mirror of
https://github.com/exo-explore/exo.git
synced 2026-01-16 18:10:48 -05:00
Compare commits
20 Commits
sami/flash
...
feat/bandw
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4d414556d5 | ||
|
|
d1f80c9e86 | ||
|
|
ae3086167f | ||
|
|
83c5285a80 | ||
|
|
39ee2bf7bd | ||
|
|
991adfbd6f | ||
|
|
4b3de6b984 | ||
|
|
c8de3b90ea | ||
|
|
a480df40bf | ||
|
|
6e6567a802 | ||
|
|
a735dad667 | ||
|
|
aaf4e36bc3 | ||
|
|
3e623ccf0d | ||
|
|
c22dad8a7d | ||
|
|
4bc4d50685 | ||
|
|
e0aab46fd8 | ||
|
|
a8a0fa1bd8 | ||
|
|
9c6f9a6080 | ||
|
|
ab31491786 | ||
|
|
9e8d5b759c |
19
Cargo.lock
generated
19
Cargo.lock
generated
@@ -4340,25 +4340,6 @@ dependencies = [
|
||||
"libc",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "system_custodian"
|
||||
version = "0.0.1"
|
||||
dependencies = [
|
||||
"delegate",
|
||||
"derive_more",
|
||||
"either",
|
||||
"extend",
|
||||
"futures",
|
||||
"futures-timer",
|
||||
"impl-trait-for-tuples",
|
||||
"keccak-const",
|
||||
"log",
|
||||
"thiserror 2.0.17",
|
||||
"tokio",
|
||||
"tracing-subscriber",
|
||||
"util",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tagptr"
|
||||
version = "0.2.0"
|
||||
|
||||
@@ -3,7 +3,6 @@ resolver = "3"
|
||||
members = [
|
||||
"rust/networking",
|
||||
"rust/exo_pyo3_bindings",
|
||||
"rust/system_custodian",
|
||||
"rust/util",
|
||||
]
|
||||
|
||||
@@ -25,7 +24,6 @@ opt-level = 3
|
||||
[workspace.dependencies]
|
||||
## Crate members as common dependencies
|
||||
networking = { path = "rust/networking" }
|
||||
system_custodian = { path = "rust/system_custodian" }
|
||||
util = { path = "rust/util" }
|
||||
|
||||
# Proc-macro authoring tools
|
||||
|
||||
@@ -56,6 +56,11 @@ struct ContentView: View {
|
||||
}
|
||||
|
||||
private var shouldShowLocalNetworkWarning: Bool {
|
||||
// Show warning if local network is not working and EXO is running.
|
||||
// The checker uses a longer timeout on first launch to allow time for
|
||||
// the permission prompt, so this correctly handles both:
|
||||
// 1. User denied permission on first launch
|
||||
// 2. Permission broke after restart (macOS TCC bug)
|
||||
if case .notWorking = localNetworkChecker.status {
|
||||
return controller.status != .stopped
|
||||
}
|
||||
|
||||
@@ -5,8 +5,8 @@ import os.log
|
||||
/// Checks if the app's local network permission is actually functional.
|
||||
///
|
||||
/// macOS local network permission can appear enabled in System Preferences but not
|
||||
/// actually work after a restart. This service detects this by creating a UDP
|
||||
/// connection to the mDNS multicast address (224.0.0.251:5353).
|
||||
/// actually work after a restart. This service uses NWConnection to mDNS multicast
|
||||
/// to verify actual connectivity.
|
||||
@MainActor
|
||||
final class LocalNetworkChecker: ObservableObject {
|
||||
enum Status: Equatable {
|
||||
@@ -35,30 +35,43 @@ final class LocalNetworkChecker: ObservableObject {
|
||||
}
|
||||
|
||||
private static let logger = Logger(subsystem: "io.exo.EXO", category: "LocalNetworkChecker")
|
||||
private static let hasCompletedInitialCheckKey = "LocalNetworkChecker.hasCompletedInitialCheck"
|
||||
|
||||
@Published private(set) var status: Status = .unknown
|
||||
@Published private(set) var lastConnectionState: String = "none"
|
||||
|
||||
private var connection: NWConnection?
|
||||
private var checkTask: Task<Void, Never>?
|
||||
|
||||
/// Whether we've completed at least one check (stored in UserDefaults)
|
||||
private var hasCompletedInitialCheck: Bool {
|
||||
get { UserDefaults.standard.bool(forKey: Self.hasCompletedInitialCheckKey) }
|
||||
set { UserDefaults.standard.set(newValue, forKey: Self.hasCompletedInitialCheckKey) }
|
||||
}
|
||||
|
||||
/// Checks if local network access is working.
|
||||
func check() {
|
||||
checkTask?.cancel()
|
||||
status = .checking
|
||||
lastConnectionState = "connecting"
|
||||
|
||||
// Use longer timeout on first launch to allow time for permission prompt
|
||||
let isFirstCheck = !hasCompletedInitialCheck
|
||||
let timeout: UInt64 = isFirstCheck ? 30_000_000_000 : 3_000_000_000
|
||||
|
||||
checkTask = Task { [weak self] in
|
||||
guard let self else { return }
|
||||
let result = await self.performCheck()
|
||||
|
||||
Self.logger.info("Checking local network connectivity (first check: \(isFirstCheck))")
|
||||
let result = await self.checkConnectivity(timeout: timeout)
|
||||
self.status = result
|
||||
self.hasCompletedInitialCheck = true
|
||||
|
||||
Self.logger.info("Local network check complete: \(result.displayText)")
|
||||
}
|
||||
}
|
||||
|
||||
private func performCheck() async -> Status {
|
||||
Self.logger.info("Checking local network access via UDP multicast")
|
||||
|
||||
/// Checks connectivity using NWConnection to mDNS multicast.
|
||||
/// The connection attempt triggers the permission prompt if not yet shown.
|
||||
private func checkConnectivity(timeout: UInt64) async -> Status {
|
||||
connection?.cancel()
|
||||
connection = nil
|
||||
|
||||
@@ -84,22 +97,7 @@ final class LocalNetworkChecker: ObservableObject {
|
||||
continuation.resume(returning: status)
|
||||
}
|
||||
|
||||
conn.stateUpdateHandler = { [weak self] state in
|
||||
let stateStr: String
|
||||
switch state {
|
||||
case .setup: stateStr = "setup"
|
||||
case .preparing: stateStr = "preparing"
|
||||
case .ready: stateStr = "ready"
|
||||
case .waiting(let e): stateStr = "waiting(\(e))"
|
||||
case .failed(let e): stateStr = "failed(\(e))"
|
||||
case .cancelled: stateStr = "cancelled"
|
||||
@unknown default: stateStr = "unknown"
|
||||
}
|
||||
|
||||
Task { @MainActor in
|
||||
self?.lastConnectionState = stateStr
|
||||
}
|
||||
|
||||
conn.stateUpdateHandler = { state in
|
||||
switch state {
|
||||
case .ready:
|
||||
resumeOnce(.working)
|
||||
@@ -108,6 +106,7 @@ final class LocalNetworkChecker: ObservableObject {
|
||||
if errorStr.contains("54") || errorStr.contains("ECONNRESET") {
|
||||
resumeOnce(.notWorking(reason: "Connection blocked"))
|
||||
}
|
||||
// Otherwise keep waiting - might be showing permission prompt
|
||||
case .failed(let error):
|
||||
let errorStr = "\(error)"
|
||||
if errorStr.contains("65") || errorStr.contains("EHOSTUNREACH")
|
||||
@@ -127,7 +126,7 @@ final class LocalNetworkChecker: ObservableObject {
|
||||
conn.start(queue: .main)
|
||||
|
||||
Task {
|
||||
try? await Task.sleep(nanoseconds: 3_000_000_000)
|
||||
try? await Task.sleep(nanoseconds: timeout)
|
||||
let state = conn.state
|
||||
switch state {
|
||||
case .ready:
|
||||
|
||||
@@ -241,6 +241,9 @@ class PromptSizer:
|
||||
ids = tokenizer.apply_chat_template(
|
||||
messages, tokenize=True, add_generation_prompt=True
|
||||
)
|
||||
# Fix for transformers 5.x
|
||||
if hasattr(ids, "input_ids"):
|
||||
ids = ids.input_ids
|
||||
return int(len(ids))
|
||||
|
||||
return count_fn
|
||||
|
||||
9
dashboard/package-lock.json
generated
9
dashboard/package-lock.json
generated
@@ -863,6 +863,7 @@
|
||||
"integrity": "sha512-oH8tXw7EZnie8FdOWYrF7Yn4IKrqTFHhXvl8YxXxbKwTMcD/5NNCryUSEXRk2ZR4ojnub0P8rNrsVGHXWqIDtA==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@standard-schema/spec": "^1.0.0",
|
||||
"@sveltejs/acorn-typescript": "^1.0.5",
|
||||
@@ -902,6 +903,7 @@
|
||||
"integrity": "sha512-Y1Cs7hhTc+a5E9Va/xwKlAJoariQyHY+5zBgCZg4PFWNYQ1nMN9sjK1zhw1gK69DuqVP++sht/1GZg1aRwmAXQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@sveltejs/vite-plugin-svelte-inspector": "^4.0.1",
|
||||
"debug": "^4.4.1",
|
||||
@@ -1518,6 +1520,7 @@
|
||||
"integrity": "sha512-LCCV0HdSZZZb34qifBsyWlUmok6W7ouER+oQIGBScS8EsZsQbrtFTUrDX4hOl+CS6p7cnNC4td+qrSVGSCTUfQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"undici-types": "~6.21.0"
|
||||
}
|
||||
@@ -1527,6 +1530,7 @@
|
||||
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz",
|
||||
"integrity": "sha512-NZyJarBfL7nWwIq+FDL6Zp/yHEhePMNnnJ0y3qfieCrmNvYct8uvtiV41UvlSe6apAfk0fY1FbWx+NwfmpvtTg==",
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"acorn": "bin/acorn"
|
||||
},
|
||||
@@ -1939,6 +1943,7 @@
|
||||
"integrity": "sha512-fmTRWbNMmsmWq6xJV8D19U/gw/bwrHfNXxrIN+HfZgnzqTHp9jOmKMhsTUjXOJnZOdZY9Q28y4yebKzqDKlxlQ==",
|
||||
"dev": true,
|
||||
"license": "ISC",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
}
|
||||
@@ -2646,6 +2651,7 @@
|
||||
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
},
|
||||
@@ -2833,6 +2839,7 @@
|
||||
"resolved": "https://registry.npmjs.org/svelte/-/svelte-5.45.3.tgz",
|
||||
"integrity": "sha512-ngKXNhNvwPzF43QqEhDOue7TQTrG09em1sd4HBxVF0Wr2gopAmdEWan+rgbdgK4fhBtSOTJO8bYU4chUG7VXZQ==",
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@jridgewell/remapping": "^2.3.4",
|
||||
"@jridgewell/sourcemap-codec": "^1.5.0",
|
||||
@@ -2977,6 +2984,7 @@
|
||||
"integrity": "sha512-jl1vZzPDinLr9eUt3J/t7V6FgNEw9QjvBPdysz9KfQDD41fQrC2Y4vKQdiaUpFT4bXlb1RHhLpp8wtm6M5TgSw==",
|
||||
"dev": true,
|
||||
"license": "Apache-2.0",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
@@ -2998,6 +3006,7 @@
|
||||
"integrity": "sha512-+Oxm7q9hDoLMyJOYfUYBuHQo+dkAloi33apOPP56pzj+vsdJDzr+j1NISE5pyaAuKL4A3UD34qd0lx5+kfKp2g==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"esbuild": "^0.25.0",
|
||||
"fdir": "^6.4.4",
|
||||
|
||||
@@ -60,12 +60,39 @@
|
||||
return models;
|
||||
});
|
||||
|
||||
// Auto-select the first available model if none is selected
|
||||
// Track previous model IDs to detect newly added models (plain variable to avoid reactive loop)
|
||||
let previousModelIds: Set<string> = new Set();
|
||||
|
||||
// Auto-select the first available model if none is selected, if current selection is stale, or if a new model is added
|
||||
$effect(() => {
|
||||
const models = availableModels();
|
||||
if (models.length > 0 && !currentModel) {
|
||||
setSelectedChatModel(models[0].id);
|
||||
const currentModelIds = new Set(models.map(m => m.id));
|
||||
|
||||
if (models.length > 0) {
|
||||
// Find newly added models (in current but not in previous)
|
||||
const newModels = models.filter(m => !previousModelIds.has(m.id));
|
||||
|
||||
// If no model selected, select the first available
|
||||
if (!currentModel) {
|
||||
setSelectedChatModel(models[0].id);
|
||||
}
|
||||
// If current model is stale (no longer has a running instance), reset to first available
|
||||
else if (!models.some(m => m.id === currentModel)) {
|
||||
setSelectedChatModel(models[0].id);
|
||||
}
|
||||
// If a new model was just added, select it
|
||||
else if (newModels.length > 0 && previousModelIds.size > 0) {
|
||||
setSelectedChatModel(newModels[0].id);
|
||||
}
|
||||
} else {
|
||||
// No instances running - clear the selected model
|
||||
if (currentModel) {
|
||||
setSelectedChatModel('');
|
||||
}
|
||||
}
|
||||
|
||||
// Update previous model IDs for next comparison
|
||||
previousModelIds = currentModelIds;
|
||||
});
|
||||
|
||||
function getInstanceModelId(instanceWrapped: unknown): string {
|
||||
|
||||
@@ -400,10 +400,8 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
|
||||
const errorText = await response.text();
|
||||
console.error('Failed to launch instance:', errorText);
|
||||
} else {
|
||||
// Auto-select the launched model only if no model is currently selected
|
||||
if (!selectedChatModel()) {
|
||||
setSelectedChatModel(modelId);
|
||||
}
|
||||
// Always auto-select the newly launched model so the user chats to what they just launched
|
||||
setSelectedChatModel(modelId);
|
||||
|
||||
// Scroll to the bottom of instances container to show the new instance
|
||||
// Use multiple attempts to ensure DOM has updated with the new instance
|
||||
@@ -763,6 +761,10 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
|
||||
async function deleteInstance(instanceId: string) {
|
||||
if (!confirm(`Delete instance ${instanceId.slice(0, 8)}...?`)) return;
|
||||
|
||||
// Get the model ID of the instance being deleted before we delete it
|
||||
const deletedInstanceModelId = getInstanceModelId(instanceData[instanceId]);
|
||||
const wasSelected = selectedChatModel() === deletedInstanceModelId;
|
||||
|
||||
try {
|
||||
const response = await fetch(`/instance/${instanceId}`, {
|
||||
method: 'DELETE',
|
||||
@@ -771,6 +773,24 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
|
||||
|
||||
if (!response.ok) {
|
||||
console.error('Failed to delete instance:', response.status);
|
||||
} else if (wasSelected) {
|
||||
// If we deleted the currently selected model, switch to another available model
|
||||
// Find another instance that isn't the one we just deleted
|
||||
const remainingInstances = Object.entries(instanceData).filter(([id]) => id !== instanceId);
|
||||
if (remainingInstances.length > 0) {
|
||||
// Select the last instance (most recently added, since objects preserve insertion order)
|
||||
const [, lastInstance] = remainingInstances[remainingInstances.length - 1];
|
||||
const newModelId = getInstanceModelId(lastInstance);
|
||||
if (newModelId && newModelId !== 'Unknown' && newModelId !== 'Unknown Model') {
|
||||
setSelectedChatModel(newModelId);
|
||||
} else {
|
||||
// Clear selection if no valid model found
|
||||
setSelectedChatModel('');
|
||||
}
|
||||
} else {
|
||||
// No more instances, clear the selection
|
||||
setSelectedChatModel('');
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error deleting instance:', error);
|
||||
|
||||
2
justfile
2
justfile
@@ -1,3 +1,5 @@
|
||||
export NIX_CONFIG := "extra-experimental-features = nix-command flakes"
|
||||
|
||||
fmt:
|
||||
nix fmt
|
||||
|
||||
|
||||
@@ -23,6 +23,7 @@ dependencies = [
|
||||
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
|
||||
"hypercorn>=0.18.0",
|
||||
"openai-harmony>=0.0.8",
|
||||
"httpx>=0.28.1",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -81,20 +81,6 @@
|
||||
|
||||
config = {
|
||||
packages = {
|
||||
# The system_custodian binary
|
||||
system_custodian = craneLib.buildPackage (
|
||||
commonArgs
|
||||
// {
|
||||
inherit cargoArtifacts;
|
||||
cargoExtraArgs = "-p system_custodian";
|
||||
|
||||
meta = {
|
||||
description = "System custodian daemon for exo";
|
||||
mainProgram = "system_custodian";
|
||||
};
|
||||
}
|
||||
);
|
||||
|
||||
# Python bindings wheel via maturin
|
||||
exo_pyo3_bindings = craneLib.buildPackage (
|
||||
commonArgs
|
||||
|
||||
@@ -1,47 +0,0 @@
|
||||
[package]
|
||||
name = "system_custodian"
|
||||
version = { workspace = true }
|
||||
edition = { workspace = true }
|
||||
publish = false
|
||||
|
||||
[lib]
|
||||
doctest = false
|
||||
name = "system_custodian"
|
||||
path = "src/lib.rs"
|
||||
|
||||
[[bin]]
|
||||
path = "src/bin/main.rs"
|
||||
name = "system_custodian"
|
||||
doc = false
|
||||
|
||||
[lints]
|
||||
workspace = true
|
||||
|
||||
[dependencies]
|
||||
# datastructures
|
||||
either = { workspace = true }
|
||||
|
||||
# macro dependencies
|
||||
extend = { workspace = true }
|
||||
delegate = { workspace = true }
|
||||
impl-trait-for-tuples = { workspace = true }
|
||||
derive_more = { workspace = true }
|
||||
|
||||
# async
|
||||
tokio = { workspace = true, features = ["full"] }
|
||||
futures = { workspace = true }
|
||||
futures-timer = { workspace = true }
|
||||
|
||||
# utility dependencies
|
||||
util = { workspace = true }
|
||||
thiserror = { workspace = true }
|
||||
#internment = { workspace = true }
|
||||
#recursion = { workspace = true }
|
||||
#generativity = { workspace = true }
|
||||
#itertools = { workspace = true }
|
||||
tracing-subscriber = { version = "0.3.19", features = ["default", "env-filter"] }
|
||||
keccak-const = { workspace = true }
|
||||
|
||||
# tracing/logging
|
||||
log = { workspace = true }
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
//! TODO: documentation
|
||||
//!
|
||||
|
||||
fn main() {}
|
||||
@@ -1,69 +0,0 @@
|
||||
//! This crate defines the logic of, and ways to interact with, Exo's **_System Custodian_** daemon.
|
||||
//!
|
||||
//! The **_System Custodian_** daemon is supposed to be a long-living process that precedes the
|
||||
//! launch of the Exo application, and responsible for ensuring the system (configuration, settings,
|
||||
//! etc.) is in an appropriate state to facilitate the running of Exo application.
|
||||
//! The **_System Custodian_** daemon shall expose a [D-Bus](https://www.freedesktop.org/wiki/Software/dbus/)
|
||||
//! service which Exo application use to _control & query_ it.
|
||||
//!
|
||||
//! # Lifecycle
|
||||
//! When the Exo application starts, it will _wake_ the **_System Custodian_** daemon for the
|
||||
//! duration of its lifetime, and after it has terminated the daemon will go back to sleep. When
|
||||
//! the daemon wakes up, it will configure the system into a state suitable for the Exo Application;
|
||||
//! When the daemon goes to sleep, it will revert those changes as much as it can in case they were
|
||||
//! destructive to the user's pre-existing configurations.
|
||||
//!
|
||||
//! # Responsibilities
|
||||
//! TODO: these are purely on MacOS, but change to be more broad
|
||||
//! The **_System Custodian_** daemon is responsible for using System Configuration framework to
|
||||
//! 1. duplicate the current network set
|
||||
//! 2. modify existing services to turn on IPv6 if not there
|
||||
//! 3. remove any bridge services & add any missing services that AREN'T bridge
|
||||
//! TODO: In the future:
|
||||
//! 1. run a dummy AWDL service to [allow for macOS peer-to-peer wireless networking](https://yggdrasil-network.github.io/2019/08/19/awdl.html)
|
||||
//! 2. toggle some GPU/memory configurations to speed up GPU (ask Alex what those configurations are)
|
||||
//! 3. if we ever decide to provide our **own network interfaces** that abstract over some userland
|
||||
//! logic, this would be the place to spin that up.
|
||||
//!
|
||||
//! Then it will watch the SCDynamicStore for:
|
||||
//! 1. all __actual__ network interfaces -> collect information on them e.g. their BSD name, MAC
|
||||
//! address, MTU, IPv6 addresses, etc. -> and set up watchers/notifiers to inform the DBus
|
||||
//! interface of any changes
|
||||
//! 2. watch for any __undesirable__ changes to configuration and revert it
|
||||
//!
|
||||
//! It should somehow (probably through system sockets and/or BSD interface) trigger IPv6 NDP on
|
||||
//! each of the interfaces & also listen to/query for any changes on the OS routing cache??
|
||||
//! Basically emulate the `ping6 ff02::1%enX` and `ndp -an` commands BUT BETTER!!!
|
||||
//! 1. all that info should coalesce back to the overall state colleted -> should be queryable
|
||||
//! over D-Bus
|
||||
//! TODO:
|
||||
//! 1. we might potentially add to this step a handshake of some kind...? To ensure that we can
|
||||
//! ACTUALLY communicate with that machine over that link over e.g. TCP, UDP, etc. Will the
|
||||
//! handshake require to know Node ID? Will the handshake require heartbeats? Who knows...
|
||||
//! 2. if we ever decide to write proprietary L2/L3 protocols for quicker communication,
|
||||
//! e.g. [AF_NDRV](https://www.zerotier.com/blog/how-zerotier-eliminated-kernel-extensions-on-macos/)
|
||||
//! for raw ethernet frame communication, or even a [custom thunderbolt PCIe driver](https://developer.apple.com/documentation/pcidriverkit/creating-custom-pcie-drivers-for-thunderbolt-devices),
|
||||
//! then this would be the place to carry out discovery and propper handshakes with devices
|
||||
//! on the other end of the link.
|
||||
//!
|
||||
|
||||
// enable Rust-unstable features for convenience
|
||||
#![feature(trait_alias)]
|
||||
#![feature(stmt_expr_attributes)]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
#![feature(specialization)]
|
||||
#![feature(unboxed_closures)]
|
||||
#![feature(const_trait_impl)]
|
||||
#![feature(fn_traits)]
|
||||
|
||||
pub(crate) mod private {
|
||||
// sealed traits support
|
||||
pub trait Sealed {}
|
||||
impl<T: ?Sized> Sealed for T {}
|
||||
}
|
||||
|
||||
/// Namespace for all the type/trait aliases used by this crate.
|
||||
pub(crate) mod alias {}
|
||||
|
||||
/// Namespace for crate-wide extension traits/methods
|
||||
pub(crate) mod ext {}
|
||||
@@ -13,12 +13,6 @@ from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType
|
||||
from hypercorn.config import Config
|
||||
from hypercorn.typing import ASGIFramework
|
||||
from loguru import logger
|
||||
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
HarmonyEncodingName,
|
||||
Role,
|
||||
StreamableParser,
|
||||
load_harmony_encoding,
|
||||
)
|
||||
|
||||
from exo.master.placement import place_instance as get_instance_placements
|
||||
from exo.shared.apply import apply
|
||||
@@ -67,8 +61,6 @@ from exo.utils.channels import Receiver, Sender, channel
|
||||
from exo.utils.dashboard_path import find_dashboard
|
||||
from exo.utils.event_buffer import OrderedBuffer
|
||||
|
||||
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
||||
|
||||
|
||||
def chunk_to_response(
|
||||
chunk: TokenChunk, command_id: CommandId
|
||||
@@ -381,35 +373,8 @@ class API:
|
||||
instance_id=instance_id,
|
||||
)
|
||||
|
||||
async def _process_gpt_oss(self, token_chunks: Receiver[TokenChunk]):
|
||||
stream = StreamableParser(encoding, role=Role.ASSISTANT)
|
||||
thinking = False
|
||||
|
||||
async for chunk in token_chunks:
|
||||
stream.process(chunk.token_id)
|
||||
|
||||
delta = stream.last_content_delta
|
||||
ch = stream.current_channel
|
||||
|
||||
if ch == "analysis" and not thinking:
|
||||
thinking = True
|
||||
yield chunk.model_copy(update={"text": "<think>"})
|
||||
|
||||
if ch != "analysis" and thinking:
|
||||
thinking = False
|
||||
yield chunk.model_copy(update={"text": "</think>"})
|
||||
|
||||
if delta:
|
||||
yield chunk.model_copy(update={"text": delta})
|
||||
|
||||
if chunk.finish_reason is not None:
|
||||
if thinking:
|
||||
yield chunk.model_copy(update={"text": "</think>"})
|
||||
yield chunk
|
||||
break
|
||||
|
||||
async def _chat_chunk_stream(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
self, command_id: CommandId
|
||||
) -> AsyncGenerator[TokenChunk, None]:
|
||||
"""Yield `TokenChunk`s for a given command until completion."""
|
||||
|
||||
@@ -417,16 +382,10 @@ class API:
|
||||
self._chat_completion_queues[command_id], recv = channel[TokenChunk]()
|
||||
|
||||
with recv as token_chunks:
|
||||
if parse_gpt_oss:
|
||||
async for chunk in self._process_gpt_oss(token_chunks):
|
||||
yield chunk
|
||||
if chunk.finish_reason is not None:
|
||||
break
|
||||
else:
|
||||
async for chunk in token_chunks:
|
||||
yield chunk
|
||||
if chunk.finish_reason is not None:
|
||||
break
|
||||
async for chunk in token_chunks:
|
||||
yield chunk
|
||||
if chunk.finish_reason is not None:
|
||||
break
|
||||
|
||||
except anyio.get_cancelled_exc_class():
|
||||
# TODO: TaskCancelled
|
||||
@@ -442,11 +401,11 @@ class API:
|
||||
del self._chat_completion_queues[command_id]
|
||||
|
||||
async def _generate_chat_stream(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
self, command_id: CommandId
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate chat completion stream as JSON strings."""
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
|
||||
async for chunk in self._chat_chunk_stream(command_id):
|
||||
chunk_response: ChatCompletionResponse = chunk_to_response(
|
||||
chunk, command_id
|
||||
)
|
||||
@@ -458,7 +417,7 @@ class API:
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
async def _collect_chat_completion(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
self, command_id: CommandId
|
||||
) -> ChatCompletionResponse:
|
||||
"""Collect all token chunks for a chat completion and return a single response."""
|
||||
|
||||
@@ -466,7 +425,7 @@ class API:
|
||||
model: str | None = None
|
||||
finish_reason: FinishReason | None = None
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
|
||||
async for chunk in self._chat_chunk_stream(command_id):
|
||||
if model is None:
|
||||
model = chunk.model
|
||||
|
||||
@@ -495,7 +454,7 @@ class API:
|
||||
)
|
||||
|
||||
async def _collect_chat_completion_with_stats(
|
||||
self, command_id: CommandId, parse_gpt_oss: bool
|
||||
self, command_id: CommandId
|
||||
) -> BenchChatCompletionResponse:
|
||||
text_parts: list[str] = []
|
||||
model: str | None = None
|
||||
@@ -503,7 +462,7 @@ class API:
|
||||
|
||||
stats: GenerationStats | None = None
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
|
||||
async for chunk in self._chat_chunk_stream(command_id):
|
||||
if model is None:
|
||||
model = chunk.model
|
||||
|
||||
@@ -544,8 +503,6 @@ class API:
|
||||
"""Handle chat completions, supporting both streaming and non-streaming responses."""
|
||||
model_meta = await resolve_model_meta(payload.model)
|
||||
payload.model = model_meta.model_id
|
||||
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
|
||||
logger.info(f"{parse_gpt_oss=}")
|
||||
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == payload.model
|
||||
@@ -562,17 +519,16 @@ class API:
|
||||
await self._send(command)
|
||||
if payload.stream:
|
||||
return StreamingResponse(
|
||||
self._generate_chat_stream(command.command_id, parse_gpt_oss),
|
||||
self._generate_chat_stream(command.command_id),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
|
||||
return await self._collect_chat_completion(command.command_id, parse_gpt_oss)
|
||||
return await self._collect_chat_completion(command.command_id)
|
||||
|
||||
async def bench_chat_completions(
|
||||
self, payload: BenchChatCompletionTaskParams
|
||||
) -> BenchChatCompletionResponse:
|
||||
model_meta = await resolve_model_meta(payload.model)
|
||||
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
|
||||
payload.model = model_meta.model_id
|
||||
|
||||
if not any(
|
||||
@@ -589,10 +545,7 @@ class API:
|
||||
command = ChatCompletion(request_params=payload)
|
||||
await self._send(command)
|
||||
|
||||
response = await self._collect_chat_completion_with_stats(
|
||||
command.command_id,
|
||||
parse_gpt_oss,
|
||||
)
|
||||
response = await self._collect_chat_completion_with_stats(command.command_id)
|
||||
return response
|
||||
|
||||
def _calculate_total_available_memory(self) -> Memory:
|
||||
|
||||
@@ -49,20 +49,22 @@ def get_smallest_cycles(cycles: list[list[NodeInfo]]) -> list[list[NodeInfo]]:
|
||||
return [cycle for cycle in cycles if len(cycle) == min_nodes]
|
||||
|
||||
|
||||
def get_shard_assignments_for_pipeline_parallel(
|
||||
def _assign_layers_by_ram(
|
||||
model_meta: ModelMetadata,
|
||||
selected_cycle: list[NodeWithProfile],
|
||||
):
|
||||
cycle_memory = sum(
|
||||
(node.node_profile.memory.ram_available for node in selected_cycle),
|
||||
start=Memory(),
|
||||
)
|
||||
) -> ShardAssignments:
|
||||
"""Assign layers proportionally based on available RAM."""
|
||||
total_layers = model_meta.n_layers
|
||||
world_size = len(selected_cycle)
|
||||
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
|
||||
node_to_runner: dict[NodeId, RunnerId] = {}
|
||||
|
||||
cycle_memory = sum(
|
||||
(node.node_profile.memory.ram_available for node in selected_cycle),
|
||||
start=Memory(),
|
||||
)
|
||||
layers_assigned = 0
|
||||
|
||||
for i, node in enumerate(selected_cycle):
|
||||
if i == len(selected_cycle) - 1:
|
||||
node_layers = total_layers - layers_assigned
|
||||
@@ -77,7 +79,6 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
node_layers = max(1, node_layers)
|
||||
|
||||
runner_id = RunnerId()
|
||||
|
||||
shard = PipelineShardMetadata(
|
||||
model_meta=model_meta,
|
||||
device_rank=i,
|
||||
@@ -86,18 +87,143 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
end_layer=layers_assigned + node_layers,
|
||||
n_layers=total_layers,
|
||||
)
|
||||
|
||||
runner_to_shard[runner_id] = shard
|
||||
node_to_runner[node.node_id] = runner_id
|
||||
layers_assigned += node_layers
|
||||
|
||||
shard_assignments = ShardAssignments(
|
||||
return ShardAssignments(
|
||||
model_id=model_meta.model_id,
|
||||
runner_to_shard=runner_to_shard,
|
||||
node_to_runner=node_to_runner,
|
||||
)
|
||||
|
||||
return shard_assignments
|
||||
|
||||
def _reserve_base_layers(world_size: int, total_layers: int) -> dict[int, int]:
|
||||
"""Reserve 1 layer per node to ensure connectivity."""
|
||||
assignments = {i: 0 for i in range(world_size)}
|
||||
remaining_layers = total_layers
|
||||
|
||||
for i in range(world_size):
|
||||
assignments[i] = 1
|
||||
remaining_layers -= 1
|
||||
|
||||
if remaining_layers < 0:
|
||||
logger.warning(
|
||||
"Fewer layers than nodes! Reducing to 1 layer per node where possible."
|
||||
)
|
||||
assignments = {i: 1 if i < total_layers else 0 for i in range(world_size)}
|
||||
remaining_layers = 0
|
||||
|
||||
return assignments
|
||||
|
||||
|
||||
def _distribute_layers_by_bandwidth(
|
||||
selected_cycle: list[NodeWithProfile],
|
||||
assignments: dict[int, int],
|
||||
remaining_layers: int,
|
||||
model_meta: ModelMetadata,
|
||||
) -> None:
|
||||
"""Distribute remaining layers based on bandwidth and RAM capacity."""
|
||||
indexed_nodes = list(enumerate(selected_cycle))
|
||||
sorted_nodes = sorted(
|
||||
indexed_nodes,
|
||||
key=lambda x: x[1].node_profile.memory_bandwidth or 0,
|
||||
reverse=True,
|
||||
)
|
||||
|
||||
for original_idx, node in sorted_nodes:
|
||||
if remaining_layers <= 0:
|
||||
break
|
||||
|
||||
layer_size_bytes = model_meta.storage_size.in_bytes / model_meta.n_layers
|
||||
max_layers_by_ram = int(
|
||||
node.node_profile.memory.ram_available.in_bytes // layer_size_bytes
|
||||
)
|
||||
can_take = max(0, max_layers_by_ram - assignments[original_idx])
|
||||
take = min(can_take, remaining_layers)
|
||||
assignments[original_idx] += take
|
||||
remaining_layers -= take
|
||||
|
||||
if remaining_layers > 0:
|
||||
logger.warning(
|
||||
"All nodes maxed out on RAM estimation, dumping remaining layers on fastest nodes."
|
||||
)
|
||||
for original_idx, _ in sorted_nodes:
|
||||
assignments[original_idx] += 1
|
||||
remaining_layers -= 1
|
||||
if remaining_layers == 0:
|
||||
break
|
||||
|
||||
|
||||
def _create_shard_assignments(
|
||||
model_meta: ModelMetadata,
|
||||
selected_cycle: list[NodeWithProfile],
|
||||
assignments: dict[int, int],
|
||||
) -> ShardAssignments:
|
||||
"""Create shard assignments from layer assignments."""
|
||||
world_size = len(selected_cycle)
|
||||
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
|
||||
node_to_runner: dict[NodeId, RunnerId] = {}
|
||||
|
||||
current_start = 0
|
||||
for i, node in enumerate(selected_cycle):
|
||||
count = assignments[i]
|
||||
runner_id = RunnerId()
|
||||
shard = PipelineShardMetadata(
|
||||
model_meta=model_meta,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=current_start,
|
||||
end_layer=current_start + count,
|
||||
n_layers=model_meta.n_layers,
|
||||
)
|
||||
runner_to_shard[runner_id] = shard
|
||||
node_to_runner[node.node_id] = runner_id
|
||||
current_start += count
|
||||
|
||||
return ShardAssignments(
|
||||
model_id=model_meta.model_id,
|
||||
runner_to_shard=runner_to_shard,
|
||||
node_to_runner=node_to_runner,
|
||||
)
|
||||
|
||||
|
||||
def _assign_layers_by_bandwidth(
|
||||
model_meta: ModelMetadata,
|
||||
selected_cycle: list[NodeWithProfile],
|
||||
) -> ShardAssignments:
|
||||
"""Assign layers based on memory bandwidth."""
|
||||
logger.info("Using bandwidth-aware shard assignment")
|
||||
|
||||
total_layers = model_meta.n_layers
|
||||
world_size = len(selected_cycle)
|
||||
|
||||
assignments = _reserve_base_layers(world_size, total_layers)
|
||||
remaining_layers = total_layers - sum(assignments.values())
|
||||
|
||||
if remaining_layers > 0:
|
||||
_distribute_layers_by_bandwidth(
|
||||
selected_cycle, assignments, remaining_layers, model_meta
|
||||
)
|
||||
|
||||
return _create_shard_assignments(model_meta, selected_cycle, assignments)
|
||||
|
||||
|
||||
def get_shard_assignments_for_pipeline_parallel(
|
||||
model_meta: ModelMetadata,
|
||||
selected_cycle: list[NodeWithProfile],
|
||||
):
|
||||
has_bandwidth = all(
|
||||
node.node_profile.memory_bandwidth is not None for node in selected_cycle
|
||||
)
|
||||
|
||||
if not has_bandwidth:
|
||||
logger.info(
|
||||
"Bandwidth data missing for some nodes, falling back to RAM-proportional assignment"
|
||||
)
|
||||
return _assign_layers_by_ram(model_meta, selected_cycle)
|
||||
|
||||
return _assign_layers_by_bandwidth(model_meta, selected_cycle)
|
||||
|
||||
|
||||
def get_shard_assignments_for_tensor_parallel(
|
||||
|
||||
@@ -397,3 +397,106 @@ def test_get_mlx_jaccl_coordinators(
|
||||
assert coordinators[node_c_id] == (
|
||||
f"{conn_c_a.send_back_multiaddr.ip_address}:5000"
|
||||
), "node_c should use the IP from conn_c_a"
|
||||
|
||||
|
||||
def test_get_shard_assignments_bandwidth_aware(
|
||||
topology: Topology,
|
||||
create_node: Callable[[int, NodeId | None], NodeInfo],
|
||||
create_connection: Callable[[NodeId, NodeId], Connection],
|
||||
):
|
||||
# arrange
|
||||
node_a_id = NodeId()
|
||||
node_b_id = NodeId()
|
||||
node_c_id = NodeId()
|
||||
|
||||
# Create nodes with identical RAM (plenty of it)
|
||||
# Using 1GB to ensure no RAM constraints (model is small)
|
||||
node_a = create_node(1024 * 1024 * 1024, node_a_id)
|
||||
node_b = create_node(1024 * 1024 * 1024, node_b_id)
|
||||
node_c = create_node(1024 * 1024 * 1024, node_c_id)
|
||||
|
||||
# Set Bandwidths: A=400 (Fastest), B=200, C=100 (Slowest)
|
||||
assert node_a.node_profile is not None
|
||||
assert node_b.node_profile is not None
|
||||
assert node_c.node_profile is not None
|
||||
|
||||
node_a.node_profile.memory_bandwidth = 400_000_000_000
|
||||
node_b.node_profile.memory_bandwidth = 200_000_000_000
|
||||
node_c.node_profile.memory_bandwidth = 100_000_000_000
|
||||
|
||||
topology.add_node(node_a)
|
||||
topology.add_node(node_b)
|
||||
topology.add_node(node_c)
|
||||
|
||||
topology.add_connection(create_connection(node_a_id, node_b_id))
|
||||
topology.add_connection(create_connection(node_b_id, node_c_id))
|
||||
topology.add_connection(create_connection(node_c_id, node_a_id))
|
||||
|
||||
# Needs full cycle edges for get_cycles/get_shard_assignments if strict?
|
||||
# Actually get_cycles just looks for cycles.
|
||||
# But let's follow the pattern of other tests if they add bidirectional.
|
||||
# checking test_filter_cycles_by_memory, it adds both directions.
|
||||
topology.add_connection(create_connection(node_b_id, node_a_id))
|
||||
topology.add_connection(create_connection(node_c_id, node_b_id))
|
||||
topology.add_connection(create_connection(node_a_id, node_c_id))
|
||||
|
||||
model_meta = ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
pretty_name="Test Model",
|
||||
n_layers=30, # 30 layers
|
||||
storage_size=Memory.from_kb(
|
||||
300
|
||||
), # 10KB per layer. Nodes have 100MB RAM (100*1024 in create_node usually means KB? other tests use 1000*1024).
|
||||
# create_node arg is likely KB or Bytes.
|
||||
# test_filter_cycles_by_memory: create_node(1000 * 1024, ...) -> Memory.from_bytes(1) passes.
|
||||
# Let's assume create_node takes Bytes or KB consistently.
|
||||
# If I give 100*1024*1024 bytes = 100MB.
|
||||
# Model storage = 300KB.
|
||||
# So capacity is definitely not an issue.
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
)
|
||||
|
||||
cycles = topology.get_cycles()
|
||||
# Depending on how get_cycles works and order of addition, we might get multiple cycles.
|
||||
# filtering by memory usually done in master.
|
||||
# Here we just pick one.
|
||||
selected_cycle = cycles[0]
|
||||
|
||||
# act
|
||||
shard_assignments = get_shard_assignments(
|
||||
model_meta, selected_cycle, Sharding.Pipeline
|
||||
)
|
||||
|
||||
# assert
|
||||
runner_id_a = shard_assignments.node_to_runner[node_a_id]
|
||||
runner_id_b = shard_assignments.node_to_runner[node_b_id]
|
||||
runner_id_c = shard_assignments.node_to_runner[node_c_id]
|
||||
|
||||
# Get layer counts
|
||||
layers_a = (
|
||||
shard_assignments.runner_to_shard[runner_id_a].end_layer
|
||||
- shard_assignments.runner_to_shard[runner_id_a].start_layer
|
||||
)
|
||||
layers_b = (
|
||||
shard_assignments.runner_to_shard[runner_id_b].end_layer
|
||||
- shard_assignments.runner_to_shard[runner_id_b].start_layer
|
||||
)
|
||||
layers_c = (
|
||||
shard_assignments.runner_to_shard[runner_id_c].end_layer
|
||||
- shard_assignments.runner_to_shard[runner_id_c].start_layer
|
||||
)
|
||||
|
||||
# Check total
|
||||
assert layers_a + layers_b + layers_c == 30
|
||||
|
||||
# Check that the fastest node (A with 400GB/s) gets saturated first.
|
||||
# With strict greedy assignment and plenty of RAM:
|
||||
# 1. Reserve: A=1, B=1, C=1. Remaining=27.
|
||||
# 2. Sort: [A, B, C]
|
||||
# 3. A takes min(remaining=27, capacity=huge) = 27.
|
||||
# 4. A=28, B=1, C=1.
|
||||
|
||||
assert layers_a == 28
|
||||
assert layers_b == 1
|
||||
assert layers_c == 1
|
||||
|
||||
@@ -29,6 +29,11 @@ class _InterceptHandler(logging.Handler):
|
||||
|
||||
def logger_setup(log_file: Path | None, verbosity: int = 0):
|
||||
"""Set up logging for this process - formatting, file handles, verbosity and output"""
|
||||
|
||||
logging.getLogger("exo_pyo3_bindings").setLevel(logging.WARNING)
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
logging.getLogger("httpcore").setLevel(logging.WARNING)
|
||||
|
||||
logger.remove()
|
||||
|
||||
# replace all stdlib loggers with _InterceptHandlers that log to loguru
|
||||
|
||||
@@ -14,32 +14,6 @@ class ModelCard(CamelCaseModel):
|
||||
|
||||
MODEL_CARDS: dict[str, ModelCard] = {
|
||||
# deepseek v3
|
||||
# "deepseek-v3-0324:4bit": ModelCard(
|
||||
# short_id="deepseek-v3-0324:4bit",
|
||||
# model_id="mlx-community/DeepSeek-V3-0324-4bit",
|
||||
# name="DeepSeek V3 0324 (4-bit)",
|
||||
# description="""DeepSeek V3 is a large language model trained on the DeepSeek V3 dataset.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/DeepSeek-V3-0324-4bit"),
|
||||
# pretty_name="DeepSeek V3 0324 (4-bit)",
|
||||
# storage_size=Memory.from_kb(409706307),
|
||||
# n_layers=61,
|
||||
# ),
|
||||
# ),
|
||||
# "deepseek-v3-0324": ModelCard(
|
||||
# short_id="deepseek-v3-0324",
|
||||
# model_id="mlx-community/DeepSeek-v3-0324-8bit",
|
||||
# name="DeepSeek V3 0324 (8-bit)",
|
||||
# description="""DeepSeek V3 is a large language model trained on the DeepSeek V3 dataset.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/DeepSeek-v3-0324-8bit"),
|
||||
# pretty_name="DeepSeek V3 0324 (8-bit)",
|
||||
# storage_size=Memory.from_kb(754706307),
|
||||
# n_layers=61,
|
||||
# ),
|
||||
# ),
|
||||
"deepseek-v3.1-4bit": ModelCard(
|
||||
short_id="deepseek-v3.1-4bit",
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
|
||||
@@ -70,65 +44,6 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# "deepseek-v3.2": ModelCard(
|
||||
# short_id="deepseek-v3.2",
|
||||
# model_id=ModelId("mlx-community/DeepSeek-V3.2-8bit"),
|
||||
# name="DeepSeek V3.2 (8-bit)",
|
||||
# description="""DeepSeek V3.2 is a large language model trained on the DeepSeek V3.2 dataset.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/DeepSeek-V3.2-8bit"),
|
||||
# pretty_name="DeepSeek V3.2 (8-bit)",
|
||||
# storage_size=Memory.from_kb(754706307),
|
||||
# n_layers=61,
|
||||
# hidden_size=7168,
|
||||
# supports_tensor=True,
|
||||
# ),
|
||||
# ),
|
||||
# "deepseek-v3.2-4bit": ModelCard(
|
||||
# short_id="deepseek-v3.2-4bit",
|
||||
# model_id=ModelId("mlx-community/DeepSeek-V3.2-4bit"),
|
||||
# name="DeepSeek V3.2 (4-bit)",
|
||||
# description="""DeepSeek V3.2 is a large language model trained on the DeepSeek V3.2 dataset.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/DeepSeek-V3.2-4bit"),
|
||||
# pretty_name="DeepSeek V3.2 (4-bit)",
|
||||
# storage_size=Memory.from_kb(754706307 // 2), # TODO !!!!!
|
||||
# n_layers=61,
|
||||
# hidden_size=7168,
|
||||
# supports_tensor=True,
|
||||
# ),
|
||||
# ),
|
||||
# deepseek r1
|
||||
# "deepseek-r1-0528-4bit": ModelCard(
|
||||
# short_id="deepseek-r1-0528-4bit",
|
||||
# model_id="mlx-community/DeepSeek-R1-0528-4bit",
|
||||
# name="DeepSeek-R1-0528 (4-bit)",
|
||||
# description="""DeepSeek R1 is a large language model trained on the DeepSeek R1 dataset.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/DeepSeek-R1-0528-4bit"),
|
||||
# pretty_name="DeepSeek R1 671B (4-bit)",
|
||||
# storage_size=Memory.from_kb(409706307),
|
||||
# n_layers=61,
|
||||
# hidden_size=7168,
|
||||
# ),
|
||||
# ),
|
||||
# "deepseek-r1-0528": ModelCard(
|
||||
# short_id="deepseek-r1-0528",
|
||||
# model_id="mlx-community/DeepSeek-R1-0528-8bit",
|
||||
# name="DeepSeek-R1-0528 (8-bit)",
|
||||
# description="""DeepSeek R1 is a large language model trained on the DeepSeek R1 dataset.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/DeepSeek-R1-0528-8bit"),
|
||||
# pretty_name="DeepSeek R1 671B (8-bit)",
|
||||
# storage_size=Memory.from_bytes(754998771712),
|
||||
# n_layers=61,
|
||||
# . hidden_size=7168,
|
||||
# ),
|
||||
# ),
|
||||
# kimi k2
|
||||
"kimi-k2-instruct-4bit": ModelCard(
|
||||
short_id="kimi-k2-instruct-4bit",
|
||||
@@ -510,23 +425,24 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"gpt-oss-20b-4bit": ModelCard(
|
||||
short_id="gpt-oss-20b-4bit",
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
|
||||
name="GPT-OSS 20B (MXFP4-Q4, MLX)",
|
||||
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this MLX variant uses MXFP4 4-bit quantization.""",
|
||||
"gpt-oss-20b-MXFP4-Q8": ModelCard(
|
||||
short_id="gpt-oss-20b-MXFP4-Q8",
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
|
||||
name="GPT-OSS 20B (MXFP4-Q8, MLX)",
|
||||
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this variant is a 4-bit MLX conversion for Apple Silicon.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
|
||||
pretty_name="GPT-OSS 20B (MXFP4-Q4, MLX)",
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
|
||||
pretty_name="GPT-OSS 20B (MXFP4-Q8, MLX)",
|
||||
storage_size=Memory.from_kb(11_744_051),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# Needs to be quantized g32 or g16.
|
||||
# glm 4.5
|
||||
"glm-4.5-air-8bit": ModelCard(
|
||||
# Needs to be quantized g32 or g16 to work with tensor parallel
|
||||
short_id="glm-4.5-air-8bit",
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
name="GLM 4.5 Air 8bit",
|
||||
@@ -556,6 +472,7 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# glm 4.7
|
||||
"glm-4.7-4bit": ModelCard(
|
||||
short_id="glm-4.7-4bit",
|
||||
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
|
||||
@@ -601,6 +518,7 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# minimax-m2
|
||||
"minimax-m2.1-8bit": ModelCard(
|
||||
short_id="minimax-m2.1-8bit",
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
|
||||
@@ -631,19 +549,4 @@ MODEL_CARDS: dict[str, ModelCard] = {
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# "devstral-2-123b-instruct-2512-8bit": ModelCard(
|
||||
# short_id="devstral-2-123b-instruct-2512-8bit",
|
||||
# model_id=ModelId("mlx-community/Devstral-2-123B-Instruct-2512-8bit"),
|
||||
# name="Devstral 2 123B Instruct 2512 (8-bit, MLX)",
|
||||
# description="""Mistral AI's Devstral 2 123B Instruct (2512) is an agentic coding model.""",
|
||||
# tags=[],
|
||||
# metadata=ModelMetadata(
|
||||
# model_id=ModelId("mlx-community/Devstral-2-123B-Instruct-2512-8bit"),
|
||||
# pretty_name="Devstral 2 123B Instruct 2512 (8-bit, MLX)",
|
||||
# storage_size=Memory.from_kb(133_000_000),
|
||||
# n_layers=88,
|
||||
# hidden_size=12288,
|
||||
# supports_tensor=True,
|
||||
# ),
|
||||
# ),
|
||||
}
|
||||
|
||||
@@ -57,6 +57,7 @@ class NodePerformanceProfile(CamelCaseModel):
|
||||
chip_id: str
|
||||
friendly_name: str
|
||||
memory: MemoryPerformanceProfile
|
||||
memory_bandwidth: int | None = None
|
||||
network_interfaces: list[NetworkInterfaceInfo] = []
|
||||
system: SystemPerformanceProfile
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@ except ImportError:
|
||||
|
||||
from mlx_lm.models.cache import KVCache, QuantizedKVCache, RotatingKVCache
|
||||
from mlx_lm.models.deepseek_v3 import DeepseekV3Model
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.worker.engines.mlx.constants import (
|
||||
@@ -365,6 +366,8 @@ def apply_chat_template(
|
||||
tools=chat_task_data.tools,
|
||||
)
|
||||
|
||||
logger.info(prompt)
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
@@ -396,6 +399,11 @@ def make_kv_cache(
|
||||
) -> list[KVCache | RotatingKVCache | QuantizedKVCache]:
|
||||
assert hasattr(model, "layers")
|
||||
|
||||
# TODO: Do this for all models
|
||||
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
|
||||
logger.info("Using MLX LM's make cache")
|
||||
return model.make_cache() # type: ignore
|
||||
|
||||
if max_kv_size is None:
|
||||
if KV_CACHE_BITS is None:
|
||||
logger.info("Using default KV cache")
|
||||
|
||||
@@ -1,6 +1,15 @@
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from functools import cache
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
HarmonyEncodingName,
|
||||
Role,
|
||||
StreamableParser,
|
||||
load_harmony_encoding,
|
||||
)
|
||||
|
||||
from exo.shared.types.api import ChatCompletionMessageText
|
||||
from exo.shared.types.chunks import TokenChunk
|
||||
@@ -153,11 +162,19 @@ def main(
|
||||
_check_for_debug_prompts(task_params.messages[0].content)
|
||||
|
||||
# Generate responses using the actual MLX generation
|
||||
for response in mlx_generate(
|
||||
mlx_generator = mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task_params,
|
||||
):
|
||||
)
|
||||
|
||||
# GPT-OSS specific parsing to match other model formats.
|
||||
if isinstance(model, GptOssModel):
|
||||
mlx_generator = parse_gpt_oss(mlx_generator)
|
||||
|
||||
# TODO: Add tool call parser here
|
||||
|
||||
for response in mlx_generator:
|
||||
match response:
|
||||
case GenerationResponse():
|
||||
if shard_metadata.device_rank == 0:
|
||||
@@ -207,6 +224,43 @@ def main(
|
||||
break
|
||||
|
||||
|
||||
@cache
|
||||
def get_gpt_oss_encoding():
|
||||
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
||||
return encoding
|
||||
|
||||
|
||||
def parse_gpt_oss(
|
||||
responses: Generator[GenerationResponse],
|
||||
) -> Generator[GenerationResponse]:
|
||||
encoding = get_gpt_oss_encoding()
|
||||
stream = StreamableParser(encoding, role=Role.ASSISTANT)
|
||||
thinking = False
|
||||
|
||||
for response in responses:
|
||||
stream.process(response.token)
|
||||
|
||||
delta = stream.last_content_delta
|
||||
ch = stream.current_channel
|
||||
|
||||
if ch == "analysis" and not thinking:
|
||||
thinking = True
|
||||
yield response.model_copy(update={"text": "<think>"})
|
||||
|
||||
if ch != "analysis" and thinking:
|
||||
thinking = False
|
||||
yield response.model_copy(update={"text": "</think>"})
|
||||
|
||||
if delta:
|
||||
yield response.model_copy(update={"text": delta})
|
||||
|
||||
if response.finish_reason is not None:
|
||||
if thinking:
|
||||
yield response.model_copy(update={"text": "</think>"})
|
||||
yield response
|
||||
break
|
||||
|
||||
|
||||
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
|
||||
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
|
||||
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"
|
||||
|
||||
@@ -1,49 +1,64 @@
|
||||
import http.client
|
||||
|
||||
from anyio import create_task_group, to_thread
|
||||
import anyio
|
||||
import httpx
|
||||
from anyio import create_task_group
|
||||
from loguru import logger
|
||||
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.common import NodeId
|
||||
|
||||
REACHABILITY_ATTEMPTS = 3
|
||||
|
||||
|
||||
async def check_reachability(
|
||||
target_ip: str,
|
||||
expected_node_id: NodeId,
|
||||
self_node_id: NodeId,
|
||||
out: dict[NodeId, set[str]],
|
||||
client: httpx.AsyncClient,
|
||||
) -> None:
|
||||
"""Check if a node is reachable at the given IP and verify its identity."""
|
||||
if ":" in target_ip:
|
||||
# TODO: use real IpAddress types
|
||||
target_ip = f"[{target_ip}]"
|
||||
url = f"http://{target_ip}:52415/node_id"
|
||||
|
||||
def _fetch_remote_node_id() -> NodeId | None:
|
||||
connection = http.client.HTTPConnection(target_ip, 52415, timeout=1)
|
||||
remote_node_id = None
|
||||
last_error = None
|
||||
|
||||
for _ in range(REACHABILITY_ATTEMPTS):
|
||||
try:
|
||||
connection.request("GET", "/node_id")
|
||||
response = connection.getresponse()
|
||||
if response.status != 200:
|
||||
return None
|
||||
r = await client.get(url)
|
||||
if r.status_code != 200:
|
||||
await anyio.sleep(1)
|
||||
continue
|
||||
|
||||
body = response.read().decode("utf-8").strip()
|
||||
body = r.text.strip().strip('"')
|
||||
if not body:
|
||||
await anyio.sleep(1)
|
||||
continue
|
||||
|
||||
# Strip quotes if present (JSON string response)
|
||||
if body.startswith('"') and body.endswith('"') and len(body) >= 2:
|
||||
body = body[1:-1]
|
||||
remote_node_id = NodeId(body)
|
||||
break
|
||||
|
||||
return NodeId(body) or None
|
||||
except OSError:
|
||||
return None
|
||||
except http.client.HTTPException:
|
||||
return None
|
||||
finally:
|
||||
connection.close()
|
||||
# expected failure cases
|
||||
except (
|
||||
httpx.TimeoutException,
|
||||
httpx.NetworkError,
|
||||
):
|
||||
await anyio.sleep(1)
|
||||
|
||||
# other failures should be logged on last attempt
|
||||
except httpx.HTTPError as e:
|
||||
last_error = e
|
||||
await anyio.sleep(1)
|
||||
|
||||
if last_error is not None:
|
||||
logger.warning(
|
||||
f"connect error {type(last_error).__name__} from {target_ip} after {REACHABILITY_ATTEMPTS} attempts; treating as down"
|
||||
)
|
||||
|
||||
remote_node_id = await to_thread.run_sync(_fetch_remote_node_id)
|
||||
if remote_node_id is None:
|
||||
return
|
||||
|
||||
if remote_node_id == self_node_id:
|
||||
return
|
||||
|
||||
if remote_node_id != expected_node_id:
|
||||
logger.warning(
|
||||
f"Discovered node with unexpected node_id; "
|
||||
@@ -61,18 +76,33 @@ async def check_reachable(
|
||||
topology: Topology, self_node_id: NodeId
|
||||
) -> dict[NodeId, set[str]]:
|
||||
"""Check which nodes are reachable and return their IPs."""
|
||||
|
||||
reachable: dict[NodeId, set[str]] = {}
|
||||
async with create_task_group() as tg:
|
||||
|
||||
# these are intentionally httpx's defaults so we can tune them later
|
||||
timeout = httpx.Timeout(timeout=5.0)
|
||||
limits = httpx.Limits(
|
||||
max_connections=100,
|
||||
max_keepalive_connections=20,
|
||||
keepalive_expiry=5,
|
||||
)
|
||||
|
||||
async with (
|
||||
httpx.AsyncClient(timeout=timeout, limits=limits) as client,
|
||||
create_task_group() as tg,
|
||||
):
|
||||
for node in topology.list_nodes():
|
||||
if not node.node_profile:
|
||||
continue
|
||||
if node.node_id == self_node_id:
|
||||
continue
|
||||
for iface in node.node_profile.network_interfaces:
|
||||
tg.start_soon(
|
||||
check_reachability,
|
||||
iface.ip_address,
|
||||
node.node_id,
|
||||
self_node_id,
|
||||
reachable,
|
||||
client,
|
||||
)
|
||||
|
||||
return reachable
|
||||
|
||||
@@ -4,6 +4,7 @@ import platform
|
||||
from typing import Any, Callable, Coroutine
|
||||
|
||||
import anyio
|
||||
from anyio import to_thread
|
||||
from loguru import logger
|
||||
|
||||
from exo.shared.types.memory import Memory
|
||||
@@ -24,8 +25,61 @@ from .system_info import (
|
||||
get_friendly_name,
|
||||
get_model_and_chip,
|
||||
get_network_interfaces,
|
||||
profile_memory_bandwidth,
|
||||
)
|
||||
|
||||
# Module-level cache for memory bandwidth (doesn't change at runtime)
|
||||
_cached_bandwidth: int | None = None
|
||||
_bandwidth_profiled: bool = False
|
||||
_bandwidth_profiling_task: asyncio.Task[int | None] | None = None
|
||||
|
||||
|
||||
async def profile_bandwidth_once() -> int | None:
|
||||
"""Profile bandwidth once in a background thread and cache the result.
|
||||
|
||||
This function is non-blocking - it runs the profiling in a thread pool.
|
||||
Subsequent calls return the cached result immediately.
|
||||
"""
|
||||
global _cached_bandwidth, _bandwidth_profiled, _bandwidth_profiling_task
|
||||
|
||||
# Already profiled, return cached value
|
||||
if _bandwidth_profiled:
|
||||
return _cached_bandwidth
|
||||
|
||||
# Profiling already in progress, wait for it
|
||||
if _bandwidth_profiling_task is not None:
|
||||
return await _bandwidth_profiling_task
|
||||
|
||||
# Start profiling in background thread
|
||||
async def _do_profile() -> int | None:
|
||||
global _cached_bandwidth, _bandwidth_profiled
|
||||
try:
|
||||
logger.info("Starting memory bandwidth profiling in background thread...")
|
||||
bandwidth = await to_thread.run_sync(profile_memory_bandwidth, cancellable=True)
|
||||
_cached_bandwidth = bandwidth
|
||||
_bandwidth_profiled = True
|
||||
if bandwidth:
|
||||
logger.info(f"Memory bandwidth profiled: {bandwidth / 1e9:.1f} GB/s")
|
||||
else:
|
||||
logger.warning("Memory bandwidth profiling returned None")
|
||||
return bandwidth
|
||||
except Exception as e:
|
||||
logger.opt(exception=e).error("Memory bandwidth profiling failed")
|
||||
_bandwidth_profiled = True # Mark as done to avoid retrying
|
||||
return None
|
||||
|
||||
_bandwidth_profiling_task = asyncio.create_task(_do_profile())
|
||||
return await _bandwidth_profiling_task
|
||||
|
||||
|
||||
def get_memory_bandwidth_cached() -> int | None:
|
||||
"""Return cached bandwidth or None if not yet profiled.
|
||||
|
||||
This is a non-blocking synchronous function that returns immediately.
|
||||
Call profile_bandwidth_once() first to trigger profiling.
|
||||
"""
|
||||
return _cached_bandwidth if _bandwidth_profiled else None
|
||||
|
||||
|
||||
async def get_metrics_async() -> Metrics | None:
|
||||
"""Return detailed Metrics on macOS or a minimal fallback elsewhere."""
|
||||
@@ -71,6 +125,8 @@ async def start_polling_node_metrics(
|
||||
callback: Callable[[NodePerformanceProfile], Coroutine[Any, Any, None]],
|
||||
):
|
||||
poll_interval_s = 1.0
|
||||
bandwidth_profile_started = False
|
||||
|
||||
while True:
|
||||
try:
|
||||
metrics = await get_metrics_async()
|
||||
@@ -85,6 +141,15 @@ async def start_polling_node_metrics(
|
||||
# do the memory profile last to get a fresh reading to not conflict with the other memory profiling loop
|
||||
memory_profile = get_memory_profile()
|
||||
|
||||
# Start bandwidth profiling in background on first poll (non-blocking)
|
||||
if not bandwidth_profile_started:
|
||||
bandwidth_profile_started = True
|
||||
# Fire and forget - don't await, let it run in background
|
||||
asyncio.create_task(profile_bandwidth_once())
|
||||
|
||||
# Use cached bandwidth (None until profiling completes)
|
||||
memory_bandwidth = get_memory_bandwidth_cached()
|
||||
|
||||
await callback(
|
||||
NodePerformanceProfile(
|
||||
model_id=model_id,
|
||||
@@ -92,6 +157,7 @@ async def start_polling_node_metrics(
|
||||
friendly_name=friendly_name,
|
||||
network_interfaces=network_interfaces,
|
||||
memory=memory_profile,
|
||||
memory_bandwidth=memory_bandwidth,
|
||||
system=SystemPerformanceProfile(
|
||||
gpu_usage=metrics.gpu_usage[1],
|
||||
temp=metrics.temp.gpu_temp_avg,
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import socket
|
||||
import sys
|
||||
import time
|
||||
from subprocess import CalledProcessError
|
||||
|
||||
import psutil
|
||||
@@ -81,3 +82,68 @@ async def get_model_and_chip() -> tuple[str, str]:
|
||||
chip = chip_line.split(": ")[1] if chip_line else "Unknown Chip"
|
||||
|
||||
return (model, chip)
|
||||
|
||||
|
||||
def profile_memory_bandwidth() -> int | None:
|
||||
"""
|
||||
Profile device memory bandwidth using MLX GPU operations.
|
||||
|
||||
Uses a large array copy on the GPU to measure unified memory bandwidth.
|
||||
Returns measured bandwidth in bytes/second, or None if MLX is unavailable.
|
||||
"""
|
||||
try:
|
||||
import mlx.core as mx
|
||||
|
||||
if not mx.metal.is_available():
|
||||
return None
|
||||
|
||||
# Use 2GB buffer to better saturate memory bandwidth
|
||||
# Use 2D shape to avoid potential issues with very large 1D arrays
|
||||
size_bytes = 2 * 1024 * 1024 * 1024
|
||||
side = int((size_bytes // 4) ** 0.5) # Square 2D array of float32
|
||||
shape = (side, side)
|
||||
actual_bytes = side * side * 4
|
||||
bytes_transferred = actual_bytes * 2 # read + write
|
||||
|
||||
# Warm-up: run the full benchmark operation multiple times to stabilize GPU
|
||||
for _ in range(3):
|
||||
src = mx.random.uniform(shape=shape, dtype=mx.float32)
|
||||
mx.eval(src)
|
||||
dst = src + 0.0
|
||||
mx.eval(dst)
|
||||
mx.synchronize()
|
||||
del src, dst
|
||||
|
||||
# Benchmark: measure time to copy array
|
||||
best_bandwidth = 0.0
|
||||
num_runs = 4
|
||||
|
||||
for _ in range(num_runs):
|
||||
src = mx.random.uniform(shape=shape, dtype=mx.float32)
|
||||
mx.eval(src)
|
||||
mx.synchronize()
|
||||
|
||||
# Time the copy operation (src + 0.0 forces read of src, write of dst)
|
||||
start = time.perf_counter()
|
||||
dst = src + 0.0
|
||||
mx.eval(dst)
|
||||
mx.synchronize()
|
||||
end = time.perf_counter()
|
||||
|
||||
bandwidth = bytes_transferred / (end - start)
|
||||
best_bandwidth = max(best_bandwidth, bandwidth)
|
||||
|
||||
del src, dst
|
||||
|
||||
return int(best_bandwidth)
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def get_memory_bandwidth(_chip_id: str) -> int | None:
|
||||
"""
|
||||
Returns measured memory bandwidth in bytes/second.
|
||||
|
||||
Uses MLX GPU operations for accurate unified memory bandwidth measurement.
|
||||
"""
|
||||
return profile_memory_bandwidth()
|
||||
|
||||
Reference in New Issue
Block a user