Compare commits

...

31 Commits

Author SHA1 Message Date
Alex Cheema
8fc9b13a51 feat: add continuous batching for distributed inference
Implements continuous batching using mlx_lm's BatchGenerator for efficient
multi-request handling in distributed mode.

Key changes:
- Add BatchGenerationEngine that wraps mlx_lm's BatchGenerator for continuous
  batching with prefill batching (up to 8 requests) and decode batching
- Add TimeBudget pattern for controlling generation loop timing with periodic
  distributed sync
- Add distributed_sync utilities for broadcasting objects across ranks using
  mx.distributed.all_sum()
- Stream tokens immediately as generated for smooth streaming (not in batches)
- Fix distributed correctness: deferred shutdown handling, sync_completions
  always syncs in distributed mode to prevent deadlocks

Performance results on Kimi K2 Thinking (658GB) with Tensor RDMA:
- Batch 1:  10.7 tok/s (baseline)
- Batch 4:  34.6 tok/s (3.2x speedup)
- Batch 16: 41.8 tok/s (3.9x speedup)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 20:12:48 +00:00
Sami Khan
6e6567a802 resolve issue #1070 (#1076)
## Motivation

https://github.com/exo-explore/exo/issues/1070

## Changes

Added check in ChatForm.svelte to reset selectedChatModel when it no
longer matches any running instance.

## Why It Works

The $effect now detects when the selected model is stale (not in
availableModels()) and resets to the first available model.

## Test Plan

### Manual Testing

1. Create instance of Model A → Delete it → Create instance of Model B →
Chat
2. Verify request goes to Model B (not Model A)

---------

Co-authored-by: Alex Cheema <41707476+AlexCheema@users.noreply.github.com>
2026-01-15 20:00:41 +00:00
rltakashige
a735dad667 Parse GPT OSS in runner (#1160)
## Motivation

Simplification of API + moving model specific code to the runner

<!-- Why is this change needed? What problem does it solve? -->
<!-- If it fixes an open issue, please link to the issue here -->

## Test Plan

### Manual Testing
Tested that GPT OSS outputs are parsed correctly on the dashboard.

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-15 19:53:55 +00:00
rltakashige
aaf4e36bc3 FIX GPT OSS (#1165)
## Motivation

Adds several unmerged fixes for GPT OSS.
Also adds GPT OSS 20B MXFP4 Q8 instead of Q4 for numerical stability (as
this is unstable for MLX LM too)
<!-- Why is this change needed? What problem does it solve? -->
<!-- If it fixes an open issue, please link to the issue here -->


## Test Plan

### Manual Testing
Manually tested. No further gibberish responses.

### Automated Testing
Ran EXO Bench - pipeline, tensor and single node work on both 20B and
120B models
2026-01-15 19:20:17 +00:00
Evan Quiney
3e623ccf0d up http timeout to 3 seconds and retry on BadStatusLine (#1164)
we're seeing a lot of network churn - perhaps this is a connection
timing out issue? lets also re-try after a second

## testing
none yet

---------

Co-authored-by: Alex Cheema <alexcheema123@gmail.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 18:15:12 +00:00
Evan Quiney
c22dad8a7d dashboard: add peer: true to package lock (#1162)
this happens every time i run npm install - lets upstream it

## testing
dashboard builds and renders
2026-01-15 17:01:43 +00:00
Evan
4bc4d50685 rust: remove dead code
the system custodian has been made unnecessary with the swift app - we
can remove it

## testing
everything still builds
2026-01-15 16:51:46 +00:00
Jake Hillion
e0aab46fd8 model_cards.py: clean up commented out code
Clean up the commented out code and make sure the comments are unified.
Carrying around the commented out code means people making changes to
model_cards are supposed to update it, but that's not clear and won't be
picked up by type checking etc. Drop it for now - it's in the git
history.

Also make the rest of the comments a bit more uniform, and place
comments about a specific model card inside the model card (instead of
above) so they don't get lost when code is added/moved around.

Test plan:
- my eyes
2026-01-15 13:21:58 +00:00
Evan Quiney
82ba42bae9 add glm-47, minimax-m21 (#1147)
Adds support glm 4.7 and MiniMax M2.1

Manual testing:
Tensor + Pipeline execution of both models.

Closes #1141 and #1142
2026-01-14 16:33:17 +00:00
Jake Hillion
3671528fa4 nix: add dashboard build with dream2nix
Continue working towards a fully Nix based build by building the
dashboard with Nix. Continuing the theme of using the existing lock
files, use dream2nix to parse the lock file and build the tree of
dependency derivations.

dream2nix doesn't like the bundleDependencies, so we apply a small patch
to the lock file that drops all dependencies that are bundled. This
should ideally be contributed upstream but that can be done later.

Use this new dashboard build in the build-app CI workflow, meaning
future macOS apps will include this reproducible dashboard.

Test plan:
- Built a DMG, shipped to a cluster, loaded in a browser with no cache
  and the dashboard looks good.

- Directory layout is as expected:
```
$ nix build .#dashboard
$ find result/
...
result/_app/immutable/entry
result/_app/immutable/entry/app.CTPAnMjf.js
result/_app/immutable/entry/start.fUSEa-2O.js
result/_app/immutable/nodes
result/_app/immutable/nodes/3.DqQr1Obm.js
result/_app/immutable/nodes/0.DgEY44RO.js
result/_app/immutable/nodes/2.BjZg_lJh.js
result/_app/immutable/nodes/1.D6vGUYYT.js
result/_app/env.js
result/_app/version.json
result/exo-logo.png
result/favicon.ico
result/index.html
```
2026-01-14 15:58:16 +01:00
Jake Hillion
e6434ec446 nix: add Rust builds with crane and fenix
The Rust workspace lacked Nix build support, making it difficult to
build packages reproducibly or run checks in CI.

Added a flake-parts module at rust/parts.nix that uses crane for Rust
builds and fenix for the nightly toolchain. The source filter isolates
rust/ and root Cargo files to prevent Python/docs changes from
triggering Rust rebuilds. Exports packages (system_custodian,
exo_pyo3_bindings wheel, exo-rust-workspace) and checks (cargo-nextest,
cargo-doc) for all three target platforms.

The devShell now uses inputsFrom to inherit build dependencies from the
workspace package, removing the need for manual pkg-config/openssl setup.

Test plan:
- Ran `nix flake check` successfully
- Built `nix build ".#checks.x86_64-linux.cargo-nextest"` and tests pass
- Built `nix build ".#exo_pyo3_bindings"` and wheel is produced
2026-01-14 11:52:29 +00:00
Jake Hillion
bdb43e1dbb nix: drop noisy echos from devshell
Drop all the printing when entering a devshell. It's annoying, and not a
super accurate description of how to develop exo anyway.
2026-01-14 10:04:57 +00:00
Jake Hillion
e4a01e2b0e chore(deps): nix lock file maintenance
Update nix flake inputs. Add a second input as Swift is currently broken
in nixpkgs on Linux for `swift-format` as we want `nix fmt` to continue
being reproducible everywhere.
2026-01-13 19:57:14 +01:00
Evan Quiney
1200a7db64 Add tensor sharding for GPT-OSS (#1144)
## Motivation

GPT OSS did not previously support tensor sharding

## Changes

Add GPT sharding support in tensor_auto_parallel.
Code is mostly @rltakashige's

## Test Plan

### Manual Testing
Tested GPT-OSS - MLX Fast Sync causes issues in Tensor RDMA - this is a general problem at the moment.
2026-01-13 17:25:52 +00:00
Evan Quiney
47ceb54bc1 up the rlimit (#1148)
Fixes #1117 

Manual testing:
Launched 100 instances. worked. yay.
2026-01-13 15:00:54 +00:00
Jake Hillion
f8112fdf25 nix: convert to flake-parts
Preparing to add a flake-parts module for Rust builds. The flake-utils
library doesn't support the module system needed for cleanly separating
the Rust build configuration.

Converted from flake-utils to flake-parts, switching to the treefmt-nix
flakeModule import pattern. The devShell and formatter outputs remain
functionally equivalent.

Test plan:
- Ran `nix flake check` successfully
- Verified `nix develop` provides the same environment
2026-01-13 15:06:44 +01:00
Alex Cheema
e388f59480 docs: add AGENTS.md for AI coding agents guidance (#1132)
## Motivation

Add documentation to help AI coding agents (Claude Code, Cursor, GitHub
Copilot, etc.) understand the exo codebase and contribute effectively.

## Changes

- Add `AGENTS.md` with guidance for AI agents working on the codebase
- Add symlink `CLAUDE.md -> AGENTS.md` for backwards compatibility with
Claude Code

## Why It Works

`AGENTS.md` is becoming a standard convention for AI agent instructions.
The symlink ensures Claude Code (which looks for `CLAUDE.md`) continues
to work while supporting the broader `AGENTS.md` convention.

## Test Plan

### Manual Testing
- Verified symlink works correctly

### Automated Testing
- N/A (documentation only)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-13 13:05:47 +00:00
Alex Cheema
e5e74e1eef Upgrade mlx-lm to 0.30.2 with transformers 5.x compatibility (#1125)
## Motivation

Upgrade mlx-lm to version 0.30.2 which requires transformers 5.0.0rc2 as
a prerelease dependency. This enables support for newer models like Kimi
K2 Thinking while maintaining compatibility with existing models.

The transformers 5.x release includes breaking changes that affect
custom tokenizers like Kimi's TikTokenTokenizer, requiring compatibility
fixes.

## Changes

### Core Changes
- **mlx-lm upgrade**: Bump to 0.30.2 with locked exact versions for
mlx/mlx-lm to prevent breaking changes
- **transformers 5.x compatibility**: Enable prerelease transformers
dependency

### Kimi K2 Tokenizer Fixes
- Add `bytes_to_unicode` monkey-patch to restore function moved in
transformers 5.0.0rc2
- Load `TikTokenTokenizer` directly instead of via `AutoTokenizer` to
bypass transformers 5.x bug with `auto_map` fallback
- Patch `encode()` to use tiktoken directly with `allowed_special="all"`
to handle special tokens from chat templates

### Other Changes
- Dashboard: Show disk usage for completed model downloads
- CI: Add `workflow_dispatch` trigger to build-app workflow
- Docs: Add basic API documentation

### Testing
- Add comprehensive tokenizer unit tests for all supported models
- Tests verify encode/decode, special token handling, and chat template
encoding

## Why It Works

**bytes_to_unicode issue**: transformers 5.0.0rc2 moved
`bytes_to_unicode` from `transformers.models.gpt2.tokenization_gpt2` to
`transformers.convert_slow_tokenizer`. Kimi's `tokenization_kimi.py`
imports from the old location. The monkey-patch restores it at module
load time.

**AutoTokenizer issue**: transformers 5.x has a bug where
`tokenizer_class_from_name('TikTokenTokenizer')` returns `None` for
custom tokenizers with `auto_map`. Loading the tokenizer directly
bypasses this.

**encode() issue**: transformers 5.x's `pad()` method fails for slow
tokenizers. Using tiktoken's encode directly with
`allowed_special="all"` avoids this path and properly handles special
tokens like `<|im_user|>` from chat templates.

## Test Plan

### Manual Testing
- Hardware: 2x Mac Studios connected via Thunderbolt 5 (mike22 and
james21)
- Tested Kimi K2 Thinking, GPT-OSS-120B, GPT-OSS-20B, LLama-3.1-8B-bf16, qwen3-30B-A3B-8bit model with pipeline parallelism across both
nodes
- Verified warmup inference completes successfully
- Verified chat completions work with special tokens

### Automated Testing
- Added `test_tokenizers.py` with 31 tests covering:
- Basic encode/decode for all model families (deepseek, kimi, llama,
qwen, gpt-oss, glm)
  - Special token encoding (critical for chat templates)
  - Chat template application and encoding
  - Kimi-specific and GLM-specific edge cases
- All tests pass: `uv run pytest
src/exo/worker/tests/unittests/test_mlx/test_tokenizers.py`

### Failing Tests
RDMA with all models.

---------

Co-authored-by: Evan <evanev7@gmail.com>
2026-01-13 12:06:04 +00:00
Jake Hillion
b968d6f0a0 ci: remove old commented out job 2026-01-13 12:42:04 +01:00
Jake Hillion
3bfffd9b4f ci: build all Nix outputs on all platforms and push to cachix
The CI was only running `nix flake check` on ubuntu-latest, missing
builds for other platforms and not caching packages or devShells.

Added a matrix-based `nix-build` job that runs on macos-26 (aarch64-darwin),
ubuntu-latest (x86_64-linux), and ubuntu-24.04-arm (aarch64-linux). Each
job enumerates all packages and devShells via `nix flake show --json`,
builds them in a single `nix build` call for parallelization, then runs
`nix flake check`. The cachix-action pushes all built outputs automatically.

This ensures all Nix outputs are built and cached for every supported
platform, speeding up local development and CI runs.

Test plan:
- Tested jq enumeration command locally, correctly outputs devShell paths
- Verified xargs pipeline works with the enumerated outputs
2026-01-13 12:37:12 +01:00
Jake Hillion
007eb80029 nix: enable cachix
Enable cachix and push to it in the pipeline.yml workflow. This won't
cache a huge amount yet but will automatically extend our caching as we
build more of the repo with Nix in CI. It can also be used by local
users by accepting our cache to improve the speed of local builds.

Test plan:
- CI
2026-01-12 17:24:59 +01:00
Jake Hillion
8d7b6789b3 dashboard: show disk usage for completed models
The downloads dashboard showed "Completed" for finished model downloads
but provided no indication of how much disk space each model or the
total models on a node were using.

Added total_bytes field to DownloadCompleted type so the size is
preserved when a download completes. Updated the dashboard to display
the model size next to "Completed" status (e.g., "Completed (251.1GB)")
and a total disk usage line below the model count for each node (e.g.,
"502.2GB on disk").

Test plan:
- Ran unit tests for download apply and planning logic
- Type checked all modified files with basedpyright
2026-01-12 16:34:29 +01:00
Jake Hillion
3c5b7ea670 ci: add workflow_dispatch trigger to build-app
Build app is the most convenient way to get a DMG for testing, but
currently it's a bit limited. You have to push to test-app every time
which is far from ideal and requires a bit too much force pushing for my
liking.

Add the workflow_dispatch trigger. This adds a button in the actions UI
to trigger a workflow for a named branch, which means you can use your
normal dev branch instead of having to push to test-app. We'll leave
that behaviour there for now too, though it may change in future.

Filter on `"${{ github.event_name }}" == "workflow_dispatch"` and set
those to alpha as well. Will verify by pushing the first version from
`main` just in case. Unfortunately we do have to merge this before we
can test it.

Test plan:
- Looking really hard.
2026-01-12 12:14:21 +01:00
PG
b74a610537 Add a basic documentation to the api interface (#1122)
## Motivation

Adds basic api documentation

## Changes

- Add docs/api.md
- Modify README.md
2026-01-11 18:44:40 +00:00
Jake Hillion
18c4e49f91 nix: put treefmt in devshell
treefmt is a useful to be able to access directly for some formatters like
`jj fix`. Expose it in the devshell.

Test plan:
- Used with `jj fix` on a large branch. It worked.
2026-01-09 17:53:50 +01:00
Sami Khan
d85b5d3781 feat: uninstall button (#1077)
## Motivation

https://github.com/exo-explore/exo/issues/1075

## Changes

- Added in-app "Uninstall" option under Advanced menu that cleanly
removes all system components
- Added NetworkSetupHelper.uninstall() to remove LaunchDaemon, scripts,
logs, and restore network settings
- Added LaunchAtLoginHelper.disable() to unregister from login items
- Created standalone uninstall-exo.sh script for users who already
deleted the app
- Added uninstall documentation to README

<img width="386" height="577" alt="image"
src="https://github.com/user-attachments/assets/6bbcd18a-992a-409d-8791-ed5e13bbcfe0"
/>
<img width="372" height="432" alt="image"
src="https://github.com/user-attachments/assets/ee76b45d-c111-4807-ab28-3f2f20e01140"
/>


## Why It Works

The in-app uninstaller runs a privileged shell script (via AppleScript)
to launchctl bootout the daemon, remove files, and restore the
"Automatic" network location. The standalone script provides the same
cleanup for users who already deleted the app.

## Test Plan

### Manual Testing
Hardware: MacBook Pro
- Built and ran app, verified LaunchDaemon and network location were
created
- Used in-app Uninstall, verified all components removed and network
restored to Automatic
- Rebuilt app, quit normally, ran sudo ./uninstall-exo.sh, verified same
cleanup

### Automated Testing
N/A

---------

Co-authored-by: Evan <evanev7@gmail.com>
2026-01-09 14:49:08 +00:00
Evan Quiney
caafc48693 Forward tools to the models chat template properly (#1106)
We did not properly forward tools to the chat template before. This is not a full tool calling impl - but it should improve things slightly.

## Changes made

Pass tools to the hf tokenizers chat template
Join message chunks into a larger message (opencode does this sometimes - we were ignoring before)

## Future work

We need to parse the model output and normalise the return format to be compatible with the openai api.
2026-01-09 13:28:41 +00:00
Evan
cca8c9984a cleanup unused dependencies
we have a lot of dependencies we have no intent of using. kill them with
fire!

## testing
exo still launches and does the worst inference known to man on my Qwen3
instance. tests pass too!!
2026-01-09 13:11:58 +00:00
Sami Khan
d1e88def42 scrollbars fixed (#1113)
## Motivation

Fixes https://github.com/exo-explore/exo/issues/1107 - Horizontal
scrollbar always appears in instances section, and vertical scrollbar
appears too early (with just 1-2 instances on large screens).


## Changes

- Added overflow-x-hidden to remove horizontal scrollbar
- Added xl:max-h-96 for responsive vertical height (384px on xl+ screens
vs 288px default)
- Added py-px to accommodate corner accent decorations that extend 1px
outside cards

## Why It Works

- overflow-x-hidden prevents horizontal scroll regardless of content
- Larger max-height on xl screens fits 2 instances without scrollbar;
3rd triggers it
- 1px vertical padding accommodates the -top-px/-bottom-px positioned
corner accents that caused tiny overflow

## Test Plan

### Manual Testing
<img width="1190" height="868" alt="image"
src="https://github.com/user-attachments/assets/2a582328-5b4f-4490-a488-52106f2e85ef"
/>

### Automated Testing
N/A
2026-01-09 12:51:05 +00:00
Sami Khan
59e7594e34 UNKNOWN to PREPARING (#1112)
## Motivation

The "UNKNOWN" status shown when first launching an instance is confusing
and unhelpful. "PREPARING" better describes what's actually happening.

![telegram-cloud-photo-size-4-5981245965962251168-x](https://github.com/user-attachments/assets/65b0802b-fb64-4fa7-bff7-c13757035b3a)


## Changes

- Renamed status from "UNKNOWN" to "PREPARING" in dashboard
(+page.svelte)
- Renamed unknown state to preparing in macOS app
(InstanceViewModel.swift, InstanceRowView.swift)

## Why It Works

The status appears when an instance exists but runners haven't reported
status yet. "PREPARING" accurately describes this transitional state.

## Test Plan

### Manual Testing
Hardware: MacBook Pro
<img width="319" height="200" alt="image"
src="https://github.com/user-attachments/assets/9a1c3caf-026d-47ea-80d1-63c6e41d93aa"
/>

### Automated Testing
N/A
2026-01-09 11:46:51 +00:00
Chris A
c65320acd3 Fix mlx seed (#1094)
## Motivation

<!-- Why is this change needed? What problem does it solve? -->
<!-- If it fixes an open issue, please link to the issue here -->

## Changes

<!-- Describe what you changed in detail -->

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
<!-- Hardware: (e.g., MacBook Pro M1 Max 32GB, Mac Mini M2 16GB,
connected via Thunderbolt 4) -->
<!-- What you did: -->
<!-- - -->

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->

---------

Co-authored-by: google-labs-jules[bot] <161369871+google-labs-jules[bot]@users.noreply.github.com>
Co-authored-by: Ryuichi Leo Takashige <leo@exolabs.net>
2026-01-09 01:40:15 +00:00
59 changed files with 4595 additions and 1979 deletions

View File

@@ -1,6 +1,7 @@
name: Build EXO macOS DMG
on:
workflow_dispatch:
push:
tags:
- "v*"
@@ -35,7 +36,7 @@ jobs:
- name: Derive release version from tag
run: |
if [[ "$GITHUB_REF_NAME" == "test-app" ]]; then
if [[ "$GITHUB_REF_NAME" == "test-app" || "${{ github.event_name }}" == "workflow_dispatch" ]]; then
VERSION="0.0.0-alpha.0"
echo "IS_ALPHA=true" >> $GITHUB_ENV
else
@@ -112,11 +113,22 @@ jobs:
uv python install
uv sync --locked
- name: Install Nix
uses: cachix/install-nix-action@v31
with:
nix_path: nixpkgs=channel:nixos-unstable
- name: Configure Cachix
uses: cachix/cachix-action@v14
with:
name: exo
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
- name: Build dashboard
run: |
cd dashboard
npm ci
npm run build
DASHBOARD_OUT=$(nix build .#dashboard --print-build-logs --no-link --print-out-paths)
mkdir -p dashboard/build
cp -r "$DASHBOARD_OUT"/* dashboard/build/
- name: Install Sparkle CLI
run: |

View File

@@ -20,6 +20,12 @@ jobs:
with:
nix_path: nixpkgs=channel:nixos-unstable
- uses: cachix/cachix-action@v14
name: Configure Cachix
with:
name: exo
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
- name: Configure git user
run: |
git config --local user.email "github-actions@users.noreply.github.com"
@@ -88,9 +94,19 @@ jobs:
- uses: ./.github/actions/typecheck
nix-flake-check:
name: Check Nix flake
runs-on: ubuntu-latest
nix:
name: Build and check (${{ matrix.system }})
runs-on: ${{ matrix.runner }}
strategy:
fail-fast: false
matrix:
include:
- runner: macos-26
system: aarch64-darwin
- runner: ubuntu-latest
system: x86_64-linux
- runner: ubuntu-24.04-arm
system: aarch64-linux
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -101,83 +117,20 @@ jobs:
with:
nix_path: nixpkgs=channel:nixos-unstable
- name: Run nix flake check
run: |
nix flake check
shell: bash
- uses: cachix/cachix-action@v14
name: Configure Cachix
with:
name: exo
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
# ci:
# needs: typecheck
# runs-on: ubuntu-latest
# permissions:
# contents: read
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# with:
# fetch-depth: 0
# token: ${{ secrets.GITHUB_TOKEN }}
# lfs: true
#
# - name: Configure git user
# run: |
# git config --local user.email "github-actions@users.noreply.github.com"
# git config --local user.name "github-actions bot"
# shell: bash
#
# - name: Pull LFS files
# run: |
# echo "Pulling Git LFS files..."
# git lfs pull
# shell: bash
#
# - name: Setup EXO_HOME and API_PORT
# run: |
# EXO_HOME=$(mktemp -d -t exo-ci-XXXXXXXX)
# # Generate random port (macOS compatible method)
# API_PORT=$((49152 + RANDOM % (65535 - 49152 + 1)))
# echo "EXO_HOME=$EXO_HOME" >> $GITHUB_ENV
# echo "API_PORT=$API_PORT" >> $GITHUB_ENV
# echo "Created EXO_HOME: $EXO_HOME"
# echo "Generated API_PORT: $API_PORT"
# shell: bash
#
# - name: Setup Nix Environment
# run: |
# echo "Checking for nix installation..."
#
# # Check if nix binary exists directly
# if [ -f /nix/var/nix/profiles/default/bin/nix ]; then
# echo "Found nix binary at /nix/var/nix/profiles/default/bin/nix"
# export PATH="/nix/var/nix/profiles/default/bin:$PATH"
# echo "PATH=$PATH" >> $GITHUB_ENV
# nix --version
# elif [ -f /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh ]; then
# echo "Found nix profile script, sourcing..."
# source /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh
# nix --version
# elif command -v nix >/dev/null 2>&1; then
# echo "Nix already in PATH"
# nix --version
# else
# echo "Nix not found. Debugging info:"
# echo "Contents of /nix/var/nix/profiles/default/:"
# ls -la /nix/var/nix/profiles/default/ 2>/dev/null || echo "Directory not found"
# echo "Contents of /nix/var/nix/profiles/default/bin/:"
# ls -la /nix/var/nix/profiles/default/bin/ 2>/dev/null || echo "Directory not found"
# exit 1
# fi
# shell: bash
#
# - uses: ./.github/actions/lint-check
#
# - uses: ./.github/actions/unit-test
#
# - name: Cleanup EXO_HOME
# run: |
# echo "Cleaning up EXO_HOME: $EXO_HOME"
# rm -rf "$EXO_HOME"
# shell: bash
# if: always()
- name: Build all Nix outputs
run: |
nix flake show --json | jq -r '
[
(.packages."${{ matrix.system }}" // {} | keys[] | ".#packages.${{ matrix.system }}.\(.)"),
(.devShells."${{ matrix.system }}" // {} | keys[] | ".#devShells.${{ matrix.system }}.\(.)")
] | .[]
' | xargs nix build
- name: Run nix flake check
run: nix flake check

1
.gitignore vendored
View File

@@ -16,6 +16,7 @@ digest.txt
*.xcuserdatad/
**/.DS_Store
app/EXO/build/
dist/
# rust

View File

@@ -276,24 +276,23 @@ class BatchGenerator:
logprobs: mx.array
finish_reason: Optional[str]
unprocessed_prompts: List[Any]
def __init__(
self,
model,
model: nn.Module,
max_tokens: int = ...,
stop_tokens: Optional[set] = ...,
stop_tokens: Optional[set[int]] = ...,
sampler: Optional[Callable[[mx.array], mx.array]] = ...,
completion_batch_size: int = ...,
prefill_batch_size: int = ...,
prefill_step_size: int = ...,
) -> None: ...
def insert(
self, prompts, max_tokens: Union[List[int], int, None] = ...
): # -> list[Any]:
...
def stats(self): # -> BatchStats:
...
def next(self): # -> list[Any]:
...
self, prompts: List[List[int]], max_tokens: Union[List[int], int, None] = ...
) -> List[int]: ...
def stats(self) -> BatchStats: ...
def next(self) -> List[Response]: ...
def batch_generate(
model,

View File

@@ -0,0 +1,156 @@
"""Type stubs for mlx_lm.models.deepseek_v3"""
from dataclasses import dataclass
from typing import Any, Dict, Optional
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
from .switch_layers import SwitchGLU
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
vocab_size: int
hidden_size: int
intermediate_size: int
moe_intermediate_size: int
num_hidden_layers: int
num_attention_heads: int
num_key_value_heads: int
n_shared_experts: Optional[int]
n_routed_experts: Optional[int]
routed_scaling_factor: float
kv_lora_rank: int
q_lora_rank: Optional[int]
qk_rope_head_dim: int
v_head_dim: int
qk_nope_head_dim: int
topk_method: str
scoring_func: str
norm_topk_prob: bool
n_group: int
topk_group: int
num_experts_per_tok: int
moe_layer_freq: int
first_k_dense_replace: int
max_position_embeddings: int
rms_norm_eps: float
rope_theta: float
rope_scaling: Optional[Dict[str, Any]]
attention_bias: bool
class DeepseekV3Attention(nn.Module):
config: ModelArgs
hidden_size: int
num_heads: int
max_position_embeddings: int
rope_theta: float
q_lora_rank: Optional[int]
qk_rope_head_dim: int
kv_lora_rank: int
v_head_dim: int
qk_nope_head_dim: int
q_head_dim: int
scale: float
q_proj: nn.Linear
q_a_proj: nn.Linear
q_a_layernorm: nn.RMSNorm
q_b_proj: nn.Linear
kv_a_proj_with_mqa: nn.Linear
kv_a_layernorm: nn.RMSNorm
kv_b_proj: nn.Linear
o_proj: nn.Linear
rope: Any
def __init__(self, config: ModelArgs) -> None: ...
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array: ...
class DeepseekV3MLP(nn.Module):
config: ModelArgs
hidden_size: int
intermediate_size: int
gate_proj: nn.Linear
up_proj: nn.Linear
down_proj: nn.Linear
def __init__(
self,
config: ModelArgs,
hidden_size: Optional[int] = None,
intermediate_size: Optional[int] = None,
) -> None: ...
def __call__(self, x: mx.array) -> mx.array: ...
class MoEGate(nn.Module):
config: ModelArgs
top_k: int
norm_topk_prob: bool
n_routed_experts: Optional[int]
routed_scaling_factor: float
n_group: int
topk_group: int
weight: mx.array
e_score_correction_bias: mx.array
def __init__(self, config: ModelArgs) -> None: ...
def __call__(self, x: mx.array) -> tuple[mx.array, mx.array]: ...
class DeepseekV3MoE(nn.Module):
config: ModelArgs
num_experts_per_tok: int
switch_mlp: SwitchGLU
gate: MoEGate
shared_experts: DeepseekV3MLP
sharding_group: Optional[mx.distributed.Group]
def __init__(self, config: ModelArgs) -> None: ...
def __call__(self, x: mx.array) -> mx.array: ...
class DeepseekV3DecoderLayer(nn.Module):
self_attn: DeepseekV3Attention
mlp: DeepseekV3MLP | DeepseekV3MoE
input_layernorm: nn.RMSNorm
post_attention_layernorm: nn.RMSNorm
def __init__(self, config: ModelArgs, layer_idx: int) -> None: ...
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array: ...
class DeepseekV3Model(nn.Module):
vocab_size: int
embed_tokens: nn.Embedding
layers: list[DeepseekV3DecoderLayer]
norm: nn.RMSNorm
def __init__(self, config: ModelArgs) -> None: ...
def __call__(
self,
x: mx.array,
cache: Optional[Any] = None,
) -> mx.array: ...
class Model(nn.Module):
model_type: str
model: DeepseekV3Model
lm_head: nn.Linear
def __init__(self, config: ModelArgs) -> None: ...
def __call__(
self,
inputs: mx.array,
cache: Optional[Any] = None,
) -> mx.array: ...
def sanitize(self, weights: dict[str, Any]) -> dict[str, Any]: ...
@property
def layers(self) -> list[DeepseekV3DecoderLayer]: ...

View File

@@ -57,6 +57,11 @@ class SwiGLU(nn.Module):
def __call__(self, x, gate): ...
class SwitchGLU(nn.Module):
gate_proj: SwitchLinear
up_proj: SwitchLinear
down_proj: SwitchLinear
activation: SwiGLU
def __init__(
self,
input_dims: int,

View File

@@ -4,6 +4,7 @@ This type stub file was generated by pyright.
from functools import partial
from pathlib import Path
from typing import Any
from transformers import PreTrainedTokenizerFast
@@ -38,12 +39,18 @@ class StreamingDetokenizer:
"""
__slots__ = ...
def reset(self): ...
def add_token(self, token): ...
def finalize(self): ...
tokens: list[int]
def reset(self) -> None: ...
def add_token(self, token: int) -> None: ...
def finalize(self) -> None: ...
@property
def last_segment(self):
def text(self) -> str:
"""The full text decoded so far."""
...
@property
def last_segment(self) -> str:
"""Return the last segment of readable text since last time this property was accessed."""
...
class NaiveStreamingDetokenizer(StreamingDetokenizer):
"""NaiveStreamingDetokenizer relies on the underlying tokenizer
@@ -103,37 +110,56 @@ class TokenizerWrapper:
Accessing any attribute other than the ``detokenizer`` is forwarded to the
huggingface tokenizer.
"""
def __init__(self, tokenizer, detokenizer_class=..., eos_token_ids=...) -> None: ...
def add_eos_token(self, token: str): # -> None:
...
@property
def has_thinking(self): # -> bool:
...
@property
def think_start(self): # -> str | None:
...
@property
def think_end(self): # -> str | None:
...
@property
def has_tool_calling(self): # -> bool:
...
@property
def tool_call_start(self): # -> str | None:
...
@property
def tool_call_end(self): # -> str | None:
...
@property
def detokenizer(self): # -> NaiveStreamingDetokenizer:
"""
Get a stateful streaming detokenizer.
"""
def __getattr__(self, attr): # -> set[Any] | Any:
...
def __setattr__(self, attr, value): # -> None:
...
_tokenizer: PreTrainedTokenizerFast
eos_token_id: int | None
eos_token: str | None
eos_token_ids: list[int] | None
bos_token_id: int | None
bos_token: str | None
vocab_size: int
all_special_tokens: list[str]
def __init__(
self,
tokenizer: Any,
detokenizer_class: Any = ...,
eos_token_ids: list[int] | None = ...,
chat_template: Any = ...,
tool_parser: Any = ...,
tool_call_start: str | None = ...,
tool_call_end: str | None = ...,
) -> None: ...
def encode(self, text: str, **kwargs: Any) -> list[int]: ...
def decode(self, token_ids: list[int], **kwargs: Any) -> str: ...
def apply_chat_template(
self,
messages: list[dict[str, Any]],
tokenize: bool = False,
add_generation_prompt: bool = False,
tools: Any = None,
**kwargs: Any,
) -> str: ...
def get_vocab(self) -> dict[str, int]: ...
def add_eos_token(self, token: str) -> None: ...
@property
def has_thinking(self) -> bool: ...
@property
def think_start(self) -> str | None: ...
@property
def think_end(self) -> str | None: ...
@property
def has_tool_calling(self) -> bool: ...
@property
def tool_call_start(self) -> str | None: ...
@property
def tool_call_end(self) -> str | None: ...
@property
def detokenizer(self) -> NaiveStreamingDetokenizer:
"""Get a stateful streaming detokenizer."""
def __getattr__(self, attr: str) -> Any: ...
def __setattr__(self, attr: str, value: Any) -> None: ...
class NewlineTokenizer(PreTrainedTokenizerFast):
"""A tokenizer that replaces newlines with <n> and <n> with new line."""
@@ -146,18 +172,11 @@ class NewlineTokenizer(PreTrainedTokenizerFast):
def batch_decode(self, *args, **kwargs): # -> list[str]:
...
def load_tokenizer(
def load(
model_path: Path,
tokenizer_config_extra=...,
return_tokenizer=...,
eos_token_ids=...,
) -> (
TokenizerWrapper
| type[SPMStreamingDetokenizer]
| partial[SPMStreamingDetokenizer]
| type[BPEStreamingDetokenizer]
| type[NaiveStreamingDetokenizer]
):
tokenizer_config_extra: dict[str, Any] | None = None,
eos_token_ids: list[int] | int | None = None,
) -> TokenizerWrapper:
"""Load a huggingface tokenizer and try to infer the type of streaming
detokenizer to use.
@@ -165,4 +184,7 @@ def load_tokenizer(
a Hugging Face repo ID.
"""
def no_bos_or_eos(sequence: list, bos: int, eos: int) -> list: ...
# Alias for backward compatibility
load_tokenizer = load
def no_bos_or_eos(sequence: list[int], bos: int, eos: int) -> list[int]: ...

135
AGENTS.md Normal file
View File

@@ -0,0 +1,135 @@
# AGENTS.md
This file provides guidance to AI coding agents when working with code in this repository.
## Project Overview
exo is a distributed AI inference system that connects multiple devices into a cluster. It enables running large language models across multiple machines using MLX as the inference backend and libp2p for peer-to-peer networking.
## Build & Run Commands
```bash
# Build the dashboard (required before running exo)
cd dashboard && npm install && npm run build && cd ..
# Run exo (starts both master and worker with API at http://localhost:52415)
uv run exo
# Run with verbose logging
uv run exo -v # or -vv for more verbose
# Run tests (excludes slow tests by default)
uv run pytest
# Run all tests including slow tests
uv run pytest -m ""
# Run a specific test file
uv run pytest src/exo/shared/tests/test_election.py
# Run a specific test function
uv run pytest src/exo/shared/tests/test_election.py::test_function_name
# Type checking (strict mode)
uv run basedpyright
# Linting
uv run ruff check
# Format code (using nix)
nix fmt
```
## Architecture
### Node Composition
A single exo `Node` (src/exo/main.py) runs multiple components:
- **Router**: libp2p-based pub/sub messaging via Rust bindings (exo_pyo3_bindings)
- **Worker**: Handles inference tasks, downloads models, manages runner processes
- **Master**: Coordinates cluster state, places model instances across nodes
- **Election**: Bully algorithm for master election
- **API**: FastAPI server for OpenAI-compatible chat completions
### Message Flow
Components communicate via typed pub/sub topics (src/exo/routing/topics.py):
- `GLOBAL_EVENTS`: Master broadcasts indexed events to all workers
- `LOCAL_EVENTS`: Workers send events to master for indexing
- `COMMANDS`: Workers/API send commands to master
- `ELECTION_MESSAGES`: Election protocol messages
- `CONNECTION_MESSAGES`: libp2p connection updates
### Event Sourcing
The system uses event sourcing for state management:
- `State` (src/exo/shared/types/state.py): Immutable state object
- `apply()` (src/exo/shared/apply.py): Pure function that applies events to state
- Master indexes events and broadcasts; workers apply indexed events
### Key Type Hierarchy
- `src/exo/shared/types/`: Pydantic models for all shared types
- `events.py`: Event types (discriminated union)
- `commands.py`: Command types
- `tasks.py`: Task types for worker execution
- `state.py`: Cluster state model
### Rust Components
Rust code in `rust/` provides:
- `networking`: libp2p networking (gossipsub, peer discovery)
- `exo_pyo3_bindings`: PyO3 bindings exposing Rust to Python
- `system_custodian`: System-level operations
### Dashboard
Svelte 5 + TypeScript frontend in `dashboard/`. Build output goes to `dashboard/build/` and is served by the API.
## Code Style Requirements
From .cursorrules:
- Strict, exhaustive typing - never bypass the type-checker
- Use `Literal[...]` for enum-like sets, `typing.NewType` for primitives
- Pydantic models with `frozen=True` and `strict=True`
- Pure functions with injectable effect handlers for side-effects
- Descriptive names - no abbreviations or 3-letter acronyms
- Catch exceptions only where you can handle them meaningfully
- Use `@final` and immutability wherever applicable
## Model Storage
Downloaded models are stored in `~/.exo/models/` (not the standard HuggingFace cache location).
## Creating Model Instances via API
When testing with the API, you must first create a model instance before sending chat completions:
```bash
# 1. Get instance previews for a model
curl "http://localhost:52415/instance/previews?model_id=llama-3.2-1b"
# 2. Create an instance from the first valid preview
INSTANCE=$(curl -s "http://localhost:52415/instance/previews?model_id=llama-3.2-1b" | jq -c '.previews[] | select(.error == null) | .instance' | head -n1)
curl -X POST http://localhost:52415/instance -H 'Content-Type: application/json' -d "{\"instance\": $INSTANCE}"
# 3. Wait for the runner to become ready (check logs for "runner ready")
# 4. Send chat completions using the full model ID
curl -X POST http://localhost:52415/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"model": "mlx-community/Llama-3.2-1B-Instruct-4bit", "messages": [{"role": "user", "content": "Hello"}], "max_tokens": 50}'
```
## Logs
Exo logs are stored in `~/.exo/exo.log`. This is useful for debugging runner crashes and distributed issues.
## Testing
Tests use pytest-asyncio with `asyncio_mode = "auto"`. Tests are in `tests/` subdirectories alongside the code they test. The `EXO_TESTS=1` env var is set during tests.
### Distributed Testing
When running distributed tests across multiple machines, use `EXO_LIBP2P_NAMESPACE` to isolate your test cluster from other exo instances on the same network:
```bash
# On each machine in the test cluster, use the same unique namespace
EXO_LIBP2P_NAMESPACE=my-test-cluster uv run exo
```
This prevents your test cluster from discovering and interfering with production or other developers' exo clusters.

1
CLAUDE.md Symbolic link
View File

@@ -0,0 +1 @@
AGENTS.md

19
Cargo.lock generated
View File

@@ -4340,25 +4340,6 @@ dependencies = [
"libc",
]
[[package]]
name = "system_custodian"
version = "0.0.1"
dependencies = [
"delegate",
"derive_more",
"either",
"extend",
"futures",
"futures-timer",
"impl-trait-for-tuples",
"keccak-const",
"log",
"thiserror 2.0.17",
"tokio",
"tracing-subscriber",
"util",
]
[[package]]
name = "tagptr"
version = "0.2.0"

View File

@@ -3,7 +3,6 @@ resolver = "3"
members = [
"rust/networking",
"rust/exo_pyo3_bindings",
"rust/system_custodian",
"rust/util",
]
@@ -25,7 +24,6 @@ opt-level = 3
[workspace.dependencies]
## Crate members as common dependencies
networking = { path = "rust/networking" }
system_custodian = { path = "rust/system_custodian" }
util = { path = "rust/util" }
# Proc-macro authoring tools

41
MISSED_THINGS.md Normal file
View File

@@ -0,0 +1,41 @@
# Missed things
[X] Log EXO_LIBP2P_NAMESPACE on start in exo/main.py
[X] Ordering of warmup was changed, which is wrong. It was changed to rank < n-1, then rank=n-1. It should be rank!=0 then rank=0 (this matches the auto_parallel implementation. NOTE: we use a different convention to mlx-lm, our terminal rank is rank=n-1 whereas mlx-lm is rank=0 hence i can see why this was changed wrongly).
[X] Downloads keying by model_id not shard_metadata (worker/plan.py, worker/main.py).
[X] Fetching download status of all models on start
[X] Deduplication of tasks in plan_step.
[X] resolve_allow_patterns should just be wildcard now.
[] no mx_barrier in genreate.py mlx_generate at the end.
[] cache assertion not needed in auto_parallel.py PipelineLastLayer.
[] GPTOSS support dropped in auto_parallel.py.
[] sharding changed "all-to-sharded" became _all_to_sharded in auto_parallel.py.
[] same as above with "sharded-to-all" became _sharded_to_all in auto_parallel.py.
[] Dropped support for Ministral3Model, DeepseekV32Model, Glm4MoeModel, Qwen3NextModel, GptOssMode in auto_parallel.py.
[] Dropped prefill/decode code in auto_parallel.py and utils_mlx.py.
[X] KV_CACHE_BITS should be None to disable quantized KV cache.
[] Dropped _set_nofile_limit in utils_mlx.py.
[] We have group optional in load_mlx_items in utils_mlx.py.
[] Dropped add_missing_chat_templates for GptOss in load_mlx_items in utils_mlx.py.
[] Dropped model.make_cache in make_kv_cache in utils_mlx.py.
[X] We put cache limit back in utils_mlx.py.
[] topology.py remove_node removes the connections after checking if node is is in self._node_id_to_rx_id_map. on beta_1 it checks after, so would remove stale connections I guess?
[] Missing Glm 4.7 model cards (this isn't ready yet but should be picked up, probably create an issue... the blocker is transforemrs version doesn't support the tokenizer for Glm 4.7. rc-1 does but we can't upgrade as it breaks other things.)
[] try-except in _command_processor only excepts ValueError. This was silently failing leading to un-debuggable errors (we had a KeyError that was happening ). Changed this to catch Exception instead of ValueError. See exo-v2 89ae38405e0052e3c22405daf094b065878aa873 and fb99fea69b5a39017efc90c5dad0072e677455f0.
[X] In placement.py, place_instance no longer looks at model_meta.supports_tensor and check if this tensor parallel number of nodes is supported by the model's tensor dimensions.
[X] In placement.py, place_instanec, we no longer have the special case to exclude DeepSeek v3.1 pipeline parallel (it doesn't work).
[] logger.warning("You have likely selected ibv for a single node instance; falling back to MlxRing") was changed to debug. That will spam this warning since it happens every time we query instance previews.
[X] In placement_utils.py, get_mlx_jaccl_coordinators, We no longer prioritise Jaccl Coordinator IP. Now it picks the first one, which is unstable (Jaccl coordinator over TB5 is unstable).
[X] Downloads keying by model_id not shard_metadata (worker/plan.py, worker/main.py).
[X] Fetching download status of all models on start
[X] Deduplication of tasks in plan_step.
[X] resolve_allow_patterns should just be wildcard now.
[X] KV_CACHE_BITS should be None to disable quantized KV cache.
[X] We put cache limit back in utils_mlx.py.
[X] In placement.py, place_instance no longer looks at model_meta.supports_tensor and check if this tensor parallel number of nodes is supported by the model's tensor dimensions.
[X] In placement.py, place_instanec, we no longer have the special case to exclude DeepSeek v3.1 pipeline parallel (it doesn't work).
[X] In placement_utils.py, get_mlx_jaccl_coordinators, We no longer prioritise Jaccl Coordinator IP. Now it picks the first one, which is unstable (Jaccl coordinator over TB5 is unstable).

View File

@@ -166,6 +166,24 @@ Download the latest build here: [EXO-latest.dmg](https://assets.exolabs.net/EXO-
The app will ask for permission to modify system settings and install a new Network profile. Improvements to this are being worked on.
#### Uninstalling the macOS App
The recommended way to uninstall is through the app itself: click the menu bar icon → Advanced → Uninstall. This cleanly removes all system components.
If you've already deleted the app, you can run the standalone uninstaller script:
```bash
sudo ./app/EXO/uninstall-exo.sh
```
This removes:
- Network setup LaunchDaemon
- Network configuration script
- Log files
- The "exo" network location
**Note:** You'll need to manually remove EXO from Login Items in System Settings → General → Login Items.
---
### Enabling RDMA on macOS
@@ -287,7 +305,10 @@ curl -X DELETE http://localhost:52415/instance/YOUR_INSTANCE_ID
- List all models: `curl http://localhost:52415/models`
- Inspect instance IDs and deployment state: `curl http://localhost:52415/state`
For further details, see API types and endpoints in [src/exo/master/api.py](src/exo/master/api.py).
For further details, see:
- API basic documentation in [docs/api.md](docs/api.md).
- API types and endpoints in [src/exo/master/api.py](src/exo/master/api.py).
---

View File

@@ -18,10 +18,11 @@ struct ContentView: View {
@State private var deletingInstanceIDs: Set<String> = []
@State private var showAllNodes = false
@State private var showAllInstances = false
@State private var showAdvanced = false
@State private var showDebugInfo = false
@State private var bugReportInFlight = false
@State private var bugReportMessage: String?
@State private var showAdvancedOptions = false
@State private var uninstallInProgress = false
@State private var pendingNamespace: String = ""
var body: some View {
@@ -255,13 +256,7 @@ struct ContentView: View {
Divider()
.padding(.vertical, 4)
}
controlButton(title: "Check for Updates") {
updater.checkForUpdates()
}
.padding(.bottom, 8)
advancedOptionsSection
.padding(.bottom, 8)
debugSection
advancedSection
.padding(.bottom, 8)
controlButton(title: "Quit", tint: .secondary) {
controller.stop()
@@ -270,6 +265,54 @@ struct ContentView: View {
}
}
private var advancedSection: some View {
VStack(alignment: .leading, spacing: 6) {
HStack {
Text("Advanced")
.font(.caption)
.foregroundColor(.secondary)
Spacer()
collapseButton(isExpanded: $showAdvanced)
}
.animation(nil, value: showAdvanced)
if showAdvanced {
VStack(alignment: .leading, spacing: 8) {
VStack(alignment: .leading, spacing: 4) {
Text("Cluster Namespace")
.font(.caption2)
.foregroundColor(.secondary)
HStack {
TextField("optional", text: $pendingNamespace)
.textFieldStyle(.roundedBorder)
.font(.caption2)
.onAppear {
pendingNamespace = controller.customNamespace
}
Button("Save & Restart") {
controller.customNamespace = pendingNamespace
if controller.status == .running || controller.status == .starting {
controller.restart()
}
}
.font(.caption2)
.disabled(pendingNamespace == controller.customNamespace)
}
}
HoverButton(title: "Check for Updates", small: true) {
updater.checkForUpdates()
}
debugSection
HoverButton(title: "Uninstall", tint: .red, small: true) {
showUninstallConfirmationAlert()
}
.disabled(uninstallInProgress)
}
.transition(.opacity)
}
}
.animation(.easeInOut(duration: 0.25), value: showAdvanced)
}
private func controlButton(title: String, tint: Color = .primary, action: @escaping () -> Void)
-> some View
{
@@ -396,57 +439,16 @@ struct ContentView: View {
}
}
private var advancedOptionsSection: some View {
VStack(alignment: .leading, spacing: 6) {
HStack {
Text("Advanced Options")
.font(.caption)
.foregroundColor(.secondary)
Spacer()
collapseButton(isExpanded: $showAdvancedOptions)
}
.animation(nil, value: showAdvancedOptions)
if showAdvancedOptions {
VStack(alignment: .leading, spacing: 8) {
VStack(alignment: .leading, spacing: 4) {
Text("Cluster Namespace")
.font(.caption2)
.foregroundColor(.secondary)
HStack {
TextField("optional", text: $pendingNamespace)
.textFieldStyle(.roundedBorder)
.font(.caption2)
.onAppear {
pendingNamespace = controller.customNamespace
}
Button("Save & Restart") {
controller.customNamespace = pendingNamespace
if controller.status == .running || controller.status == .starting {
controller.restart()
}
}
.font(.caption2)
.disabled(pendingNamespace == controller.customNamespace)
}
}
}
.transition(.opacity)
}
}
.animation(.easeInOut(duration: 0.25), value: showAdvancedOptions)
}
private var debugSection: some View {
VStack(alignment: .leading, spacing: 6) {
HStack {
Text("Debug Info")
.font(.caption)
.foregroundColor(.secondary)
Spacer()
collapseButton(isExpanded: $showDebugInfo)
VStack(alignment: .leading, spacing: 4) {
HoverButton(
title: "Debug Info",
tint: .primary,
trailingSystemImage: showDebugInfo ? "chevron.up" : "chevron.down",
small: true
) {
showDebugInfo.toggle()
}
.animation(nil, value: showDebugInfo)
if showDebugInfo {
VStack(alignment: .leading, spacing: 4) {
Text("Version: \(buildTag)")
@@ -463,6 +465,7 @@ struct ContentView: View {
sendBugReportButton
.padding(.top, 6)
}
.padding(.leading, 8)
.transition(.opacity)
}
}
@@ -604,6 +607,88 @@ struct ContentView: View {
bugReportInFlight = false
}
private func showUninstallConfirmationAlert() {
let alert = NSAlert()
alert.messageText = "Uninstall EXO"
alert.informativeText = """
This will remove EXO and all its system components:
• Network configuration daemon
• Launch at login registration
• EXO network location
The app will be moved to Trash.
"""
alert.alertStyle = .warning
alert.addButton(withTitle: "Uninstall")
alert.addButton(withTitle: "Cancel")
// Style the Uninstall button as destructive
if let uninstallButton = alert.buttons.first {
uninstallButton.hasDestructiveAction = true
}
let response = alert.runModal()
if response == .alertFirstButtonReturn {
performUninstall()
}
}
private func performUninstall() {
uninstallInProgress = true
// Stop EXO process first
controller.cancelPendingLaunch()
controller.stop()
stateService.stopPolling()
// Run the privileged uninstall on a background thread
// Using .utility QoS to avoid priority inversion with NSAppleScript's subprocess
DispatchQueue.global(qos: .utility).async {
do {
// Remove network setup daemon and components (requires admin privileges)
try NetworkSetupHelper.uninstall()
DispatchQueue.main.async {
// Unregister from launch at login
LaunchAtLoginHelper.disable()
// Move app to trash
self.moveAppToTrash()
// Quit the app
DispatchQueue.main.asyncAfter(deadline: .now() + 0.5) {
NSApplication.shared.terminate(nil)
}
}
} catch {
DispatchQueue.main.async {
self.showErrorAlert(message: error.localizedDescription)
self.uninstallInProgress = false
}
}
}
}
private func showErrorAlert(message: String) {
let alert = NSAlert()
alert.messageText = "Uninstall Failed"
alert.informativeText = message
alert.alertStyle = .critical
alert.addButton(withTitle: "OK")
alert.runModal()
}
private func moveAppToTrash() {
guard let appURL = Bundle.main.bundleURL as URL? else { return }
do {
try FileManager.default.trashItem(at: appURL, resultingItemURL: nil)
} catch {
// If we can't trash the app, that's OK - user can do it manually
// The important system components have already been cleaned up
}
}
private var buildTag: String {
Bundle.main.infoDictionary?["EXOBuildTag"] as? String ?? "unknown"
}
@@ -617,14 +702,27 @@ private struct HoverButton: View {
let title: String
let tint: Color
let trailingSystemImage: String?
let small: Bool
let action: () -> Void
init(
title: String, tint: Color = .primary, trailingSystemImage: String? = nil,
small: Bool = false, action: @escaping () -> Void
) {
self.title = title
self.tint = tint
self.trailingSystemImage = trailingSystemImage
self.small = small
self.action = action
}
@State private var isHovering = false
var body: some View {
Button(action: action) {
HStack {
Text(title)
.font(small ? .caption : nil)
Spacer()
if let systemName = trailingSystemImage {
Image(systemName: systemName)
@@ -632,8 +730,8 @@ private struct HoverButton: View {
}
}
.frame(maxWidth: .infinity, alignment: .leading)
.padding(.vertical, 6)
.padding(.horizontal, 8)
.padding(.vertical, small ? 4 : 6)
.padding(.horizontal, small ? 6 : 8)
.background(
RoundedRectangle(cornerRadius: 6)
.fill(

View File

@@ -132,6 +132,24 @@ struct EXOApp: App {
}
}
/// Helper for managing EXO's launch-at-login registration
enum LaunchAtLoginHelper {
private static let logger = Logger(subsystem: "io.exo.EXO", category: "LaunchAtLogin")
/// Unregisters EXO from launching at login
static func disable() {
guard SMAppService.mainApp.status == .enabled else { return }
do {
try SMAppService.mainApp.unregister()
logger.info("Unregistered EXO from launch at login")
} catch {
logger.error(
"Failed to unregister EXO from launch at login: \(error.localizedDescription, privacy: .public)"
)
}
}
}
final class SparkleUpdater: NSObject, ObservableObject {
private let controller: SPUStandardUpdaterController
private let delegateProxy: ExoUpdaterDelegate

View File

@@ -63,7 +63,8 @@ enum NetworkSetupHelper {
"""
static func ensureLaunchDaemonInstalled() {
Task.detached {
// Use .utility priority to match NSAppleScript's internal QoS and avoid priority inversion
Task.detached(priority: .utility) {
do {
if daemonAlreadyInstalled() {
return
@@ -78,6 +79,63 @@ enum NetworkSetupHelper {
}
}
/// Removes all EXO network setup components from the system.
/// This includes the LaunchDaemon, scripts, logs, and network location.
/// Requires admin privileges.
static func uninstall() throws {
let uninstallScript = makeUninstallScript()
try runShellAsAdmin(uninstallScript)
logger.info("EXO network setup components removed successfully")
}
/// Checks if there are any EXO network components installed that need cleanup
static func hasInstalledComponents() -> Bool {
let manager = FileManager.default
let scriptExists = manager.fileExists(atPath: scriptDestination)
let plistExists = manager.fileExists(atPath: plistDestination)
return scriptExists || plistExists
}
private static func makeUninstallScript() -> String {
"""
set -euo pipefail
LABEL="\(daemonLabel)"
SCRIPT_DEST="\(scriptDestination)"
PLIST_DEST="\(plistDestination)"
LOG_OUT="/var/log/\(daemonLabel).log"
LOG_ERR="/var/log/\(daemonLabel).err.log"
# Unload the LaunchDaemon if running
launchctl bootout system/"$LABEL" 2>/dev/null || true
# Remove LaunchDaemon plist
rm -f "$PLIST_DEST"
# Remove the script and parent directory if empty
rm -f "$SCRIPT_DEST"
rmdir "$(dirname "$SCRIPT_DEST")" 2>/dev/null || true
# Remove log files
rm -f "$LOG_OUT" "$LOG_ERR"
# Switch back to Automatic network location
networksetup -switchtolocation Automatic 2>/dev/null || true
# Delete the exo network location if it exists
networksetup -listlocations | grep -q '^exo$' && {
networksetup -deletelocation exo 2>/dev/null || true
} || true
# Re-enable Thunderbolt Bridge if it exists
networksetup -listnetworkservices | grep -q "Thunderbolt Bridge" && {
networksetup -setnetworkserviceenabled "Thunderbolt Bridge" on 2>/dev/null || true
} || true
echo "EXO network components removed successfully"
"""
}
private static func daemonAlreadyInstalled() -> Bool {
let manager = FileManager.default
let scriptExists = manager.fileExists(atPath: scriptDestination)

View File

@@ -57,7 +57,7 @@ struct InstanceViewModel: Identifiable, Equatable {
case waiting
case failed
case idle
case unknown
case preparing
var label: String {
switch self {
@@ -68,7 +68,7 @@ struct InstanceViewModel: Identifiable, Equatable {
case .waiting: return "Waiting"
case .failed: return "Failed"
case .idle: return "Idle"
case .unknown: return "Unknown"
case .preparing: return "Preparing"
}
}
}
@@ -185,7 +185,7 @@ extension InstanceViewModel.State {
} else if statuses.isEmpty {
self = .idle
} else {
self = .unknown
self = .preparing
}
}
}

View File

@@ -83,7 +83,7 @@ struct InstanceRowView: View {
case .ready: return .teal
case .waiting, .idle: return .gray
case .failed: return .red
case .unknown: return .secondary
case .preparing: return .secondary
}
}

154
app/EXO/uninstall-exo.sh Executable file
View File

@@ -0,0 +1,154 @@
#!/usr/bin/env bash
#
# EXO Uninstaller Script
#
# This script removes all EXO system components that persist after deleting the app.
# Run with: sudo ./uninstall-exo.sh
#
# Components removed:
# - LaunchDaemon: /Library/LaunchDaemons/io.exo.networksetup.plist
# - Network script: /Library/Application Support/EXO/
# - Log files: /var/log/io.exo.networksetup.*
# - Network location: "exo"
# - Launch at login registration
#
set -euo pipefail
LABEL="io.exo.networksetup"
SCRIPT_DEST="/Library/Application Support/EXO/disable_bridge_enable_dhcp.sh"
PLIST_DEST="/Library/LaunchDaemons/io.exo.networksetup.plist"
LOG_OUT="/var/log/${LABEL}.log"
LOG_ERR="/var/log/${LABEL}.err.log"
APP_BUNDLE_ID="io.exo.EXO"
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
echo_info() {
echo -e "${GREEN}[INFO]${NC} $1"
}
echo_warn() {
echo -e "${YELLOW}[WARN]${NC} $1"
}
echo_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
# Check if running as root
if [[ $EUID -ne 0 ]]; then
echo_error "This script must be run as root (use sudo)"
exit 1
fi
echo ""
echo "========================================"
echo " EXO Uninstaller"
echo "========================================"
echo ""
# Unload the LaunchDaemon if running
echo_info "Stopping network setup daemon..."
if launchctl list | grep -q "$LABEL"; then
launchctl bootout system/"$LABEL" 2>/dev/null || true
echo_info "Daemon stopped"
else
echo_warn "Daemon was not running"
fi
# Remove LaunchDaemon plist
if [[ -f "$PLIST_DEST" ]]; then
rm -f "$PLIST_DEST"
echo_info "Removed LaunchDaemon plist"
else
echo_warn "LaunchDaemon plist not found (already removed?)"
fi
# Remove the script and parent directory
if [[ -f "$SCRIPT_DEST" ]]; then
rm -f "$SCRIPT_DEST"
echo_info "Removed network setup script"
else
echo_warn "Network setup script not found (already removed?)"
fi
# Remove EXO directory if empty
if [[ -d "/Library/Application Support/EXO" ]]; then
rmdir "/Library/Application Support/EXO" 2>/dev/null && \
echo_info "Removed EXO support directory" || \
echo_warn "EXO support directory not empty, leaving in place"
fi
# Remove log files
if [[ -f "$LOG_OUT" ]] || [[ -f "$LOG_ERR" ]]; then
rm -f "$LOG_OUT" "$LOG_ERR"
echo_info "Removed log files"
else
echo_warn "Log files not found (already removed?)"
fi
# Switch back to Automatic network location
echo_info "Restoring network configuration..."
if networksetup -listlocations | grep -q "^Automatic$"; then
networksetup -switchtolocation Automatic 2>/dev/null || true
echo_info "Switched to Automatic network location"
else
echo_warn "Automatic network location not found"
fi
# Delete the exo network location if it exists
if networksetup -listlocations | grep -q "^exo$"; then
networksetup -deletelocation exo 2>/dev/null || true
echo_info "Deleted 'exo' network location"
else
echo_warn "'exo' network location not found (already removed?)"
fi
# Re-enable Thunderbolt Bridge if it exists
if networksetup -listnetworkservices 2>/dev/null | grep -q "Thunderbolt Bridge"; then
networksetup -setnetworkserviceenabled "Thunderbolt Bridge" on 2>/dev/null || true
echo_info "Re-enabled Thunderbolt Bridge"
fi
# Note about launch at login registration
# SMAppService-based login items cannot be removed from a shell script.
# They can only be unregistered from within the app itself or manually via System Settings.
echo_warn "Launch at login must be removed manually:"
echo_warn " System Settings → General → Login Items → Remove EXO"
# Check if EXO.app exists in common locations
APP_FOUND=false
for app_path in "/Applications/EXO.app" "$HOME/Applications/EXO.app"; do
if [[ -d "$app_path" ]]; then
if [[ "$APP_FOUND" == false ]]; then
echo ""
APP_FOUND=true
fi
echo_warn "EXO.app found at: $app_path"
echo_warn "You may want to move it to Trash manually."
fi
done
echo ""
echo "========================================"
echo_info "EXO uninstall complete!"
echo "========================================"
echo ""
echo "The following have been removed:"
echo " • Network setup LaunchDaemon"
echo " • Network configuration script"
echo " • Log files"
echo " • 'exo' network location"
echo ""
echo "Your network has been restored to use the 'Automatic' location."
echo "Thunderbolt Bridge has been re-enabled (if present)."
echo ""
echo "Manual step required:"
echo " Remove EXO from Login Items in System Settings → General → Login Items"
echo ""

60
dashboard/dashboard.nix Normal file
View File

@@ -0,0 +1,60 @@
{ lib
, config
, dream2nix
, ...
}:
let
# Read and parse the lock file
rawLockFile = builtins.fromJSON (builtins.readFile "${config.deps.dashboardSrc}/package-lock.json");
# For packages with bundleDependencies, filter out deps that are bundled
# (bundled deps are inside the tarball, not separate lockfile entries)
fixedPackages = lib.mapAttrs
(path: entry:
if entry ? bundleDependencies && entry.bundleDependencies != [ ]
then entry // {
dependencies = lib.filterAttrs
(name: _: !(lib.elem name entry.bundleDependencies))
(entry.dependencies or { });
}
else entry
)
(rawLockFile.packages or { });
fixedLockFile = rawLockFile // { packages = fixedPackages; };
in
{
imports = [
dream2nix.modules.dream2nix.nodejs-package-lock-v3
dream2nix.modules.dream2nix.nodejs-granular-v3
];
name = "exo-dashboard";
version = "1.0.0";
mkDerivation = {
src = config.deps.dashboardSrc;
buildPhase = ''
runHook preBuild
npm run build
runHook postBuild
'';
installPhase = ''
runHook preInstall
cp -r build $out/build
runHook postInstall
'';
};
deps = { nixpkgs, ... }: {
inherit (nixpkgs) stdenv;
dashboardSrc = null; # Injected by parts.nix
};
nodejs-package-lock-v3 = {
# Don't use packageLockFile - provide the fixed lock content directly
packageLock = fixedLockFile;
};
}

View File

@@ -863,6 +863,7 @@
"integrity": "sha512-oH8tXw7EZnie8FdOWYrF7Yn4IKrqTFHhXvl8YxXxbKwTMcD/5NNCryUSEXRk2ZR4ojnub0P8rNrsVGHXWqIDtA==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"@standard-schema/spec": "^1.0.0",
"@sveltejs/acorn-typescript": "^1.0.5",
@@ -902,6 +903,7 @@
"integrity": "sha512-Y1Cs7hhTc+a5E9Va/xwKlAJoariQyHY+5zBgCZg4PFWNYQ1nMN9sjK1zhw1gK69DuqVP++sht/1GZg1aRwmAXQ==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"@sveltejs/vite-plugin-svelte-inspector": "^4.0.1",
"debug": "^4.4.1",
@@ -1518,6 +1520,7 @@
"integrity": "sha512-LCCV0HdSZZZb34qifBsyWlUmok6W7ouER+oQIGBScS8EsZsQbrtFTUrDX4hOl+CS6p7cnNC4td+qrSVGSCTUfQ==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"undici-types": "~6.21.0"
}
@@ -1527,6 +1530,7 @@
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz",
"integrity": "sha512-NZyJarBfL7nWwIq+FDL6Zp/yHEhePMNnnJ0y3qfieCrmNvYct8uvtiV41UvlSe6apAfk0fY1FbWx+NwfmpvtTg==",
"license": "MIT",
"peer": true,
"bin": {
"acorn": "bin/acorn"
},
@@ -1939,6 +1943,7 @@
"integrity": "sha512-fmTRWbNMmsmWq6xJV8D19U/gw/bwrHfNXxrIN+HfZgnzqTHp9jOmKMhsTUjXOJnZOdZY9Q28y4yebKzqDKlxlQ==",
"dev": true,
"license": "ISC",
"peer": true,
"engines": {
"node": ">=12"
}
@@ -2646,6 +2651,7 @@
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
"dev": true,
"license": "MIT",
"peer": true,
"engines": {
"node": ">=12"
},
@@ -2833,6 +2839,7 @@
"resolved": "https://registry.npmjs.org/svelte/-/svelte-5.45.3.tgz",
"integrity": "sha512-ngKXNhNvwPzF43QqEhDOue7TQTrG09em1sd4HBxVF0Wr2gopAmdEWan+rgbdgK4fhBtSOTJO8bYU4chUG7VXZQ==",
"license": "MIT",
"peer": true,
"dependencies": {
"@jridgewell/remapping": "^2.3.4",
"@jridgewell/sourcemap-codec": "^1.5.0",
@@ -2977,6 +2984,7 @@
"integrity": "sha512-jl1vZzPDinLr9eUt3J/t7V6FgNEw9QjvBPdysz9KfQDD41fQrC2Y4vKQdiaUpFT4bXlb1RHhLpp8wtm6M5TgSw==",
"dev": true,
"license": "Apache-2.0",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
@@ -2998,6 +3006,7 @@
"integrity": "sha512-+Oxm7q9hDoLMyJOYfUYBuHQo+dkAloi33apOPP56pzj+vsdJDzr+j1NISE5pyaAuKL4A3UD34qd0lx5+kfKp2g==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"esbuild": "^0.25.0",
"fdir": "^6.4.4",

44
dashboard/parts.nix Normal file
View File

@@ -0,0 +1,44 @@
{ inputs, ... }:
{
perSystem =
{ pkgs, lib, ... }:
let
# Filter source to only include dashboard directory
src = lib.cleanSourceWith {
src = inputs.self;
filter =
path: type:
let
baseName = builtins.baseNameOf path;
inDashboardDir =
(lib.hasInfix "/dashboard/" path)
|| (lib.hasSuffix "/dashboard" (builtins.dirOf path))
|| (baseName == "dashboard" && type == "directory");
in
inDashboardDir;
};
# Build the dashboard with dream2nix (includes node_modules in output)
dashboardFull = inputs.dream2nix.lib.evalModules {
packageSets.nixpkgs = pkgs;
modules = [
./dashboard.nix
{
paths.projectRoot = inputs.self;
paths.projectRootFile = "flake.nix";
paths.package = inputs.self + "/dashboard";
}
# Inject the filtered source
{
deps.dashboardSrc = lib.mkForce "${src}/dashboard";
}
];
};
in
{
# Extract just the static site from the full build
packages.dashboard = pkgs.runCommand "exo-dashboard" { } ''
cp -r ${dashboardFull}/build $out
'';
};
}

View File

@@ -60,12 +60,39 @@
return models;
});
// Auto-select the first available model if none is selected
// Track previous model IDs to detect newly added models (plain variable to avoid reactive loop)
let previousModelIds: Set<string> = new Set();
// Auto-select the first available model if none is selected, if current selection is stale, or if a new model is added
$effect(() => {
const models = availableModels();
if (models.length > 0 && !currentModel) {
setSelectedChatModel(models[0].id);
const currentModelIds = new Set(models.map(m => m.id));
if (models.length > 0) {
// Find newly added models (in current but not in previous)
const newModels = models.filter(m => !previousModelIds.has(m.id));
// If no model selected, select the first available
if (!currentModel) {
setSelectedChatModel(models[0].id);
}
// If current model is stale (no longer has a running instance), reset to first available
else if (!models.some(m => m.id === currentModel)) {
setSelectedChatModel(models[0].id);
}
// If a new model was just added, select it
else if (newModels.length > 0 && previousModelIds.size > 0) {
setSelectedChatModel(newModels[0].id);
}
} else {
// No instances running - clear the selected model
if (currentModel) {
setSelectedChatModel('');
}
}
// Update previous model IDs for next comparison
previousModelIds = currentModelIds;
});
function getInstanceModelId(instanceWrapped: unknown): string {

View File

@@ -400,10 +400,8 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const errorText = await response.text();
console.error('Failed to launch instance:', errorText);
} else {
// Auto-select the launched model only if no model is currently selected
if (!selectedChatModel()) {
setSelectedChatModel(modelId);
}
// Always auto-select the newly launched model so the user chats to what they just launched
setSelectedChatModel(modelId);
// Scroll to the bottom of instances container to show the new instance
// Use multiple attempts to ensure DOM has updated with the new instance
@@ -593,7 +591,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
// Unwrap the instance
const [instanceTag, instance] = getTagged(instanceWrapped);
if (!instance || typeof instance !== 'object') {
return { isDownloading: false, progress: null, statusText: 'UNKNOWN', perNode: [] };
return { isDownloading: false, progress: null, statusText: 'PREPARING', perNode: [] };
}
const inst = instance as { shardAssignments?: { nodeToRunner?: Record<string, string>; runnerToShard?: Record<string, unknown>; modelId?: string } };
@@ -706,7 +704,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
function deriveInstanceStatus(instanceWrapped: unknown): { statusText: string; statusClass: string } {
const [, instance] = getTagged(instanceWrapped);
if (!instance || typeof instance !== 'object') {
return { statusText: 'UNKNOWN', statusClass: 'inactive' };
return { statusText: 'PREPARING', statusClass: 'inactive' };
}
const inst = instance as { shardAssignments?: { runnerToShard?: Record<string, unknown> } };
@@ -735,7 +733,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const has = (s: string) => statuses.includes(s);
if (statuses.length === 0) return { statusText: 'UNKNOWN', statusClass: 'inactive' };
if (statuses.length === 0) return { statusText: 'PREPARING', statusClass: 'inactive' };
if (has('Failed')) return { statusText: 'FAILED', statusClass: 'failed' };
if (has('Shutdown')) return { statusText: 'SHUTDOWN', statusClass: 'inactive' };
if (has('Loading')) return { statusText: 'LOADING', statusClass: 'starting' };
@@ -763,6 +761,10 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
async function deleteInstance(instanceId: string) {
if (!confirm(`Delete instance ${instanceId.slice(0, 8)}...?`)) return;
// Get the model ID of the instance being deleted before we delete it
const deletedInstanceModelId = getInstanceModelId(instanceData[instanceId]);
const wasSelected = selectedChatModel() === deletedInstanceModelId;
try {
const response = await fetch(`/instance/${instanceId}`, {
method: 'DELETE',
@@ -771,6 +773,24 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
if (!response.ok) {
console.error('Failed to delete instance:', response.status);
} else if (wasSelected) {
// If we deleted the currently selected model, switch to another available model
// Find another instance that isn't the one we just deleted
const remainingInstances = Object.entries(instanceData).filter(([id]) => id !== instanceId);
if (remainingInstances.length > 0) {
// Select the last instance (most recently added, since objects preserve insertion order)
const [, lastInstance] = remainingInstances[remainingInstances.length - 1];
const newModelId = getInstanceModelId(lastInstance);
if (newModelId && newModelId !== 'Unknown' && newModelId !== 'Unknown Model') {
setSelectedChatModel(newModelId);
} else {
// Clear selection if no valid model found
setSelectedChatModel('');
}
} else {
// No more instances, clear the selection
setSelectedChatModel('');
}
}
} catch (error) {
console.error('Error deleting instance:', error);
@@ -1267,9 +1287,9 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
<div class="flex-1 h-px bg-gradient-to-r from-exo-yellow/30 to-transparent"></div>
</div>
<div
<div
bind:this={instancesContainerRef}
class="max-h-72 space-y-3 overflow-y-auto"
class="max-h-72 xl:max-h-96 space-y-3 overflow-y-auto overflow-x-hidden py-px"
>
{#each Object.entries(instanceData) as [id, instance]}
{@const downloadInfo = getInstanceDownloadStatus(id, instance)}
@@ -1773,7 +1793,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
<h3 class="text-xs text-exo-yellow font-mono tracking-[0.2em] uppercase">Instances</h3>
<div class="flex-1 h-px bg-gradient-to-r from-exo-yellow/30 to-transparent"></div>
</div>
<div class="space-y-3 max-h-72 overflow-y-auto pr-1">
<div class="space-y-3 max-h-72 xl:max-h-96 overflow-y-auto overflow-x-hidden py-px pr-1">
{#each Object.entries(instanceData) as [id, instance]}
{@const downloadInfo = getInstanceDownloadStatus(id, instance)}
{@const statusText = downloadInfo.statusText}

View File

@@ -199,7 +199,13 @@
const rawProgress = (downloadPayload as Record<string, unknown>).download_progress
?? (downloadPayload as Record<string, unknown>).downloadProgress
?? {};
const totalBytes = getBytes((rawProgress as Record<string, unknown>).total_bytes ?? (rawProgress as Record<string, unknown>).totalBytes);
// For DownloadCompleted, total_bytes is at top level; for DownloadOngoing, it's inside download_progress
const totalBytes = getBytes(
(downloadPayload as Record<string, unknown>).total_bytes
?? (downloadPayload as Record<string, unknown>).totalBytes
?? (rawProgress as Record<string, unknown>).total_bytes
?? (rawProgress as Record<string, unknown>).totalBytes
);
const downloadedBytes = getBytes((rawProgress as Record<string, unknown>).downloaded_bytes ?? (rawProgress as Record<string, unknown>).downloadedBytes);
const speed = (rawProgress as Record<string, unknown>).speed as number ?? 0;
const etaMs = (rawProgress as Record<string, unknown>).eta_ms as number ?? (rawProgress as Record<string, unknown>).etaMs as number ?? 0;
@@ -332,8 +338,13 @@
<div class="text-lg font-mono text-white truncate">{node.nodeName}</div>
<div class="text-xs text-exo-light-gray font-mono truncate">{node.nodeId}</div>
</div>
<div class="text-xs font-mono uppercase tracking-wider whitespace-nowrap shrink-0">
<span class="text-green-400">{node.models.filter(m => m.status === 'completed').length}</span><span class="text-exo-yellow"> /{node.models.length} models</span>
<div class="text-xs font-mono uppercase tracking-wider whitespace-nowrap shrink-0 text-right">
<div>
<span class="text-green-400">{node.models.filter(m => m.status === 'completed').length}</span><span class="text-exo-yellow"> / {node.models.length} models</span>
</div>
<div class="text-exo-light-gray normal-case tracking-normal">
{formatBytes(node.models.filter(m => m.status === 'completed').reduce((sum, m) => sum + m.totalBytes, 0))} on disk
</div>
</div>
</div>
@@ -385,7 +396,7 @@
</div>
<div class="flex items-center justify-between text-xs font-mono text-exo-light-gray">
<span>{model.status === 'completed' ? 'Completed' : `${formatSpeed(model.speed)} ETA ${formatEta(model.etaMs)}`}</span>
<span>{model.status === 'completed' ? `Completed (${formatBytes(model.totalBytes)})` : `${formatSpeed(model.speed)} ETA ${formatEta(model.etaMs)}`}</span>
{#if model.status !== 'completed'}
<span>{model.files.length} file{model.files.length === 1 ? '' : 's'}</span>
{/if}

212
docs/api.md Normal file
View File

@@ -0,0 +1,212 @@
# EXO API Technical Reference
This document describes the REST API exposed by the **EXO ** service, as implemented in:
`src/exo/master/api.py`
The API is used to manage model instances in the cluster, inspect cluster state, and perform inference using an OpenAI-compatible interface.
Base URL example:
```
http://localhost:52415
```
## 1. General / Meta Endpoints
### Get Master Node ID
**GET** `/node_id`
Returns the identifier of the current master node.
**Response (example):**
```json
{
"node_id": "node-1234"
}
```
### Get Cluster State
**GET** `/state`
Returns the current state of the cluster, including nodes and active instances.
**Response:**
JSON object describing topology, nodes, and instances.
### Get Events
**GET** `/events`
Returns the list of internal events recorded by the master (mainly for debugging and observability).
**Response:**
Array of event objects.
## 2. Model Instance Management
### Create Instance
**POST** `/instance`
Creates a new model instance in the cluster.
**Request body (example):**
```json
{
"instance": {
"model_id": "llama-3.2-1b",
"placement": { }
}
}
```
**Response:**
JSON description of the created instance.
### Delete Instance
**DELETE** `/instance/{instance_id}`
Deletes an existing instance by ID.
**Path parameters:**
* `instance_id`: string, ID of the instance to delete
**Response:**
Status / confirmation JSON.
### Get Instance
**GET** `/instance/{instance_id}`
Returns details of a specific instance.
**Path parameters:**
* `instance_id`: string
**Response:**
JSON description of the instance.
### Preview Placements
**GET** `/instance/previews?model_id=...`
Returns possible placement previews for a given model.
**Query parameters:**
* `model_id`: string, required
**Response:**
Array of placement preview objects.
### Compute Placement
**GET** `/instance/placement`
Computes a placement for a potential instance without creating it.
**Query parameters (typical):**
* `model_id`: string
* `sharding`: string or config
* `instance_meta`: JSON-encoded metadata
* `min_nodes`: integer
**Response:**
JSON object describing the proposed placement / instance configuration.
### Place Instance (Dry Operation)
**POST** `/place_instance`
Performs a placement operation for an instance (planning step), without necessarily creating it.
**Request body:**
JSON describing the instance to be placed.
**Response:**
Placement result.
## 3. Models
### List Models
**GET** `/models`
**GET** `/v1/models` (alias)
Returns the list of available models and their metadata.
**Response:**
Array of model descriptors.
## 4. Inference / Chat Completions
### OpenAI-Compatible Chat Completions
**POST** `/v1/chat/completions`
Executes a chat completion request using an OpenAI-compatible schema. Supports streaming and non-streaming modes.
**Request body (example):**
```json
{
"model": "llama-3.2-1b",
"messages": [
{ "role": "system", "content": "You are a helpful assistant." },
{ "role": "user", "content": "Hello" }
],
"stream": false
}
```
**Response:**
OpenAI-compatible chat completion response.
### Benchmarked Chat Completions
**POST** `/bench/chat/completions`
Same as `/v1/chat/completions`, but also returns performance and generation statistics.
**Request body:**
Same schema as `/v1/chat/completions`.
**Response:**
Chat completion plus benchmarking metrics.
## 5. Complete Endpoint Summary
```
GET /node_id
GET /state
GET /events
POST /instance
GET /instance/{instance_id}
DELETE /instance/{instance_id}
GET /instance/previews
GET /instance/placement
POST /place_instance
GET /models
GET /v1/models
POST /v1/chat/completions
POST /bench/chat/completions
```
## 6. Notes
* The `/v1/chat/completions` endpoint is compatible with the OpenAI API format, so existing OpenAI clients can be pointed to EXO by changing the base URL.
* The instance placement endpoints allow you to plan and preview cluster allocations before actually creating instances.
* The `/events` and `/state` endpoints are primarily intended for operational visibility and debugging.

185
flake.lock generated
View File

@@ -1,5 +1,42 @@
{
"nodes": {
"crane": {
"locked": {
"lastModified": 1767744144,
"narHash": "sha256-9/9ntI0D+HbN4G0TrK3KmHbTvwgswz7p8IEJsWyef8Q=",
"owner": "ipetkov",
"repo": "crane",
"rev": "2fb033290bf6b23f226d4c8b32f7f7a16b043d7e",
"type": "github"
},
"original": {
"owner": "ipetkov",
"repo": "crane",
"type": "github"
}
},
"dream2nix": {
"inputs": {
"nixpkgs": [
"nixpkgs"
],
"purescript-overlay": "purescript-overlay",
"pyproject-nix": "pyproject-nix"
},
"locked": {
"lastModified": 1765953015,
"narHash": "sha256-5FBZbbWR1Csp3Y2icfRkxMJw/a/5FGg8hCXej2//bbI=",
"owner": "nix-community",
"repo": "dream2nix",
"rev": "69eb01fa0995e1e90add49d8ca5bcba213b0416f",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "dream2nix",
"type": "github"
}
},
"fenix": {
"inputs": {
"nixpkgs": [
@@ -8,11 +45,11 @@
"rust-analyzer-src": "rust-analyzer-src"
},
"locked": {
"lastModified": 1761893049,
"narHash": "sha256-1TtFDPhC+ZsrOOtBnry1EZC+WipTTvsOVjIEVugqji8=",
"lastModified": 1768287139,
"narHash": "sha256-nsXFt0OzUi6K7dUzzJD5/v9e0Ic+fvclfIW936/43ZM=",
"owner": "nix-community",
"repo": "fenix",
"rev": "c2ac9a5c0d6d16630c3b225b874bd14528d1abe6",
"rev": "a4a3aa956931f90f35453cb519e4545e9ad7f773",
"type": "github"
},
"original": {
@@ -21,25 +58,59 @@
"type": "github"
}
},
"flake-utils": {
"inputs": {
"systems": "systems"
},
"flake-compat": {
"flake": false,
"locked": {
"lastModified": 1731533236,
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
"lastModified": 1696426674,
"narHash": "sha256-kvjfFW7WAETZlt09AgDn1MrtKzP7t90Vf7vypd3OL1U=",
"owner": "edolstra",
"repo": "flake-compat",
"rev": "0f9255e01c2351cc7d116c072cb317785dd33b33",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"owner": "edolstra",
"repo": "flake-compat",
"type": "github"
}
},
"flake-parts": {
"inputs": {
"nixpkgs-lib": [
"nixpkgs"
]
},
"locked": {
"lastModified": 1768135262,
"narHash": "sha256-PVvu7OqHBGWN16zSi6tEmPwwHQ4rLPU9Plvs8/1TUBY=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "80daad04eddbbf5a4d883996a73f3f542fa437ac",
"type": "github"
},
"original": {
"owner": "hercules-ci",
"repo": "flake-parts",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1768127708,
"narHash": "sha256-1Sm77VfZh3mU0F5OqKABNLWxOuDeHIlcFjsXeeiPazs=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "ffbc9f8cbaacfb331b6017d5a5abb21a492c9a38",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-swift": {
"locked": {
"lastModified": 1761672384,
"narHash": "sha256-o9KF3DJL7g7iYMZq9SWgfS1BFlNbsm6xplRjVlOCkXI=",
@@ -50,27 +121,74 @@
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"rev": "08dacfca559e1d7da38f3cf05f1f45ee9bfd213c",
"type": "github"
}
},
"purescript-overlay": {
"inputs": {
"flake-compat": "flake-compat",
"nixpkgs": [
"dream2nix",
"nixpkgs"
],
"slimlock": "slimlock"
},
"locked": {
"lastModified": 1728546539,
"narHash": "sha256-Sws7w0tlnjD+Bjck1nv29NjC5DbL6nH5auL9Ex9Iz2A=",
"owner": "thomashoneyman",
"repo": "purescript-overlay",
"rev": "4ad4c15d07bd899d7346b331f377606631eb0ee4",
"type": "github"
},
"original": {
"owner": "thomashoneyman",
"repo": "purescript-overlay",
"type": "github"
}
},
"pyproject-nix": {
"inputs": {
"nixpkgs": [
"dream2nix",
"nixpkgs"
]
},
"locked": {
"lastModified": 1763017646,
"narHash": "sha256-Z+R2lveIp6Skn1VPH3taQIuMhABg1IizJd8oVdmdHsQ=",
"owner": "pyproject-nix",
"repo": "pyproject.nix",
"rev": "47bd6f296502842643078d66128f7b5e5370790c",
"type": "github"
},
"original": {
"owner": "pyproject-nix",
"repo": "pyproject.nix",
"type": "github"
}
},
"root": {
"inputs": {
"crane": "crane",
"dream2nix": "dream2nix",
"fenix": "fenix",
"flake-utils": "flake-utils",
"flake-parts": "flake-parts",
"nixpkgs": "nixpkgs",
"nixpkgs-swift": "nixpkgs-swift",
"treefmt-nix": "treefmt-nix"
}
},
"rust-analyzer-src": {
"flake": false,
"locked": {
"lastModified": 1761849405,
"narHash": "sha256-igXdvC+WCUN+3gnfk+ptT7rMmxQuY6WbIg1rXMUN1DM=",
"lastModified": 1768224240,
"narHash": "sha256-Pp1dDrXKPBUJReZnnDElFyHYn67XTd48zRhToheLjtk=",
"owner": "rust-lang",
"repo": "rust-analyzer",
"rev": "f7de8ae045a5fe80f1203c5a1c3015b05f7c3550",
"rev": "725349602e525df37f377701e001fe8aab807878",
"type": "github"
},
"original": {
@@ -80,18 +198,25 @@
"type": "github"
}
},
"systems": {
"slimlock": {
"inputs": {
"nixpkgs": [
"dream2nix",
"purescript-overlay",
"nixpkgs"
]
},
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"lastModified": 1688756706,
"narHash": "sha256-xzkkMv3neJJJ89zo3o2ojp7nFeaZc2G0fYwNXNJRFlo=",
"owner": "thomashoneyman",
"repo": "slimlock",
"rev": "cf72723f59e2340d24881fd7bf61cb113b4c407c",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"owner": "thomashoneyman",
"repo": "slimlock",
"type": "github"
}
},
@@ -102,11 +227,11 @@
]
},
"locked": {
"lastModified": 1762938485,
"narHash": "sha256-AlEObg0syDl+Spi4LsZIBrjw+snSVU4T8MOeuZJUJjM=",
"lastModified": 1768158989,
"narHash": "sha256-67vyT1+xClLldnumAzCTBvU0jLZ1YBcf4vANRWP3+Ak=",
"owner": "numtide",
"repo": "treefmt-nix",
"rev": "5b4ee75aeefd1e2d5a1cc43cf6ba65eba75e83e4",
"rev": "e96d59dff5c0d7fddb9d113ba108f03c3ef99eca",
"type": "github"
},
"original": {

207
flake.nix
View File

@@ -3,129 +3,134 @@
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
flake-utils.url = "github:numtide/flake-utils";
# Provides Rust dev-env integration:
flake-parts = {
url = "github:hercules-ci/flake-parts";
inputs.nixpkgs-lib.follows = "nixpkgs";
};
crane.url = "github:ipetkov/crane";
fenix = {
url = "github:nix-community/fenix";
inputs.nixpkgs.follows = "nixpkgs";
};
# Provides formatting infrastructure:
treefmt-nix = {
url = "github:numtide/treefmt-nix";
inputs.nixpkgs.follows = "nixpkgs";
};
dream2nix = {
url = "github:nix-community/dream2nix";
inputs.nixpkgs.follows = "nixpkgs";
};
# Pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
nixpkgs-swift.url = "github:NixOS/nixpkgs/08dacfca559e1d7da38f3cf05f1f45ee9bfd213c";
};
# TODO: figure out caching story
# nixConfig = {
# # nix community cachix
# extra-trusted-public-keys = "nix-community.cachix.org-1:mB9FSh9qf2dCimDSUo8Zy7bkq5CX+/rkCWyvRCYg3Fs=";
# extra-substituters = "https://nix-community.cachix.org";
# };
nixConfig = {
extra-trusted-public-keys = "exo.cachix.org-1:okq7hl624TBeAR3kV+g39dUFSiaZgLRkLsFBCuJ2NZI=";
extra-substituters = "https://exo.cachix.org";
};
outputs =
inputs:
let
inputs.flake-parts.lib.mkFlake { inherit inputs; } {
systems = [
"x86_64-linux"
"aarch64-darwin"
"aarch64-linux"
];
fenixToolchain = system: inputs.fenix.packages.${system}.complete;
in
inputs.flake-utils.lib.eachSystem systems (
system:
let
pkgs = import inputs.nixpkgs {
inherit system;
overlays = [ inputs.fenix.overlays.default ];
};
treefmtEval = inputs.treefmt-nix.lib.evalModule pkgs {
projectRootFile = "flake.nix";
programs = {
nixpkgs-fmt.enable = true;
ruff-format = {
enable = true;
excludes = [ "rust/exo_pyo3_bindings/exo_pyo3_bindings.pyi" ];
imports = [
inputs.treefmt-nix.flakeModule
./dashboard/parts.nix
./rust/parts.nix
];
perSystem =
{ config, self', inputs', pkgs, lib, system, ... }:
let
fenixToolchain = inputs'.fenix.packages.complete;
# Use pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
pkgsSwift = import inputs.nixpkgs-swift { inherit system; };
in
{
treefmt = {
projectRootFile = "flake.nix";
programs = {
nixpkgs-fmt.enable = true;
ruff-format = {
enable = true;
excludes = [ "rust/exo_pyo3_bindings/exo_pyo3_bindings.pyi" ];
};
rustfmt = {
enable = true;
package = config.rust.toolchain;
};
prettier = {
enable = true;
includes = [ "*.ts" ];
};
swift-format = {
enable = true;
package = pkgsSwift.swiftPackages.swift-format;
};
};
rustfmt = {
enable = true;
package = (fenixToolchain system).rustfmt;
};
prettier = {
enable = true;
includes = [ "*.ts" ];
};
swift-format.enable = true;
};
};
in
{
formatter = treefmtEval.config.build.wrapper;
checks.formatting = treefmtEval.config.build.check inputs.self;
checks.lint = pkgs.runCommand "lint-check" { } ''
export RUFF_CACHE_DIR="$TMPDIR/ruff-cache"
${pkgs.ruff}/bin/ruff check ${inputs.self}/
touch $out
'';
devShells.default = pkgs.mkShell {
packages =
with pkgs;
[
# PYTHON
python313
uv
ruff
basedpyright
# RUST
((fenixToolchain system).withComponents [
"cargo"
"rustc"
"clippy"
"rustfmt"
"rust-src"
])
rustup # Just here to make RustRover happy
# NIX
nixpkgs-fmt
# SVELTE
nodejs
# MISC
just
jq
]
++ (pkgs.lib.optionals pkgs.stdenv.isLinux [
# IFCONFIG
unixtools.ifconfig
# Build dependencies for Linux
pkg-config
openssl
])
++ (pkgs.lib.optionals pkgs.stdenv.isDarwin [
# MACMON
macmon
]);
shellHook = ''
# PYTHON
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:${pkgs.python313}/lib"
${pkgs.lib.optionalString pkgs.stdenv.isLinux ''
# Build environment for Linux
export PKG_CONFIG_PATH="${pkgs.openssl.dev}/lib/pkgconfig:$PKG_CONFIG_PATH"
export LD_LIBRARY_PATH="${pkgs.openssl.out}/lib:$LD_LIBRARY_PATH"
''}
echo
echo "🍎🍎 Run 'just <recipe>' to get started"
just --list
checks.lint = pkgs.runCommand "lint-check" { } ''
export RUFF_CACHE_DIR="$TMPDIR/ruff-cache"
${pkgs.ruff}/bin/ruff check ${inputs.self}/
touch $out
'';
devShells.default = with pkgs; pkgs.mkShell {
inputsFrom = [ self'.checks.cargo-build ];
packages =
[
# FORMATTING
config.treefmt.build.wrapper
# PYTHON
python313
uv
ruff
basedpyright
# RUST
config.rust.toolchain
maturin
# NIX
nixpkgs-fmt
# SVELTE
nodejs
# MISC
just
jq
]
++ lib.optionals stdenv.isLinux [
unixtools.ifconfig
]
++ lib.optionals stdenv.isDarwin [
macmon
];
OPENSSL_NO_VENDOR = "1";
shellHook = ''
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:${python313}/lib"
${lib.optionalString stdenv.isLinux ''
export LD_LIBRARY_PATH="${openssl.out}/lib:$LD_LIBRARY_PATH"
''}
'';
};
};
}
);
};
}

View File

@@ -1,3 +1,5 @@
export NIX_CONFIG := "extra-experimental-features = nix-command flakes"
fmt:
nix fmt

View File

@@ -8,30 +8,18 @@ dependencies = [
"aiofiles>=24.1.0",
"aiohttp>=3.12.14",
"types-aiofiles>=24.1.0.20250708",
"typeguard>=4.4.4",
"pydantic>=2.11.7",
"base58>=2.1.1",
"cryptography>=45.0.5",
"fastapi>=0.116.1",
"filelock>=3.18.0",
"aiosqlite>=0.21.0",
"networkx>=3.5",
"protobuf>=6.32.0",
"rich>=14.1.0",
"rustworkx>=0.17.1",
"sqlmodel>=0.0.24",
"sqlalchemy[asyncio]>=2.0.43",
"greenlet>=3.2.4",
"huggingface-hub>=0.33.4",
"psutil>=7.0.0",
"loguru>=0.7.3",
"textual>=5.3.0",
"exo_pyo3_bindings", # rust bindings
"anyio==4.11.0",
"bidict>=0.23.1",
"mlx>=0.30.1; sys_platform == 'darwin'",
"mlx[cpu]>=0.30.1; sys_platform == 'linux'",
"mlx-lm>=0.28.3",
"mlx==0.30.1; sys_platform == 'darwin'",
"mlx[cpu]==0.30.1; sys_platform == 'linux'",
"mlx-lm @ git+https://github.com/AlexCheema/mlx-lm.git@fix-transformers-5.0.0rc2",
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
"hypercorn>=0.18.0",
"openai-harmony>=0.0.8",
@@ -45,6 +33,7 @@ exo = "exo.main:main"
# dependencies only required for development
[dependency-groups]
dev = [
"basedpyright>=1.29.0",
"pyinstaller>=6.17.0",
"pytest>=8.4.0",
"pytest-asyncio>=1.0.0",
@@ -110,6 +99,7 @@ root = "src"
# supported platforms for this project
[tool.uv]
prerelease = "allow"
environments = [
"sys_platform == 'darwin'",
"sys_platform == 'linux'",

145
rust/parts.nix Normal file
View File

@@ -0,0 +1,145 @@
{ inputs, ... }:
{
perSystem =
{ config, self', inputs', pkgs, lib, ... }:
let
# Fenix nightly toolchain with all components
fenixPkgs = inputs'.fenix.packages;
rustToolchain = fenixPkgs.complete.withComponents [
"cargo"
"rustc"
"clippy"
"rustfmt"
"rust-src"
"rust-analyzer"
];
# Crane with fenix toolchain
craneLib = (inputs.crane.mkLib pkgs).overrideToolchain rustToolchain;
# Source filtering - only include rust/ directory and root Cargo files
# This ensures changes to Python/docs/etc don't trigger Rust rebuilds
src = lib.cleanSourceWith {
src = inputs.self;
filter =
path: type:
let
baseName = builtins.baseNameOf path;
parentDir = builtins.dirOf path;
inRustDir =
(lib.hasInfix "/rust/" path)
|| (lib.hasSuffix "/rust" parentDir)
|| (baseName == "rust" && type == "directory");
isRootCargoFile =
(baseName == "Cargo.toml" || baseName == "Cargo.lock")
&& (builtins.dirOf path == toString inputs.self);
in
isRootCargoFile
|| (inRustDir && (craneLib.filterCargoSources path type || lib.hasSuffix ".toml" path || lib.hasSuffix ".md" path));
};
# Common arguments for all Rust builds
commonArgs = {
inherit src;
pname = "exo-rust";
version = "0.0.1";
strictDeps = true;
nativeBuildInputs = [
pkgs.pkg-config
pkgs.python313 # Required for pyo3-build-config
];
buildInputs = [
pkgs.openssl
pkgs.python313 # Required for pyo3 tests
];
OPENSSL_NO_VENDOR = "1";
# Required for pyo3 tests to find libpython
LD_LIBRARY_PATH = lib.makeLibraryPath [ pkgs.python313 ];
};
# Build dependencies once for caching
cargoArtifacts = craneLib.buildDepsOnly (
commonArgs
// {
cargoExtraArgs = "--workspace";
}
);
in
{
# Export toolchain for use in treefmt and devShell
options.rust = {
toolchain = lib.mkOption {
type = lib.types.package;
default = rustToolchain;
description = "The Rust toolchain to use";
};
};
config = {
packages = {
# Python bindings wheel via maturin
exo_pyo3_bindings = craneLib.buildPackage (
commonArgs
// {
inherit cargoArtifacts;
pname = "exo_pyo3_bindings";
nativeBuildInputs = commonArgs.nativeBuildInputs ++ [
pkgs.maturin
];
buildPhaseCargoCommand = ''
maturin build \
--release \
--manylinux off \
--manifest-path rust/exo_pyo3_bindings/Cargo.toml \
--features "pyo3/extension-module,pyo3/experimental-async" \
--interpreter ${pkgs.python313}/bin/python \
--out dist
'';
# Don't use crane's default install behavior
doNotPostBuildInstallCargoBinaries = true;
installPhaseCommand = ''
mkdir -p $out
cp dist/*.whl $out/
'';
}
);
};
checks = {
# Full workspace build (all crates)
cargo-build = craneLib.buildPackage (
commonArgs
// {
inherit cargoArtifacts;
cargoExtraArgs = "--workspace";
}
);
# Run tests with nextest
cargo-nextest = craneLib.cargoNextest (
commonArgs
// {
inherit cargoArtifacts;
cargoExtraArgs = "--workspace";
}
);
# Build documentation
cargo-doc = craneLib.cargoDoc (
commonArgs
// {
inherit cargoArtifacts;
cargoExtraArgs = "--workspace";
}
);
};
};
};
}

View File

@@ -1,47 +0,0 @@
[package]
name = "system_custodian"
version = { workspace = true }
edition = { workspace = true }
publish = false
[lib]
doctest = false
name = "system_custodian"
path = "src/lib.rs"
[[bin]]
path = "src/bin/main.rs"
name = "system_custodian"
doc = false
[lints]
workspace = true
[dependencies]
# datastructures
either = { workspace = true }
# macro dependencies
extend = { workspace = true }
delegate = { workspace = true }
impl-trait-for-tuples = { workspace = true }
derive_more = { workspace = true }
# async
tokio = { workspace = true, features = ["full"] }
futures = { workspace = true }
futures-timer = { workspace = true }
# utility dependencies
util = { workspace = true }
thiserror = { workspace = true }
#internment = { workspace = true }
#recursion = { workspace = true }
#generativity = { workspace = true }
#itertools = { workspace = true }
tracing-subscriber = { version = "0.3.19", features = ["default", "env-filter"] }
keccak-const = { workspace = true }
# tracing/logging
log = { workspace = true }

View File

@@ -1,4 +0,0 @@
//! TODO: documentation
//!
fn main() {}

View File

@@ -1,69 +0,0 @@
//! This crate defines the logic of, and ways to interact with, Exo's **_System Custodian_** daemon.
//!
//! The **_System Custodian_** daemon is supposed to be a long-living process that precedes the
//! launch of the Exo application, and responsible for ensuring the system (configuration, settings,
//! etc.) is in an appropriate state to facilitate the running of Exo application.
//! The **_System Custodian_** daemon shall expose a [D-Bus](https://www.freedesktop.org/wiki/Software/dbus/)
//! service which Exo application use to _control & query_ it.
//!
//! # Lifecycle
//! When the Exo application starts, it will _wake_ the **_System Custodian_** daemon for the
//! duration of its lifetime, and after it has terminated the daemon will go back to sleep. When
//! the daemon wakes up, it will configure the system into a state suitable for the Exo Application;
//! When the daemon goes to sleep, it will revert those changes as much as it can in case they were
//! destructive to the user's pre-existing configurations.
//!
//! # Responsibilities
//! TODO: these are purely on MacOS, but change to be more broad
//! The **_System Custodian_** daemon is responsible for using System Configuration framework to
//! 1. duplicate the current network set
//! 2. modify existing services to turn on IPv6 if not there
//! 3. remove any bridge services & add any missing services that AREN'T bridge
//! TODO: In the future:
//! 1. run a dummy AWDL service to [allow for macOS peer-to-peer wireless networking](https://yggdrasil-network.github.io/2019/08/19/awdl.html)
//! 2. toggle some GPU/memory configurations to speed up GPU (ask Alex what those configurations are)
//! 3. if we ever decide to provide our **own network interfaces** that abstract over some userland
//! logic, this would be the place to spin that up.
//!
//! Then it will watch the SCDynamicStore for:
//! 1. all __actual__ network interfaces -> collect information on them e.g. their BSD name, MAC
//! address, MTU, IPv6 addresses, etc. -> and set up watchers/notifiers to inform the DBus
//! interface of any changes
//! 2. watch for any __undesirable__ changes to configuration and revert it
//!
//! It should somehow (probably through system sockets and/or BSD interface) trigger IPv6 NDP on
//! each of the interfaces & also listen to/query for any changes on the OS routing cache??
//! Basically emulate the `ping6 ff02::1%enX` and `ndp -an` commands BUT BETTER!!!
//! 1. all that info should coalesce back to the overall state colleted -> should be queryable
//! over D-Bus
//! TODO:
//! 1. we might potentially add to this step a handshake of some kind...? To ensure that we can
//! ACTUALLY communicate with that machine over that link over e.g. TCP, UDP, etc. Will the
//! handshake require to know Node ID? Will the handshake require heartbeats? Who knows...
//! 2. if we ever decide to write proprietary L2/L3 protocols for quicker communication,
//! e.g. [AF_NDRV](https://www.zerotier.com/blog/how-zerotier-eliminated-kernel-extensions-on-macos/)
//! for raw ethernet frame communication, or even a [custom thunderbolt PCIe driver](https://developer.apple.com/documentation/pcidriverkit/creating-custom-pcie-drivers-for-thunderbolt-devices),
//! then this would be the place to carry out discovery and propper handshakes with devices
//! on the other end of the link.
//!
// enable Rust-unstable features for convenience
#![feature(trait_alias)]
#![feature(stmt_expr_attributes)]
#![feature(type_alias_impl_trait)]
#![feature(specialization)]
#![feature(unboxed_closures)]
#![feature(const_trait_impl)]
#![feature(fn_traits)]
pub(crate) mod private {
// sealed traits support
pub trait Sealed {}
impl<T: ?Sized> Sealed for T {}
}
/// Namespace for all the type/trait aliases used by this crate.
pub(crate) mod alias {}
/// Namespace for crate-wide extension traits/methods
pub(crate) mod ext {}

View File

@@ -1,6 +1,7 @@
import argparse
import multiprocessing as mp
import os
import resource
import signal
from dataclasses import dataclass, field
from typing import Self
@@ -195,6 +196,8 @@ class Node:
def main():
args = Args.parse()
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 65535), hard))
mp.set_start_method("spawn")
# TODO: Refactor the current verbosity system

View File

@@ -13,12 +13,6 @@ from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType
from hypercorn.config import Config
from hypercorn.typing import ASGIFramework
from loguru import logger
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
HarmonyEncodingName,
Role,
StreamableParser,
load_harmony_encoding,
)
from exo.master.placement import place_instance as get_instance_placements
from exo.shared.apply import apply
@@ -67,8 +61,6 @@ from exo.utils.channels import Receiver, Sender, channel
from exo.utils.dashboard_path import find_dashboard
from exo.utils.event_buffer import OrderedBuffer
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
def chunk_to_response(
chunk: TokenChunk, command_id: CommandId
@@ -381,35 +373,8 @@ class API:
instance_id=instance_id,
)
async def _process_gpt_oss(self, token_chunks: Receiver[TokenChunk]):
stream = StreamableParser(encoding, role=Role.ASSISTANT)
thinking = False
async for chunk in token_chunks:
stream.process(chunk.token_id)
delta = stream.last_content_delta
ch = stream.current_channel
if ch == "analysis" and not thinking:
thinking = True
yield chunk.model_copy(update={"text": "<think>"})
if ch != "analysis" and thinking:
thinking = False
yield chunk.model_copy(update={"text": "</think>"})
if delta:
yield chunk.model_copy(update={"text": delta})
if chunk.finish_reason is not None:
if thinking:
yield chunk.model_copy(update={"text": "</think>"})
yield chunk
break
async def _chat_chunk_stream(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> AsyncGenerator[TokenChunk, None]:
"""Yield `TokenChunk`s for a given command until completion."""
@@ -417,16 +382,10 @@ class API:
self._chat_completion_queues[command_id], recv = channel[TokenChunk]()
with recv as token_chunks:
if parse_gpt_oss:
async for chunk in self._process_gpt_oss(token_chunks):
yield chunk
if chunk.finish_reason is not None:
break
else:
async for chunk in token_chunks:
yield chunk
if chunk.finish_reason is not None:
break
async for chunk in token_chunks:
yield chunk
if chunk.finish_reason is not None:
break
except anyio.get_cancelled_exc_class():
# TODO: TaskCancelled
@@ -442,11 +401,11 @@ class API:
del self._chat_completion_queues[command_id]
async def _generate_chat_stream(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> AsyncGenerator[str, None]:
"""Generate chat completion stream as JSON strings."""
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
async for chunk in self._chat_chunk_stream(command_id):
chunk_response: ChatCompletionResponse = chunk_to_response(
chunk, command_id
)
@@ -458,7 +417,7 @@ class API:
yield "data: [DONE]\n\n"
async def _collect_chat_completion(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> ChatCompletionResponse:
"""Collect all token chunks for a chat completion and return a single response."""
@@ -466,7 +425,7 @@ class API:
model: str | None = None
finish_reason: FinishReason | None = None
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
async for chunk in self._chat_chunk_stream(command_id):
if model is None:
model = chunk.model
@@ -495,7 +454,7 @@ class API:
)
async def _collect_chat_completion_with_stats(
self, command_id: CommandId, parse_gpt_oss: bool
self, command_id: CommandId
) -> BenchChatCompletionResponse:
text_parts: list[str] = []
model: str | None = None
@@ -503,7 +462,7 @@ class API:
stats: GenerationStats | None = None
async for chunk in self._chat_chunk_stream(command_id, parse_gpt_oss):
async for chunk in self._chat_chunk_stream(command_id):
if model is None:
model = chunk.model
@@ -544,8 +503,6 @@ class API:
"""Handle chat completions, supporting both streaming and non-streaming responses."""
model_meta = await resolve_model_meta(payload.model)
payload.model = model_meta.model_id
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
logger.info(f"{parse_gpt_oss=}")
if not any(
instance.shard_assignments.model_id == payload.model
@@ -562,17 +519,16 @@ class API:
await self._send(command)
if payload.stream:
return StreamingResponse(
self._generate_chat_stream(command.command_id, parse_gpt_oss),
self._generate_chat_stream(command.command_id),
media_type="text/event-stream",
)
return await self._collect_chat_completion(command.command_id, parse_gpt_oss)
return await self._collect_chat_completion(command.command_id)
async def bench_chat_completions(
self, payload: BenchChatCompletionTaskParams
) -> BenchChatCompletionResponse:
model_meta = await resolve_model_meta(payload.model)
parse_gpt_oss = "gpt-oss" in model_meta.model_id.lower()
payload.model = model_meta.model_id
if not any(
@@ -589,10 +545,7 @@ class API:
command = ChatCompletion(request_params=payload)
await self._send(command)
response = await self._collect_chat_completion_with_stats(
command.command_id,
parse_gpt_oss,
)
response = await self._collect_chat_completion_with_stats(command.command_id)
return response
def _calculate_total_available_memory(self) -> Memory:

View File

@@ -14,32 +14,6 @@ class ModelCard(CamelCaseModel):
MODEL_CARDS: dict[str, ModelCard] = {
# deepseek v3
# "deepseek-v3-0324:4bit": ModelCard(
# short_id="deepseek-v3-0324:4bit",
# model_id="mlx-community/DeepSeek-V3-0324-4bit",
# name="DeepSeek V3 0324 (4-bit)",
# description="""DeepSeek V3 is a large language model trained on the DeepSeek V3 dataset.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/DeepSeek-V3-0324-4bit"),
# pretty_name="DeepSeek V3 0324 (4-bit)",
# storage_size=Memory.from_kb(409706307),
# n_layers=61,
# ),
# ),
# "deepseek-v3-0324": ModelCard(
# short_id="deepseek-v3-0324",
# model_id="mlx-community/DeepSeek-v3-0324-8bit",
# name="DeepSeek V3 0324 (8-bit)",
# description="""DeepSeek V3 is a large language model trained on the DeepSeek V3 dataset.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/DeepSeek-v3-0324-8bit"),
# pretty_name="DeepSeek V3 0324 (8-bit)",
# storage_size=Memory.from_kb(754706307),
# n_layers=61,
# ),
# ),
"deepseek-v3.1-4bit": ModelCard(
short_id="deepseek-v3.1-4bit",
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
@@ -70,63 +44,6 @@ MODEL_CARDS: dict[str, ModelCard] = {
supports_tensor=True,
),
),
# "deepseek-v3.2": ModelCard(
# short_id="deepseek-v3.2",
# model_id=ModelId("mlx-community/DeepSeek-V3.2-8bit"),
# name="DeepSeek V3.2 (8-bit)",
# description="""DeepSeek V3.2 is a large language model trained on the DeepSeek V3.2 dataset.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/DeepSeek-V3.2-8bit"),
# pretty_name="DeepSeek V3.2 (8-bit)",
# storage_size=Memory.from_kb(754706307),
# n_layers=61,
# hidden_size=7168,
# ),
# ),
# "deepseek-v3.2-4bit": ModelCard(
# short_id="deepseek-v3.2-4bit",
# model_id=ModelId("mlx-community/DeepSeek-V3.2-4bit"),
# name="DeepSeek V3.2 (4-bit)",
# description="""DeepSeek V3.2 is a large language model trained on the DeepSeek V3.2 dataset.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/DeepSeek-V3.2-4bit"),
# pretty_name="DeepSeek V3.2 (4-bit)",
# storage_size=Memory.from_kb(754706307 // 2), # TODO !!!!!
# n_layers=61,
# hidden_size=7168,
# ),
# ),
# deepseek r1
# "deepseek-r1-0528-4bit": ModelCard(
# short_id="deepseek-r1-0528-4bit",
# model_id="mlx-community/DeepSeek-R1-0528-4bit",
# name="DeepSeek-R1-0528 (4-bit)",
# description="""DeepSeek R1 is a large language model trained on the DeepSeek R1 dataset.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/DeepSeek-R1-0528-4bit"),
# pretty_name="DeepSeek R1 671B (4-bit)",
# storage_size=Memory.from_kb(409706307),
# n_layers=61,
# hidden_size=7168,
# ),
# ),
# "deepseek-r1-0528": ModelCard(
# short_id="deepseek-r1-0528",
# model_id="mlx-community/DeepSeek-R1-0528-8bit",
# name="DeepSeek-R1-0528 (8-bit)",
# description="""DeepSeek R1 is a large language model trained on the DeepSeek R1 dataset.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/DeepSeek-R1-0528-8bit"),
# pretty_name="DeepSeek R1 671B (8-bit)",
# storage_size=Memory.from_bytes(754998771712),
# n_layers=61,
# . hidden_size=7168,
# ),
# ),
# kimi k2
"kimi-k2-instruct-4bit": ModelCard(
short_id="kimi-k2-instruct-4bit",
@@ -508,23 +425,24 @@ MODEL_CARDS: dict[str, ModelCard] = {
supports_tensor=True,
),
),
"gpt-oss-20b-4bit": ModelCard(
short_id="gpt-oss-20b-4bit",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
name="GPT-OSS 20B (MXFP4-Q4, MLX)",
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this MLX variant uses MXFP4 4-bit quantization.""",
"gpt-oss-20b-MXFP4-Q8": ModelCard(
short_id="gpt-oss-20b-MXFP4-Q8",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
name="GPT-OSS 20B (MXFP4-Q8, MLX)",
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this variant is a 4-bit MLX conversion for Apple Silicon.""",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q4"),
pretty_name="GPT-OSS 20B (MXFP4-Q4, MLX)",
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
pretty_name="GPT-OSS 20B (MXFP4-Q8, MLX)",
storage_size=Memory.from_kb(11_744_051),
n_layers=24,
hidden_size=2880,
supports_tensor=True,
),
),
# Needs to be quantized g32 or g16.
# glm 4.5
"glm-4.5-air-8bit": ModelCard(
# Needs to be quantized g32 or g16 to work with tensor parallel
short_id="glm-4.5-air-8bit",
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
name="GLM 4.5 Air 8bit",
@@ -554,19 +472,81 @@ MODEL_CARDS: dict[str, ModelCard] = {
supports_tensor=True,
),
),
# "devstral-2-123b-instruct-2512-8bit": ModelCard(
# short_id="devstral-2-123b-instruct-2512-8bit",
# model_id=ModelId("mlx-community/Devstral-2-123B-Instruct-2512-8bit"),
# name="Devstral 2 123B Instruct 2512 (8-bit, MLX)",
# description="""Mistral AI's Devstral 2 123B Instruct (2512) is an agentic coding model.""",
# tags=[],
# metadata=ModelMetadata(
# model_id=ModelId("mlx-community/Devstral-2-123B-Instruct-2512-8bit"),
# pretty_name="Devstral 2 123B Instruct 2512 (8-bit, MLX)",
# storage_size=Memory.from_kb(133_000_000),
# n_layers=88,
# hidden_size=12288,
# supports_tensor=True,
# ),
# ),
# glm 4.7
"glm-4.7-4bit": ModelCard(
short_id="glm-4.7-4bit",
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
name="GLM 4.7 4bit",
description="GLM 4.7 4bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
pretty_name="GLM 4.7 4bit",
storage_size=Memory.from_bytes(198556925568),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
"glm-4.7-6bit": ModelCard(
short_id="glm-4.7-6bit",
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
name="GLM 4.7 6bit",
description="GLM 4.7 6bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
pretty_name="GLM 4.7 6bit",
storage_size=Memory.from_bytes(286737579648),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
"glm-4.7-8bit-gs32": ModelCard(
short_id="glm-4.7-8bit-gs32",
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
name="GLM 4.7 8bit (gs32)",
description="GLM 4.7 8bit (gs32)",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
pretty_name="GLM 4.7 8bit (gs32)",
storage_size=Memory.from_bytes(396963397248),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
),
# minimax-m2
"minimax-m2.1-8bit": ModelCard(
short_id="minimax-m2.1-8bit",
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
name="MiniMax M2.1 8bit",
description="MiniMax M2.1 8bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
pretty_name="MiniMax M2.1 8bit",
storage_size=Memory.from_bytes(242986745856),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
),
"minimax-m2.1-3bit": ModelCard(
short_id="minimax-m2.1-3bit",
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
name="MiniMax M2.1 3bit",
description="MiniMax M2.1 3bit",
tags=[],
metadata=ModelMetadata(
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
pretty_name="MiniMax M2.1 3bit",
storage_size=Memory.from_bytes(100086644736),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
),
}

View File

@@ -2,6 +2,7 @@ from exo.shared.apply import apply_node_download_progress
from exo.shared.tests.conftest import get_pipeline_shard_metadata
from exo.shared.types.common import NodeId
from exo.shared.types.events import NodeDownloadProgress
from exo.shared.types.memory import Memory
from exo.shared.types.state import State
from exo.shared.types.worker.downloads import DownloadCompleted
from exo.worker.tests.constants import MODEL_A_ID, MODEL_B_ID
@@ -13,6 +14,7 @@ def test_apply_node_download_progress():
event = DownloadCompleted(
node_id=NodeId("node-1"),
shard_metadata=shard1,
total_bytes=Memory(),
)
new_state = apply_node_download_progress(
@@ -28,10 +30,12 @@ def test_apply_two_node_download_progress():
event1 = DownloadCompleted(
node_id=NodeId("node-1"),
shard_metadata=shard1,
total_bytes=Memory(),
)
event2 = DownloadCompleted(
node_id=NodeId("node-1"),
shard_metadata=shard2,
total_bytes=Memory(),
)
state = State(downloads={NodeId("node-1"): [event1]})

View File

@@ -28,7 +28,7 @@ class DownloadPending(BaseDownloadProgress):
class DownloadCompleted(BaseDownloadProgress):
pass
total_bytes: Memory
class DownloadFailed(BaseDownloadProgress):

View File

@@ -50,7 +50,9 @@ class RunnerReady(BaseRunnerStatus):
class RunnerRunning(BaseRunnerStatus):
pass
"""Runner is processing requests and can accept more (continuous batching)."""
active_requests: int = 0
class RunnerShuttingDown(BaseRunnerStatus):

View File

@@ -10,18 +10,24 @@ from mlx.nn.layers.distributed import (
shard_linear,
sum_gradients,
)
from mlx_lm.models.cache import (
_BaseCache, # pyright: ignore[reportPrivateUsage]
)
from mlx_lm.models.deepseek_v3 import DeepseekV3MLP
from mlx_lm.models.deepseek_v3 import Model as DeepseekV3Model
from mlx_lm.models.deepseek_v32 import DeepseekV32MLP
from mlx_lm.models.deepseek_v32 import Model as DeepseekV32Model
from mlx_lm.models.glm4_moe import Model as Glm4MoeModel
from mlx_lm.models.glm4_moe import MoE
from mlx_lm.models.gpt_oss import GptOssMoeModel
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.models.llama import Model as LlamaModel
from mlx_lm.models.minimax import Model as MiniMaxModel
from mlx_lm.models.ministral3 import Model as Ministral3Model
from mlx_lm.models.qwen3_moe import Model as Qwen3MoeModel
from mlx_lm.models.qwen3_moe import Qwen3MoeSparseMoeBlock
from mlx_lm.models.qwen3_next import Model as Qwen3NextModel
from mlx_lm.models.qwen3_next import Qwen3NextSparseMoeBlock
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
)
from exo.shared.logging import logger
from exo.shared.types.worker.shards import PipelineShardMetadata
class _LayerCallable(Protocol):
@@ -91,8 +97,6 @@ class PipelineLastLayer(CustomMlxLayer):
x, *args, **kwargs
).arguments.get("cache", None)
assert cache is None or issubclass(type(cache), _BaseCache) # type: ignore
output: mx.array = self.original_layer(x, *args, **kwargs)
if self.r != self.s - 1:
@@ -100,7 +104,6 @@ class PipelineLastLayer(CustomMlxLayer):
output, (self.r + 1) % self.s, group=self.group
)
if cache is not None:
# This change happened upstream - check out mlx github somewhere??
cache.keys = mx.depends(cache.keys, output) # type: ignore[reportUnknownMemberType]
output = mx.distributed.all_gather(output, group=self.group)[-output.shape[0] :]
@@ -132,24 +135,6 @@ def _get_layers(inner_model_instance: nn.Module) -> list[_LayerCallable]:
return layers
def _set_layers(model: nn.Module, layers: list[_LayerCallable]) -> None:
inner_model_instance = _inner_model(model)
if hasattr(inner_model_instance, "layers"):
inner_model_instance.layers = layers
# Update DeepSeek V3 specific parameters when layers are shrunk
if isinstance(model, DeepseekV3Model) and hasattr(
inner_model_instance, "num_layers"
):
inner_model_instance.start_idx = 0
inner_model_instance.end_idx = len(layers)
inner_model_instance.num_layers = len(layers)
elif hasattr(inner_model_instance, "h"):
inner_model_instance.h = layers
else:
raise ValueError("Model must have either a 'layers' or 'h' attribute")
def pipeline_auto_parallel(
model: nn.Module,
group: mx.distributed.Group,
@@ -165,8 +150,7 @@ def pipeline_auto_parallel(
"""
inner_model_instance: nn.Module = _inner_model(model)
# Handle both model.layers and model.h cases
layers: list[_LayerCallable] = _get_layers(inner_model_instance)
layers = _get_layers(inner_model_instance)
start_layer, end_layer = model_shard_meta.start_layer, model_shard_meta.end_layer
device_rank, world_size = model_shard_meta.device_rank, model_shard_meta.world_size
@@ -180,6 +164,17 @@ def pipeline_auto_parallel(
group=group,
)
if isinstance(inner_model_instance, GptOssMoeModel):
inner_model_instance.layer_types = inner_model_instance.layer_types[ # type: ignore
start_layer:end_layer
]
inner_model_instance.swa_idx = inner_model_instance.layer_types.index( # type: ignore
"sliding_attention"
)
inner_model_instance.ga_idx = inner_model_instance.layer_types.index( # type: ignore
"full_attention"
)
_set_layers(model, layers)
assert isinstance(layers, list), (
@@ -204,18 +199,44 @@ def tensor_auto_parallel(
group=group,
)
segments: int = 1
def _all_to_sharded(path: str, weight: mx.array):
if path.endswith("bias"):
logger.info(f"Sharding bias for {path} - all to sharded")
return weight.ndim - 1, segments
return max(weight.ndim - 2, 0), segments
all_to_sharded_linear_in_place = partial(
shard_inplace,
sharding="all-to-sharded",
group=group,
)
sharded_to_all_linear_in_place = partial(
shard_inplace,
sharding="sharded-to-all",
sharding=_all_to_sharded, # type: ignore
group=group,
)
if isinstance(model, LlamaModel):
n = group.size()
def _sharded_to_all(path: str, weight: mx.array):
if path.endswith("bias"):
logger.info(f"Sharding bias for {path} - sharded to all")
weight /= n
return None
return -1, segments
sharded_to_all_linear_in_place = partial(
shard_inplace,
sharding=_sharded_to_all, # type: ignore
group=group,
)
if hasattr(model, "shard"):
try:
model.shard(group) # type: ignore
return model
except (AttributeError, TypeError, NameError):
pass
if isinstance(model, (LlamaModel, Ministral3Model)):
logger.warning("shouldn't be hit - upstream sharding exists")
tensor_parallel_sharding_strategy = LlamaShardingStrategy(
group,
all_to_sharded_linear,
@@ -223,7 +244,8 @@ def tensor_auto_parallel(
all_to_sharded_linear_in_place,
sharded_to_all_linear_in_place,
)
elif isinstance(model, DeepseekV3Model):
elif isinstance(model, (DeepseekV3Model, DeepseekV32Model)):
logger.warning("shouldn't be hit - upstream sharding exists")
tensor_parallel_sharding_strategy = DeepSeekShardingStrategy(
group,
all_to_sharded_linear,
@@ -231,7 +253,15 @@ def tensor_auto_parallel(
all_to_sharded_linear_in_place,
sharded_to_all_linear_in_place,
)
elif isinstance(model, Qwen3MoeModel):
elif isinstance(model, MiniMaxModel):
tensor_parallel_sharding_strategy = MiniMaxShardingStrategy(
group,
all_to_sharded_linear,
sharded_to_all_linear,
all_to_sharded_linear_in_place,
sharded_to_all_linear_in_place,
)
elif isinstance(model, (Qwen3MoeModel, Glm4MoeModel, Qwen3NextModel)):
tensor_parallel_sharding_strategy = QwenShardingStrategy(
group,
all_to_sharded_linear,
@@ -239,6 +269,15 @@ def tensor_auto_parallel(
all_to_sharded_linear_in_place,
sharded_to_all_linear_in_place,
)
elif isinstance(model, GptOssModel):
tensor_parallel_sharding_strategy = GptOssShardingStrategy(
group,
all_to_sharded_linear,
sharded_to_all_linear,
all_to_sharded_linear_in_place,
sharded_to_all_linear_in_place,
)
else:
raise ValueError(f"Unsupported model type: {type(model)}")
@@ -284,13 +323,38 @@ class LlamaShardingStrategy(TensorParallelShardingStrategy):
return model
def _set_layers(model: nn.Module, layers: list[_LayerCallable]) -> None:
inner_model_instance = _inner_model(model)
if hasattr(inner_model_instance, "layers"):
inner_model_instance.layers = layers
# Update DeepSeek V3 specific parameters when layers are shrunk
if isinstance(
model, (DeepseekV3Model, DeepseekV32Model, Glm4MoeModel)
) and hasattr(inner_model_instance, "num_layers"):
logger.info(
f"Setting num_layers to {len(layers)} for model {model.model.__class__.__name__}"
)
inner_model_instance.start_idx = 0
inner_model_instance.end_idx = len(layers)
inner_model_instance.num_layers = len(layers)
elif isinstance(model, Qwen3MoeModel):
logger.info(
f"Setting num_hidden_layers to {len(layers)} for model {model.model.__class__.__name__}"
)
inner_model_instance.num_hidden_layers = len(layers)
elif hasattr(inner_model_instance, "h"):
inner_model_instance.h = layers
else:
raise ValueError("Model must have either a 'layers' or 'h' attribute")
class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
model = cast(DeepseekV3Model, model)
for layer in model.layers:
# Shard the self attention
if layer.self_attn.q_lora_rank is None: # pyright: ignore[reportUnnecessaryComparison]
# Unfortunately, q_lora_rank can be None despite typing hints.
if layer.self_attn.q_lora_rank is None:
layer.self_attn.q_proj = self.all_to_sharded_linear(
layer.self_attn.q_proj
)
@@ -305,7 +369,7 @@ class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
layer.self_attn.num_heads //= self.N
# Shard the MLP
if isinstance(layer.mlp, DeepseekV3MLP):
if isinstance(layer.mlp, (DeepseekV3MLP, DeepseekV32MLP)):
layer.mlp.gate_proj = self.all_to_sharded_linear(layer.mlp.gate_proj)
layer.mlp.down_proj = self.sharded_to_all_linear(layer.mlp.down_proj)
layer.mlp.up_proj = self.all_to_sharded_linear(layer.mlp.up_proj)
@@ -339,6 +403,35 @@ class ShardedDeepseekV3MoE(CustomMlxLayer):
return y
class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
model = cast(MiniMaxModel, model)
for layer in model.layers:
# Shard the self attention
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
layer.self_attn.v_proj = self.all_to_sharded_linear(layer.self_attn.v_proj)
layer.self_attn.o_proj = self.sharded_to_all_linear(layer.self_attn.o_proj)
layer.self_attn.num_attention_heads //= self.N
layer.self_attn.num_key_value_heads //= self.N
# Shard the MoE. Shard in place since the MoE should be responsible
# for aggregating the results.
self.all_to_sharded_linear_in_place(
layer.block_sparse_moe.switch_mlp.gate_proj
)
self.sharded_to_all_linear_in_place(
layer.block_sparse_moe.switch_mlp.down_proj
)
self.all_to_sharded_linear_in_place(
layer.block_sparse_moe.switch_mlp.up_proj
)
layer.block_sparse_moe = ShardedQwenMoE(layer.block_sparse_moe) # pyright: ignore[reportAttributeAccessIssue, reportArgumentType]
layer.block_sparse_moe.sharding_group = self.group
return model
class QwenShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
model = cast(Qwen3MoeModel, model)
@@ -353,11 +446,13 @@ class QwenShardingStrategy(TensorParallelShardingStrategy):
# Shard the MoE. Shard in place since the MoE should be responsible
# for aggregating the results.
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
if isinstance(
layer.mlp, (Qwen3MoeSparseMoeBlock, MoE, Qwen3NextSparseMoeBlock)
):
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.gate_proj)
self.sharded_to_all_linear_in_place(layer.mlp.switch_mlp.down_proj)
self.all_to_sharded_linear_in_place(layer.mlp.switch_mlp.up_proj)
layer.mlp = ShardedQwenMoE(layer.mlp) # type: ignore
layer.mlp = ShardedQwenMoE(layer.mlp) # pyright: ignore[reportAttributeAccessIssue, reportArgumentType]
layer.mlp.sharding_group = self.group
# Shard the MLP
@@ -381,3 +476,50 @@ class ShardedQwenMoE(CustomMlxLayer):
if self.sharding_group is not None:
y = mx.distributed.all_sum(y, group=self.sharding_group)
return y
class GptOssShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
model = cast(GptOssMoeModel, model)
for layer in model.layers:
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
layer.self_attn.v_proj = self.all_to_sharded_linear(layer.self_attn.v_proj)
layer.self_attn.o_proj = self.sharded_to_all_linear(layer.self_attn.o_proj)
layer.self_attn.num_attention_heads //= self.N
layer.self_attn.num_key_value_heads //= self.N
layer.self_attn.num_key_value_groups = (
layer.self_attn.num_attention_heads
// layer.self_attn.num_key_value_heads
)
layer.self_attn.sinks = layer.self_attn.sinks[
layer.self_attn.num_attention_heads
* self.group.rank() : layer.self_attn.num_attention_heads
* (self.group.rank() + 1)
]
self.all_to_sharded_linear_in_place(layer.mlp.experts.gate_proj)
self.sharded_to_all_linear_in_place(layer.mlp.experts.down_proj)
self.all_to_sharded_linear_in_place(layer.mlp.experts.up_proj)
layer.mlp = ShardedGptOssMoE(layer.mlp) # type: ignore
layer.mlp.sharding_group = self.group
return model
class ShardedGptOssMoE(CustomMlxLayer):
def __init__(self, layer: nn.Module):
super().__init__(layer)
self.sharding_group: mx.distributed.Group | None = None
def __call__(self, x: mx.array) -> mx.array:
if self.sharding_group is not None:
x = sum_gradients(self.sharding_group)(x)
y = self.original_layer(x)
if self.sharding_group is not None:
y = mx.distributed.all_sum(y, group=self.sharding_group)
return y

View File

@@ -0,0 +1,302 @@
"""Batch generation engine using mlx_lm's BatchGenerator for continuous batching."""
import time
from dataclasses import dataclass, field
import mlx.core as mx
from mlx_lm.generate import BatchGenerator
from mlx_lm.sample_utils import make_sampler
from mlx_lm.tokenizer_utils import StreamingDetokenizer, TokenizerWrapper
from exo.shared.types.api import FinishReason, GenerationStats
from exo.shared.types.common import CommandId
from exo.shared.types.memory import Memory
from exo.shared.types.tasks import ChatCompletionTaskParams, TaskId
from exo.shared.types.worker.runner_response import GenerationResponse
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.constants import MAX_TOKENS
from exo.worker.engines.mlx.generator.distributed_sync import share_object
from exo.worker.engines.mlx.utils_mlx import apply_chat_template
from exo.worker.runner.bootstrap import logger
@dataclass
class ActiveRequest:
"""Tracks an active request in the batch."""
command_id: CommandId
task_id: TaskId
uid: int # BatchGenerator's internal ID
detokenizer: StreamingDetokenizer
tokens_generated: int = 0
prompt_tokens: int = 0
start_time: float = field(default_factory=time.perf_counter)
@dataclass
class BatchedGenerationResponse:
"""Response from batch engine, tagged with command_id and task_id."""
command_id: CommandId
task_id: TaskId
response: GenerationResponse
class BatchGenerationEngine:
"""Manages continuous batching using mlx_lm's BatchGenerator."""
def __init__(
self,
model: Model,
tokenizer: TokenizerWrapper,
group: mx.distributed.Group | None = None,
max_tokens: int = MAX_TOKENS,
completion_batch_size: int = 32,
prefill_batch_size: int = 8,
prefill_step_size: int = 2048,
):
self.model = model
self.tokenizer = tokenizer
self.max_tokens = max_tokens
self.active_requests: dict[int, ActiveRequest] = {}
self._pending_inserts: list[
tuple[CommandId, TaskId, ChatCompletionTaskParams]
] = []
self._pending_completions: list[
int
] = [] # UIDs completed but not yet synced/removed
self.group = group
self.rank = group.rank() if group else 0
self.is_distributed = group is not None and group.size() > 1
sampler = make_sampler(temp=0.7, top_p=1.0)
eos_tokens: set[int] = set(tokenizer.eos_token_ids or [])
self.batch_gen: BatchGenerator = BatchGenerator(
model=model,
max_tokens=max_tokens,
stop_tokens=eos_tokens,
sampler=sampler,
completion_batch_size=completion_batch_size,
prefill_batch_size=prefill_batch_size,
prefill_step_size=prefill_step_size,
)
logger.info(
f"BatchGenerationEngine initialized with completion_batch_size={completion_batch_size}, "
f"prefill_batch_size={prefill_batch_size}, distributed={self.is_distributed}"
)
def queue_request(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams,
) -> None:
"""Queue a request for insertion. Only rank 0 should call this.
In distributed mode, rank 0 receives tasks from the control plane and
queues them here. The actual insertion happens in sync_and_insert_pending()
which ensures all ranks insert the same requests together.
"""
assert self.rank == 0, "Only rank 0 should queue requests"
self._pending_inserts.append((command_id, task_id, task_params))
logger.info(
f"Queued request {command_id} for insertion (pending={len(self._pending_inserts)})"
)
def sync_and_insert_pending(self) -> list[int]:
"""Sync pending inserts across ranks and insert them. Returns UIDs.
This method ensures all ranks insert the same requests in the same order.
In non-distributed mode, it simply inserts all pending requests.
In distributed mode, it broadcasts pending requests from rank 0 to all ranks.
Batches all pending inserts into a single batch_gen.insert() call for
efficient prefill batching.
"""
inserts_to_process: list[tuple[CommandId, TaskId, ChatCompletionTaskParams]]
if not self.is_distributed:
# Non-distributed: just insert directly from pending
inserts_to_process = list(self._pending_inserts)
else:
# Distributed: broadcast pending inserts from rank 0 to all ranks
assert self.group is not None
pending_data = self._pending_inserts if self.rank == 0 else None
synced_data = share_object(pending_data, self.rank, self.group)
if synced_data is None:
self._pending_inserts.clear()
return []
inserts_to_process = synced_data
if not inserts_to_process:
self._pending_inserts.clear()
return []
# Prepare all requests for batched insertion
all_tokens: list[list[int]] = []
all_max_tokens: list[int] = []
all_prompt_tokens: list[int] = []
request_info: list[tuple[CommandId, TaskId]] = []
for cmd_id, task_id, params in inserts_to_process:
prompt_str = apply_chat_template(self.tokenizer, params)
tokens: list[int] = self.tokenizer.encode(
prompt_str, add_special_tokens=False
)
max_tokens = params.max_tokens or self.max_tokens
all_tokens.append(tokens)
all_max_tokens.append(max_tokens)
all_prompt_tokens.append(len(tokens))
request_info.append((cmd_id, task_id))
# Single batched insert for efficient prefill
uids = self.batch_gen.insert(all_tokens, max_tokens=all_max_tokens)
# Track all inserted requests
for i, uid in enumerate(uids):
cmd_id, task_id = request_info[i]
self.active_requests[uid] = ActiveRequest(
command_id=cmd_id,
task_id=task_id,
uid=uid,
detokenizer=self.tokenizer.detokenizer,
prompt_tokens=all_prompt_tokens[i],
)
logger.info(
f"Inserted request {cmd_id} with uid={uid}, prompt_tokens={all_prompt_tokens[i]}, max_tokens={all_max_tokens[i]}"
)
self._pending_inserts.clear()
return uids
def step(self) -> list[BatchedGenerationResponse]:
"""Run one decode step. Tracks completions but does not sync - call sync_completions() at budget boundaries."""
responses = self.batch_gen.next()
if not responses:
return []
results: list[BatchedGenerationResponse] = []
for r in responses:
uid: int = r.uid
req = self.active_requests.get(uid)
if req is None:
logger.warning(f"Received response for unknown uid={uid}")
continue
req.tokens_generated += 1
# Decode the token
token: int = r.token
req.detokenizer.add_token(token)
text: str = req.detokenizer.last_segment
stats: GenerationStats | None = None
finish_reason: FinishReason | None = None
raw_finish_reason: str | None = r.finish_reason
if raw_finish_reason is not None:
# Finalize to get remaining text
req.detokenizer.finalize()
text = req.detokenizer.last_segment
elapsed = time.perf_counter() - req.start_time
generation_tps = req.tokens_generated / elapsed if elapsed > 0 else 0.0
stats = GenerationStats(
prompt_tps=0.0, # Not tracked per-request in batch mode
generation_tps=generation_tps,
prompt_tokens=req.prompt_tokens,
generation_tokens=req.tokens_generated,
peak_memory_usage=Memory.from_gb(mx.get_peak_memory() / 1e9),
)
if raw_finish_reason == "stop":
finish_reason = "stop"
elif raw_finish_reason == "length":
finish_reason = "length"
else:
logger.warning(f"Unknown finish_reason: {raw_finish_reason}")
finish_reason = "stop"
# Track completion but don't remove yet - wait for sync_completions()
self._pending_completions.append(uid)
logger.info(
f"Request {req.command_id} completed: {req.tokens_generated} tokens, {generation_tps:.2f} tps, reason={finish_reason}"
)
results.append(
BatchedGenerationResponse(
command_id=req.command_id,
task_id=req.task_id,
response=GenerationResponse(
text=text, token=token, finish_reason=finish_reason, stats=stats
),
)
)
# In non-distributed mode, clean up completions immediately
if not self.is_distributed:
self._remove_completed()
return results
def sync_completions(self) -> None:
"""Sync and remove completed requests. Call at time budget boundaries in distributed mode."""
if not self.is_distributed:
# Non-distributed: early return if nothing to do
if not self._pending_completions:
return
self._remove_completed()
return
# Distributed mode: ALWAYS sync to ensure all ranks participate in collective op
# This prevents deadlock if one rank has completions and another doesn't
assert self.group is not None
synced_uids = share_object(
self._pending_completions if self.rank == 0 else None,
self.rank,
self.group,
)
if synced_uids:
self._pending_completions = synced_uids
self._remove_completed()
def _remove_completed(self) -> None:
"""Remove completed requests from tracking."""
for uid in self._pending_completions:
if uid in self.active_requests:
del self.active_requests[uid]
self._pending_completions.clear()
@property
def has_active_requests(self) -> bool:
return bool(self.active_requests or self.batch_gen.unprocessed_prompts)
@property
def has_pending_inserts(self) -> bool:
return bool(self._pending_inserts)
@property
def active_count(self) -> int:
return len(self.active_requests)
@property
def pending_count(self) -> int:
return len(self.batch_gen.unprocessed_prompts)
@property
def pending_insert_count(self) -> int:
return len(self._pending_inserts)
@property
def has_pending_completions(self) -> bool:
return bool(self._pending_completions)

View File

@@ -0,0 +1,30 @@
"""Distributed sync utilities using mx.distributed.all_sum() to broadcast from rank 0."""
# pyright: reportAny=false
import pickle
from typing import TypeVar, cast
import mlx.core as mx
T = TypeVar("T")
def share_object(obj: T | None, rank: int, group: mx.distributed.Group) -> T | None:
"""Broadcast object from rank 0 to all ranks. Two-phase: size then data."""
if rank == 0:
if obj is None:
mx.eval(mx.distributed.all_sum(mx.array([0]), group=group))
return None
data = mx.array(list(pickle.dumps(obj)), dtype=mx.uint8)
mx.eval(mx.distributed.all_sum(mx.array([data.size]), group=group))
mx.eval(mx.distributed.all_sum(data, group=group))
return obj
else:
size = int(mx.distributed.all_sum(mx.array([0]), group=group).item())
if size == 0:
return None
data = mx.zeros(size, dtype=mx.uint8)
data = mx.distributed.all_sum(data, group=group)
mx.eval(data)
return cast(T, pickle.loads(bytes(cast(list[int], data.tolist()))))

View File

@@ -3,6 +3,7 @@ from typing import Any, Callable, Generator, cast, get_args
import mlx.core as mx
from mlx_lm import stream_generate
from mlx_lm.models.cache import KVCache
from mlx_lm.sample_utils import make_sampler
from mlx_lm.tokenizer_utils import TokenizerWrapper
# from exo.engines.mlx.cache import KVPrefixCache
@@ -47,7 +48,6 @@ def maybe_quantize_kv_cache(
def warmup_inference(
model: Model,
tokenizer: TokenizerWrapper,
sampler: Callable[[mx.array], mx.array],
) -> int:
content = "Prompt to warm up the inference engine. Repeat this."
@@ -70,6 +70,9 @@ def warmup_inference(
model=model,
)
# Use a default sampler for warmup
sampler = make_sampler(temp=0.7)
logger.info("Generating warmup tokens")
for _r in stream_generate(
model=model,
@@ -115,7 +118,6 @@ def eos_ids_from_tokenizer(tokenizer: TokenizerWrapper) -> list[int]:
def mlx_generate(
model: Model,
tokenizer: TokenizerWrapper,
sampler: Callable[[mx.array], mx.array],
task: ChatCompletionTaskParams,
) -> Generator[GenerationResponse]:
# Ensure that generation stats only contains peak memory for this generation
@@ -125,6 +127,9 @@ def mlx_generate(
# Currently we support chat-completion tasks only.
logger.info(f"task_params: {task}")
if task.seed is not None:
mx.random.seed(task.seed)
prompt = apply_chat_template(
tokenizer=tokenizer,
chat_task_data=task,
@@ -138,6 +143,11 @@ def mlx_generate(
eos_ids = eos_ids_from_tokenizer(tokenizer)
logits_processors = [ban_token_ids(eos_ids)]
sampler = make_sampler(
temp=task.temperature if task.temperature is not None else 0.7,
top_p=task.top_p if task.top_p is not None else 1.0,
)
max_tokens = task.max_tokens or MAX_TOKENS
for out in stream_generate(
model=model,

View File

@@ -0,0 +1,104 @@
"""Time budget iterator for controlling generation loop timing in distributed mode.
Based on mlx-lm's TimeBudget pattern - runs for a time budget then syncs,
rather than syncing every token. This reduces distributed sync overhead.
"""
import time
from typing import Iterator
import mlx.core as mx
from exo.worker.runner.bootstrap import logger
generation_stream = mx.new_stream(mx.default_device())
class TimeBudget(Iterator[None]):
"""Controls generation loop timing, syncing across ranks periodically.
In distributed mode, periodically syncs timing across all ranks to
dynamically adjust iteration count based on actual performance.
In non-distributed mode, simply runs for the time budget.
Usage:
for _ in TimeBudget(budget=0.5):
batch_engine.step()
# ... process responses ...
"""
def __init__(
self,
budget: float = 0.5,
iterations: int = 25,
sync_frequency: int = 10,
group: mx.distributed.Group | None = None,
):
"""Initialize TimeBudget.
Args:
budget: Time budget in seconds before yielding control
iterations: Initial number of iterations per budget period (distributed only)
sync_frequency: How often to sync timing across ranks (distributed only)
group: Distributed group, or None for non-distributed mode
"""
self._budget = budget
self._iterations = iterations
self._sync_frequency = sync_frequency
self._group = group
self._is_distributed = group is not None and group.size() > 1
# Runtime state
self._start: float = 0.0
self._current_iterations: int = 0
self._loops: int = 0
self._time_spent: float = 0.0
def __iter__(self) -> "TimeBudget":
self._start = time.perf_counter()
self._current_iterations = 0
return self
def __next__(self) -> None:
if not self._is_distributed:
# Non-distributed: just check time budget
if time.perf_counter() - self._start > self._budget:
raise StopIteration()
return None
# Distributed mode: iteration-based with periodic timing sync
self._current_iterations += 1
if self._current_iterations > self._iterations:
self._loops += 1
self._time_spent += time.perf_counter() - self._start
if self._loops % self._sync_frequency == 0:
# Sync timing across all ranks
assert self._group is not None
with mx.stream(generation_stream):
time_array = mx.array([self._time_spent], dtype=mx.float32)
total_time = mx.distributed.all_sum(time_array, group=self._group)
mx.eval(total_time)
loop_time = float(total_time.item())
avg_loop_time = loop_time / (self._group.size() * self._sync_frequency)
if avg_loop_time > 0:
factor = self._budget / avg_loop_time
self._iterations = max(round(self._iterations * factor), 1)
logger.debug(
f"TimeBudget adjusted iterations to {self._iterations}"
)
self._loops = 0
self._time_spent = 0.0
raise StopIteration()
return None
@property
def iterations(self) -> int:
"""Current iterations per budget period."""
return self._iterations

View File

@@ -1,13 +1,26 @@
import json
import os
import resource
import sys
import time
from pathlib import Path
from typing import Any, Callable, cast
from typing import Any, cast
# Monkey-patch for transformers 5.x compatibility
# Kimi's tokenization_kimi.py imports bytes_to_unicode from the old location
# which was moved in transformers 5.0.0rc2
try:
import transformers.models.gpt2.tokenization_gpt2 as gpt2_tokenization
from transformers.convert_slow_tokenizer import bytes_to_unicode
if not hasattr(gpt2_tokenization, "bytes_to_unicode"):
gpt2_tokenization.bytes_to_unicode = bytes_to_unicode # type: ignore[attr-defined]
except ImportError:
pass # transformers < 5.0 or bytes_to_unicode not available
from mlx_lm.models.cache import KVCache, QuantizedKVCache, RotatingKVCache
from mlx_lm.models.deepseek_v3 import DeepseekV3Model
from mlx_lm.sample_utils import make_sampler
from mlx_lm.models.gpt_oss import Model as GptOssModel
from mlx_lm.tokenizer_utils import TokenizerWrapper
from exo.worker.engines.mlx.constants import (
@@ -19,7 +32,7 @@ from exo.worker.engines.mlx.constants import (
try:
from mlx_lm.tokenizer_utils import load_tokenizer
except ImportError:
from mlx_lm.tokenizer_utils import load as load_tokenizer # type: ignore
from mlx_lm.tokenizer_utils import load as load_tokenizer
import contextlib
import mlx.core as mx
@@ -176,11 +189,7 @@ def initialize_mlx(
def load_mlx_items(
bound_instance: BoundInstance, group: Group | None
) -> tuple[Model, TokenizerWrapper, Callable[[mx.array], mx.array]]:
# TODO: pass temperature
sampler: Callable[[mx.array], mx.array] = make_sampler(temp=0.7)
logger.info("Created a sampler")
) -> tuple[Model, TokenizerWrapper]:
if group is None:
logger.info(f"Single device used for {bound_instance.instance}")
model_path = build_model_path(bound_instance.bound_shard.model_meta.model_id)
@@ -201,7 +210,7 @@ def load_mlx_items(
set_wired_limit_for_model(get_weights_size(bound_instance.bound_shard))
return cast(Model, model), tokenizer, sampler
return cast(Model, model), tokenizer
def shard_and_load(
@@ -257,26 +266,70 @@ def shard_and_load(
return model, tokenizer
def get_tokenizer(model_path: Path, shard_metadata: ShardMetadata):
# TODO: Let's move away from this custom logic to mlx_lm.load()
if "kimi-k2" in shard_metadata.model_meta.model_id.lower():
eos_token_ids = [163586]
def get_tokenizer(model_path: Path, shard_metadata: ShardMetadata) -> TokenizerWrapper:
"""Load tokenizer for a model shard. Delegates to load_tokenizer_for_model_id."""
return load_tokenizer_for_model_id(shard_metadata.model_meta.model_id, model_path)
elif "glm" in shard_metadata.model_meta.model_id.lower():
eos_token_ids = [151336, 151329, 151338]
else:
eos_token_ids = None
def get_eos_token_ids_for_model(model_id: str) -> list[int] | None:
"""
Get the EOS token IDs for a model based on its ID.
tokenizer = cast(
TokenizerWrapper,
load_tokenizer(
model_path,
tokenizer_config_extra={"trust_remote_code": TRUST_REMOTE_CODE},
eos_token_ids=eos_token_ids,
),
Some models require explicit EOS token configuration that isn't in their
tokenizer config. This function returns the known EOS token IDs for such models.
Args:
model_id: The HuggingFace model ID
Returns:
List of EOS token IDs, or None if the model uses standard tokenizer config
"""
model_id_lower = model_id.lower()
if "kimi-k2" in model_id_lower:
return [163586]
elif "glm" in model_id_lower:
return [151336, 151329, 151338]
return None
def load_tokenizer_for_model_id(model_id: str, model_path: Path) -> TokenizerWrapper:
"""
Load tokenizer for a model given its ID and local path.
This is the core tokenizer loading logic, handling special cases for different
model families (Kimi, GLM, etc.) and transformers 5.x compatibility.
Args:
model_id: The HuggingFace model ID (e.g., "moonshotai/Kimi-K2-Instruct")
model_path: Local path where the model/tokenizer files are stored
Returns:
TokenizerWrapper instance configured for the model
"""
model_id_lower = model_id.lower()
eos_token_ids = get_eos_token_ids_for_model(model_id)
# Kimi uses a custom TikTokenTokenizer that transformers 5.x can't load via AutoTokenizer
if "kimi-k2" in model_id_lower:
sys.path.insert(0, str(model_path))
from tokenization_kimi import TikTokenTokenizer # type: ignore[import-not-found] # noqa: I001
hf_tokenizer: Any = TikTokenTokenizer.from_pretrained(model_path) # pyright: ignore[reportUnknownVariableType,reportUnknownMemberType]
# Patch encode to use internal tiktoken model directly
# transformers 5.x has a bug in the encode->pad path for slow tokenizers
def _patched_encode(text: str, **_kwargs: object) -> list[int]:
# Pass allowed_special="all" to handle special tokens like <|im_user|>
return list(hf_tokenizer.model.encode(text, allowed_special="all")) # pyright: ignore[reportUnknownMemberType,reportUnknownArgumentType]
hf_tokenizer.encode = _patched_encode
return TokenizerWrapper(hf_tokenizer, eos_token_ids=eos_token_ids)
tokenizer = load_tokenizer(
model_path,
tokenizer_config_extra={"trust_remote_code": TRUST_REMOTE_CODE},
eos_token_ids=eos_token_ids,
)
assert isinstance(tokenizer, TokenizerWrapper)
return tokenizer
@@ -289,15 +342,15 @@ def apply_chat_template(
messages = chat_task_data.messages
formatted_messages: list[dict[str, Any]] = []
for _, message in enumerate(messages):
for message in messages:
if isinstance(message.content, ChatCompletionMessageText):
message.content = message.content.text
if isinstance(message.content, list):
if len(message.content) != 1:
logger.warning("Received malformed prompt")
if len(message.content) == 0:
logger.warning("Received prompt with no content, skipping")
continue
message.content = message.content[0].text
message.content = "\n".join(c.text for c in message.content).strip()
if message.content is None and message.thinking is None:
continue
@@ -306,13 +359,16 @@ def apply_chat_template(
{k: v for k, v in message.model_dump().items() if v is not None} # type: ignore
)
prompt: str = tokenizer.apply_chat_template( # type: ignore
prompt: str = tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True,
tools=chat_task_data.tools,
)
return prompt # type: ignore
logger.info(prompt)
return prompt
class NullKVCache(KVCache):
@@ -343,6 +399,11 @@ def make_kv_cache(
) -> list[KVCache | RotatingKVCache | QuantizedKVCache]:
assert hasattr(model, "layers")
# TODO: Do this for all models
if hasattr(model, "make_cache") and isinstance(model, GptOssModel):
logger.info("Using MLX LM's make cache")
return model.make_cache() # type: ignore
if max_kv_size is None:
if KV_CACHE_BITS is None:
logger.info("Using default KV cache")

View File

@@ -217,7 +217,9 @@ class Worker:
)
if initial_progress.status == "complete":
progress = DownloadCompleted(
shard_metadata=shard, node_id=self.node_id
shard_metadata=shard,
node_id=self.node_id,
total_bytes=initial_progress.total_bytes,
)
self.download_status[shard.model_meta.model_id] = progress
await self.event_sender.send(
@@ -364,7 +366,11 @@ class Worker:
nonlocal self
nonlocal last_progress_time
if progress.status == "complete":
status = DownloadCompleted(shard_metadata=shard, node_id=self.node_id)
status = DownloadCompleted(
shard_metadata=shard,
node_id=self.node_id,
total_bytes=progress.total_bytes,
)
self.download_status[shard.model_meta.model_id] = status
# Footgun!
self.event_sender.send_nowait(
@@ -457,7 +463,9 @@ class Worker:
) in self.shard_downloader.get_shard_download_status():
if progress.status == "complete":
status = DownloadCompleted(
node_id=self.node_id, shard_metadata=progress.shard
node_id=self.node_id,
shard_metadata=progress.shard,
total_bytes=progress.total_bytes,
)
elif progress.status in ["in_progress", "not_started"]:
if progress.downloaded_bytes_this_session.in_bytes == 0:

View File

@@ -277,12 +277,14 @@ def _pending_tasks(
# I have a design point here; this is a state race in disguise as the task status doesn't get updated to completed fast enough
# however, realistically the task status should be set to completed by the LAST runner, so this is a true race
# the actual solution is somewhat deeper than this bypass - TODO!
if task.task_id in runner.completed:
# Also skip tasks in pending to prevent duplicate forwarding with continuous batching
if task.task_id in runner.completed or task.task_id in runner.pending:
continue
# TODO: Check ordering aligns with MLX distributeds expectations.
if isinstance(runner.status, RunnerReady) and all(
# Allow forwarding tasks when runner is Ready or Running (for continuous batching)
if isinstance(runner.status, (RunnerReady, RunnerRunning)) and all(
isinstance(all_runners[global_runner_id], (RunnerReady, RunnerRunning))
for global_runner_id in runner.bound_instance.instance.shard_assignments.runner_to_shard
):

View File

@@ -1,6 +1,8 @@
import gc
import time
import mlx.core as mx
from anyio import WouldBlock
from exo.shared.types.api import ChatCompletionMessageText
from exo.shared.types.chunks import TokenChunk
@@ -21,9 +23,6 @@ from exo.shared.types.tasks import (
TaskStatus,
)
from exo.shared.types.worker.instances import BoundInstance
from exo.shared.types.worker.runner_response import (
GenerationResponse,
)
from exo.shared.types.worker.runners import (
RunnerConnected,
RunnerConnecting,
@@ -39,7 +38,9 @@ from exo.shared.types.worker.runners import (
RunnerWarmingUp,
)
from exo.utils.channels import MpReceiver, MpSender
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
from exo.worker.engines.mlx.generator.batch_engine import BatchGenerationEngine
from exo.worker.engines.mlx.generator.generate import warmup_inference
from exo.worker.engines.mlx.generator.time_budget import TimeBudget
from exo.worker.engines.mlx.utils_mlx import (
initialize_mlx,
load_mlx_items,
@@ -68,148 +69,319 @@ def main(
model = None
tokenizer = None
sampler = None
group = None
batch_engine: BatchGenerationEngine | None = None
pending_shutdown: Shutdown | None = None
current_status: RunnerStatus = RunnerIdle()
def send_status(status: RunnerStatus) -> None:
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=status)
)
logger.info("runner created")
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
with task_receiver as tasks:
for task in tasks:
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running)
)
event_sender.send(TaskAcknowledged(task_id=task.task_id))
match task:
case ConnectToGroup() if isinstance(
current_status, (RunnerIdle, RunnerFailed)
):
logger.info("runner connecting")
current_status = RunnerConnecting()
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
group = initialize_mlx(bound_instance)
send_status(current_status)
logger.info("runner connected")
current_status = RunnerConnected()
def handle_task(task: Task, is_deferred: bool = False) -> bool:
nonlocal current_status, model, tokenizer, group, batch_engine, pending_shutdown
# we load the model if it's connected with a group, or idle without a group. we should never tell a model to connect if it doesn't need to
case LoadModel() if (
isinstance(current_status, RunnerConnected) and group is not None
) or (isinstance(current_status, RunnerIdle) and group is None):
current_status = RunnerLoading()
logger.info("runner loading")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
# For Shutdown, check if we need to defer BEFORE sending Running/Acknowledged
if (
isinstance(task, Shutdown)
and not is_deferred
and batch_engine is not None
and (batch_engine.has_active_requests or batch_engine.has_pending_inserts)
):
logger.info("deferring shutdown until active requests complete")
pending_shutdown = task
return True
model, tokenizer, sampler = load_mlx_items(bound_instance, group)
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running)
)
event_sender.send(TaskAcknowledged(task_id=task.task_id))
current_status = RunnerLoaded()
logger.info("runner loaded")
case StartWarmup() if isinstance(current_status, RunnerLoaded):
assert model
assert tokenizer
assert sampler
current_status = RunnerWarmingUp()
logger.info("runner warming up")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
match task:
case ConnectToGroup() if isinstance(
current_status, (RunnerIdle, RunnerFailed)
):
logger.info("runner connecting")
current_status = RunnerConnecting()
send_status(current_status)
group = initialize_mlx(bound_instance)
logger.info(f"warming up inference for instance: {instance}")
toks = warmup_inference(
model=model,
tokenizer=tokenizer,
sampler=sampler,
# kv_prefix_cache=kv_prefix_cache, # supply for warmup-time prefix caching
logger.info("runner connected")
current_status = RunnerConnected()
event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.Complete
)
logger.info(f"warmed up by generating {toks} tokens")
logger.info(
f"runner initialized in {time.time() - setup_start_time} seconds"
)
send_status(current_status)
case LoadModel() if (
isinstance(current_status, RunnerConnected) and group is not None
) or (isinstance(current_status, RunnerIdle) and group is None):
current_status = RunnerLoading()
logger.info("runner loading")
send_status(current_status)
model, tokenizer = load_mlx_items(bound_instance, group)
current_status = RunnerLoaded()
logger.info("runner loaded")
event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.Complete
)
current_status = RunnerReady()
logger.info("runner ready")
case ChatCompletion(task_params=task_params, command_id=command_id) if (
isinstance(current_status, RunnerReady)
):
assert model
assert tokenizer
assert sampler
logger.info(f"received chat request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
)
)
send_status(current_status)
case StartWarmup() if isinstance(current_status, RunnerLoaded):
assert model is not None
assert tokenizer is not None
current_status = RunnerWarmingUp()
logger.info("runner warming up")
send_status(current_status)
logger.info(f"warming up inference for instance: {instance}")
toks = warmup_inference(model=model, tokenizer=tokenizer)
logger.info(f"warmed up by generating {toks} tokens")
logger.info(
f"runner initialized in {time.time() - setup_start_time} seconds"
)
batch_engine = BatchGenerationEngine(
model=model, tokenizer=tokenizer, group=group
)
current_status = RunnerReady()
logger.info("runner ready")
event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.Complete
)
assert task_params.messages[0].content is not None
)
send_status(current_status)
case ChatCompletion(task_params=task_params, command_id=command_id) if (
isinstance(current_status, (RunnerReady, RunnerRunning))
):
assert batch_engine is not None
# In distributed mode, only rank 0 should queue requests
# Other ranks should skip - they'll participate in sync_and_insert_pending()
is_distributed_mode = group is not None and group.size() > 1
if is_distributed_mode and shard_metadata.device_rank != 0:
logger.debug(
f"Rank {shard_metadata.device_rank} skipping ChatCompletionTask (only rank 0 queues)"
)
return True
if task_params.messages and task_params.messages[0].content is not None:
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses using the actual MLX generation
for response in mlx_generate(
model=model,
tokenizer=tokenizer,
sampler=sampler,
task=task_params,
):
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
# Queue the request - actual insertion happens in sync_and_insert_pending()
batch_engine.queue_request(
command_id=command_id, task_id=task.task_id, task_params=task_params
)
# Status will be updated after actual insertion in the main loop
# For now, set to RunnerRunning to indicate we're processing
current_status = RunnerRunning(
active_requests=batch_engine.active_count
+ batch_engine.pending_insert_count
)
send_status(current_status)
case Shutdown():
current_status = RunnerShuttingDown()
logger.info("runner shutting down")
send_status(current_status)
event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.Complete
)
)
current_status = RunnerShutdown()
send_status(current_status)
return False
case _:
raise ValueError(
f"Received {task.__class__.__name__} outside of state machine in {current_status=}"
)
return True
with task_receiver as tasks:
running = True
is_rank_0 = shard_metadata.device_rank == 0
while running:
# Use batch_engine.is_distributed since it's set correctly after group initialization
# (the group variable is None at loop start, but set by ConnectToGroup task)
if batch_engine is not None and batch_engine.is_distributed:
assert group is not None
assert batch_engine is not None
# Distributed mode: tasks wake up all ranks, then we sync and generate
# Check deferred shutdown FIRST - all ranks must check and process together
# This must run before any collective operations to prevent deadlock
if (
pending_shutdown is not None
and not batch_engine.has_active_requests
and not batch_engine.has_pending_inserts
):
handle_task(pending_shutdown, is_deferred=True)
running = False
continue
# When idle, block waiting for task (exo sends tasks to all ranks)
# When active, poll non-blocking to batch incoming requests
if (
not batch_engine.has_active_requests
and not batch_engine.has_pending_inserts
):
# IDLE: Block until task arrives (all ranks receive the same task)
task = tasks.receive()
task_result = handle_task(task)
if not task_result:
running = False
continue
else:
# ACTIVE: Poll for new tasks without blocking
while True:
try:
task = tasks.receive_nowait()
task_result = handle_task(task)
if not task_result:
running = False
break
except WouldBlock:
break
if not running:
continue
# Sync and insert pending requests (collective operation)
# Rank 0 broadcasts its pending to all ranks
inserted = batch_engine.sync_and_insert_pending()
if is_rank_0 and inserted:
current_status = RunnerRunning(
active_requests=batch_engine.active_count
)
send_status(current_status)
# Run generation for time budget
if batch_engine.has_active_requests:
time_budget = TimeBudget(budget=0.5, group=group)
for _ in time_budget:
if not batch_engine.has_active_requests:
break
for resp in batch_engine.step():
# Send token IMMEDIATELY for smooth streaming (only rank 0)
if is_rank_0:
event_sender.send(
ChunkGenerated(
command_id=resp.command_id,
chunk=TokenChunk(
idx=resp.response.token,
model=shard_metadata.model_meta.model_id,
text=resp.response.text,
token_id=resp.response.token,
finish_reason=resp.response.finish_reason,
stats=resp.response.stats,
),
)
)
if resp.response.finish_reason is not None:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
TaskStatusUpdated(
task_id=resp.task_id,
task_status=TaskStatus.Complete,
)
)
# case TokenizedResponse():
# TODO: something here ig
current_status = RunnerReady()
logger.info("runner ready")
case Shutdown():
current_status = RunnerShuttingDown()
logger.info("runner shutting down")
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id, runner_status=current_status
# Sync completions at budget boundary (always call - it's a collective operation)
batch_engine.sync_completions()
# Update status after budget
if is_rank_0:
current_status = (
RunnerRunning(active_requests=batch_engine.active_count)
if batch_engine.has_active_requests
else RunnerReady()
)
send_status(current_status)
else:
# Non-distributed mode: original logic with queue + insert
while True:
try:
task = tasks.receive_nowait()
running = handle_task(task)
if not running:
break
except WouldBlock:
break
if not running:
break
# Insert any queued requests (non-distributed just inserts directly)
# Status was already sent in handle_task when queueing
if batch_engine is not None and batch_engine.has_pending_inserts:
batch_engine.sync_and_insert_pending()
if batch_engine is not None and batch_engine.has_active_requests:
for resp in batch_engine.step():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=resp.command_id,
chunk=TokenChunk(
idx=resp.response.token,
model=shard_metadata.model_meta.model_id,
text=resp.response.text,
token_id=resp.response.token,
finish_reason=resp.response.finish_reason,
stats=resp.response.stats,
),
)
)
if resp.response.finish_reason is not None:
event_sender.send(
TaskStatusUpdated(
task_id=resp.task_id,
task_status=TaskStatus.Complete,
)
)
if batch_engine.has_active_requests:
current_status = RunnerRunning(
active_requests=batch_engine.active_count
)
)
current_status = RunnerShutdown()
case _:
raise ValueError(
f"Received {task.__class__.__name__} outside of state machine in {current_status=}"
)
event_sender.send(
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Complete)
)
event_sender.send(
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
)
if isinstance(current_status, RunnerShutdown):
del model, tokenizer, group, sampler
mx.clear_cache()
import gc
else:
current_status = RunnerReady()
send_status(current_status)
gc.collect()
break
# Process deferred shutdown after all requests complete
if (
pending_shutdown is not None
and not batch_engine.has_active_requests
and not batch_engine.has_pending_inserts
):
running = handle_task(pending_shutdown, is_deferred=True)
else:
task = tasks.receive()
running = handle_task(task)
# Cleanup
del model, tokenizer, group, batch_engine
mx.clear_cache()
gc.collect()
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"

View File

@@ -105,7 +105,7 @@ class RunnerSupervisor:
return
# This is overkill but it's not technically bad, just unnecessary.
logger.warning("Runner process didn't shutdown succesfully, terminating")
logger.warning("Runner process didn't shutdown successfully, terminating")
self.runner_process.terminate()
await to_thread.run_sync(self.runner_process.join, 5)
if not self.runner_process.is_alive():
@@ -128,9 +128,11 @@ class RunnerSupervisor:
async def start_task(self, task: Task):
if task.task_id in self.completed:
logger.info(
f"Skipping invalid task {task} as it has already been completed"
)
logger.info(f"Skipping task {task.task_id} - already completed")
return
if task.task_id in self.pending:
logger.info(f"Skipping task {task.task_id} - already pending")
return
logger.info(f"Starting task {task}")
event = anyio.Event()
self.pending[task.task_id] = event
@@ -149,13 +151,17 @@ class RunnerSupervisor:
if isinstance(event, RunnerStatusUpdated):
self.status = event.runner_status
if isinstance(event, TaskAcknowledged):
self.pending.pop(event.task_id).set()
# Just set the event to unblock start_task, but keep in pending
# to prevent duplicate forwarding until completion
if event.task_id in self.pending:
self.pending[event.task_id].set()
continue
if (
isinstance(event, TaskStatusUpdated)
and event.task_status == TaskStatus.Complete
if isinstance(event, TaskStatusUpdated) and event.task_status in (
TaskStatus.Complete,
TaskStatus.TimedOut,
TaskStatus.Failed,
):
# If a task has just been completed, we should be working on it.
# If a task has just finished, we should be working on it.
assert isinstance(
self.status,
(
@@ -166,6 +172,8 @@ class RunnerSupervisor:
RunnerShuttingDown,
),
)
# Now safe to remove from pending and add to completed
self.pending.pop(event.task_id, None)
self.completed.add(event.task_id)
await self._event_sender.send(event)
except (ClosedResourceError, BrokenResourceError) as e:

View File

@@ -20,6 +20,7 @@ class FakeRunnerSupervisor:
bound_instance: BoundInstance
status: RunnerStatus
completed: set[TaskId] = field(default_factory=set)
pending: dict[TaskId, object] = field(default_factory=dict)
class OtherTask(BaseTask):

View File

@@ -0,0 +1,386 @@
"""
Unit tests for tokenizer loading and functionality across all supported models.
This test downloads only tokenizer-related files (not full model weights) to verify
that tokenizers can be loaded and used correctly for encoding/decoding.
"""
import asyncio
import contextlib
from pathlib import Path
import pytest
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard
from exo.worker.download.download_utils import (
download_file_with_retry,
ensure_models_dir,
fetch_file_list_with_cache,
)
from exo.worker.engines.mlx.utils_mlx import (
get_eos_token_ids_for_model,
load_tokenizer_for_model_id,
)
# Files needed for tokenizer functionality
TOKENIZER_FILE_PATTERNS = [
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"vocab.txt",
"merges.txt",
"tiktoken.model",
"added_tokens.json",
"tokenizer.model",
"tokenization_*.py", # Custom tokenizer implementations
]
def is_tokenizer_file(filename: str) -> bool:
"""Check if a file is needed for tokenizer functionality."""
for pattern in TOKENIZER_FILE_PATTERNS:
if "*" in pattern:
prefix = pattern.split("*")[0]
suffix = pattern.split("*")[1]
if filename.startswith(prefix) and filename.endswith(suffix):
return True
elif filename == pattern:
return True
return False
async def download_tokenizer_files(model_id: str) -> Path:
"""Download only the tokenizer-related files for a model."""
target_dir = await ensure_models_dir() / model_id.replace("/", "--")
target_dir.mkdir(parents=True, exist_ok=True)
file_list = await fetch_file_list_with_cache(model_id, "main", recursive=True)
tokenizer_files = [f for f in file_list if is_tokenizer_file(f.path)]
if not tokenizer_files:
pytest.skip(f"No tokenizer files found for {model_id}")
for file_entry in tokenizer_files:
with contextlib.suppress(FileNotFoundError):
await download_file_with_retry(
model_id, "main", file_entry.path, target_dir
)
return target_dir
# Get a sample of models to test (one per family to keep tests fast)
def get_test_models() -> list[tuple[str, ModelCard]]:
"""Get a representative sample of models to test."""
# Pick one model from each family to test
families: dict[str, tuple[str, ModelCard]] = {}
for short_id, card in MODEL_CARDS.items():
# Extract family name (e.g., "llama-3.1" from "llama-3.1-8b")
parts = short_id.split("-")
family = "-".join(parts[:2]) if len(parts) >= 2 else parts[0]
if family not in families:
families[family] = (short_id, card)
return list(families.values())
TEST_MODELS: list[tuple[str, ModelCard]] = get_test_models()
@pytest.fixture(scope="module")
def event_loop():
"""Create event loop for async tests."""
loop = asyncio.new_event_loop()
yield loop
loop.close()
@pytest.mark.parametrize(
"short_id,model_card",
TEST_MODELS,
ids=[m[0] for m in TEST_MODELS],
)
@pytest.mark.asyncio
async def test_tokenizer_encode_decode(short_id: str, model_card: ModelCard) -> None:
"""Test that tokenizer can encode and decode text correctly."""
model_id = str(model_card.model_id)
# Download tokenizer files
model_path = await download_tokenizer_files(model_id)
# Verify required files exist
has_tokenizer = (
(model_path / "tokenizer.json").exists()
or (model_path / "tokenizer_config.json").exists()
or (model_path / "tiktoken.model").exists()
or (model_path / "tokenizer.model").exists()
)
if not has_tokenizer:
pytest.skip(f"Required tokenizer files not found for {model_id}")
# Load tokenizer
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
# Test basic encoding
test_text = "Hello, world!"
encoded = tokenizer.encode(test_text)
assert isinstance(encoded, list), f"encode() should return a list for {model_id}"
assert len(encoded) > 0, f"encode() should return non-empty list for {model_id}"
assert all(isinstance(t, int) for t in encoded), (
f"All tokens should be integers for {model_id}"
)
# Test decoding
decoded = tokenizer.decode(encoded)
assert isinstance(decoded, str), f"decode() should return a string for {model_id}"
assert test_text in decoded or decoded.strip() == test_text.strip(), (
f"decode(encode(x)) should preserve text for {model_id}: got {decoded!r}"
)
# Test with longer text
long_text = "The quick brown fox jumps over the lazy dog. " * 10
long_encoded = tokenizer.encode(long_text)
assert len(long_encoded) > len(encoded), (
f"Longer text should produce more tokens for {model_id}"
)
# Test empty string
empty_encoded = tokenizer.encode("")
assert isinstance(empty_encoded, list), (
f"encode('') should return a list for {model_id}"
)
# Test special characters
special_text = 'Hello!\n\tWorld? <test> & "quotes"'
special_encoded = tokenizer.encode(special_text)
assert len(special_encoded) > 0, f"Special chars should encode for {model_id}"
# Test unicode
unicode_text = "Hello 世界 🌍"
unicode_encoded = tokenizer.encode(unicode_text)
assert len(unicode_encoded) > 0, f"Unicode should encode for {model_id}"
@pytest.mark.parametrize(
"short_id,model_card",
TEST_MODELS,
ids=[m[0] for m in TEST_MODELS],
)
@pytest.mark.asyncio
async def test_tokenizer_has_required_attributes(
short_id: str, model_card: ModelCard
) -> None:
"""Test that tokenizer has required attributes for inference."""
model_id = str(model_card.model_id)
model_path = await download_tokenizer_files(model_id)
has_tokenizer = (
(model_path / "tokenizer.json").exists()
or (model_path / "tokenizer_config.json").exists()
or (model_path / "tiktoken.model").exists()
or (model_path / "tokenizer.model").exists()
)
if not has_tokenizer:
pytest.skip(f"Required tokenizer files not found for {model_id}")
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
eos_token_ids = get_eos_token_ids_for_model(model_id)
# Check for vocabulary size
empty_vocab: dict[str, int] = {}
vocab_size: int = getattr(tokenizer, "vocab_size", None) or len(
getattr(tokenizer, "get_vocab", lambda: empty_vocab)()
)
assert vocab_size > 0, f"Tokenizer should have vocab_size > 0 for {model_id}"
# Check for EOS token (either from tokenizer or explicitly provided)
has_eos = (
eos_token_ids is not None
or getattr(tokenizer, "eos_token_id", None) is not None
or getattr(tokenizer, "eos_token", None) is not None
)
assert has_eos, f"Tokenizer should have EOS token for {model_id}"
@pytest.mark.parametrize(
"short_id,model_card",
TEST_MODELS,
ids=[m[0] for m in TEST_MODELS],
)
@pytest.mark.asyncio
async def test_tokenizer_special_tokens(short_id: str, model_card: ModelCard) -> None:
"""Test that tokenizer can encode text containing special tokens.
This is critical because the actual inference path uses prompts with
special tokens from chat templates. If special tokens aren't handled
correctly, encoding will fail.
"""
model_id = str(model_card.model_id)
model_path = await download_tokenizer_files(model_id)
has_tokenizer = (
(model_path / "tokenizer.json").exists()
or (model_path / "tokenizer_config.json").exists()
or (model_path / "tiktoken.model").exists()
or (model_path / "tokenizer.model").exists()
)
assert has_tokenizer, f"Required tokenizer files not found for {model_id}"
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
# Get special tokens from the tokenizer
special_tokens: list[str] = []
# Try to get special tokens from various sources
if hasattr(tokenizer, "all_special_tokens"):
special_tokens.extend(tokenizer.all_special_tokens)
elif hasattr(tokenizer, "_tokenizer") and hasattr(
tokenizer._tokenizer,
"all_special_tokens",
):
special_tokens.extend(tokenizer._tokenizer.all_special_tokens)
# Also check for common special token attributes
for attr in [
"bos_token",
"eos_token",
"pad_token",
"unk_token",
"sep_token",
"cls_token",
]:
token = getattr(tokenizer, attr, None)
if token is None and hasattr(tokenizer, "_tokenizer"):
token = getattr(tokenizer._tokenizer, attr, None)
if token and isinstance(token, str) and token not in special_tokens:
special_tokens.append(token)
# If we found special tokens, test encoding text that contains them
if special_tokens:
# Create text with special tokens interspersed
test_with_special = f"{special_tokens[0]}Hello world"
if len(special_tokens) > 1:
test_with_special += f"{special_tokens[1]}"
encoded = tokenizer.encode(test_with_special)
assert isinstance(encoded, list), (
f"encode() with special tokens should return list for {model_id}"
)
assert len(encoded) > 0, (
f"encode() with special tokens should return non-empty list for {model_id}"
)
assert all(isinstance(t, int) for t in encoded), (
f"All tokens should be integers for {model_id}"
)
# Verify we can decode
decoded = tokenizer.decode(encoded)
assert isinstance(decoded, str), f"decode() should return string for {model_id}"
# Test with angle-bracket tokens (common format for special tokens)
# These should not raise errors even if they're not actual special tokens
angle_bracket_text = "<|test|>Hello<|end|>"
encoded = tokenizer.encode(angle_bracket_text)
assert isinstance(encoded, list), (
f"encode() with angle brackets should return list for {model_id}"
)
assert len(encoded) > 0, (
f"encode() with angle brackets should be non-empty for {model_id}"
)
# Specifically test Kimi tokenizer since it has special handling
@pytest.mark.asyncio
async def test_kimi_tokenizer_specifically():
"""Test Kimi tokenizer with its specific patches and quirks."""
kimi_models = [
(short_id, card)
for short_id, card in MODEL_CARDS.items()
if "kimi" in short_id.lower()
]
if not kimi_models:
pytest.skip("No Kimi models found in MODEL_CARDS")
_, model_card = kimi_models[0]
model_id = str(model_card.model_id)
model_path = await download_tokenizer_files(model_id)
# Ensure the custom tokenizer file exists
if not (model_path / "tokenization_kimi.py").exists():
pytest.skip("tokenization_kimi.py not found")
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
eos_token_ids = get_eos_token_ids_for_model(model_id)
# Test encode/decode cycle
test_text = "Hello, world!"
encoded = tokenizer.encode(test_text)
decoded = tokenizer.decode(encoded)
assert len(encoded) > 0, "Kimi tokenizer should encode text"
assert isinstance(decoded, str), "Kimi tokenizer should decode to string"
# Test that the patched encode works (returns list of ints)
assert all(isinstance(t, int) for t in encoded), "Tokens should be integers"
# Test encoding text with special tokens (like from chat templates)
# This is critical - the warmup inference uses prompts with special tokens
special_token_text = "<|im_user|>user<|im_middle|>Hello<|im_end|><|im_assistant|>"
special_encoded = tokenizer.encode(special_token_text)
assert len(special_encoded) > 0, "Kimi tokenizer should handle special tokens"
assert all(isinstance(t, int) for t in special_encoded), (
"Special token encoding should return integers"
)
# Verify EOS token is set
assert eos_token_ids == [163586], "Kimi EOS token should be [163586]"
# Test GLM tokenizer since it also has special handling
@pytest.mark.asyncio
async def test_glm_tokenizer_specifically():
"""Test GLM tokenizer with its specific EOS tokens."""
glm_models = [
(short_id, card)
for short_id, card in MODEL_CARDS.items()
if "glm" in short_id.lower()
]
if not glm_models:
pytest.skip("No GLM models found in MODEL_CARDS")
_, model_card = glm_models[0]
model_id = str(model_card.model_id)
model_path = await download_tokenizer_files(model_id)
has_tokenizer = (model_path / "tokenizer.json").exists() or (
model_path / "tokenizer_config.json"
).exists()
if not has_tokenizer:
pytest.skip("GLM tokenizer files not found")
tokenizer = load_tokenizer_for_model_id(model_id, model_path)
eos_token_ids = get_eos_token_ids_for_model(model_id)
# Test encode/decode
test_text = "Hello, world!"
encoded = tokenizer.encode(test_text)
decoded = tokenizer.decode(encoded)
assert len(encoded) > 0, "GLM tokenizer should encode text"
assert isinstance(decoded, str), "GLM tokenizer should decode to string"
# Verify EOS tokens
assert eos_token_ids == [
151336,
151329,
151338,
], "GLM EOS tokens should be correct"

View File

@@ -1,5 +1,6 @@
import exo.worker.plan as plan_mod
from exo.shared.types.common import NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId
from exo.shared.types.tasks import LoadModel
from exo.shared.types.worker.downloads import DownloadCompleted, DownloadProgress
@@ -94,13 +95,23 @@ def test_plan_loads_model_when_all_shards_downloaded_and_waiting():
# Local node has already marked its shard as downloaded (not actually used by _load_model)
local_download_status = {
MODEL_A_ID: DownloadCompleted(shard_metadata=shard1, node_id=NODE_A)
MODEL_A_ID: DownloadCompleted(
shard_metadata=shard1, node_id=NODE_A, total_bytes=Memory()
)
}
# Global view has completed downloads for both nodes
global_download_status = {
NODE_A: [DownloadCompleted(shard_metadata=shard1, node_id=NODE_A)],
NODE_B: [DownloadCompleted(shard_metadata=shard2, node_id=NODE_B)],
NODE_A: [
DownloadCompleted(
shard_metadata=shard1, node_id=NODE_A, total_bytes=Memory()
)
],
NODE_B: [
DownloadCompleted(
shard_metadata=shard2, node_id=NODE_B, total_bytes=Memory()
)
],
}
result = plan_mod.plan(
@@ -140,7 +151,9 @@ def test_plan_does_not_request_download_when_shard_already_downloaded():
# Local status claims the shard is downloaded already
local_download_status = {
MODEL_A_ID: DownloadCompleted(shard_metadata=shard, node_id=NODE_A)
MODEL_A_ID: DownloadCompleted(
shard_metadata=shard, node_id=NODE_A, total_bytes=Memory()
)
}
# Global view hasn't caught up yet (no completed shards recorded for NODE_A)
@@ -192,10 +205,16 @@ def test_plan_does_not_load_model_until_all_shards_downloaded_globally():
# Only NODE_A's shard is recorded as downloaded globally
local_download_status = {
MODEL_A_ID: DownloadCompleted(shard_metadata=shard1, node_id=NODE_A)
MODEL_A_ID: DownloadCompleted(
shard_metadata=shard1, node_id=NODE_A, total_bytes=Memory()
)
}
global_download_status = {
NODE_A: [DownloadCompleted(shard_metadata=shard1, node_id=NODE_A)],
NODE_A: [
DownloadCompleted(
shard_metadata=shard1, node_id=NODE_A, total_bytes=Memory()
)
],
NODE_B: [], # NODE_B has no downloads completed yet
}
@@ -212,9 +231,15 @@ def test_plan_does_not_load_model_until_all_shards_downloaded_globally():
assert result is None
global_download_status = {
NODE_A: [DownloadCompleted(shard_metadata=shard1, node_id=NODE_A)],
NODE_A: [
DownloadCompleted(
shard_metadata=shard1, node_id=NODE_A, total_bytes=Memory()
)
],
NODE_B: [
DownloadCompleted(shard_metadata=shard2, node_id=NODE_B)
DownloadCompleted(
shard_metadata=shard2, node_id=NODE_B, total_bytes=Memory()
)
], # NODE_B has no downloads completed yet
}

View File

@@ -0,0 +1,319 @@
"""
Tests for continuous batching behavior in the runner.
These tests verify that:
1. Single requests work through the batch path
2. Multiple concurrent requests batch together
3. Tokens are routed to the correct requests
4. Requests complete at different times appropriately
"""
# pyright: reportAny=false
# pyright: reportUnknownArgumentType=false
# pyright: reportUnknownMemberType=false
# pyright: reportAttributeAccessIssue=false
# pyright: reportInvalidTypeVarUse=false
from typing import Any
from unittest.mock import MagicMock
import pytest
import exo.worker.runner.runner as mlx_runner
from exo.shared.types.api import ChatCompletionMessage
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.events import (
Event,
RunnerStatusUpdated,
TaskStatusUpdated,
)
from exo.shared.types.tasks import (
ChatCompletion,
ChatCompletionTaskParams,
ConnectToGroup,
LoadModel,
Shutdown,
StartWarmup,
Task,
TaskId,
TaskStatus,
)
from exo.shared.types.worker.runner_response import GenerationResponse
from exo.shared.types.worker.runners import RunnerRunning
from exo.utils.channels import mp_channel
from exo.worker.engines.mlx.generator.batch_engine import (
BatchedGenerationResponse,
)
from exo.worker.tests.constants import (
INSTANCE_1_ID,
MODEL_A_ID,
NODE_A,
RUNNER_1_ID,
)
from exo.worker.tests.unittests.conftest import get_bound_mlx_ring_instance
class FakeBatchEngineWithTokens:
"""
Fake batch engine that generates a specified number of tokens per request.
This simulates realistic batch generation behavior where:
- Requests are queued on insert
- Each step() call generates one token for all active requests
- Requests complete when they've generated all their tokens
"""
def __init__(self, *_args: Any, **_kwargs: Any):
self._active_requests: dict[int, tuple[CommandId, TaskId, int, int]] = {}
self._pending_inserts: list[
tuple[CommandId, TaskId, ChatCompletionTaskParams]
] = []
self._uid_counter = 0
self._tokens_per_request = 3 # Default: generate 3 tokens before completing
self.rank = 0 # Fake rank for testing
def queue_request(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams,
) -> None:
"""Queue a request for insertion."""
self._pending_inserts.append((command_id, task_id, task_params))
def sync_and_insert_pending(self) -> list[int]:
"""Insert all pending requests."""
uids: list[int] = []
for command_id, task_id, task_params in self._pending_inserts:
uid = self._do_insert(command_id, task_id, task_params)
uids.append(uid)
self._pending_inserts.clear()
return uids
@property
def has_pending_inserts(self) -> bool:
return len(self._pending_inserts) > 0
def _do_insert(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams | None,
) -> int:
uid = self._uid_counter
self._uid_counter += 1
# Track: (command_id, task_id, tokens_generated, max_tokens)
max_tokens = task_params.max_tokens if task_params else self._tokens_per_request
self._active_requests[uid] = (command_id, task_id, 0, max_tokens or 3)
return uid
def step(self) -> list[BatchedGenerationResponse]:
results: list[BatchedGenerationResponse] = []
uids_to_remove: list[int] = []
for uid, (command_id, task_id, tokens_gen, max_tokens) in list(
self._active_requests.items()
):
tokens_gen += 1
finish_reason = "stop" if tokens_gen >= max_tokens else None
text = f"token{tokens_gen}"
if finish_reason:
uids_to_remove.append(uid)
else:
self._active_requests[uid] = (
command_id,
task_id,
tokens_gen,
max_tokens,
)
results.append(
BatchedGenerationResponse(
command_id=command_id,
task_id=task_id,
response=GenerationResponse(
token=tokens_gen,
text=text,
finish_reason=finish_reason,
),
)
)
for uid in uids_to_remove:
del self._active_requests[uid]
return results
@property
def has_active_requests(self) -> bool:
return len(self._active_requests) > 0
@property
def active_count(self) -> int:
return len(self._active_requests)
@property
def pending_insert_count(self) -> int:
return len(self._pending_inserts)
def make_nothin[T, U, V](res: T):
def nothin(*_1: U, **_2: V) -> T:
return res
return nothin
@pytest.fixture
def patch_batch_engine(monkeypatch: pytest.MonkeyPatch):
"""Patch MLX dependencies and use FakeBatchEngineWithTokens."""
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(MagicMock()))
monkeypatch.setattr(
mlx_runner, "load_mlx_items", make_nothin((MagicMock(), MagicMock()))
)
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", make_nothin(None))
monkeypatch.setattr(mlx_runner, "BatchGenerationEngine", FakeBatchEngineWithTokens)
def _run_with_tasks(tasks: list[Task]) -> list[Event]:
"""
Run tasks through the runner, adding shutdown at the end.
Tasks are sent in order, with shutdown sent last.
The batch engine processes between task handling.
"""
bound_instance = get_bound_mlx_ring_instance(
instance_id=INSTANCE_1_ID,
model_id=MODEL_A_ID,
runner_id=RUNNER_1_ID,
node_id=NodeId(NODE_A),
)
task_sender, task_receiver = mp_channel[Task]()
event_sender, event_receiver = mp_channel[Event]()
shutdown_task = Shutdown(
task_id=TaskId("shutdown"),
instance_id=INSTANCE_1_ID,
runner_id=RUNNER_1_ID,
)
with task_sender, event_receiver:
# Send all tasks including shutdown
for t in tasks:
task_sender.send(t)
task_sender.send(shutdown_task)
# Disable cleanup methods to prevent issues
event_sender.close = lambda: None
event_sender.join = lambda: None
task_receiver.close = lambda: None
task_receiver.join = lambda: None
mlx_runner.main(bound_instance, event_sender, task_receiver)
return event_receiver.collect()
INIT_TASK = ConnectToGroup(task_id=TaskId("init"), instance_id=INSTANCE_1_ID)
LOAD_TASK = LoadModel(task_id=TaskId("load"), instance_id=INSTANCE_1_ID)
WARMUP_TASK = StartWarmup(task_id=TaskId("warmup"), instance_id=INSTANCE_1_ID)
def make_chat_task(
task_id: str, command_id: str, max_tokens: int = 3
) -> ChatCompletion:
return ChatCompletion(
task_id=TaskId(task_id),
command_id=CommandId(command_id),
task_params=ChatCompletionTaskParams(
model=str(MODEL_A_ID),
messages=[ChatCompletionMessage(role="user", content="hello")],
stream=True,
max_tokens=max_tokens,
),
instance_id=INSTANCE_1_ID,
)
def test_single_request_generates_tokens(patch_batch_engine: None):
"""
Verify a single request generates the expected tokens through the batch path.
Note: With the current non-blocking design, shutdown is processed before
batch steps run when all tasks are queued together. This test verifies
the runner status reflects active requests.
"""
chat_task = make_chat_task("chat1", "cmd1", max_tokens=3)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat_task])
# Find RunnerRunning status events - this shows the request was inserted
running_events = [
e
for e in events
if isinstance(e, RunnerStatusUpdated)
and isinstance(e.runner_status, RunnerRunning)
]
assert len(running_events) >= 1, "Expected at least one RunnerRunning event"
assert running_events[0].runner_status.active_requests == 1
def test_runner_status_reflects_active_requests(patch_batch_engine: None):
"""Verify RunnerRunning status includes active_requests count."""
chat_task = make_chat_task("chat1", "cmd1", max_tokens=2)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat_task])
# Find RunnerRunning status events
running_events = [
e
for e in events
if isinstance(e, RunnerStatusUpdated)
and isinstance(e.runner_status, RunnerRunning)
]
assert len(running_events) > 0, "Expected at least one RunnerRunning event"
assert running_events[0].runner_status.active_requests == 1
def test_chat_task_acknowledged(patch_batch_engine: None):
"""Verify chat completion task is acknowledged with proper status updates."""
chat_task = make_chat_task("chat1", "cmd1", max_tokens=2)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat_task])
# Find the chat task status events
chat_running = [
e
for e in events
if isinstance(e, TaskStatusUpdated)
and e.task_id == TaskId("chat1")
and e.task_status == TaskStatus.Running
]
assert len(chat_running) == 1, "Expected exactly one chat task Running status"
def test_multiple_requests_tracked(patch_batch_engine: None):
"""Verify multiple concurrent requests are tracked in active_requests."""
chat1 = make_chat_task("chat1", "cmd1", max_tokens=2)
chat2 = make_chat_task("chat2", "cmd2", max_tokens=2)
events = _run_with_tasks([INIT_TASK, LOAD_TASK, WARMUP_TASK, chat1, chat2])
# Find RunnerRunning status events
running_events = [
e
for e in events
if isinstance(e, RunnerStatusUpdated)
and isinstance(e.runner_status, RunnerRunning)
]
# Should have at least 2 RunnerRunning events (one per request inserted)
assert len(running_events) >= 2, (
f"Expected at least 2 RunnerRunning events, got {len(running_events)}"
)
# First should have 1 active request, second should have 2
assert running_events[0].runner_status.active_requests == 1
assert running_events[1].runner_status.active_requests == 2

View File

@@ -1,12 +1,17 @@
# Check tasks are complete before runner is ever ready.
# pyright: reportAny=false
from collections.abc import Iterable
from typing import Callable
from typing import Any, Callable
from unittest.mock import MagicMock
import pytest
import exo.worker.runner.runner as mlx_runner
from exo.shared.types.api import ChatCompletionMessage
from exo.shared.types.chunks import TokenChunk
from exo.shared.types.common import CommandId
from exo.shared.types.events import (
ChunkGenerated,
Event,
@@ -22,6 +27,7 @@ from exo.shared.types.tasks import (
Shutdown,
StartWarmup,
Task,
TaskId,
TaskStatus,
)
from exo.shared.types.worker.runner_response import GenerationResponse
@@ -38,6 +44,9 @@ from exo.shared.types.worker.runners import (
RunnerWarmingUp,
)
from exo.utils.channels import mp_channel
from exo.worker.engines.mlx.generator.batch_engine import (
BatchedGenerationResponse,
)
from ...constants import (
CHAT_COMPLETION_TASK_ID,
@@ -107,18 +116,89 @@ def assert_events_equal(test_events: Iterable[Event], true_events: Iterable[Even
assert test_event == true_event, f"{test_event} != {true_event}"
class FakeBatchEngine:
"""
Fake batch engine for testing.
Queues requests on insert, returns one token per step.
The runner's non-blocking loop drains all tasks before running batch steps,
so this engine queues requests and has_active_requests returns True only
after at least one request has been inserted.
"""
def __init__(self, *_args: Any, **_kwargs: Any):
self._active_requests: dict[int, tuple[CommandId, TaskId]] = {}
self._pending_inserts: list[
tuple[CommandId, TaskId, ChatCompletionTaskParams]
] = []
self._uid_counter = 0
self.rank = 0 # Fake rank for testing
def queue_request(
self,
command_id: CommandId,
task_id: TaskId,
task_params: ChatCompletionTaskParams,
) -> None:
"""Queue a request for insertion."""
self._pending_inserts.append((command_id, task_id, task_params))
def sync_and_insert_pending(self) -> list[int]:
"""Insert all pending requests."""
uids: list[int] = []
for command_id, task_id, _task_params in self._pending_inserts:
uid = self._uid_counter
self._uid_counter += 1
self._active_requests[uid] = (command_id, task_id)
uids.append(uid)
self._pending_inserts.clear()
return uids
@property
def has_pending_inserts(self) -> bool:
return len(self._pending_inserts) > 0
def step(self) -> list[BatchedGenerationResponse]:
results: list[BatchedGenerationResponse] = []
# Process all active requests - return one token and complete
for uid, (command_id, task_id) in list(self._active_requests.items()):
results.append(
BatchedGenerationResponse(
command_id=command_id,
task_id=task_id,
response=GenerationResponse(
token=0,
text="hi",
finish_reason="stop",
),
)
)
del self._active_requests[uid]
return results
@property
def has_active_requests(self) -> bool:
return len(self._active_requests) > 0
@property
def active_count(self) -> int:
return len(self._active_requests)
@property
def pending_insert_count(self) -> int:
return len(self._pending_inserts)
@pytest.fixture
def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
# initialize_mlx returns a "group" equal to 1
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(1))
monkeypatch.setattr(mlx_runner, "load_mlx_items", make_nothin((1, 1, 1)))
# initialize_mlx returns a fake "group" (non-None for state machine)
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(MagicMock()))
monkeypatch.setattr(
mlx_runner, "load_mlx_items", make_nothin((MagicMock(), MagicMock()))
)
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", nothin)
def fake_generate(*_1: object, **_2: object):
yield GenerationResponse(token=0, text="hi", finish_reason="stop")
monkeypatch.setattr(mlx_runner, "mlx_generate", fake_generate)
monkeypatch.setattr(mlx_runner, "BatchGenerationEngine", FakeBatchEngine)
def _run(tasks: Iterable[Task]):
@@ -148,7 +228,8 @@ def _run(tasks: Iterable[Task]):
return event_receiver.collect()
def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
def test_chat_completion_generates_and_completes(patch_out_mlx: pytest.MonkeyPatch):
"""Verify chat completion generates tokens, completes, and runner returns to Ready."""
events = _run([INIT_TASK, LOAD_TASK, WARMUP_TASK, CHAT_TASK, SHUTDOWN_TASK])
expected_chunk = ChunkGenerated(
@@ -191,7 +272,9 @@ def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
task_id=CHAT_COMPLETION_TASK_ID, task_status=TaskStatus.Running
),
TaskAcknowledged(task_id=CHAT_COMPLETION_TASK_ID),
RunnerStatusUpdated(runner_id=RUNNER_1_ID, runner_status=RunnerRunning()),
RunnerStatusUpdated(
runner_id=RUNNER_1_ID, runner_status=RunnerRunning(active_requests=1)
),
expected_chunk,
TaskStatusUpdated(
task_id=CHAT_COMPLETION_TASK_ID, task_status=TaskStatus.Complete
@@ -206,7 +289,6 @@ def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
TaskStatusUpdated(
task_id=SHUTDOWN_TASK_ID, task_status=TaskStatus.Complete
),
# SPECIAL EXCEPTION FOR RUNNER SHUTDOWN
RunnerStatusUpdated(runner_id=RUNNER_1_ID, runner_status=RunnerShutdown()),
],
)

View File

@@ -1,4 +1,5 @@
import http.client
import time
from anyio import create_task_group, to_thread
from loguru import logger
@@ -6,6 +7,8 @@ from loguru import logger
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
BAD_STATUSLINE_ATTEMPTS = 3
async def check_reachability(
target_ip: str,
@@ -15,8 +18,9 @@ async def check_reachability(
) -> None:
"""Check if a node is reachable at the given IP and verify its identity."""
def _fetch_remote_node_id() -> NodeId | None:
connection = http.client.HTTPConnection(target_ip, 52415, timeout=1)
# TODO: use an async http client
def _fetch_remote_node_id(*, attempt: int = 1) -> NodeId | None:
connection = http.client.HTTPConnection(target_ip, 52415, timeout=3)
try:
connection.request("GET", "/node_id")
response = connection.getresponse()
@@ -32,7 +36,16 @@ async def check_reachability(
return NodeId(body) or None
except OSError:
return None
except http.client.HTTPException:
except http.client.BadStatusLine:
if attempt >= BAD_STATUSLINE_ATTEMPTS:
logger.warning(
f"BadStatusLine from {target_ip}, after {attempt} attempts, assuming connection to {expected_node_id} has dropped"
)
return None
time.sleep(1)
return _fetch_remote_node_id(attempt=attempt + 1)
except http.client.HTTPException as e:
logger.warning(f"HTTPException from {target_ip}: {type(e).__name__}: {e}")
return None
finally:
connection.close()

View File

@@ -49,14 +49,12 @@ class Tests(BaseModel):
kind: typing.Literal["init", "warmup", "inference"]
hn = socket.gethostname()
mp.set_start_method("spawn", force=True)
logger_setup(None)
async def main():
logger.info("starting cool server majig")
logger.info(hn)
await assert_downloads()
cfg = Config()
cfg.bind = "0.0.0.0:52415"
@@ -81,20 +79,41 @@ async def main():
async def assert_downloads():
sd = exo_shard_downloader()
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["llama-3.2-1b"].model_id))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
)
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
)
async def ring_backend(test: Tests):
iid = InstanceId(str(hash(str(test.devs))))
return await execute_test(test, ring_instance(test, iid))
weird_hn = socket.gethostname()
for dev in test.devs:
if weird_hn.startswith(dev[0]) or dev[0].startswith(weird_hn):
hn = dev[0]
break
else:
raise ValueError(f"{weird_hn} not in {test.devs}")
return await execute_test(test, ring_instance(test, iid, hn), hn)
def ring_instance(test: Tests, iid: InstanceId) -> Instance:
global hn
def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
hbn = [Host(ip="i dont care", port=52416) for _ in test.devs]
world_size = len(test.devs)
for i in range(world_size):
if hn.startswith(test.devs[i][0]):
if test.devs[i][0] == hn:
hn = test.devs[i][0]
if i - 1 >= 0:
hbn[i - 1] = Host(ip=test.devs[i - 1][1], port=52416)
@@ -102,6 +121,8 @@ def ring_instance(test: Tests, iid: InstanceId) -> Instance:
hbn[i + 1] = Host(ip=test.devs[i + 1][1], port=52416)
hbn[i] = Host(ip="0.0.0.0", port=52416)
break
else:
raise ValueError(f"{hn} not in {test.devs}")
meta = MODEL_CARDS[test.model_id].metadata
instance = MlxRingInstance(
@@ -131,10 +152,10 @@ def ring_instance(test: Tests, iid: InstanceId) -> Instance:
return instance
async def execute_test(test: Tests, instance: Instance):
async def execute_test(test: Tests, instance: Instance, hn: str):
world_size = len(test.devs)
iid = InstanceId(str(hash(str(test.devs))))
_handle, recv, send = new_runner(instance)
_handle, recv, send = new_runner(instance, hn)
if world_size > 1:
send.send(ConnectToGroup(instance_id=iid))
send.send(LoadModel(instance_id=iid))
@@ -181,17 +202,19 @@ async def execute_test(test: Tests, instance: Instance):
async def jaccl_backend(test: Tests):
iid = InstanceId(str(hash(str(test.devs))))
return await execute_test(test, jaccl_instance(test, iid))
weird_hn = socket.gethostname()
for dev in test.devs:
if weird_hn.startswith(dev[0]) or dev[0].startswith(weird_hn):
hn = dev[0]
break
else:
raise ValueError(f"{weird_hn} not in {test.devs}")
return await execute_test(test, jaccl_instance(test, iid, hn), hn)
def jaccl_instance(test: Tests, iid: InstanceId):
global hn
def jaccl_instance(test: Tests, iid: InstanceId, hn: str):
meta = MODEL_CARDS[test.model_id].metadata
world_size = len(test.devs)
for name, _ in test.devs:
if hn.startswith(name):
hn = name
break
return MlxJacclInstance(
instance_id=iid,
@@ -220,6 +243,7 @@ def jaccl_instance(test: Tests, iid: InstanceId):
def new_runner(
instance: Instance,
hn: str,
) -> tuple[mp.Process, MpReceiver[Event], MpSender[Task]]:
bound_instance = BoundInstance(
instance=instance, bound_runner_id=RunnerId(hn), bound_node_id=NodeId(hn)

View File

@@ -34,19 +34,23 @@ done
devs_raw=$(printf "[\"%s\", \"%s\"], " "${weaved[@]}")
devs="[${devs_raw%, }]"
for i in "${!ips[@]}"; do
{
req="{
\"model_id\": \"llama-3.2-1b\",
\"devs\": ${devs},
\"kind\": \"inference\"
}"
echo "req $req"
curl -sN \
-X POST "http://${ips[$i]}:52415/${kind}" \
-H "Content-Type: application/json" -d "$req" \
2>&1 | sed "s/^/\n${hostnames[$i]}@${ips[$i]}: /" || echo "curl to ${hostnames[$i]} failed"
} &
model_ids=("qwen3-30b" "gpt-oss-120b-MXFP4-Q8" "kimi-k2-thinking")
for model_id in "${model_ids[@]}"; do
for i in "${!ips[@]}"; do
{
req="{
\"model_id\": \"${model_id}\",
\"devs\": ${devs},
\"kind\": \"inference\"
}"
echo "req $req"
curl -sN \
-X POST "http://${ips[$i]}:52415/${kind}" \
-H "Content-Type: application/json" -d "$req" \
2>&1 | sed "s/^/\n${hostnames[$i]}@${ips[$i]}: /" || echo "curl to ${hostnames[$i]} failed" && exit 1
} &
done
wait
done
wait

1860
uv.lock generated
View File

File diff suppressed because it is too large Load Diff