mirror of
https://github.com/exo-explore/exo.git
synced 2026-01-27 07:20:14 -05:00
Compare commits
12 Commits
releases/v
...
improve-di
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
93dab5b960 | ||
|
|
bd4f0bf048 | ||
|
|
cd8c01b7c8 | ||
|
|
59e991ce15 | ||
|
|
ffba340e70 | ||
|
|
9968abe816 | ||
|
|
0e30b0830f | ||
|
|
44453c4c8b | ||
|
|
1290e8ed9f | ||
|
|
d93db3d6bf | ||
|
|
ff4a2022f7 | ||
|
|
cee48f6f34 |
@@ -31,6 +31,35 @@ enum NetworkSetupHelper {
|
||||
# Remove Thunderbolt Bridge from VirtualNetworkInterfaces in preferences.plist
|
||||
/usr/libexec/PlistBuddy -c "Delete :VirtualNetworkInterfaces:Bridge:bridge0" "$PREFS" 2>/dev/null || true
|
||||
|
||||
networksetup -listlocations | grep -q exo || {
|
||||
networksetup -createlocation exo
|
||||
}
|
||||
|
||||
networksetup -switchtolocation exo
|
||||
networksetup -listallhardwareports \\
|
||||
| awk -F': ' '/Hardware Port: / {print $2}' \\
|
||||
| while IFS=":" read -r name; do
|
||||
case "$name" in
|
||||
"Ethernet Adapter"*)
|
||||
;;
|
||||
"Thunderbolt Bridge")
|
||||
;;
|
||||
"Thunderbolt "*)
|
||||
networksetup -listallnetworkservices \\
|
||||
| grep -q "EXO $name" \\
|
||||
|| networksetup -createnetworkservice "EXO $name" "$name" 2>/dev/null \\
|
||||
|| continue
|
||||
networksetup -setdhcp "EXO $name"
|
||||
;;
|
||||
*)
|
||||
networksetup -listallnetworkservices \\
|
||||
| grep -q "$name" \\
|
||||
|| networksetup -createnetworkservice "$name" "$name" 2>/dev/null \\
|
||||
|| continue
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
networksetup -listnetworkservices | grep -q "Thunderbolt Bridge" && {
|
||||
networksetup -setnetworkserviceenabled "Thunderbolt Bridge" off
|
||||
} || true
|
||||
|
||||
@@ -3,12 +3,28 @@
|
||||
perSystem =
|
||||
{ pkgs, lib, ... }:
|
||||
let
|
||||
# Filter source to ONLY include package.json and package-lock.json
|
||||
# This ensures prettier-svelte only rebuilds when lockfiles change
|
||||
dashboardLockfileSrc = lib.cleanSourceWith {
|
||||
src = inputs.self;
|
||||
filter =
|
||||
path: type:
|
||||
let
|
||||
baseName = builtins.baseNameOf path;
|
||||
isDashboardDir = baseName == "dashboard" && type == "directory";
|
||||
isPackageFile =
|
||||
(lib.hasInfix "/dashboard/" path || lib.hasSuffix "/dashboard" (builtins.dirOf path))
|
||||
&& (baseName == "package.json" || baseName == "package-lock.json");
|
||||
in
|
||||
isDashboardDir || isPackageFile;
|
||||
};
|
||||
|
||||
# Stub source with lockfiles and minimal files for build to succeed
|
||||
# This allows prettier-svelte to avoid rebuilding when dashboard source changes
|
||||
dashboardStubSrc = pkgs.runCommand "dashboard-stub-src" { } ''
|
||||
mkdir -p $out
|
||||
cp ${inputs.self}/dashboard/package.json $out/
|
||||
cp ${inputs.self}/dashboard/package-lock.json $out/
|
||||
cp ${dashboardLockfileSrc}/dashboard/package.json $out/
|
||||
cp ${dashboardLockfileSrc}/dashboard/package-lock.json $out/
|
||||
# Minimal files so vite build succeeds (produces empty output)
|
||||
echo '<!DOCTYPE html><html><head></head><body></body></html>' > $out/index.html
|
||||
mkdir -p $out/src
|
||||
|
||||
@@ -19,7 +19,7 @@ dependencies = [
|
||||
"anyio==4.11.0",
|
||||
"mlx==0.30.3; sys_platform == 'darwin'",
|
||||
"mlx[cpu]==0.30.3; sys_platform == 'linux'",
|
||||
"mlx-lm @ git+https://github.com/AlexCheema/mlx-lm.git@fix-transformers-5.0.0rc2",
|
||||
"mlx-lm==0.30.5",
|
||||
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
|
||||
"hypercorn>=0.18.0",
|
||||
"openai-harmony>=0.0.8",
|
||||
|
||||
@@ -121,11 +121,20 @@ async def ensure_models_dir() -> Path:
|
||||
|
||||
|
||||
async def delete_model(model_id: ModelId) -> bool:
|
||||
model_dir = await ensure_models_dir() / model_id.normalize()
|
||||
if not await aios.path.exists(model_dir):
|
||||
return False
|
||||
await asyncio.to_thread(shutil.rmtree, model_dir, ignore_errors=False)
|
||||
return True
|
||||
models_dir = await ensure_models_dir()
|
||||
model_dir = models_dir / model_id.normalize()
|
||||
cache_dir = models_dir / "caches" / model_id.normalize()
|
||||
|
||||
deleted = False
|
||||
if await aios.path.exists(model_dir):
|
||||
await asyncio.to_thread(shutil.rmtree, model_dir, ignore_errors=False)
|
||||
deleted = True
|
||||
|
||||
# Also clear cache
|
||||
if await aios.path.exists(cache_dir):
|
||||
await asyncio.to_thread(shutil.rmtree, cache_dir, ignore_errors=False)
|
||||
|
||||
return deleted
|
||||
|
||||
|
||||
async def seed_models(seed_dir: str | Path):
|
||||
@@ -151,16 +160,28 @@ async def fetch_file_list_with_cache(
|
||||
target_dir = (await ensure_models_dir()) / "caches" / model_id.normalize()
|
||||
await aios.makedirs(target_dir, exist_ok=True)
|
||||
cache_file = target_dir / f"{model_id.normalize()}--{revision}--file_list.json"
|
||||
if await aios.path.exists(cache_file):
|
||||
async with aiofiles.open(cache_file, "r") as f:
|
||||
return TypeAdapter(list[FileListEntry]).validate_json(await f.read())
|
||||
file_list = await fetch_file_list_with_retry(
|
||||
model_id, revision, recursive=recursive
|
||||
)
|
||||
await aios.makedirs(cache_file.parent, exist_ok=True)
|
||||
async with aiofiles.open(cache_file, "w") as f:
|
||||
await f.write(TypeAdapter(list[FileListEntry]).dump_json(file_list).decode())
|
||||
return file_list
|
||||
|
||||
# Always try fresh first
|
||||
try:
|
||||
file_list = await fetch_file_list_with_retry(
|
||||
model_id, revision, recursive=recursive
|
||||
)
|
||||
# Update cache with fresh data
|
||||
async with aiofiles.open(cache_file, "w") as f:
|
||||
await f.write(
|
||||
TypeAdapter(list[FileListEntry]).dump_json(file_list).decode()
|
||||
)
|
||||
return file_list
|
||||
except Exception as e:
|
||||
# Fetch failed - try cache fallback
|
||||
if await aios.path.exists(cache_file):
|
||||
logger.warning(
|
||||
f"Failed to fetch file list for {model_id}, using cached data: {e}"
|
||||
)
|
||||
async with aiofiles.open(cache_file, "r") as f:
|
||||
return TypeAdapter(list[FileListEntry]).validate_json(await f.read())
|
||||
# No cache available, propagate the error
|
||||
raise
|
||||
|
||||
|
||||
async def fetch_file_list_with_retry(
|
||||
@@ -332,8 +353,28 @@ async def _download_file(
|
||||
target_dir: Path,
|
||||
on_progress: Callable[[int, int, bool], None] = lambda _, __, ___: None,
|
||||
) -> Path:
|
||||
if await aios.path.exists(target_dir / path):
|
||||
return target_dir / path
|
||||
target_path = target_dir / path
|
||||
|
||||
if await aios.path.exists(target_path):
|
||||
local_size = (await aios.stat(target_path)).st_size
|
||||
|
||||
# Try to verify against remote, but allow offline operation
|
||||
try:
|
||||
remote_size, _ = await file_meta(model_id, revision, path)
|
||||
if local_size != remote_size:
|
||||
logger.info(
|
||||
f"File {path} size mismatch (local={local_size}, remote={remote_size}), re-downloading"
|
||||
)
|
||||
await aios.remove(target_path)
|
||||
else:
|
||||
return target_path
|
||||
except Exception as e:
|
||||
# Offline or network error - trust local file
|
||||
logger.debug(
|
||||
f"Could not verify {path} against remote (offline?): {e}, using local file"
|
||||
)
|
||||
return target_path
|
||||
|
||||
await aios.makedirs((target_dir / path).parent, exist_ok=True)
|
||||
length, etag = await file_meta(model_id, revision, path)
|
||||
remote_hash = etag[:-5] if etag.endswith("-gzip") else etag
|
||||
@@ -542,17 +583,26 @@ async def download_shard(
|
||||
async def on_progress_wrapper(
|
||||
file: FileListEntry, curr_bytes: int, total_bytes: int, is_renamed: bool
|
||||
) -> None:
|
||||
start_time = (
|
||||
file_progress[file.path].start_time
|
||||
if file.path in file_progress
|
||||
else time.time()
|
||||
)
|
||||
downloaded_this_session = (
|
||||
file_progress[file.path].downloaded_this_session.in_bytes
|
||||
+ (curr_bytes - file_progress[file.path].downloaded.in_bytes)
|
||||
if file.path in file_progress
|
||||
else curr_bytes
|
||||
previous_progress = file_progress.get(file.path)
|
||||
|
||||
# Detect re-download: curr_bytes < previous downloaded means file was deleted and restarted
|
||||
is_redownload = (
|
||||
previous_progress is not None
|
||||
and curr_bytes < previous_progress.downloaded.in_bytes
|
||||
)
|
||||
|
||||
if is_redownload or previous_progress is None:
|
||||
# Fresh download or re-download: reset tracking
|
||||
start_time = time.time()
|
||||
downloaded_this_session = curr_bytes
|
||||
else:
|
||||
# Continuing download: accumulate
|
||||
start_time = previous_progress.start_time
|
||||
downloaded_this_session = (
|
||||
previous_progress.downloaded_this_session.in_bytes
|
||||
+ (curr_bytes - previous_progress.downloaded.in_bytes)
|
||||
)
|
||||
|
||||
speed = (
|
||||
downloaded_this_session / (time.time() - start_time)
|
||||
if time.time() - start_time > 0
|
||||
|
||||
0
src/exo/download/tests/__init__.py
Normal file
0
src/exo/download/tests/__init__.py
Normal file
451
src/exo/download/tests/test_download_verification.py
Normal file
451
src/exo/download/tests/test_download_verification.py
Normal file
@@ -0,0 +1,451 @@
|
||||
"""Tests for download verification and cache behavior."""
|
||||
|
||||
import time
|
||||
from collections.abc import AsyncIterator
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import aiofiles
|
||||
import aiofiles.os as aios
|
||||
import pytest
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from exo.download.download_utils import (
|
||||
delete_model,
|
||||
fetch_file_list_with_cache,
|
||||
)
|
||||
from exo.shared.types.common import ModelId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.worker.downloads import FileListEntry, RepoFileDownloadProgress
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def model_id() -> ModelId:
|
||||
return ModelId("test-org/test-model")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def temp_models_dir(tmp_path: Path) -> AsyncIterator[Path]:
|
||||
"""Set up a temporary models directory for testing."""
|
||||
models_dir = tmp_path / "models"
|
||||
await aios.makedirs(models_dir, exist_ok=True)
|
||||
with patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir):
|
||||
yield models_dir
|
||||
|
||||
|
||||
class TestFileVerification:
|
||||
"""Tests for file size verification in _download_file."""
|
||||
|
||||
async def test_redownload_when_file_size_changes_upstream(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that files with mismatched sizes are re-downloaded."""
|
||||
# Import inside test to allow patching
|
||||
from exo.download.download_utils import (
|
||||
_download_file, # pyright: ignore[reportPrivateUsage]
|
||||
)
|
||||
|
||||
target_dir = tmp_path / "downloads"
|
||||
await aios.makedirs(target_dir, exist_ok=True)
|
||||
|
||||
# Create a local file with wrong size
|
||||
local_file = target_dir / "test.safetensors"
|
||||
async with aiofiles.open(local_file, "wb") as f:
|
||||
await f.write(b"local content") # 13 bytes
|
||||
|
||||
remote_size = 1000 # Different from local
|
||||
remote_hash = "abc123"
|
||||
|
||||
with (
|
||||
patch(
|
||||
"exo.download.download_utils.file_meta",
|
||||
new_callable=AsyncMock,
|
||||
return_value=(remote_size, remote_hash),
|
||||
) as mock_file_meta,
|
||||
patch(
|
||||
"exo.download.download_utils.create_http_session"
|
||||
) as mock_session_factory,
|
||||
):
|
||||
# Set up mock HTTP response for re-download
|
||||
mock_response = MagicMock()
|
||||
mock_response.status = 200
|
||||
mock_response.content.read = AsyncMock( # pyright: ignore[reportAny]
|
||||
side_effect=[b"x" * remote_size, b""]
|
||||
)
|
||||
|
||||
mock_session = MagicMock()
|
||||
mock_session.get.return_value.__aenter__ = AsyncMock( # pyright: ignore[reportAny]
|
||||
return_value=mock_response
|
||||
)
|
||||
mock_session.get.return_value.__aexit__ = AsyncMock( # pyright: ignore[reportAny]
|
||||
return_value=None
|
||||
)
|
||||
mock_session_factory.return_value.__aenter__ = AsyncMock( # pyright: ignore[reportAny]
|
||||
return_value=mock_session
|
||||
)
|
||||
mock_session_factory.return_value.__aexit__ = AsyncMock( # pyright: ignore[reportAny]
|
||||
return_value=None
|
||||
)
|
||||
|
||||
# Mock calc_hash to return the expected hash
|
||||
with patch(
|
||||
"exo.download.download_utils.calc_hash",
|
||||
new_callable=AsyncMock,
|
||||
return_value=remote_hash,
|
||||
):
|
||||
await _download_file(model_id, "main", "test.safetensors", target_dir)
|
||||
|
||||
# file_meta should be called twice: once for verification, once for download
|
||||
assert mock_file_meta.call_count == 2
|
||||
|
||||
async def test_skip_download_when_file_size_matches(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that files with matching sizes are not re-downloaded."""
|
||||
from exo.download.download_utils import (
|
||||
_download_file, # pyright: ignore[reportPrivateUsage]
|
||||
)
|
||||
|
||||
target_dir = tmp_path / "downloads"
|
||||
await aios.makedirs(target_dir, exist_ok=True)
|
||||
|
||||
# Create a local file
|
||||
local_file = target_dir / "test.safetensors"
|
||||
local_content = b"local content"
|
||||
async with aiofiles.open(local_file, "wb") as f:
|
||||
await f.write(local_content)
|
||||
|
||||
remote_size = len(local_content) # Same as local
|
||||
remote_hash = "abc123"
|
||||
|
||||
with (
|
||||
patch(
|
||||
"exo.download.download_utils.file_meta",
|
||||
new_callable=AsyncMock,
|
||||
return_value=(remote_size, remote_hash),
|
||||
) as mock_file_meta,
|
||||
patch(
|
||||
"exo.download.download_utils.create_http_session"
|
||||
) as mock_session_factory,
|
||||
):
|
||||
result = await _download_file(
|
||||
model_id, "main", "test.safetensors", target_dir
|
||||
)
|
||||
|
||||
# Should return immediately without downloading
|
||||
assert result == local_file
|
||||
mock_file_meta.assert_called_once()
|
||||
mock_session_factory.assert_not_called()
|
||||
|
||||
async def test_offline_fallback_uses_local_file(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that local files are used when network is unavailable."""
|
||||
from exo.download.download_utils import (
|
||||
_download_file, # pyright: ignore[reportPrivateUsage]
|
||||
)
|
||||
|
||||
target_dir = tmp_path / "downloads"
|
||||
await aios.makedirs(target_dir, exist_ok=True)
|
||||
|
||||
# Create a local file
|
||||
local_file = target_dir / "test.safetensors"
|
||||
async with aiofiles.open(local_file, "wb") as f:
|
||||
await f.write(b"local content")
|
||||
|
||||
with (
|
||||
patch(
|
||||
"exo.download.download_utils.file_meta",
|
||||
new_callable=AsyncMock,
|
||||
side_effect=Exception("Network error"),
|
||||
),
|
||||
patch(
|
||||
"exo.download.download_utils.create_http_session"
|
||||
) as mock_session_factory,
|
||||
):
|
||||
result = await _download_file(
|
||||
model_id, "main", "test.safetensors", target_dir
|
||||
)
|
||||
|
||||
# Should return local file without attempting download
|
||||
assert result == local_file
|
||||
mock_session_factory.assert_not_called()
|
||||
|
||||
|
||||
class TestFileListCache:
|
||||
"""Tests for file list caching behavior."""
|
||||
|
||||
async def test_fetch_fresh_and_update_cache(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that fresh data is fetched and cache is updated."""
|
||||
models_dir = tmp_path / "models"
|
||||
|
||||
file_list = [
|
||||
FileListEntry(type="file", path="model.safetensors", size=1000),
|
||||
FileListEntry(type="file", path="config.json", size=100),
|
||||
]
|
||||
|
||||
with (
|
||||
patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir),
|
||||
patch(
|
||||
"exo.download.download_utils.fetch_file_list_with_retry",
|
||||
new_callable=AsyncMock,
|
||||
return_value=file_list,
|
||||
) as mock_fetch,
|
||||
):
|
||||
result = await fetch_file_list_with_cache(model_id, "main")
|
||||
|
||||
assert result == file_list
|
||||
mock_fetch.assert_called_once()
|
||||
|
||||
# Verify cache was written
|
||||
cache_file = (
|
||||
models_dir
|
||||
/ "caches"
|
||||
/ model_id.normalize()
|
||||
/ f"{model_id.normalize()}--main--file_list.json"
|
||||
)
|
||||
assert await aios.path.exists(cache_file)
|
||||
|
||||
async with aiofiles.open(cache_file, "r") as f:
|
||||
cached_data = TypeAdapter(list[FileListEntry]).validate_json(
|
||||
await f.read()
|
||||
)
|
||||
assert cached_data == file_list
|
||||
|
||||
async def test_fallback_to_cache_when_fetch_fails(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that cached data is used when fetch fails."""
|
||||
models_dir = tmp_path / "models"
|
||||
cache_dir = models_dir / "caches" / model_id.normalize()
|
||||
await aios.makedirs(cache_dir, exist_ok=True)
|
||||
|
||||
# Create cache file
|
||||
cached_file_list = [
|
||||
FileListEntry(type="file", path="model.safetensors", size=1000),
|
||||
]
|
||||
cache_file = cache_dir / f"{model_id.normalize()}--main--file_list.json"
|
||||
async with aiofiles.open(cache_file, "w") as f:
|
||||
await f.write(
|
||||
TypeAdapter(list[FileListEntry]).dump_json(cached_file_list).decode()
|
||||
)
|
||||
|
||||
with (
|
||||
patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir),
|
||||
patch(
|
||||
"exo.download.download_utils.fetch_file_list_with_retry",
|
||||
new_callable=AsyncMock,
|
||||
side_effect=Exception("Network error"),
|
||||
),
|
||||
):
|
||||
result = await fetch_file_list_with_cache(model_id, "main")
|
||||
|
||||
assert result == cached_file_list
|
||||
|
||||
async def test_error_propagates_when_no_cache(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that errors propagate when fetch fails and no cache exists."""
|
||||
models_dir = tmp_path / "models"
|
||||
|
||||
with (
|
||||
patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir),
|
||||
patch(
|
||||
"exo.download.download_utils.fetch_file_list_with_retry",
|
||||
new_callable=AsyncMock,
|
||||
side_effect=Exception("Network error"),
|
||||
),
|
||||
pytest.raises(Exception, match="Network error"),
|
||||
):
|
||||
await fetch_file_list_with_cache(model_id, "main")
|
||||
|
||||
|
||||
class TestModelDeletion:
|
||||
"""Tests for model deletion including cache cleanup."""
|
||||
|
||||
async def test_delete_model_clears_cache(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test that deleting a model also deletes its cache."""
|
||||
models_dir = tmp_path / "models"
|
||||
model_dir = models_dir / model_id.normalize()
|
||||
cache_dir = models_dir / "caches" / model_id.normalize()
|
||||
|
||||
# Create model and cache directories
|
||||
await aios.makedirs(model_dir, exist_ok=True)
|
||||
await aios.makedirs(cache_dir, exist_ok=True)
|
||||
|
||||
# Add some files
|
||||
async with aiofiles.open(model_dir / "model.safetensors", "w") as f:
|
||||
await f.write("model data")
|
||||
async with aiofiles.open(cache_dir / "file_list.json", "w") as f:
|
||||
await f.write("[]")
|
||||
|
||||
with patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir):
|
||||
result = await delete_model(model_id)
|
||||
|
||||
assert result is True
|
||||
assert not await aios.path.exists(model_dir)
|
||||
assert not await aios.path.exists(cache_dir)
|
||||
|
||||
async def test_delete_model_only_cache_exists(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test deleting when only cache exists (model already deleted)."""
|
||||
models_dir = tmp_path / "models"
|
||||
cache_dir = models_dir / "caches" / model_id.normalize()
|
||||
|
||||
# Only create cache directory
|
||||
await aios.makedirs(cache_dir, exist_ok=True)
|
||||
async with aiofiles.open(cache_dir / "file_list.json", "w") as f:
|
||||
await f.write("[]")
|
||||
|
||||
with patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir):
|
||||
result = await delete_model(model_id)
|
||||
|
||||
# Returns False because model dir didn't exist
|
||||
assert result is False
|
||||
# But cache should still be cleaned up
|
||||
assert not await aios.path.exists(cache_dir)
|
||||
|
||||
async def test_delete_nonexistent_model(
|
||||
self, model_id: ModelId, tmp_path: Path
|
||||
) -> None:
|
||||
"""Test deleting a model that doesn't exist."""
|
||||
models_dir = tmp_path / "models"
|
||||
await aios.makedirs(models_dir, exist_ok=True)
|
||||
|
||||
with patch("exo.download.download_utils.EXO_MODELS_DIR", models_dir):
|
||||
result = await delete_model(model_id)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
class TestProgressResetOnRedownload:
|
||||
"""Tests for progress tracking when files are re-downloaded."""
|
||||
|
||||
async def test_progress_resets_correctly_on_redownload(
|
||||
self, model_id: ModelId
|
||||
) -> None:
|
||||
"""Test that progress tracking resets when a file is re-downloaded.
|
||||
|
||||
When a file is deleted and re-downloaded (due to size mismatch),
|
||||
the progress tracking should reset rather than calculating negative
|
||||
downloaded_this_session values.
|
||||
"""
|
||||
# Simulate file_progress dict as it exists in download_shard
|
||||
file_progress: dict[str, RepoFileDownloadProgress] = {}
|
||||
|
||||
# Initialize with old file progress (simulating existing large file)
|
||||
old_file_size = 1_500_000_000 # 1.5 GB
|
||||
file_progress["model.safetensors"] = RepoFileDownloadProgress(
|
||||
repo_id=model_id,
|
||||
repo_revision="main",
|
||||
file_path="model.safetensors",
|
||||
downloaded=Memory.from_bytes(old_file_size),
|
||||
downloaded_this_session=Memory.from_bytes(0),
|
||||
total=Memory.from_bytes(old_file_size),
|
||||
speed=0,
|
||||
eta=timedelta(0),
|
||||
status="not_started",
|
||||
start_time=time.time() - 10, # Started 10 seconds ago
|
||||
)
|
||||
|
||||
# Simulate the logic from on_progress_wrapper after re-download starts
|
||||
# This is the exact logic from the fixed on_progress_wrapper
|
||||
curr_bytes = 100_000 # 100 KB - new download just started
|
||||
previous_progress = file_progress.get("model.safetensors")
|
||||
|
||||
# Detect re-download: curr_bytes < previous downloaded
|
||||
is_redownload = (
|
||||
previous_progress is not None
|
||||
and curr_bytes < previous_progress.downloaded.in_bytes
|
||||
)
|
||||
|
||||
if is_redownload or previous_progress is None:
|
||||
# Fresh download or re-download: reset tracking
|
||||
start_time = time.time()
|
||||
downloaded_this_session = curr_bytes
|
||||
else:
|
||||
# Continuing download: accumulate
|
||||
start_time = previous_progress.start_time
|
||||
downloaded_this_session = (
|
||||
previous_progress.downloaded_this_session.in_bytes
|
||||
+ (curr_bytes - previous_progress.downloaded.in_bytes)
|
||||
)
|
||||
|
||||
# Key assertions
|
||||
assert is_redownload is True, "Should detect re-download scenario"
|
||||
assert downloaded_this_session == curr_bytes, (
|
||||
"downloaded_this_session should equal curr_bytes on re-download"
|
||||
)
|
||||
assert downloaded_this_session > 0, (
|
||||
"downloaded_this_session should be positive, not negative"
|
||||
)
|
||||
|
||||
# Calculate speed (should be positive)
|
||||
elapsed = time.time() - start_time
|
||||
speed = downloaded_this_session / elapsed if elapsed > 0 else 0
|
||||
assert speed >= 0, "Speed should be non-negative"
|
||||
|
||||
async def test_progress_accumulates_on_continuing_download(
|
||||
self, model_id: ModelId
|
||||
) -> None:
|
||||
"""Test that progress accumulates correctly for continuing downloads.
|
||||
|
||||
When a download continues from where it left off (resume),
|
||||
the progress should accumulate correctly.
|
||||
"""
|
||||
file_progress: dict[str, RepoFileDownloadProgress] = {}
|
||||
|
||||
# Initialize with partial download progress
|
||||
initial_downloaded = 500_000 # 500 KB already downloaded
|
||||
start_time = time.time() - 5 # Started 5 seconds ago
|
||||
file_progress["model.safetensors"] = RepoFileDownloadProgress(
|
||||
repo_id=model_id,
|
||||
repo_revision="main",
|
||||
file_path="model.safetensors",
|
||||
downloaded=Memory.from_bytes(initial_downloaded),
|
||||
downloaded_this_session=Memory.from_bytes(initial_downloaded),
|
||||
total=Memory.from_bytes(1_000_000),
|
||||
speed=100_000,
|
||||
eta=timedelta(seconds=5),
|
||||
status="in_progress",
|
||||
start_time=start_time,
|
||||
)
|
||||
|
||||
# Progress callback with more bytes downloaded
|
||||
curr_bytes = 600_000 # 600 KB - continuing download
|
||||
previous_progress = file_progress.get("model.safetensors")
|
||||
|
||||
# This is NOT a re-download (curr_bytes > previous downloaded)
|
||||
is_redownload = (
|
||||
previous_progress is not None
|
||||
and curr_bytes < previous_progress.downloaded.in_bytes
|
||||
)
|
||||
|
||||
if is_redownload or previous_progress is None:
|
||||
downloaded_this_session = curr_bytes
|
||||
used_start_time = time.time()
|
||||
else:
|
||||
used_start_time = previous_progress.start_time
|
||||
downloaded_this_session = (
|
||||
previous_progress.downloaded_this_session.in_bytes
|
||||
+ (curr_bytes - previous_progress.downloaded.in_bytes)
|
||||
)
|
||||
|
||||
# Key assertions
|
||||
assert is_redownload is False, (
|
||||
"Should NOT detect re-download for continuing download"
|
||||
)
|
||||
assert used_start_time == start_time, "Should preserve original start_time"
|
||||
expected_session = initial_downloaded + (curr_bytes - initial_downloaded)
|
||||
assert downloaded_this_session == expected_session, (
|
||||
f"Should accumulate: {downloaded_this_session} == {expected_session}"
|
||||
)
|
||||
assert downloaded_this_session == 600_000, (
|
||||
"downloaded_this_session should equal total downloaded so far"
|
||||
)
|
||||
@@ -53,7 +53,6 @@ class Node:
|
||||
await router.register_topic(topics.COMMANDS)
|
||||
await router.register_topic(topics.ELECTION_MESSAGES)
|
||||
await router.register_topic(topics.CONNECTION_MESSAGES)
|
||||
await router.register_topic(topics.STATE_CATCHUP)
|
||||
await router.register_topic(topics.DOWNLOAD_COMMANDS)
|
||||
|
||||
logger.info(f"Starting node {node_id}")
|
||||
@@ -83,7 +82,6 @@ class Node:
|
||||
command_sender=router.sender(topics.COMMANDS),
|
||||
download_command_sender=router.sender(topics.DOWNLOAD_COMMANDS),
|
||||
election_receiver=router.receiver(topics.ELECTION_MESSAGES),
|
||||
state_catchup_receiver=router.receiver(topics.STATE_CATCHUP),
|
||||
)
|
||||
else:
|
||||
api = None
|
||||
@@ -96,7 +94,6 @@ class Node:
|
||||
global_event_receiver=router.receiver(topics.GLOBAL_EVENTS),
|
||||
local_event_sender=router.sender(topics.LOCAL_EVENTS),
|
||||
command_sender=router.sender(topics.COMMANDS),
|
||||
state_catchup_receiver=router.receiver(topics.STATE_CATCHUP),
|
||||
download_command_sender=router.sender(topics.DOWNLOAD_COMMANDS),
|
||||
event_index_counter=event_index_counter,
|
||||
)
|
||||
@@ -110,7 +107,6 @@ class Node:
|
||||
global_event_sender=router.sender(topics.GLOBAL_EVENTS),
|
||||
local_event_receiver=router.receiver(topics.LOCAL_EVENTS),
|
||||
command_receiver=router.receiver(topics.COMMANDS),
|
||||
state_catchup_sender=router.sender(topics.STATE_CATCHUP),
|
||||
)
|
||||
|
||||
er_send, er_recv = channel[ElectionResult]()
|
||||
@@ -193,7 +189,6 @@ class Node:
|
||||
global_event_sender=self.router.sender(topics.GLOBAL_EVENTS),
|
||||
local_event_receiver=self.router.receiver(topics.LOCAL_EVENTS),
|
||||
command_receiver=self.router.receiver(topics.COMMANDS),
|
||||
state_catchup_sender=self.router.sender(topics.STATE_CATCHUP),
|
||||
)
|
||||
self._tg.start_soon(self.master.run)
|
||||
elif (
|
||||
@@ -240,9 +235,6 @@ class Node:
|
||||
),
|
||||
local_event_sender=self.router.sender(topics.LOCAL_EVENTS),
|
||||
command_sender=self.router.sender(topics.COMMANDS),
|
||||
state_catchup_receiver=self.router.receiver(
|
||||
topics.STATE_CATCHUP
|
||||
),
|
||||
download_command_sender=self.router.sender(
|
||||
topics.DOWNLOAD_COMMANDS
|
||||
),
|
||||
|
||||
@@ -166,7 +166,6 @@ class API:
|
||||
download_command_sender: Sender[ForwarderDownloadCommand],
|
||||
# This lets us pause the API if an election is running
|
||||
election_receiver: Receiver[ElectionMessage],
|
||||
state_catchup_receiver: Receiver[State],
|
||||
) -> None:
|
||||
self.state = State()
|
||||
self._event_log: list[Event] = []
|
||||
@@ -174,7 +173,6 @@ class API:
|
||||
self.download_command_sender = download_command_sender
|
||||
self.global_event_receiver = global_event_receiver
|
||||
self.election_receiver = election_receiver
|
||||
self.state_catchup_receiver = state_catchup_receiver
|
||||
self.event_buffer: OrderedBuffer[Event] = OrderedBuffer[Event]()
|
||||
self.node_id: NodeId = node_id
|
||||
self.session_id: SessionId = session_id
|
||||
@@ -1251,7 +1249,6 @@ class API:
|
||||
tg.start_soon(self._apply_state)
|
||||
tg.start_soon(self._pause_on_new_election)
|
||||
tg.start_soon(self._cleanup_expired_images)
|
||||
tg.start_soon(self._state_catchup)
|
||||
print_startup_banner(self.port)
|
||||
await serve(
|
||||
cast(ASGIFramework, self.app),
|
||||
@@ -1262,22 +1259,6 @@ class API:
|
||||
self.command_sender.close()
|
||||
self.global_event_receiver.close()
|
||||
|
||||
async def _state_catchup(self):
|
||||
with self.state_catchup_receiver as states:
|
||||
async for state in states:
|
||||
if (
|
||||
self.state.last_event_applied_idx == -1
|
||||
and state.last_event_applied_idx > self.state.last_event_applied_idx
|
||||
):
|
||||
logger.info(
|
||||
f"API catching up state to idx {state.last_event_applied_idx}"
|
||||
)
|
||||
self.event_buffer.store = {}
|
||||
self.event_buffer.next_idx_to_release = (
|
||||
state.last_event_applied_idx + 1
|
||||
)
|
||||
self.state = state
|
||||
|
||||
async def _apply_state(self):
|
||||
with self.global_event_receiver as events:
|
||||
async for f_event in events:
|
||||
|
||||
@@ -68,8 +68,6 @@ class Master:
|
||||
# Send events to the forwarder to be indexed (usually from command processing)
|
||||
# Ideally these would be MasterForwarderEvents but type system says no :(
|
||||
global_event_sender: Sender[ForwarderEvent],
|
||||
# not a fan but - send the entire state to a node so it can catchup without the whole event log.
|
||||
state_catchup_sender: Sender[State],
|
||||
):
|
||||
self.state = State()
|
||||
self._tg: TaskGroup = anyio.create_task_group()
|
||||
@@ -79,7 +77,6 @@ class Master:
|
||||
self.command_receiver = command_receiver
|
||||
self.local_event_receiver = local_event_receiver
|
||||
self.global_event_sender = global_event_sender
|
||||
self.state_catchup_sender = state_catchup_sender
|
||||
send, recv = channel[Event]()
|
||||
self.event_sender: Sender[Event] = send
|
||||
self._loopback_event_receiver: Receiver[Event] = recv
|
||||
@@ -87,6 +84,7 @@ class Master:
|
||||
local_event_receiver.clone_sender()
|
||||
)
|
||||
self._multi_buffer = MultiSourceBuffer[NodeId, Event]()
|
||||
# TODO: not have this
|
||||
self._event_log: list[Event] = []
|
||||
|
||||
async def run(self):
|
||||
@@ -293,17 +291,11 @@ class Master:
|
||||
command.finished_command_id
|
||||
]
|
||||
case RequestEventLog():
|
||||
if command.since_idx == 0:
|
||||
# This is an optimization, and should not be relied upon in theory.
|
||||
logger.info(
|
||||
f"Master sending catchup state for index {self.state.last_event_applied_idx}"
|
||||
# We should just be able to send everything, since other buffers will ignore old messages
|
||||
for i in range(command.since_idx, len(self._event_log)):
|
||||
await self._send_event(
|
||||
IndexedEvent(idx=i, event=self._event_log[i])
|
||||
)
|
||||
await self.state_catchup_sender.send(self.state)
|
||||
else:
|
||||
for i in range(command.since_idx, len(self._event_log)):
|
||||
await self._send_event(
|
||||
IndexedEvent(idx=i, event=self._event_log[i])
|
||||
)
|
||||
for event in generated_events:
|
||||
await self.event_sender.send(event)
|
||||
except ValueError as e:
|
||||
|
||||
@@ -27,7 +27,6 @@ from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.profiling import (
|
||||
MemoryUsage,
|
||||
)
|
||||
from exo.shared.types.state import State
|
||||
from exo.shared.types.tasks import ChatCompletion as ChatCompletionTask
|
||||
from exo.shared.types.tasks import TaskStatus
|
||||
from exo.shared.types.worker.instances import (
|
||||
@@ -48,7 +47,6 @@ async def test_master():
|
||||
ge_sender, global_event_receiver = channel[ForwarderEvent]()
|
||||
command_sender, co_receiver = channel[ForwarderCommand]()
|
||||
local_event_sender, le_receiver = channel[ForwarderEvent]()
|
||||
st_s, _st_r = channel[State]()
|
||||
|
||||
all_events: list[IndexedEvent] = []
|
||||
|
||||
@@ -69,7 +67,6 @@ async def test_master():
|
||||
global_event_sender=ge_sender,
|
||||
local_event_receiver=le_receiver,
|
||||
command_receiver=co_receiver,
|
||||
state_catchup_sender=st_s,
|
||||
)
|
||||
logger.info("run the master")
|
||||
async with anyio.create_task_group() as tg:
|
||||
|
||||
@@ -7,7 +7,6 @@ from exo.shared.types.commands import ForwarderCommand, ForwarderDownloadCommand
|
||||
from exo.shared.types.events import (
|
||||
ForwarderEvent,
|
||||
)
|
||||
from exo.shared.types.state import State
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
|
||||
|
||||
@@ -46,7 +45,6 @@ ELECTION_MESSAGES = TypedTopic(
|
||||
CONNECTION_MESSAGES = TypedTopic(
|
||||
"connection_messages", PublishPolicy.Never, ConnectionMessage
|
||||
)
|
||||
STATE_CATCHUP = TypedTopic("state_catchup", PublishPolicy.Always, State)
|
||||
DOWNLOAD_COMMANDS = TypedTopic(
|
||||
"download_commands", PublishPolicy.Always, ForwarderDownloadCommand
|
||||
)
|
||||
|
||||
@@ -413,9 +413,9 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
),
|
||||
}
|
||||
|
||||
_IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
_IMAGE_BASE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
"flux1-schnell": ModelCard(
|
||||
model_id=ModelId("black-forest-labs/FLUX.1-schnell"),
|
||||
model_id=ModelId("exolabs/FLUX.1-schnell"),
|
||||
storage_size=Memory.from_bytes(23782357120 + 9524621312),
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
@@ -428,7 +428,7 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None, # Single file
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
@@ -442,7 +442,7 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23782357120),
|
||||
n_layers=57, # 19 transformer_blocks + 38 single_transformer_blocks
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
@@ -457,7 +457,7 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
],
|
||||
),
|
||||
"flux1-dev": ModelCard(
|
||||
model_id=ModelId("black-forest-labs/FLUX.1-dev"),
|
||||
model_id=ModelId("exolabs/FLUX.1-dev"),
|
||||
storage_size=Memory.from_bytes(23782357120 + 9524621312),
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
@@ -470,7 +470,7 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None, # Single file
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
@@ -484,7 +484,7 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23802816640),
|
||||
n_layers=57, # 19 transformer_blocks + 38 single_transformer_blocks
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
@@ -499,7 +499,7 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
],
|
||||
),
|
||||
"flux1-krea-dev": ModelCard(
|
||||
model_id=ModelId("black-forest-labs/FLUX.1-Krea-dev"),
|
||||
model_id=ModelId("exolabs/FLUX.1-Krea-dev"),
|
||||
storage_size=Memory.from_bytes(23802816640 + 9524621312), # Same as dev
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
@@ -541,9 +541,9 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
],
|
||||
),
|
||||
"qwen-image": ModelCard(
|
||||
model_id=ModelId("Qwen/Qwen-Image"),
|
||||
model_id=ModelId("exolabs/Qwen-Image"),
|
||||
storage_size=Memory.from_bytes(16584333312 + 40860802176),
|
||||
n_layers=60, # Qwen has 60 transformer blocks (all joint-style)
|
||||
n_layers=60,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
@@ -551,10 +551,10 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(16584333312),
|
||||
storage_size=Memory.from_bytes(16584333312),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None, # Single file
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
@@ -575,9 +575,9 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
],
|
||||
),
|
||||
"qwen-image-edit-2509": ModelCard(
|
||||
model_id=ModelId("Qwen/Qwen-Image-Edit-2509"),
|
||||
model_id=ModelId("exolabs/Qwen-Image-Edit-2509"),
|
||||
storage_size=Memory.from_bytes(16584333312 + 40860802176),
|
||||
n_layers=60, # Qwen has 60 transformer blocks (all joint-style)
|
||||
n_layers=60,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.ImageToImage],
|
||||
@@ -585,10 +585,10 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(16584333312),
|
||||
storage_size=Memory.from_bytes(16584333312),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None, # Single file
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
@@ -610,6 +610,92 @@ _IMAGE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def _generate_image_model_quant_variants(
|
||||
base_name: str,
|
||||
base_card: ModelCard,
|
||||
) -> dict[str, ModelCard]:
|
||||
"""Create quantized variants of an image model card.
|
||||
|
||||
Only the transformer component is quantized; text encoders stay at bf16.
|
||||
Sizes are calculated exactly from the base card's component sizes.
|
||||
"""
|
||||
if base_card.components is None:
|
||||
raise ValueError(f"Image model {base_name} must have components defined")
|
||||
|
||||
# quantizations = [8, 6, 5, 4, 3]
|
||||
quantizations = [8, 4]
|
||||
|
||||
num_transformer_bytes = next(
|
||||
c.storage_size.in_bytes
|
||||
for c in base_card.components
|
||||
if c.component_name == "transformer"
|
||||
)
|
||||
|
||||
transformer_bytes = Memory.from_bytes(num_transformer_bytes)
|
||||
|
||||
remaining_bytes = Memory.from_bytes(
|
||||
sum(
|
||||
c.storage_size.in_bytes
|
||||
for c in base_card.components
|
||||
if c.component_name != "transformer"
|
||||
)
|
||||
)
|
||||
|
||||
def with_transformer_size(new_size: Memory) -> list[ComponentInfo]:
|
||||
assert base_card.components is not None
|
||||
return [
|
||||
ComponentInfo(
|
||||
component_name=c.component_name,
|
||||
component_path=c.component_path,
|
||||
storage_size=new_size
|
||||
if c.component_name == "transformer"
|
||||
else c.storage_size,
|
||||
n_layers=c.n_layers,
|
||||
can_shard=c.can_shard,
|
||||
safetensors_index_filename=c.safetensors_index_filename,
|
||||
)
|
||||
for c in base_card.components
|
||||
]
|
||||
|
||||
variants = {
|
||||
base_name: ModelCard(
|
||||
model_id=base_card.model_id,
|
||||
storage_size=transformer_bytes + remaining_bytes,
|
||||
n_layers=base_card.n_layers,
|
||||
hidden_size=base_card.hidden_size,
|
||||
supports_tensor=base_card.supports_tensor,
|
||||
tasks=base_card.tasks,
|
||||
components=with_transformer_size(transformer_bytes),
|
||||
)
|
||||
}
|
||||
|
||||
for quant in quantizations:
|
||||
quant_transformer_bytes = Memory.from_bytes(
|
||||
(num_transformer_bytes * quant) // 16
|
||||
)
|
||||
total_bytes = remaining_bytes + quant_transformer_bytes
|
||||
|
||||
model_id = ModelId(base_card.model_id + f"-{quant}bit")
|
||||
|
||||
variants[f"{base_name}-{quant}bit"] = ModelCard(
|
||||
model_id=model_id,
|
||||
storage_size=total_bytes,
|
||||
n_layers=base_card.n_layers,
|
||||
hidden_size=base_card.hidden_size,
|
||||
supports_tensor=base_card.supports_tensor,
|
||||
tasks=base_card.tasks,
|
||||
components=with_transformer_size(quant_transformer_bytes),
|
||||
)
|
||||
|
||||
return variants
|
||||
|
||||
|
||||
_image_model_cards: dict[str, ModelCard] = {}
|
||||
for _base_name, _base_card in _IMAGE_BASE_MODEL_CARDS.items():
|
||||
_image_model_cards |= _generate_image_model_quant_variants(_base_name, _base_card)
|
||||
_IMAGE_MODEL_CARDS = _image_model_cards
|
||||
|
||||
if EXO_ENABLE_IMAGE_MODELS:
|
||||
MODEL_CARDS.update(_IMAGE_MODEL_CARDS)
|
||||
|
||||
|
||||
12
src/exo/shared/types/mlx.py
Normal file
12
src/exo/shared/types/mlx.py
Normal file
@@ -0,0 +1,12 @@
|
||||
"""Shared types for MLX-related functionality."""
|
||||
|
||||
from collections.abc import Sequence
|
||||
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
)
|
||||
|
||||
# This list contains one cache entry per transformer layer
|
||||
KVCacheType = Sequence[KVCache | RotatingKVCache | QuantizedKVCache]
|
||||
@@ -349,13 +349,8 @@ class InfoGatherer:
|
||||
async def _monitor_misc(self):
|
||||
if self.misc_poll_interval is None:
|
||||
return
|
||||
prev = await MiscData.gather()
|
||||
await self.info_sender.send(prev)
|
||||
while True:
|
||||
curr = await MiscData.gather()
|
||||
if prev != curr:
|
||||
prev = curr
|
||||
await self.info_sender.send(curr)
|
||||
await self.info_sender.send(await MiscData.gather())
|
||||
await anyio.sleep(self.misc_poll_interval)
|
||||
|
||||
async def _monitor_system_profiler_thunderbolt_data(self):
|
||||
@@ -365,15 +360,12 @@ class InfoGatherer:
|
||||
if iface_map is None:
|
||||
return
|
||||
|
||||
old_idents = []
|
||||
while True:
|
||||
data = await ThunderboltConnectivity.gather()
|
||||
assert data is not None
|
||||
|
||||
idents = [it for i in data if (it := i.ident(iface_map)) is not None]
|
||||
if idents != old_idents:
|
||||
await self.info_sender.send(MacThunderboltIdentifiers(idents=idents))
|
||||
old_idents = idents
|
||||
await self.info_sender.send(MacThunderboltIdentifiers(idents=idents))
|
||||
|
||||
conns = [it for i in data if (it := i.conn()) is not None]
|
||||
await self.info_sender.send(MacThunderboltConnections(conns=conns))
|
||||
@@ -398,22 +390,17 @@ class InfoGatherer:
|
||||
async def _watch_system_info(self):
|
||||
if self.interface_watcher_interval is None:
|
||||
return
|
||||
old_nics = []
|
||||
while True:
|
||||
nics = await get_network_interfaces()
|
||||
if nics != old_nics:
|
||||
old_nics = nics
|
||||
await self.info_sender.send(NodeNetworkInterfaces(ifaces=nics))
|
||||
await self.info_sender.send(NodeNetworkInterfaces(ifaces=nics))
|
||||
await anyio.sleep(self.interface_watcher_interval)
|
||||
|
||||
async def _monitor_thunderbolt_bridge_status(self):
|
||||
if self.thunderbolt_bridge_poll_interval is None:
|
||||
return
|
||||
prev: ThunderboltBridgeInfo | None = None
|
||||
while True:
|
||||
curr = await ThunderboltBridgeInfo.gather()
|
||||
if curr is not None and prev != curr:
|
||||
prev = curr
|
||||
if curr is not None:
|
||||
await self.info_sender.send(curr)
|
||||
await anyio.sleep(self.thunderbolt_bridge_poll_interval)
|
||||
|
||||
|
||||
@@ -19,6 +19,8 @@ from mlx_lm.models.deepseek_v32 import DeepseekV32MLP
|
||||
from mlx_lm.models.deepseek_v32 import Model as DeepseekV32Model
|
||||
from mlx_lm.models.glm4_moe import Model as Glm4MoeModel
|
||||
from mlx_lm.models.glm4_moe import MoE
|
||||
from mlx_lm.models.glm4_moe_lite import Glm4MoeLiteDecoderLayer, Glm4MoeLiteMLP
|
||||
from mlx_lm.models.glm4_moe_lite import Model as GLM4MoeLiteModel
|
||||
from mlx_lm.models.gpt_oss import GptOssMoeModel
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.models.llama import Model as LlamaModel
|
||||
@@ -145,6 +147,10 @@ class PipelineLastLayer(CustomMlxLayer):
|
||||
if cache is not None:
|
||||
cache.keys = mx.depends(cache.keys, output) # type: ignore[reportUnknownMemberType]
|
||||
|
||||
output = mx.distributed.all_gather(output, group=self.group)[
|
||||
-output.shape[0] :
|
||||
] # type :ignore
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -252,10 +258,6 @@ def patch_pipeline_model[T](model: T, group: mx.distributed.Group) -> T:
|
||||
if cache is not None:
|
||||
cache[-1].state = mx.depends(cache[-1].state, logits) # type: ignore
|
||||
|
||||
logits = mx.distributed.all_gather(logits, group=group)[
|
||||
-logits.shape[0] :
|
||||
] # type :ignore
|
||||
|
||||
return logits
|
||||
|
||||
cls.__call__ = patched_call
|
||||
@@ -334,15 +336,7 @@ def tensor_auto_parallel(
|
||||
group=group,
|
||||
)
|
||||
|
||||
if hasattr(model, "shard") and not isinstance(model, GptOssModel):
|
||||
try:
|
||||
model.shard(group) # type: ignore
|
||||
return patch_tensor_model(model)
|
||||
except (AttributeError, TypeError, NameError):
|
||||
pass
|
||||
|
||||
if isinstance(model, (LlamaModel, Ministral3Model)):
|
||||
logger.warning("shouldn't be hit - upstream sharding exists")
|
||||
tensor_parallel_sharding_strategy = LlamaShardingStrategy(
|
||||
group,
|
||||
all_to_sharded_linear,
|
||||
@@ -351,7 +345,6 @@ def tensor_auto_parallel(
|
||||
sharded_to_all_linear_in_place,
|
||||
)
|
||||
elif isinstance(model, (DeepseekV3Model, DeepseekV32Model)):
|
||||
logger.warning("shouldn't be hit - upstream sharding exists")
|
||||
tensor_parallel_sharding_strategy = DeepSeekShardingStrategy(
|
||||
group,
|
||||
all_to_sharded_linear,
|
||||
@@ -367,6 +360,14 @@ def tensor_auto_parallel(
|
||||
all_to_sharded_linear_in_place,
|
||||
sharded_to_all_linear_in_place,
|
||||
)
|
||||
elif isinstance(model, GLM4MoeLiteModel):
|
||||
tensor_parallel_sharding_strategy = GLM4MoeLiteShardingStrategy(
|
||||
group,
|
||||
all_to_sharded_linear,
|
||||
sharded_to_all_linear,
|
||||
all_to_sharded_linear_in_place,
|
||||
sharded_to_all_linear_in_place,
|
||||
)
|
||||
elif isinstance(model, (Qwen3MoeModel, Glm4MoeModel, Qwen3NextModel)):
|
||||
tensor_parallel_sharding_strategy = QwenShardingStrategy(
|
||||
group,
|
||||
@@ -441,7 +442,7 @@ class LlamaShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.mlp.gate_proj = self.all_to_sharded_linear(layer.mlp.gate_proj)
|
||||
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
|
||||
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
|
||||
|
||||
mx.eval(layer)
|
||||
return model
|
||||
|
||||
|
||||
@@ -516,6 +517,8 @@ class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.mlp = ShardedDeepseekV3MoE(layer.mlp) # type: ignore
|
||||
layer.mlp.sharding_group = self.group
|
||||
|
||||
mx.eval(layer)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@@ -533,6 +536,84 @@ class ShardedDeepseekV3MoE(CustomMlxLayer):
|
||||
return y
|
||||
|
||||
|
||||
class GLM4MoeLiteShardingStrategy(TensorParallelShardingStrategy):
|
||||
def shard_model(
|
||||
self,
|
||||
model: nn.Module,
|
||||
timeout_seconds: float,
|
||||
on_timeout: TimeoutCallback | None,
|
||||
) -> nn.Module:
|
||||
model = cast(GLM4MoeLiteModel, model)
|
||||
for layer in model.layers: # type: ignore
|
||||
layer = cast(Glm4MoeLiteDecoderLayer, layer)
|
||||
eval_with_timeout(
|
||||
layer.parameters(),
|
||||
timeout_seconds / len(model.layers), # type: ignore
|
||||
on_timeout,
|
||||
)
|
||||
if layer.self_attn.q_lora_rank is None: # type: ignore
|
||||
layer.self_attn.q_proj = self.all_to_sharded_linear(
|
||||
layer.self_attn.q_proj
|
||||
)
|
||||
else:
|
||||
layer.self_attn.q_b_proj = self.all_to_sharded_linear(
|
||||
layer.self_attn.q_b_proj
|
||||
)
|
||||
|
||||
layer.self_attn.o_proj = self.sharded_to_all_linear(layer.self_attn.o_proj)
|
||||
layer.self_attn.num_heads //= self.N
|
||||
|
||||
# Logic from upstream mlx
|
||||
num_heads = layer.self_attn.num_heads
|
||||
sh = self.group.rank() * num_heads
|
||||
eh = sh + num_heads
|
||||
|
||||
def shard_heads(w: mx.array, sh: int = sh, eh: int = eh) -> mx.array:
|
||||
return w[sh:eh]
|
||||
|
||||
layer.self_attn.embed_q.apply(shard_heads)
|
||||
layer.self_attn.unembed_out.apply(shard_heads)
|
||||
|
||||
if isinstance(layer.mlp, Glm4MoeLiteMLP):
|
||||
layer.mlp.gate_proj = self.all_to_sharded_linear(layer.mlp.gate_proj)
|
||||
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
|
||||
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
|
||||
|
||||
else:
|
||||
if getattr(layer.mlp, "shared_experts", None) is not None:
|
||||
self.all_to_sharded_linear_in_place(
|
||||
layer.mlp.shared_experts.gate_proj
|
||||
)
|
||||
self.sharded_to_all_linear_in_place(
|
||||
layer.mlp.shared_experts.down_proj
|
||||
)
|
||||
self.all_to_sharded_linear_in_place(
|
||||
layer.mlp.shared_experts.up_proj
|
||||
)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
|
||||
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.up_proj)
|
||||
layer.mlp = ShardedGLM4MoeLiteMoE(layer.mlp) # type: ignore
|
||||
layer.mlp.sharding_group = self.group # type: ignore
|
||||
mx.eval(layer)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class ShardedGLM4MoeLiteMoE(CustomMlxLayer):
|
||||
def __init__(self, layer: _LayerCallable):
|
||||
super().__init__(layer)
|
||||
self.sharding_group: mx.distributed.Group | None = None
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
if self.sharding_group is not None:
|
||||
x = sum_gradients(self.sharding_group)(x)
|
||||
y = self.original_layer.__call__(x)
|
||||
if self.sharding_group is not None:
|
||||
y = mx.distributed.all_sum(y, group=self.sharding_group)
|
||||
return y
|
||||
|
||||
|
||||
class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
|
||||
def shard_model(
|
||||
self,
|
||||
@@ -566,7 +647,7 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
|
||||
)
|
||||
layer.block_sparse_moe = ShardedQwenMoE(layer.block_sparse_moe) # pyright: ignore[reportAttributeAccessIssue, reportArgumentType]
|
||||
layer.block_sparse_moe.sharding_group = self.group # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
mx.eval(layer)
|
||||
return model
|
||||
|
||||
|
||||
@@ -607,6 +688,7 @@ class QwenShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
|
||||
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
|
||||
|
||||
mx.eval(layer)
|
||||
return model
|
||||
|
||||
|
||||
@@ -661,7 +743,7 @@ class GptOssShardingStrategy(TensorParallelShardingStrategy):
|
||||
|
||||
layer.mlp = ShardedGptOssMoE(layer.mlp) # type: ignore
|
||||
layer.mlp.sharding_group = self.group # pyright: ignore[reportAttributeAccessIssue]
|
||||
|
||||
mx.eval(layer)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
@@ -1,39 +1,81 @@
|
||||
# type: ignore
|
||||
# TODO: Fix this file, including types!
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from typing import Callable
|
||||
from typing import Any, cast
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm import stream_generate
|
||||
from mlx_lm.models.cache import _BaseCache, trim_prompt_cache
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
trim_prompt_cache,
|
||||
)
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.shared.types.mlx import KVCacheType
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.constants import KEEP_KV_SIZE, KV_BITS, KV_GROUP_SIZE
|
||||
from exo.worker.engines.mlx.utils_mlx import make_kv_cache
|
||||
from exo.worker.engines.mlx.constants import CACHE_GROUP_SIZE, KV_CACHE_BITS
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
# Fraction of device memory above which LRU eviction kicks in
|
||||
_DEFAULT_MEMORY_THRESHOLD = 0.85
|
||||
_MEMORY_THRESHOLD = float(
|
||||
os.environ.get("EXO_MEMORY_THRESHOLD", _DEFAULT_MEMORY_THRESHOLD)
|
||||
)
|
||||
|
||||
|
||||
class KVPrefixCache:
|
||||
def __init__(self):
|
||||
# Only one prefix cache per runner.
|
||||
def __init__(self, tokenizer: TokenizerWrapper):
|
||||
self.prompts: list[mx.array] = [] # mx array of tokens (ints)
|
||||
self.caches: list[list[_BaseCache]] = []
|
||||
self.caches: list[KVCacheType] = []
|
||||
self._last_used: list[int] = [] # monotonic counter of last access per entry
|
||||
self._access_counter: int = 0
|
||||
self._tokenizer: TokenizerWrapper = tokenizer
|
||||
|
||||
def add_kv_cache(
|
||||
self, tokenizer: TokenizerWrapper, prompt: str, cache: list[_BaseCache]
|
||||
):
|
||||
tokenized_prompt = self.encode_prompt(tokenizer, prompt)
|
||||
def clear(self):
|
||||
"""Clear all cached prompts and caches."""
|
||||
self.prompts.clear()
|
||||
self.caches.clear()
|
||||
self._last_used.clear()
|
||||
|
||||
def add_kv_cache(self, prompt: str, cache: KVCacheType):
|
||||
"""Add a new cache entry. Evicts LRU entries if memory is high."""
|
||||
self._evict_if_needed()
|
||||
tokenized_prompt = encode_prompt(self._tokenizer, prompt)
|
||||
self.prompts.append(tokenized_prompt)
|
||||
self.caches.append(deepcopy(cache))
|
||||
self._access_counter += 1
|
||||
self._last_used.append(self._access_counter)
|
||||
logger.info(f"KV cache added: {len(tokenized_prompt)} tokens")
|
||||
|
||||
def update_kv_cache(
|
||||
self,
|
||||
index: int,
|
||||
prompt: str,
|
||||
cache: KVCacheType,
|
||||
):
|
||||
"""Update an existing cache entry in-place."""
|
||||
tokenized_prompt = encode_prompt(self._tokenizer, prompt)
|
||||
self.prompts[index] = tokenized_prompt
|
||||
self.caches[index] = deepcopy(cache)
|
||||
self._access_counter += 1
|
||||
self._last_used[index] = self._access_counter
|
||||
logger.info(f"KV cache updated (index {index}): {len(tokenized_prompt)} tokens")
|
||||
|
||||
def get_kv_cache(
|
||||
self,
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt: str,
|
||||
) -> list[_BaseCache]:
|
||||
tokenized_prompt = self.encode_prompt(tokenizer, prompt)
|
||||
) -> tuple[KVCacheType, mx.array, int | None]:
|
||||
"""Get KV cache for prompt, returning remaining tokens to prefill.
|
||||
|
||||
Returns:
|
||||
Tuple of (cache, remaining_tokens, matched_index) where:
|
||||
- cache: KV cache to use for generation
|
||||
- remaining_tokens: tokens that still need prefilling
|
||||
- matched_index: index of the matched entry (None if no match)
|
||||
"""
|
||||
tokenized_prompt = encode_prompt(self._tokenizer, prompt)
|
||||
max_length = len(tokenized_prompt)
|
||||
|
||||
best_snapshot_index, best_snapshot_length = None, 0
|
||||
@@ -42,63 +84,127 @@ class KVPrefixCache:
|
||||
length = _get_prefix_length(tokenized_prompt, cached_prompt)
|
||||
|
||||
if length == max_length:
|
||||
return self.caches[i]
|
||||
# Exact match - cached prompt starts with our entire prompt
|
||||
# Trim cache to prompt length - 1, return last token for stream_generate
|
||||
prompt_cache = deepcopy(self.caches[i])
|
||||
cached_length = _cache_length(self.caches[i])
|
||||
tokens_to_trim = cached_length - (max_length - 1)
|
||||
if tokens_to_trim > 0:
|
||||
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
|
||||
self._access_counter += 1
|
||||
self._last_used[i] = self._access_counter
|
||||
logger.info(f"KV cache exact match: {max_length} tokens (instant)")
|
||||
return prompt_cache, tokenized_prompt[-1:], i
|
||||
|
||||
if length > best_snapshot_length:
|
||||
best_snapshot_index, best_snapshot_length = i, length
|
||||
|
||||
if best_snapshot_index is not None:
|
||||
prompt_cache = deepcopy(self.caches[best_snapshot_index])
|
||||
trim_prompt_cache(prompt_cache, max_length - best_snapshot_length)
|
||||
tokenized_prompt = tokenized_prompt[best_snapshot_index:]
|
||||
|
||||
else:
|
||||
prompt_cache = make_kv_cache(
|
||||
model,
|
||||
# max_kv_size=MAX_KV_SIZE,
|
||||
# keep=KEEP_KV_SIZE
|
||||
new_tokens = max_length - best_snapshot_length
|
||||
logger.info(
|
||||
f"KV cache prefix match: {best_snapshot_length}/{max_length} tokens "
|
||||
f"(reusing {best_snapshot_length}, need to prefill {new_tokens})"
|
||||
)
|
||||
|
||||
prefill(model, tokenizer, sampler, tokenized_prompt, prompt_cache)
|
||||
prompt_cache = deepcopy(self.caches[best_snapshot_index])
|
||||
|
||||
return prompt_cache
|
||||
# Trim removes tokens from the end, so we trim (cached_length - prefix_length) to keep the prefix
|
||||
cached_length = _cache_length(self.caches[best_snapshot_index])
|
||||
tokens_to_trim = cached_length - best_snapshot_length
|
||||
if tokens_to_trim > 0:
|
||||
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
|
||||
|
||||
def encode_prompt(self, tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
add_special_tokens = tokenizer.bos_token is None or not prompt.startswith(
|
||||
tokenizer.bos_token
|
||||
)
|
||||
tokenized_prompt = tokenizer.encode(
|
||||
prompt, add_special_tokens=add_special_tokens
|
||||
)
|
||||
return mx.array(tokenized_prompt)
|
||||
self._access_counter += 1
|
||||
self._last_used[best_snapshot_index] = self._access_counter
|
||||
remaining_tokens = tokenized_prompt[best_snapshot_length:]
|
||||
return prompt_cache, remaining_tokens, best_snapshot_index
|
||||
|
||||
else:
|
||||
prompt_cache = make_kv_cache(model)
|
||||
if len(self.prompts) == 0:
|
||||
logger.info(f"KV cache empty, need to prefill {max_length} tokens")
|
||||
else:
|
||||
logger.info(
|
||||
f"KV cache no prefix match, need to prefill {max_length} tokens"
|
||||
)
|
||||
|
||||
return prompt_cache, tokenized_prompt, None
|
||||
|
||||
def _evict_if_needed(self):
|
||||
"""Evict least recently used entries while memory pressure is high."""
|
||||
if len(self.caches) == 0:
|
||||
return
|
||||
|
||||
active: int = mx.metal.get_active_memory()
|
||||
limit = int(mx.metal.device_info()["max_recommended_working_set_size"])
|
||||
if active < limit * _MEMORY_THRESHOLD:
|
||||
return
|
||||
|
||||
# Evict LRU entries until below threshold or only one entry left
|
||||
while len(self.caches) > 0:
|
||||
lru_index = self._last_used.index(min(self._last_used))
|
||||
evicted_tokens = len(self.prompts[lru_index])
|
||||
self.prompts.pop(lru_index)
|
||||
self.caches.pop(lru_index)
|
||||
self._last_used.pop(lru_index)
|
||||
logger.info(
|
||||
f"KV cache evicted LRU entry ({evicted_tokens} tokens) due to memory pressure"
|
||||
)
|
||||
|
||||
active = mx.metal.get_active_memory()
|
||||
if active < limit * _MEMORY_THRESHOLD:
|
||||
break
|
||||
|
||||
|
||||
def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
"""Encode a prompt string to token array.
|
||||
|
||||
For chat-templated prompts (which have their own structure markers like
|
||||
<|im_user|>, <|im_middle|>, etc.), we should NOT add BOS/EOS tokens as
|
||||
that would corrupt the prompt structure.
|
||||
"""
|
||||
# Chat templates define their own structure - don't add BOS/EOS
|
||||
tokenized_prompt = tokenizer.encode(prompt, add_special_tokens=False)
|
||||
return mx.array(tokenized_prompt)
|
||||
|
||||
|
||||
def _cache_length(cache: KVCacheType) -> int:
|
||||
"""Get the number of tokens in a KV cache."""
|
||||
# Use .offset attribute which all cache types have (len() not implemented in older QuantizedKVCache)
|
||||
return max(c.offset for c in cache) # type: ignore
|
||||
|
||||
|
||||
def _get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
|
||||
n = min(int(prompt.shape[0]), int(cached_prompt.shape[0]), KEEP_KV_SIZE)
|
||||
"""Find the length of the common prefix between two token arrays."""
|
||||
n = min(int(prompt.shape[0]), int(cached_prompt.shape[0]))
|
||||
if n == 0:
|
||||
return 0
|
||||
|
||||
equal = (prompt[:n] == cached_prompt[:n]).astype(mx.int32)
|
||||
equal = mx.equal(prompt[:n], cached_prompt[:n]).astype(mx.int32)
|
||||
prefix_mask = mx.cumprod(equal) # stays 1 until first mismatch, then 0 forever
|
||||
return int(mx.sum(prefix_mask).item())
|
||||
|
||||
|
||||
def prefill(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt: mx.array,
|
||||
cache: list[_BaseCache],
|
||||
) -> None:
|
||||
for _ in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=prompt,
|
||||
max_tokens=0,
|
||||
sampler=sampler,
|
||||
prompt_cache=cache,
|
||||
prefill_step_size=2048,
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
):
|
||||
pass
|
||||
def make_kv_cache(
|
||||
model: Model, max_kv_size: int | None = None, keep: int = 0
|
||||
) -> KVCacheType:
|
||||
assert hasattr(model, "layers")
|
||||
|
||||
# TODO: Do this for all models
|
||||
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
|
||||
logger.info("Using MLX LM's make cache")
|
||||
return model.make_cache() # type: ignore
|
||||
|
||||
if max_kv_size is None:
|
||||
if KV_CACHE_BITS is None:
|
||||
logger.info("Using default KV cache")
|
||||
return [KVCache() for _ in model.layers]
|
||||
else:
|
||||
logger.info("Using quantized KV cache")
|
||||
return [
|
||||
QuantizedKVCache(group_size=CACHE_GROUP_SIZE, bits=KV_CACHE_BITS)
|
||||
for _ in model.layers
|
||||
]
|
||||
else:
|
||||
logger.info(f"Using rotating KV cache with {max_kv_size=} with {keep=}")
|
||||
return [RotatingKVCache(max_size=max_kv_size, keep=keep) for _ in model.layers]
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
KV_GROUP_SIZE: int | None = 32
|
||||
KV_BITS: int | None = None
|
||||
ATTENTION_KV_BITS: int | None = 4
|
||||
MAX_TOKENS: int = 8192
|
||||
MAX_TOKENS: int = 32168
|
||||
MAX_KV_SIZE: int | None = 3200
|
||||
KEEP_KV_SIZE: int | None = 1600
|
||||
QUANTIZE_MODEL_MODE: str | None = "affine"
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import time
|
||||
from typing import Any, Callable, Generator, cast, get_args
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.generate import stream_generate
|
||||
from mlx_lm.models.cache import KVCache
|
||||
from mlx_lm.models.cache import trim_prompt_cache
|
||||
from mlx_lm.sample_utils import make_sampler
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
# from exo.engines.mlx.cache import KVPrefixCache
|
||||
from exo.shared.types.api import (
|
||||
BenchChatCompletionTaskParams,
|
||||
ChatCompletionMessage,
|
||||
@@ -14,35 +14,78 @@ from exo.shared.types.api import (
|
||||
GenerationStats,
|
||||
)
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.mlx import KVCacheType
|
||||
from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.shared.types.worker.runner_response import (
|
||||
GenerationResponse,
|
||||
)
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import KVPrefixCache, encode_prompt, make_kv_cache
|
||||
from exo.worker.engines.mlx.constants import KV_BITS, KV_GROUP_SIZE, MAX_TOKENS
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
apply_chat_template,
|
||||
make_kv_cache,
|
||||
mx_barrier,
|
||||
)
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
generation_stream = mx.new_stream(mx.default_device())
|
||||
|
||||
_MIN_PREFIX_HIT_TO_UPDATE = 1000
|
||||
|
||||
def maybe_quantize_kv_cache(
|
||||
prompt_cache: list[KVCache | Any],
|
||||
quantized_kv_start: int,
|
||||
kv_group_size: int,
|
||||
kv_bits: int | None,
|
||||
) -> None:
|
||||
if kv_bits is None:
|
||||
return
|
||||
for e, c in enumerate(prompt_cache):
|
||||
if (
|
||||
hasattr(c, "to_quantized") and c.offset >= quantized_kv_start # type: ignore
|
||||
):
|
||||
prompt_cache[e] = c.to_quantized(group_size=kv_group_size, bits=kv_bits)
|
||||
|
||||
def prefill(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt_tokens: mx.array,
|
||||
cache: KVCacheType,
|
||||
) -> float:
|
||||
"""Prefill the KV cache with prompt tokens.
|
||||
|
||||
This runs the model over the prompt tokens to populate the cache,
|
||||
then trims off the extra generated token.
|
||||
|
||||
Returns:
|
||||
tokens_per_sec
|
||||
"""
|
||||
num_tokens = len(prompt_tokens)
|
||||
if num_tokens == 0:
|
||||
return 0.0
|
||||
|
||||
logger.debug(f"Prefilling {num_tokens} tokens...")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
def progress_callback(processed: int, total: int) -> None:
|
||||
elapsed = time.time() - start_time
|
||||
tok_per_sec = processed / elapsed if elapsed > 0 else 0
|
||||
logger.debug(
|
||||
f"Prefill progress: {processed}/{total} tokens ({tok_per_sec:.1f} tok/s)"
|
||||
)
|
||||
|
||||
# Use max_tokens=1 because max_tokens=0 does not work.
|
||||
# We just throw away the generated token - we only care about filling the cache
|
||||
for _ in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=prompt_tokens,
|
||||
max_tokens=1,
|
||||
sampler=sampler,
|
||||
prompt_cache=cache,
|
||||
prefill_step_size=2048,
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
prompt_progress_callback=progress_callback,
|
||||
):
|
||||
break # Stop after first iteration - cache is now filled
|
||||
trim_prompt_cache(cast(list[Any], cache), 1)
|
||||
|
||||
elapsed = time.perf_counter() - start_time
|
||||
tokens_per_sec = num_tokens / elapsed if elapsed > 0 else 0.0
|
||||
logger.debug(
|
||||
f"Prefill complete: {num_tokens} tokens in {elapsed:.2f}s "
|
||||
f"({tokens_per_sec:.1f} tok/s)"
|
||||
)
|
||||
return tokens_per_sec
|
||||
|
||||
|
||||
def warmup_inference(
|
||||
@@ -120,6 +163,7 @@ def mlx_generate(
|
||||
tokenizer: TokenizerWrapper,
|
||||
task: ChatCompletionTaskParams,
|
||||
prompt: str,
|
||||
kv_prefix_cache: KVPrefixCache | None = None,
|
||||
) -> Generator[GenerationResponse]:
|
||||
# Ensure that generation stats only contains peak memory for this generation
|
||||
mx.reset_peak_memory()
|
||||
@@ -131,7 +175,22 @@ def mlx_generate(
|
||||
if task.seed is not None:
|
||||
mx.random.seed(task.seed)
|
||||
|
||||
caches = make_kv_cache(model=model)
|
||||
# Do not use the prefix cache if we are trying to do benchmarks.
|
||||
if is_bench:
|
||||
kv_prefix_cache = None
|
||||
|
||||
# Use prefix cache if available, otherwise create fresh cache
|
||||
prefix_hit_length = 0
|
||||
matched_index: int | None = None
|
||||
if kv_prefix_cache is None:
|
||||
caches = make_kv_cache(model=model)
|
||||
prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
else:
|
||||
caches, prompt_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, prompt
|
||||
)
|
||||
all_prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
prefix_hit_length = len(all_prompt_tokens) - len(prompt_tokens)
|
||||
|
||||
logits_processors: list[Callable[[mx.array, mx.array], mx.array]] = []
|
||||
if is_bench:
|
||||
@@ -144,11 +203,19 @@ def mlx_generate(
|
||||
top_p=task.top_p if task.top_p is not None else 1.0,
|
||||
)
|
||||
|
||||
# Prefill cache with all tokens except the last one
|
||||
prefill_tps = prefill(model, tokenizer, sampler, prompt_tokens[:-1], caches)
|
||||
|
||||
# stream_generate starts from the last token
|
||||
last_token = prompt_tokens[-1:]
|
||||
|
||||
max_tokens = task.max_tokens or MAX_TOKENS
|
||||
generated_text_parts: list[str] = []
|
||||
generation_start_time = time.perf_counter()
|
||||
for out in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=prompt,
|
||||
prompt=last_token,
|
||||
max_tokens=max_tokens,
|
||||
sampler=sampler,
|
||||
logits_processors=logits_processors,
|
||||
@@ -158,12 +225,13 @@ def mlx_generate(
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
):
|
||||
generated_text_parts.append(out.text)
|
||||
logger.info(out.text)
|
||||
|
||||
stats: GenerationStats | None = None
|
||||
if out.finish_reason is not None:
|
||||
stats = GenerationStats(
|
||||
prompt_tps=float(out.prompt_tps),
|
||||
prompt_tps=float(prefill_tps or out.prompt_tps),
|
||||
generation_tps=float(out.generation_tps),
|
||||
prompt_tokens=int(out.prompt_tokens),
|
||||
generation_tokens=int(out.generation_tokens),
|
||||
@@ -185,6 +253,26 @@ def mlx_generate(
|
||||
)
|
||||
|
||||
if out.finish_reason is not None:
|
||||
# Log generation stats
|
||||
generation_elapsed = time.perf_counter() - generation_start_time
|
||||
generated_tokens = len(generated_text_parts)
|
||||
generation_tps = (
|
||||
generated_tokens / generation_elapsed if generation_elapsed > 0 else 0.0
|
||||
)
|
||||
logger.debug(
|
||||
f"Generation complete: prefill {prompt_tokens} tokens @ "
|
||||
f"{prefill_tps:.1f} tok/s, generated {generated_tokens} tokens @ "
|
||||
f"{generation_tps:.1f} tok/s"
|
||||
)
|
||||
if kv_prefix_cache is not None:
|
||||
full_prompt = prompt + "".join(generated_text_parts)
|
||||
if (
|
||||
matched_index is not None
|
||||
and prefix_hit_length >= _MIN_PREFIX_HIT_TO_UPDATE
|
||||
):
|
||||
kv_prefix_cache.update_kv_cache(matched_index, full_prompt, caches)
|
||||
else:
|
||||
kv_prefix_cache.add_kv_cache(full_prompt, caches)
|
||||
break
|
||||
|
||||
# TODO: Do we want an mx_barrier?
|
||||
|
||||
@@ -18,15 +18,12 @@ try:
|
||||
except ImportError:
|
||||
pass # transformers < 5.0 or bytes_to_unicode not available
|
||||
|
||||
from mlx_lm.models.cache import KVCache, QuantizedKVCache, RotatingKVCache
|
||||
from mlx_lm.models.cache import KVCache
|
||||
from mlx_lm.models.deepseek_v3 import DeepseekV3Model
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.worker.engines.mlx.constants import (
|
||||
CACHE_GROUP_SIZE,
|
||||
KV_CACHE_BITS,
|
||||
TRUST_REMOTE_CODE,
|
||||
)
|
||||
|
||||
@@ -405,7 +402,11 @@ def apply_chat_template(
|
||||
continue
|
||||
|
||||
message.content = "\n".join(c.text for c in message.content).strip()
|
||||
if message.content is None and message.thinking is None:
|
||||
if (
|
||||
message.content is None
|
||||
and message.thinking is None
|
||||
and message.tool_calls is None
|
||||
):
|
||||
continue
|
||||
|
||||
# Null values are not valid when applying templates in tokenizer
|
||||
@@ -462,31 +463,6 @@ class NullKVCache(KVCache):
|
||||
raise NotImplementedError("We should not be setting a NullKVCache.")
|
||||
|
||||
|
||||
def make_kv_cache(
|
||||
model: Model, max_kv_size: int | None = None, keep: int = 0
|
||||
) -> list[KVCache | RotatingKVCache | QuantizedKVCache]:
|
||||
assert hasattr(model, "layers")
|
||||
|
||||
# TODO: Do this for all models
|
||||
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
|
||||
logger.info("Using MLX LM's make cache")
|
||||
return model.make_cache() # type: ignore
|
||||
|
||||
if max_kv_size is None:
|
||||
if KV_CACHE_BITS is None:
|
||||
logger.info("Using default KV cache")
|
||||
return [KVCache() for _ in model.layers]
|
||||
else:
|
||||
logger.info("Using quantized KV cache")
|
||||
return [
|
||||
QuantizedKVCache(group_size=CACHE_GROUP_SIZE, bits=KV_CACHE_BITS)
|
||||
for _ in model.layers
|
||||
]
|
||||
else:
|
||||
logger.info(f"Using rotating KV cache with {max_kv_size=} with {keep=}")
|
||||
return [RotatingKVCache(max_size=max_kv_size, keep=keep) for _ in model.layers]
|
||||
|
||||
|
||||
def mlx_force_oom(size: int = 40000) -> None:
|
||||
"""
|
||||
Force an Out-Of-Memory (OOM) error in MLX by performing large tensor operations.
|
||||
|
||||
@@ -60,8 +60,9 @@ class Worker:
|
||||
connection_message_receiver: Receiver[ConnectionMessage],
|
||||
global_event_receiver: Receiver[ForwarderEvent],
|
||||
local_event_sender: Sender[ForwarderEvent],
|
||||
# This is for requesting updates. It doesn't need to be a general command sender right now,
|
||||
# but I think it's the correct way to be thinking about commands
|
||||
command_sender: Sender[ForwarderCommand],
|
||||
state_catchup_receiver: Receiver[State],
|
||||
download_command_sender: Sender[ForwarderDownloadCommand],
|
||||
event_index_counter: Iterator[int],
|
||||
):
|
||||
@@ -70,8 +71,6 @@ class Worker:
|
||||
|
||||
self.global_event_receiver = global_event_receiver
|
||||
self.local_event_sender = local_event_sender
|
||||
self.state_catchup_receiver = state_catchup_receiver
|
||||
self.local_event_index = 0
|
||||
self.event_index_counter = event_index_counter
|
||||
self.command_sender = command_sender
|
||||
self.download_command_sender = download_command_sender
|
||||
@@ -111,7 +110,6 @@ class Worker:
|
||||
tg.start_soon(self._event_applier)
|
||||
tg.start_soon(self._forward_events)
|
||||
tg.start_soon(self._poll_connection_updates)
|
||||
tg.start_soon(self._check_catchup_state)
|
||||
|
||||
# Actual shutdown code - waits for all tasks to complete before executing.
|
||||
self.local_event_sender.close()
|
||||
@@ -131,22 +129,6 @@ class Worker:
|
||||
)
|
||||
)
|
||||
|
||||
async def _check_catchup_state(self):
|
||||
with self.state_catchup_receiver as states:
|
||||
async for state in states:
|
||||
if (
|
||||
self.state.last_event_applied_idx == -1
|
||||
and state.last_event_applied_idx > self.state.last_event_applied_idx
|
||||
):
|
||||
logger.info(
|
||||
f"Worker catching up state to idx {state.last_event_applied_idx}"
|
||||
)
|
||||
self.event_buffer.store = {}
|
||||
self.event_buffer.next_idx_to_release = (
|
||||
state.last_event_applied_idx + 1
|
||||
)
|
||||
self.state = state
|
||||
|
||||
async def _event_applier(self):
|
||||
with self.global_event_receiver as events:
|
||||
async for f_event in events:
|
||||
@@ -336,7 +318,10 @@ class Worker:
|
||||
# We request all events after (and including) the missing index.
|
||||
# This function is started whenever we receive an event that is out of sequence.
|
||||
# It is cancelled as soon as we receiver an event that is in sequence.
|
||||
assert since_idx >= 0
|
||||
|
||||
if since_idx < 0:
|
||||
logger.warning(f"Negative value encountered for nack request {since_idx=}")
|
||||
since_idx = 0
|
||||
|
||||
with CancelScope() as scope:
|
||||
self._nack_cancel_scope = scope
|
||||
|
||||
@@ -7,6 +7,7 @@ from exo.shared.types.tasks import Task
|
||||
from exo.shared.types.worker.instances import BoundInstance, MlxJacclInstance
|
||||
from exo.shared.types.worker.runners import RunnerFailed
|
||||
from exo.utils.channels import ClosedResourceError, MpReceiver, MpSender
|
||||
from exo.worker.tests.patches import load_null_model
|
||||
|
||||
logger: "loguru.Logger" = loguru.logger
|
||||
|
||||
@@ -16,6 +17,8 @@ def entrypoint(
|
||||
event_sender: MpSender[Event],
|
||||
task_receiver: MpReceiver[Task],
|
||||
_logger: "loguru.Logger",
|
||||
*,
|
||||
_load_null_models: bool = False,
|
||||
) -> None:
|
||||
fast_synch_override = os.environ.get("EXO_FAST_SYNCH")
|
||||
if fast_synch_override == "on" or (
|
||||
@@ -29,6 +32,13 @@ def entrypoint(
|
||||
else:
|
||||
os.environ["MLX_METAL_FAST_SYNCH"] = "0"
|
||||
|
||||
p = None
|
||||
if _load_null_models:
|
||||
from unittest.mock import patch
|
||||
|
||||
p = patch("mlx_lm.utils.load_model", new=load_null_model)
|
||||
p.start()
|
||||
|
||||
global logger
|
||||
logger = _logger
|
||||
|
||||
@@ -52,6 +62,8 @@ def entrypoint(
|
||||
)
|
||||
)
|
||||
finally:
|
||||
if p is not None:
|
||||
p.stop()
|
||||
try:
|
||||
event_sender.close()
|
||||
task_receiver.close()
|
||||
|
||||
@@ -70,6 +70,7 @@ from exo.worker.engines.image import (
|
||||
warmup_image_generator,
|
||||
)
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import KVPrefixCache
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
apply_chat_template,
|
||||
@@ -103,6 +104,7 @@ def main(
|
||||
model: Model | DistributedImageModel | None = None
|
||||
tokenizer = None
|
||||
group = None
|
||||
kv_prefix_cache: KVPrefixCache | None = None
|
||||
|
||||
current_status: RunnerStatus = RunnerIdle()
|
||||
logger.info("runner created")
|
||||
@@ -161,6 +163,8 @@ def main(
|
||||
logger.info(
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling}"
|
||||
)
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
|
||||
elif (
|
||||
ModelTask.TextToImage in shard_metadata.model_card.tasks
|
||||
or ModelTask.ImageToImage in shard_metadata.model_card.tasks
|
||||
@@ -170,7 +174,6 @@ def main(
|
||||
raise ValueError(
|
||||
f"Unknown model task(s): {shard_metadata.model_card.tasks}"
|
||||
)
|
||||
|
||||
current_status = RunnerLoaded()
|
||||
logger.info("runner loaded")
|
||||
case StartWarmup() if isinstance(current_status, RunnerLoaded):
|
||||
@@ -238,12 +241,9 @@ def main(
|
||||
tokenizer=tokenizer,
|
||||
task=task_params,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
)
|
||||
|
||||
# GPT-OSS specific parsing to match other model formats.
|
||||
if isinstance(model, GptOssModel):
|
||||
mlx_generator = parse_gpt_oss(mlx_generator)
|
||||
|
||||
# For other thinking models (GLM, etc.), check if we need to
|
||||
# prepend the thinking tag that was consumed by the chat template
|
||||
if detect_thinking_prompt_suffix(prompt, tokenizer):
|
||||
@@ -257,10 +257,16 @@ def main(
|
||||
patch_kimi_tokenizer(tokenizer)
|
||||
|
||||
# GLM models need patched parser (upstream has bug with None regex match)
|
||||
if "glm" in shard_metadata.model_card.model_id.lower():
|
||||
elif "glm" in shard_metadata.model_card.model_id.lower():
|
||||
patch_glm_tokenizer(tokenizer)
|
||||
|
||||
if tokenizer.has_tool_calling:
|
||||
# GPT-OSS specific parsing to match other model formats.
|
||||
elif isinstance(model, GptOssModel):
|
||||
mlx_generator = parse_gpt_oss(mlx_generator)
|
||||
|
||||
if tokenizer.has_tool_calling and not isinstance(
|
||||
model, GptOssModel
|
||||
):
|
||||
assert tokenizer.tool_call_start
|
||||
assert tokenizer.tool_call_end
|
||||
assert tokenizer.tool_parser # pyright: ignore[reportAny]
|
||||
@@ -489,9 +495,10 @@ def get_gpt_oss_encoding():
|
||||
|
||||
|
||||
def filter_kimi_tokens(
|
||||
responses: Generator[GenerationResponse],
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
) -> Generator[GenerationResponse]:
|
||||
for resp in responses:
|
||||
assert isinstance(resp, GenerationResponse)
|
||||
if (
|
||||
resp.text == "<|tool_calls_section_begin|>"
|
||||
or resp.text == "<|tool_calls_section_end|>"
|
||||
@@ -501,17 +508,44 @@ def filter_kimi_tokens(
|
||||
|
||||
|
||||
def parse_gpt_oss(
|
||||
responses: Generator[GenerationResponse],
|
||||
) -> Generator[GenerationResponse]:
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
encoding = get_gpt_oss_encoding()
|
||||
stream = StreamableParser(encoding, role=Role.ASSISTANT)
|
||||
thinking = False
|
||||
current_tool_name: str | None = None
|
||||
tool_arg_parts: list[str] = []
|
||||
|
||||
for response in responses:
|
||||
assert isinstance(response, GenerationResponse)
|
||||
stream.process(response.token)
|
||||
|
||||
delta = stream.last_content_delta
|
||||
ch = stream.current_channel
|
||||
recipient = stream.current_recipient
|
||||
|
||||
if recipient != current_tool_name:
|
||||
if current_tool_name is not None:
|
||||
prefix = "functions."
|
||||
if current_tool_name.startswith(prefix):
|
||||
current_tool_name = current_tool_name[len(prefix) :]
|
||||
yield ToolCallResponse(
|
||||
tool_calls=[
|
||||
ToolCallItem(
|
||||
name=current_tool_name,
|
||||
arguments="".join(tool_arg_parts).strip(),
|
||||
)
|
||||
]
|
||||
)
|
||||
tool_arg_parts = []
|
||||
break
|
||||
current_tool_name = recipient
|
||||
|
||||
# If inside a tool call, accumulate arguments
|
||||
if current_tool_name is not None:
|
||||
if delta:
|
||||
tool_arg_parts.append(delta)
|
||||
continue
|
||||
|
||||
if ch == "analysis" and not thinking:
|
||||
thinking = True
|
||||
@@ -528,13 +562,12 @@ def parse_gpt_oss(
|
||||
if thinking:
|
||||
yield response.model_copy(update={"text": "</think>"})
|
||||
yield response
|
||||
break
|
||||
|
||||
|
||||
def parse_thinking_models(
|
||||
responses: Generator[GenerationResponse],
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
tokenizer: TokenizerWrapper,
|
||||
) -> Generator[GenerationResponse]:
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
"""
|
||||
For models that inject thinking tags in the prompt (like GLM-4.7),
|
||||
prepend the thinking tag to the output stream so the frontend
|
||||
@@ -542,6 +575,9 @@ def parse_thinking_models(
|
||||
"""
|
||||
first = True
|
||||
for response in responses:
|
||||
if isinstance(response, ToolCallResponse):
|
||||
yield response
|
||||
continue
|
||||
if first:
|
||||
first = False
|
||||
yield response.model_copy(
|
||||
@@ -622,7 +658,7 @@ def _process_image_response(
|
||||
|
||||
|
||||
def parse_tool_calls(
|
||||
responses: Generator[GenerationResponse],
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
tool_call_start: str,
|
||||
tool_call_end: str,
|
||||
tool_parser: Callable[[str], dict[str, Any] | list[dict[str, Any]]],
|
||||
@@ -630,6 +666,7 @@ def parse_tool_calls(
|
||||
in_tool_call = False
|
||||
tool_call_text_parts: list[str] = []
|
||||
for response in responses:
|
||||
assert isinstance(response, GenerationResponse)
|
||||
# assumption: the tool call start is one token
|
||||
if response.text == tool_call_start:
|
||||
in_tool_call = True
|
||||
|
||||
50
src/exo/worker/tests/patches.py
Normal file
50
src/exo/worker/tests/patches.py
Normal file
@@ -0,0 +1,50 @@
|
||||
# type: ignore
|
||||
|
||||
import importlib
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from exo.worker.engines.mlx import Model
|
||||
|
||||
|
||||
def load_null_model(path: Path, **_: object) -> "tuple[Model, dict[str, Any]]":
|
||||
with open(path / "config.json", "r") as f:
|
||||
cfg = json.load(f)
|
||||
model, args = _get_classes(cfg)
|
||||
model = model(args.from_dict(cfg))
|
||||
return model, cfg
|
||||
|
||||
|
||||
def _get_classes(config: dict):
|
||||
"""
|
||||
Retrieve the model and model args classes based on the configuration.
|
||||
|
||||
Args:
|
||||
config (dict): The model configuration.
|
||||
|
||||
Returns:
|
||||
A tuple containing the Model class and the ModelArgs class.
|
||||
"""
|
||||
model_type = config["model_type"]
|
||||
model_type = MODEL_REMAPPING.get(model_type, model_type)
|
||||
try:
|
||||
arch = importlib.import_module(f"mlx_lm.models.{model_type}")
|
||||
except ImportError:
|
||||
msg = f"Model type {model_type} not supported."
|
||||
raise ValueError(msg) from None
|
||||
|
||||
return arch.Model, arch.ModelArgs
|
||||
|
||||
|
||||
MODEL_REMAPPING = {
|
||||
"mistral": "llama",
|
||||
"llava": "mistral3",
|
||||
"phi-msft": "phixtral",
|
||||
"falcon_mamba": "mamba",
|
||||
"kimi_k2": "deepseek_v3",
|
||||
"qwen2_5_vl": "qwen2_vl",
|
||||
"minimax_m2": "minimax",
|
||||
"iquestcoder": "llama",
|
||||
}
|
||||
545
src/exo/worker/tests/unittests/test_mlx/test_kv_prefix_cache.py
Normal file
545
src/exo/worker/tests/unittests/test_mlx/test_kv_prefix_cache.py
Normal file
@@ -0,0 +1,545 @@
|
||||
# type: ignore
|
||||
import time
|
||||
from typing import cast
|
||||
from unittest.mock import patch
|
||||
|
||||
import mlx.core as mx
|
||||
import pytest
|
||||
from mlx_lm.models.cache import KVCache
|
||||
from mlx_lm.sample_utils import make_sampler
|
||||
|
||||
from exo.shared.types.api import ChatCompletionMessage
|
||||
from exo.shared.types.common import ModelId
|
||||
from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import (
|
||||
KVPrefixCache,
|
||||
_cache_length,
|
||||
_get_prefix_length,
|
||||
encode_prompt,
|
||||
make_kv_cache,
|
||||
)
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate, prefill
|
||||
from exo.worker.engines.mlx.utils_mlx import apply_chat_template
|
||||
from exo.worker.tests.unittests.test_mlx.conftest import (
|
||||
DEFAULT_GPT_OSS_CONFIG,
|
||||
DEFAULT_GPT_OSS_MODEL_ID,
|
||||
)
|
||||
|
||||
|
||||
def _check_model_exists() -> bool:
|
||||
return DEFAULT_GPT_OSS_CONFIG.model_path.exists()
|
||||
|
||||
|
||||
class TestGetPrefixLength:
|
||||
def test_identical_arrays(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3, 4, 5])
|
||||
assert _get_prefix_length(a, b) == 5
|
||||
|
||||
def test_no_common_prefix(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([4, 5, 6])
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
def test_partial_prefix(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3, 7, 8])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
|
||||
def test_prompt_longer_than_cached(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
|
||||
def test_cached_longer_than_prompt(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([1, 2, 3, 4, 5])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
|
||||
def test_single_token_match(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([1, 5, 6])
|
||||
assert _get_prefix_length(a, b) == 1
|
||||
|
||||
def test_empty_prompt(self):
|
||||
a = mx.array([]).astype(mx.int32)
|
||||
b = mx.array([1, 2, 3])
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
def test_empty_cached(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([]).astype(mx.int32)
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
def test_both_empty(self):
|
||||
a = mx.array([]).astype(mx.int32)
|
||||
b = mx.array([]).astype(mx.int32)
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
|
||||
|
||||
class TestKVPrefix:
|
||||
@pytest.fixture
|
||||
def mock_tokenizer(self):
|
||||
"""Create a minimal mock tokenizer for tests that don't need real tokenization."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
tokenizer = MagicMock()
|
||||
tokenizer.encode.return_value = [1, 2, 3]
|
||||
return tokenizer
|
||||
|
||||
def test_starts_empty(self, mock_tokenizer):
|
||||
cache = KVPrefixCache(mock_tokenizer)
|
||||
assert len(cache.prompts) == 0
|
||||
assert len(cache.caches) == 0
|
||||
|
||||
def test_clear_empties_cache(self, mock_tokenizer):
|
||||
cache = KVPrefixCache(mock_tokenizer)
|
||||
cache.prompts.append(mx.array([1, 2, 3]))
|
||||
cache.caches.append([KVCache()])
|
||||
cache.clear()
|
||||
assert len(cache.prompts) == 0
|
||||
assert len(cache.caches) == 0
|
||||
|
||||
def test_clear_on_empty_cache(self, mock_tokenizer):
|
||||
cache = KVPrefixCache(mock_tokenizer)
|
||||
cache.clear()
|
||||
assert len(cache.prompts) == 0
|
||||
|
||||
|
||||
def _load_gpt_oss() -> tuple[Model, object]:
|
||||
from mlx_lm.utils import load_model
|
||||
|
||||
from exo.worker.engines.mlx.utils_mlx import load_tokenizer_for_model_id
|
||||
|
||||
model_path = DEFAULT_GPT_OSS_CONFIG.model_path
|
||||
model_id = ModelId(DEFAULT_GPT_OSS_MODEL_ID)
|
||||
|
||||
model, _ = load_model(model_path, lazy=False)
|
||||
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
|
||||
return cast(Model, model), tokenizer
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
not _check_model_exists(),
|
||||
reason=f"GPT-OSS model not found at {DEFAULT_GPT_OSS_CONFIG.model_path}",
|
||||
)
|
||||
class TestKVPrefixCacheWithModel:
|
||||
@pytest.fixture(scope="class")
|
||||
def model_and_tokenizer(self):
|
||||
model, tokenizer = _load_gpt_oss()
|
||||
return model, tokenizer
|
||||
|
||||
def test_prefill_populates_cache(self, model_and_tokenizer):
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Hello!!")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
# Cache should now hold the prompt tokens
|
||||
assert _cache_length(cache) == len(tokens)
|
||||
|
||||
def test_add_and_get_exact_match(self, model_and_tokenizer):
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Test exact")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
assert stored_length > 0
|
||||
|
||||
# Retrieve with same prompt: exact match
|
||||
result_cache, remaining_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, prompt
|
||||
)
|
||||
assert matched_index == 0
|
||||
|
||||
# Exact match returns only last token
|
||||
assert len(remaining_tokens) == 1
|
||||
assert mx.array_equal(remaining_tokens, tokens[-1:])
|
||||
|
||||
def test_add_and_get_prefix_match(self, model_and_tokenizer):
|
||||
"""get_kv_cache with a longer prompt sharing prefix should return partial match."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
short_task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Hi")],
|
||||
max_tokens=1,
|
||||
)
|
||||
short_prompt = apply_chat_template(tokenizer, short_task)
|
||||
short_tokens = encode_prompt(tokenizer, short_prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), short_tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(short_prompt, cache)
|
||||
|
||||
# Query with longer prompt that shares the chat template prefix
|
||||
long_task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[
|
||||
ChatCompletionMessage(role="user", content="Hi there, how are you?")
|
||||
],
|
||||
max_tokens=1,
|
||||
)
|
||||
long_prompt = apply_chat_template(tokenizer, long_task)
|
||||
long_tokens = encode_prompt(tokenizer, long_prompt)
|
||||
|
||||
# The prompts share a prefix (chat template preamble + "Hi")
|
||||
expected_prefix = _get_prefix_length(long_tokens, short_tokens)
|
||||
assert expected_prefix > 0, (
|
||||
"Prompts should share a prefix from the chat template"
|
||||
)
|
||||
|
||||
result_cache, remaining_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, long_prompt
|
||||
)
|
||||
assert matched_index == 0
|
||||
|
||||
# remaining_tokens should be the suffix after the shared prefix
|
||||
assert len(remaining_tokens) == len(long_tokens) - expected_prefix
|
||||
assert mx.array_equal(remaining_tokens, long_tokens[expected_prefix:])
|
||||
|
||||
def test_stored_cache_not_mutated_after_get_and_generation(
|
||||
self, model_and_tokenizer
|
||||
):
|
||||
"""Getting a cache and then mutating it (as generation does) must not corrupt stored cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Mutation test")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Get cache and mutate it (simulating what generation does)
|
||||
result_cache, _, matched_index = kv_prefix_cache.get_kv_cache(model, prompt)
|
||||
assert matched_index == 0
|
||||
|
||||
# Simulate generation: feed many additional tokens through the cache
|
||||
head_dim = result_cache[0].keys.shape[-1]
|
||||
num_heads = result_cache[0].keys.shape[1]
|
||||
extra_keys = mx.random.normal((1, num_heads, 50, head_dim))
|
||||
extra_values = mx.random.normal((1, num_heads, 50, head_dim))
|
||||
for layer_cache in result_cache:
|
||||
layer_cache.update_and_fetch(extra_keys, extra_values)
|
||||
mx.eval([c.keys for c in result_cache])
|
||||
|
||||
# Stored cache must be unchanged
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length
|
||||
|
||||
def test_stored_cache_survives_repeated_get_mutate_cycles(
|
||||
self, model_and_tokenizer
|
||||
):
|
||||
"""Multiple get+mutate cycles (like repeated user requests) must not corrupt cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Repeat test")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
for i in range(3):
|
||||
result_cache, _, _ = kv_prefix_cache.get_kv_cache(model, prompt)
|
||||
|
||||
head_dim = result_cache[0].keys.shape[-1]
|
||||
num_heads = result_cache[0].keys.shape[1]
|
||||
extra = mx.random.normal((1, num_heads, 30, head_dim))
|
||||
for layer_cache in result_cache:
|
||||
layer_cache.update_and_fetch(extra, extra)
|
||||
mx.eval([c.keys for c in result_cache])
|
||||
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length, (
|
||||
f"Failed on loop {i}"
|
||||
)
|
||||
|
||||
def test_mlx_generate_populates_cache(self, model_and_tokenizer):
|
||||
"""mlx_generate should save the cache after generation completes."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Hello")],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
|
||||
# Consume the entire generator so the cache-saving code after yield runs
|
||||
generated_tokens = 0
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
generated_tokens += 1
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
assert len(kv_prefix_cache.caches) == 1
|
||||
# Cache should contain prompt + generated tokens
|
||||
expected_length = len(prompt_tokens) + generated_tokens
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == expected_length
|
||||
|
||||
def test_mlx_generate_second_call_gets_prefix_hit(self, model_and_tokenizer):
|
||||
"""Second mlx_generate call with same prompt should get a prefix hit from stored cache."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Reuse test")],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
prompt_tokens = encode_prompt(tokenizer, prompt)
|
||||
|
||||
# First generation populates cache
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
|
||||
# Second call should find a prefix match (the stored cache contains
|
||||
# prompt + generated tokens, which shares the prompt prefix)
|
||||
result_cache, remaining_tokens, matched_index = kv_prefix_cache.get_kv_cache(
|
||||
model, prompt
|
||||
)
|
||||
# The stored cache is longer than the prompt (it includes generated tokens),
|
||||
# so this is a prefix match where our prompt is fully contained
|
||||
assert matched_index == 0
|
||||
# Exact match: remaining_tokens is just the last token
|
||||
assert len(remaining_tokens) == 1
|
||||
assert mx.array_equal(remaining_tokens, prompt_tokens[-1:])
|
||||
|
||||
def test_mlx_generate_long_prompt_updates_cache_in_place(self, model_and_tokenizer):
|
||||
"""With a prompt > 1000 tokens, second generation should update the cache entry in-place."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
|
||||
# Build a long user message (> 1000 tokens) to exceed _MIN_PREFIX_HIT_TO_UPDATE
|
||||
base_text = "The quick brown fox jumps over the lazy dog. "
|
||||
base_tokens = tokenizer.encode(base_text)
|
||||
repeats = (1200 // len(base_tokens)) + 2
|
||||
long_content = base_text * repeats
|
||||
|
||||
task1 = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content=long_content)],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt1 = apply_chat_template(tokenizer, task1)
|
||||
prompt1_tokens = encode_prompt(tokenizer, prompt1)
|
||||
assert len(prompt1_tokens) > 1000, (
|
||||
"Prompt must exceed _MIN_PREFIX_HIT_TO_UPDATE"
|
||||
)
|
||||
|
||||
# First generation populates the cache (must prefill all tokens)
|
||||
t0 = time.perf_counter()
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task1,
|
||||
prompt=prompt1,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
first_gen_time = time.perf_counter() - t0
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Second generation: same long prompt + extra content (simulating multi-turn)
|
||||
task2 = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[
|
||||
ChatCompletionMessage(role="user", content=long_content),
|
||||
ChatCompletionMessage(role="assistant", content="Sure, I can help."),
|
||||
ChatCompletionMessage(role="user", content="Tell me more."),
|
||||
],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt2 = apply_chat_template(tokenizer, task2)
|
||||
prompt2_tokens = encode_prompt(tokenizer, prompt2)
|
||||
|
||||
# Verify the prompts share a long prefix
|
||||
prefix_len = _get_prefix_length(prompt2_tokens, prompt1_tokens)
|
||||
assert prefix_len > 1000, "Prompts must share > 1000 token prefix"
|
||||
|
||||
# Second generation should reuse the cached prefix (only prefill new tokens)
|
||||
t0 = time.perf_counter()
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task2,
|
||||
prompt=prompt2,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
second_gen_time = time.perf_counter() - t0
|
||||
|
||||
# Second generation should be significantly faster due to prefix cache hit - hopefully not flaky
|
||||
assert second_gen_time < first_gen_time * 0.5, (
|
||||
f"Expected prefix cache speedup: "
|
||||
f"first={first_gen_time:.2f}s, second={second_gen_time:.2f}s"
|
||||
)
|
||||
|
||||
# With prefix_hit > 1000, should update in-place (not add a second entry)
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
# Updated cache should be longer (prompt2 + generated > prompt1 + generated)
|
||||
updated_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
assert updated_cache_length > first_cache_length
|
||||
|
||||
def test_mlx_generate_stored_cache_not_mutated(self, model_and_tokenizer):
|
||||
"""After mlx_generate saves a cache, a second generation must not corrupt the stored copy."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="Immutable test")],
|
||||
max_tokens=5,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
|
||||
# First generation populates cache
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
|
||||
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Second generation gets the cache and mutates it during generation
|
||||
for _response in mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task,
|
||||
prompt=prompt,
|
||||
kv_prefix_cache=kv_prefix_cache,
|
||||
):
|
||||
pass
|
||||
|
||||
# The first stored cache must not have been mutated by the second generation
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == first_cache_length
|
||||
|
||||
def test_evicts_lru_entry_under_memory_pressure(self, model_and_tokenizer):
|
||||
"""Under memory pressure, adding a new cache entry evicts the least recently used one."""
|
||||
model, tokenizer = model_and_tokenizer
|
||||
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
|
||||
# Add three cache entries with different prompts
|
||||
prompts = ["First entry", "Second entry", "Third entry"]
|
||||
for i, content in enumerate(prompts):
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content=content)],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
# Stagger _last_used so LRU order is deterministic
|
||||
kv_prefix_cache._last_used[i] = float(i)
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 3
|
||||
|
||||
# Access the third entry to make it most recently used
|
||||
kv_prefix_cache._last_used[2] = 100.0
|
||||
# Entry 0 (_last_used=0.0) is LRU, entry 1 (_last_used=1.0) is next
|
||||
|
||||
# Simulate memory pressure: active memory exceeds threshold
|
||||
fake_limit = 1000
|
||||
fake_active = int(fake_limit * 0.90) # Above _MEMORY_THRESHOLD (0.85)
|
||||
|
||||
with (
|
||||
patch(
|
||||
"exo.worker.engines.mlx.cache.mx.metal.get_active_memory",
|
||||
return_value=fake_active,
|
||||
),
|
||||
patch(
|
||||
"exo.worker.engines.mlx.cache.mx.metal.device_info",
|
||||
return_value={"max_recommended_working_set_size": fake_limit},
|
||||
),
|
||||
):
|
||||
# Trigger eviction by adding a new entry
|
||||
task = ChatCompletionTaskParams(
|
||||
model=DEFAULT_GPT_OSS_MODEL_ID,
|
||||
messages=[ChatCompletionMessage(role="user", content="New entry")],
|
||||
max_tokens=1,
|
||||
)
|
||||
prompt = apply_chat_template(tokenizer, task)
|
||||
tokens = encode_prompt(tokenizer, prompt)
|
||||
cache = make_kv_cache(model)
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
# LRU entries should have been evicted (entries 0, 1, 2 in order of _last_used)
|
||||
# Since fake_active stays above threshold after each eviction (we don't change it),
|
||||
# all old entries get evicted, leaving only the newly added one
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
# The surviving entry should be the newly added one
|
||||
new_tokens = encode_prompt(tokenizer, prompt)
|
||||
assert _get_prefix_length(kv_prefix_cache.prompts[0], new_tokens) == len(
|
||||
new_tokens
|
||||
)
|
||||
@@ -154,7 +154,7 @@ def test_plan_does_not_request_download_when_shard_already_downloaded():
|
||||
tasks={},
|
||||
)
|
||||
|
||||
assert result is None
|
||||
assert not isinstance(result, plan_mod.DownloadModel)
|
||||
|
||||
|
||||
def test_plan_does_not_load_model_until_all_shards_downloaded_globally():
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import multiprocessing as mp
|
||||
import socket
|
||||
import time
|
||||
import typing
|
||||
|
||||
import anyio
|
||||
from fastapi import FastAPI
|
||||
@@ -11,16 +10,12 @@ from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType
|
||||
from loguru import logger
|
||||
from pydantic import BaseModel
|
||||
|
||||
from exo.download.impl_shard_downloader import (
|
||||
build_full_shard,
|
||||
exo_shard_downloader,
|
||||
)
|
||||
from exo.shared.logging import InterceptLogger, logger_setup
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelId
|
||||
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
|
||||
from exo.shared.types.commands import CommandId
|
||||
from exo.shared.types.common import Host, NodeId
|
||||
from exo.shared.types.events import Event
|
||||
from exo.shared.types.events import Event, RunnerStatusUpdated
|
||||
from exo.shared.types.tasks import (
|
||||
ChatCompletion,
|
||||
ConnectToGroup,
|
||||
@@ -36,18 +31,17 @@ from exo.shared.types.worker.instances import (
|
||||
MlxJacclInstance,
|
||||
MlxRingInstance,
|
||||
)
|
||||
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
|
||||
from exo.shared.types.worker.runners import RunnerFailed, RunnerId, ShardAssignments
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
|
||||
from exo.utils.channels import MpReceiver, MpSender, channel, mp_channel
|
||||
from exo.utils.info_gatherer.info_gatherer import GatheredInfo, InfoGatherer
|
||||
from exo.worker.runner.bootstrap import entrypoint
|
||||
|
||||
MODEL_CARDS = {"haha": MODEL_CARDS["qwen3-coder-480b-a35b-8bit"]}
|
||||
|
||||
class Tests(BaseModel):
|
||||
# list[hostname, ip addr]
|
||||
devs: list[list[str]]
|
||||
model_id: str
|
||||
kind: typing.Literal["init", "warmup", "inference"]
|
||||
|
||||
|
||||
mp.set_start_method("spawn", force=True)
|
||||
@@ -56,16 +50,14 @@ logger_setup(None)
|
||||
|
||||
async def main():
|
||||
logger.info("starting cool server majig")
|
||||
await assert_downloads()
|
||||
cfg = Config()
|
||||
cfg.bind = "0.0.0.0:52415"
|
||||
cfg.bind = "0.0.0.0:8000"
|
||||
# nb: shared.logging needs updating if any of this changes
|
||||
cfg.accesslog = "-"
|
||||
cfg.errorlog = "-"
|
||||
cfg.logger_class = InterceptLogger
|
||||
app = FastAPI()
|
||||
app.post("/ring")(ring_backend)
|
||||
app.post("/jaccl")(jaccl_backend)
|
||||
app.post("/run_test")(run_test)
|
||||
app.post("/tb_detection")(tb_detection)
|
||||
shutdown = anyio.Event()
|
||||
await serve(
|
||||
@@ -87,28 +79,7 @@ async def tb_detection():
|
||||
return recv.collect()
|
||||
|
||||
|
||||
async def assert_downloads():
|
||||
sd = exo_shard_downloader()
|
||||
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
|
||||
)
|
||||
|
||||
|
||||
async def ring_backend(test: Tests):
|
||||
async def run_test(test: Tests):
|
||||
iid = InstanceId(str(hash(str(test.devs))))
|
||||
weird_hn = socket.gethostname()
|
||||
for dev in test.devs:
|
||||
@@ -117,10 +88,30 @@ async def ring_backend(test: Tests):
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"{weird_hn} not in {test.devs}")
|
||||
return await execute_test(test, ring_instance(test, iid, hn), hn)
|
||||
|
||||
async def run():
|
||||
for card in MODEL_CARDS.values():
|
||||
for instance in (
|
||||
ring_instance(test, card.model_id, iid, hn),
|
||||
jaccl_instance(test, card.model_id, iid),
|
||||
):
|
||||
recv = await execute_test(test, instance, hn)
|
||||
|
||||
with recv:
|
||||
try:
|
||||
async for item in recv:
|
||||
yield item.model_dump_json() + "\n"
|
||||
if isinstance(item, RunnerStatusUpdated) and isinstance(
|
||||
item.runner_status, RunnerFailed
|
||||
):
|
||||
return
|
||||
except anyio.ClosedResourceError:
|
||||
pass
|
||||
|
||||
return StreamingResponse(run())
|
||||
|
||||
|
||||
def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
|
||||
def ring_instance(test: Tests, model_id: ModelId, iid: InstanceId, hn: str) -> Instance:
|
||||
hbn = [Host(ip="i dont care", port=52416) for _ in test.devs]
|
||||
world_size = len(test.devs)
|
||||
for i in range(world_size):
|
||||
@@ -135,13 +126,13 @@ def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
|
||||
else:
|
||||
raise ValueError(f"{hn} not in {test.devs}")
|
||||
|
||||
card = MODEL_CARDS[test.model_id]
|
||||
card = next(card for card in MODEL_CARDS.values() if card.model_id == model_id)
|
||||
instance = MlxRingInstance(
|
||||
instance_id=iid,
|
||||
ephemeral_port=52416,
|
||||
hosts_by_node={NodeId(hn): hbn},
|
||||
shard_assignments=ShardAssignments(
|
||||
model_id=ModelId(test.model_id),
|
||||
model_id=model_id,
|
||||
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
|
||||
runner_to_shard={
|
||||
RunnerId(test.devs[i][0]): PipelineShardMetadata(
|
||||
@@ -163,7 +154,7 @@ def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
|
||||
return instance
|
||||
|
||||
|
||||
async def execute_test(test: Tests, instance: Instance, hn: str):
|
||||
async def execute_test(test: Tests, instance: Instance, hn: str) -> MpReceiver[Event]:
|
||||
world_size = len(test.devs)
|
||||
iid = InstanceId(str(hash(str(test.devs))))
|
||||
_handle, recv, send = new_runner(instance, hn)
|
||||
@@ -171,60 +162,33 @@ async def execute_test(test: Tests, instance: Instance, hn: str):
|
||||
send.send(ConnectToGroup(instance_id=iid))
|
||||
send.send(LoadModel(instance_id=iid))
|
||||
|
||||
match test.kind:
|
||||
case "init":
|
||||
pass
|
||||
case "warmup":
|
||||
send.send(StartWarmup(instance_id=iid))
|
||||
case "inference":
|
||||
send.send(StartWarmup(instance_id=iid))
|
||||
send.send(
|
||||
ChatCompletion(
|
||||
task_params=ChatCompletionTaskParams(
|
||||
model=test.model_id,
|
||||
messages=[
|
||||
ChatCompletionMessage(
|
||||
role="system", content="You are a helpful assistant"
|
||||
),
|
||||
ChatCompletionMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
),
|
||||
],
|
||||
),
|
||||
command_id=CommandId("yo"),
|
||||
instance_id=iid,
|
||||
)
|
||||
for card in MODEL_CARDS.values():
|
||||
send.send(StartWarmup(instance_id=iid))
|
||||
send.send(
|
||||
ChatCompletion(
|
||||
task_params=ChatCompletionTaskParams(
|
||||
model=card.model_id,
|
||||
messages=[
|
||||
ChatCompletionMessage(
|
||||
role="system", content="You are a helpful assistant"
|
||||
),
|
||||
ChatCompletionMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
),
|
||||
],
|
||||
),
|
||||
command_id=CommandId("yo"),
|
||||
instance_id=iid,
|
||||
)
|
||||
)
|
||||
|
||||
send.send(Shutdown(runner_id=RunnerId(hn), instance_id=iid))
|
||||
|
||||
async def map_recv():
|
||||
with recv:
|
||||
try:
|
||||
async for item in recv:
|
||||
yield item.model_dump_json() + "\n"
|
||||
except anyio.ClosedResourceError:
|
||||
pass
|
||||
|
||||
ret = StreamingResponse(map_recv())
|
||||
ret._pls_dont_gc = _handle # type: ignore
|
||||
return ret
|
||||
return recv
|
||||
|
||||
|
||||
async def jaccl_backend(test: Tests):
|
||||
iid = InstanceId(str(hash(str(test.devs))))
|
||||
weird_hn = socket.gethostname()
|
||||
for dev in test.devs:
|
||||
if weird_hn.startswith(dev[0]) or dev[0].startswith(weird_hn):
|
||||
hn = dev[0]
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"{weird_hn} not in {test.devs}")
|
||||
return await execute_test(test, jaccl_instance(test, iid), hn)
|
||||
|
||||
|
||||
def jaccl_instance(test: Tests, iid: InstanceId):
|
||||
card = MODEL_CARDS[test.model_id]
|
||||
def jaccl_instance(test: Tests, model_id: ModelId, iid: InstanceId):
|
||||
card = next(card for card in MODEL_CARDS.values() if card.model_id == model_id)
|
||||
world_size = len(test.devs)
|
||||
|
||||
return MlxJacclInstance(
|
||||
@@ -235,7 +199,7 @@ def jaccl_instance(test: Tests, iid: InstanceId):
|
||||
NodeId(host[0]): test.devs[0][1] + ":52416" for host in test.devs
|
||||
},
|
||||
shard_assignments=ShardAssignments(
|
||||
model_id=ModelId(test.model_id),
|
||||
model_id=model_id,
|
||||
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
|
||||
runner_to_shard={
|
||||
RunnerId(test.devs[i][0]): TensorShardMetadata(
|
||||
@@ -270,6 +234,7 @@ def new_runner(
|
||||
task_recv,
|
||||
logger,
|
||||
),
|
||||
kwargs={"_load_null_models": True},
|
||||
)
|
||||
runner_process._pls_dont_gc = (ev_send, task_recv) # type: ignore
|
||||
runner_process.start()
|
||||
|
||||
@@ -6,19 +6,8 @@ query() {
|
||||
tailscale status | awk -v find="$1" '$2 == find { print $1 }'
|
||||
}
|
||||
|
||||
if [[ $# -lt 2 ]]; then
|
||||
echo "USAGE: $0 <test kind> [host1] [host2] ..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
kind=$1
|
||||
shift
|
||||
|
||||
test_kinds="ring jaccl"
|
||||
|
||||
if ! echo "$test_kinds" | grep -q "$kind"; then
|
||||
printf "%s is not a known test kind.\nCurrent test kinds are %s" "$kind" "$test_kinds"
|
||||
if [[ $# -lt 1 ]]; then
|
||||
echo "USAGE: $0 [host1] [host2] ..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -34,23 +23,12 @@ done
|
||||
devs_raw=$(printf "[\"%s\", \"%s\"], " "${weaved[@]}")
|
||||
devs="[${devs_raw%, }]"
|
||||
|
||||
model_ids=("qwen3-30b" "gpt-oss-120b-MXFP4-Q8" "kimi-k2-thinking")
|
||||
|
||||
for model_id in "${model_ids[@]}"; do
|
||||
for i in "${!ips[@]}"; do
|
||||
{
|
||||
req="{
|
||||
\"model_id\": \"${model_id}\",
|
||||
\"devs\": ${devs},
|
||||
\"kind\": \"inference\"
|
||||
}"
|
||||
echo "req $req"
|
||||
curl -sN \
|
||||
-X POST "http://${ips[$i]}:52415/${kind}" \
|
||||
-H "Content-Type: application/json" -d "$req" \
|
||||
2>&1 | sed "s/^/\n${hostnames[$i]}@${ips[$i]}: /" || echo "curl to ${hostnames[$i]} failed" && exit 1
|
||||
} &
|
||||
done
|
||||
wait
|
||||
for i in "${!ips[@]}"; do
|
||||
{
|
||||
curl -sN \
|
||||
-X POST "http://${ips[$i]}:8000/run_test" \
|
||||
-H "Content-Type: application/json" -d "{\"devs\": ${devs}}" \
|
||||
2>&1 | sed "s/^/\n${hostnames[$i]}@${ips[$i]}: /" || echo "curl to ${hostnames[$i]} failed" && exit 1
|
||||
} &
|
||||
done
|
||||
|
||||
wait
|
||||
|
||||
16
uv.lock
generated
16
uv.lock
generated
@@ -415,7 +415,7 @@ requires-dist = [
|
||||
{ name = "mflux", specifier = "==0.15.4" },
|
||||
{ name = "mlx", marker = "sys_platform == 'darwin'", specifier = "==0.30.3" },
|
||||
{ name = "mlx", extras = ["cpu"], marker = "sys_platform == 'linux'", specifier = "==0.30.3" },
|
||||
{ name = "mlx-lm", git = "https://github.com/AlexCheema/mlx-lm.git?rev=fix-transformers-5.0.0rc2" },
|
||||
{ name = "mlx-lm", specifier = "==0.30.5" },
|
||||
{ name = "openai-harmony", specifier = ">=0.0.8" },
|
||||
{ name = "pillow", specifier = ">=11.0,<12.0" },
|
||||
{ name = "psutil", specifier = ">=7.0.0" },
|
||||
@@ -1072,8 +1072,8 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "mlx-lm"
|
||||
version = "0.30.4"
|
||||
source = { git = "https://github.com/AlexCheema/mlx-lm.git?rev=fix-transformers-5.0.0rc2#a5daf2b894f31793dfaef0fdf9bc3ed683176ad6" }
|
||||
version = "0.30.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "jinja2", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mlx", marker = "sys_platform == 'darwin'" },
|
||||
@@ -1083,6 +1083,10 @@ dependencies = [
|
||||
{ name = "sentencepiece", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "transformers", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0b/90/4469d9f75f196e6255f59a89441abe0079925d30a001462e1c1c4bc4e6a1/mlx_lm-0.30.5.tar.gz", hash = "sha256:9e6cb258c65b766c6af25cb90958aef40acab67139f05839eef19864cb3154f6", size = 262367, upload-time = "2026-01-25T15:29:30.125Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/89/ba/66db6e1e5f1ef506655b562932f6bd8f72600116d5f31f92d71c1f200b3f/mlx_lm-0.30.5-py3-none-any.whl", hash = "sha256:a80bc8e3efdebe81813b0f6eb403fb66a7a15071e256f4e7102ada986acb75bb", size = 366716, upload-time = "2026-01-25T15:29:28.29Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mlx-metal"
|
||||
@@ -2281,7 +2285,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "transformers"
|
||||
version = "5.0.0rc2"
|
||||
version = "5.0.0rc3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "filelock", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
@@ -2296,9 +2300,9 @@ dependencies = [
|
||||
{ name = "tqdm", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "typer-slim", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/94/e2/86b1bd5264272953370a5e50a91da38d7a53a87c5faf3fd3ff62d7353879/transformers-5.0.0rc2.tar.gz", hash = "sha256:9f2fa5e132433dd7eb910dc224b32de0baf758f3b6ffc918dbb632e0af85c07a", size = 8362532, upload-time = "2026-01-07T16:58:02.603Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/3f/a3/7c116a8d85f69ea7749cf4c2df79e64c35d028e5fc7ea0168f299d03b8c7/transformers-5.0.0rc3.tar.gz", hash = "sha256:a0315b92b7e087617ade42ec9e6e92ee7620541cc5d6a3331886c52cbe306f5c", size = 8388520, upload-time = "2026-01-14T16:49:02.952Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/b4/eb/9526a77354a2126f5b220f4792dc8494d573773c098dac6a5ad1fc7a5f17/transformers-5.0.0rc2-py3-none-any.whl", hash = "sha256:f8f2a14060ab11f20a0eec39d827af54c1589c327c5799d82808ae3f4167418a", size = 10067329, upload-time = "2026-01-07T16:57:59.617Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/f2/ae2b8968764253bdf38a48dee3c299b8d0bedf7c8ffbe3449fca9bd95338/transformers-5.0.0rc3-py3-none-any.whl", hash = "sha256:383fad27f4f73092d330e45fae384681e5c8521e1dc1cf6cb1a297780e68bf2d", size = 10107087, upload-time = "2026-01-14T16:48:59.393Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user