Compare commits

...

16 Commits

Author SHA1 Message Date
Alex Cheema
c93376f0fb Add speculative decoding support with draft models
Implements speculative decoding using MLX-LM's built-in stream_generate(draft_model=...)
to accelerate inference. A small draft model generates candidate tokens which are
verified by the main model in a single forward pass.

Key changes:
- Add draft_model and num_draft_tokens to instance configuration
- Auto-download draft models during warmup if not present
- Dashboard UI for selecting draft model and token count
- Display draft model info on running instance cards

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 02:42:22 +00:00
Alex Cheema
c5158bee53 Add pre-commit checks documentation to AGENTS.md (#1184)
## Motivation

CI failures can be avoided by running checks locally before committing.
This adds clear documentation to AGENTS.md so that AI agents (and
humans) know exactly which checks must pass before pushing code.

## Changes

Added a new "Pre-Commit Checks (REQUIRED)" section to AGENTS.md that:
- Lists all 4 required checks (basedpyright, ruff, nix fmt, pytest)
- Provides a one-liner to run all checks in sequence
- Notes that `nix fmt` changes must be staged before committing
- Explains that CI runs `nix flake check` which verifies everything

## Why It Works

Clear documentation prevents CI failures by ensuring contributors run
checks locally first. The one-liner command makes it easy to run all
checks before committing.

## Test Plan

### Manual Testing
- Verified the documented commands work correctly

### Automated Testing
- N/A - documentation only change

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 21:50:24 +00:00
rltakashige
5c8a237940 Handle model timeouts (#1177)
- Add eval with a timeout.
- Add fast synch flag

## Motivation

Because of the experimental FAST SYNCH flag, some models may not work.
This PR catches when this occurs and allows users to specify a run
without fast synch

## Changes

- Adds a flag to enable or disable fast synch (--fast-synch and
--no-fast-synch)
- Adds a heuristic timeout
- Reduces exo_bench default timeout to 10 minutes.

## Why It Works

Heuristic timeout assumes normal loading times on Mac devices (60 +
model size in gb / 5: e.g. DeepSeek takes up to 120 seconds to load on
tensor parallel, and timeout is set to 60 + 120 = 180s.

We could raise this value if necessary.

## Test Plan

### Manual Testing
Catches that GPT OSS fails to load in Tensor RDMA
Can launch with --no-fast-synch flag to launch GPT OSS.

**GPT OSS 20B**
TP with fast synch
<img width="3064" height="456" alt="image"
src="https://github.com/user-attachments/assets/f6e25cd8-8621-4e99-99fe-292ee05c4035"
/>

TP without fast synch
<img width="3098" height="496" alt="image"
src="https://github.com/user-attachments/assets/d36453d9-6686-4cfe-aa7c-a7d458369d4d"
/>
[Note: the performance is really not great as fast synch is off]

(As a sanity check)
PP with fast synch
<img width="3124" height="496" alt="image"
src="https://github.com/user-attachments/assets/e97d4547-c6fa-483d-badb-4b371b900b4c"
/>

PP without fast synch
<img width="3078" height="508" alt="image"
src="https://github.com/user-attachments/assets/b2e20dfd-4b0e-4295-8a92-417dfe745c28"
/>

PP without RDMA
<img width="3070" height="498" alt="image"
src="https://github.com/user-attachments/assets/a8509d68-0aef-4cda-bca5-a67d39a0801e"
/>

TP without RDMA
<img width="3068" height="496" alt="image"
src="https://github.com/user-attachments/assets/b5691429-89f4-4369-bcf2-8fde2ad7154a"
/>
2026-01-16 20:25:12 +00:00
rltakashige
745343c705 Return error responses for Chat Completions (#1173)
- Error chunks
- Use error handling in exo_bench.py

## Motivation

Return when an error occurs so that generation stops. Adding timeouts is
a separate TODO for model loading and chat completions.

## Changes

- Return HTTP exceptions as JSON responses in an OpenAI compatible
format.
- Context manager for generation to catch and return error messages.
- Use error handling in exo_bench.py.

## Test Plan

### Manual Testing
Manually tested that exo_bench returns on failures within and outside
generation

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-16 19:24:37 +00:00
Alex Cheema
5e28664c41 Fix draft release detection (attempt 3) (#1176)
## Motivation

Previous fix still failed in CI. Suspecting permissions issue with
GITHUB_TOKEN not being able to see draft releases via API.

## Changes

1. Add explicit `permissions: contents: write` to the job
2. Use `gh release list` first to check if draft exists (this uses a
different code path that might work better)
3. Add debug echo statements

## Test Plan

Delete v1.0.63 tag and re-push after merging.

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 17:26:06 +00:00
Alex Cheema
ae0a804ccb Fix draft release detection query (#1175)
## Motivation

Fixes the draft release detection that failed on the v1.0.63 release
attempt.

## Changes

The jq query was piped to `head -1` which truncated multi-line JSON
output to just `{`, causing the empty check to fail.

Changed to use `first // empty` in jq instead.

## Test Plan

Tested locally:
```bash
GITHUB_REF_NAME="v1.0.63"
gh api repos/exo-explore/exo/releases --jq "[.[] | select(.draft == true) | select(.name == \"$GITHUB_REF_NAME\")] | first // empty"
# Returns the full draft release JSON (2711 chars)
```

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 17:05:24 +00:00
Alex Cheema
07cf2c1aa1 Add GitHub releases with Sparkle release notes integration (#1172)
## Motivation

Closes #1140

Currently releases are uploaded to S3 for Sparkle updates but there's no
GitHub Release created, and Sparkle update dialogs don't show release
notes. Users have no visibility into what changed.

## Changes

- Added release workflow documentation comment at top of `build-app.yml`
- Added "Fetch release notes for Sparkle" step that converts markdown
from draft GitHub release to HTML
- Added "Inject release notes into appcast" step that embeds HTML in
appcast.xml with CDATA
- Added "Publish GitHub Release" step that attaches DMG and publishes
the draft

## Why It Works

- Sparkle's `<description>` tag supports HTML wrapped in CDATA for
rendering in update dialogs
- GitHub's markdown API (`/markdown`) converts the release notes to HTML
with proper formatting
- Draft releases allow writing polished notes before the build, then the
workflow publishes them automatically
- The workflow fails if no draft release exists, ensuring release notes
are always provided

## Test Plan

### Manual Testing
1. Create a draft GitHub release for a new tag with markdown release
notes
2. Push the tag to trigger the workflow
3. Verify the GitHub release is published with DMG attached
4. Download appcast.xml from S3 and verify
`<description><![CDATA[...]]></description>` contains HTML
5. Test Sparkle update dialog on macOS to confirm release notes appear

### Automated Testing
No automated tests added - this is CI workflow configuration.

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 16:47:33 +00:00
Evan
83c5285a80 reduce logs
previous commits logs were too verbose, this tones them down a bit
2026-01-16 14:05:47 +00:00
Evan Quiney
39ee2bf7bd switch from synchronous threaded pinging to an async implementation (#1170)
still seeing churn in our networking - lets properly rate limit it

## changes

added an httpx client with max connections with a persistent AsyncClient

## testing

deployed on cluster, discovery VASTLY more stable (the only deleted
edges were those discovered by mdns)
2026-01-16 13:20:03 +00:00
Sami Khan
991adfbd6f fix local network warning (#1136)
## Motivation

Local network warning banner was showing on fresh install even though
mDNS was working. The check would fail before the user had a chance to
grant permission via the macOS prompt.

## Changes

- Added `hasWorkedBefore` flag persisted in UserDefaults
- Only show warning if permission previously worked but now doesn't

## Why It Works

On fresh install, the check may fail (no permission yet), but
`hasWorkedBefore` is false so no warning shows. Once the user grants
permission and a check succeeds, we record it. Future failures (zombie
permission after restart) will show the warning since `hasWorkedBefore`
is now true.

## Test Plan

### Manual Testing
Run locally

### Automated Testing
N/A
2026-01-16 13:10:50 +00:00
rltakashige
4b3de6b984 Fix exo bench for transformers 5.x (#1168)
## Motivation
Prompt Sizer was broken as transformers 5.x tokenizers create
BatchEncodings which are essentially a dictionary of {input_ids: []}
instead of the list of input ids.

## Test Plan

### Manual Testing
Tested that exo bench runs as expected.

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-16 12:39:22 +00:00
Evan
c8de3b90ea quiet rust logs
rust logs were too verbose - now only warnings propagate to python

entirely happy not to merge this and to clean up rust logging instead,
but this felt saner right now
2026-01-16 12:34:28 +00:00
Sami Khan
6e6567a802 resolve issue #1070 (#1076)
## Motivation

https://github.com/exo-explore/exo/issues/1070

## Changes

Added check in ChatForm.svelte to reset selectedChatModel when it no
longer matches any running instance.

## Why It Works

The $effect now detects when the selected model is stale (not in
availableModels()) and resets to the first available model.

## Test Plan

### Manual Testing

1. Create instance of Model A → Delete it → Create instance of Model B →
Chat
2. Verify request goes to Model B (not Model A)

---------

Co-authored-by: Alex Cheema <41707476+AlexCheema@users.noreply.github.com>
2026-01-15 20:00:41 +00:00
rltakashige
a735dad667 Parse GPT OSS in runner (#1160)
## Motivation

Simplification of API + moving model specific code to the runner

<!-- Why is this change needed? What problem does it solve? -->
<!-- If it fixes an open issue, please link to the issue here -->

## Test Plan

### Manual Testing
Tested that GPT OSS outputs are parsed correctly on the dashboard.

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-15 19:53:55 +00:00
rltakashige
aaf4e36bc3 FIX GPT OSS (#1165)
## Motivation

Adds several unmerged fixes for GPT OSS.
Also adds GPT OSS 20B MXFP4 Q8 instead of Q4 for numerical stability (as
this is unstable for MLX LM too)
<!-- Why is this change needed? What problem does it solve? -->
<!-- If it fixes an open issue, please link to the issue here -->


## Test Plan

### Manual Testing
Manually tested. No further gibberish responses.

### Automated Testing
Ran EXO Bench - pipeline, tensor and single node work on both 20B and
120B models
2026-01-15 19:20:17 +00:00
Evan Quiney
3e623ccf0d up http timeout to 3 seconds and retry on BadStatusLine (#1164)
we're seeing a lot of network churn - perhaps this is a connection
timing out issue? lets also re-try after a second

## testing
none yet

---------

Co-authored-by: Alex Cheema <alexcheema123@gmail.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 18:15:12 +00:00
30 changed files with 1824 additions and 989 deletions

View File

@@ -1,5 +1,16 @@
name: Build EXO macOS DMG
# Release workflow:
# 1. Create a draft GitHub Release with the tag name (e.g. v1.0.0) and write release notes in markdown
# 2. Push the tag: git tag v1.0.0 && git push origin v1.0.0
# 3. This workflow builds, signs, and notarizes the DMG
# 4. Release notes are embedded in appcast.xml for Sparkle (rendered as markdown)
# 5. DMG and appcast.xml are uploaded to S3
# 6. The draft GitHub Release is published with the DMG attached
#
# For alpha releases (e.g. v1.0.0-alpha.1): draft release and notes are optional.
# If no draft exists, a release is auto-created with generated notes.
on:
workflow_dispatch:
push:
@@ -11,8 +22,10 @@ on:
jobs:
build-macos-app:
runs-on: "macos-26"
permissions:
contents: write
env:
SPARKLE_VERSION: 2.8.1
SPARKLE_VERSION: 2.9.0-beta.1
SPARKLE_DOWNLOAD_PREFIX: ${{ secrets.SPARKLE_DOWNLOAD_PREFIX }}
SPARKLE_FEED_URL: ${{ secrets.SPARKLE_FEED_URL }}
SPARKLE_ED25519_PUBLIC: ${{ secrets.SPARKLE_ED25519_PUBLIC }}
@@ -87,6 +100,52 @@ jobs:
exit 1
fi
- name: Fetch and validate release notes
if: github.ref_type == 'tag'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Find draft release by name using gh release list (more reliable with default token)
echo "Looking for draft release named '$GITHUB_REF_NAME'..."
DRAFT_EXISTS=$(gh release list --json name,isDraft --jq ".[] | select(.isDraft == true) | select(.name == \"$GITHUB_REF_NAME\") | .name" 2>/dev/null || echo "")
if [[ -z "$DRAFT_EXISTS" ]]; then
if [[ "$IS_ALPHA" == "true" ]]; then
echo "No draft release found for alpha tag $GITHUB_REF_NAME (optional for alphas)"
echo "HAS_RELEASE_NOTES=false" >> $GITHUB_ENV
exit 0
fi
echo "ERROR: No draft release found for tag $GITHUB_REF_NAME"
echo "Please create a draft release with release notes before pushing the tag."
exit 1
fi
# Fetch full release details via API to get body and ID
echo "Found draft release, fetching details..."
RELEASE_JSON=$(gh api repos/${{ github.repository }}/releases --jq ".[] | select(.draft == true) | select(.name == \"$GITHUB_REF_NAME\")" 2>/dev/null || echo "")
# Extract release notes
NOTES=$(echo "$RELEASE_JSON" | jq -r '.body // ""')
if [[ -z "$NOTES" || "$NOTES" == "null" ]]; then
if [[ "$IS_ALPHA" == "true" ]]; then
echo "Draft release has no notes (optional for alphas)"
echo "HAS_RELEASE_NOTES=false" >> $GITHUB_ENV
exit 0
fi
echo "ERROR: Draft release exists but has no release notes"
echo "Please add release notes to the draft release before pushing the tag."
exit 1
fi
# Save release ID for later publishing
RELEASE_ID=$(echo "$RELEASE_JSON" | jq -r '.id')
echo "DRAFT_RELEASE_ID=$RELEASE_ID" >> $GITHUB_ENV
echo "HAS_RELEASE_NOTES=true" >> $GITHUB_ENV
echo "Found draft release (ID: $RELEASE_ID), saving release notes..."
echo "$NOTES" > /tmp/release_notes.md
echo "RELEASE_NOTES_FILE=/tmp/release_notes.md" >> $GITHUB_ENV
# ============================================================
# Install dependencies
# ============================================================
@@ -304,6 +363,28 @@ jobs:
$CHANNEL_FLAG \
.
- name: Inject release notes into appcast
if: github.ref_type == 'tag' && env.HAS_RELEASE_NOTES == 'true'
env:
RELEASE_VERSION: ${{ env.RELEASE_VERSION }}
run: |
# Inject markdown release notes with sparkle:format="markdown" (Sparkle 2.9+)
export NOTES=$(cat "$RELEASE_NOTES_FILE")
# Insert description after the enclosure tag for this version
awk '
/<enclosure[^>]*>/ && index($0, ENVIRON["RELEASE_VERSION"]) {
print
print " <description sparkle:format=\"markdown\"><![CDATA["
print ENVIRON["NOTES"]
print " ]]></description>"
next
}
{ print }
' output/appcast.xml > output/appcast.xml.tmp && mv output/appcast.xml.tmp output/appcast.xml
echo "Injected markdown release notes for version $RELEASE_VERSION"
# ============================================================
# Upload artifacts
# ============================================================
@@ -336,3 +417,26 @@ jobs:
aws s3 cp "$DMG_NAME" "s3://${SPARKLE_S3_BUCKET}/${PREFIX}EXO-latest.dmg"
aws s3 cp appcast.xml "s3://${SPARKLE_S3_BUCKET}/${PREFIX}appcast.xml" --content-type application/xml --cache-control no-cache
fi
- name: Publish GitHub Release
if: github.ref_type == 'tag'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
DMG_PATH="output/EXO-${RELEASE_VERSION}.dmg"
if [[ "$HAS_RELEASE_NOTES" == "true" ]]; then
# Update the draft release with the tag and upload DMG
gh api --method PATCH "repos/${{ github.repository }}/releases/$DRAFT_RELEASE_ID" \
-f tag_name="$GITHUB_REF_NAME" \
-F draft=false
gh release upload "$GITHUB_REF_NAME" "$DMG_PATH" --clobber
echo "Published release $GITHUB_REF_NAME with DMG attached"
else
# Alpha without draft release - create one with auto-generated notes
gh release create "$GITHUB_REF_NAME" "$DMG_PATH" \
--title "$GITHUB_REF_NAME" \
--generate-notes \
--prerelease
echo "Created alpha release $GITHUB_REF_NAME with auto-generated notes"
fi

View File

@@ -40,6 +40,31 @@ uv run ruff check
nix fmt
```
## Pre-Commit Checks (REQUIRED)
**IMPORTANT: Always run these checks before committing code. CI will fail if these don't pass.**
```bash
# 1. Type checking - MUST pass with 0 errors
uv run basedpyright
# 2. Linting - MUST pass
uv run ruff check
# 3. Formatting - MUST be applied
nix fmt
# 4. Tests - MUST pass
uv run pytest
```
Run all checks in sequence:
```bash
uv run basedpyright && uv run ruff check && nix fmt && uv run pytest
```
If `nix fmt` changes any files, stage them before committing. The CI runs `nix flake check` which verifies formatting, linting, and runs Rust tests.
## Architecture
### Node Composition

View File

@@ -585,7 +585,7 @@
repositoryURL = "https://github.com/sparkle-project/Sparkle.git";
requirement = {
kind = upToNextMajorVersion;
minimumVersion = 2.8.1;
minimumVersion = 2.9.0-beta.1;
};
};
/* End XCRemoteSwiftPackageReference section */

View File

@@ -6,8 +6,8 @@
"kind" : "remoteSourceControl",
"location" : "https://github.com/sparkle-project/Sparkle.git",
"state" : {
"revision" : "5581748cef2bae787496fe6d61139aebe0a451f6",
"version" : "2.8.1"
"revision" : "e641adb41915a8409895e2e30666aa64e487b637",
"version" : "2.9.0-beta.1"
}
}
],

View File

@@ -56,6 +56,11 @@ struct ContentView: View {
}
private var shouldShowLocalNetworkWarning: Bool {
// Show warning if local network is not working and EXO is running.
// The checker uses a longer timeout on first launch to allow time for
// the permission prompt, so this correctly handles both:
// 1. User denied permission on first launch
// 2. Permission broke after restart (macOS TCC bug)
if case .notWorking = localNetworkChecker.status {
return controller.status != .stopped
}

View File

@@ -5,8 +5,8 @@ import os.log
/// Checks if the app's local network permission is actually functional.
///
/// macOS local network permission can appear enabled in System Preferences but not
/// actually work after a restart. This service detects this by creating a UDP
/// connection to the mDNS multicast address (224.0.0.251:5353).
/// actually work after a restart. This service uses NWConnection to mDNS multicast
/// to verify actual connectivity.
@MainActor
final class LocalNetworkChecker: ObservableObject {
enum Status: Equatable {
@@ -35,30 +35,43 @@ final class LocalNetworkChecker: ObservableObject {
}
private static let logger = Logger(subsystem: "io.exo.EXO", category: "LocalNetworkChecker")
private static let hasCompletedInitialCheckKey = "LocalNetworkChecker.hasCompletedInitialCheck"
@Published private(set) var status: Status = .unknown
@Published private(set) var lastConnectionState: String = "none"
private var connection: NWConnection?
private var checkTask: Task<Void, Never>?
/// Whether we've completed at least one check (stored in UserDefaults)
private var hasCompletedInitialCheck: Bool {
get { UserDefaults.standard.bool(forKey: Self.hasCompletedInitialCheckKey) }
set { UserDefaults.standard.set(newValue, forKey: Self.hasCompletedInitialCheckKey) }
}
/// Checks if local network access is working.
func check() {
checkTask?.cancel()
status = .checking
lastConnectionState = "connecting"
// Use longer timeout on first launch to allow time for permission prompt
let isFirstCheck = !hasCompletedInitialCheck
let timeout: UInt64 = isFirstCheck ? 30_000_000_000 : 3_000_000_000
checkTask = Task { [weak self] in
guard let self else { return }
let result = await self.performCheck()
Self.logger.info("Checking local network connectivity (first check: \(isFirstCheck))")
let result = await self.checkConnectivity(timeout: timeout)
self.status = result
self.hasCompletedInitialCheck = true
Self.logger.info("Local network check complete: \(result.displayText)")
}
}
private func performCheck() async -> Status {
Self.logger.info("Checking local network access via UDP multicast")
/// Checks connectivity using NWConnection to mDNS multicast.
/// The connection attempt triggers the permission prompt if not yet shown.
private func checkConnectivity(timeout: UInt64) async -> Status {
connection?.cancel()
connection = nil
@@ -84,22 +97,7 @@ final class LocalNetworkChecker: ObservableObject {
continuation.resume(returning: status)
}
conn.stateUpdateHandler = { [weak self] state in
let stateStr: String
switch state {
case .setup: stateStr = "setup"
case .preparing: stateStr = "preparing"
case .ready: stateStr = "ready"
case .waiting(let e): stateStr = "waiting(\(e))"
case .failed(let e): stateStr = "failed(\(e))"
case .cancelled: stateStr = "cancelled"
@unknown default: stateStr = "unknown"
}
Task { @MainActor in
self?.lastConnectionState = stateStr
}
conn.stateUpdateHandler = { state in
switch state {
case .ready:
resumeOnce(.working)
@@ -108,6 +106,7 @@ final class LocalNetworkChecker: ObservableObject {
if errorStr.contains("54") || errorStr.contains("ECONNRESET") {
resumeOnce(.notWorking(reason: "Connection blocked"))
}
// Otherwise keep waiting - might be showing permission prompt
case .failed(let error):
let errorStr = "\(error)"
if errorStr.contains("65") || errorStr.contains("EHOSTUNREACH")
@@ -127,7 +126,7 @@ final class LocalNetworkChecker: ObservableObject {
conn.start(queue: .main)
Task {
try? await Task.sleep(nanoseconds: 3_000_000_000)
try? await Task.sleep(nanoseconds: timeout)
let state = conn.state
switch state {
case .ready:

View File

@@ -3,6 +3,7 @@
from __future__ import annotations
import argparse
import contextlib
import http.client
import json
import os
@@ -26,7 +27,7 @@ class ExoHttpError(RuntimeError):
class ExoClient:
def __init__(self, host: str, port: int, timeout_s: float = 2400.0):
def __init__(self, host: str, port: int, timeout_s: float = 600.0):
self.host = host
self.port = port
self.timeout_s = timeout_s
@@ -104,22 +105,46 @@ def runner_ready(runner: dict[str, Any]) -> bool:
return "RunnerReady" in runner
def runner_failed(runner: dict[str, Any]) -> bool:
return "RunnerFailed" in runner
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
if "RunnerFailed" in runner:
return runner["RunnerFailed"].get("errorMessage")
return None
def wait_for_instance_ready(
client: ExoClient, instance_id: str, timeout: float = 24000.0
) -> None:
start_time = time.time()
instance_existed = False
while time.time() - start_time < timeout:
state = client.request_json("GET", "/state")
instances = state.get("instances", {})
if instance_id not in instances:
if instance_existed:
# Instance was deleted after being created - likely due to runner failure
raise RuntimeError(
f"Instance {instance_id} was deleted (runner may have failed)"
)
time.sleep(0.1)
continue
instance_existed = True
instance = instances[instance_id]
runner_ids = runner_ids_from_instance(instance)
runners = state.get("runners", {})
# Check for failed runners first
for rid in runner_ids:
runner = runners.get(rid, {})
if runner_failed(runner):
error_msg = get_runner_failed_message(runner) or "Unknown error"
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
return
@@ -241,6 +266,9 @@ class PromptSizer:
ids = tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True
)
# Fix for transformers 5.x
if hasattr(ids, "input_ids"):
ids = ids.input_ids
return int(len(ids))
return count_fn
@@ -296,6 +324,12 @@ def main() -> int:
default=4,
help="Only consider placements using <= this many nodes.",
)
ap.add_argument(
"--min-nodes",
type=int,
default=1,
help="Only consider placements using >= this many nodes.",
)
ap.add_argument(
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
)
@@ -317,7 +351,7 @@ def main() -> int:
help="Warmup runs per placement (uses first pp/tg).",
)
ap.add_argument(
"--timeout", type=float, default=2400.0, help="HTTP timeout (seconds)."
"--timeout", type=float, default=600.0, help="HTTP timeout (seconds)."
)
ap.add_argument(
"--json-out",
@@ -396,7 +430,7 @@ def main() -> int:
):
continue
if 0 < n <= args.max_nodes:
if args.min_nodes <= n <= args.max_nodes:
selected.append(p)
if not selected:
@@ -438,7 +472,13 @@ def main() -> int:
)
client.request_json("POST", "/instance", body={"instance": instance})
wait_for_instance_ready(client, instance_id)
try:
wait_for_instance_ready(client, instance_id)
except (RuntimeError, TimeoutError) as e:
logger.error(f"Failed to initialize placement: {e}")
with contextlib.suppress(ExoHttpError):
client.request_json("DELETE", f"/instance/{instance_id}")
continue
time.sleep(1)

View File

@@ -60,12 +60,39 @@
return models;
});
// Auto-select the first available model if none is selected
// Track previous model IDs to detect newly added models (plain variable to avoid reactive loop)
let previousModelIds: Set<string> = new Set();
// Auto-select the first available model if none is selected, if current selection is stale, or if a new model is added
$effect(() => {
const models = availableModels();
if (models.length > 0 && !currentModel) {
setSelectedChatModel(models[0].id);
const currentModelIds = new Set(models.map(m => m.id));
if (models.length > 0) {
// Find newly added models (in current but not in previous)
const newModels = models.filter(m => !previousModelIds.has(m.id));
// If no model selected, select the first available
if (!currentModel) {
setSelectedChatModel(models[0].id);
}
// If current model is stale (no longer has a running instance), reset to first available
else if (!models.some(m => m.id === currentModel)) {
setSelectedChatModel(models[0].id);
}
// If a new model was just added, select it
else if (newModels.length > 0 && previousModelIds.size > 0) {
setSelectedChatModel(newModels[0].id);
}
} else {
// No instances running - clear the selected model
if (currentModel) {
setSelectedChatModel('');
}
}
// Update previous model IDs for next comparison
previousModelIds = currentModelIds;
});
function getInstanceModelId(instanceWrapped: unknown): string {

View File

@@ -69,6 +69,8 @@ export interface Instance {
runnerToShard?: Record<string, unknown>;
nodeToRunner?: Record<string, string>;
};
draftModel?: string;
numDraftTokens?: number;
}
interface RawNodeProfile {

View File

@@ -47,7 +47,7 @@ const sidebarVisible = $derived(chatSidebarVisible());
let mounted = $state(false);
// Instance launch state
let models = $state<Array<{id: string, name?: string, storage_size_megabytes?: number}>>([]);
let models = $state<Array<{id: string, hugging_face_id?: string, name?: string, storage_size_megabytes?: number}>>([]);
let selectedSharding = $state<'Pipeline' | 'Tensor'>('Pipeline');
type InstanceMeta = 'MlxRing' | 'MlxIbv' | 'MlxJaccl';
@@ -58,6 +58,8 @@ const sidebarVisible = $derived(chatSidebarVisible());
sharding: 'Pipeline' | 'Tensor';
instanceType: InstanceMeta;
minNodes: number;
draftModel: string | null;
numDraftTokens: number;
}
function saveLaunchDefaults(): void {
@@ -66,6 +68,8 @@ const sidebarVisible = $derived(chatSidebarVisible());
sharding: selectedSharding,
instanceType: selectedInstanceType,
minNodes: selectedMinNodes,
draftModel: selectedDraftModel,
numDraftTokens: selectedNumDraftTokens,
};
try {
localStorage.setItem(LAUNCH_DEFAULTS_KEY, JSON.stringify(defaults));
@@ -88,24 +92,36 @@ const sidebarVisible = $derived(chatSidebarVisible());
function applyLaunchDefaults(availableModels: Array<{id: string}>, maxNodes: number): void {
const defaults = loadLaunchDefaults();
if (!defaults) return;
// Apply sharding and instance type unconditionally
selectedSharding = defaults.sharding;
selectedInstanceType = defaults.instanceType;
// Apply minNodes if valid (between 1 and maxNodes)
if (defaults.minNodes && defaults.minNodes >= 1 && defaults.minNodes <= maxNodes) {
selectedMinNodes = defaults.minNodes;
}
// Only apply model if it exists in the available models
if (defaults.modelId && availableModels.some(m => m.id === defaults.modelId)) {
selectPreviewModel(defaults.modelId);
}
// Apply draft model if it exists in the available models (check against hugging_face_id)
if (defaults.draftModel && availableModels.some(m => (m as {hugging_face_id?: string}).hugging_face_id === defaults.draftModel)) {
selectedDraftModel = defaults.draftModel;
}
// Apply num draft tokens if valid
if (defaults.numDraftTokens && defaults.numDraftTokens >= 1 && defaults.numDraftTokens <= 10) {
selectedNumDraftTokens = defaults.numDraftTokens;
}
}
let selectedInstanceType = $state<InstanceMeta>('MlxRing');
let selectedMinNodes = $state<number>(1);
let selectedDraftModel = $state<string | null>(null);
let selectedNumDraftTokens = $state<number>(4);
let minNodesInitialized = $state(false);
let launchingModelId = $state<string | null>(null);
let instanceDownloadExpandedNodes = $state<Set<string>>(new Set());
@@ -113,6 +129,8 @@ let instanceDownloadExpandedNodes = $state<Set<string>>(new Set());
// Custom dropdown state
let isModelDropdownOpen = $state(false);
let modelDropdownSearch = $state('');
let isDraftModelDropdownOpen = $state(false);
let draftModelDropdownSearch = $state('');
// Slider dragging state
let isDraggingSlider = $state(false);
@@ -362,49 +380,39 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
async function launchInstance(modelId: string, specificPreview?: PlacementPreview | null) {
if (!modelId || launchingModelId) return;
launchingModelId = modelId;
try {
// Use the specific preview if provided, otherwise fall back to filtered preview
const preview = specificPreview ?? filteredPreview();
let instanceData: unknown;
if (preview?.instance) {
// Use the instance from the preview
instanceData = preview.instance;
} else {
// Fallback: GET placement from API
const placementResponse = await fetch(
`/instance/placement?model_id=${encodeURIComponent(modelId)}&sharding=${selectedSharding}&instance_meta=${selectedInstanceType}&min_nodes=${selectedMinNodes}`
);
if (!placementResponse.ok) {
const errorText = await placementResponse.text();
console.error('Failed to get placement:', errorText);
return;
}
instanceData = await placementResponse.json();
}
// POST the instance to create it
const response = await fetch('/instance', {
let response: Response;
// Use /place_instance endpoint - it handles placement and creation in one step
// This also supports draft_model for speculative decoding
const placePayload = {
model_id: modelId,
sharding: preview?.sharding ?? selectedSharding,
instance_meta: preview?.instance_meta ?? selectedInstanceType,
min_nodes: selectedMinNodes,
draft_model: selectedDraftModel,
num_draft_tokens: selectedDraftModel ? selectedNumDraftTokens : 4,
};
response = await fetch('/place_instance', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ instance: instanceData })
body: JSON.stringify(placePayload)
});
if (!response.ok) {
const errorText = await response.text();
console.error('Failed to launch instance:', errorText);
} else {
// Auto-select the launched model only if no model is currently selected
if (!selectedChatModel()) {
setSelectedChatModel(modelId);
}
// Always auto-select the newly launched model so the user chats to what they just launched
setSelectedChatModel(modelId);
// Scroll to the bottom of instances container to show the new instance
// Use multiple attempts to ensure DOM has updated with the new instance
const scrollToBottom = () => {
@@ -763,6 +771,10 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
async function deleteInstance(instanceId: string) {
if (!confirm(`Delete instance ${instanceId.slice(0, 8)}...?`)) return;
// Get the model ID of the instance being deleted before we delete it
const deletedInstanceModelId = getInstanceModelId(instanceData[instanceId]);
const wasSelected = selectedChatModel() === deletedInstanceModelId;
try {
const response = await fetch(`/instance/${instanceId}`, {
method: 'DELETE',
@@ -771,6 +783,24 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
if (!response.ok) {
console.error('Failed to delete instance:', response.status);
} else if (wasSelected) {
// If we deleted the currently selected model, switch to another available model
// Find another instance that isn't the one we just deleted
const remainingInstances = Object.entries(instanceData).filter(([id]) => id !== instanceId);
if (remainingInstances.length > 0) {
// Select the last instance (most recently added, since objects preserve insertion order)
const [, lastInstance] = remainingInstances[remainingInstances.length - 1];
const newModelId = getInstanceModelId(lastInstance);
if (newModelId && newModelId !== 'Unknown' && newModelId !== 'Unknown Model') {
setSelectedChatModel(newModelId);
} else {
// Clear selection if no valid model found
setSelectedChatModel('');
}
} else {
// No more instances, clear the selection
setSelectedChatModel('');
}
}
} catch (error) {
console.error('Error deleting instance:', error);
@@ -796,30 +826,34 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
}
// Get instance details: type (MLX Ring/IBV), sharding (Pipeline/Tensor), and node names
function getInstanceInfo(instanceWrapped: unknown): {
instanceType: string;
sharding: string;
function getInstanceInfo(instanceWrapped: unknown): {
instanceType: string;
sharding: string;
nodeNames: string[];
nodeIds: string[];
nodeCount: number;
draftModel: string | null;
numDraftTokens: number | null;
} {
const [instanceTag, instance] = getTagged(instanceWrapped);
if (!instance || typeof instance !== 'object') {
return { instanceType: 'Unknown', sharding: 'Unknown', nodeNames: [], nodeIds: [], nodeCount: 0 };
return { instanceType: 'Unknown', sharding: 'Unknown', nodeNames: [], nodeIds: [], nodeCount: 0, draftModel: null, numDraftTokens: null };
}
// Instance type from tag
let instanceType = 'Unknown';
if (instanceTag === 'MlxRingInstance') instanceType = 'MLX Ring';
else if (instanceTag === 'MlxIbvInstance' || instanceTag === 'MlxJacclInstance') instanceType = 'MLX RDMA';
const inst = instance as {
shardAssignments?: {
nodeToRunner?: Record<string, string>;
const inst = instance as {
shardAssignments?: {
nodeToRunner?: Record<string, string>;
runnerToShard?: Record<string, unknown>;
}
};
draftModel?: string;
numDraftTokens?: number;
};
// Sharding strategy from first shard
let sharding = 'Unknown';
const runnerToShard = inst.shardAssignments?.runnerToShard || {};
@@ -830,7 +864,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
else if (shardTag === 'TensorShardMetadata') sharding = 'Tensor';
else if (shardTag === 'PrefillDecodeShardMetadata') sharding = 'Prefill/Decode';
}
// Node names from topology
const nodeToRunner = inst.shardAssignments?.nodeToRunner || {};
const nodeIds = Object.keys(nodeToRunner);
@@ -838,8 +872,12 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const node = data?.nodes?.[nodeId];
return node?.friendly_name || nodeId.slice(0, 8);
});
return { instanceType, sharding, nodeNames, nodeIds, nodeCount: nodeIds.length };
// Draft model for speculative decoding
const draftModel = inst.draftModel ?? null;
const numDraftTokens = inst.numDraftTokens ?? null;
return { instanceType, sharding, nodeNames, nodeIds, nodeCount: nodeIds.length, draftModel, numDraftTokens };
}
function formatLastUpdate(): string {
@@ -1325,6 +1363,9 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
<div class="pl-2">
<div class="text-exo-yellow text-xs font-mono tracking-wide truncate">{getInstanceModelId(instance)}</div>
<div class="text-white/60 text-xs font-mono">Strategy: <span class="text-white/80">{instanceInfo.sharding} ({instanceInfo.instanceType})</span></div>
{#if instanceInfo.draftModel}
<div class="text-white/60 text-xs font-mono">Draft: <span class="text-cyan-400">{instanceInfo.draftModel.split('/').pop()}</span>{#if instanceInfo.numDraftTokens}<span class="text-white/40"> ({instanceInfo.numDraftTokens}t)</span>{/if}</div>
{/if}
{#if instanceModelId && instanceModelId !== 'Unknown' && instanceModelId !== 'Unknown Model'}
<a
class="inline-flex items-center gap-1 text-[11px] text-white/60 hover:text-exo-yellow transition-colors mt-1"
@@ -1658,8 +1699,80 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
{/each}
</div>
</div>
<!-- Draft Model (Speculative Decoding) -->
<div>
<div class="text-xs text-white/70 font-mono mb-2">Draft Model (Speculative):</div>
<div class="relative">
<button
onclick={() => { isDraftModelDropdownOpen = !isDraftModelDropdownOpen; draftModelDropdownSearch = ''; }}
class="w-full px-3 py-2 text-left text-sm font-mono border rounded transition-all duration-200 cursor-pointer flex items-center justify-between gap-2 {selectedDraftModel ? 'bg-transparent text-exo-yellow border-exo-yellow' : 'bg-transparent text-white/50 border-exo-medium-gray/50 hover:border-exo-yellow/50'}"
>
<span class="truncate">{selectedDraftModel ? selectedDraftModel.split('/').pop() : 'None'}</span>
<svg class="w-4 h-4 flex-shrink-0 transition-transform {isDraftModelDropdownOpen ? 'rotate-180' : ''}" fill="none" stroke="currentColor" viewBox="0 0 24 24">
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M19 9l-7 7-7-7" />
</svg>
</button>
{#if isDraftModelDropdownOpen}
<!-- svelte-ignore a11y_no_static_element_interactions -->
<div
class="fixed inset-0 z-40"
onclick={() => isDraftModelDropdownOpen = false}
onkeydown={(e) => e.key === 'Escape' && (isDraftModelDropdownOpen = false)}
></div>
<div class="absolute top-full left-0 right-0 mt-1 bg-exo-dark-gray border border-exo-medium-gray/50 rounded shadow-lg z-50 max-h-48 overflow-hidden flex flex-col">
<div class="p-2 border-b border-exo-medium-gray/30">
<input
type="text"
bind:value={draftModelDropdownSearch}
placeholder="Search models..."
class="w-full px-2 py-1.5 text-sm font-mono bg-transparent border border-exo-medium-gray/50 rounded text-white/90 placeholder:text-white/30 focus:outline-none focus:border-exo-yellow/50"
/>
</div>
<div class="overflow-y-auto max-h-36">
<!-- None option -->
<button
onclick={() => { selectedDraftModel = null; isDraftModelDropdownOpen = false; saveLaunchDefaults(); }}
class="w-full px-3 py-2 text-left text-sm font-mono tracking-wide transition-colors duration-100 flex items-center gap-2 {selectedDraftModel === null ? 'bg-transparent text-exo-yellow cursor-pointer' : 'text-white/80 hover:text-exo-yellow cursor-pointer'}"
>
<span>None</span>
</button>
{#each models.filter(m => (m.name ?? m.id).toLowerCase().includes(draftModelDropdownSearch.toLowerCase()) && m.id !== selectedModelId) as model}
{@const sizeGB = (model.storage_size_megabytes ?? 0) / 1024}
{@const modelHfId = model.hugging_face_id ?? model.id}
<button
onclick={() => { selectedDraftModel = modelHfId; isDraftModelDropdownOpen = false; saveLaunchDefaults(); }}
class="w-full px-3 py-2 text-left text-sm font-mono tracking-wide transition-colors duration-100 flex items-center justify-between gap-2 {selectedDraftModel === modelHfId ? 'bg-transparent text-exo-yellow cursor-pointer' : 'text-white/80 hover:text-exo-yellow cursor-pointer'}"
>
<span class="truncate">{model.name || model.id}</span>
<span class="flex-shrink-0 text-xs text-white/50">
{sizeGB >= 1 ? sizeGB.toFixed(0) : sizeGB.toFixed(1)}GB
</span>
</button>
{:else}
<div class="px-3 py-2 text-xs text-white/50 font-mono">No models found</div>
{/each}
</div>
</div>
{/if}
</div>
</div>
<!-- Draft Tokens (only show when draft model selected) -->
{#if selectedDraftModel}
<div class="flex items-center gap-2 mt-2">
<span class="text-xs text-white/50 font-mono">Tokens:</span>
<div class="flex items-center gap-1">
{#each [2, 3, 4, 5, 6] as n}
<button
onclick={() => { selectedNumDraftTokens = n; saveLaunchDefaults(); }}
class="w-6 h-6 text-xs font-mono rounded transition-all {selectedNumDraftTokens === n ? 'bg-exo-yellow/20 text-exo-yellow border border-exo-yellow/50' : 'text-white/50 hover:text-white/80 border border-transparent'}"
>{n}</button>
{/each}
</div>
</div>
{/if}
</div>
<!-- Selected Model Preview -->
<div class="space-y-3">
{#if models.length === 0}

View File

@@ -1,3 +1,5 @@
export NIX_CONFIG := "extra-experimental-features = nix-command flakes"
fmt:
nix fmt

View File

@@ -23,6 +23,7 @@ dependencies = [
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
"hypercorn>=0.18.0",
"openai-harmony>=0.0.8",
"httpx>=0.28.1",
]
[project.scripts]

View File

@@ -205,6 +205,14 @@ def main():
logger.info("Starting EXO")
logger.info(f"EXO_LIBP2P_NAMESPACE: {os.getenv('EXO_LIBP2P_NAMESPACE')}")
# Set FAST_SYNCH override env var for runner subprocesses
if args.fast_synch is True:
os.environ["EXO_FAST_SYNCH"] = "on"
logger.info("FAST_SYNCH forced ON")
elif args.fast_synch is False:
os.environ["EXO_FAST_SYNCH"] = "off"
logger.info("FAST_SYNCH forced OFF")
node = anyio.run(Node.create, args)
anyio.run(node.run)
logger.info("EXO Shutdown complete")
@@ -218,6 +226,7 @@ class Args(CamelCaseModel):
api_port: PositiveInt = 52415
tb_only: bool = False
no_worker: bool = False
fast_synch: bool | None = None # None = auto, True = force on, False = force off
@classmethod
def parse(cls) -> Self:
@@ -259,6 +268,20 @@ class Args(CamelCaseModel):
"--no-worker",
action="store_true",
)
fast_synch_group = parser.add_mutually_exclusive_group()
fast_synch_group.add_argument(
"--fast-synch",
action="store_true",
dest="fast_synch",
default=None,
help="Force MLX FAST_SYNCH on (for JACCL backend)",
)
fast_synch_group.add_argument(
"--no-fast-synch",
action="store_false",
dest="fast_synch",
help="Force MLX FAST_SYNCH off",
)
args = parser.parse_args()
return cls(**vars(args)) # pyright: ignore[reportAny] - We are intentionally validating here, we can't do it statically

View File

@@ -1,24 +1,19 @@
import time
from collections.abc import AsyncGenerator
from http import HTTPStatus
from typing import cast
import anyio
from anyio import create_task_group
from anyio import BrokenResourceError, create_task_group
from anyio.abc import TaskGroup
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType]
from hypercorn.config import Config
from hypercorn.typing import ASGIFramework
from loguru import logger
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
HarmonyEncodingName,
Role,
StreamableParser,
load_harmony_encoding,
)
from exo.master.placement import place_instance as get_instance_placements
from exo.shared.apply import apply
@@ -35,6 +30,8 @@ from exo.shared.types.api import (
CreateInstanceParams,
CreateInstanceResponse,
DeleteInstanceResponse,
ErrorInfo,
ErrorResponse,
FinishReason,
GenerationStats,
ModelList,
@@ -55,7 +52,12 @@ from exo.shared.types.commands import (
TaskFinished,
)
from exo.shared.types.common import CommandId, NodeId, SessionId
from exo.shared.types.events import ChunkGenerated, Event, ForwarderEvent, IndexedEvent
from exo.shared.types.events import (
ChunkGenerated,
Event,
ForwarderEvent,
IndexedEvent,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.state import State
@@ -67,8 +69,6 @@ from exo.utils.channels import Receiver, Sender, channel
from exo.utils.dashboard_path import find_dashboard
from exo.utils.event_buffer import OrderedBuffer
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
def chunk_to_response(
chunk: TokenChunk, command_id: CommandId
@@ -123,6 +123,7 @@ class API:
self.paused_ev: anyio.Event = anyio.Event()
self.app = FastAPI()
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
@@ -153,6 +154,20 @@ class API:
self.paused_ev.set()
self.paused_ev = anyio.Event()
def _setup_exception_handlers(self) -> None:
@self.app.exception_handler(HTTPException)
async def http_exception_handler( # pyright: ignore[reportUnusedFunction]
_: Request, exc: HTTPException
) -> JSONResponse:
err = ErrorResponse(
error=ErrorInfo(
message=exc.detail,
type=HTTPStatus(exc.status_code).phrase,
code=exc.status_code,
)
)
return JSONResponse(err.model_dump(), status_code=exc.status_code)
def _setup_cors(self) -> None:
self.app.add_middleware(
CORSMiddleware,
@@ -185,6 +200,8 @@ class API:
sharding=payload.sharding,
instance_meta=payload.instance_meta,
min_nodes=payload.min_nodes,
draft_model=payload.draft_model,
num_draft_tokens=payload.num_draft_tokens,
)
await self._send(command)
@@ -381,35 +398,8 @@ class API:
instance_id=instance_id,
)
async def _process_gpt_oss(self, token_chunks: Receiver[TokenChunk]):
stream = StreamableParser(encoding, role=Role.ASSISTANT)
thinking = False
async for chunk in token_chunks:
stream.process(chunk.token_id)
delta = stream.last_content_delta
ch = stream.current_channel
if ch == "analysis" and not thinking:
thinking = True
yield chunk.model_copy(update={"text": "<think>"})
if ch != "analysis" and thinking:
thinking = False
yield chunk.model_copy(update={"text": "</think>"})
if delta:
yield chunk.model_copy(update={"text": delta})
if chunk.finish_reason is not None:
if thinking:
yield chunk.model_copy(update={"text": "</think>"})
yield chunk
break
async def _chat_chunk_stream(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> AsyncGenerator[TokenChunk, None]:
"""Yield `TokenChunk`s for a given command until completion."""
@@ -417,16 +407,10 @@ class API:
self._chat_completion_queues[command_id], recv = channel[TokenChunk]()
with recv as token_chunks:
if parse_gpt_oss:
async for chunk in self._process_gpt_oss(token_chunks):
yield chunk
if chunk.finish_reason is not None:
break
else:
async for chunk in token_chunks:
yield chunk
if chunk.finish_reason is not None:
break
async for chunk in token_chunks:
yield chunk
if chunk.finish_reason is not None:
break
except anyio.get_cancelled_exc_class():
# TODO: TaskCancelled
@@ -442,11 +426,23 @@ class API:
del self._chat_completion_queues[command_id]
async def _generate_chat_stream(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> AsyncGenerator[str, None]:
"""Generate chat completion stream as JSON strings."""
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
error_response = ErrorResponse(
error=ErrorInfo(
message=chunk.error_message or "Internal server error",
type="InternalServerError",
code=500,
)
)
yield f"data: {error_response.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
return
chunk_response: ChatCompletionResponse = chunk_to_response(
chunk, command_id
)
@@ -458,7 +454,7 @@ class API:
yield "data: [DONE]\n\n"
async def _collect_chat_completion(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> ChatCompletionResponse:
"""Collect all token chunks for a chat completion and return a single response."""
@@ -466,7 +462,13 @@ class API:
model: str | None = None
finish_reason: FinishReason | None = None
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
raise HTTPException(
status_code=500,
detail=chunk.error_message or "Internal server error",
)
if model is None:
model = chunk.model
@@ -495,7 +497,7 @@ class API:
)
async def _collect_chat_completion_with_stats(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> BenchChatCompletionResponse:
text_parts: list[str] = []
model: str | None = None
@@ -503,7 +505,13 @@ class API:
stats: GenerationStats | None = None
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
raise HTTPException(
status_code=500,
detail=chunk.error_message or "Internal server error",
)
if model is None:
model = chunk.model
@@ -544,8 +552,6 @@ class API:
"""Handle chat completions, supporting both streaming and non-streaming responses."""
model_meta = await resolve_model_meta(payload.model)
payload.model = model_meta.model_id
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
logger.info(f"{parse_gpt_oss=}")
if not any(
instance.shard_assignments.model_id == payload.model
@@ -562,17 +568,16 @@ class API:
await self._send(command)
if payload.stream:
return StreamingResponse(
self._generate_chat_stream(command.command_id, parse_gpt_oss),
self._generate_chat_stream(command.command_id),
media_type="text/event-stream",
)
return await self._collect_chat_completion(command.command_id, parse_gpt_oss)
return await self._collect_chat_completion(command.command_id)
async def bench_chat_completions(
self, payload: BenchChatCompletionTaskParams
) -> BenchChatCompletionResponse:
model_meta = await resolve_model_meta(payload.model)
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
payload.model = model_meta.model_id
if not any(
@@ -589,10 +594,7 @@ class API:
command = ChatCompletion(request_params=payload)
await self._send(command)
response = await self._collect_chat_completion_with_stats(
command.command_id,
parse_gpt_oss,
)
response = await self._collect_chat_completion_with_stats(command.command_id)
return response
def _calculate_total_available_memory(self) -> Memory:
@@ -654,14 +656,14 @@ class API:
for idx, event in self.event_buffer.drain_indexed():
self._event_log.append(event)
self.state = apply(self.state, IndexedEvent(event=event, idx=idx))
if (
isinstance(event, ChunkGenerated)
and event.command_id in self._chat_completion_queues
):
if isinstance(event, ChunkGenerated):
assert isinstance(event.chunk, TokenChunk)
await self._chat_completion_queues[event.command_id].send(
event.chunk
)
queue = self._chat_completion_queues.get(event.command_id)
if queue is not None:
try:
await queue.send(event.chunk)
except BrokenResourceError:
self._chat_completion_queues.pop(event.command_id, None)
async def _pause_on_new_election(self):
with self.election_receiver as ems:

View File

@@ -151,6 +151,8 @@ def place_instance(
shard_assignments=shard_assignments,
ibv_devices=mlx_ibv_devices,
jaccl_coordinators=mlx_jaccl_coordinators,
draft_model=command.draft_model,
num_draft_tokens=command.num_draft_tokens,
)
case InstanceMeta.MlxRing:
ephemeral_port = random_ephemeral_port()
@@ -164,6 +166,8 @@ def place_instance(
shard_assignments=shard_assignments,
hosts_by_node=hosts_by_node,
ephemeral_port=ephemeral_port,
draft_model=command.draft_model,
num_draft_tokens=command.num_draft_tokens,
)
return target_instances

View File

@@ -0,0 +1,107 @@
# pyright: reportUnusedFunction=false, reportAny=false
from typing import Any, get_args
from fastapi import FastAPI, HTTPException
from fastapi.testclient import TestClient
from exo.shared.types.api import ErrorInfo, ErrorResponse, FinishReason
from exo.shared.types.chunks import TokenChunk
from exo.worker.tests.constants import MODEL_A_ID
def test_http_exception_handler_formats_openai_style() -> None:
"""Test that HTTPException is converted to OpenAI-style error format."""
from exo.master.api import API
app = FastAPI()
# Setup exception handler
api = object.__new__(API)
api.app = app
api._setup_exception_handlers() # pyright: ignore[reportPrivateUsage]
# Add test routes that raise HTTPException
@app.get("/test-error")
async def _test_error() -> None:
raise HTTPException(status_code=500, detail="Test error message")
@app.get("/test-not-found")
async def _test_not_found() -> None:
raise HTTPException(status_code=404, detail="Resource not found")
client = TestClient(app)
# Test 500 error
response = client.get("/test-error")
assert response.status_code == 500
data: dict[str, Any] = response.json()
assert "error" in data
assert data["error"]["message"] == "Test error message"
assert data["error"]["type"] == "Internal Server Error"
assert data["error"]["code"] == 500
# Test 404 error
response = client.get("/test-not-found")
assert response.status_code == 404
data = response.json()
assert "error" in data
assert data["error"]["message"] == "Resource not found"
assert data["error"]["type"] == "Not Found"
assert data["error"]["code"] == 404
def test_finish_reason_includes_error() -> None:
valid_reasons = get_args(FinishReason)
assert "error" in valid_reasons
def test_token_chunk_with_error_fields() -> None:
chunk = TokenChunk(
idx=0,
model=MODEL_A_ID,
text="",
token_id=0,
finish_reason="error",
error_message="Something went wrong",
)
assert chunk.finish_reason == "error"
assert chunk.error_message == "Something went wrong"
def test_token_chunk_without_error() -> None:
chunk = TokenChunk(
idx=1,
model=MODEL_A_ID,
text="Hello",
token_id=42,
finish_reason=None,
)
assert chunk.finish_reason is None
assert chunk.error_message is None
def test_error_response_construction() -> None:
error_response = ErrorResponse(
error=ErrorInfo(
message="Generation failed",
type="InternalServerError",
code=500,
)
)
assert error_response.error.message == "Generation failed"
assert error_response.error.code == 500
def test_normal_finish_reasons_still_work() -> None:
for reason in ["stop", "length", "tool_calls", "content_filter", "function_call"]:
chunk = TokenChunk(
idx=0,
model=MODEL_A_ID,
text="done",
token_id=100,
finish_reason=reason, # type: ignore[arg-type]
)
assert chunk.finish_reason == reason

View File

@@ -29,6 +29,11 @@ class _InterceptHandler(logging.Handler):
def logger_setup(log_file: Path | None, verbosity: int = 0):
"""Set up logging for this process - formatting, file handles, verbosity and output"""
logging.getLogger("exo_pyo3_bindings").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
logger.remove()
# replace all stdlib loggers with _InterceptHandlers that log to loguru

View File

@@ -425,15 +425,15 @@ MODEL_CARDS: dict[str, ModelCard] = {
supports_tensor=True,
),
),
"gpt-oss-20b-4bit": ModelCard(
short_id="gpt-oss-20b-4bit",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
name="GPT-OSS 20B (MXFP4-Q4, MLX)",
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this MLX variant uses MXFP4 4-bit quantization.""",
"gpt-oss-20b-MXFP4-Q8": ModelCard(
short_id="gpt-oss-20b-MXFP4-Q8",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
name="GPT-OSS 20B (MXFP4-Q8, MLX)",
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this variant is a 4-bit MLX conversion for Apple Silicon.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
pretty_name="GPT-OSS 20B (MXFP4-Q4, MLX)",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
pretty_name="GPT-OSS 20B (MXFP4-Q8, MLX)",
storage_size=Memory.from_kb(11_744_051),
n_layers=24,
hidden_size=2880,

View File

@@ -11,10 +11,21 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
FinishReason = Literal[
"stop", "length", "tool_calls", "content_filter", "function_call"
"stop", "length", "tool_calls", "content_filter", "function_call", "error"
]
class ErrorInfo(BaseModel):
message: str
type: str
param: str | None = None
code: int
class ErrorResponse(BaseModel):
error: ErrorInfo
class ModelListModel(BaseModel):
id: str
object: str = "model"
@@ -150,6 +161,8 @@ class ChatCompletionTaskParams(BaseModel):
tool_choice: str | dict[str, Any] | None = None
parallel_tool_calls: bool | None = None
user: str | None = None
# Speculative decoding: tokens to draft per iteration (if instance has draft model)
num_draft_tokens: int = 3
class BenchChatCompletionTaskParams(ChatCompletionTaskParams):
@@ -161,6 +174,8 @@ class PlaceInstanceParams(BaseModel):
sharding: Sharding = Sharding.Pipeline
instance_meta: InstanceMeta = InstanceMeta.MlxRing
min_nodes: int = 1
draft_model: ModelId | None = None # For speculative decoding
num_draft_tokens: int = 4 # Tokens to draft per iteration
@field_validator("sharding", "instance_meta", mode="plain")
@classmethod

View File

@@ -22,6 +22,7 @@ class TokenChunk(BaseChunk):
token_id: int
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
error_message: str | None = None
class ImageChunk(BaseChunk):

View File

@@ -2,7 +2,7 @@ from pydantic import Field
from exo.shared.types.api import ChatCompletionTaskParams
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.models import ModelMetadata
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
@@ -25,6 +25,8 @@ class PlaceInstance(BaseCommand):
sharding: Sharding
instance_meta: InstanceMeta
min_nodes: int
draft_model: ModelId | None = None # For speculative decoding
num_draft_tokens: int = 4 # Tokens to draft per iteration
class CreateInstance(BaseCommand):

View File

@@ -3,6 +3,7 @@ from enum import Enum
from pydantic import model_validator
from exo.shared.types.common import Host, Id, NodeId
from exo.shared.types.models import ModelId
from exo.shared.types.worker.runners import RunnerId, ShardAssignments, ShardMetadata
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
@@ -19,6 +20,8 @@ class InstanceMeta(str, Enum):
class BaseInstance(TaggedModel):
instance_id: InstanceId
shard_assignments: ShardAssignments
draft_model: ModelId | None = None # For speculative decoding (rank 0 only)
num_draft_tokens: int = 4 # Tokens to draft per iteration (when draft_model is set)
def shard(self, runner_id: RunnerId) -> ShardMetadata | None:
return self.shard_assignments.runner_to_shard.get(runner_id, None)

View File

@@ -119,6 +119,8 @@ def mlx_generate(
model: Model,
tokenizer: TokenizerWrapper,
task: ChatCompletionTaskParams,
draft_model: Model | None = None,
num_draft_tokens: int = 4,
) -> Generator[GenerationResponse]:
# Ensure that generation stats only contains peak memory for this generation
mx.reset_peak_memory()
@@ -135,8 +137,6 @@ def mlx_generate(
chat_task_data=task,
)
caches = make_kv_cache(model=model)
logits_processors: list[Callable[[mx.array, mx.array], mx.array]] = []
if is_bench:
# Only sample length eos tokens
@@ -149,19 +149,31 @@ def mlx_generate(
)
max_tokens = task.max_tokens or MAX_TOKENS
for out in stream_generate(
model=model,
tokenizer=tokenizer,
prompt=prompt,
max_tokens=max_tokens,
sampler=sampler,
logits_processors=logits_processors,
prompt_cache=caches,
# TODO: Dynamically change prefill step size to be the maximum possible without timing out.
prefill_step_size=2048,
kv_group_size=KV_GROUP_SIZE,
kv_bits=KV_BITS,
):
# Build kwargs for stream_generate, conditionally adding draft model params
generate_kwargs: dict[str, object] = {
"model": model,
"tokenizer": tokenizer,
"prompt": prompt,
"max_tokens": max_tokens,
"sampler": sampler,
"logits_processors": logits_processors,
"prefill_step_size": 2048,
"kv_group_size": KV_GROUP_SIZE,
"kv_bits": KV_BITS,
}
# Add speculative decoding parameters if draft model is provided
# Note: When using draft_model, we let mlx_lm create its own trimmable cache
# as speculative decoding requires cache trimming capabilities
if draft_model is not None:
generate_kwargs["draft_model"] = draft_model
generate_kwargs["num_draft_tokens"] = num_draft_tokens
else:
# Only use custom cache for non-speculative generation
generate_kwargs["prompt_cache"] = make_kv_cache(model=model)
for out in stream_generate(**generate_kwargs): # type: ignore[arg-type]
logger.info(out.text)
stats: GenerationStats | None = None

View File

@@ -2,7 +2,9 @@ import json
import os
import resource
import sys
import threading
import time
from collections.abc import Callable
from pathlib import Path
from typing import Any, cast
@@ -20,6 +22,7 @@ except ImportError:
from mlx_lm.models.cache import KVCache, QuantizedKVCache, RotatingKVCache
from mlx_lm.models.deepseek_v3 import DeepseekV3Model
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.worker.engines.mlx.constants import (
@@ -81,6 +84,45 @@ def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
)
class ModelLoadingTimeoutError(Exception):
pass
TimeoutCallback = Callable[[], None]
def eval_with_timeout(
mlx_item: Any, # pyright: ignore[reportAny]
timeout_seconds: float = 60.0,
on_timeout: TimeoutCallback | None = None,
) -> None:
"""Evaluate MLX item with a hard timeout.
If on_timeout callback is provided, it will be called before terminating
the process. This allows the runner to send a failure event before exit.
"""
completed = threading.Event()
def watchdog() -> None:
if not completed.wait(timeout=timeout_seconds):
logger.error(
f"mlx_item evaluation timed out after {timeout_seconds:.0f}s. "
"This may indicate an issue with FAST_SYNCH and tensor parallel sharding. "
"Terminating process."
)
if on_timeout is not None:
on_timeout()
os._exit(1)
watchdog_thread = threading.Thread(target=watchdog, daemon=True)
watchdog_thread.start()
try:
mx.eval(mlx_item) # pyright: ignore[reportAny]
finally:
completed.set()
def mx_barrier(group: Group | None = None):
mx.eval(
mx.distributed.all_sum(
@@ -187,7 +229,9 @@ def initialize_mlx(
def load_mlx_items(
bound_instance: BoundInstance, group: Group | None
bound_instance: BoundInstance,
group: Group | None,
on_timeout: TimeoutCallback | None = None,
) -> tuple[Model, TokenizerWrapper]:
if group is None:
logger.info(f"Single device used for {bound_instance.instance}")
@@ -201,7 +245,9 @@ def load_mlx_items(
else:
logger.info("Starting distributed init")
start_time = time.perf_counter()
model, tokenizer = shard_and_load(bound_instance.bound_shard, group=group)
model, tokenizer = shard_and_load(
bound_instance.bound_shard, group=group, on_timeout=on_timeout
)
end_time = time.perf_counter()
logger.info(
f"Time taken to shard and load model: {(end_time - start_time):.2f}s"
@@ -212,9 +258,31 @@ def load_mlx_items(
return cast(Model, model), tokenizer
def load_draft_model(model_id: str) -> nn.Module:
"""Load a draft model for speculative decoding (rank 0 only).
Draft models are small models (typically 0.5B-2B parameters) used to
generate candidate tokens quickly, which are then verified by the main
model in a single forward pass.
Assumes the model has already been downloaded by the worker.
Args:
model_id: HuggingFace model ID for the draft model
Returns:
The loaded draft model
"""
model_path = build_model_path(model_id)
draft_model, _ = load_model(model_path, strict=True)
logger.info(f"Loaded draft model from {model_path}")
return draft_model
def shard_and_load(
shard_metadata: ShardMetadata,
group: Group,
on_timeout: TimeoutCallback | None = None,
) -> tuple[nn.Module, TokenizerWrapper]:
model_path = build_model_path(shard_metadata.model_meta.model_id)
@@ -251,7 +319,15 @@ def shard_and_load(
logger.info(f"loading model from {model_path} with pipeline parallelism")
model = pipeline_auto_parallel(model, group, shard_metadata)
mx.eval(model.parameters())
# Estimate timeout based on model size
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "60"))
model_size_gb = get_weights_size(shard_metadata).in_bytes / (1024**3)
timeout_seconds = base_timeout + model_size_gb / 5
logger.info(
f"Evaluating model parameters with timeout of {timeout_seconds:.0f}s "
f"(model size: {model_size_gb:.1f}GB)"
)
eval_with_timeout(model.parameters(), timeout_seconds, on_timeout)
# TODO: Do we need this?
mx.eval(model)
@@ -365,6 +441,8 @@ def apply_chat_template(
tools=chat_task_data.tools,
)
logger.info(prompt)
return prompt
@@ -396,6 +474,11 @@ def make_kv_cache(
) -> list[KVCache | RotatingKVCache | QuantizedKVCache]:
assert hasattr(model, "layers")
# TODO: Do this for all models
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
logger.info("Using MLX LM's make cache")
return model.make_cache() # type: ignore
if max_kv_size is None:
if KV_CACHE_BITS is None:
logger.info("Using default KV cache")

View File

@@ -3,7 +3,8 @@
from collections.abc import Mapping, Sequence
from exo.shared.types.common import NodeId
from exo.shared.types.models import ModelId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.tasks import (
ChatCompletion,
ConnectToGroup,
@@ -35,6 +36,7 @@ from exo.shared.types.worker.runners import (
RunnerStatus,
RunnerWarmingUp,
)
from exo.shared.types.worker.shards import PipelineShardMetadata
from exo.worker.runner.runner_supervisor import RunnerSupervisor
@@ -57,6 +59,7 @@ def plan(
or _model_needs_download(runners, download_status)
or _init_distributed_backend(runners, all_runners)
or _load_model(runners, all_runners, global_download_status)
or _draft_model_needs_download(runners, download_status)
or _ready_to_warmup(runners, all_runners)
or _pending_tasks(runners, tasks, all_runners)
)
@@ -128,6 +131,57 @@ def _model_needs_download(
)
def _draft_model_needs_download(
runners: Mapping[RunnerId, RunnerSupervisor],
download_status: Mapping[ModelId, DownloadProgress],
) -> DownloadModel | None:
"""Check if draft model needs download (for speculative decoding).
Only rank 0 needs the draft model, and only after the main model is loaded.
"""
for runner in runners.values():
instance = runner.bound_instance.instance
shard = runner.bound_instance.bound_shard
# Only check when runner is loaded and ready for warmup
if not isinstance(runner.status, RunnerLoaded):
continue
# Only rank 0 loads the draft model
if shard.device_rank != 0:
continue
# Check if instance has a draft model configured
draft_model_id = instance.draft_model
if draft_model_id is None:
continue
# Check if draft model needs download
if draft_model_id not in download_status or not isinstance(
download_status[draft_model_id], (DownloadOngoing, DownloadCompleted)
):
# Create minimal shard metadata for draft model download
draft_shard = PipelineShardMetadata(
model_meta=ModelMetadata(
model_id=draft_model_id,
pretty_name=str(draft_model_id),
storage_size=Memory.from_bytes(0), # Unknown, will be determined during download
n_layers=1, # Placeholder
hidden_size=1, # Placeholder
supports_tensor=False,
),
device_rank=0,
world_size=1,
start_layer=0,
end_layer=1,
n_layers=1,
)
return DownloadModel(
instance_id=instance.instance_id,
shard_metadata=draft_shard,
)
def _init_distributed_backend(
runners: Mapping[RunnerId, RunnerSupervisor],
all_runners: Mapping[RunnerId, RunnerStatus],

View File

@@ -17,15 +17,23 @@ def entrypoint(
task_receiver: MpReceiver[Task],
_logger: "loguru.Logger",
) -> None:
if (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.ibv_devices) >= 2
fast_synch_override = os.environ.get("EXO_FAST_SYNCH")
if fast_synch_override == "on" or (
fast_synch_override != "off"
and (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.ibv_devices) >= 2
)
):
os.environ["MLX_METAL_FAST_SYNCH"] = "1"
else:
os.environ["MLX_METAL_FAST_SYNCH"] = "0"
global logger
logger = _logger
logger.info(f"Fast synch flag: {os.environ['MLX_METAL_FAST_SYNCH']}")
# Import main after setting global logger - this lets us just import logger from this module
try:
from exo.worker.runner.runner import main

View File

@@ -1,9 +1,21 @@
import time
from collections.abc import Generator
from contextlib import contextmanager
from functools import cache
from typing import cast
import mlx.core as mx
from mlx_lm.models.gpt_oss import Model as GptOssModel
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
HarmonyEncodingName,
Role,
StreamableParser,
load_harmony_encoding,
)
from exo.shared.types.api import ChatCompletionMessageText
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.common import CommandId
from exo.shared.types.events import (
ChunkGenerated,
Event,
@@ -11,6 +23,7 @@ from exo.shared.types.events import (
TaskAcknowledged,
TaskStatusUpdated,
)
from exo.shared.types.models import ModelId
from exo.shared.types.tasks import (
ChatCompletion,
ConnectToGroup,
@@ -39,15 +52,44 @@ from exo.shared.types.worker.runners import (
RunnerWarmingUp,
)
from exo.utils.channels import MpReceiver, MpSender
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
from exo.worker.engines.mlx.utils_mlx import (
initialize_mlx,
load_draft_model,
load_mlx_items,
mlx_force_oom,
)
from exo.worker.runner.bootstrap import logger
@contextmanager
def send_error_chunk_on_exception(
event_sender: MpSender[Event],
command_id: CommandId,
model_id: ModelId,
device_rank: int,
):
try:
yield
except Exception as e:
logger.error(e)
if device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=0,
model=model_id,
text="",
token_id=0,
finish_reason="error",
error_message=str(e),
),
)
)
def main(
bound_instance: BoundInstance,
event_sender: MpSender[Event],
@@ -69,6 +111,7 @@ def main(
model = None
tokenizer = None
group = None
draft_model: Model | None = None # Loaded during warmup if instance has draft_model
current_status: RunnerStatus = RunnerIdle()
logger.info("runner created")
@@ -109,7 +152,20 @@ def main(
)
)
model, tokenizer = load_mlx_items(bound_instance, group)
def on_model_load_timeout() -> None:
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id,
runner_status=RunnerFailed(
error_message="Model loading timed out"
),
)
)
time.sleep(0.5)
model, tokenizer = load_mlx_items(
bound_instance, group, on_timeout=on_model_load_timeout
)
current_status = RunnerLoaded()
logger.info("runner loaded")
@@ -124,11 +180,20 @@ def main(
)
)
# Load draft model for speculative decoding (rank 0 only)
if (
instance.draft_model is not None
and shard_metadata.device_rank == 0
):
logger.info(f"Loading draft model: {instance.draft_model}")
draft_model = cast(
Model, load_draft_model(str(instance.draft_model))
)
logger.info(f"warming up inference for instance: {instance}")
toks = warmup_inference(
model=model,
model=cast(Model, model),
tokenizer=tokenizer,
# kv_prefix_cache=kv_prefix_cache, # supply for warmup-time prefix caching
)
logger.info(f"warmed up by generating {toks} tokens")
logger.info(
@@ -139,8 +204,6 @@ def main(
case ChatCompletion(task_params=task_params, command_id=command_id) if (
isinstance(current_status, RunnerReady)
):
assert model
assert tokenizer
logger.info(f"received chat request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
@@ -149,33 +212,49 @@ def main(
runner_id=runner_id, runner_status=current_status
)
)
assert task_params.messages[0].content is not None
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses using the actual MLX generation
for response in mlx_generate(
model=model,
tokenizer=tokenizer,
task=task_params,
with send_error_chunk_on_exception(
event_sender,
command_id,
shard_metadata.model_meta.model_id,
shard_metadata.device_rank,
):
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
assert model
assert tokenizer
assert task_params.messages[0].content is not None
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses (draft_model loaded at warmup if configured)
mlx_generator = mlx_generate(
model=cast(Model, model),
tokenizer=tokenizer,
task=task_params,
draft_model=draft_model,
num_draft_tokens=instance.num_draft_tokens,
)
# GPT-OSS specific parsing to match other model formats.
if isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
# TODO: Add tool call parser here
for response in mlx_generator:
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
)
)
)
# case TokenizedResponse():
# TODO: something here ig
current_status = RunnerReady()
logger.info("runner ready")
@@ -199,7 +278,7 @@ def main(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
if isinstance(current_status, RunnerShutdown):
del model, tokenizer, group
del model, tokenizer, group, draft_model
mx.clear_cache()
import gc
@@ -207,6 +286,43 @@ def main(
break
@cache
def get_gpt_oss_encoding():
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
return encoding
def parse_gpt_oss(
responses: Generator[GenerationResponse],
) -> Generator[GenerationResponse]:
encoding = get_gpt_oss_encoding()
stream = StreamableParser(encoding, role=Role.ASSISTANT)
thinking = False
for response in responses:
stream.process(response.token)
delta = stream.last_content_delta
ch = stream.current_channel
if ch == "analysis" and not thinking:
thinking = True
yield response.model_copy(update={"text": "<think>"})
if ch != "analysis" and thinking:
thinking = False
yield response.model_copy(update={"text": "</think>"})
if delta:
yield response.model_copy(update={"text": delta})
if response.finish_reason is not None:
if thinking:
yield response.model_copy(update={"text": "</think>"})
yield response
break
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"

View File

@@ -0,0 +1,50 @@
# pyright: reportAny=false
from unittest.mock import MagicMock
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.common import CommandId
from exo.shared.types.events import ChunkGenerated
from exo.worker.runner.runner import send_error_chunk_on_exception
from exo.worker.tests.constants import MODEL_A_ID
def test_send_error_chunk_on_exception_no_error() -> None:
event_sender = MagicMock()
command_id = CommandId()
with send_error_chunk_on_exception(
event_sender, command_id, MODEL_A_ID, device_rank=0
):
_ = 1 + 1
event_sender.send.assert_not_called()
def test_send_error_chunk_on_exception_catches_error() -> None:
event_sender = MagicMock()
command_id = CommandId()
with send_error_chunk_on_exception(
event_sender, command_id, MODEL_A_ID, device_rank=0
):
raise ValueError("test error")
event_sender.send.assert_called_once()
call_args = event_sender.send.call_args[0][0]
assert isinstance(call_args, ChunkGenerated)
assert call_args.command_id == command_id
assert isinstance(call_args.chunk, TokenChunk)
assert call_args.chunk.finish_reason == "error"
assert call_args.chunk.error_message == "test error"
def test_send_error_chunk_on_exception_skips_non_rank_zero() -> None:
event_sender = MagicMock()
command_id = CommandId()
with send_error_chunk_on_exception(
event_sender, command_id, MODEL_A_ID, device_rank=1
):
raise ValueError("test error")
event_sender.send.assert_not_called()

View File

@@ -1,49 +1,64 @@
import http.client
from anyio import create_task_group, to_thread
import anyio
import httpx
from anyio import create_task_group
from loguru import logger
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
REACHABILITY_ATTEMPTS = 3
async def check_reachability(
target_ip: str,
expected_node_id: NodeId,
self_node_id: NodeId,
out: dict[NodeId, set[str]],
client: httpx.AsyncClient,
) -> None:
"""Check if a node is reachable at the given IP and verify its identity."""
if ":" in target_ip:
# TODO: use real IpAddress types
target_ip = f"[{target_ip}]"
url = f"http://{target_ip}:52415/node_id"
def _fetch_remote_node_id() -> NodeId | None:
connection = http.client.HTTPConnection(target_ip, 52415, timeout=1)
remote_node_id = None
last_error = None
for _ in range(REACHABILITY_ATTEMPTS):
try:
connection.request("GET", "/node_id")
response = connection.getresponse()
if response.status != 200:
return None
r = await client.get(url)
if r.status_code != 200:
await anyio.sleep(1)
continue
body = response.read().decode("utf-8").strip()
body = r.text.strip().strip('"')
if not body:
await anyio.sleep(1)
continue
# Strip quotes if present (JSON string response)
if body.startswith('"') and body.endswith('"') and len(body) >= 2:
body = body[1:-1]
remote_node_id = NodeId(body)
break
return NodeId(body) or None
except OSError:
return None
except http.client.HTTPException:
return None
finally:
connection.close()
# expected failure cases
except (
httpx.TimeoutException,
httpx.NetworkError,
):
await anyio.sleep(1)
# other failures should be logged on last attempt
except httpx.HTTPError as e:
last_error = e
await anyio.sleep(1)
if last_error is not None:
logger.warning(
f"connect error {type(last_error).__name__} from {target_ip} after {REACHABILITY_ATTEMPTS} attempts; treating as down"
)
remote_node_id = await to_thread.run_sync(_fetch_remote_node_id)
if remote_node_id is None:
return
if remote_node_id == self_node_id:
return
if remote_node_id != expected_node_id:
logger.warning(
f"Discovered node with unexpected node_id; "
@@ -61,18 +76,33 @@ async def check_reachable(
topology: Topology, self_node_id: NodeId
) -> dict[NodeId, set[str]]:
"""Check which nodes are reachable and return their IPs."""
reachable: dict[NodeId, set[str]] = {}
async with create_task_group() as tg:
# these are intentionally httpx's defaults so we can tune them later
timeout = httpx.Timeout(timeout=5.0)
limits = httpx.Limits(
max_connections=100,
max_keepalive_connections=20,
keepalive_expiry=5,
)
async with (
httpx.AsyncClient(timeout=timeout, limits=limits) as client,
create_task_group() as tg,
):
for node in topology.list_nodes():
if not node.node_profile:
continue
if node.node_id == self_node_id:
continue
for iface in node.node_profile.network_interfaces:
tg.start_soon(
check_reachability,
iface.ip_address,
node.node_id,
self_node_id,
reachable,
client,
)
return reachable

1484
uv.lock generated
View File

File diff suppressed because it is too large Load Diff