073600

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/MiniMax-M2.1-3bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 100086644736

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/MiniMax-M2.1-8bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 242986745856

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-0.6B-4bit"
n_layers = 28
hidden_size = 1024
supports_tensor = false
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 342884352

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-0.6B-8bit"
n_layers = 28
hidden_size = 1024
supports_tensor = false
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 698351616

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
n_layers = 94
hidden_size = 4096
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 141733920768

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
n_layers = 94
hidden_size = 4096
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 268435456000

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 17612931072

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 33279705088

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
n_layers = 62
hidden_size = 6144
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 289910292480

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
n_layers = 62
hidden_size = 6144
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 579820584960

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 46976204800

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 88814387200

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 88814387200

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 88814387200

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
n_layers = 36
hidden_size = 2880
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 70652212224

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q8"
n_layers = 24
hidden_size = 2880
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 12025908224

View File

@@ -1,8 +0,0 @@
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
n_layers = 80
hidden_size = 8192
supports_tensor = true
tasks = ["TextGeneration"]
[storage_size]
in_bytes = 144383672320

View File

@@ -7,7 +7,7 @@ from loguru import logger
from exo.download.download_utils import RepoDownloadProgress, download_shard
from exo.download.shard_downloader import ShardDownloader
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
ShardMetadata,
@@ -21,7 +21,7 @@ def exo_shard_downloader(max_parallel_downloads: int = 8) -> ShardDownloader:
async def build_base_shard(model_id: ModelId) -> ShardMetadata:
model_card = await ModelCard.fetch_from_hf(model_id)
model_card = await ModelCard.load(model_id)
return PipelineShardMetadata(
model_card=model_card,
device_rank=0,
@@ -160,15 +160,14 @@ class ResumableShardDownloader(ShardDownloader):
# Kick off download status coroutines concurrently
tasks = [
asyncio.create_task(_status_for_model(model_card.model_id))
for model_card in await get_model_cards()
for model_card in MODEL_CARDS.values()
]
for task in asyncio.as_completed(tasks):
try:
yield await task
# TODO: except Exception
except Exception as e:
logger.error("Error downloading shard:", e)
logger.warning(f"Error downloading shard: {type(e).__name__}")
async def get_shard_download_status_for_shard(
self, shard: ShardMetadata

View File

@@ -3,7 +3,9 @@ import contextlib
import json
import time
from collections.abc import AsyncGenerator
from datetime import datetime, timezone
from http import HTTPStatus
from pathlib import Path
from typing import Annotated, Literal, cast
from uuid import uuid4
@@ -22,14 +24,18 @@ from loguru import logger
from exo.master.image_store import ImageStore
from exo.master.placement import place_instance as get_instance_placements
from exo.shared.apply import apply
from exo.shared.constants import DASHBOARD_DIR, EXO_IMAGE_CACHE_DIR, EXO_MAX_CHUNK_SIZE
from exo.shared.constants import (
EXO_IMAGE_CACHE_DIR,
EXO_MAX_CHUNK_SIZE,
)
from exo.shared.election import ElectionMessage
from exo.shared.logging import InterceptLogger
from exo.shared.models.model_cards import (
MODEL_CARDS,
ModelCard,
ModelId,
get_model_cards,
)
from exo.shared.tracing import compute_stats, load_trace_file
from exo.shared.types.api import (
AdvancedImageParams,
BenchChatCompletionResponse,
@@ -62,7 +68,16 @@ from exo.shared.types.api import (
StartDownloadParams,
StartDownloadResponse,
StreamingChoiceResponse,
StreamOptions,
ToolCall,
TraceCategoryStats,
TraceEventResponse,
TraceListItem,
TraceListResponse,
TraceRankStats,
TraceResponse,
TraceStatsResponse,
Usage,
)
from exo.shared.types.chunks import (
ErrorChunk,
@@ -101,6 +116,7 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
from exo.utils.banner import print_startup_banner
from exo.utils.channels import Receiver, Sender, channel
from exo.utils.dashboard_path import find_dashboard
from exo.utils.event_buffer import OrderedBuffer
@@ -109,7 +125,9 @@ def _format_to_content_type(image_format: Literal["png", "jpeg", "webp"] | None)
def chunk_to_response(
chunk: TokenChunk | ToolCallChunk, command_id: CommandId
chunk: TokenChunk | ToolCallChunk,
command_id: CommandId,
usage: Usage | None,
) -> ChatCompletionResponse:
return ChatCompletionResponse(
id=command_id,
@@ -134,6 +152,7 @@ def chunk_to_response(
finish_reason=chunk.finish_reason,
)
],
usage=usage,
)
@@ -174,7 +193,7 @@ class API:
self.app.mount(
"/",
StaticFiles(
directory=DASHBOARD_DIR,
directory=find_dashboard(),
html=True,
),
name="dashboard",
@@ -255,6 +274,10 @@ class API:
self.app.get("/events")(lambda: self._event_log)
self.app.post("/download/start")(self.start_download)
self.app.delete("/download/{node_id}/{model_id:path}")(self.delete_download)
self.app.get("/v1/traces")(self.list_traces)
self.app.get("/v1/traces/{task_id}")(self.get_trace)
self.app.get("/v1/traces/{task_id}/stats")(self.get_trace_stats)
self.app.get("/v1/traces/{task_id}/raw")(self.get_trace_raw)
async def place_instance(self, payload: PlaceInstanceParams):
command = PlaceInstance(
@@ -345,7 +368,10 @@ class API:
if len(list(self.state.topology.list_nodes())) == 0:
return PlacementPreviewResponse(previews=[])
model_card = await ModelCard.load(model_id)
cards = [card for card in MODEL_CARDS.values() if card.model_id == model_id]
if not cards:
raise HTTPException(status_code=404, detail=f"Model {model_id} not found")
instance_combinations: list[tuple[Sharding, InstanceMeta, int]] = []
for sharding in (Sharding.Pipeline, Sharding.Tensor):
for instance_meta in (InstanceMeta.MlxRing, InstanceMeta.MlxJaccl):
@@ -360,93 +386,96 @@ class API:
# TODO: PDD
# instance_combinations.append((Sharding.PrefillDecodeDisaggregation, InstanceMeta.MlxRing, 1))
for sharding, instance_meta, min_nodes in instance_combinations:
try:
placements = get_instance_placements(
PlaceInstance(
model_card=model_card,
sharding=sharding,
instance_meta=instance_meta,
min_nodes=min_nodes,
),
node_memory=self.state.node_memory,
node_network=self.state.node_network,
topology=self.state.topology,
current_instances=self.state.instances,
required_nodes=required_nodes,
)
except ValueError as exc:
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
previews.append(
PlacementPreview(
model_id=model_card.model_id,
for model_card in cards:
for sharding, instance_meta, min_nodes in instance_combinations:
try:
placements = get_instance_placements(
PlaceInstance(
model_card=model_card,
sharding=sharding,
instance_meta=instance_meta,
instance=None,
error=str(exc),
min_nodes=min_nodes,
),
node_memory=self.state.node_memory,
node_network=self.state.node_network,
topology=self.state.topology,
current_instances=self.state.instances,
required_nodes=required_nodes,
)
except ValueError as exc:
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
previews.append(
PlacementPreview(
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=None,
error=str(exc),
)
)
)
seen.add((model_card.model_id, sharding, instance_meta, 0))
continue
seen.add((model_card.model_id, sharding, instance_meta, 0))
continue
current_ids = set(self.state.instances.keys())
new_instances = [
instance
for instance_id, instance in placements.items()
if instance_id not in current_ids
]
current_ids = set(self.state.instances.keys())
new_instances = [
instance
for instance_id, instance in placements.items()
if instance_id not in current_ids
]
if len(new_instances) != 1:
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
previews.append(
PlacementPreview(
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=None,
error="Expected exactly one new instance from placement",
if len(new_instances) != 1:
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
previews.append(
PlacementPreview(
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=None,
error="Expected exactly one new instance from placement",
)
)
)
seen.add((model_card.model_id, sharding, instance_meta, 0))
continue
seen.add((model_card.model_id, sharding, instance_meta, 0))
continue
instance = new_instances[0]
shard_assignments = instance.shard_assignments
placement_node_ids = list(shard_assignments.node_to_runner.keys())
instance = new_instances[0]
shard_assignments = instance.shard_assignments
placement_node_ids = list(shard_assignments.node_to_runner.keys())
memory_delta_by_node: dict[str, int] = {}
if placement_node_ids:
total_bytes = model_card.storage_size.in_bytes
per_node = total_bytes // len(placement_node_ids)
remainder = total_bytes % len(placement_node_ids)
for index, node_id in enumerate(sorted(placement_node_ids, key=str)):
extra = 1 if index < remainder else 0
memory_delta_by_node[str(node_id)] = per_node + extra
memory_delta_by_node: dict[str, int] = {}
if placement_node_ids:
total_bytes = model_card.storage_size.in_bytes
per_node = total_bytes // len(placement_node_ids)
remainder = total_bytes % len(placement_node_ids)
for index, node_id in enumerate(
sorted(placement_node_ids, key=str)
):
extra = 1 if index < remainder else 0
memory_delta_by_node[str(node_id)] = per_node + extra
if (
model_card.model_id,
sharding,
instance_meta,
len(placement_node_ids),
) not in seen:
previews.append(
PlacementPreview(
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=instance,
memory_delta_by_node=memory_delta_by_node or None,
error=None,
)
)
seen.add(
(
if (
model_card.model_id,
sharding,
instance_meta,
len(placement_node_ids),
) not in seen:
previews.append(
PlacementPreview(
model_id=model_card.model_id,
sharding=sharding,
instance_meta=instance_meta,
instance=instance,
memory_delta_by_node=memory_delta_by_node or None,
error=None,
)
)
seen.add(
(
model_card.model_id,
sharding,
instance_meta,
len(placement_node_ids),
)
)
)
return PlacementPreviewResponse(previews=previews)
@@ -500,9 +529,10 @@ class API:
del self._chat_completion_queues[command_id]
async def _generate_chat_stream(
self, command_id: CommandId
self, command_id: CommandId, stream_options: StreamOptions | None = None
) -> AsyncGenerator[str, None]:
"""Generate chat completion stream as JSON strings."""
include_usage = stream_options.include_usage if stream_options else False
async for chunk in self._chat_chunk_stream(command_id):
assert not isinstance(chunk, ImageChunk)
@@ -518,8 +548,10 @@ class API:
yield "data: [DONE]\n\n"
return
usage = chunk.usage if include_usage else None
chunk_response: ChatCompletionResponse = chunk_to_response(
chunk, command_id
chunk, command_id, usage=usage
)
logger.debug(f"chunk_response: {chunk_response}")
@@ -535,8 +567,9 @@ class API:
text_parts: list[str] = []
tool_calls: list[ToolCall] = []
model: str | None = None
model: ModelId | None = None
finish_reason: FinishReason | None = None
usage: Usage | None = None
async for chunk in self._chat_chunk_stream(command_id):
if isinstance(chunk, ErrorChunk):
@@ -561,6 +594,9 @@ class API:
for i, tool in enumerate(chunk.tool_calls)
)
if chunk.usage is not None:
usage = chunk.usage
if chunk.finish_reason is not None:
finish_reason = chunk.finish_reason
@@ -582,6 +618,7 @@ class API:
finish_reason=finish_reason,
)
],
usage=usage,
)
async def _collect_chat_completion_with_stats(
@@ -589,7 +626,7 @@ class API:
) -> BenchChatCompletionResponse:
text_parts: list[str] = []
tool_calls: list[ToolCall] = []
model: str | None = None
model: ModelId | None = None
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
@@ -642,7 +679,7 @@ class API:
)
return resp
async def _trigger_notify_user_to_download_model(self, model_id: str) -> None:
async def _trigger_notify_user_to_download_model(self, model_id: ModelId) -> None:
logger.warning(
"TODO: we should send a notification to the user to download the model"
)
@@ -669,7 +706,7 @@ class API:
await self._send(command)
if payload.stream:
return StreamingResponse(
self._generate_chat_stream(command.command_id),
self._generate_chat_stream(command.command_id, payload.stream_options),
media_type="text/event-stream",
)
@@ -698,12 +735,12 @@ class API:
response = await self._collect_chat_completion_with_stats(command.command_id)
return response
async def _validate_image_model(self, model: str) -> ModelId:
async def _validate_image_model(self, model: ModelId) -> ModelId:
"""Validate model exists and return resolved model ID.
Raises HTTPException 404 if no instance is found for the model.
"""
model_card = await ModelCard.load(ModelId(model))
model_card = await ModelCard.load(model)
resolved_model = model_card.model_id
if not any(
instance.shard_assignments.model_id == resolved_model
@@ -749,7 +786,7 @@ class API:
When stream=True and partial_images > 0, returns a StreamingResponse
with SSE-formatted events for partial and final images.
"""
payload.model = await self._validate_image_model(payload.model)
payload.model = await self._validate_image_model(ModelId(payload.model))
command = ImageGeneration(
request_params=payload,
@@ -994,7 +1031,7 @@ class API:
async def bench_image_generations(
self, request: Request, payload: BenchImageGenerationTaskParams
) -> BenchImageGenerationResponse:
payload.model = await self._validate_image_model(payload.model)
payload.model = await self._validate_image_model(ModelId(payload.model))
payload.stream = False
payload.partial_images = 0
@@ -1015,7 +1052,7 @@ class API:
self,
image: UploadFile,
prompt: str,
model: str,
model: ModelId,
n: int,
size: str,
response_format: Literal["url", "b64_json"],
@@ -1110,7 +1147,7 @@ class API:
command = await self._send_image_edits_command(
image=image,
prompt=prompt,
model=model,
model=ModelId(model),
n=n,
size=size,
response_format=response_format,
@@ -1166,7 +1203,7 @@ class API:
command = await self._send_image_edits_command(
image=image,
prompt=prompt,
model=model,
model=ModelId(model),
n=n,
size=size,
response_format=response_format,
@@ -1209,7 +1246,7 @@ class API:
supports_tensor=card.supports_tensor,
tasks=[task.value for task in card.tasks],
)
for card in await get_model_cards()
for card in MODEL_CARDS.values()
]
)
@@ -1313,3 +1350,110 @@ class API:
)
await self._send_download(command)
return DeleteDownloadResponse(command_id=command.command_id)
def _get_traces_dir(self) -> Path:
return Path.home() / ".exo" / "traces"
def _get_trace_path(self, task_id: str) -> Path:
return self._get_traces_dir() / f"trace_{task_id}.json"
async def list_traces(self) -> TraceListResponse:
traces_dir = self._get_traces_dir()
traces: list[TraceListItem] = []
if not traces_dir.exists():
return TraceListResponse(traces=[])
for trace_file in sorted(
traces_dir.glob("trace_*.json"),
key=lambda p: p.stat().st_mtime,
reverse=True,
):
# Extract task_id from filename (trace_{task_id}.json)
task_id = trace_file.stem.removeprefix("trace_")
stat = trace_file.stat()
created_at = datetime.fromtimestamp(
stat.st_mtime, tz=timezone.utc
).isoformat()
traces.append(
TraceListItem(
task_id=task_id,
created_at=created_at,
file_size=stat.st_size,
)
)
return TraceListResponse(traces=traces)
async def get_trace(self, task_id: str) -> TraceResponse:
trace_path = self._get_trace_path(task_id)
if not trace_path.exists():
raise HTTPException(status_code=404, detail=f"Trace not found: {task_id}")
trace_events = load_trace_file(trace_path)
return TraceResponse(
task_id=task_id,
traces=[
TraceEventResponse(
name=event.name,
start_us=event.start_us,
duration_us=event.duration_us,
rank=event.rank,
category=event.category,
)
for event in trace_events
],
)
async def get_trace_stats(self, task_id: str) -> TraceStatsResponse:
trace_path = self._get_trace_path(task_id)
if not trace_path.exists():
raise HTTPException(status_code=404, detail=f"Trace not found: {task_id}")
trace_events = load_trace_file(trace_path)
stats = compute_stats(trace_events)
return TraceStatsResponse(
task_id=task_id,
total_wall_time_us=stats.total_wall_time_us,
by_category={
category: TraceCategoryStats(
total_us=cat_stats.total_us,
count=cat_stats.count,
min_us=cat_stats.min_us,
max_us=cat_stats.max_us,
avg_us=cat_stats.avg_us,
)
for category, cat_stats in stats.by_category.items()
},
by_rank={
rank: TraceRankStats(
by_category={
category: TraceCategoryStats(
total_us=cat_stats.total_us,
count=cat_stats.count,
min_us=cat_stats.min_us,
max_us=cat_stats.max_us,
avg_us=cat_stats.avg_us,
)
for category, cat_stats in rank_stats.items()
}
)
for rank, rank_stats in stats.by_rank.items()
},
)
async def get_trace_raw(self, task_id: str) -> FileResponse:
trace_path = self._get_trace_path(task_id)
if not trace_path.exists():
raise HTTPException(status_code=404, detail=f"Trace not found: {task_id}")
return FileResponse(
path=trace_path,
media_type="application/json",
filename=f"trace_{task_id}.json",
)

View File

@@ -1,4 +1,5 @@
from datetime import datetime, timedelta, timezone
from pathlib import Path
import anyio
from anyio.abc import TaskGroup
@@ -11,6 +12,7 @@ from exo.master.placement import (
place_instance,
)
from exo.shared.apply import apply
from exo.shared.tracing import TraceEvent, export_trace, is_tracing_enabled
from exo.shared.types.commands import (
ChatCompletion,
CreateInstance,
@@ -35,6 +37,8 @@ from exo.shared.types.events import (
NodeTimedOut,
TaskCreated,
TaskDeleted,
TraceEventData,
TracesCollected,
)
from exo.shared.types.state import State
from exo.shared.types.tasks import (
@@ -86,6 +90,8 @@ class Master:
self._multi_buffer = MultiSourceBuffer[NodeId, Event]()
# TODO: not have this
self._event_log: list[Event] = []
self._pending_traces: dict[TaskId, dict[int, list[TraceEventData]]] = {}
self._expected_ranks: dict[TaskId, set[int]] = {}
async def run(self):
logger.info("Starting Master")
@@ -187,13 +193,14 @@ class Master:
)
task_id = TaskId()
selected_instance_id = available_instance_ids[0]
generated_events.append(
TaskCreated(
task_id=task_id,
task=ImageGenerationTask(
task_id=task_id,
command_id=command.command_id,
instance_id=available_instance_ids[0],
instance_id=selected_instance_id,
task_status=TaskStatus.Pending,
task_params=command.request_params,
),
@@ -201,6 +208,17 @@ class Master:
)
self.command_task_mapping[command.command_id] = task_id
if is_tracing_enabled():
selected_instance = self.state.instances.get(
selected_instance_id
)
if selected_instance:
ranks = set(
shard.device_rank
for shard in selected_instance.shard_assignments.runner_to_shard.values()
)
self._expected_ranks[task_id] = ranks
case ImageEdits():
for instance in self.state.instances.values():
if (
@@ -229,13 +247,14 @@ class Master:
)
task_id = TaskId()
selected_instance_id = available_instance_ids[0]
generated_events.append(
TaskCreated(
task_id=task_id,
task=ImageEditsTask(
task_id=task_id,
command_id=command.command_id,
instance_id=available_instance_ids[0],
instance_id=selected_instance_id,
task_status=TaskStatus.Pending,
task_params=command.request_params,
),
@@ -243,6 +262,17 @@ class Master:
)
self.command_task_mapping[command.command_id] = task_id
if is_tracing_enabled():
selected_instance = self.state.instances.get(
selected_instance_id
)
if selected_instance:
ranks = set(
shard.device_rank
for shard in selected_instance.shard_assignments.runner_to_shard.values()
)
self._expected_ranks[task_id] = ranks
case DeleteInstance():
placement = delete_instance(command, self.state.instances)
transition_events = get_transition_events(
@@ -335,6 +365,10 @@ class Master:
local_event.origin,
)
for event in self._multi_buffer.drain():
if isinstance(event, TracesCollected):
self._handle_traces_collected(event)
continue
logger.debug(f"Master indexing event: {str(event)[:100]}")
indexed = IndexedEvent(event=event, idx=len(self._event_log))
self.state = apply(self.state, indexed)
@@ -373,3 +407,38 @@ class Master:
event=event.event,
)
)
def _handle_traces_collected(self, event: TracesCollected) -> None:
task_id = event.task_id
if task_id not in self._pending_traces:
self._pending_traces[task_id] = {}
self._pending_traces[task_id][event.rank] = event.traces
if (
task_id in self._expected_ranks
and set(self._pending_traces[task_id].keys())
>= self._expected_ranks[task_id]
):
self._merge_and_save_traces(task_id)
def _merge_and_save_traces(self, task_id: TaskId) -> None:
all_traces: list[TraceEvent] = []
for trace_data in self._pending_traces[task_id].values():
for t in trace_data:
all_traces.append(
TraceEvent(
name=t.name,
start_us=t.start_us,
duration_us=t.duration_us,
rank=t.rank,
category=t.category,
)
)
output_path = Path.home() / ".exo" / "traces" / f"trace_{task_id}.json"
export_trace(all_traces, output_path)
logger.info(f"Merged traces saved to {output_path}")
del self._pending_traces[task_id]
if task_id in self._expected_ranks:
del self._expected_ranks[task_id]

View File

@@ -216,6 +216,8 @@ def get_node_id_keypair(
Obtains the :class:`Keypair` associated with this node-ID.
Obtain the :class:`PeerId` by from it.
"""
# TODO(evan): bring back node id persistence once we figure out how to deal with duplicates
return Keypair.generate_ed25519()
def lock_path(path: str | bytes | PathLike[str] | PathLike[bytes]) -> Path:
return Path(str(path) + ".lock")

View File

@@ -25,6 +25,7 @@ from exo.shared.types.events import (
TestEvent,
TopologyEdgeCreated,
TopologyEdgeDeleted,
TracesCollected,
)
from exo.shared.types.profiling import (
NodeIdentity,
@@ -55,7 +56,11 @@ def event_apply(event: Event, state: State) -> State:
"""Apply an event to state."""
match event:
case (
TestEvent() | ChunkGenerated() | TaskAcknowledged() | InputChunkReceived()
TestEvent()
| ChunkGenerated()
| TaskAcknowledged()
| InputChunkReceived()
| TracesCollected()
): # Pass-through events that don't modify state
return state
case InstanceCreated():

View File

@@ -2,8 +2,6 @@ import os
import sys
from pathlib import Path
from exo.utils.dashboard_path import find_dashboard, find_resources
_EXO_HOME_ENV = os.environ.get("EXO_HOME", None)
@@ -33,14 +31,6 @@ EXO_MODELS_DIR = (
if _EXO_MODELS_DIR_ENV is None
else Path.home() / _EXO_MODELS_DIR_ENV
)
_RESOURCES_DIR_ENV = os.environ.get("EXO_RESOURCES_DIR", None)
RESOURCES_DIR = (
find_resources() if _RESOURCES_DIR_ENV is None else Path.home() / _RESOURCES_DIR_ENV
)
_DASHBOARD_DIR_ENV = os.environ.get("EXO_DASHBOARD_DIR", None)
DASHBOARD_DIR = (
find_dashboard() if _RESOURCES_DIR_ENV is None else Path.home() / _RESOURCES_DIR_ENV
)
# Log files (data/logs or cache)
EXO_LOG = EXO_CACHE_HOME / "exo.log"
@@ -63,3 +53,9 @@ EXO_IMAGE_CACHE_DIR = EXO_CACHE_HOME / "images"
EXO_ENABLE_IMAGE_MODELS = (
os.getenv("EXO_ENABLE_IMAGE_MODELS", "false").lower() == "true"
)
EXO_TRACING_ENABLED = os.getenv("EXO_TRACING_ENABLED", "").lower() in (
"1",
"true",
"yes",
)

View File

@@ -12,42 +12,16 @@ from pydantic import (
BaseModel,
Field,
PositiveInt,
ValidationError,
field_validator,
model_validator,
)
from tomlkit.exceptions import TOMLKitError
from exo.shared.constants import EXO_ENABLE_IMAGE_MODELS, RESOURCES_DIR
from exo.shared.constants import EXO_ENABLE_IMAGE_MODELS
from exo.shared.types.common import ModelId
from exo.shared.types.memory import Memory
from exo.utils.pydantic_ext import CamelCaseModel
# kinda ugly...
# TODO: load search path from config.toml
_csp = [Path(RESOURCES_DIR)]
if EXO_ENABLE_IMAGE_MODELS:
_csp.append(Path(RESOURCES_DIR) / "image_models")
CARD_SEARCH_PATH = _csp
_card_cache: dict[ModelId, "ModelCard"] = {}
async def _populate_card_cache():
for path in CARD_SEARCH_PATH:
async for toml_file in path.rglob("*.toml"):
try:
card = await ModelCard.load_from_path(toml_file)
_card_cache[card.model_id] = card
except (ValidationError, TOMLKitError):
pass
async def get_model_cards() -> list["ModelCard"]:
if len(_card_cache) == 0:
await _populate_card_cache()
return list(_card_cache.values())
_card_cache: dict[str, "ModelCard"] = {}
class ModelTask(str, Enum):
@@ -81,37 +55,28 @@ class ModelCard(CamelCaseModel):
async def save(self, path: Path) -> None:
async with await open_file(path, "w") as f:
py = self.model_dump(exclude_none=True)
py = self.model_dump()
data = tomlkit.dumps(py) # pyright: ignore[reportUnknownMemberType]
await f.write(data)
async def save_to_default_path(self):
await self.save(Path(RESOURCES_DIR) / (self.model_id.normalize() + ".toml"))
@staticmethod
async def load_from_path(path: Path) -> "ModelCard":
async with await open_file(path, "r") as f:
py = tomlkit.loads(await f.read())
return ModelCard.model_validate(py)
# Is it okay that model card.load defaults to network access if the card doesn't exist? do we want to be more explicit here?
@staticmethod
async def load(model_id: ModelId) -> "ModelCard":
if len(_card_cache) == 0:
await _populate_card_cache()
if (mc := _card_cache.get(model_id)) is not None:
return mc
return await ModelCard.fetch_from_hf(model_id)
for card in MODEL_CARDS.values():
if card.model_id == model_id:
return card
return await ModelCard.from_hf(model_id)
@staticmethod
async def fetch_from_hf(model_id: ModelId) -> "ModelCard":
async def from_hf(model_id: ModelId) -> "ModelCard":
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
if len(_card_cache) == 0:
await _populate_card_cache()
if (mc := _card_cache.get(model_id)) is not None:
return mc
# TODO: failure if files do not exist
config_data = await get_config_data(model_id)
num_layers = config_data.layer_count
mem_size_bytes = await get_safetensors_size(model_id)
@@ -124,13 +89,544 @@ class ModelCard(CamelCaseModel):
supports_tensor=config_data.supports_tensor,
tasks=[ModelTask.TextGeneration],
)
await mc.save_to_default_path()
_card_cache[model_id] = mc
return mc
# TODO: quantizing and dynamically creating model cards
def _generate_image_model_quant_variants( # pyright: ignore[reportUnusedFunction]
MODEL_CARDS: dict[str, ModelCard] = {
# deepseek v3
"deepseek-v3.1-4bit": ModelCard(
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
storage_size=Memory.from_gb(378),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"deepseek-v3.1-8bit": ModelCard(
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
storage_size=Memory.from_gb(713),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# kimi k2
"kimi-k2-instruct-4bit": ModelCard(
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
storage_size=Memory.from_gb(578),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"kimi-k2-thinking": ModelCard(
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
storage_size=Memory.from_gb(658),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"kimi-k2.5": ModelCard(
model_id=ModelId("mlx-community/Kimi-K2.5"),
storage_size=Memory.from_gb(617),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# llama-3.1
"llama-3.1-8b": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
storage_size=Memory.from_mb(4423),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.1-8b-8bit": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
storage_size=Memory.from_mb(8540),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.1-8b-bf16": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
storage_size=Memory.from_mb(16100),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.1-70b": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# llama-3.2
"llama-3.2-1b": ModelCard(
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
storage_size=Memory.from_mb(696),
n_layers=16,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.2-3b": ModelCard(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
storage_size=Memory.from_mb(1777),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.2-3b-8bit": ModelCard(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
storage_size=Memory.from_mb(3339),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# llama-3.3
"llama-3.3-70b": ModelCard(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.3-70b-8bit": ModelCard(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
storage_size=Memory.from_mb(73242),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"llama-3.3-70b-fp16": ModelCard(
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
storage_size=Memory.from_mb(137695),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# qwen3
"qwen3-0.6b": ModelCard(
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
storage_size=Memory.from_mb(327),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
tasks=[ModelTask.TextGeneration],
),
"qwen3-0.6b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
storage_size=Memory.from_mb(666),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
tasks=[ModelTask.TextGeneration],
),
"qwen3-30b": ModelCard(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
storage_size=Memory.from_mb(16797),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-30b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
storage_size=Memory.from_mb(31738),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-80b-a3B-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
storage_size=Memory.from_mb(44800),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-80b-a3B-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-80b-a3B-thinking-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-80b-a3B-thinking-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-235b-a22b-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
storage_size=Memory.from_gb(132),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-235b-a22b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
storage_size=Memory.from_gb(250),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-coder-480b-a35b-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
storage_size=Memory.from_gb(270),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"qwen3-coder-480b-a35b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
storage_size=Memory.from_gb(540),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# gpt-oss
"gpt-oss-120b-MXFP4-Q8": ModelCard(
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
storage_size=Memory.from_kb(68_996_301),
n_layers=36,
hidden_size=2880,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"gpt-oss-20b-MXFP4-Q8": ModelCard(
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
storage_size=Memory.from_kb(11_744_051),
n_layers=24,
hidden_size=2880,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# glm 4.5
"glm-4.5-air-8bit": ModelCard(
# Needs to be quantized g32 or g16 to work with tensor parallel
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
storage_size=Memory.from_gb(114),
n_layers=46,
hidden_size=4096,
supports_tensor=False,
tasks=[ModelTask.TextGeneration],
),
"glm-4.5-air-bf16": ModelCard(
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
storage_size=Memory.from_gb(214),
n_layers=46,
hidden_size=4096,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# glm 4.7
"glm-4.7-4bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
storage_size=Memory.from_bytes(198556925568),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"glm-4.7-6bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
storage_size=Memory.from_bytes(286737579648),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"glm-4.7-8bit-gs32": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
storage_size=Memory.from_bytes(396963397248),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# glm 4.7 flash
"glm-4.7-flash-4bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
storage_size=Memory.from_gb(18),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"glm-4.7-flash-5bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-Flash-5bit"),
storage_size=Memory.from_gb(21),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"glm-4.7-flash-6bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-Flash-6bit"),
storage_size=Memory.from_gb(25),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"glm-4.7-flash-8bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-Flash-8bit"),
storage_size=Memory.from_gb(32),
n_layers=47,
hidden_size=2048,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# minimax-m2
"minimax-m2.1-8bit": ModelCard(
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
storage_size=Memory.from_bytes(242986745856),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"minimax-m2.1-3bit": ModelCard(
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
storage_size=Memory.from_bytes(100086644736),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
}
_IMAGE_BASE_MODEL_CARDS: dict[str, ModelCard] = {
"flux1-schnell": ModelCard(
model_id=ModelId("exolabs/FLUX.1-schnell"),
storage_size=Memory.from_bytes(23782357120 + 9524621312),
n_layers=57,
hidden_size=1,
supports_tensor=False,
tasks=[ModelTask.TextToImage],
components=[
ComponentInfo(
component_name="text_encoder",
component_path="text_encoder/",
storage_size=Memory.from_kb(0),
n_layers=12,
can_shard=False,
safetensors_index_filename=None,
),
ComponentInfo(
component_name="text_encoder_2",
component_path="text_encoder_2/",
storage_size=Memory.from_bytes(9524621312),
n_layers=24,
can_shard=False,
safetensors_index_filename="model.safetensors.index.json",
),
ComponentInfo(
component_name="transformer",
component_path="transformer/",
storage_size=Memory.from_bytes(23782357120),
n_layers=57,
can_shard=True,
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
),
ComponentInfo(
component_name="vae",
component_path="vae/",
storage_size=Memory.from_kb(0),
n_layers=None,
can_shard=False,
safetensors_index_filename=None,
),
],
),
"flux1-dev": ModelCard(
model_id=ModelId("exolabs/FLUX.1-dev"),
storage_size=Memory.from_bytes(23782357120 + 9524621312),
n_layers=57,
hidden_size=1,
supports_tensor=False,
tasks=[ModelTask.TextToImage],
components=[
ComponentInfo(
component_name="text_encoder",
component_path="text_encoder/",
storage_size=Memory.from_kb(0),
n_layers=12,
can_shard=False,
safetensors_index_filename=None,
),
ComponentInfo(
component_name="text_encoder_2",
component_path="text_encoder_2/",
storage_size=Memory.from_bytes(9524621312),
n_layers=24,
can_shard=False,
safetensors_index_filename="model.safetensors.index.json",
),
ComponentInfo(
component_name="transformer",
component_path="transformer/",
storage_size=Memory.from_bytes(23802816640),
n_layers=57,
can_shard=True,
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
),
ComponentInfo(
component_name="vae",
component_path="vae/",
storage_size=Memory.from_kb(0),
n_layers=None,
can_shard=False,
safetensors_index_filename=None,
),
],
),
"flux1-krea-dev": ModelCard(
model_id=ModelId("exolabs/FLUX.1-Krea-dev"),
storage_size=Memory.from_bytes(23802816640 + 9524621312), # Same as dev
n_layers=57,
hidden_size=1,
supports_tensor=False,
tasks=[ModelTask.TextToImage],
components=[
ComponentInfo(
component_name="text_encoder",
component_path="text_encoder/",
storage_size=Memory.from_kb(0),
n_layers=12,
can_shard=False,
safetensors_index_filename=None,
),
ComponentInfo(
component_name="text_encoder_2",
component_path="text_encoder_2/",
storage_size=Memory.from_bytes(9524621312),
n_layers=24,
can_shard=False,
safetensors_index_filename="model.safetensors.index.json",
),
ComponentInfo(
component_name="transformer",
component_path="transformer/",
storage_size=Memory.from_bytes(23802816640),
n_layers=57,
can_shard=True,
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
),
ComponentInfo(
component_name="vae",
component_path="vae/",
storage_size=Memory.from_kb(0),
n_layers=None,
can_shard=False,
safetensors_index_filename=None,
),
],
),
"qwen-image": ModelCard(
model_id=ModelId("exolabs/Qwen-Image"),
storage_size=Memory.from_bytes(16584333312 + 40860802176),
n_layers=60,
hidden_size=1,
supports_tensor=False,
tasks=[ModelTask.TextToImage],
components=[
ComponentInfo(
component_name="text_encoder",
component_path="text_encoder/",
storage_size=Memory.from_bytes(16584333312),
n_layers=12,
can_shard=False,
safetensors_index_filename=None,
),
ComponentInfo(
component_name="transformer",
component_path="transformer/",
storage_size=Memory.from_bytes(40860802176),
n_layers=60,
can_shard=True,
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
),
ComponentInfo(
component_name="vae",
component_path="vae/",
storage_size=Memory.from_kb(0),
n_layers=None,
can_shard=False,
safetensors_index_filename=None,
),
],
),
"qwen-image-edit-2509": ModelCard(
model_id=ModelId("exolabs/Qwen-Image-Edit-2509"),
storage_size=Memory.from_bytes(16584333312 + 40860802176),
n_layers=60,
hidden_size=1,
supports_tensor=False,
tasks=[ModelTask.ImageToImage],
components=[
ComponentInfo(
component_name="text_encoder",
component_path="text_encoder/",
storage_size=Memory.from_bytes(16584333312),
n_layers=12,
can_shard=False,
safetensors_index_filename=None,
),
ComponentInfo(
component_name="transformer",
component_path="transformer/",
storage_size=Memory.from_bytes(40860802176),
n_layers=60,
can_shard=True,
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
),
ComponentInfo(
component_name="vae",
component_path="vae/",
storage_size=Memory.from_kb(0),
n_layers=None,
can_shard=False,
safetensors_index_filename=None,
),
],
),
}
def _generate_image_model_quant_variants(
base_name: str,
base_card: ModelCard,
) -> dict[str, ModelCard]:
@@ -210,6 +706,15 @@ def _generate_image_model_quant_variants( # pyright: ignore[reportUnusedFunctio
return variants
_image_model_cards: dict[str, ModelCard] = {}
for _base_name, _base_card in _IMAGE_BASE_MODEL_CARDS.items():
_image_model_cards |= _generate_image_model_quant_variants(_base_name, _base_card)
_IMAGE_MODEL_CARDS = _image_model_cards
if EXO_ENABLE_IMAGE_MODELS:
MODEL_CARDS.update(_IMAGE_MODEL_CARDS)
class ConfigData(BaseModel):
model_config = {"extra": "ignore"} # Allow unknown fields

View File

@@ -8,7 +8,7 @@ from multiprocessing.synchronize import Event as EventT
from multiprocessing.synchronize import Semaphore as SemaphoreT
from loguru import logger
from pytest import LogCaptureFixture
from pytest import LogCaptureFixture, mark
from exo.routing.router import get_node_id_keypair
from exo.shared.constants import EXO_NODE_ID_KEYPAIR
@@ -74,6 +74,7 @@ def _delete_if_exists(p: str | bytes | os.PathLike[str] | os.PathLike[bytes]):
os.remove(p)
@mark.skip(reason="this functionality is currently disabled but may return in future")
def test_node_id_fetching(caplog: LogCaptureFixture):
reps = 10

450
src/exo/shared/tracing.py Normal file
View File

@@ -0,0 +1,450 @@
from __future__ import annotations
import json
import logging
import time
from collections import defaultdict
from collections.abc import Generator
from contextlib import contextmanager
from contextvars import ContextVar
from dataclasses import dataclass, field
from pathlib import Path
from typing import cast, final
from exo.shared.constants import EXO_TRACING_ENABLED
logger = logging.getLogger(__name__)
# Context variable to track the current trace category for hierarchical nesting
_current_category: ContextVar[str | None] = ContextVar("current_category", default=None)
@final
@dataclass(frozen=True)
class TraceEvent:
name: str
start_us: int
duration_us: int
rank: int
category: str
@final
@dataclass
class CategoryStats:
total_us: int = 0
count: int = 0
min_us: int = 0
max_us: int = 0
def add(self, duration_us: int) -> None:
if self.count == 0:
self.min_us = duration_us
self.max_us = duration_us
else:
self.min_us = min(self.min_us, duration_us)
self.max_us = max(self.max_us, duration_us)
self.total_us += duration_us
self.count += 1
@property
def avg_us(self) -> float:
return self.total_us / self.count if self.count > 0 else 0.0
@final
@dataclass
class TraceStats:
total_wall_time_us: int = 0
by_category: dict[str, CategoryStats] = field(default_factory=dict)
by_rank: dict[int, dict[str, CategoryStats]] = field(default_factory=dict)
# Global trace buffer - each rank accumulates traces here
_trace_buffer: list[TraceEvent] = []
def is_tracing_enabled() -> bool:
"""Check if tracing is enabled via environment variable."""
return EXO_TRACING_ENABLED
def _record_span(
name: str, start_us: int, duration_us: int, rank: int, category: str
) -> None:
_trace_buffer.append(
TraceEvent(
name=name,
start_us=start_us,
duration_us=duration_us,
rank=rank,
category=category,
)
)
@contextmanager
def trace(
name: str,
rank: int,
category: str = "compute",
) -> Generator[None, None, None]:
"""Context manager to trace any operation.
Nested traces automatically inherit the parent category, creating hierarchical
categories like "sync/compute" or "async/comms".
Args:
name: Name of the operation (e.g., "recv 0", "send 1", "joint_blocks")
rank: This rank's ID
category: Category for grouping in trace viewer ("comm", "compute", "step")
Example:
with trace(f"sync {t}", rank, "sync"):
with trace("joint_blocks", rank, "compute"):
# Recorded with category "sync/compute"
hidden_states = some_computation(...)
"""
if not is_tracing_enabled():
yield
return
# Combine with parent category if nested
parent = _current_category.get()
full_category = f"{parent}/{category}" if parent else category
# Set as current for nested traces
token = _current_category.set(full_category)
try:
start_us = int(time.time() * 1_000_000)
start_perf = time.perf_counter()
yield
duration_us = int((time.perf_counter() - start_perf) * 1_000_000)
_record_span(name, start_us, duration_us, rank, full_category)
finally:
_current_category.reset(token)
def get_trace_buffer() -> list[TraceEvent]:
return list(_trace_buffer)
def clear_trace_buffer() -> None:
_trace_buffer.clear()
def export_trace(traces: list[TraceEvent], output_path: Path) -> None:
trace_events: list[dict[str, object]] = []
for event in traces:
# Chrome trace format uses "X" for complete events (with duration)
chrome_event: dict[str, object] = {
"name": event.name,
"cat": event.category,
"ph": "X",
"ts": event.start_us,
"dur": event.duration_us,
"pid": 0,
"tid": event.rank,
"args": {"rank": event.rank},
}
trace_events.append(chrome_event)
ranks_seen = set(t.rank for t in traces)
for rank in ranks_seen:
trace_events.append(
{
"name": "thread_name",
"ph": "M", # Metadata event
"pid": 0,
"tid": rank,
"args": {"name": f"Rank {rank}"},
}
)
chrome_trace = {"traceEvents": trace_events}
try:
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, "w") as f:
json.dump(chrome_trace, f, indent=2)
except OSError as e:
logger.warning("Failed to export trace to %s: %s", output_path, e)
def export_local_traces(rank: int) -> None:
if not is_tracing_enabled():
return
local_traces = get_trace_buffer()
if local_traces:
output_path = Path.home() / ".exo" / "traces" / f"trace_{rank}.json"
try:
export_trace(local_traces, output_path)
except Exception as e:
logger.warning("Failed to export local traces for rank %d: %s", rank, e)
clear_trace_buffer()
def merge_trace_files(trace_dir: Path | None = None) -> Path | None:
if trace_dir is None:
trace_dir = Path.home() / ".exo" / "traces"
if not trace_dir.exists():
return None
trace_files = sorted(trace_dir.glob("trace_*.json"))
if not trace_files:
return None
merged_events: list[dict[str, object]] = []
for trace_file in trace_files:
file_rank = int(trace_file.stem.split("_")[1])
with open(trace_file) as f:
raw = f.read()
data = cast(dict[str, list[dict[str, object]]], json.loads(raw))
events: list[dict[str, object]] = data.get("traceEvents", [])
for event in events:
event["tid"] = file_rank
if "args" in event and isinstance(event["args"], dict):
event["args"]["rank"] = file_rank
merged_events.extend(events)
output_path = Path.home() / ".exo" / "traces" / "merged_trace.json"
try:
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, "w") as f:
json.dump({"traceEvents": merged_events}, f, indent=2)
except OSError as e:
logger.warning("Failed to write merged trace to %s: %s", output_path, e)
return None
return output_path
def _format_duration(us: int | float) -> str:
if us < 1000:
return f"{us:.0f}µs"
elif us < 1_000_000:
return f"{us / 1000:.2f}ms"
else:
return f"{us / 1_000_000:.2f}s"
def load_trace_file(path: Path) -> list[TraceEvent]:
"""Load a Chrome Trace Format JSON file into TraceEvent objects."""
with open(path) as f:
data = cast(dict[str, list[dict[str, object]]], json.load(f))
events = data.get("traceEvents", [])
traces: list[TraceEvent] = []
for event in events:
# Skip metadata events
if event.get("ph") == "M":
continue
name = str(event.get("name", ""))
category = str(event.get("cat", ""))
ts_value = event.get("ts", 0)
dur_value = event.get("dur", 0)
tid_value = event.get("tid", 0)
start_us = int(ts_value) if isinstance(ts_value, (int, float, str)) else 0
duration_us = int(dur_value) if isinstance(dur_value, (int, float, str)) else 0
# Get rank from tid or args
rank = int(tid_value) if isinstance(tid_value, (int, float, str)) else 0
args = event.get("args")
if isinstance(args, dict):
args_dict = cast(dict[str, object], args)
rank_from_args = args_dict.get("rank")
if isinstance(rank_from_args, (int, float, str)):
rank = int(rank_from_args)
traces.append(
TraceEvent(
name=name,
start_us=start_us,
duration_us=duration_us,
rank=rank,
category=category,
)
)
return traces
def compute_stats(traces: list[TraceEvent]) -> TraceStats:
"""Compute comprehensive statistics from trace events."""
stats = TraceStats()
if not traces:
return stats
# Calculate wall time from earliest start to latest end
min_start = min(t.start_us for t in traces)
max_end = max(t.start_us + t.duration_us for t in traces)
stats.total_wall_time_us = max_end - min_start
# Initialize nested dicts
by_category: dict[str, CategoryStats] = defaultdict(CategoryStats)
by_rank: dict[int, dict[str, CategoryStats]] = defaultdict(
lambda: defaultdict(CategoryStats)
)
for event in traces:
# By category
by_category[event.category].add(event.duration_us)
# By rank and category
by_rank[event.rank][event.category].add(event.duration_us)
stats.by_category = dict(by_category)
stats.by_rank = {k: dict(v) for k, v in by_rank.items()}
return stats
def print_stats(stats: TraceStats) -> None:
"""Print formatted trace statistics."""
print("=== Trace Statistics ===")
print()
print(f"Wall Time: {_format_duration(stats.total_wall_time_us)}")
print()
# Parse hierarchical categories (e.g., "sync/compute" -> phase="sync", subcat="compute")
if stats.by_category:
phases: dict[str, dict[str, CategoryStats]] = defaultdict(dict)
has_hierarchical = False
for cat, cat_stats in stats.by_category.items():
if "/" in cat:
phase, subcat = cat.split("/", 1)
phases[phase][subcat] = cat_stats
has_hierarchical = True
else:
phases[cat]["_total"] = cat_stats
if has_hierarchical:
print("By Phase:")
for phase in sorted(phases.keys()):
subcats = phases[phase]
# Skip phases that only have _total (non-hierarchical top-level categories)
non_total_subcats = {k: v for k, v in subcats.items() if k != "_total"}
if not non_total_subcats:
continue
phase_total = sum(s.total_us for s in non_total_subcats.values())
print(f" {phase}:")
for subcat, subcat_stats in sorted(
non_total_subcats.items(),
key=lambda x: x[1].total_us,
reverse=True,
):
pct = (
subcat_stats.total_us / phase_total * 100 if phase_total else 0
)
# Use parent phase's step count for per-step average
phase_step_count = subcats.get("_total", CategoryStats()).count
if phase_step_count > 0:
avg_per_step = subcat_stats.total_us / phase_step_count
else:
avg_per_step = subcat_stats.avg_us # fallback
print(
f" {subcat:12s} {_format_duration(subcat_stats.total_us):>10s} "
f"({pct:5.1f}%) avg: {_format_duration(avg_per_step)}"
)
print()
else:
# Fall back to flat category display if no hierarchical categories
print("By Category:")
total_time = sum(c.total_us for c in stats.by_category.values())
for category, cat_stats in sorted(
stats.by_category.items(), key=lambda x: x[1].total_us, reverse=True
):
pct = (cat_stats.total_us / total_time * 100) if total_time > 0 else 0
print(
f" {category:12s} {_format_duration(cat_stats.total_us):>10s} "
f"({pct:5.1f}%) avg: {_format_duration(cat_stats.avg_us):>8s} "
f"count: {cat_stats.count}"
)
print()
# By Rank
if stats.by_rank:
print("By Rank:")
for rank in sorted(stats.by_rank.keys()):
rank_stats = stats.by_rank[rank]
print(f" Rank {rank}:")
# Parse hierarchical categories for this rank
rank_phases: dict[str, dict[str, CategoryStats]] = defaultdict(dict)
has_hierarchical = False
for cat, cat_stats in rank_stats.items():
if "/" in cat:
phase, subcat = cat.split("/", 1)
rank_phases[phase][subcat] = cat_stats
has_hierarchical = True
else:
rank_phases[cat]["_total"] = cat_stats
if has_hierarchical:
for phase in sorted(rank_phases.keys()):
subcats = rank_phases[phase]
non_total_subcats = {
k: v for k, v in subcats.items() if k != "_total"
}
if not non_total_subcats:
continue
phase_total = sum(s.total_us for s in non_total_subcats.values())
print(f" {phase}:")
for subcat, subcat_stats in sorted(
non_total_subcats.items(),
key=lambda x: x[1].total_us,
reverse=True,
):
pct = (
subcat_stats.total_us / phase_total * 100
if phase_total
else 0
)
# Use parent phase's step count for per-step average
phase_step_count = subcats.get("_total", CategoryStats()).count
if phase_step_count > 0:
avg_per_step = subcat_stats.total_us / phase_step_count
else:
avg_per_step = subcat_stats.avg_us # fallback
print(
f" {subcat:12s} {_format_duration(subcat_stats.total_us):>10s} "
f"({pct:5.1f}%) avg: {_format_duration(avg_per_step)}"
)
else:
# Flat display fallback
for category, cat_stats in sorted(
rank_stats.items(), key=lambda x: x[1].total_us, reverse=True
):
print(f" {category}: {_format_duration(cat_stats.total_us)}")
print()
if __name__ == "__main__":
import sys
path = Path(sys.argv[1]) if len(sys.argv) > 1 else Path("trace.json")
if not path.exists():
print(f"Error: File not found: {path}")
sys.exit(1)
traces = load_trace_file(path)
if not traces:
print("No trace events found in file.")
sys.exit(0)
computed_stats = compute_stats(traces)
print_stats(computed_stats)

View File

@@ -11,7 +11,7 @@ from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding, ShardMetadata
from exo.utils.pydantic_ext import CamelCaseModel
from exo.utils.pydantic_ext import CamelCaseModel, ConfigDict, TaggedModel
FinishReason = Literal[
"stop", "length", "tool_calls", "content_filter", "function_call", "error"
@@ -116,8 +116,8 @@ class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: PromptTokensDetails | None = None
completion_tokens_details: CompletionTokensDetails | None = None
prompt_tokens_details: PromptTokensDetails
completion_tokens_details: CompletionTokensDetails
class StreamingChoiceResponse(BaseModel):
@@ -170,7 +170,13 @@ class BenchChatCompletionResponse(ChatCompletionResponse):
generation_stats: GenerationStats | None = None
class ChatCompletionTaskParams(BaseModel):
class StreamOptions(BaseModel):
include_usage: bool = False
class ChatCompletionTaskParams(TaggedModel):
model_config = ConfigDict(extra="ignore")
model: str
frequency_penalty: float | None = None
messages: list[ChatCompletionMessage]
@@ -184,6 +190,7 @@ class ChatCompletionTaskParams(BaseModel):
seed: int | None = None
stop: str | list[str] | None = None
stream: bool = False
stream_options: StreamOptions | None = None
temperature: float | None = None
top_p: float | None = None
tools: list[dict[str, Any]] | None = None
@@ -366,3 +373,45 @@ class StartDownloadResponse(CamelCaseModel):
class DeleteDownloadResponse(CamelCaseModel):
command_id: CommandId
class TraceEventResponse(CamelCaseModel):
name: str
start_us: int
duration_us: int
rank: int
category: str
class TraceResponse(CamelCaseModel):
task_id: str
traces: list[TraceEventResponse]
class TraceCategoryStats(CamelCaseModel):
total_us: int
count: int
min_us: int
max_us: int
avg_us: float
class TraceRankStats(CamelCaseModel):
by_category: dict[str, TraceCategoryStats]
class TraceStatsResponse(CamelCaseModel):
task_id: str
total_wall_time_us: int
by_category: dict[str, TraceCategoryStats]
by_rank: dict[int, TraceRankStats]
class TraceListItem(CamelCaseModel):
task_id: str
created_at: str
file_size: int
class TraceListResponse(CamelCaseModel):
traces: list[TraceListItem]

View File

@@ -2,7 +2,7 @@ from collections.abc import Generator
from typing import Any, Literal
from exo.shared.models.model_cards import ModelId
from exo.shared.types.api import GenerationStats, ImageGenerationStats
from exo.shared.types.api import GenerationStats, ImageGenerationStats, Usage
from exo.utils.pydantic_ext import TaggedModel
from .api import FinishReason
@@ -17,6 +17,7 @@ class BaseChunk(TaggedModel):
class TokenChunk(BaseChunk):
text: str
token_id: int
usage: Usage | None
finish_reason: Literal["stop", "length", "content_filter"] | None = None
stats: GenerationStats | None = None
@@ -28,6 +29,7 @@ class ErrorChunk(BaseChunk):
class ToolCallChunk(BaseChunk):
tool_calls: list[ToolCallItem]
usage: Usage | None
finish_reason: Literal["tool_calls"] = "tool_calls"
stats: GenerationStats | None = None

View File

@@ -2,6 +2,7 @@ from pydantic import Field
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.api import (
BenchChatCompletionTaskParams,
ChatCompletionTaskParams,
ImageEditsInternalParams,
ImageGenerationTaskParams,
@@ -22,7 +23,7 @@ class TestCommand(BaseCommand):
class ChatCompletion(BaseCommand):
request_params: ChatCompletionTaskParams
request_params: ChatCompletionTaskParams | BenchChatCompletionTaskParams
class ImageGeneration(BaseCommand):

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import final
from pydantic import Field
@@ -10,7 +11,7 @@ from exo.shared.types.worker.downloads import DownloadProgress
from exo.shared.types.worker.instances import Instance, InstanceId
from exo.shared.types.worker.runners import RunnerId, RunnerStatus
from exo.utils.info_gatherer.info_gatherer import GatheredInfo
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
from exo.utils.pydantic_ext import CamelCaseModel, FrozenModel, TaggedModel
class EventId(Id):
@@ -109,6 +110,22 @@ class TopologyEdgeDeleted(BaseEvent):
conn: Connection
@final
class TraceEventData(FrozenModel):
name: str
start_us: int
duration_us: int
rank: int
category: str
@final
class TracesCollected(BaseEvent):
task_id: TaskId
rank: int
traces: list[TraceEventData]
Event = (
TestEvent
| TaskCreated
@@ -127,6 +144,7 @@ Event = (
| InputChunkReceived
| TopologyEdgeCreated
| TopologyEdgeDeleted
| TracesCollected
)

View File

@@ -3,6 +3,7 @@ from enum import Enum
from pydantic import Field
from exo.shared.types.api import (
BenchChatCompletionTaskParams,
ChatCompletionTaskParams,
ImageEditsInternalParams,
ImageGenerationTaskParams,
@@ -54,7 +55,7 @@ class StartWarmup(BaseTask): # emitted by Worker
class ChatCompletion(BaseTask): # emitted by Master
command_id: CommandId
task_params: ChatCompletionTaskParams
task_params: ChatCompletionTaskParams | BenchChatCompletionTaskParams
error_type: str | None = Field(default=None)
error_message: str | None = Field(default=None)

View File

@@ -6,6 +6,7 @@ from exo.shared.types.api import (
GenerationStats,
ImageGenerationStats,
ToolCallItem,
Usage,
)
from exo.utils.pydantic_ext import TaggedModel
@@ -24,6 +25,7 @@ class GenerationResponse(BaseRunnerResponse):
# logprobs: list[float] | None = None # too big. we can change to be top-k
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
usage: Usage | None
class ImageGenerationResponse(BaseRunnerResponse):
@@ -57,6 +59,7 @@ class PartialImageResponse(BaseRunnerResponse):
class ToolCallResponse(BaseRunnerResponse):
tool_calls: list[ToolCallItem]
usage: Usage | None
class FinishedResponse(BaseRunnerResponse):

View File

@@ -1,45 +1,31 @@
import os
import sys
from pathlib import Path
from typing import cast
def find_resources() -> Path:
resources = _find_resources_in_repo() or _find_resources_in_bundle()
if resources is None:
raise FileNotFoundError(
"Unable to locate resources. Did you clone the repo properly?"
)
return resources
def _find_resources_in_repo() -> Path | None:
current_module = Path(__file__).resolve()
for parent in current_module.parents:
build = parent / "resources"
if build.is_dir():
return build
return None
def _find_resources_in_bundle() -> Path | None:
frozen_root = cast(str | None, getattr(sys, "_MEIPASS", None))
if frozen_root is None:
return None
candidate = Path(frozen_root) / "resources"
if candidate.is_dir():
return candidate
return None
def find_dashboard() -> Path:
dashboard = _find_dashboard_in_repo() or _find_dashboard_in_bundle()
dashboard = (
_find_dashboard_in_env()
or _find_dashboard_in_repo()
or _find_dashboard_in_bundle()
)
if not dashboard:
raise FileNotFoundError(
"Unable to locate dashboard assets - you probably forgot to run `cd dashboard && npm install && npm run build && cd ..`"
"Unable to locate dashboard assets - make sure the dashboard has been built, or export DASHBOARD_DIR if you've built the dashboard elsewhere."
)
return dashboard
def _find_dashboard_in_env() -> Path | None:
env = os.environ.get("DASHBOARD_DIR")
if not env:
return None
resolved_env = Path(env).expanduser().resolve()
return resolved_env
def _find_dashboard_in_repo() -> Path | None:
current_module = Path(__file__).resolve()
for parent in current_module.parents:

View File

@@ -98,8 +98,8 @@ def generate_image(
partial_images = (
task.partial_images
if task.partial_images is not None
else (3 if task.stream else 0)
if task.partial_images is not None and task.stream is not None and task.stream
else 0
)
image_path: Path | None = None

View File

@@ -6,6 +6,11 @@ from mflux.models.common.config.config import Config
from mflux.utils.exceptions import StopImageGenerationException
from tqdm import tqdm
from exo.shared.tracing import (
clear_trace_buffer,
is_tracing_enabled,
trace,
)
from exo.shared.types.worker.shards import PipelineShardMetadata
from exo.worker.engines.image.config import ImageModelConfig
from exo.worker.engines.image.models.base import (
@@ -324,6 +329,7 @@ class DiffusionRunner:
capture_steps = set()
self._reset_all_caches()
clear_trace_buffer()
time_steps = tqdm(range(runtime_config.num_inference_steps))
@@ -348,6 +354,7 @@ class DiffusionRunner:
ctx.in_loop( # pyright: ignore[reportAny]
t=t,
latents=latents,
time_steps=time_steps,
)
mx.eval(latents)
@@ -464,20 +471,22 @@ class DiffusionRunner:
if self.group is None:
return self._single_node_step(t, config, latents, prompt_data)
elif t < config.init_time_step + num_sync_steps:
return self._sync_pipeline_step(
t,
config,
latents,
prompt_data,
)
with trace(name=f"sync {t}", rank=self.rank, category="sync"):
return self._sync_pipeline_step(
t,
config,
latents,
prompt_data,
)
else:
return self._async_pipeline_step(
t,
config,
latents,
prompt_data,
is_first_async_step=t == config.init_time_step + num_sync_steps,
)
with trace(name=f"async {t}", rank=self.rank, category="async"):
return self._async_pipeline_step(
t,
config,
latents,
prompt_data,
is_first_async_step=t == config.init_time_step + num_sync_steps,
)
def _single_node_step(
self,
@@ -585,30 +594,41 @@ class DiffusionRunner:
if self.has_joint_blocks:
if not self.is_first_stage:
hidden_states = mx.distributed.recv(
(batch_size, num_img_tokens, hidden_dim),
dtype,
self.prev_rank,
group=self.group,
)
encoder_hidden_states = mx.distributed.recv(
(batch_size, text_seq_len, hidden_dim),
dtype,
self.prev_rank,
group=self.group,
)
mx.eval(hidden_states, encoder_hidden_states)
with trace(
name=f"recv {self.prev_rank}", rank=self.rank, category="comms"
):
hidden_states = mx.distributed.recv(
(batch_size, num_img_tokens, hidden_dim),
dtype,
self.prev_rank,
group=self.group,
)
encoder_hidden_states = mx.distributed.recv(
(batch_size, text_seq_len, hidden_dim),
dtype,
self.prev_rank,
group=self.group,
)
mx.eval(hidden_states, encoder_hidden_states)
assert self.joint_block_wrappers is not None
assert encoder_hidden_states is not None
for wrapper in self.joint_block_wrappers:
wrapper.set_patch(BlockWrapperMode.CACHING)
encoder_hidden_states, hidden_states = wrapper(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
with trace(
name="joint_blocks",
rank=self.rank,
category="compute",
):
for wrapper in self.joint_block_wrappers:
wrapper.set_patch(BlockWrapperMode.CACHING)
encoder_hidden_states, hidden_states = wrapper(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
if is_tracing_enabled():
mx.eval(encoder_hidden_states, hidden_states)
if self.owns_concat_stage:
assert encoder_hidden_states is not None
@@ -619,45 +639,63 @@ class DiffusionRunner:
if self.has_single_blocks or self.is_last_stage:
hidden_states = concatenated
else:
concatenated = mx.distributed.send(
concatenated, self.next_rank, group=self.group
)
mx.async_eval(concatenated)
with trace(
name=f"send {self.next_rank}", rank=self.rank, category="comms"
):
concatenated = mx.distributed.send(
concatenated, self.next_rank, group=self.group
)
mx.async_eval(concatenated)
elif self.has_joint_blocks and not self.is_last_stage:
assert encoder_hidden_states is not None
hidden_states = mx.distributed.send(
hidden_states, self.next_rank, group=self.group
)
encoder_hidden_states = mx.distributed.send(
encoder_hidden_states, self.next_rank, group=self.group
)
mx.async_eval(hidden_states, encoder_hidden_states)
if self.has_single_blocks:
if not self.owns_concat_stage and not self.is_first_stage:
hidden_states = mx.distributed.recv(
(batch_size, text_seq_len + num_img_tokens, hidden_dim),
dtype,
self.prev_rank,
group=self.group,
)
mx.eval(hidden_states)
assert self.single_block_wrappers is not None
for wrapper in self.single_block_wrappers:
wrapper.set_patch(BlockWrapperMode.CACHING)
hidden_states = wrapper(
hidden_states=hidden_states,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
if not self.is_last_stage:
with trace(name=f"send {self.next_rank}", rank=self.rank, category="comms"):
hidden_states = mx.distributed.send(
hidden_states, self.next_rank, group=self.group
)
mx.async_eval(hidden_states)
encoder_hidden_states = mx.distributed.send(
encoder_hidden_states, self.next_rank, group=self.group
)
mx.async_eval(hidden_states, encoder_hidden_states)
if self.has_single_blocks:
if not self.owns_concat_stage and not self.is_first_stage:
with trace(
name=f"recv {self.prev_rank}", rank=self.rank, category="comms"
):
hidden_states = mx.distributed.recv(
(batch_size, text_seq_len + num_img_tokens, hidden_dim),
dtype,
self.prev_rank,
group=self.group,
)
mx.eval(hidden_states)
assert self.single_block_wrappers is not None
with trace(
name="single blocks",
rank=self.rank,
category="compute",
):
for wrapper in self.single_block_wrappers:
wrapper.set_patch(BlockWrapperMode.CACHING)
hidden_states = wrapper(
hidden_states=hidden_states,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
if is_tracing_enabled():
mx.eval(hidden_states)
if not self.is_last_stage:
with trace(
name=f"send {self.next_rank}", rank=self.rank, category="comms"
):
hidden_states = mx.distributed.send(
hidden_states, self.next_rank, group=self.group
)
mx.async_eval(hidden_states)
hidden_states = hidden_states[:, text_seq_len:, ...]
@@ -741,14 +779,20 @@ class DiffusionRunner:
)
if not self.is_first_stage:
hidden_states = mx.distributed.send(hidden_states, 0, group=self.group)
mx.async_eval(hidden_states)
with trace(name="send 0", rank=self.rank, category="comms"):
hidden_states = mx.distributed.send(
hidden_states, 0, group=self.group
)
mx.async_eval(hidden_states)
elif self.is_first_stage:
hidden_states = mx.distributed.recv_like(
prev_latents, src=self.world_size - 1, group=self.group
)
mx.eval(hidden_states)
with trace(
name=f"recv {self.world_size - 1}", rank=self.rank, category="comms"
):
hidden_states = mx.distributed.recv_like(
prev_latents, src=self.world_size - 1, group=self.group
)
mx.eval(hidden_states)
else:
hidden_states = prev_latents
@@ -808,10 +852,13 @@ class DiffusionRunner:
and not self.is_last_stage
and not is_first_async_step
):
patch = mx.distributed.recv_like(
patch, src=self.prev_rank, group=self.group
)
mx.eval(patch)
with trace(
name=f"recv {self.prev_rank}", rank=self.rank, category="comms"
):
patch = mx.distributed.recv_like(
patch, src=self.prev_rank, group=self.group
)
mx.eval(patch)
step_patch = mx.concatenate([patch, patch], axis=0) if needs_cfg else patch
@@ -842,10 +889,13 @@ class DiffusionRunner:
)
if not self.is_first_stage and t != config.num_inference_steps - 1:
patch_latents[patch_idx] = mx.distributed.send(
patch_latents[patch_idx], self.next_rank, group=self.group
)
mx.async_eval(patch_latents[patch_idx])
with trace(
name=f"send {self.next_rank}", rank=self.rank, category="comms"
):
patch_latents[patch_idx] = mx.distributed.send(
patch_latents[patch_idx], self.next_rank, group=self.group
)
mx.async_eval(patch_latents[patch_idx])
return mx.concatenate(patch_latents, axis=1)
@@ -884,22 +934,28 @@ class DiffusionRunner:
if self.has_joint_blocks:
if not self.is_first_stage:
patch_len = patch.shape[1]
patch = mx.distributed.recv(
(batch_size, patch_len, hidden_dim),
patch.dtype,
self.prev_rank,
group=self.group,
)
mx.eval(patch)
if patch_idx == 0:
encoder_hidden_states = mx.distributed.recv(
(batch_size, text_seq_len, hidden_dim),
with trace(
name=f"recv {self.prev_rank}", rank=self.rank, category="comms"
):
patch = mx.distributed.recv(
(batch_size, patch_len, hidden_dim),
patch.dtype,
self.prev_rank,
group=self.group,
)
mx.eval(encoder_hidden_states)
mx.eval(patch)
if patch_idx == 0:
with trace(
name=f"recv {self.prev_rank}", rank=self.rank, category="comms"
):
encoder_hidden_states = mx.distributed.recv(
(batch_size, text_seq_len, hidden_dim),
patch.dtype,
self.prev_rank,
group=self.group,
)
mx.eval(encoder_hidden_states)
if self.is_first_stage:
patch, encoder_hidden_states = self.adapter.compute_embeddings(
@@ -908,14 +964,22 @@ class DiffusionRunner:
assert self.joint_block_wrappers is not None
assert encoder_hidden_states is not None
for wrapper in self.joint_block_wrappers:
wrapper.set_patch(BlockWrapperMode.PATCHED, start_token, end_token)
encoder_hidden_states, patch = wrapper(
hidden_states=patch,
encoder_hidden_states=encoder_hidden_states,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
with trace(
name=f"joint patch {patch_idx}",
rank=self.rank,
category="compute",
):
for wrapper in self.joint_block_wrappers:
wrapper.set_patch(BlockWrapperMode.PATCHED, start_token, end_token)
encoder_hidden_states, patch = wrapper(
hidden_states=patch,
encoder_hidden_states=encoder_hidden_states,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
if is_tracing_enabled():
mx.eval(encoder_hidden_states, patch)
if self.owns_concat_stage:
assert encoder_hidden_states is not None
@@ -924,49 +988,70 @@ class DiffusionRunner:
if self.has_single_blocks or self.is_last_stage:
patch = patch_concat
else:
patch_concat = mx.distributed.send(
patch_concat, self.next_rank, group=self.group
)
mx.async_eval(patch_concat)
with trace(
name=f"send {self.next_rank}", rank=self.rank, category="comms"
):
patch_concat = mx.distributed.send(
patch_concat, self.next_rank, group=self.group
)
mx.async_eval(patch_concat)
elif self.has_joint_blocks and not self.is_last_stage:
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
mx.async_eval(patch)
with trace(name=f"send {self.next_rank}", rank=self.rank, category="comms"):
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
mx.async_eval(patch)
if patch_idx == 0:
assert encoder_hidden_states is not None
encoder_hidden_states = mx.distributed.send(
encoder_hidden_states, self.next_rank, group=self.group
)
mx.async_eval(encoder_hidden_states)
with trace(
name=f"send {self.next_rank}", rank=self.rank, category="comms"
):
encoder_hidden_states = mx.distributed.send(
encoder_hidden_states, self.next_rank, group=self.group
)
mx.async_eval(encoder_hidden_states)
if self.has_single_blocks:
if not self.owns_concat_stage and not self.is_first_stage:
patch_len = patch.shape[1]
patch = mx.distributed.recv(
(batch_size, text_seq_len + patch_len, hidden_dim),
patch.dtype,
self.prev_rank,
group=self.group,
)
mx.eval(patch)
with trace(
name=f"recv {self.prev_rank}", rank=self.rank, category="comms"
):
patch = mx.distributed.recv(
(batch_size, text_seq_len + patch_len, hidden_dim),
patch.dtype,
self.prev_rank,
group=self.group,
)
mx.eval(patch)
assert self.single_block_wrappers is not None
for wrapper in self.single_block_wrappers:
wrapper.set_patch(BlockWrapperMode.PATCHED, start_token, end_token)
patch = wrapper(
hidden_states=patch,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
with trace(
name=f"single patch {patch_idx}",
rank=self.rank,
category="compute",
):
for wrapper in self.single_block_wrappers:
wrapper.set_patch(BlockWrapperMode.PATCHED, start_token, end_token)
patch = wrapper(
hidden_states=patch,
text_embeddings=text_embeddings,
rotary_embeddings=image_rotary_embeddings,
)
if is_tracing_enabled():
mx.eval(patch)
if not self.is_last_stage:
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
mx.async_eval(patch)
with trace(
name=f"send {self.next_rank}", rank=self.rank, category="comms"
):
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
mx.async_eval(patch)
noise: mx.array | None = None
if self.is_last_stage:
patch_img_only = patch[:, text_seq_len:, :]
noise = self.adapter.final_projection(patch_img_only, text_embeddings)
patch = patch[:, text_seq_len:, :]
noise = self.adapter.final_projection(patch, text_embeddings)
return noise, encoder_hidden_states

View File

@@ -201,6 +201,9 @@ def pipeline_auto_parallel(
device_rank, world_size = model_shard_meta.device_rank, model_shard_meta.world_size
layers = layers[start_layer:end_layer]
for layer in layers:
mx.eval(layer) # type: ignore
layers[0] = PipelineFirstLayer(layers[0], device_rank, group=group)
layers[-1] = PipelineLastLayer(
layers[-1],

View File

@@ -3,6 +3,7 @@ from copy import deepcopy
from typing import Any, cast
import mlx.core as mx
import psutil
from mlx_lm.models.cache import (
KVCache,
QuantizedKVCache,
@@ -12,25 +13,29 @@ from mlx_lm.models.cache import (
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.shared.types.memory import Memory
from exo.shared.types.mlx import KVCacheType
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.constants import CACHE_GROUP_SIZE, KV_CACHE_BITS
from exo.worker.runner.bootstrap import logger
# Fraction of device memory above which LRU eviction kicks in
_DEFAULT_MEMORY_THRESHOLD = 0.85
_DEFAULT_MEMORY_THRESHOLD = 0.9
_MEMORY_THRESHOLD = float(
os.environ.get("EXO_MEMORY_THRESHOLD", _DEFAULT_MEMORY_THRESHOLD)
)
class KVPrefixCache:
def __init__(self, tokenizer: TokenizerWrapper):
def __init__(
self, tokenizer: TokenizerWrapper, group: mx.distributed.Group | None = None
):
self.prompts: list[mx.array] = [] # mx array of tokens (ints)
self.caches: list[KVCacheType] = []
self._last_used: list[int] = [] # monotonic counter of last access per entry
self._access_counter: int = 0
self._tokenizer: TokenizerWrapper = tokenizer
self._group = group
def clear(self):
"""Clear all cached prompts and caches."""
@@ -81,13 +86,13 @@ class KVPrefixCache:
best_snapshot_index, best_snapshot_length = None, 0
for i, cached_prompt in enumerate(self.prompts):
length = _get_prefix_length(tokenized_prompt, cached_prompt)
length = get_prefix_length(tokenized_prompt, cached_prompt)
if length == max_length:
# Exact match - cached prompt starts with our entire prompt
# Trim cache to prompt length - 1, return last token for stream_generate
prompt_cache = deepcopy(self.caches[i])
cached_length = _cache_length(self.caches[i])
cached_length = cache_length(self.caches[i])
tokens_to_trim = cached_length - (max_length - 1)
if tokens_to_trim > 0:
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
@@ -109,7 +114,7 @@ class KVPrefixCache:
prompt_cache = deepcopy(self.caches[best_snapshot_index])
# Trim removes tokens from the end, so we trim (cached_length - prefix_length) to keep the prefix
cached_length = _cache_length(self.caches[best_snapshot_index])
cached_length = cache_length(self.caches[best_snapshot_index])
tokens_to_trim = cached_length - best_snapshot_length
if tokens_to_trim > 0:
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
@@ -131,29 +136,37 @@ class KVPrefixCache:
return prompt_cache, tokenized_prompt, None
def _evict_if_needed(self):
"""Evict least recently used entries while memory pressure is high."""
"""Evict least recently used entries while memory usage is high."""
if len(self.caches) == 0:
return
active: int = mx.metal.get_active_memory()
limit = int(mx.metal.device_info()["max_recommended_working_set_size"])
if active < limit * _MEMORY_THRESHOLD:
return
# Evict LRU entries until below threshold or only one entry left
while len(self.caches) > 0:
while (
len(self.caches) > 1
and self.get_memory_used_percentage() > _MEMORY_THRESHOLD
):
lru_index = self._last_used.index(min(self._last_used))
evicted_tokens = len(self.prompts[lru_index])
self.prompts.pop(lru_index)
self.caches.pop(lru_index)
self._last_used.pop(lru_index)
logger.info(
f"KV cache evicted LRU entry ({evicted_tokens} tokens) due to memory pressure"
f"KV cache evicted LRU entry ({evicted_tokens} tokens) due to memory usage"
)
active = mx.metal.get_active_memory()
if active < limit * _MEMORY_THRESHOLD:
break
def get_memory_used_percentage(self) -> float:
local_pressure: float = get_memory_used_percentage()
if self._group is None:
return local_pressure
all_pressure = mx.distributed.all_gather(
mx.array([local_pressure], dtype=mx.float32),
group=self._group,
)
# .item() evals.
max_pressure = float(mx.max(all_pressure).item())
return max_pressure
def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
@@ -168,13 +181,13 @@ def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
return mx.array(tokenized_prompt)
def _cache_length(cache: KVCacheType) -> int:
def cache_length(cache: KVCacheType) -> int:
"""Get the number of tokens in a KV cache."""
# Use .offset attribute which all cache types have (len() not implemented in older QuantizedKVCache)
return max(c.offset for c in cache) # type: ignore
def _get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
def get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
"""Find the length of the common prefix between two token arrays."""
n = min(int(prompt.shape[0]), int(cached_prompt.shape[0]))
if n == 0:
@@ -185,6 +198,17 @@ def _get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
return int(mx.sum(prefix_mask).item())
def get_available_memory() -> Memory:
mem: int = psutil.virtual_memory().available
return Memory.from_bytes(mem)
def get_memory_used_percentage() -> float:
mem = psutil.virtual_memory()
# percent is 0-100
return float(mem.percent / 100)
def make_kv_cache(
model: Model, max_kv_size: int | None = None, keep: int = 0
) -> KVCacheType:

View File

@@ -10,8 +10,11 @@ from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.shared.types.api import (
BenchChatCompletionTaskParams,
ChatCompletionMessage,
CompletionTokensDetails,
FinishReason,
GenerationStats,
PromptTokensDetails,
Usage,
)
from exo.shared.types.memory import Memory
from exo.shared.types.mlx import KVCacheType
@@ -39,7 +42,7 @@ def prefill(
sampler: Callable[[mx.array], mx.array],
prompt_tokens: mx.array,
cache: KVCacheType,
) -> float:
) -> tuple[float, int]:
"""Prefill the KV cache with prompt tokens.
This runs the model over the prompt tokens to populate the cache,
@@ -50,7 +53,7 @@ def prefill(
"""
num_tokens = len(prompt_tokens)
if num_tokens == 0:
return 0.0
return 0.0, 0
logger.debug(f"Prefilling {num_tokens} tokens...")
start_time = time.perf_counter()
@@ -85,7 +88,7 @@ def prefill(
f"Prefill complete: {num_tokens} tokens in {elapsed:.2f}s "
f"({tokens_per_sec:.1f} tok/s)"
)
return tokens_per_sec
return tokens_per_sec, num_tokens
def warmup_inference(
@@ -169,6 +172,8 @@ def mlx_generate(
mx.reset_peak_memory()
is_bench: bool = isinstance(task, BenchChatCompletionTaskParams)
logger.info(f"{is_bench=}")
# Currently we support chat-completion tasks only.
logger.debug(f"task_params: {task}")
@@ -204,7 +209,9 @@ def mlx_generate(
)
# Prefill cache with all tokens except the last one
prefill_tps = prefill(model, tokenizer, sampler, prompt_tokens[:-1], caches)
prefill_tps, prefill_tokens = prefill(
model, tokenizer, sampler, prompt_tokens[:-1], caches
)
# stream_generate starts from the last token
last_token = prompt_tokens[-1:]
@@ -212,28 +219,43 @@ def mlx_generate(
max_tokens = task.max_tokens or MAX_TOKENS
generated_text_parts: list[str] = []
generation_start_time = time.perf_counter()
for out in stream_generate(
model=model,
tokenizer=tokenizer,
prompt=last_token,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=caches,
# TODO: Dynamically change prefill step size to be the maximum possible without timing out.
prefill_step_size=2048,
kv_group_size=KV_GROUP_SIZE,
kv_bits=KV_BITS,
usage: Usage | None = None
in_thinking = False
reasoning_tokens = 0
think_start = tokenizer.think_start
think_end = tokenizer.think_end
for completion_tokens, out in enumerate(
stream_generate(
model=model,
tokenizer=tokenizer,
prompt=last_token,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=caches,
# TODO: Dynamically change prefill step size to be the maximum possible without timing out.
prefill_step_size=2048,
kv_group_size=KV_GROUP_SIZE,
kv_bits=KV_BITS,
),
start=1,
):
generated_text_parts.append(out.text)
logger.info(out.text)
if think_start is not None and out.text == think_start:
in_thinking = True
elif think_end is not None and out.text == think_end:
in_thinking = False
if in_thinking:
reasoning_tokens += 1
stats: GenerationStats | None = None
if out.finish_reason is not None:
stats = GenerationStats(
prompt_tps=float(prefill_tps or out.prompt_tps),
generation_tps=float(out.generation_tps),
prompt_tokens=int(out.prompt_tokens),
prompt_tokens=int(prefill_tokens + out.prompt_tokens),
generation_tokens=int(out.generation_tokens),
peak_memory_usage=Memory.from_gb(out.peak_memory),
)
@@ -245,11 +267,24 @@ def mlx_generate(
f"Model generated unexpected finish_reason: {out.finish_reason}"
)
usage = Usage(
prompt_tokens=int(out.prompt_tokens),
completion_tokens=completion_tokens,
total_tokens=int(out.prompt_tokens) + completion_tokens,
prompt_tokens_details=PromptTokensDetails(
cached_tokens=prefix_hit_length
),
completion_tokens_details=CompletionTokensDetails(
reasoning_tokens=reasoning_tokens
),
)
yield GenerationResponse(
text=out.text,
token=out.token,
finish_reason=cast(FinishReason | None, out.finish_reason),
stats=stats,
usage=usage,
)
if out.finish_reason is not None:

View File

@@ -18,6 +18,7 @@ from pydantic import ValidationError
from exo.shared.constants import EXO_MAX_CHUNK_SIZE
from exo.shared.models.model_cards import ModelId, ModelTask
from exo.shared.tracing import clear_trace_buffer, get_trace_buffer, is_tracing_enabled
from exo.shared.types.api import ChatCompletionMessageText, ImageGenerationStats
from exo.shared.types.chunks import ErrorChunk, ImageChunk, TokenChunk, ToolCallChunk
from exo.shared.types.common import CommandId
@@ -27,6 +28,8 @@ from exo.shared.types.events import (
RunnerStatusUpdated,
TaskAcknowledged,
TaskStatusUpdated,
TraceEventData,
TracesCollected,
)
from exo.shared.types.tasks import (
ChatCompletion,
@@ -37,6 +40,7 @@ from exo.shared.types.tasks import (
Shutdown,
StartWarmup,
Task,
TaskId,
TaskStatus,
)
from exo.shared.types.worker.instances import BoundInstance
@@ -111,8 +115,12 @@ def main(
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
seen = set[TaskId]()
with task_receiver as tasks:
for task in tasks:
if task.task_id in seen:
logger.warning("repeat task - potential error")
seen.add(task.task_id)
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running)
)
@@ -163,7 +171,7 @@ def main(
logger.info(
f"model has_tool_calling={tokenizer.has_tool_calling}"
)
kv_prefix_cache = KVPrefixCache(tokenizer)
kv_prefix_cache = KVPrefixCache(tokenizer, group)
elif (
ModelTask.TextToImage in shard_metadata.model_card.tasks
@@ -277,9 +285,11 @@ def main(
tokenizer.tool_parser, # pyright: ignore[reportAny]
)
completion_tokens = 0
for response in mlx_generator:
match response:
case GenerationResponse():
completion_tokens += 1
if (
device_rank == 0
and response.finish_reason == "error"
@@ -307,6 +317,7 @@ def main(
model=shard_metadata.model_card.model_id,
text=response.text,
token_id=response.token,
usage=response.usage,
finish_reason=response.finish_reason,
stats=response.stats,
),
@@ -320,6 +331,7 @@ def main(
chunk=ToolCallChunk(
tool_calls=response.tool_calls,
model=shard_metadata.model_card.model_id,
usage=response.usage,
),
)
)
@@ -399,6 +411,10 @@ def main(
)
)
raise
finally:
_send_traces_if_enabled(
event_sender, task.task_id, shard_metadata.device_rank
)
current_status = RunnerReady()
logger.info("runner ready")
@@ -457,6 +473,10 @@ def main(
)
)
raise
finally:
_send_traces_if_enabled(
event_sender, task.task_id, shard_metadata.device_rank
)
current_status = RunnerReady()
logger.info("runner ready")
@@ -535,10 +555,10 @@ def parse_gpt_oss(
name=current_tool_name,
arguments="".join(tool_arg_parts).strip(),
)
]
],
usage=response.usage,
)
tool_arg_parts = []
break
current_tool_name = recipient
# If inside a tool call, accumulate arguments
@@ -631,6 +651,36 @@ def _send_image_chunk(
)
def _send_traces_if_enabled(
event_sender: MpSender[Event],
task_id: TaskId,
rank: int,
) -> None:
if not is_tracing_enabled():
return
traces = get_trace_buffer()
if traces:
trace_data = [
TraceEventData(
name=t.name,
start_us=t.start_us,
duration_us=t.duration_us,
rank=t.rank,
category=t.category,
)
for t in traces
]
event_sender.send(
TracesCollected(
task_id=task_id,
rank=rank,
traces=trace_data,
)
)
clear_trace_buffer()
def _process_image_response(
response: ImageGenerationResponse | PartialImageResponse,
command_id: CommandId,
@@ -684,7 +734,7 @@ def parse_tool_calls(
tools = [_validate_single_tool(tool) for tool in parsed]
else:
tools = [_validate_single_tool(parsed)]
yield ToolCallResponse(tool_calls=tools)
yield ToolCallResponse(tool_calls=tools, usage=response.usage)
except (
json.JSONDecodeError,

View File

@@ -127,20 +127,25 @@ class RunnerSupervisor:
self._tg.cancel_scope.cancel()
async def start_task(self, task: Task):
if task.task_id in self.pending:
logger.warning(
f"Skipping invalid task {task} as it has already been submitted"
)
return
if task.task_id in self.completed:
logger.info(
logger.warning(
f"Skipping invalid task {task} as it has already been completed"
)
return
logger.info(f"Starting task {task}")
event = anyio.Event()
self.pending[task.task_id] = event
try:
self._task_sender.send(task)
await self._task_sender.send_async(task)
except ClosedResourceError:
logger.warning(f"Task {task} dropped, runner closed communication.")
return
await event.wait()
logger.info(f"Finished task {task}")
async def _forward_events(self):
with self._ev_recv as events:

View File

@@ -14,9 +14,9 @@ from exo.shared.types.tasks import ChatCompletionTaskParams
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.cache import (
KVPrefixCache,
_cache_length,
_get_prefix_length,
cache_length,
encode_prompt,
get_prefix_length,
make_kv_cache,
)
from exo.worker.engines.mlx.generator.generate import mlx_generate, prefill
@@ -35,47 +35,47 @@ class TestGetPrefixLength:
def test_identical_arrays(self):
a = mx.array([1, 2, 3, 4, 5])
b = mx.array([1, 2, 3, 4, 5])
assert _get_prefix_length(a, b) == 5
assert get_prefix_length(a, b) == 5
def test_no_common_prefix(self):
a = mx.array([1, 2, 3])
b = mx.array([4, 5, 6])
assert _get_prefix_length(a, b) == 0
assert get_prefix_length(a, b) == 0
def test_partial_prefix(self):
a = mx.array([1, 2, 3, 4, 5])
b = mx.array([1, 2, 3, 7, 8])
assert _get_prefix_length(a, b) == 3
assert get_prefix_length(a, b) == 3
def test_prompt_longer_than_cached(self):
a = mx.array([1, 2, 3, 4, 5])
b = mx.array([1, 2, 3])
assert _get_prefix_length(a, b) == 3
assert get_prefix_length(a, b) == 3
def test_cached_longer_than_prompt(self):
a = mx.array([1, 2, 3])
b = mx.array([1, 2, 3, 4, 5])
assert _get_prefix_length(a, b) == 3
assert get_prefix_length(a, b) == 3
def test_single_token_match(self):
a = mx.array([1, 2, 3])
b = mx.array([1, 5, 6])
assert _get_prefix_length(a, b) == 1
assert get_prefix_length(a, b) == 1
def test_empty_prompt(self):
a = mx.array([]).astype(mx.int32)
b = mx.array([1, 2, 3])
assert _get_prefix_length(a, b) == 0
assert get_prefix_length(a, b) == 0
def test_empty_cached(self):
a = mx.array([1, 2, 3])
b = mx.array([]).astype(mx.int32)
assert _get_prefix_length(a, b) == 0
assert get_prefix_length(a, b) == 0
def test_both_empty(self):
a = mx.array([]).astype(mx.int32)
b = mx.array([]).astype(mx.int32)
assert _get_prefix_length(a, b) == 0
assert get_prefix_length(a, b) == 0
class TestKVPrefix:
@@ -146,7 +146,7 @@ class TestKVPrefixCacheWithModel:
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
# Cache should now hold the prompt tokens
assert _cache_length(cache) == len(tokens)
assert cache_length(cache) == len(tokens)
def test_add_and_get_exact_match(self, model_and_tokenizer):
model, tokenizer = model_and_tokenizer
@@ -166,7 +166,7 @@ class TestKVPrefixCacheWithModel:
kv_prefix_cache.add_kv_cache(prompt, cache)
assert len(kv_prefix_cache.prompts) == 1
stored_length = _cache_length(kv_prefix_cache.caches[0])
stored_length = cache_length(kv_prefix_cache.caches[0])
assert stored_length > 0
# Retrieve with same prompt: exact match
@@ -209,7 +209,7 @@ class TestKVPrefixCacheWithModel:
long_tokens = encode_prompt(tokenizer, long_prompt)
# The prompts share a prefix (chat template preamble + "Hi")
expected_prefix = _get_prefix_length(long_tokens, short_tokens)
expected_prefix = get_prefix_length(long_tokens, short_tokens)
assert expected_prefix > 0, (
"Prompts should share a prefix from the chat template"
)
@@ -243,7 +243,7 @@ class TestKVPrefixCacheWithModel:
kv_prefix_cache = KVPrefixCache(tokenizer)
kv_prefix_cache.add_kv_cache(prompt, cache)
stored_length = _cache_length(kv_prefix_cache.caches[0])
stored_length = cache_length(kv_prefix_cache.caches[0])
# Get cache and mutate it (simulating what generation does)
result_cache, _, matched_index = kv_prefix_cache.get_kv_cache(model, prompt)
@@ -259,7 +259,7 @@ class TestKVPrefixCacheWithModel:
mx.eval([c.keys for c in result_cache])
# Stored cache must be unchanged
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length
assert cache_length(kv_prefix_cache.caches[0]) == stored_length
def test_stored_cache_survives_repeated_get_mutate_cycles(
self, model_and_tokenizer
@@ -281,7 +281,7 @@ class TestKVPrefixCacheWithModel:
kv_prefix_cache = KVPrefixCache(tokenizer)
kv_prefix_cache.add_kv_cache(prompt, cache)
stored_length = _cache_length(kv_prefix_cache.caches[0])
stored_length = cache_length(kv_prefix_cache.caches[0])
for i in range(3):
result_cache, _, _ = kv_prefix_cache.get_kv_cache(model, prompt)
@@ -293,7 +293,7 @@ class TestKVPrefixCacheWithModel:
layer_cache.update_and_fetch(extra, extra)
mx.eval([c.keys for c in result_cache])
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length, (
assert cache_length(kv_prefix_cache.caches[0]) == stored_length, (
f"Failed on loop {i}"
)
@@ -325,7 +325,7 @@ class TestKVPrefixCacheWithModel:
assert len(kv_prefix_cache.caches) == 1
# Cache should contain prompt + generated tokens
expected_length = len(prompt_tokens) + generated_tokens
assert _cache_length(kv_prefix_cache.caches[0]) == expected_length
assert cache_length(kv_prefix_cache.caches[0]) == expected_length
def test_mlx_generate_second_call_gets_prefix_hit(self, model_and_tokenizer):
"""Second mlx_generate call with same prompt should get a prefix hit from stored cache."""
@@ -400,7 +400,7 @@ class TestKVPrefixCacheWithModel:
first_gen_time = time.perf_counter() - t0
assert len(kv_prefix_cache.prompts) == 1
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
first_cache_length = cache_length(kv_prefix_cache.caches[0])
# Second generation: same long prompt + extra content (simulating multi-turn)
task2 = ChatCompletionTaskParams(
@@ -416,7 +416,7 @@ class TestKVPrefixCacheWithModel:
prompt2_tokens = encode_prompt(tokenizer, prompt2)
# Verify the prompts share a long prefix
prefix_len = _get_prefix_length(prompt2_tokens, prompt1_tokens)
prefix_len = get_prefix_length(prompt2_tokens, prompt1_tokens)
assert prefix_len > 1000, "Prompts must share > 1000 token prefix"
# Second generation should reuse the cached prefix (only prefill new tokens)
@@ -440,7 +440,7 @@ class TestKVPrefixCacheWithModel:
# With prefix_hit > 1000, should update in-place (not add a second entry)
assert len(kv_prefix_cache.prompts) == 1
# Updated cache should be longer (prompt2 + generated > prompt1 + generated)
updated_cache_length = _cache_length(kv_prefix_cache.caches[0])
updated_cache_length = cache_length(kv_prefix_cache.caches[0])
assert updated_cache_length > first_cache_length
def test_mlx_generate_stored_cache_not_mutated(self, model_and_tokenizer):
@@ -465,7 +465,7 @@ class TestKVPrefixCacheWithModel:
):
pass
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
firstcache_length = cache_length(kv_prefix_cache.caches[0])
# Second generation gets the cache and mutates it during generation
for _response in mlx_generate(
@@ -478,7 +478,7 @@ class TestKVPrefixCacheWithModel:
pass
# The first stored cache must not have been mutated by the second generation
assert _cache_length(kv_prefix_cache.caches[0]) == first_cache_length
assert cache_length(kv_prefix_cache.caches[0]) == firstcache_length
def test_evicts_lru_entry_under_memory_pressure(self, model_and_tokenizer):
"""Under memory pressure, adding a new cache entry evicts the least recently used one."""
@@ -540,6 +540,6 @@ class TestKVPrefixCacheWithModel:
assert len(kv_prefix_cache.prompts) == 1
# The surviving entry should be the newly added one
new_tokens = encode_prompt(tokenizer, prompt)
assert _get_prefix_length(kv_prefix_cache.prompts[0], new_tokens) == len(
assert get_prefix_length(kv_prefix_cache.prompts[0], new_tokens) == len(
new_tokens
)

View File

@@ -16,7 +16,7 @@ from exo.download.download_utils import (
ensure_models_dir,
fetch_file_list_with_cache,
)
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
from exo.worker.engines.mlx.utils_mlx import (
get_eos_token_ids_for_model,
load_tokenizer_for_model_id,
@@ -76,7 +76,7 @@ def get_test_models() -> list[ModelCard]:
"""Get a representative sample of models to test."""
# Pick one model from each family to test
families: dict[str, ModelCard] = {}
for card in asyncio.run(get_model_cards()):
for card in MODEL_CARDS.values():
# Extract family name (e.g., "llama-3.1" from "llama-3.1-8b")
parts = card.model_id.short().split("-")
family = "-".join(parts[:2]) if len(parts) >= 2 else parts[0]
@@ -296,7 +296,7 @@ async def test_tokenizer_special_tokens(model_card: ModelCard) -> None:
async def test_kimi_tokenizer_specifically():
"""Test Kimi tokenizer with its specific patches and quirks."""
kimi_models = [
card for card in await get_model_cards() if "kimi" in card.model_id.lower()
card for card in MODEL_CARDS.values() if "kimi" in card.model_id.lower()
]
if not kimi_models:
@@ -343,7 +343,7 @@ async def test_kimi_tokenizer_specifically():
async def test_glm_tokenizer_specifically():
"""Test GLM tokenizer with its specific EOS tokens."""
glm_model_cards = [
card for card in await get_model_cards() if "glm" in card.model_id.lower()
card for card in MODEL_CARDS.values() if "glm" in card.model_id.lower()
]
if not glm_model_cards:

View File

@@ -109,8 +109,8 @@ def assert_events_equal(test_events: Iterable[Event], true_events: Iterable[Even
@pytest.fixture
def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
# initialize_mlx returns a "group" equal to 1
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(1))
# initialize_mlx returns a mock group
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(MockGroup()))
monkeypatch.setattr(mlx_runner, "load_mlx_items", make_nothin((1, MockTokenizer)))
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", nothin)
@@ -120,7 +120,7 @@ def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setattr(mlx_runner, "detect_thinking_prompt_suffix", make_nothin(False))
def fake_generate(*_1: object, **_2: object):
yield GenerationResponse(token=0, text="hi", finish_reason="stop")
yield GenerationResponse(token=0, text="hi", finish_reason="stop", usage=None)
monkeypatch.setattr(mlx_runner, "mlx_generate", fake_generate)
@@ -147,6 +147,14 @@ class MockTokenizer:
has_tool_calling = False
class MockGroup:
def rank(self) -> int:
return 0
def size(self) -> int:
return 1
def _run(tasks: Iterable[Task]):
bound_instance = get_bound_mlx_ring_instance(
instance_id=INSTANCE_1_ID,
@@ -182,6 +190,8 @@ def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
text="hi",
token_id=0,
finish_reason="stop",
usage=None,
stats=None,
),
)

View File

@@ -16,7 +16,7 @@ from exo.download.impl_shard_downloader import (
exo_shard_downloader,
)
from exo.shared.logging import InterceptLogger, logger_setup
from exo.shared.models.model_cards import ModelId
from exo.shared.models.model_cards import MODEL_CARDS, ModelId
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
from exo.shared.types.commands import CommandId
from exo.shared.types.common import Host, NodeId
@@ -89,26 +89,22 @@ async def tb_detection():
async def assert_downloads():
sd = exo_shard_downloader()
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/Qwen3-0.6B-4bit"))
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
)
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
)
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"))
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
)
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"))
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
)
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"))
)
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"))
)
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/GLM-4.7-8bit-gs32"))
)
await sd.ensure_shard(
await build_full_shard(ModelId("mlx-community/MiniMax-M2.1-8bit"))
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
)

View File

@@ -0,0 +1,18 @@
{
"$schema": "https://opencode.ai/config.json",
"model": "exo/mlx-community/gpt-oss-120b-MXFP4-Q8",
"provider": {
"exo": {
"api": "http://localhost:52415/v1",
"models": {
"mlx-community/gpt-oss-120b-MXFP4-Q8": {
"name": "GPT OSS 120B",
"limit": {
"context": 32768,
"output": 8192
}
}
}
}
}
}