mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-18 23:06:23 -05:00
Compare commits
28 Commits
remove-nig
...
leo/add-gl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ea5fc8125f | ||
|
|
14da9c3f59 | ||
|
|
242067e8eb | ||
|
|
03267171ea | ||
|
|
080995a409 | ||
|
|
0d92d001e6 | ||
|
|
0287ad71a1 | ||
|
|
82ac16cc0f | ||
|
|
d78dd516f3 | ||
|
|
5c154d091d | ||
|
|
e4e0517627 | ||
|
|
b28c1d9e92 | ||
|
|
58e751a930 | ||
|
|
6718da7af3 | ||
|
|
9d9237f68f | ||
|
|
8de4e10736 | ||
|
|
0de3e486df | ||
|
|
ce0eef999e | ||
|
|
20fb6a9acc | ||
|
|
4a1234106b | ||
|
|
2929249147 | ||
|
|
837ffc6b97 | ||
|
|
2366ed0299 | ||
|
|
c95c088952 | ||
|
|
2af1c81cde | ||
|
|
6922dd4ead | ||
|
|
8c2fb7f130 | ||
|
|
0488cb2967 |
46
.mlx_typings/mlx_lm/models/glm_moe_dsa.pyi
Normal file
46
.mlx_typings/mlx_lm/models/glm_moe_dsa.pyi
Normal file
@@ -0,0 +1,46 @@
|
||||
"""Type stubs for mlx_lm.models.glm_moe_dsa"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .deepseek_v32 import Model as DSV32Model
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
index_head_dim: int
|
||||
index_n_heads: int
|
||||
index_topk: int
|
||||
intermediate_size: int
|
||||
moe_intermediate_size: int
|
||||
num_hidden_layers: int
|
||||
num_attention_heads: int
|
||||
num_key_value_heads: int
|
||||
n_shared_experts: Optional[int]
|
||||
n_routed_experts: Optional[int]
|
||||
routed_scaling_factor: float
|
||||
kv_lora_rank: int
|
||||
q_lora_rank: int
|
||||
qk_rope_head_dim: int
|
||||
v_head_dim: int
|
||||
qk_nope_head_dim: int
|
||||
topk_method: str
|
||||
scoring_func: str
|
||||
norm_topk_prob: bool
|
||||
n_group: int
|
||||
topk_group: int
|
||||
num_experts_per_tok: int
|
||||
moe_layer_freq: int
|
||||
first_k_dense_replace: int
|
||||
max_position_embeddings: int
|
||||
rms_norm_eps: float
|
||||
rope_parameters: Dict[str, Any]
|
||||
attention_bias: bool
|
||||
rope_scaling: Dict[str, Any] | None
|
||||
rope_theta: float | None
|
||||
|
||||
class Model(DSV32Model):
|
||||
def __init__(self, config: ModelArgs) -> None: ...
|
||||
@@ -41,7 +41,7 @@ let
|
||||
|
||||
mlx = stdenv.mkDerivation rec {
|
||||
pname = "mlx";
|
||||
version = let v = "0.30.7.dev20260217+50487b41"; in
|
||||
version = let v = "0.30.7.dev20260218+14841977"; in
|
||||
assert v == uvLockMlxVersion || throw "MLX version mismatch: nix/mlx.nix has ${v} but uv.lock has ${uvLockMlxVersion}. Update both the version and hash in nix/mlx.nix.";
|
||||
v;
|
||||
pyproject = true;
|
||||
@@ -49,8 +49,8 @@ let
|
||||
src = fetchFromGitHub {
|
||||
owner = "rltakashige";
|
||||
repo = "mlx-jaccl-fix-small-recv";
|
||||
rev = "50487b4141f3c951122655db3b83df5146c1fbeb";
|
||||
hash = "sha256-IL4a9vMX5nocgJU1WG4zE8hArHkHJtnh4sdYh3od5zU=";
|
||||
rev = "1484197707f35186ad3bd614357c7c47fdf86ebc";
|
||||
hash = "sha256-FupCMoK/SF/ldfKuvMSAKECcOP8c+ANgkQlPZttDsLk=";
|
||||
};
|
||||
|
||||
patches = [
|
||||
|
||||
@@ -0,0 +1,12 @@
|
||||
model_id = "mlx-community/GLM-5-8bit-MXFP8"
|
||||
n_layers = 78
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
family = "glm"
|
||||
quantization = "8bit"
|
||||
base_model = "GLM-5"
|
||||
capabilities = ["text", "thinking"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 790517400864
|
||||
@@ -0,0 +1,12 @@
|
||||
model_id = "mlx-community/GLM-5-MXFP4-Q8"
|
||||
n_layers = 78
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
family = "glm"
|
||||
quantization = "MXFP4-Q8"
|
||||
base_model = "GLM-5"
|
||||
capabilities = ["text", "thinking"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 405478939008
|
||||
@@ -0,0 +1,12 @@
|
||||
model_id = "mlx-community/GLM-5"
|
||||
n_layers = 78
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
family = "glm"
|
||||
quantization = "bf16"
|
||||
base_model = "GLM-5"
|
||||
capabilities = ["text", "thinking"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 1487822475264
|
||||
@@ -183,6 +183,7 @@ class ConfigData(BaseModel):
|
||||
def supports_tensor(self) -> bool:
|
||||
return self.architectures in [
|
||||
["Glm4MoeLiteForCausalLM"],
|
||||
["GlmMoeDsaForCausalLM"],
|
||||
["DeepseekV32ForCausalLM"],
|
||||
["DeepseekV3ForCausalLM"],
|
||||
["Qwen3NextForCausalLM"],
|
||||
|
||||
@@ -163,11 +163,14 @@ class PipelineLastLayer(CustomMlxLayer):
|
||||
output, (self.r + 1) % self.s, group=self.group
|
||||
)
|
||||
if cache is not None:
|
||||
cache.keys = mx.depends(cache.keys, output) # type: ignore[reportUnknownMemberType]
|
||||
# CacheList (used by MLA models like DeepSeekV32, GLM MoE DSA)
|
||||
# doesn't have .keys directly; access via first sub-cache.
|
||||
_cache = cache[0] if hasattr(cache, "caches") else cache # type: ignore
|
||||
_cache.keys = mx.depends(_cache.keys, output) # type: ignore
|
||||
if self.is_prefill:
|
||||
mx.eval(output)
|
||||
if cache is not None:
|
||||
mx.eval(cache.keys) # type: ignore
|
||||
mx.eval(_cache.keys) # type: ignore
|
||||
|
||||
if not self.is_prefill:
|
||||
output = mx.distributed.all_gather(output, group=self.group)[
|
||||
@@ -307,7 +310,9 @@ def patch_pipeline_model[T](model: T, group: mx.distributed.Group) -> T:
|
||||
|
||||
# Add dependency to last cache entry to ensure distributed ops are evaluated
|
||||
if cache is not None:
|
||||
cache[-1].state = mx.depends(cache[-1].state, logits) # type: ignore
|
||||
last = cache[-1] # type: ignore
|
||||
dep_cache = last[0] if hasattr(last, "caches") else last # type: ignore
|
||||
dep_cache.keys = mx.depends(dep_cache.keys, logits) # type: ignore
|
||||
|
||||
return logits
|
||||
|
||||
@@ -333,7 +338,9 @@ def patch_tensor_model[T](model: T) -> T:
|
||||
|
||||
# Add dependency to last cache entry to ensure distributed ops are evaluated
|
||||
if cache is not None and len(cache) > 0: # pyright: ignore[reportAny]
|
||||
cache[-1].state = mx.depends(cache[-1].state, logits) # pyright: ignore[reportAny,reportUnknownMemberType]
|
||||
last = cache[-1] # pyright: ignore[reportAny]
|
||||
dep_cache = last[0] if hasattr(last, "caches") else last # pyright: ignore[reportAny]
|
||||
dep_cache.keys = mx.depends(dep_cache.keys, logits) # pyright: ignore[reportAny,reportUnknownMemberType]
|
||||
|
||||
return logits
|
||||
|
||||
@@ -547,10 +554,12 @@ class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
|
||||
on_timeout: TimeoutCallback | None,
|
||||
) -> nn.Module:
|
||||
model = cast(DeepseekV3Model, model)
|
||||
|
||||
for layer in model.layers:
|
||||
eval_with_timeout(
|
||||
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
|
||||
)
|
||||
|
||||
# Shard the self attention
|
||||
if layer.self_attn.q_lora_rank is None:
|
||||
layer.self_attn.q_proj = self.all_to_sharded_linear(
|
||||
@@ -581,12 +590,18 @@ class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
|
||||
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
|
||||
|
||||
# Shard the MoE. Shard in place since the MoE should be responsible
|
||||
# for aggregating the results.
|
||||
# Shard the MoE.
|
||||
else:
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.shared_experts.gate_proj)
|
||||
self.sharded_to_all_linear_in_place(layer.mlp.shared_experts.down_proj)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.shared_experts.up_proj)
|
||||
if getattr(layer.mlp, "shared_experts", None) is not None:
|
||||
self.all_to_sharded_linear_in_place(
|
||||
layer.mlp.shared_experts.gate_proj
|
||||
)
|
||||
self.sharded_to_all_linear_in_place(
|
||||
layer.mlp.shared_experts.down_proj
|
||||
)
|
||||
self.all_to_sharded_linear_in_place(
|
||||
layer.mlp.shared_experts.up_proj
|
||||
)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
|
||||
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.up_proj)
|
||||
@@ -779,8 +794,7 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
|
||||
|
||||
layer.self_attn = WrappedMiniMaxAttention(layer.self_attn, self.group) # pyright: ignore[reportAttributeAccessIssue,reportArgumentType]
|
||||
|
||||
# Shard the MoE. Shard in place since the MoE should be responsible
|
||||
# for aggregating the results.
|
||||
# Shard the MoE.
|
||||
self.all_to_sharded_linear_in_place(
|
||||
layer.block_sparse_moe.switch_mlp.gate_proj
|
||||
)
|
||||
@@ -893,8 +907,7 @@ class QwenShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.self_attn.num_attention_heads //= self.N
|
||||
layer.self_attn.num_key_value_heads //= self.N
|
||||
|
||||
# Shard the MoE. Shard in place since the MoE should be responsible
|
||||
# for aggregating the results.
|
||||
# Shard the MoE.
|
||||
if isinstance(layer.mlp, (Qwen3MoeSparseMoeBlock, Qwen3NextSparseMoeBlock)):
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
|
||||
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)
|
||||
|
||||
@@ -57,6 +57,7 @@ def prefill(
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt_tokens: mx.array,
|
||||
cache: KVCacheType,
|
||||
group: mx.distributed.Group | None,
|
||||
) -> tuple[float, int, list[CacheSnapshot]]:
|
||||
"""Prefill the KV cache with prompt tokens.
|
||||
|
||||
@@ -86,6 +87,9 @@ def prefill(
|
||||
|
||||
set_pipeline_prefill(model, is_prefill=True)
|
||||
|
||||
mx_barrier(group)
|
||||
logger.info("Starting prefill")
|
||||
|
||||
# Use max_tokens=1 because max_tokens=0 does not work.
|
||||
# We just throw away the generated token - we only care about filling the cache
|
||||
for _ in stream_generate(
|
||||
@@ -305,16 +309,9 @@ def mlx_generate(
|
||||
)
|
||||
max_stop_len = max((len(s) for s in stop_sequences), default=0)
|
||||
|
||||
mx_barrier(group)
|
||||
logger.info("Starting prefill")
|
||||
|
||||
# Prefill cache with all tokens except the last one
|
||||
prefill_tps, prefill_tokens, ssm_snapshots_list = prefill(
|
||||
model,
|
||||
tokenizer,
|
||||
sampler,
|
||||
prompt_tokens[:-1],
|
||||
caches,
|
||||
model, tokenizer, sampler, prompt_tokens[:-1], caches, group
|
||||
)
|
||||
cache_snapshots: list[CacheSnapshot] | None = ssm_snapshots_list or None
|
||||
|
||||
@@ -331,6 +328,7 @@ def mlx_generate(
|
||||
think_start = tokenizer.think_start
|
||||
think_end = tokenizer.think_end
|
||||
|
||||
logger.info("Starting decode")
|
||||
mx_barrier(group)
|
||||
|
||||
for completion_tokens, out in enumerate(
|
||||
|
||||
@@ -285,10 +285,12 @@ def get_eos_token_ids_for_model(model_id: ModelId) -> list[int] | None:
|
||||
model_id_lower = model_id.lower()
|
||||
if "kimi-k2" in model_id_lower:
|
||||
return [163586]
|
||||
elif "glm-4.7-flash" in model_id_lower:
|
||||
elif "glm-5" in model_id_lower or "glm-4.7" in model_id_lower:
|
||||
# For GLM-5 and GLM-4.7
|
||||
# 154820: <|endoftext|>, 154827: <|user|>, 154829: <|observation|>
|
||||
return [154820, 154827, 154829]
|
||||
elif "glm" in model_id_lower:
|
||||
# For GLM-4.5 and older
|
||||
return [151336, 151329, 151338]
|
||||
return None
|
||||
|
||||
|
||||
@@ -191,7 +191,7 @@ class RunnerSupervisor:
|
||||
logger.info("Checking runner's status")
|
||||
if self.runner_process.is_alive():
|
||||
logger.info("Runner was found to be alive, attempting to join process")
|
||||
await to_thread.run_sync(self.runner_process.join, 1)
|
||||
await to_thread.run_sync(self.runner_process.join, 5)
|
||||
rc = self.runner_process.exitcode
|
||||
logger.info(f"RunnerSupervisor exited with exit code {rc}")
|
||||
if rc == 0:
|
||||
|
||||
10
uv.lock
generated
10
uv.lock
generated
@@ -378,7 +378,7 @@ dependencies = [
|
||||
{ name = "loguru", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mflux", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mlx", version = "0.30.6", source = { registry = "https://pypi.org/simple" }, extra = ["cpu"], marker = "sys_platform == 'linux'" },
|
||||
{ name = "mlx", version = "0.30.7.dev20260217+50487b41", source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#50487b4141f3c951122655db3b83df5146c1fbeb" }, marker = "sys_platform == 'darwin'" },
|
||||
{ name = "mlx", version = "0.30.7.dev20260218+14841977", source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#1484197707f35186ad3bd614357c7c47fdf86ebc" }, marker = "sys_platform == 'darwin'" },
|
||||
{ name = "mlx-lm", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "msgspec", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "openai-harmony", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
@@ -1021,7 +1021,7 @@ dependencies = [
|
||||
{ name = "huggingface-hub", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "matplotlib", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mlx", version = "0.30.6", source = { registry = "https://pypi.org/simple" }, extra = ["cuda13"], marker = "sys_platform == 'linux'" },
|
||||
{ name = "mlx", version = "0.30.7.dev20260217+50487b41", source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#50487b4141f3c951122655db3b83df5146c1fbeb" }, marker = "sys_platform == 'darwin'" },
|
||||
{ name = "mlx", version = "0.30.7.dev20260218+14841977", source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#1484197707f35186ad3bd614357c7c47fdf86ebc" }, marker = "sys_platform == 'darwin'" },
|
||||
{ name = "numpy", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "opencv-python", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "piexif", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
@@ -1068,8 +1068,8 @@ cuda13 = [
|
||||
|
||||
[[package]]
|
||||
name = "mlx"
|
||||
version = "0.30.7.dev20260217+50487b41"
|
||||
source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#50487b4141f3c951122655db3b83df5146c1fbeb" }
|
||||
version = "0.30.7.dev20260218+14841977"
|
||||
source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#1484197707f35186ad3bd614357c7c47fdf86ebc" }
|
||||
resolution-markers = [
|
||||
"sys_platform == 'darwin'",
|
||||
]
|
||||
@@ -1104,7 +1104,7 @@ version = "0.30.7"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "jinja2", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "mlx", version = "0.30.7.dev20260217+50487b41", source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#50487b4141f3c951122655db3b83df5146c1fbeb" }, marker = "sys_platform == 'darwin'" },
|
||||
{ name = "mlx", version = "0.30.7.dev20260218+14841977", source = { git = "https://github.com/rltakashige/mlx-jaccl-fix-small-recv.git?branch=address-rdma-gpu-locks#1484197707f35186ad3bd614357c7c47fdf86ebc" }, marker = "sys_platform == 'darwin'" },
|
||||
{ name = "numpy", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "protobuf", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
{ name = "pyyaml", marker = "sys_platform == 'darwin' or sys_platform == 'linux'" },
|
||||
|
||||
Reference in New Issue
Block a user