Compare commits

...

3 Commits

Author SHA1 Message Date
Alex Cheema
f1a2d054ec Update tagline to "Run frontier AI locally" (#1313)
- Update README tagline from "Run your own AI cluster at home with
everyday devices" to "Run frontier AI locally"
2026-01-28 12:38:14 +00:00
Alex Cheema
b3c8f85fc8 Update MLX to 0.30.4 (#1311)
## Summary
- Bump mlx from 0.30.3 to 0.30.4

## Test plan
- [x] `uv lock` succeeds
- [x] Type checking passes (`uv run basedpyright`)
- [x] Run inference tests

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-28 04:30:21 -08:00
rltakashige
a562114ba5 Add Kimi K2.5 support (#1302)
## Motivation

<!-- Why is this change needed? What problem does it solve? -->
<!-- If it fixes an open issue, please link to the issue here -->

## Changes

<!-- Describe what you changed in detail -->

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
<!-- Hardware: (e.g., MacBook Pro M1 Max 32GB, Mac Mini M2 16GB,
connected via Thunderbolt 4) -->
<!-- What you did: -->
<!-- - -->

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->

---------

Co-authored-by: Alex Cheema <41707476+AlexCheema@users.noreply.github.com>
2026-01-28 05:44:19 +00:00
6 changed files with 1132 additions and 1104 deletions

View File

@@ -5,7 +5,7 @@
<img alt="exo logo" src="/docs/imgs/exo-logo-transparent.png" width="50%" height="50%">
</picture>
exo: Run your own AI cluster at home with everyday devices. Maintained by [exo labs](https://x.com/exolabs).
exo: Run frontier AI locally. Maintained by [exo labs](https://x.com/exolabs).
<p align="center">
<a href="https://discord.gg/TJ4P57arEm" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/Discord-Join%20Server-5865F2?logo=discord&logoColor=white" alt="Discord"></a>

View File

@@ -17,9 +17,9 @@ dependencies = [
"loguru>=0.7.3",
"exo_pyo3_bindings", # rust bindings
"anyio==4.11.0",
"mlx==0.30.3; sys_platform == 'darwin'",
"mlx[cpu]==0.30.3; sys_platform == 'linux'",
"mlx-lm==0.30.5",
"mlx==0.30.4; sys_platform == 'darwin'",
"mlx[cpu]==0.30.4; sys_platform == 'linux'",
"mlx-lm",
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
"hypercorn>=0.18.0",
"openai-harmony>=0.0.8",
@@ -63,6 +63,7 @@ members = [
[tool.uv.sources]
exo_pyo3_bindings = { workspace = true }
mlx-lm = { git = "https://github.com/ml-explore/mlx-lm", branch = "main" }
# Uncomment to use local mlx/mlx-lm development versions:
# mlx = { path = "/Users/Shared/mlx", editable=true }
# mlx-lm = { path = "/Users/Shared/mlx-lm", editable=true }

View File

@@ -121,6 +121,14 @@ MODEL_CARDS: dict[str, ModelCard] = {
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
"kimi-k2.5": ModelCard(
model_id=ModelId("mlx-community/Kimi-K2.5"),
storage_size=Memory.from_gb(617),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
tasks=[ModelTask.TextGeneration],
),
# llama-3.1
"llama-3.1-8b": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),

View File

@@ -23,6 +23,7 @@ from mlx_lm.models.glm4_moe_lite import Glm4MoeLiteDecoderLayer, Glm4MoeLiteMLP
from mlx_lm.models.glm4_moe_lite import Model as GLM4MoeLiteModel
from mlx_lm.models.gpt_oss import GptOssMoeModel
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.models.kimi_k25 import Model as KimiK25Model
from mlx_lm.models.llama import Model as LlamaModel
from mlx_lm.models.minimax import Model as MiniMaxModel
from mlx_lm.models.ministral3 import Model as Ministral3Model
@@ -344,7 +345,7 @@ def tensor_auto_parallel(
all_to_sharded_linear_in_place,
sharded_to_all_linear_in_place,
)
elif isinstance(model, (DeepseekV3Model, DeepseekV32Model)):
elif isinstance(model, (DeepseekV3Model, DeepseekV32Model, KimiK25Model)):
tensor_parallel_sharding_strategy = DeepSeekShardingStrategy(
group,
all_to_sharded_linear,
@@ -453,7 +454,7 @@ def _set_layers(model: nn.Module, layers: list[_LayerCallable]) -> None:
# Update DeepSeek V3 specific parameters when layers are shrunk
if isinstance(
model, (DeepseekV3Model, DeepseekV32Model, Glm4MoeModel)
model, (DeepseekV3Model, DeepseekV32Model, Glm4MoeModel, KimiK25Model)
) and hasattr(inner_model_instance, "num_layers"):
logger.info(
f"Setting num_layers to {len(layers)} for model {model.model.__class__.__name__}"

View File

@@ -165,12 +165,11 @@ def mlx_distributed_init(
jaccl_coordinator = jaccl_coordinators[bound_instance.bound_node_id]
# TODO: update once upstream fixes
logger.info(
f"rank {rank} MLX_JACCL_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
f"rank {rank} MLX_IBV_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
)
logger.info(f"rank {rank} MLX_JACCL_COORDINATOR: {jaccl_coordinator}")
os.environ["MLX_JACCL_DEVICES"] = coordination_file
os.environ["MLX_IBV_DEVICES"] = coordination_file
os.environ["MLX_RANK"] = str(rank)
os.environ["MLX_JACCL_COORDINATOR"] = jaccl_coordinator
group = mx.distributed.init(backend="jaccl", strict=True)
@@ -259,10 +258,10 @@ def shard_and_load(
logger.info(f"Group size: {group.size()}, group rank: {group.rank()}")
# Estimate timeout based on model size
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "60"))
# Estimate timeout based on model size (5x default for large queued workloads)
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "300"))
model_size_gb = get_weights_size(shard_metadata).in_bytes / (1024**3)
timeout_seconds = base_timeout + model_size_gb / 5
timeout_seconds = base_timeout + model_size_gb
logger.info(
f"Evaluating model parameters with timeout of {timeout_seconds:.0f}s "
f"(model size: {model_size_gb:.1f}GB)"
@@ -339,8 +338,35 @@ def load_tokenizer_for_model_id(
# Kimi uses a custom TikTokenTokenizer that transformers 5.x can't load via AutoTokenizer
if "kimi-k2" in model_id_lower:
import importlib.util
import types
sys.path.insert(0, str(model_path))
from tokenization_kimi import TikTokenTokenizer # type: ignore[import-not-found] # noqa: I001
# Load tool_declaration_ts first (tokenization_kimi imports it with relative import)
tool_decl_path = model_path / "tool_declaration_ts.py"
if tool_decl_path.exists():
spec = importlib.util.spec_from_file_location(
"tool_declaration_ts", tool_decl_path
)
if spec and spec.loader:
tool_decl_module = importlib.util.module_from_spec(spec)
sys.modules["tool_declaration_ts"] = tool_decl_module
spec.loader.exec_module(tool_decl_module)
# Load tokenization_kimi with patched source (convert relative to absolute import)
tok_path = model_path / "tokenization_kimi.py"
source = tok_path.read_text()
source = source.replace("from .tool_declaration_ts", "from tool_declaration_ts")
spec = importlib.util.spec_from_file_location("tokenization_kimi", tok_path)
if spec:
tok_module = types.ModuleType("tokenization_kimi")
tok_module.__file__ = str(tok_path)
sys.modules["tokenization_kimi"] = tok_module
exec(compile(source, tok_path, "exec"), tok_module.__dict__) # noqa: S102
TikTokenTokenizer = tok_module.TikTokenTokenizer # type: ignore[attr-defined] # noqa: N806
else:
from tokenization_kimi import TikTokenTokenizer # type: ignore[import-not-found] # noqa: I001
hf_tokenizer: Any = TikTokenTokenizer.from_pretrained(model_path) # pyright: ignore[reportUnknownVariableType,reportUnknownMemberType]

2174
uv.lock generated
View File

File diff suppressed because it is too large Load Diff