Compare commits

..

19 Commits

Author SHA1 Message Date
Ryuichi Leo Takashige
484ed1d879 Test stuff 2026-01-20 00:57:27 +00:00
Ryuichi Leo Takashige
209d618d5a Load model layers individually but eagerly 2026-01-19 22:00:31 +00:00
rltakashige
5fd55594c9 Wrap pipeline models for explicit mx.depends between cache and logits (#1206)
## Motivation

GPU timeouts often when prompt size > profile_step_size. It also happens
for seemingly random models.

## Changes

Add mx.depends for cache on the logits.
All gather at the model level rather than the layer level, reducing the
amount of data sent.

## Why It Works

mlx_lm's prefill loop only evaluates cache state, not logits.
When prompt > prefill_step_size, the all_gather is never evaluated,
causing GPU timeout.

## Test Plan

### Manual Testing
<!-- Hardware: (e.g., MacBook Pro M1 Max 32GB, Mac Mini M2 16GB,
connected via Thunderbolt 4) -->
<!-- What you did: -->
<!-- - -->

### Automated Testing
Added failing test cases and then resolved them.
2026-01-19 17:49:42 +00:00
Jake Hillion
5ab1f8b3e2 NetworkSetupHelper: detect stale startup script content
The daemonAlreadyInstalled() function checked that the startup script
file existed and validated plist properties, but did not compare the
actual script content. If the setupScript constant was updated in a new
app version, the stale on-disk script would not be detected or replaced.

Added a guard clause that reads the installed script from disk and
compares it against the expected setupScript content (with whitespace
normalization). When content differs, the function returns false,
triggering the reinstallation flow with an admin privileges prompt.

Test plan:
- Installed on a cluster that had the previous network config. Got the
  popup asking for permissions. After accepting I could run Kimi K2
  Thinking Tensor RDMA on all 4 nodes.
2026-01-19 17:36:15 +00:00
Evan Quiney
2202685c3e refactor all information sources (including ipless rdma discovery) (#928)
## Motivation

Information gathering is tightly coupled to MacMon - we should start
generalizing our information sources so we can add more in future.

## Changes

Added a new system to gather any information. Currently, it is attached
to the Worker - though this is mostly to keep the data processing logic
simple. It could be made independent quite easily.

I also refactored topology to include different kinds of connections as
we can gather RDMA connections without having a pre-existing socket
connection, and made the relevant placement updates. We should no longer
need the network locations script in the app.

Other sources of information now include:
- static node information like "model" and "chip" (macos, "Unknown"
fallback)
- device friendly name (macos, falls back to device hostname)
- network interfaces + ips (cross platform)
- thunderbolt interfaces (macos)
- thunderbolt connections (macos)
- RAM usage (cross platform)
- per-device configuration written to EXO_HOME/config.toml

## Limitations

Model and Chip are not cross platform concepts.

We do not differentiate between unified and non-unified memory systems.

A lot of this data collection is based on simple timers. Watching the SC
store on macos is the correct way to gather some of this information,
but requires a detour into rust for macos.

## Why It Works

The InfoGatherer is a generic subsystem which returns a union of metric
datatypes. It writes them to an event, which is applied to state. It is
currently re-spawned with the worker so each cluster receives the
correct information.

As for topology, macOS identifies TB ports with a uuid in
SPThunderboltDataType, and also stores remote uuids if it can find them.
These changes read that data with the system_profiler, hopefully not so
often as to cause notable performance impacts (though this should be
tuned) but frequently enough for moderate responsiveness.
As we can identify TB connections between devices without needing ips
attached to each interface, we can remove the network setup script
(almost) completely.

## Test Plan

### Manual Testing
Spawn RDMA instances without enabling DHCP on the RDMA interfaces.

### Automated Testing
Updated the current master and shared tests to cover the topology
refactor and new events.

---------

Co-authored-by: Sami Khan <smsak99@gmail.com>
Co-authored-by: Alex Cheema <alexcheema123@gmail.com>
Co-authored-by: Jake Hillion <jake@hillion.co.uk>
2026-01-19 16:58:09 +00:00
Andrei Onel
ce3ad391b1 Update README.md with some changes from release 1.0.61 (#1157)
Updated README.md with documentation for four new features:

- added a "Benchmarking" section documenting the exo-bench tool for
measuring model performance across different placement configurations
- documented the custom namespace feature for cluster isolation in the
macOS app section
- added a "Configuration Options" subsection explaining the --no-worker
CLI flag for coordinator-only nodes
- added a "File Locations (Linux)" subsection documenting XDG Base
Directory Specification compliance on Linux systems

Issue #930
2026-01-19 16:43:18 +00:00
Jake Hillion
fb0151630d shard_downloader: make on_progress callback async
The on_progress callback was synchronous but always invoked from async
contexts, forcing the use of send_nowait() which could raise WouldBlock
if the channel buffer was full, potentially dropping progress updates.

Changed the callback type from `Callable[[ShardMetadata,
RepoDownloadProgress], None]` to return a coroutine, updated all
implementations to be async, and replaced send_nowait() with await
send() in the worker's download progress handler.

This allows proper backpressure handling when sending download progress
events through the channel, eliminating the "Footgun!" that was
previously documented in the code.

Test plan:
- Built a DMG and ran it on one node. All existing models showed as
  downloaded.
- Downloaded a new model. The progress bar on the download page worked.
- Downloaded another new model. The progress bar on the home page
  worked.
2026-01-19 16:19:37 +00:00
Alex Cheema
346b13e2c9 Enhance LaTeX rendering in dashboard markdown (#1197)
## Motivation

When models output LaTeX-formatted math proofs, the dashboard was not
rendering them correctly. Issues included:
- `\documentclass`, `\begin{document}`, `\usepackage` showing as raw
text
- `$...$` inline math with complex expressions (like `\frac`, `\ldots`)
not rendering due to markdown escaping backslashes
- `\begin{align*}...\end{align*}` and other math environments showing as
raw text
- `\emph{...}`, `\textbf{...}` LaTeX formatting commands not being
converted
- `$\require{...}$` (MathJax-specific) causing KaTeX errors
- `\begin{proof}...\end{proof}` showing as raw text

## Changes

Enhanced `MarkdownContent.svelte` with comprehensive LaTeX support:

**Math extraction before markdown processing:**
- Extract `$...$`, `$$...$$`, `\(...\)`, `\[...\]` into placeholders
before markdown processes the text
- Use alphanumeric placeholders (`MATHPLACEHOLDERINLINE0END`) that won't
be interpreted as HTML tags
- Restore and render with KaTeX after markdown processing

**LaTeX document command removal:**
- Strip `\documentclass{...}`, `\usepackage{...}`, `\begin{document}`,
`\end{document}`
- Strip `\maketitle`, `\title{...}`, `\author{...}`, `\date{...}`
- Strip `\require{...}` (MathJax-specific, not KaTeX)
- Replace `tikzpicture` environments with `[diagram]` placeholder
- Strip `\label{...}` cross-reference commands

**LaTeX math environments:**
- Convert `\begin{align*}`, `\begin{equation}`, `\begin{gather}`, etc.
to display math blocks

**LaTeX text formatting:**
- `\emph{...}` and `\textit{...}` → `<em>...</em>`
- `\textbf{...}` → `<strong>...</strong>`
- `\texttt{...}` → `<code>...</code>`
- `\underline{...}` → `<u>...</u>`

**LaTeX environments styling:**
- `\begin{proof}...\end{proof}` → styled proof block with QED symbol
- `\begin{theorem}`, `\begin{lemma}`, etc. → styled theorem blocks

**Display math enhancements:**
- Wrapped in styled container with subtle gold border
- "LaTeX" label and copy button appear on hover
- Dark theme KaTeX color overrides for better readability
- Custom scrollbar for overflow

## Why It Works

The key insight is that markdown processing was escaping backslashes in
LaTeX before KaTeX could see them. By extracting all math expressions
into alphanumeric placeholders *before* markdown runs, then restoring
them *after*, the LaTeX content passes through to KaTeX unmodified.

Using purely alphanumeric placeholders like `MATHPLACEHOLDERINLINE0END`
instead of `<<MATH_INLINE_0>>` prevents markdown from interpreting them
as HTML tags and stripping them.

## Test Plan

### Manual Testing
- Hardware: Any machine with the dashboard
- What you did:
  - Ask model to "write a proof in latex"
  - Verify inline math like `$x \in S$` renders correctly
- Verify display math like `\begin{align*}...\end{align*}` renders as
block
  - Verify `\documentclass`, `\begin{document}` are stripped (not shown)
  - Verify `\emph{...}` converts to italics
  - Verify copy button works on display math blocks
- Test edge cases: `$5` (currency) stays as text, `\$50` (escaped)
becomes `$50`

Before:
<img width="799" height="637" alt="Screenshot 2026-01-19 at 11 51 22 AM"
src="https://github.com/user-attachments/assets/62a705b8-b3c2-47b8-afd0-5d0c1b240e44"
/>

After:
<img width="809" height="642" alt="Screenshot 2026-01-19 at 11 46 58 AM"
src="https://github.com/user-attachments/assets/4f35fa1d-333c-4285-bc68-58a50f8f148e"
/>


### Automated Testing
- Dashboard builds successfully with `npm run build`
- Existing functionality preserved

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 14:50:41 +00:00
rltakashige
ea0588429b Custom mlx layer composition (#1201)
## Motivation

With a single pipeline layer, PipelineFirstLayer gets composed with
PipelineLastLayer.

## Changes

<!-- Describe what you changed in detail -->

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing


### Automated Testing
Made failing tests. Fixed them!
2026-01-19 12:36:25 +00:00
rltakashige
73b3f87e07 Set swa_idx and ga_idx for single layer (#1202)
## Motivation

Layer types does not contain either "sliding_attention" or
"full_attention" for pipeline parallel (single layer).

## Changes

<!-- Describe what you changed in detail -->

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
Manually tested single layer of GPT OSS. Doesn't crash

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-19 12:31:11 +00:00
Evan Quiney
746589ba6b tidy: remove context manager from api (#1199) 2026-01-19 11:58:13 +00:00
rltakashige
f82f862fd7 Fix several issues with placement (#1200)
## Motivation

Uneven placements were causing issues for some users with lopsided
setups. While fixing, I ran into another issue with impossible
allocation of memory.

## Changes

- Allocate at least 1 layer per device.
- Catch overallocation of memory with an error.

## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
Tested that GPT OSS is placed correctly.

### Automated Testing
Added breaking tests in the first commit. Resolved with new placement
algorithm in the second one.
2026-01-19 11:52:35 +00:00
Alex Cheema
7ff937d8a1 Add dashboard screenshots to README (#1185)
## Motivation

The README showcases exo's features and benchmarks but doesn't show what
the dashboard actually looks like. Adding a screenshot helps users
understand what they'll get when they run exo.

## Changes

- Added dashboard screenshot to `docs/imgs/dashboard-cluster-view.png`:
Shows the cluster topology view with 4 × 512GB M3 Ultra Mac Studio
running DeepSeek v3.1 (8-bit) and Kimi-K2-Thinking (4-bit)
- Added a new "Dashboard" section to README.md below Features,
displaying the screenshot with caption

## Why It Works

Visual documentation helps users understand what exo offers before they
install it. The screenshot demonstrates the cluster management
capabilities.

## Test Plan

### Manual Testing
- Verified image renders correctly in GitHub markdown preview

### Automated Testing
- N/A - documentation only change

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 10:43:27 +00:00
Evan Quiney
d19bf02404 re-raise exceptions in the runner (#1198)
## Motivation

Runners that crash can swallow errors - we should re-raise. Also the
exception handler annoyed me.

## Changes

The try: except in the runner's chat now re-raises.
2026-01-19 10:35:23 +00:00
rltakashige
618cee5223 Resolve test event ordering flakiness (#1194)
## Motivation

mp sender occasionally does not have time to flush its events before
collect() is called, making the event ordering test fail.

## Changes

- Replace mp_channel with simple collector for event ordering test
- Also suppress warning for <frozen importlib._bootstrap>:488 <frozen
importlib._bootstrap>:488: DeprecationWarning: builtin type SwigPyObject
has no __module__ attribute


## Why It Works

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
<!-- Hardware: (e.g., MacBook Pro M1 Max 32GB, Mac Mini M2 16GB,
connected via Thunderbolt 4) -->
<!-- What you did: -->
<!-- - -->

### Automated Testing
Ran the test 100 times without it failing.
2026-01-18 20:33:20 +00:00
Antonio Lujano Luna
9c29eb7d48 Add proxy and custom SSL certificate support for corporate networks (#1189)
Support HTTPS_PROXY/HTTP_PROXY environment variables for proxy
configuration and SSL_CERT_FILE for custom CA certificates, enabling use
in corporate environments with SSL inspection.

## Motivation
Users in corporate environments often need to route traffic through HTTP
proxies and use custom CA certificates for SSL inspection. Without this
support, exo cannot download models in these network configurations.

## Changes
- Added `HTTPS_PROXY`/`HTTP_PROXY` environment variable support to
`create_http_session()` in `download_utils.py`
- Added `SSL_CERT_FILE` environment variable support for custom CA
certificate bundles, falling back to certifi's default bundle

## Why It Works
- `aiohttp.ClientSession` natively supports the `proxy` parameter for
routing requests through HTTP proxies
- `ssl.create_default_context(cafile=...)` accepts a custom CA bundle
path, allowing corporate CAs to be trusted
- Using environment variables is consistent with the codebase's existing
configuration patterns (e.g., `EXO_HOME`, `HF_ENDPOINT`)

## Test Plan
### Manual Testing
- Set `HTTPS_PROXY` environment variable and verified model downloads
route through proxy
- Set `SSL_CERT_FILE` to custom CA bundle and verified SSL verification
succeeds with corporate SSL inspection

### Automated Testing
- No automated tests added; this change is configuration-only and does
not alter existing behavior when environment variables are unset
2026-01-18 12:05:50 +00:00
Alex Cheema
c5158bee53 Add pre-commit checks documentation to AGENTS.md (#1184)
## Motivation

CI failures can be avoided by running checks locally before committing.
This adds clear documentation to AGENTS.md so that AI agents (and
humans) know exactly which checks must pass before pushing code.

## Changes

Added a new "Pre-Commit Checks (REQUIRED)" section to AGENTS.md that:
- Lists all 4 required checks (basedpyright, ruff, nix fmt, pytest)
- Provides a one-liner to run all checks in sequence
- Notes that `nix fmt` changes must be staged before committing
- Explains that CI runs `nix flake check` which verifies everything

## Why It Works

Clear documentation prevents CI failures by ensuring contributors run
checks locally first. The one-liner command makes it easy to run all
checks before committing.

## Test Plan

### Manual Testing
- Verified the documented commands work correctly

### Automated Testing
- N/A - documentation only change

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 21:50:24 +00:00
rltakashige
5c8a237940 Handle model timeouts (#1177)
- Add eval with a timeout.
- Add fast synch flag

## Motivation

Because of the experimental FAST SYNCH flag, some models may not work.
This PR catches when this occurs and allows users to specify a run
without fast synch

## Changes

- Adds a flag to enable or disable fast synch (--fast-synch and
--no-fast-synch)
- Adds a heuristic timeout
- Reduces exo_bench default timeout to 10 minutes.

## Why It Works

Heuristic timeout assumes normal loading times on Mac devices (60 +
model size in gb / 5: e.g. DeepSeek takes up to 120 seconds to load on
tensor parallel, and timeout is set to 60 + 120 = 180s.

We could raise this value if necessary.

## Test Plan

### Manual Testing
Catches that GPT OSS fails to load in Tensor RDMA
Can launch with --no-fast-synch flag to launch GPT OSS.

**GPT OSS 20B**
TP with fast synch
<img width="3064" height="456" alt="image"
src="https://github.com/user-attachments/assets/f6e25cd8-8621-4e99-99fe-292ee05c4035"
/>

TP without fast synch
<img width="3098" height="496" alt="image"
src="https://github.com/user-attachments/assets/d36453d9-6686-4cfe-aa7c-a7d458369d4d"
/>
[Note: the performance is really not great as fast synch is off]

(As a sanity check)
PP with fast synch
<img width="3124" height="496" alt="image"
src="https://github.com/user-attachments/assets/e97d4547-c6fa-483d-badb-4b371b900b4c"
/>

PP without fast synch
<img width="3078" height="508" alt="image"
src="https://github.com/user-attachments/assets/b2e20dfd-4b0e-4295-8a92-417dfe745c28"
/>

PP without RDMA
<img width="3070" height="498" alt="image"
src="https://github.com/user-attachments/assets/a8509d68-0aef-4cda-bca5-a67d39a0801e"
/>

TP without RDMA
<img width="3068" height="496" alt="image"
src="https://github.com/user-attachments/assets/b5691429-89f4-4369-bcf2-8fde2ad7154a"
/>
2026-01-16 20:25:12 +00:00
rltakashige
745343c705 Return error responses for Chat Completions (#1173)
- Error chunks
- Use error handling in exo_bench.py

## Motivation

Return when an error occurs so that generation stops. Adding timeouts is
a separate TODO for model loading and chat completions.

## Changes

- Return HTTP exceptions as JSON responses in an OpenAI compatible
format.
- Context manager for generation to catch and return error messages.
- Use error handling in exo_bench.py.

## Test Plan

### Manual Testing
Manually tested that exo_bench returns on failures within and outside
generation

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-16 19:24:37 +00:00
63 changed files with 3543 additions and 1726 deletions

View File

@@ -40,6 +40,31 @@ uv run ruff check
nix fmt
```
## Pre-Commit Checks (REQUIRED)
**IMPORTANT: Always run these checks before committing code. CI will fail if these don't pass.**
```bash
# 1. Type checking - MUST pass with 0 errors
uv run basedpyright
# 2. Linting - MUST pass
uv run ruff check
# 3. Formatting - MUST be applied
nix fmt
# 4. Tests - MUST pass
uv run pytest
```
Run all checks in sequence:
```bash
uv run basedpyright && uv run ruff check && nix fmt && uv run pytest
```
If `nix fmt` changes any files, stage them before committing. The CI runs `nix flake check` which verifies formatting, linting, and runs Rust tests.
## Architecture
### Node Composition

View File

@@ -27,13 +27,22 @@ exo connects all your devices into an AI cluster. Not only does exo enable runni
- **Tensor Parallelism**: exo supports sharding models, for up to 1.8x speedup on 2 devices and 3.2x speedup on 4 devices.
- **MLX Support**: exo uses [MLX](https://github.com/ml-explore/mlx) as an inference backend and [MLX distributed](https://ml-explore.github.io/mlx/build/html/usage/distributed.html) for distributed communication.
## Dashboard
exo includes a built-in dashboard for managing your cluster and chatting with models.
<p align="center">
<img src="docs/imgs/dashboard-cluster-view.png" alt="exo dashboard - cluster view showing 4 x M3 Ultra Mac Studio with DeepSeek v3.1 and Kimi-K2-Thinking loaded" width="80%" />
</p>
<p align="center"><em>4 × 512GB M3 Ultra Mac Studio running DeepSeek v3.1 (8-bit) and Kimi-K2-Thinking (4-bit)</em></p>
## Benchmarks
<details>
<summary>Qwen3-235B (8-bit) on 4 × M3 Ultra Mac Studio with Tensor Parallel RDMA</summary>
<img src="docs/benchmarks/jeffgeerling/mac-studio-cluster-ai-full-1-qwen3-235b.jpeg" alt="Benchmark - Qwen3-235B (8-bit) on 4 × M3 Ultra Mac Studio with Tensor Parallel RDMA" width="80%" />
<p>
<strong>Source:</strong> <a href="https://www.jeffgeerling.com/blog/2025/15-tb-vram-on-mac-studio-rdma-over-thunderbolt-5">Jeff Geerling: 15 TB VRAM on Mac Studio RDMA over Thunderbolt5</a>
<strong>Source:</strong> <a href="https://www.jeffgeerling.com/blog/2025/15-tb-vram-on-mac-studio-rdma-over-thunderbolt-5">Jeff Geerling: 15 TB VRAM on Mac Studio RDMA over Thunderbolt 5</a>
</p>
</details>
@@ -41,7 +50,7 @@ exo connects all your devices into an AI cluster. Not only does exo enable runni
<summary>DeepSeek v3.1 671B (8-bit) on 4 × M3 Ultra Mac Studio with Tensor Parallel RDMA</summary>
<img src="docs/benchmarks/jeffgeerling/mac-studio-cluster-ai-full-2-deepseek-3.1-671b.jpeg" alt="Benchmark - DeepSeek v3.1 671B (8-bit) on 4 × M3 Ultra Mac Studio with Tensor Parallel RDMA" width="80%" />
<p>
<strong>Source:</strong> <a href="https://www.jeffgeerling.com/blog/2025/15-tb-vram-on-mac-studio-rdma-over-thunderbolt-5">Jeff Geerling: 15 TB VRAM on Mac Studio RDMA over Thunderbolt5</a>
<strong>Source:</strong> <a href="https://www.jeffgeerling.com/blog/2025/15-tb-vram-on-mac-studio-rdma-over-thunderbolt-5">Jeff Geerling: 15 TB VRAM on Mac Studio RDMA over Thunderbolt 5</a>
</p>
</details>
@@ -49,7 +58,7 @@ exo connects all your devices into an AI cluster. Not only does exo enable runni
<summary>Kimi K2 Thinking (native 4-bit) on 4 × M3 Ultra Mac Studio with Tensor Parallel RDMA</summary>
<img src="docs/benchmarks/jeffgeerling/mac-studio-cluster-ai-full-3-kimi-k2-thinking.jpeg" alt="Benchmark - Kimi K2 Thinking (native 4-bit) on 4 × M3 Ultra Mac Studio with Tensor Parallel RDMA" width="80%" />
<p>
<strong>Source:</strong> <a href="https://www.jeffgeerling.com/blog/2025/15-tb-vram-on-mac-studio-rdma-over-thunderbolt-5">Jeff Geerling: 15 TB VRAM on Mac Studio RDMA over Thunderbolt5</a>
<strong>Source:</strong> <a href="https://www.jeffgeerling.com/blog/2025/15-tb-vram-on-mac-studio-rdma-over-thunderbolt-5">Jeff Geerling: 15 TB VRAM on Mac Studio RDMA over Thunderbolt 5</a>
</p>
</details>
@@ -154,6 +163,24 @@ This starts the exo dashboard and API at http://localhost:52415/
**Important note for Linux users:** Currently, exo runs on CPU on Linux. GPU support for Linux platforms is under development. If you'd like to see support for your specific Linux hardware, please [search for existing feature requests](https://github.com/exo-explore/exo/issues) or create a new one.
**Configuration Options:**
- `--no-worker`: Run exo without the worker component. Useful for coordinator-only nodes that handle networking and orchestration but don't execute inference tasks. This is helpful for machines without sufficient GPU resources but with good network connectivity.
```bash
uv run exo --no-worker
```
**File Locations (Linux):**
exo follows the [XDG Base Directory Specification](https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html) on Linux:
- **Configuration files**: `~/.config/exo/` (or `$XDG_CONFIG_HOME/exo/`)
- **Data files**: `~/.local/share/exo/` (or `$XDG_DATA_HOME/exo/`)
- **Cache files**: `~/.cache/exo/` (or `$XDG_CACHE_HOME/exo/`)
You can override these locations by setting the corresponding XDG environment variables.
### macOS App
exo ships a macOS app that runs in the background on your Mac.
@@ -166,6 +193,19 @@ Download the latest build here: [EXO-latest.dmg](https://assets.exolabs.net/EXO-
The app will ask for permission to modify system settings and install a new Network profile. Improvements to this are being worked on.
**Custom Namespace for Cluster Isolation:**
The macOS app includes a custom namespace feature that allows you to isolate your exo cluster from others on the same network. This is configured through the `EXO_LIBP2P_NAMESPACE` setting:
- **Use cases**:
- Running multiple separate exo clusters on the same network
- Isolating development/testing clusters from production clusters
- Preventing accidental cluster joining
- **Configuration**: Access this setting in the app's Advanced settings (or set the `EXO_LIBP2P_NAMESPACE` environment variable when running from source)
The namespace is logged on startup for debugging purposes.
#### Uninstalling the macOS App
The recommended way to uninstall is through the app itself: click the menu bar icon → Advanced → Uninstall. This cleanly removes all system components.
@@ -312,6 +352,52 @@ For further details, see:
---
## Benchmarking
The `exo-bench` tool measures model prefill and token generation speed across different placement configurations. This helps you optimize model performance and validate improvements.
**Prerequisites:**
- Nodes should be running with `uv run exo` before benchmarking
- The tool uses the `/bench/chat/completions` endpoint
**Basic usage:**
```bash
uv run bench/exo_bench.py \
--model llama-3.2-1b \
--pp 128,256,512 \
--tg 128,256
```
**Key parameters:**
- `--model`: Model to benchmark (short ID or HuggingFace ID)
- `--pp`: Prompt size hints (comma-separated integers)
- `--tg`: Generation lengths (comma-separated integers)
- `--max-nodes`: Limit placements to N nodes (default: 4)
- `--instance-meta`: Filter by `ring`, `jaccl`, or `both` (default: both)
- `--sharding`: Filter by `pipeline`, `tensor`, or `both` (default: both)
- `--repeat`: Number of repetitions per configuration (default: 1)
- `--warmup`: Warmup runs per placement (default: 0)
- `--json-out`: Output file for results (default: bench/results.json)
**Example with filters:**
```bash
uv run bench/exo_bench.py \
--model llama-3.2-1b \
--pp 128,512 \
--tg 128 \
--max-nodes 2 \
--sharding tensor \
--repeat 3 \
--json-out my-results.json
```
The tool outputs performance metrics including prompt tokens per second (prompt_tps), generation tokens per second (generation_tps), and peak memory usage for each configuration.
---
## Hardware Accelerator Support
On macOS, exo uses the GPU. On Linux, exo currently runs on CPU. We are working on extending hardware accelerator support. If you'd like support for a new hardware platform, please [search for an existing feature request](https://github.com/exo-explore/exo/issues) and add a thumbs up so we know what hardware is important to the community.
@@ -320,4 +406,4 @@ On macOS, exo uses the GPU. On Linux, exo currently runs on CPU. We are working
## Contributing
See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines on how to contribute to exo.
See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines on how to contribute to exo.

View File

@@ -19,6 +19,7 @@
25. Rethink retry logic
26. Task cancellation. When API http request gets cancelled, it should cancel corresponding task.
27. Log cleanup - per-module log filters and default to DEBUG log levels
28. Validate RDMA connections with ibv_devinfo in the info gatherer
Potential refactors:

View File

@@ -6,7 +6,7 @@ enum NetworkSetupHelper {
private static let logger = Logger(subsystem: "io.exo.EXO", category: "NetworkSetup")
private static let daemonLabel = "io.exo.networksetup"
private static let scriptDestination =
"/Library/Application Support/EXO/disable_bridge_enable_dhcp.sh"
"/Library/Application Support/EXO/disable_bridge.sh"
private static let plistDestination = "/Library/LaunchDaemons/io.exo.networksetup.plist"
private static let requiredStartInterval: Int = 1791
@@ -28,35 +28,6 @@ enum NetworkSetupHelper {
# Remove Thunderbolt Bridge from VirtualNetworkInterfaces in preferences.plist
/usr/libexec/PlistBuddy -c "Delete :VirtualNetworkInterfaces:Bridge:bridge0" "$PREFS" 2>/dev/null || true
networksetup -listlocations | grep -q exo || {
networksetup -createlocation exo
}
networksetup -switchtolocation exo
networksetup -listallhardwareports \\
| awk -F': ' '/Hardware Port: / {print $2}' \\
| while IFS=":" read -r name; do
case "$name" in
"Ethernet Adapter"*)
;;
"Thunderbolt Bridge")
;;
"Thunderbolt "*)
networksetup -listallnetworkservices \\
| grep -q "EXO $name" \\
|| networksetup -createnetworkservice "EXO $name" "$name" 2>/dev/null \\
|| continue
networksetup -setdhcp "EXO $name"
;;
*)
networksetup -listallnetworkservices \\
| grep -q "$name" \\
|| networksetup -createnetworkservice "$name" "$name" 2>/dev/null \\
|| continue
;;
esac
done
networksetup -listnetworkservices | grep -q "Thunderbolt Bridge" && {
networksetup -setnetworkserviceenabled "Thunderbolt Bridge" off
} || true
@@ -141,6 +112,13 @@ enum NetworkSetupHelper {
let scriptExists = manager.fileExists(atPath: scriptDestination)
let plistExists = manager.fileExists(atPath: plistDestination)
guard scriptExists, plistExists else { return false }
guard
let installedScript = try? String(contentsOfFile: scriptDestination, encoding: .utf8),
installedScript.trimmingCharacters(in: .whitespacesAndNewlines)
== setupScript.trimmingCharacters(in: .whitespacesAndNewlines)
else {
return false
}
guard
let data = try? Data(contentsOf: URL(fileURLWithPath: plistDestination)),
let plist = try? PropertyListSerialization.propertyList(

View File

@@ -3,6 +3,7 @@
from __future__ import annotations
import argparse
import contextlib
import http.client
import json
import os
@@ -15,9 +16,6 @@ from urllib.parse import urlencode
from loguru import logger
from transformers import AutoTokenizer
from exo.shared.models.model_cards import MODEL_CARDS
from exo.shared.types.memory import Memory
class ExoHttpError(RuntimeError):
def __init__(self, status: int, reason: str, body_preview: str):
@@ -26,7 +24,7 @@ class ExoHttpError(RuntimeError):
class ExoClient:
def __init__(self, host: str, port: int, timeout_s: float = 2400.0):
def __init__(self, host: str, port: int, timeout_s: float = 600.0):
self.host = host
self.port = port
self.timeout_s = timeout_s
@@ -104,22 +102,46 @@ def runner_ready(runner: dict[str, Any]) -> bool:
return "RunnerReady" in runner
def runner_failed(runner: dict[str, Any]) -> bool:
return "RunnerFailed" in runner
def get_runner_failed_message(runner: dict[str, Any]) -> str | None:
if "RunnerFailed" in runner:
return runner["RunnerFailed"].get("errorMessage")
return None
def wait_for_instance_ready(
client: ExoClient, instance_id: str, timeout: float = 24000.0
) -> None:
start_time = time.time()
instance_existed = False
while time.time() - start_time < timeout:
state = client.request_json("GET", "/state")
instances = state.get("instances", {})
if instance_id not in instances:
if instance_existed:
# Instance was deleted after being created - likely due to runner failure
raise RuntimeError(
f"Instance {instance_id} was deleted (runner may have failed)"
)
time.sleep(0.1)
continue
instance_existed = True
instance = instances[instance_id]
runner_ids = runner_ids_from_instance(instance)
runners = state.get("runners", {})
# Check for failed runners first
for rid in runner_ids:
runner = runners.get(rid, {})
if runner_failed(runner):
error_msg = get_runner_failed_message(runner) or "Unknown error"
raise RuntimeError(f"Runner {rid} failed: {error_msg}")
if all(runner_ready(runners.get(rid, {})) for rid in runner_ids):
return
@@ -299,6 +321,12 @@ def main() -> int:
default=4,
help="Only consider placements using <= this many nodes.",
)
ap.add_argument(
"--min-nodes",
type=int,
default=1,
help="Only consider placements using >= this many nodes.",
)
ap.add_argument(
"--instance-meta", choices=["ring", "jaccl", "both"], default="both"
)
@@ -320,7 +348,7 @@ def main() -> int:
help="Warmup runs per placement (uses first pp/tg).",
)
ap.add_argument(
"--timeout", type=float, default=2400.0, help="HTTP timeout (seconds)."
"--timeout", type=float, default=600.0, help="HTTP timeout (seconds)."
)
ap.add_argument(
"--json-out",
@@ -399,7 +427,7 @@ def main() -> int:
):
continue
if 0 < n <= args.max_nodes:
if args.min_nodes <= n <= args.max_nodes:
selected.append(p)
if not selected:
@@ -441,7 +469,13 @@ def main() -> int:
)
client.request_json("POST", "/instance", body={"instance": instance})
wait_for_instance_ready(client, instance_id)
try:
wait_for_instance_ready(client, instance_id)
except (RuntimeError, TimeoutError) as e:
logger.error(f"Failed to initialize placement: {e}")
with contextlib.suppress(ExoHttpError):
client.request_json("DELETE", f"/instance/{instance_id}")
continue
time.sleep(1)
@@ -453,17 +487,17 @@ def main() -> int:
logger.debug(f" warmup {i + 1}/{args.warmup} done")
for pp in pp_list:
if (
pp * n_nodes > 2048
and "ring" in instance_meta.lower()
and "tensor" in sharding.lower()
):
model_card = MODEL_CARDS[short_id]
if model_card.metadata.storage_size > Memory.from_gb(10):
logger.info(
f"Skipping tensor ring as this is too slow for model of size {model_card.metadata.storage_size} on {n_nodes=}"
)
continue
# if (
# pp * n_nodes > 2048
# and "ring" in instance_meta.lower()
# and "tensor" in sharding.lower()
# ):
# model_card = MODEL_CARDS[short_id]
# if model_card.metadata.storage_size > Memory.from_gb(10):
# logger.info(
# f"Skipping tensor ring as this is too slow for model of size {model_card.metadata.storage_size} on {n_nodes=}"
# )
# continue
for tg in tg_list:
runs: list[dict[str, Any]] = []
for r in range(args.repeat):

View File

@@ -53,62 +53,285 @@
marked.use({ renderer });
/**
* Preprocess LaTeX: convert \(...\) to $...$ and \[...\] to $$...$$
* Also protect code blocks from LaTeX processing
* Unescape HTML entities that marked may have escaped
*/
function unescapeHtmlEntities(text: string): string {
return text
.replace(/&lt;/g, '<')
.replace(/&gt;/g, '>')
.replace(/&amp;/g, '&')
.replace(/&quot;/g, '"')
.replace(/&#39;/g, "'");
}
// Storage for math expressions extracted before markdown processing
const mathExpressions: Map<string, { content: string; displayMode: boolean }> = new Map();
let mathCounter = 0;
// Storage for HTML snippets that need protection from markdown
const htmlSnippets: Map<string, string> = new Map();
let htmlCounter = 0;
// Use alphanumeric placeholders that won't be interpreted as HTML tags
const MATH_PLACEHOLDER_PREFIX = 'MATHPLACEHOLDER';
const CODE_PLACEHOLDER_PREFIX = 'CODEPLACEHOLDER';
const HTML_PLACEHOLDER_PREFIX = 'HTMLPLACEHOLDER';
/**
* Preprocess LaTeX: extract math, handle LaTeX document commands, and protect content
*/
function preprocessLaTeX(text: string): string {
// Protect code blocks
// Reset storage
mathExpressions.clear();
mathCounter = 0;
htmlSnippets.clear();
htmlCounter = 0;
// Protect code blocks first
const codeBlocks: string[] = [];
let processed = text.replace(/```[\s\S]*?```|`[^`]+`/g, (match) => {
codeBlocks.push(match);
return `<<CODE_${codeBlocks.length - 1}>>`;
return `${CODE_PLACEHOLDER_PREFIX}${codeBlocks.length - 1}END`;
});
// Convert \(...\) to $...$
processed = processed.replace(/\\\((.+?)\\\)/g, '$$$1$');
// Convert \[...\] to $$...$$
processed = processed.replace(/\\\[([\s\S]*?)\\\]/g, '$$$$$1$$$$');
// Remove LaTeX document commands
processed = processed.replace(/\\documentclass(\[[^\]]*\])?\{[^}]*\}/g, '');
processed = processed.replace(/\\usepackage(\[[^\]]*\])?\{[^}]*\}/g, '');
processed = processed.replace(/\\begin\{document\}/g, '');
processed = processed.replace(/\\end\{document\}/g, '');
processed = processed.replace(/\\maketitle/g, '');
processed = processed.replace(/\\title\{[^}]*\}/g, '');
processed = processed.replace(/\\author\{[^}]*\}/g, '');
processed = processed.replace(/\\date\{[^}]*\}/g, '');
// Remove \require{...} commands (MathJax-specific, not supported by KaTeX)
processed = processed.replace(/\$\\require\{[^}]*\}\$/g, '');
processed = processed.replace(/\\require\{[^}]*\}/g, '');
// Remove unsupported LaTeX commands/environments (tikzpicture, figure, center, etc.)
processed = processed.replace(/\\begin\{tikzpicture\}[\s\S]*?\\end\{tikzpicture\}/g, () => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, '<div class="latex-diagram-placeholder"><span class="latex-diagram-icon">📐</span><span class="latex-diagram-text">Diagram</span></div>');
htmlCounter++;
return placeholder;
});
processed = processed.replace(/\\begin\{figure\}[\s\S]*?\\end\{figure\}/g, () => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, '<div class="latex-diagram-placeholder"><span class="latex-diagram-icon">🖼️</span><span class="latex-diagram-text">Figure</span></div>');
htmlCounter++;
return placeholder;
});
// Strip center environment (layout only, no content change)
processed = processed.replace(/\\begin\{center\}/g, '');
processed = processed.replace(/\\end\{center\}/g, '');
// Strip other layout environments
processed = processed.replace(/\\begin\{flushleft\}/g, '');
processed = processed.replace(/\\end\{flushleft\}/g, '');
processed = processed.replace(/\\begin\{flushright\}/g, '');
processed = processed.replace(/\\end\{flushright\}/g, '');
processed = processed.replace(/\\label\{[^}]*\}/g, '');
processed = processed.replace(/\\caption\{[^}]*\}/g, '');
// Protect escaped dollar signs (e.g., \$50 should become $50, not LaTeX)
processed = processed.replace(/\\\$/g, 'ESCAPEDDOLLARPLACEHOLDER');
// Convert LaTeX math environments to display math (both bare and wrapped in $...$)
const mathEnvs = ['align', 'align\\*', 'equation', 'equation\\*', 'gather', 'gather\\*', 'multline', 'multline\\*', 'eqnarray', 'eqnarray\\*', 'array', 'matrix', 'pmatrix', 'bmatrix', 'vmatrix', 'cases'];
for (const env of mathEnvs) {
// Handle $\begin{env}...\end{env}$ (with dollar signs, possibly multiline)
const wrappedRegex = new RegExp(`\\$\\\\begin\\{${env}\\}(\\{[^}]*\\})?([\\s\\S]*?)\\\\end\\{${env}\\}\\$`, 'g');
processed = processed.replace(wrappedRegex, (_, args, content) => {
const cleanEnv = env.replace('\\*', '*');
const mathContent = `\\begin{${cleanEnv}}${args || ''}${content}\\end{${cleanEnv}}`;
const placeholder = `${MATH_PLACEHOLDER_PREFIX}DISPLAY${mathCounter}END`;
mathExpressions.set(placeholder, { content: mathContent, displayMode: true });
mathCounter++;
return placeholder;
});
// Handle bare \begin{env}...\end{env} (without dollar signs)
const bareRegex = new RegExp(`\\\\begin\\{${env}\\}(\\{[^}]*\\})?([\\s\\S]*?)\\\\end\\{${env}\\}`, 'g');
processed = processed.replace(bareRegex, (_, args, content) => {
const cleanEnv = env.replace('\\*', '*');
const mathContent = `\\begin{${cleanEnv}}${args || ''}${content}\\end{${cleanEnv}}`;
const placeholder = `${MATH_PLACEHOLDER_PREFIX}DISPLAY${mathCounter}END`;
mathExpressions.set(placeholder, { content: mathContent, displayMode: true });
mathCounter++;
return placeholder;
});
}
// Convert LaTeX proof environments to styled blocks (use placeholders for HTML)
processed = processed.replace(
/\\begin\{proof\}([\s\S]*?)\\end\{proof\}/g,
(_, content) => {
const html = `<div class="latex-proof"><div class="latex-proof-header">Proof</div><div class="latex-proof-content">${content}</div></div>`;
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, html);
htmlCounter++;
return placeholder;
}
);
// Convert LaTeX theorem-like environments
const theoremEnvs = ['theorem', 'lemma', 'corollary', 'proposition', 'definition', 'remark', 'example'];
for (const env of theoremEnvs) {
const envRegex = new RegExp(`\\\\begin\\{${env}\\}([\\s\\S]*?)\\\\end\\{${env}\\}`, 'gi');
const envName = env.charAt(0).toUpperCase() + env.slice(1);
processed = processed.replace(envRegex, (_, content) => {
const html = `<div class="latex-theorem"><div class="latex-theorem-header">${envName}</div><div class="latex-theorem-content">${content}</div></div>`;
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, html);
htmlCounter++;
return placeholder;
});
}
// Convert LaTeX text formatting commands (use placeholders to protect from markdown)
processed = processed.replace(/\\emph\{([^}]*)\}/g, (_, content) => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, `<em>${content}</em>`);
htmlCounter++;
return placeholder;
});
processed = processed.replace(/\\textit\{([^}]*)\}/g, (_, content) => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, `<em>${content}</em>`);
htmlCounter++;
return placeholder;
});
processed = processed.replace(/\\textbf\{([^}]*)\}/g, (_, content) => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, `<strong>${content}</strong>`);
htmlCounter++;
return placeholder;
});
processed = processed.replace(/\\texttt\{([^}]*)\}/g, (_, content) => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, `<code class="inline-code">${content}</code>`);
htmlCounter++;
return placeholder;
});
processed = processed.replace(/\\underline\{([^}]*)\}/g, (_, content) => {
const placeholder = `${HTML_PLACEHOLDER_PREFIX}${htmlCounter}END`;
htmlSnippets.set(placeholder, `<u>${content}</u>`);
htmlCounter++;
return placeholder;
});
// Handle LaTeX line breaks and spacing
processed = processed.replace(/\\\\(?:\s*\n)?/g, '\n'); // \\ -> newline
processed = processed.replace(/\\newline/g, '\n');
processed = processed.replace(/\\par\b/g, '\n\n');
processed = processed.replace(/\\quad/g, ' ');
processed = processed.replace(/\\qquad/g, ' ');
processed = processed.replace(/~~/g, ' '); // non-breaking space
// Remove other common LaTeX commands that don't render
processed = processed.replace(/\\centering/g, '');
processed = processed.replace(/\\noindent/g, '');
processed = processed.replace(/\\hfill/g, '');
processed = processed.replace(/\\vspace\{[^}]*\}/g, '');
processed = processed.replace(/\\hspace\{[^}]*\}/g, ' ');
// Convert \(...\) to placeholder (display: false)
processed = processed.replace(/\\\(([\s\S]+?)\\\)/g, (_, content) => {
const placeholder = `${MATH_PLACEHOLDER_PREFIX}INLINE${mathCounter}END`;
mathExpressions.set(placeholder, { content, displayMode: false });
mathCounter++;
return placeholder;
});
// Convert \[...\] to placeholder (display: true)
processed = processed.replace(/\\\[([\s\S]*?)\\\]/g, (_, content) => {
const placeholder = `${MATH_PLACEHOLDER_PREFIX}DISPLAY${mathCounter}END`;
mathExpressions.set(placeholder, { content, displayMode: true });
mathCounter++;
return placeholder;
});
// Extract display math ($$...$$) BEFORE markdown processing
processed = processed.replace(/\$\$([\s\S]*?)\$\$/g, (_, content) => {
const placeholder = `${MATH_PLACEHOLDER_PREFIX}DISPLAY${mathCounter}END`;
mathExpressions.set(placeholder, { content: content.trim(), displayMode: true });
mathCounter++;
return placeholder;
});
// Extract inline math ($...$) BEFORE markdown processing
// Allow single-line only, skip currency patterns like $5 or $50
processed = processed.replace(/\$([^\$\n]+?)\$/g, (match, content) => {
if (/^\d/.test(content.trim())) {
return match; // Keep as-is for currency
}
const placeholder = `${MATH_PLACEHOLDER_PREFIX}INLINE${mathCounter}END`;
mathExpressions.set(placeholder, { content: content.trim(), displayMode: false });
mathCounter++;
return placeholder;
});
// Restore escaped dollar signs
processed = processed.replace(/ESCAPEDDOLLARPLACEHOLDER/g, '$');
// Restore code blocks
processed = processed.replace(/<<CODE_(\d+)>>/g, (_, index) => codeBlocks[parseInt(index)]);
processed = processed.replace(new RegExp(`${CODE_PLACEHOLDER_PREFIX}(\\d+)END`, 'g'), (_, index) => codeBlocks[parseInt(index)]);
// Clean up any remaining stray backslashes from unrecognized commands
processed = processed.replace(/\\(?=[a-zA-Z])/g, ''); // Remove \ before letters (unrecognized commands)
return processed;
}
/**
* Render math expressions with KaTeX after HTML is generated
* Render math expressions with KaTeX and restore HTML placeholders
*/
function renderMath(html: string): string {
// Render display math ($$...$$)
html = html.replace(/\$\$([\s\S]*?)\$\$/g, (_, math) => {
try {
return katex.renderToString(math.trim(), {
displayMode: true,
throwOnError: false,
output: 'html'
});
} catch {
return `<span class="math-error">$$${math}$$</span>`;
}
});
// Replace all math placeholders with rendered KaTeX
for (const [placeholder, { content, displayMode }] of mathExpressions) {
const escapedPlaceholder = placeholder.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
const regex = new RegExp(escapedPlaceholder, 'g');
// Render inline math ($...$) but avoid matching currency like $5
html = html.replace(/\$([^\$\n]+?)\$/g, (match, math) => {
// Skip if it looks like currency ($ followed by number)
if (/^\d/.test(math.trim())) {
return match;
}
try {
return katex.renderToString(math.trim(), {
displayMode: false,
throwOnError: false,
output: 'html'
});
} catch {
return `<span class="math-error">$${math}$</span>`;
}
});
html = html.replace(regex, () => {
try {
const rendered = katex.renderToString(content, {
displayMode,
throwOnError: false,
output: 'html'
});
if (displayMode) {
return `
<div class="math-display-wrapper">
<div class="math-display-header">
<span class="math-label">LaTeX</span>
<button type="button" class="copy-math-btn" data-math-source="${encodeURIComponent(content)}" title="Copy LaTeX source">
<svg width="14" height="14" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<rect width="14" height="14" x="8" y="8" rx="2" ry="2"/>
<path d="M4 16c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h10c1.1 0 2 .9 2 2"/>
</svg>
</button>
</div>
<div class="math-display-content">
${rendered}
</div>
</div>
`;
} else {
return `<span class="math-inline">${rendered}</span>`;
}
} catch {
const display = displayMode ? `$$${content}$$` : `$${content}$`;
return `<span class="math-error"><span class="math-error-icon">⚠</span> ${display}</span>`;
}
});
}
// Restore HTML placeholders (for \textbf, \emph, etc.)
for (const [placeholder, htmlContent] of htmlSnippets) {
const escapedPlaceholder = placeholder.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
const regex = new RegExp(escapedPlaceholder, 'g');
html = html.replace(regex, htmlContent);
}
return html;
}
@@ -154,16 +377,50 @@
}
}
async function handleMathCopyClick(event: Event) {
const target = event.currentTarget as HTMLButtonElement;
const encodedSource = target.getAttribute('data-math-source');
if (!encodedSource) return;
const source = decodeURIComponent(encodedSource);
try {
await navigator.clipboard.writeText(source);
// Show copied feedback
const originalHtml = target.innerHTML;
target.innerHTML = `
<svg width="14" height="14" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<path d="M20 6L9 17l-5-5"/>
</svg>
`;
target.classList.add('copied');
setTimeout(() => {
target.innerHTML = originalHtml;
target.classList.remove('copied');
}, 2000);
} catch (error) {
console.error('Failed to copy math:', error);
}
}
function setupCopyButtons() {
if (!containerRef || !browser) return;
const buttons = containerRef.querySelectorAll<HTMLButtonElement>('.copy-code-btn');
for (const button of buttons) {
const codeButtons = containerRef.querySelectorAll<HTMLButtonElement>('.copy-code-btn');
for (const button of codeButtons) {
if (button.dataset.listenerBound !== 'true') {
button.dataset.listenerBound = 'true';
button.addEventListener('click', handleCopyClick);
}
}
const mathButtons = containerRef.querySelectorAll<HTMLButtonElement>('.copy-math-btn');
for (const button of mathButtons) {
if (button.dataset.listenerBound !== 'true') {
button.dataset.listenerBound = 'true';
button.addEventListener('click', handleMathCopyClick);
}
}
}
$effect(() => {
@@ -424,28 +681,290 @@
color: #60a5fa;
}
/* KaTeX math styling */
/* KaTeX math styling - Base */
.markdown-content :global(.katex) {
font-size: 1.1em;
color: oklch(0.9 0 0);
}
.markdown-content :global(.katex-display) {
/* Display math container wrapper */
.markdown-content :global(.math-display-wrapper) {
margin: 1rem 0;
border-radius: 0.5rem;
overflow: hidden;
border: 1px solid rgba(255, 215, 0, 0.15);
background: rgba(0, 0, 0, 0.3);
transition: border-color 0.2s ease, box-shadow 0.2s ease;
}
.markdown-content :global(.math-display-wrapper:hover) {
border-color: rgba(255, 215, 0, 0.25);
box-shadow: 0 0 12px rgba(255, 215, 0, 0.08);
}
/* Display math header - hidden by default, slides in on hover */
.markdown-content :global(.math-display-header) {
display: flex;
justify-content: space-between;
align-items: center;
padding: 0.375rem 0.75rem;
background: rgba(255, 215, 0, 0.03);
border-bottom: 1px solid rgba(255, 215, 0, 0.08);
opacity: 0;
max-height: 0;
padding-top: 0;
padding-bottom: 0;
overflow: hidden;
transition:
opacity 0.2s ease,
max-height 0.2s ease,
padding 0.2s ease;
}
.markdown-content :global(.math-display-wrapper:hover .math-display-header) {
opacity: 1;
max-height: 2.5rem;
padding: 0.375rem 0.75rem;
}
.markdown-content :global(.math-label) {
color: rgba(255, 215, 0, 0.7);
font-size: 0.65rem;
font-weight: 500;
text-transform: uppercase;
letter-spacing: 0.1em;
font-family: ui-monospace, SFMono-Regular, 'SF Mono', Monaco, Consolas, monospace;
}
.markdown-content :global(.copy-math-btn) {
display: flex;
align-items: center;
justify-content: center;
padding: 0.25rem;
background: transparent;
border: none;
color: var(--exo-light-gray, #9ca3af);
cursor: pointer;
transition: color 0.2s;
border-radius: 0.25rem;
opacity: 0;
transition:
color 0.2s,
opacity 0.15s ease;
}
.markdown-content :global(.math-display-wrapper:hover .copy-math-btn) {
opacity: 1;
}
.markdown-content :global(.copy-math-btn:hover) {
color: var(--exo-yellow, #ffd700);
}
.markdown-content :global(.copy-math-btn.copied) {
color: #22c55e;
}
/* Display math content area */
.markdown-content :global(.math-display-content) {
padding: 1rem 1.25rem;
overflow-x: auto;
overflow-y: hidden;
padding: 0.5rem 0;
}
.markdown-content :global(.katex-display > .katex) {
/* Custom scrollbar for math overflow */
.markdown-content :global(.math-display-content::-webkit-scrollbar) {
height: 6px;
}
.markdown-content :global(.math-display-content::-webkit-scrollbar-track) {
background: rgba(255, 255, 255, 0.05);
border-radius: 3px;
}
.markdown-content :global(.math-display-content::-webkit-scrollbar-thumb) {
background: rgba(255, 215, 0, 0.2);
border-radius: 3px;
}
.markdown-content :global(.math-display-content::-webkit-scrollbar-thumb:hover) {
background: rgba(255, 215, 0, 0.35);
}
.markdown-content :global(.math-display-content .katex-display) {
margin: 0;
padding: 0;
}
.markdown-content :global(.math-display-content .katex-display > .katex) {
text-align: center;
}
/* Inline math wrapper */
.markdown-content :global(.math-inline) {
display: inline;
padding: 0 0.125rem;
border-radius: 0.25rem;
transition: background-color 0.15s ease;
}
.markdown-content :global(.math-inline:hover) {
background: rgba(255, 215, 0, 0.05);
}
/* Dark theme KaTeX overrides */
.markdown-content :global(.katex .mord),
.markdown-content :global(.katex .minner),
.markdown-content :global(.katex .mop),
.markdown-content :global(.katex .mbin),
.markdown-content :global(.katex .mrel),
.markdown-content :global(.katex .mpunct) {
color: oklch(0.9 0 0);
}
/* Fraction lines and rules */
.markdown-content :global(.katex .frac-line),
.markdown-content :global(.katex .overline-line),
.markdown-content :global(.katex .underline-line),
.markdown-content :global(.katex .hline),
.markdown-content :global(.katex .rule) {
border-color: oklch(0.85 0 0) !important;
background: oklch(0.85 0 0);
}
/* Square roots and SVG elements */
.markdown-content :global(.katex .sqrt-line) {
border-color: oklch(0.85 0 0) !important;
}
.markdown-content :global(.katex svg) {
fill: oklch(0.85 0 0);
stroke: oklch(0.85 0 0);
}
.markdown-content :global(.katex svg path) {
stroke: oklch(0.85 0 0);
}
/* Delimiters (parentheses, brackets, braces) */
.markdown-content :global(.katex .delimsizing),
.markdown-content :global(.katex .delim-size1),
.markdown-content :global(.katex .delim-size2),
.markdown-content :global(.katex .delim-size3),
.markdown-content :global(.katex .delim-size4),
.markdown-content :global(.katex .mopen),
.markdown-content :global(.katex .mclose) {
color: oklch(0.75 0 0);
}
/* Math error styling */
.markdown-content :global(.math-error) {
display: inline-flex;
align-items: center;
gap: 0.375rem;
color: #f87171;
font-family: ui-monospace, SFMono-Regular, 'SF Mono', Monaco, Consolas, monospace;
font-size: 0.875em;
background: rgba(248, 113, 113, 0.1);
padding: 0.125rem 0.25rem;
padding: 0.25rem 0.5rem;
border-radius: 0.25rem;
border: 1px solid rgba(248, 113, 113, 0.2);
}
.markdown-content :global(.math-error-icon) {
font-size: 0.875em;
opacity: 0.9;
}
/* LaTeX proof environment */
.markdown-content :global(.latex-proof) {
margin: 1rem 0;
padding: 1rem 1.25rem;
background: rgba(255, 255, 255, 0.02);
border-left: 3px solid rgba(255, 215, 0, 0.4);
border-radius: 0 0.375rem 0.375rem 0;
}
.markdown-content :global(.latex-proof-header) {
font-weight: 600;
font-style: italic;
color: oklch(0.85 0 0);
margin-bottom: 0.5rem;
}
.markdown-content :global(.latex-proof-header::after) {
content: '.';
}
.markdown-content :global(.latex-proof-content) {
color: oklch(0.9 0 0);
}
.markdown-content :global(.latex-proof-content p:last-child) {
margin-bottom: 0;
}
/* QED symbol at end of proof */
.markdown-content :global(.latex-proof-content::after) {
content: '∎';
display: block;
text-align: right;
color: oklch(0.7 0 0);
margin-top: 0.5rem;
}
/* LaTeX theorem-like environments */
.markdown-content :global(.latex-theorem) {
margin: 1rem 0;
padding: 1rem 1.25rem;
background: rgba(255, 215, 0, 0.03);
border: 1px solid rgba(255, 215, 0, 0.15);
border-radius: 0.375rem;
}
.markdown-content :global(.latex-theorem-header) {
font-weight: 700;
color: var(--exo-yellow, #ffd700);
margin-bottom: 0.5rem;
}
.markdown-content :global(.latex-theorem-header::after) {
content: '.';
}
.markdown-content :global(.latex-theorem-content) {
color: oklch(0.9 0 0);
font-style: italic;
}
.markdown-content :global(.latex-theorem-content p:last-child) {
margin-bottom: 0;
}
/* LaTeX diagram/figure placeholder */
.markdown-content :global(.latex-diagram-placeholder) {
display: flex;
align-items: center;
justify-content: center;
gap: 0.5rem;
margin: 1rem 0;
padding: 1.5rem 2rem;
background: rgba(255, 255, 255, 0.02);
border: 1px dashed rgba(255, 215, 0, 0.25);
border-radius: 0.5rem;
color: rgba(255, 215, 0, 0.6);
font-size: 0.875rem;
}
.markdown-content :global(.latex-diagram-icon) {
font-size: 1.25rem;
opacity: 0.8;
}
.markdown-content :global(.latex-diagram-text) {
font-family: ui-monospace, SFMono-Regular, 'SF Mono', Monaco, Consolas, monospace;
font-size: 0.75rem;
text-transform: uppercase;
letter-spacing: 0.05em;
}
</style>

View File

@@ -197,7 +197,7 @@ function toggleNodeDetails(nodeId: string): void {
// Uses API preview data when available, falls back to local estimation
const placementPreview = $derived(() => {
const nodeArray = nodeList();
if (nodeArray.length === 0) return { nodes: [], canFit: false, totalAvailable: 0, error: null };
if (nodeArray.length === 0) return { nodes: [], canFit: false, totalAvailable: 0, topoWidth: 260, topoHeight: 90, error: null };
const numNodes = nodeArray.length;
const iconSize = numNodes === 1 ? 50 : 36;

View File

@@ -1,7 +1,7 @@
<script lang="ts">
import { onMount, onDestroy } from 'svelte';
import * as d3 from 'd3';
import { topologyData, isTopologyMinimized, debugMode } from '$lib/stores/app.svelte';
import { topologyData, isTopologyMinimized, debugMode, type NodeInfo } from '$lib/stores/app.svelte';
interface Props {
class?: string;
@@ -24,14 +24,14 @@ function getNodeLabel(nodeId: string): string {
function getInterfaceLabel(nodeId: string, ip?: string): { label: string; missing: boolean } {
if (!ip) return { label: '?', missing: true };
// Strip port if present (e.g., "192.168.1.1:8080" -> "192.168.1.1")
const cleanIp = ip.includes(':') && !ip.includes('[') ? ip.split(':')[0] : ip;
// Helper to check a node's interfaces
function checkNode(node: typeof data.nodes[string]): string | null {
function checkNode(node: NodeInfo | undefined): string | null {
if (!node) return null;
const matchFromInterfaces = node.network_interfaces?.find((iface) =>
(iface.addresses || []).some((addr) => addr === cleanIp || addr === ip)
);
@@ -39,17 +39,19 @@ function getInterfaceLabel(nodeId: string, ip?: string): { label: string; missin
return matchFromInterfaces.name;
}
const mapped = node.ip_to_interface?.[cleanIp] || node.ip_to_interface?.[ip];
if (mapped && mapped.trim().length > 0) {
return mapped;
if (node.ip_to_interface) {
const mapped = node.ip_to_interface[cleanIp] || (ip ? node.ip_to_interface[ip] : undefined);
if (mapped && mapped.trim().length > 0) {
return mapped;
}
}
return null;
}
// Try specified node first
const result = checkNode(data?.nodes?.[nodeId]);
if (result) return { label: result, missing: false };
// Fallback: search all nodes for this IP
for (const [, otherNode] of Object.entries(data?.nodes || {})) {
const otherResult = checkNode(otherNode);
@@ -255,21 +257,24 @@ function wrapLine(text: string, maxLen: number): string[] {
const arrowsGroup = svg.append('g').attr('class', 'arrows-group');
const debugLabelsGroup = svg.append('g').attr('class', 'debug-edge-labels');
const pairMap = new Map<string, { a: string; b: string; aToB: boolean; bToA: boolean; connections: Array<{ from: string; to: string; ip: string; ifaceLabel: string; missingIface: boolean }> }>();
let debugEdgeLabels: Array<{ connections: typeof pairMap extends Map<string, infer V> ? V['connections'] : never; isLeft: boolean; isTop: boolean; mx: number; my: number }> | null = null;
type ConnectionInfo = { from: string; to: string; ip: string; ifaceLabel: string; missingIface: boolean };
type PairEntry = { a: string; b: string; aToB: boolean; bToA: boolean; connections: ConnectionInfo[] };
type DebugEdgeLabelEntry = { connections: ConnectionInfo[]; isLeft: boolean; isTop: boolean; mx: number; my: number };
const pairMap = new Map<string, PairEntry>();
const debugEdgeLabels: DebugEdgeLabelEntry[] = [];
edges.forEach(edge => {
if (!edge.source || !edge.target || edge.source === edge.target) return;
if (!positionById[edge.source] || !positionById[edge.target]) return;
const a = edge.source < edge.target ? edge.source : edge.target;
const b = edge.source < edge.target ? edge.target : edge.source;
const key = `${a}|${b}`;
const entry = pairMap.get(key) || { a, b, aToB: false, bToA: false, connections: [] };
if (edge.source === a) entry.aToB = true;
else entry.bToA = true;
const ip = edge.sendBackIp || edge.sendBackMultiaddr?.ip_address || '?';
const ip = edge.sendBackIp || '?';
const ifaceInfo = getInterfaceLabel(edge.source, ip);
entry.connections.push({
from: edge.source,
@@ -338,9 +343,8 @@ function wrapLine(text: string, maxLen: number): string[] {
// Determine which side of viewport based on edge midpoint
const isLeft = mx < centerX;
const isTop = my < safeCenterY;
// Store for batch rendering after all edges processed
if (!debugEdgeLabels) debugEdgeLabels = [];
debugEdgeLabels.push({
connections: entry.connections,
isLeft,
@@ -381,32 +385,32 @@ function wrapLine(text: string, maxLen: number): string[] {
}
// Group by quadrant: topLeft, topRight, bottomLeft, bottomRight
const quadrants: Record<string, typeof debugEdgeLabels> = {
const quadrants: Record<string, DebugEdgeLabelEntry[]> = {
topLeft: [],
topRight: [],
bottomLeft: [],
bottomRight: []
};
debugEdgeLabels.forEach(edge => {
const key = (edge.isTop ? 'top' : 'bottom') + (edge.isLeft ? 'Left' : 'Right');
quadrants[key].push(edge);
});
// Render each quadrant
Object.entries(quadrants).forEach(([quadrant, edges]) => {
if (edges.length === 0) return;
Object.entries(quadrants).forEach(([quadrant, quadrantEdges]) => {
if (quadrantEdges.length === 0) return;
const isLeft = quadrant.includes('Left');
const isTop = quadrant.includes('top');
let baseX = isLeft ? padding : width - padding;
let baseY = isTop ? padding : height - padding;
const textAnchor = isLeft ? 'start' : 'end';
let currentY = baseY;
edges.forEach(edge => {
quadrantEdges.forEach(edge => {
edge.connections.forEach(conn => {
const arrow = getArrow(conn.from, conn.to);
const label = `${arrow} ${conn.ip} ${conn.ifaceLabel}`;

View File

@@ -99,20 +99,36 @@ interface RawNodeProfile {
interface RawTopologyNode {
nodeId: string;
nodeProfile: RawNodeProfile;
nodeProfile?: RawNodeProfile;
}
interface RawTopologyConnection {
localNodeId: string;
sendBackNodeId: string;
sendBackMultiaddr?:
| { multiaddr?: string; address?: string; ip_address?: string }
| string;
// New connection edge types from Python SocketConnection/RDMAConnection
interface RawSocketConnection {
sinkMultiaddr?: {
address?: string;
// Multiaddr uses snake_case (no camelCase alias)
ip_address?: string;
ipAddress?: string; // fallback in case it changes
address_type?: string;
port?: number;
};
}
interface RawRDMAConnection {
sourceRdmaIface?: string;
sinkRdmaIface?: string;
}
type RawConnectionEdge = RawSocketConnection | RawRDMAConnection;
// New nested mapping format: { source: { sink: [edge1, edge2, ...] } }
type RawConnectionsMap = Record<string, Record<string, RawConnectionEdge[]>>;
interface RawTopology {
nodes: RawTopologyNode[];
connections?: RawTopologyConnection[];
// nodes can be array of strings (node IDs) or array of objects with nodeId/nodeProfile
nodes: (string | RawTopologyNode)[];
// New nested mapping format
connections?: RawConnectionsMap;
}
type RawNodeProfiles = Record<string, RawNodeProfile>;
@@ -213,9 +229,18 @@ function transformTopology(
const nodes: Record<string, NodeInfo> = {};
const edges: TopologyEdge[] = [];
// Handle nodes - can be array of strings (node IDs) or array of objects with nodeId/nodeProfile
for (const node of raw.nodes || []) {
const mergedProfile = profiles?.[node.nodeId];
const profile = { ...(node.nodeProfile ?? {}), ...(mergedProfile ?? {}) };
// Determine the node ID - could be a string or an object with nodeId property
const nodeId = typeof node === "string" ? node : node.nodeId;
if (!nodeId) continue;
// Get the profile - from the separate profiles map or from the node object itself
const profileFromMap = profiles?.[nodeId];
const profileFromNode =
typeof node === "object" ? node.nodeProfile : undefined;
const profile = { ...(profileFromNode ?? {}), ...(profileFromMap ?? {}) };
const ramTotal = profile?.memory?.ramTotal?.inBytes ?? 0;
const ramAvailable = profile?.memory?.ramAvailable?.inBytes ?? 0;
const ramUsage = Math.max(ramTotal - ramAvailable, 0);
@@ -264,7 +289,7 @@ function transformTopology(
}
}
nodes[node.nodeId] = {
nodes[nodeId] = {
system_info: {
model_id: profile?.modelId ?? "Unknown",
chip: profile?.chipId,
@@ -292,29 +317,34 @@ function transformTopology(
};
}
for (const conn of raw.connections || []) {
if (!conn.localNodeId || !conn.sendBackNodeId) continue;
if (conn.localNodeId === conn.sendBackNodeId) continue;
if (!nodes[conn.localNodeId] || !nodes[conn.sendBackNodeId]) continue;
// Handle connections - nested mapping format { source: { sink: [edges] } }
const connections = raw.connections;
if (connections && typeof connections === "object") {
for (const [source, sinks] of Object.entries(connections)) {
if (!sinks || typeof sinks !== "object") continue;
for (const [sink, edgeList] of Object.entries(sinks)) {
if (!Array.isArray(edgeList)) continue;
for (const edge of edgeList) {
// Extract IP from SocketConnection (uses snake_case: ip_address)
let sendBackIp: string | undefined;
if (edge && typeof edge === "object" && "sinkMultiaddr" in edge) {
const multiaddr = edge.sinkMultiaddr;
if (multiaddr) {
// Try both snake_case (actual) and camelCase (in case it changes)
sendBackIp =
multiaddr.ip_address ||
multiaddr.ipAddress ||
extractIpFromMultiaddr(multiaddr.address);
}
}
// RDMAConnection (sourceRdmaIface/sinkRdmaIface) has no IP - edge just shows connection exists
let sendBackIp: string | undefined;
if (conn.sendBackMultiaddr) {
const multi = conn.sendBackMultiaddr;
if (typeof multi === "string") {
sendBackIp = extractIpFromMultiaddr(multi);
} else {
sendBackIp =
multi.ip_address ||
extractIpFromMultiaddr(multi.multiaddr) ||
extractIpFromMultiaddr(multi.address);
if (nodes[source] && nodes[sink] && source !== sink) {
edges.push({ source, target: sink, sendBackIp });
}
}
}
}
edges.push({
source: conn.localNodeId,
target: conn.sendBackNodeId,
sendBackIp,
});
}
return { nodes, edges };

View File

@@ -915,7 +915,7 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
const runnerEntries = Object.entries(runnerToShard).map(([runnerId, shardWrapped]) => {
const [tag, shard] = getTagged(shardWrapped);
const meta = (shard as { modelMeta?: { worldSize?: number; nLayers?: number; deviceRank?: number } } | undefined);
const deviceRank = (meta?.deviceRank as number | undefined) ?? 0;
const deviceRank = meta?.modelMeta?.deviceRank ?? 0;
return { runnerId, tag, deviceRank };
});

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 KiB

View File

@@ -126,3 +126,6 @@ env = [
"EXO_TESTS=1"
]
addopts = "-m 'not slow'"
filterwarnings = [
"ignore:builtin type Swig:DeprecationWarning",
]

View File

@@ -205,6 +205,14 @@ def main():
logger.info("Starting EXO")
logger.info(f"EXO_LIBP2P_NAMESPACE: {os.getenv('EXO_LIBP2P_NAMESPACE')}")
# Set FAST_SYNCH override env var for runner subprocesses
if args.fast_synch is True:
os.environ["EXO_FAST_SYNCH"] = "on"
logger.info("FAST_SYNCH forced ON")
elif args.fast_synch is False:
os.environ["EXO_FAST_SYNCH"] = "off"
logger.info("FAST_SYNCH forced OFF")
node = anyio.run(Node.create, args)
anyio.run(node.run)
logger.info("EXO Shutdown complete")
@@ -218,6 +226,7 @@ class Args(CamelCaseModel):
api_port: PositiveInt = 52415
tb_only: bool = False
no_worker: bool = False
fast_synch: bool | None = None # None = auto, True = force on, False = force off
@classmethod
def parse(cls) -> Self:
@@ -259,6 +268,20 @@ class Args(CamelCaseModel):
"--no-worker",
action="store_true",
)
fast_synch_group = parser.add_mutually_exclusive_group()
fast_synch_group.add_argument(
"--fast-synch",
action="store_true",
dest="fast_synch",
default=None,
help="Force MLX FAST_SYNCH on (for JACCL backend)",
)
fast_synch_group.add_argument(
"--no-fast-synch",
action="store_false",
dest="fast_synch",
help="Force MLX FAST_SYNCH off",
)
args = parser.parse_args()
return cls(**vars(args)) # pyright: ignore[reportAny] - We are intentionally validating here, we can't do it statically

View File

@@ -1,13 +1,14 @@
import time
from collections.abc import AsyncGenerator
from http import HTTPStatus
from typing import cast
import anyio
from anyio import create_task_group
from anyio import BrokenResourceError, create_task_group
from anyio.abc import TaskGroup
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
from hypercorn.asyncio import serve # pyright: ignore[reportUnknownVariableType]
from hypercorn.config import Config
@@ -29,6 +30,8 @@ from exo.shared.types.api import (
CreateInstanceParams,
CreateInstanceResponse,
DeleteInstanceResponse,
ErrorInfo,
ErrorResponse,
FinishReason,
GenerationStats,
ModelList,
@@ -49,7 +52,12 @@ from exo.shared.types.commands import (
TaskFinished,
)
from exo.shared.types.common import CommandId, NodeId, SessionId
from exo.shared.types.events import ChunkGenerated, Event, ForwarderEvent, IndexedEvent
from exo.shared.types.events import (
ChunkGenerated,
Event,
ForwarderEvent,
IndexedEvent,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.state import State
@@ -115,6 +123,7 @@ class API:
self.paused_ev: anyio.Event = anyio.Event()
self.app = FastAPI()
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
@@ -145,6 +154,21 @@ class API:
self.paused_ev.set()
self.paused_ev = anyio.Event()
def _setup_exception_handlers(self) -> None:
self.app.exception_handler(HTTPException)(self.http_exception_handler)
async def http_exception_handler(
self, _: Request, exc: HTTPException
) -> JSONResponse:
err = ErrorResponse(
error=ErrorInfo(
message=exc.detail,
type=HTTPStatus(exc.status_code).phrase,
code=exc.status_code,
)
)
return JSONResponse(err.model_dump(), status_code=exc.status_code)
def _setup_cors(self) -> None:
self.app.add_middleware(
CORSMiddleware,
@@ -228,6 +252,7 @@ class API:
instance_meta=instance_meta,
min_nodes=min_nodes,
),
node_profiles=self.state.node_profiles,
topology=self.state.topology,
current_instances=self.state.instances,
)
@@ -283,6 +308,7 @@ class API:
instance_meta=instance_meta,
min_nodes=min_nodes,
),
node_profiles=self.state.node_profiles,
topology=self.state.topology,
current_instances=self.state.instances,
)
@@ -406,6 +432,18 @@ class API:
"""Generate chat completion stream as JSON strings."""
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
error_response = ErrorResponse(
error=ErrorInfo(
message=chunk.error_message or "Internal server error",
type="InternalServerError",
code=500,
)
)
yield f"data: {error_response.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
return
chunk_response: ChatCompletionResponse = chunk_to_response(
chunk, command_id
)
@@ -426,6 +464,12 @@ class API:
finish_reason: FinishReason | None = None
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
raise HTTPException(
status_code=500,
detail=chunk.error_message or "Internal server error",
)
if model is None:
model = chunk.model
@@ -463,6 +507,12 @@ class API:
stats: GenerationStats | None = None
async for chunk in self._chat_chunk_stream(command_id):
if chunk.finish_reason == "error":
raise HTTPException(
status_code=500,
detail=chunk.error_message or "Internal server error",
)
if model is None:
model = chunk.model
@@ -552,9 +602,8 @@ class API:
"""Calculate total available memory across all nodes in bytes."""
total_available = Memory()
for node in self.state.topology.list_nodes():
if node.node_profile is not None:
total_available += node.node_profile.memory.ram_available
for profile in self.state.node_profiles.values():
total_available += profile.memory.ram_available
return total_available
@@ -607,14 +656,14 @@ class API:
for idx, event in self.event_buffer.drain_indexed():
self._event_log.append(event)
self.state = apply(self.state, IndexedEvent(event=event, idx=idx))
if (
isinstance(event, ChunkGenerated)
and event.command_id in self._chat_completion_queues
):
if isinstance(event, ChunkGenerated):
assert isinstance(event.chunk, TokenChunk)
await self._chat_completion_queues[event.command_id].send(
event.chunk
)
queue = self._chat_completion_queues.get(event.command_id)
if queue is not None:
try:
await queue.send(event.chunk)
except BrokenResourceError:
self._chat_completion_queues.pop(event.command_id, None)
async def _pause_on_new_election(self):
with self.election_receiver as ems:

View File

@@ -27,6 +27,7 @@ from exo.shared.types.events import (
ForwarderEvent,
IndexedEvent,
InstanceDeleted,
NodeGatheredInfo,
NodeTimedOut,
TaskCreated,
TaskDeleted,
@@ -158,6 +159,7 @@ class Master:
command,
self.state.topology,
self.state.instances,
self.state.node_profiles,
)
transition_events = get_transition_events(
self.state.instances, placement
@@ -200,9 +202,7 @@ class Master:
async def _plan(self) -> None:
while True:
# kill broken instances
connected_node_ids = set(
[x.node_id for x in self.state.topology.list_nodes()]
)
connected_node_ids = set(self.state.topology.list_nodes())
for instance_id, instance in self.state.instances.items():
for node_id in instance.shard_assignments.node_to_runner:
if node_id not in connected_node_ids:
@@ -237,6 +237,8 @@ class Master:
self.state = apply(self.state, indexed)
event._master_time_stamp = datetime.now(tz=timezone.utc) # pyright: ignore[reportPrivateUsage]
if isinstance(event, NodeGatheredInfo):
event.when = str(datetime.now(tz=timezone.utc))
self._event_log.append(event)
await self._send_event(indexed)

View File

@@ -6,9 +6,10 @@ from typing import Sequence
from loguru import logger
from exo.master.placement_utils import (
Cycle,
filter_cycles_by_memory,
get_mlx_ibv_devices_matrix,
get_mlx_jaccl_coordinators,
get_mlx_jaccl_devices_matrix,
get_mlx_ring_hosts_by_node,
get_shard_assignments,
get_smallest_cycles,
@@ -19,10 +20,11 @@ from exo.shared.types.commands import (
DeleteInstance,
PlaceInstance,
)
from exo.shared.types.common import NodeId
from exo.shared.types.events import Event, InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId
from exo.shared.types.topology import NodeInfo
from exo.shared.types.profiling import NodePerformanceProfile
from exo.shared.types.worker.instances import (
Instance,
InstanceId,
@@ -52,19 +54,14 @@ def place_instance(
command: PlaceInstance,
topology: Topology,
current_instances: Mapping[InstanceId, Instance],
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> dict[InstanceId, Instance]:
all_nodes = list(topology.list_nodes())
logger.info("finding cycles:")
cycles = topology.get_cycles()
singleton_cycles = [[node] for node in all_nodes]
candidate_cycles = list(
filter(lambda it: len(it) >= command.min_nodes, cycles + singleton_cycles)
)
candidate_cycles = list(filter(lambda it: len(it) >= command.min_nodes, cycles))
cycles_with_sufficient_memory = filter_cycles_by_memory(
candidate_cycles, command.model_meta.storage_size
candidate_cycles, node_profiles, command.model_meta.storage_size
)
if not cycles_with_sufficient_memory:
if len(cycles_with_sufficient_memory) == 0:
raise ValueError("No cycles found with sufficient memory")
if command.sharding == Sharding.Tensor:
@@ -92,44 +89,38 @@ def place_instance(
smallest_cycles = get_smallest_cycles(cycles_with_sufficient_memory)
smallest_tb_cycles = [
cycle
for cycle in smallest_cycles
if topology.get_subgraph_from_nodes(cycle).is_thunderbolt_cycle(cycle)
cycle for cycle in smallest_cycles if topology.is_thunderbolt_cycle(cycle)
]
if smallest_tb_cycles != []:
smallest_cycles = smallest_tb_cycles
cycles_with_leaf_nodes: list[list[NodeInfo]] = [
cycles_with_leaf_nodes: list[Cycle] = [
cycle
for cycle in smallest_cycles
if any(topology.node_is_leaf(node.node_id) for node in cycle)
if any(topology.node_is_leaf(node_id) for node_id in cycle)
]
selected_cycle = max(
cycles_with_leaf_nodes if cycles_with_leaf_nodes != [] else smallest_cycles,
key=lambda cycle: sum(
(
node.node_profile.memory.ram_available
for node in cycle
if node.node_profile is not None
),
(node_profiles[node_id].memory.ram_available for node_id in cycle),
start=Memory(),
),
)
shard_assignments = get_shard_assignments(
command.model_meta, selected_cycle, command.sharding
command.model_meta, selected_cycle, command.sharding, node_profiles
)
cycle_digraph: Topology = topology.get_subgraph_from_nodes(selected_cycle)
cycle_digraph: Topology = topology.get_subgraph_from_nodes(selected_cycle.node_ids)
instance_id = InstanceId()
target_instances = dict(deepcopy(current_instances))
if len(selected_cycle) == 1:
logger.warning(
"You have likely selected ibv for a single node instance; falling back to MlxRing"
"You have likely selected jaccl for a single node instance; falling back to MlxRing"
)
command.instance_meta = InstanceMeta.MlxRing
@@ -137,19 +128,20 @@ def place_instance(
# TODO: Single node instances
match command.instance_meta:
case InstanceMeta.MlxJaccl:
mlx_ibv_devices = get_mlx_ibv_devices_matrix(
selected_cycle,
mlx_jaccl_devices = get_mlx_jaccl_devices_matrix(
[node_id for node_id in selected_cycle],
cycle_digraph,
)
mlx_jaccl_coordinators = get_mlx_jaccl_coordinators(
selected_cycle,
coordinator=selected_cycle.node_ids[0],
coordinator_port=random_ephemeral_port(),
cycle_digraph=cycle_digraph,
node_profiles=node_profiles,
)
target_instances[instance_id] = MlxJacclInstance(
instance_id=instance_id,
shard_assignments=shard_assignments,
ibv_devices=mlx_ibv_devices,
jaccl_devices=mlx_jaccl_devices,
jaccl_coordinators=mlx_jaccl_coordinators,
)
case InstanceMeta.MlxRing:
@@ -158,6 +150,7 @@ def place_instance(
selected_cycle=selected_cycle,
cycle_digraph=cycle_digraph,
ephemeral_port=ephemeral_port,
node_profiles=node_profiles,
)
target_instances[instance_id] = MlxRingInstance(
instance_id=instance_id,

View File

@@ -1,15 +1,13 @@
from collections.abc import Generator
from typing import TypeGuard, cast
from collections.abc import Generator, Mapping
from loguru import logger
from pydantic import BaseModel
from exo.shared.topology import Topology
from exo.shared.types.common import Host, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelMetadata
from exo.shared.types.profiling import NodePerformanceProfile
from exo.shared.types.topology import NodeInfo
from exo.shared.types.topology import Cycle, RDMAConnection, SocketConnection
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
@@ -19,63 +17,110 @@ from exo.shared.types.worker.shards import (
)
class NodeWithProfile(BaseModel):
node_id: NodeId
node_profile: NodePerformanceProfile
def narrow_all_nodes(nodes: list[NodeInfo]) -> TypeGuard[list[NodeWithProfile]]:
return all(node.node_profile is not None for node in nodes)
def filter_cycles_by_memory(
cycles: list[list[NodeInfo]], required_memory: Memory
) -> list[list[NodeInfo]]:
filtered_cycles: list[list[NodeInfo]] = []
cycles: list[Cycle],
node_profiles: Mapping[NodeId, NodePerformanceProfile],
required_memory: Memory,
) -> list[Cycle]:
filtered_cycles: list[Cycle] = []
for cycle in cycles:
if not narrow_all_nodes(cycle):
if not all(node in node_profiles for node in cycle):
continue
total_mem = sum(
(node.node_profile.memory.ram_available for node in cycle), start=Memory()
(node_profiles[node_id].memory.ram_available for node_id in cycle.node_ids),
start=Memory(),
)
if total_mem >= required_memory:
filtered_cycles.append(cast(list[NodeInfo], cycle))
filtered_cycles.append(cycle)
return filtered_cycles
def get_smallest_cycles(cycles: list[list[NodeInfo]]) -> list[list[NodeInfo]]:
def get_smallest_cycles(
cycles: list[Cycle],
) -> list[Cycle]:
min_nodes = min(len(cycle) for cycle in cycles)
return [cycle for cycle in cycles if len(cycle) == min_nodes]
def allocate_layers_proportionally(
total_layers: int,
memory_fractions: list[float],
) -> list[int]:
n = len(memory_fractions)
if n == 0:
raise ValueError("Cannot allocate layers to an empty node list")
if total_layers < n:
raise ValueError(
f"Cannot distribute {total_layers} layers across {n} nodes "
"(need at least 1 layer per node)"
)
# Largest remainder: floor each, then distribute remainder by fractional part
raw = [f * total_layers for f in memory_fractions]
result = [int(r) for r in raw]
by_remainder = sorted(range(n), key=lambda i: raw[i] - result[i], reverse=True)
for i in range(total_layers - sum(result)):
result[by_remainder[i]] += 1
# Ensure minimum 1 per node by taking from the largest
for i in range(n):
if result[i] == 0:
max_idx = max(range(n), key=lambda j: result[j])
assert result[max_idx] > 1
result[max_idx] -= 1
result[i] = 1
return result
def get_shard_assignments_for_pipeline_parallel(
model_meta: ModelMetadata,
selected_cycle: list[NodeWithProfile],
cycle: Cycle,
node_profiles: Mapping[NodeId, NodePerformanceProfile],
):
if not cycle.node_ids:
raise ValueError("Cannot create shard assignments for empty node cycle")
cycle_memory = sum(
(node.node_profile.memory.ram_available for node in selected_cycle),
(node_profiles[node_id].memory.ram_available for node_id in cycle.node_ids),
start=Memory(),
)
if cycle_memory.in_bytes == 0:
raise ValueError("Cannot create shard assignments: total available memory is 0")
total_layers = model_meta.n_layers
world_size = len(selected_cycle)
world_size = len(cycle)
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
node_to_runner: dict[NodeId, RunnerId] = {}
layers_assigned = 0
for i, node in enumerate(selected_cycle):
if i == len(selected_cycle) - 1:
node_layers = total_layers - layers_assigned
else:
node_layers = round(
total_layers
* (
node.node_profile.memory.ram_available.in_bytes
/ cycle_memory.in_bytes
)
)
node_layers = max(1, node_layers)
layer_allocations = allocate_layers_proportionally(
total_layers=total_layers,
memory_fractions=[
node_profiles[node_id].memory.ram_available.in_bytes / cycle_memory.in_bytes
for node_id in cycle.node_ids
],
)
# Validate each node has sufficient memory for its assigned layers
memory_per_layer = model_meta.storage_size.in_bytes / total_layers
for i, (node_id, node_layers) in enumerate(
zip(cycle.node_ids, layer_allocations, strict=True)
):
required_memory = node_layers * memory_per_layer
available_memory = node_profiles[node_id].memory.ram_available.in_bytes
if required_memory > available_memory:
raise ValueError(
f"Node {i} ({node_id}) has insufficient memory: "
f"requires {required_memory / (1024**3):.2f} GB for {node_layers} layers, "
f"but only has {available_memory / (1024**3):.2f} GB available"
)
layers_assigned = 0
for i, (node_id, node_layers) in enumerate(
zip(cycle.node_ids, layer_allocations, strict=True)
):
runner_id = RunnerId()
shard = PipelineShardMetadata(
@@ -88,7 +133,7 @@ def get_shard_assignments_for_pipeline_parallel(
)
runner_to_shard[runner_id] = shard
node_to_runner[node.node_id] = runner_id
node_to_runner[node_id] = runner_id
layers_assigned += node_layers
shard_assignments = ShardAssignments(
@@ -102,14 +147,14 @@ def get_shard_assignments_for_pipeline_parallel(
def get_shard_assignments_for_tensor_parallel(
model_meta: ModelMetadata,
selected_cycle: list[NodeWithProfile],
cycle: Cycle,
):
total_layers = model_meta.n_layers
world_size = len(selected_cycle)
world_size = len(cycle)
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
node_to_runner: dict[NodeId, RunnerId] = {}
for i, node in enumerate(selected_cycle):
for i, node_id in enumerate(cycle):
shard = TensorShardMetadata(
model_meta=model_meta,
device_rank=i,
@@ -122,7 +167,7 @@ def get_shard_assignments_for_tensor_parallel(
runner_id = RunnerId()
runner_to_shard[runner_id] = shard
node_to_runner[node.node_id] = runner_id
node_to_runner[node_id] = runner_id
shard_assignments = ShardAssignments(
model_id=model_meta.model_id,
@@ -135,21 +180,21 @@ def get_shard_assignments_for_tensor_parallel(
def get_shard_assignments(
model_meta: ModelMetadata,
selected_cycle: list[NodeInfo],
cycle: Cycle,
sharding: Sharding,
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> ShardAssignments:
if not narrow_all_nodes(selected_cycle):
raise ValueError("All nodes must have profiles to create shard assignments")
match sharding:
case Sharding.Pipeline:
return get_shard_assignments_for_pipeline_parallel(
model_meta=model_meta,
selected_cycle=selected_cycle,
cycle=cycle,
node_profiles=node_profiles,
)
case Sharding.Tensor:
return get_shard_assignments_for_tensor_parallel(
model_meta=model_meta,
selected_cycle=selected_cycle,
cycle=cycle,
)
@@ -164,38 +209,40 @@ def get_hosts_from_subgraph(cycle_digraph: Topology) -> list[Host]:
)
return []
cycle = cycles[0]
get_thunderbolt = False
if cycle_digraph.is_thunderbolt_cycle(cycles[0]):
if cycle_digraph.is_thunderbolt_cycle(cycle):
get_thunderbolt = True
logger.info(f"Using thunderbolt cycle: {get_thunderbolt}")
cycle = cycles[0]
hosts: list[Host] = []
for i in range(len(cycle)):
current_node = cycle[i]
next_node = cycle[(i + 1) % len(cycle)]
current_node = cycle.node_ids[i]
next_node = cycle.node_ids[(i + 1) % len(cycle)]
for connection in cycle_digraph.list_connections():
if (
connection.local_node_id == current_node.node_id
and connection.send_back_node_id == next_node.node_id
):
if get_thunderbolt and not connection.is_thunderbolt():
continue
assert connection.send_back_multiaddr is not None
host = Host(
ip=connection.send_back_multiaddr.ip_address,
port=connection.send_back_multiaddr.port,
)
hosts.append(host)
break
for connection in cycle_digraph.get_all_connections_between(
source=current_node, sink=next_node
):
if not isinstance(connection, SocketConnection):
continue
if get_thunderbolt and not connection.is_thunderbolt():
continue
host = Host(
ip=connection.sink_multiaddr.ip_address,
port=connection.sink_multiaddr.port,
)
hosts.append(host)
break
return hosts
def get_mlx_ibv_devices_matrix(
selected_cycle: list[NodeInfo],
def get_mlx_jaccl_devices_matrix(
selected_cycle: list[NodeId],
cycle_digraph: Topology,
) -> list[list[str | None]]:
"""Build connectivity matrix mapping device i to device j via RDMA interface names.
@@ -214,72 +261,37 @@ def get_mlx_ibv_devices_matrix(
if i == j:
continue
# Find the IP J uses to talk to I
for connection_ip, _ in _find_connection_ip(node_j, node_i, cycle_digraph):
# This is a local IP on I, which is attached to an interface: find that interface
if interface_name := _find_rdma_interface_name_for_ip(
connection_ip, node_i
):
matrix[i][j] = interface_name
logger.info(
f"Interface name for {connection_ip} on {node_i.node_id}: {interface_name}"
)
for conn in cycle_digraph.get_all_connections_between(node_i, node_j):
if isinstance(conn, RDMAConnection):
matrix[i][j] = conn.source_rdma_iface
break
else:
logger.warning(
f"Failed to find interface name between {node_i.node_id} and {node_j.node_id}"
f"Failed to find interface name between {node_i} and {node_j}"
)
raise ValueError(
"Current ibv backend requires all-to-all rdma connections"
"Current jaccl backend requires all-to-all RDMA connections"
)
return matrix
def _find_connection_ip(
node_i: NodeInfo,
node_j: NodeInfo,
node_i: NodeId,
node_j: NodeId,
cycle_digraph: Topology,
) -> Generator[tuple[str, bool]]:
"""Find all IP addresses that connect node i to node j, with thunderbolt flag."""
for connection in cycle_digraph.list_connections():
if (
connection.local_node_id == node_i.node_id
and connection.send_back_node_id == node_j.node_id
):
yield connection.send_back_multiaddr.ip_address, connection.is_thunderbolt()
def _find_rdma_interface_name_for_ip(
ip_address: str,
node_info: NodeInfo,
) -> str | None:
if node_info.node_profile is None:
return None
logger.info(f"Searching {node_info.node_id} for ip {ip_address}:")
for interface in node_info.node_profile.network_interfaces:
if interface.name not in ["en2", "en3", "en4", "en5", "en6", "en7"]:
continue
logger.info(f" | {interface.name}: {interface.ip_address}")
if interface.ip_address != ip_address:
continue
logger.info("Found")
return f"rdma_{interface.name}"
return None
"""Find all IP addresses that connect node i to node j."""
for connection in cycle_digraph.get_all_connections_between(node_i, node_j):
if isinstance(connection, SocketConnection):
yield connection.sink_multiaddr.ip_address, connection.is_thunderbolt()
def _find_interface_name_for_ip(
ip_address: str,
node_info: NodeInfo,
ip_address: str, node_profile: NodePerformanceProfile
) -> str | None:
"""Find the interface name for an IP address on a node (any interface)."""
if node_info.node_profile is None:
return None
for interface in node_info.node_profile.network_interfaces:
for interface in node_profile.network_interfaces:
if interface.ip_address == ip_address:
return interface.name
@@ -287,7 +299,10 @@ def _find_interface_name_for_ip(
def _find_ip_prioritised(
node: NodeInfo, other_node: NodeInfo, cycle_digraph: Topology
node_id: NodeId,
other_node_id: NodeId,
cycle_digraph: Topology,
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> str | None:
# TODO: Actually prioritize in the correct Ethernet > Wifi > Non-TB > TB order.
"""Find an IP address between nodes with prioritization.
@@ -298,9 +313,12 @@ def _find_ip_prioritised(
3. Non-Thunderbolt connections
4. Any other IP address
"""
ips = list(_find_connection_ip(node, other_node, cycle_digraph))
ips = list(_find_connection_ip(node_id, other_node_id, cycle_digraph))
# We expect a unique iface -> ip mapping
iface_map = {_find_interface_name_for_ip(ip, other_node): ip for ip, _ in ips}
iface_map = {
_find_interface_name_for_ip(ip, node_profiles[other_node_id]): ip
for ip, _ in ips
}
en0_ip = iface_map.get("en0")
if en0_ip:
@@ -324,9 +342,10 @@ def _find_ip_prioritised(
def get_mlx_ring_hosts_by_node(
selected_cycle: list[NodeInfo],
selected_cycle: Cycle,
cycle_digraph: Topology,
ephemeral_port: int,
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> dict[NodeId, list[Host]]:
"""Generate per-node host lists for MLX ring backend.
@@ -341,14 +360,13 @@ def get_mlx_ring_hosts_by_node(
hosts_by_node: dict[NodeId, list[Host]] = {}
for rank, node in enumerate(selected_cycle):
node_id = node.node_id
for rank, node_id in enumerate(selected_cycle):
left_rank = (rank - 1) % world_size
right_rank = (rank + 1) % world_size
hosts_for_node: list[Host] = []
for idx, other_node in enumerate(selected_cycle):
for idx, other_node_id in enumerate(selected_cycle):
if idx == rank:
hosts_for_node.append(Host(ip="0.0.0.0", port=ephemeral_port))
continue
@@ -358,10 +376,12 @@ def get_mlx_ring_hosts_by_node(
hosts_for_node.append(Host(ip="198.51.100.1", port=0))
continue
connection_ip = _find_ip_prioritised(node, other_node, cycle_digraph)
connection_ip = _find_ip_prioritised(
node_id, other_node_id, cycle_digraph, node_profiles
)
if connection_ip is None:
logger.warning(
f"Failed to find prioritised connection IP between {node_id} and {other_node.node_id}"
f"Failed to find prioritised connection IP between {node_id} and {other_node_id}"
)
raise ValueError(
"MLX ring backend requires connectivity between neighbouring nodes"
@@ -375,31 +395,34 @@ def get_mlx_ring_hosts_by_node(
def get_mlx_jaccl_coordinators(
selected_cycle: list[NodeInfo],
coordinator: NodeId,
coordinator_port: int,
cycle_digraph: Topology,
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> dict[NodeId, str]:
"""Get the coordinator addresses for MLX Jaccl (rank 0 device).
"""Get the coordinator addresses for MLX JACCL (rank 0 device).
Select an IP address that each node can reach for the rank 0 node. Returns
address in format "X.X.X.X:PORT" per node.
"""
rank_0_node = selected_cycle[0]
logger.debug(f"Selecting coordinator from rank 0 node: {rank_0_node.node_id}")
logger.info(f"Selecting coordinator: {coordinator}")
def get_ip_for_node(n: NodeInfo) -> str:
if n.node_id == rank_0_node.node_id:
def get_ip_for_node(n: NodeId) -> str:
if n == coordinator:
return "0.0.0.0"
ip = _find_ip_prioritised(n, rank_0_node, cycle_digraph)
if ip:
ip = _find_ip_prioritised(n, coordinator, cycle_digraph, node_profiles)
if ip is not None:
return ip
logger.warning(
f"Failed to find directly connected ip between {n.node_id} and {rank_0_node.node_id}"
f"Failed to find directly connected ip between {n} and {coordinator}"
)
raise ValueError(
"Current jaccl backend requires all participating devices to be able to communicate"
)
raise ValueError("Current ibv backend requires all-to-all rdma connections")
return {
n.node_id: f"{get_ip_for_node(n)}:{coordinator_port}" for n in selected_cycle
n: f"{get_ip_for_node(n)}:{coordinator_port}"
for n in cycle_digraph.list_nodes()
}

View File

@@ -1,67 +1,39 @@
from typing import Callable
import pytest
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
MemoryUsage,
NetworkInterfaceInfo,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from exo.shared.types.topology import Connection, ConnectionProfile, NodeInfo
from exo.shared.types.topology import RDMAConnection, SocketConnection
@pytest.fixture
def create_node():
def _create_node(memory: int, node_id: NodeId | None = None) -> NodeInfo:
if node_id is None:
node_id = NodeId()
return NodeInfo(
node_id=node_id,
node_profile=NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=MemoryPerformanceProfile.from_bytes(
ram_total=1000,
ram_available=memory,
swap_total=1000,
swap_available=1000,
),
network_interfaces=[],
system=SystemPerformanceProfile(),
),
)
return _create_node
def create_node_profile(memory: int) -> NodePerformanceProfile:
return NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=MemoryUsage.from_bytes(
ram_total=1000,
ram_available=memory,
swap_total=1000,
swap_available=1000,
),
network_interfaces=[
NetworkInterfaceInfo(name="en0", ip_address=f"169.254.0.{i}")
for i in range(10)
],
system=SystemPerformanceProfile(),
)
# TODO: this is a hack to get the port for the send_back_multiaddr
@pytest.fixture
def create_connection() -> Callable[[NodeId, NodeId, int | None], Connection]:
port_counter = 1235
ip_counter = 1
def create_socket_connection(ip: int, sink_port: int = 1234) -> SocketConnection:
return SocketConnection(
sink_multiaddr=Multiaddr(address=f"/ip4/169.254.0.{ip}/tcp/{sink_port}"),
)
def _create_connection(
source_node_id: NodeId, sink_node_id: NodeId, send_back_port: int | None = None
) -> Connection:
nonlocal port_counter
nonlocal ip_counter
# assign unique ips
ip_counter += 1
if send_back_port is None:
send_back_port = port_counter
port_counter += 1
return Connection(
local_node_id=source_node_id,
send_back_node_id=sink_node_id,
send_back_multiaddr=Multiaddr(
address=f"/ip4/169.254.0.{ip_counter}/tcp/{send_back_port}"
),
connection_profile=ConnectionProfile(
throughput=1000, latency=1000, jitter=1000
),
)
return _create_connection
def create_rdma_connection(iface: int) -> RDMAConnection:
return RDMAConnection(
source_rdma_iface=f"rdma_en{iface}", sink_rdma_iface=f"rdma_en{iface}"
)

View File

@@ -0,0 +1,107 @@
# pyright: reportUnusedFunction=false, reportAny=false
from typing import Any, get_args
from fastapi import FastAPI, HTTPException
from fastapi.testclient import TestClient
from exo.shared.types.api import ErrorInfo, ErrorResponse, FinishReason
from exo.shared.types.chunks import TokenChunk
from exo.worker.tests.constants import MODEL_A_ID
def test_http_exception_handler_formats_openai_style() -> None:
"""Test that HTTPException is converted to OpenAI-style error format."""
from exo.master.api import API
app = FastAPI()
# Setup exception handler
api = object.__new__(API)
api.app = app
api._setup_exception_handlers() # pyright: ignore[reportPrivateUsage]
# Add test routes that raise HTTPException
@app.get("/test-error")
async def _test_error() -> None:
raise HTTPException(status_code=500, detail="Test error message")
@app.get("/test-not-found")
async def _test_not_found() -> None:
raise HTTPException(status_code=404, detail="Resource not found")
client = TestClient(app)
# Test 500 error
response = client.get("/test-error")
assert response.status_code == 500
data: dict[str, Any] = response.json()
assert "error" in data
assert data["error"]["message"] == "Test error message"
assert data["error"]["type"] == "Internal Server Error"
assert data["error"]["code"] == 500
# Test 404 error
response = client.get("/test-not-found")
assert response.status_code == 404
data = response.json()
assert "error" in data
assert data["error"]["message"] == "Resource not found"
assert data["error"]["type"] == "Not Found"
assert data["error"]["code"] == 404
def test_finish_reason_includes_error() -> None:
valid_reasons = get_args(FinishReason)
assert "error" in valid_reasons
def test_token_chunk_with_error_fields() -> None:
chunk = TokenChunk(
idx=0,
model=MODEL_A_ID,
text="",
token_id=0,
finish_reason="error",
error_message="Something went wrong",
)
assert chunk.finish_reason == "error"
assert chunk.error_message == "Something went wrong"
def test_token_chunk_without_error() -> None:
chunk = TokenChunk(
idx=1,
model=MODEL_A_ID,
text="Hello",
token_id=42,
finish_reason=None,
)
assert chunk.finish_reason is None
assert chunk.error_message is None
def test_error_response_construction() -> None:
error_response = ErrorResponse(
error=ErrorInfo(
message="Generation failed",
type="InternalServerError",
code=500,
)
)
assert error_response.error.message == "Generation failed"
assert error_response.error.code == 500
def test_normal_finish_reasons_still_work() -> None:
for reason in ["stop", "length", "tool_calls", "content_filter", "function_call"]:
chunk = TokenChunk(
idx=0,
model=MODEL_A_ID,
text="done",
token_id=100,
finish_reason=reason, # type: ignore[arg-type]
)
assert chunk.finish_reason == reason

View File

@@ -19,15 +19,13 @@ from exo.shared.types.events import (
ForwarderEvent,
IndexedEvent,
InstanceCreated,
NodePerformanceMeasured,
NodeGatheredInfo,
TaskCreated,
)
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
NodePerformanceProfile,
SystemPerformanceProfile,
MemoryUsage,
)
from exo.shared.types.tasks import ChatCompletion as ChatCompletionTask
from exo.shared.types.tasks import TaskStatus
@@ -83,21 +81,14 @@ async def test_master():
origin=sender_node_id,
session=session_id,
event=(
NodePerformanceMeasured(
NodeGatheredInfo(
when=str(datetime.now(tz=timezone.utc)),
node_id=node_id,
node_profile=NodePerformanceProfile(
model_id="maccy",
chip_id="arm",
friendly_name="test",
memory=MemoryPerformanceProfile(
ram_total=Memory.from_bytes(678948 * 1024),
ram_available=Memory.from_bytes(678948 * 1024),
swap_total=Memory.from_bytes(0),
swap_available=Memory.from_bytes(0),
),
network_interfaces=[],
system=SystemPerformanceProfile(),
info=MemoryUsage(
ram_total=Memory.from_bytes(678948 * 1024),
ram_available=Memory.from_bytes(678948 * 1024),
swap_total=Memory.from_bytes(0),
swap_available=Memory.from_bytes(0),
),
)
),
@@ -163,7 +154,7 @@ async def test_master():
assert events[0].idx == 0
assert events[1].idx == 1
assert events[2].idx == 2
assert isinstance(events[0].event, NodePerformanceMeasured)
assert isinstance(events[0].event, NodeGatheredInfo)
assert isinstance(events[1].event, InstanceCreated)
created_instance = events[1].event.instance
assert isinstance(created_instance, MlxRingInstance)

View File

@@ -1,20 +1,23 @@
from typing import Callable
import pytest
from loguru import logger
from exo.master.placement import (
get_transition_events,
place_instance,
)
from exo.master.tests.conftest import (
create_node_profile,
create_rdma_connection,
create_socket_connection,
)
from exo.shared.topology import Topology
from exo.shared.types.commands import PlaceInstance
from exo.shared.types.common import CommandId, NodeId
from exo.shared.types.events import InstanceCreated, InstanceDeleted
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import NetworkInterfaceInfo, NodePerformanceProfile
from exo.shared.types.topology import Connection, NodeInfo
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import NetworkInterfaceInfo
from exo.shared.types.topology import Connection, SocketConnection
from exo.shared.types.worker.instances import (
Instance,
InstanceId,
@@ -26,11 +29,6 @@ from exo.shared.types.worker.runners import ShardAssignments
from exo.shared.types.worker.shards import Sharding
@pytest.fixture
def topology() -> Topology:
return Topology()
@pytest.fixture
def instance() -> Instance:
return MlxRingInstance(
@@ -70,41 +68,64 @@ def place_instance_command(model_meta: ModelMetadata) -> PlaceInstance:
[
((500, 500, 1000), 12, (3, 3, 6)),
((500, 500, 500), 12, (4, 4, 4)),
((312, 518, 1024), 12, (2, 3, 7)),
((312, 468, 1092), 12, (2, 3, 7)),
],
)
def test_get_instance_placements_create_instance(
available_memory: tuple[int, int, int],
total_layers: int,
expected_layers: tuple[int, int, int],
topology: Topology,
model_meta: ModelMetadata,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
model_meta.n_layers = total_layers
model_meta.storage_size.in_bytes = sum(
available_memory
) # make it exactly fit across all nodes
topology = Topology()
cic = place_instance_command(model_meta)
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
topology.add_node(create_node(available_memory[0], node_id_a))
topology.add_node(create_node(available_memory[1], node_id_b))
topology.add_node(create_node(available_memory[2], node_id_c))
# Add bidirectional connections for ring topology
topology.add_connection(create_connection(node_id_a, node_id_b))
topology.add_connection(create_connection(node_id_b, node_id_a))
topology.add_connection(create_connection(node_id_b, node_id_c))
topology.add_connection(create_connection(node_id_c, node_id_b))
topology.add_connection(create_connection(node_id_c, node_id_a))
topology.add_connection(create_connection(node_id_a, node_id_c))
# fully connected (directed) between the 3 nodes
conn_a_b = Connection(
source=node_id_a, sink=node_id_b, edge=create_socket_connection(1)
)
conn_b_c = Connection(
source=node_id_b, sink=node_id_c, edge=create_socket_connection(2)
)
conn_c_a = Connection(
source=node_id_c, sink=node_id_a, edge=create_socket_connection(3)
)
conn_c_b = Connection(
source=node_id_c, sink=node_id_b, edge=create_socket_connection(4)
)
conn_a_c = Connection(
source=node_id_a, sink=node_id_c, edge=create_socket_connection(5)
)
conn_b_a = Connection(
source=node_id_b, sink=node_id_a, edge=create_socket_connection(6)
)
profiles = {
node_id_a: create_node_profile(available_memory[0]),
node_id_b: create_node_profile(available_memory[1]),
node_id_c: create_node_profile(available_memory[2]),
}
topology.add_node(node_id_a)
topology.add_node(node_id_b)
topology.add_node(node_id_c)
topology.add_connection(conn_a_b)
topology.add_connection(conn_b_c)
topology.add_connection(conn_c_a)
topology.add_connection(conn_c_b)
topology.add_connection(conn_a_c)
topology.add_connection(conn_b_a)
# act
placements = place_instance(cic, topology, {})
placements = place_instance(cic, topology, {}, profiles)
# assert
assert len(placements) == 1
@@ -130,12 +151,11 @@ def test_get_instance_placements_create_instance(
assert shards_sorted[-1].end_layer == total_layers
def test_get_instance_placements_one_node_exact_fit(
create_node: Callable[[int, NodeId | None], NodeInfo],
) -> None:
def test_get_instance_placements_one_node_exact_fit() -> None:
topology = Topology()
node_id = NodeId()
topology.add_node(create_node(1000 * 1024, node_id))
topology.add_node(node_id)
profiles = {node_id: create_node_profile(1000 * 1024)}
cic = place_instance_command(
ModelMetadata(
model_id=ModelId("test-model"),
@@ -146,7 +166,7 @@ def test_get_instance_placements_one_node_exact_fit(
supports_tensor=True,
),
)
placements = place_instance(cic, topology, {})
placements = place_instance(cic, topology, {}, profiles)
assert len(placements) == 1
instance_id = list(placements.keys())[0]
@@ -157,12 +177,11 @@ def test_get_instance_placements_one_node_exact_fit(
assert len(instance.shard_assignments.runner_to_shard) == 1
def test_get_instance_placements_one_node_fits_with_extra_memory(
create_node: Callable[[int, NodeId | None], NodeInfo],
) -> None:
def test_get_instance_placements_one_node_fits_with_extra_memory() -> None:
topology = Topology()
node_id = NodeId()
topology.add_node(create_node(1001 * 1024, node_id))
topology.add_node(node_id)
profiles = {node_id: create_node_profile(1001 * 1024)}
cic = place_instance_command(
ModelMetadata(
model_id=ModelId("test-model"),
@@ -173,7 +192,7 @@ def test_get_instance_placements_one_node_fits_with_extra_memory(
supports_tensor=True,
),
)
placements = place_instance(cic, topology, {})
placements = place_instance(cic, topology, {}, profiles)
assert len(placements) == 1
instance_id = list(placements.keys())[0]
@@ -184,12 +203,11 @@ def test_get_instance_placements_one_node_fits_with_extra_memory(
assert len(instance.shard_assignments.runner_to_shard) == 1
def test_get_instance_placements_one_node_not_fit(
create_node: Callable[[int, NodeId | None], NodeInfo],
) -> None:
def test_get_instance_placements_one_node_not_fit() -> None:
topology = Topology()
node_id = NodeId()
topology.add_node(create_node(1000 * 1024, node_id))
topology.add_node(node_id)
profiles = {node_id: create_node_profile(1000 * 1024)}
cic = place_instance_command(
model_meta=ModelMetadata(
model_id=ModelId("test-model"),
@@ -202,7 +220,7 @@ def test_get_instance_placements_one_node_not_fit(
)
with pytest.raises(ValueError, match="No cycles found with sufficient memory"):
place_instance(cic, topology, {})
place_instance(cic, topology, {}, profiles)
def test_get_transition_events_no_change(instance: Instance):
@@ -247,179 +265,130 @@ def test_get_transition_events_delete_instance(instance: Instance):
assert events[0].instance_id == instance_id
def test_placement_selects_cycle_with_most_memory(
topology: Topology,
def test_placement_selects_leaf_nodes(
model_meta: ModelMetadata,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# Arrange two 3-node cycles with different total memory.
# With bidirectional connections for ring topology, both cycles have non-leaf nodes.
# The algorithm should select the cycle with the most available memory.
# arrange
topology = Topology()
# Model requires more than any single node but fits within a 3-node cycle
model_meta.storage_size.in_bytes = 1500
model_meta.n_layers = 12
model_meta.storage_size = Memory.from_bytes(1000)
# Create node ids
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
node_id_d = NodeId()
node_id_e = NodeId()
node_id_f = NodeId()
# A-B-C cycle total memory = 1600 (< D-E-F total)
topology.add_node(create_node(400, node_id_a))
topology.add_node(create_node(400, node_id_b))
topology.add_node(create_node(800, node_id_c))
profiles = {
node_id_a: create_node_profile(500),
node_id_b: create_node_profile(600),
node_id_c: create_node_profile(600),
node_id_d: create_node_profile(500),
}
# D-E-F cycle total memory = 1800 (> A-B-C total)
topology.add_node(create_node(600, node_id_d))
topology.add_node(create_node(600, node_id_e))
topology.add_node(create_node(600, node_id_f))
topology.add_node(node_id_a)
topology.add_node(node_id_b)
topology.add_node(node_id_c)
topology.add_node(node_id_d)
# Build bidirectional cycles for ring topology
topology.add_connection(create_connection(node_id_a, node_id_b))
topology.add_connection(create_connection(node_id_b, node_id_a))
topology.add_connection(create_connection(node_id_b, node_id_c))
topology.add_connection(create_connection(node_id_c, node_id_b))
topology.add_connection(create_connection(node_id_c, node_id_a))
topology.add_connection(create_connection(node_id_a, node_id_c))
topology.add_connection(create_connection(node_id_d, node_id_e))
topology.add_connection(create_connection(node_id_e, node_id_d))
topology.add_connection(create_connection(node_id_e, node_id_f))
topology.add_connection(create_connection(node_id_f, node_id_e))
topology.add_connection(create_connection(node_id_f, node_id_d))
topology.add_connection(create_connection(node_id_d, node_id_f))
cic = place_instance_command(
model_meta=model_meta,
# Daisy chain topology (directed)
topology.add_connection(
Connection(source=node_id_a, sink=node_id_b, edge=create_socket_connection(1))
)
topology.add_connection(
Connection(source=node_id_b, sink=node_id_a, edge=create_socket_connection(1))
)
topology.add_connection(
Connection(source=node_id_b, sink=node_id_c, edge=create_socket_connection(1))
)
topology.add_connection(
Connection(source=node_id_c, sink=node_id_b, edge=create_socket_connection(1))
)
topology.add_connection(
Connection(source=node_id_c, sink=node_id_d, edge=create_socket_connection(1))
)
topology.add_connection(
Connection(source=node_id_d, sink=node_id_c, edge=create_socket_connection(1))
)
# Act
placements = place_instance(cic, topology, {})
cic = place_instance_command(model_meta=model_meta)
# Assert: D-E-F cycle should be selected as it has more total memory
# act
placements = place_instance(cic, topology, {}, profiles)
# assert
assert len(placements) == 1
instance_id = list(placements.keys())[0]
instance = placements[instance_id]
instance = list(placements.values())[0]
assigned_nodes = set(instance.shard_assignments.node_to_runner.keys())
less_memory_cycle_nodes = {node_id_a, node_id_b, node_id_c}
more_memory_cycle_nodes = {node_id_d, node_id_e, node_id_f}
assert more_memory_cycle_nodes.issubset(assigned_nodes)
assert assigned_nodes.isdisjoint(less_memory_cycle_nodes)
assert assigned_nodes == set((node_id_a, node_id_b)) or assigned_nodes == set(
(
node_id_c,
node_id_d,
)
)
def test_tensor_rdma_backend_connectivity_matrix(
topology: Topology,
model_meta: ModelMetadata,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
# arrange
topology = Topology()
model_meta.n_layers = 12
model_meta.storage_size.in_bytes = 1500
node_id_a = NodeId()
node_id_b = NodeId()
node_id_c = NodeId()
node_a = NodeId()
node_b = NodeId()
node_c = NodeId()
node_a = create_node(500, node_id_a)
node_b = create_node(500, node_id_b)
node_c = create_node(500, node_id_c)
profiles = {
node_a: create_node_profile(500),
node_b: create_node_profile(500),
node_c: create_node_profile(500),
}
ethernet_interface = NetworkInterfaceInfo(
name="en0",
ip_address="192.168.1.100",
ip_address="10.0.0.1",
)
ethernet_conn = SocketConnection(
sink_multiaddr=Multiaddr(address="/ip4/10.0.0.1/tcp/8000")
)
assert node_a.node_profile is not None
assert node_b.node_profile is not None
assert node_c.node_profile is not None
conn_a_b = create_connection(node_id_a, node_id_b)
conn_b_c = create_connection(node_id_b, node_id_c)
conn_c_a = create_connection(node_id_c, node_id_a)
conn_b_a = create_connection(node_id_b, node_id_a)
conn_c_b = create_connection(node_id_c, node_id_b)
conn_a_c = create_connection(node_id_a, node_id_c)
assert conn_a_b.send_back_multiaddr is not None
assert conn_b_c.send_back_multiaddr is not None
assert conn_c_a.send_back_multiaddr is not None
assert conn_b_a.send_back_multiaddr is not None
assert conn_c_b.send_back_multiaddr is not None
assert conn_a_c.send_back_multiaddr is not None
node_a.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_a.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_c_a.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_b_a.send_back_multiaddr.ip_address,
),
ethernet_interface,
],
system=node_a.node_profile.system,
)
node_b.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_b.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_c_b.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_a_b.send_back_multiaddr.ip_address,
),
ethernet_interface,
],
system=node_b.node_profile.system,
)
node_c.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_c.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_a_c.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_b_c.send_back_multiaddr.ip_address,
),
ethernet_interface,
],
system=node_c.node_profile.system,
)
profiles[node_a].network_interfaces = [ethernet_interface]
profiles[node_b].network_interfaces = [ethernet_interface]
profiles[node_c].network_interfaces = [ethernet_interface]
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(conn_a_b)
topology.add_connection(conn_b_c)
topology.add_connection(conn_c_a)
topology.add_connection(conn_b_a)
topology.add_connection(conn_c_b)
topology.add_connection(conn_a_c)
# RDMA connections (directed)
topology.add_connection(
Connection(source=node_a, sink=node_b, edge=create_rdma_connection(3))
)
topology.add_connection(
Connection(source=node_b, sink=node_a, edge=create_rdma_connection(3))
)
topology.add_connection(
Connection(source=node_b, sink=node_c, edge=create_rdma_connection(4))
)
topology.add_connection(
Connection(source=node_c, sink=node_b, edge=create_rdma_connection(4))
)
topology.add_connection(
Connection(source=node_a, sink=node_c, edge=create_rdma_connection(5))
)
topology.add_connection(
Connection(source=node_c, sink=node_a, edge=create_rdma_connection(5))
)
# Ethernet connections (directed)
topology.add_connection(Connection(source=node_a, sink=node_b, edge=ethernet_conn))
topology.add_connection(Connection(source=node_b, sink=node_c, edge=ethernet_conn))
topology.add_connection(Connection(source=node_c, sink=node_a, edge=ethernet_conn))
topology.add_connection(Connection(source=node_a, sink=node_c, edge=ethernet_conn))
topology.add_connection(Connection(source=node_b, sink=node_a, edge=ethernet_conn))
topology.add_connection(Connection(source=node_c, sink=node_b, edge=ethernet_conn))
cic = PlaceInstance(
sharding=Sharding.Tensor,
@@ -429,35 +398,34 @@ def test_tensor_rdma_backend_connectivity_matrix(
min_nodes=1,
)
placements = place_instance(cic, topology, {})
# act
placements = place_instance(cic, topology, {}, profiles)
# assert
assert len(placements) == 1
instance_id = list(placements.keys())[0]
instance = placements[instance_id]
assert isinstance(instance, MlxJacclInstance)
assert instance.ibv_devices is not None
assert instance.jaccl_devices is not None
assert instance.jaccl_coordinators is not None
matrix = instance.ibv_devices
matrix = instance.jaccl_devices
assert len(matrix) == 3
for i in range(3):
assert matrix[i][i] is None
assigned_nodes = list(instance.shard_assignments.node_to_runner.keys())
node_to_idx = {node_id: idx for idx, node_id in enumerate(assigned_nodes)}
idx_a = node_to_idx[node_id_a]
idx_b = node_to_idx[node_id_b]
idx_c = node_to_idx[node_id_c]
idx_a = node_to_idx[node_a]
idx_b = node_to_idx[node_b]
idx_c = node_to_idx[node_c]
logger.info(matrix)
assert matrix[idx_a][idx_b] == "rdma_en4"
assert matrix[idx_b][idx_c] == "rdma_en3"
assert matrix[idx_c][idx_a] == "rdma_en3"
assert matrix[idx_a][idx_b] == "rdma_en3"
assert matrix[idx_b][idx_c] == "rdma_en4"
assert matrix[idx_c][idx_a] == "rdma_en5"
# Verify coordinators are set for all nodes
assert len(instance.jaccl_coordinators) == 3
@@ -469,7 +437,5 @@ def test_tensor_rdma_backend_connectivity_matrix(
if node_id == assigned_nodes[0]:
assert coordinator.startswith("0.0.0.0:")
else:
# Non-rank-0 nodes should have valid IP addresses (can be link-local)
ip_part = coordinator.split(":")[0]
# Just verify it's a valid IP format
assert len(ip_part.split(".")) == 4

View File

@@ -1,162 +1,187 @@
from typing import Callable
from copy import copy
import pytest
from exo.master.placement_utils import (
allocate_layers_proportionally,
filter_cycles_by_memory,
get_hosts_from_subgraph,
get_mlx_jaccl_coordinators,
get_shard_assignments,
get_smallest_cycles,
)
from exo.master.tests.conftest import create_node_profile, create_socket_connection
from exo.shared.topology import Topology
from exo.shared.types.common import Host, NodeId
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.profiling import NetworkInterfaceInfo, NodePerformanceProfile
from exo.shared.types.topology import Connection, NodeInfo
from exo.shared.types.profiling import (
MemoryUsage,
NetworkInterfaceInfo,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from exo.shared.types.topology import Connection, SocketConnection
from exo.shared.types.worker.shards import Sharding
@pytest.fixture
def topology() -> Topology:
topology = Topology()
return topology
def test_filter_cycles_by_memory(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
def test_filter_cycles_by_memory():
# arrange
node1_id = NodeId()
node2_id = NodeId()
connection1 = Connection(
source=node1_id, sink=node2_id, edge=create_socket_connection(1)
)
connection2 = Connection(
source=node2_id, sink=node1_id, edge=create_socket_connection(2)
)
node1 = create_node(1000 * 1024, node1_id)
node2 = create_node(1000 * 1024, node2_id)
topology.add_node(node1)
topology.add_node(node2)
connection1 = create_connection(node1_id, node2_id)
connection2 = create_connection(node2_id, node1_id)
node1 = create_node_profile(1000 * 1024)
node2 = create_node_profile(1000 * 1024)
node_profiles = {node1_id: node1, node2_id: node2}
topology = Topology()
topology.add_node(node1_id)
topology.add_node(node2_id)
topology.add_connection(connection1)
topology.add_connection(connection2)
cycles = topology.get_cycles()
cycles = [c for c in topology.get_cycles() if len(c) != 1]
assert len(cycles) == 1
assert len(cycles[0]) == 2
# act
filtered_cycles = filter_cycles_by_memory(cycles, Memory.from_bytes(1))
filtered_cycles = filter_cycles_by_memory(
cycles, node_profiles, Memory.from_bytes(1)
)
# assert
assert len(filtered_cycles) == 1
assert len(filtered_cycles[0]) == 2
assert set(n.node_id for n in filtered_cycles[0]) == {node1_id, node2_id}
assert set(n for n in filtered_cycles[0]) == {node1_id, node2_id}
def test_filter_cycles_by_insufficient_memory(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
def test_filter_cycles_by_insufficient_memory():
# arrange
node1_id = NodeId()
node2_id = NodeId()
connection1 = Connection(
source=node1_id, sink=node2_id, edge=create_socket_connection(1)
)
connection2 = Connection(
source=node2_id, sink=node1_id, edge=create_socket_connection(2)
)
node1 = create_node(1000 * 1024, node1_id)
node2 = create_node(1000 * 1024, node2_id)
topology.add_node(node1)
topology.add_node(node2)
connection1 = create_connection(node1_id, node2_id)
connection2 = create_connection(node2_id, node1_id)
node1 = create_node_profile(1000 * 1024)
node2 = create_node_profile(1000 * 1024)
node_profiles = {node1_id: node1, node2_id: node2}
topology = Topology()
topology.add_node(node1_id)
topology.add_node(node2_id)
topology.add_connection(connection1)
topology.add_connection(connection2)
# act
filtered_cycles = filter_cycles_by_memory(
topology.get_cycles(), Memory.from_kb(2001)
topology.get_cycles(), node_profiles, Memory.from_kb(2001)
)
# assert
assert len(filtered_cycles) == 0
def test_filter_multiple_cycles_by_memory(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
def test_filter_multiple_cycles_by_memory():
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
connection1 = Connection(
source=node_a_id, sink=node_b_id, edge=create_socket_connection(1)
)
connection2 = Connection(
source=node_b_id, sink=node_a_id, edge=create_socket_connection(2)
)
connection3 = Connection(
source=node_a_id, sink=node_c_id, edge=create_socket_connection(3)
)
connection4 = Connection(
source=node_c_id, sink=node_b_id, edge=create_socket_connection(4)
)
node_a = create_node(500 * 1024, node_a_id)
node_b = create_node(500 * 1024, node_b_id)
node_c = create_node(1000 * 1024, node_c_id)
node_a = create_node_profile(500 * 1024)
node_b = create_node_profile(500 * 1024)
node_c = create_node_profile(1000 * 1024)
node_profiles = {
node_a_id: node_a,
node_b_id: node_b,
node_c_id: node_c,
}
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology.add_connection(create_connection(node_a_id, node_b_id))
topology.add_connection(create_connection(node_b_id, node_a_id))
topology.add_connection(create_connection(node_a_id, node_c_id))
topology.add_connection(create_connection(node_c_id, node_b_id))
topology = Topology()
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_connection(connection1)
topology.add_connection(connection2)
topology.add_connection(connection3)
topology.add_connection(connection4)
cycles = topology.get_cycles()
# act
filtered_cycles = filter_cycles_by_memory(cycles, Memory.from_kb(1500))
filtered_cycles = filter_cycles_by_memory(
cycles, node_profiles, Memory.from_kb(1500)
)
# assert
assert len(filtered_cycles) == 1
assert len(filtered_cycles[0]) == 3
assert set(n.node_id for n in filtered_cycles[0]) == {
assert set(n for n in filtered_cycles[0]) == {
node_a_id,
node_b_id,
node_c_id,
}
def test_get_smallest_cycles(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
):
def test_get_smallest_cycles():
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
node_a = create_node(500 * 1024, node_a_id)
node_b = create_node(500 * 1024, node_b_id)
node_c = create_node(1000 * 1024, node_c_id)
topology = Topology()
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
connection1 = Connection(
source=node_a_id, sink=node_b_id, edge=create_socket_connection(1)
)
connection2 = Connection(
source=node_b_id, sink=node_a_id, edge=create_socket_connection(2)
)
connection3 = Connection(
source=node_a_id, sink=node_c_id, edge=create_socket_connection(3)
)
connection4 = Connection(
source=node_c_id, sink=node_b_id, edge=create_socket_connection(4)
)
topology.add_connection(create_connection(node_a_id, node_b_id))
topology.add_connection(create_connection(node_b_id, node_c_id))
topology.add_connection(create_connection(node_c_id, node_a_id))
topology.add_connection(create_connection(node_b_id, node_a_id))
topology.add_connection(connection1)
topology.add_connection(connection2)
topology.add_connection(connection3)
topology.add_connection(connection4)
cycles = [c for c in topology.get_cycles() if len(c) != 1] # ignore singletons
# act
smallest_cycles = get_smallest_cycles(topology.get_cycles())
smallest_cycles = get_smallest_cycles(cycles)
# assert
assert len(smallest_cycles) == 1
assert len(smallest_cycles[0]) == 2
assert set(n.node_id for n in smallest_cycles[0]) == {node_a_id, node_b_id}
assert set(n for n in smallest_cycles[0]) == {node_a_id, node_b_id}
@pytest.mark.parametrize(
@@ -165,12 +190,12 @@ def test_get_smallest_cycles(
((500, 500, 1000), 12, (3, 3, 6)),
((500, 500, 500), 12, (4, 4, 4)),
((312, 518, 1024), 12, (2, 3, 7)),
# Edge case: one node has ~90% of memory - should not over-allocate.
# Each node must have enough memory for at least 1 layer (50 KB = 1000/20).
((900, 50, 50), 20, (18, 1, 1)),
],
)
def test_get_shard_assignments(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId], Connection],
available_memory: tuple[int, int, int],
total_layers: int,
expected_layers: tuple[int, int, int],
@@ -180,18 +205,37 @@ def test_get_shard_assignments(
node_b_id = NodeId()
node_c_id = NodeId()
node_a = create_node(available_memory[0] * 1024, node_a_id)
node_b = create_node(available_memory[1] * 1024, node_b_id)
node_c = create_node(available_memory[2] * 1024, node_c_id)
# create connections (A -> B -> C -> A forms a 3-cycle, plus B -> A also exists)
connection1 = Connection(
source=node_a_id, sink=node_b_id, edge=create_socket_connection(1)
)
connection2 = Connection(
source=node_b_id, sink=node_c_id, edge=create_socket_connection(2)
)
connection3 = Connection(
source=node_c_id, sink=node_a_id, edge=create_socket_connection(3)
)
connection4 = Connection(
source=node_b_id, sink=node_a_id, edge=create_socket_connection(4)
)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology = Topology()
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_connection(connection1)
topology.add_connection(connection2)
topology.add_connection(connection3)
topology.add_connection(connection4)
topology.add_connection(create_connection(node_a_id, node_b_id))
topology.add_connection(create_connection(node_b_id, node_c_id))
topology.add_connection(create_connection(node_c_id, node_a_id))
topology.add_connection(create_connection(node_b_id, node_a_id))
node_a = create_node_profile(available_memory[0] * 1024)
node_b = create_node_profile(available_memory[1] * 1024)
node_c = create_node_profile(available_memory[2] * 1024)
node_profiles = {
node_a_id: node_a,
node_b_id: node_b,
node_c_id: node_c,
}
model_meta = ModelMetadata(
model_id=ModelId("test-model"),
@@ -201,23 +245,22 @@ def test_get_shard_assignments(
hidden_size=1000,
supports_tensor=True,
)
cycles = topology.get_cycles()
selected_cycle = cycles[0]
# pick the 3-node cycle deterministically (cycle ordering can vary)
selected_cycle = next(cycle for cycle in cycles if len(cycle) == 3)
# act
shard_assignments = get_shard_assignments(
model_meta, selected_cycle, Sharding.Pipeline
model_meta, selected_cycle, Sharding.Pipeline, node_profiles=node_profiles
)
# assert
runner_id_a = shard_assignments.node_to_runner[node_a_id]
runner_id_b = shard_assignments.node_to_runner[node_b_id]
runner_id_c = shard_assignments.node_to_runner[node_c_id]
assert (
shard_assignments.runner_to_shard[runner_id_c].end_layer
- shard_assignments.runner_to_shard[runner_id_c].start_layer
== expected_layers[2]
)
assert (
shard_assignments.runner_to_shard[runner_id_a].end_layer
- shard_assignments.runner_to_shard[runner_id_a].start_layer
@@ -228,30 +271,37 @@ def test_get_shard_assignments(
- shard_assignments.runner_to_shard[runner_id_b].start_layer
== expected_layers[1]
)
assert (
shard_assignments.runner_to_shard[runner_id_c].end_layer
- shard_assignments.runner_to_shard[runner_id_c].start_layer
== expected_layers[2]
)
def test_get_hosts_from_subgraph(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId, int | None], Connection],
):
def test_get_hosts_from_subgraph():
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
node_a = create_node(500, node_a_id)
node_b = create_node(500, node_b_id)
node_c = create_node(1000, node_c_id)
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
connection1 = Connection(
source=node_a_id, sink=node_b_id, edge=create_socket_connection(1)
)
connection2 = Connection(
source=node_b_id, sink=node_c_id, edge=create_socket_connection(2)
)
connection3 = Connection(
source=node_c_id, sink=node_a_id, edge=create_socket_connection(3)
)
topology.add_connection(create_connection(node_a_id, node_b_id, 5001))
topology.add_connection(create_connection(node_b_id, node_c_id, 5002))
topology.add_connection(create_connection(node_c_id, node_a_id, 5003))
topology.add_connection(create_connection(node_b_id, node_a_id, 5004))
topology.add_connection(connection1)
topology.add_connection(connection2)
topology.add_connection(connection3)
# act
hosts = get_hosts_from_subgraph(topology)
@@ -259,95 +309,78 @@ def test_get_hosts_from_subgraph(
# assert
assert len(hosts) == 3
expected_hosts = [
Host(ip=("169.254.0.2"), port=5001),
Host(ip=("169.254.0.3"), port=5002),
Host(ip=("169.254.0.4"), port=5003),
Host(ip="169.254.0.1", port=1234),
Host(ip="169.254.0.2", port=1234),
Host(ip="169.254.0.3", port=1234),
]
for expected_host in expected_hosts:
assert expected_host in hosts
def test_get_mlx_jaccl_coordinators(
topology: Topology,
create_node: Callable[[int, NodeId | None], NodeInfo],
create_connection: Callable[[NodeId, NodeId, int | None], Connection],
):
def test_get_mlx_jaccl_coordinators():
# arrange
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
node_a = create_node(500 * 1024, node_a_id)
node_b = create_node(500 * 1024, node_b_id)
node_c = create_node(1000 * 1024, node_c_id)
# fully connected (directed) between the 3 nodes
conn_a_b = Connection(
source=node_a_id, sink=node_b_id, edge=create_socket_connection(1)
)
conn_b_a = Connection(
source=node_b_id, sink=node_a_id, edge=create_socket_connection(2)
)
conn_b_c = Connection(
source=node_b_id, sink=node_c_id, edge=create_socket_connection(3)
)
conn_c_b = Connection(
source=node_c_id, sink=node_b_id, edge=create_socket_connection(4)
)
conn_c_a = Connection(
source=node_c_id, sink=node_a_id, edge=create_socket_connection(5)
)
conn_a_c = Connection(
source=node_a_id, sink=node_c_id, edge=create_socket_connection(6)
)
conn_a_b = create_connection(node_a_id, node_b_id, 5001)
conn_b_a = create_connection(node_b_id, node_a_id, 5002)
conn_b_c = create_connection(node_b_id, node_c_id, 5003)
conn_c_b = create_connection(node_c_id, node_b_id, 5004)
conn_c_a = create_connection(node_c_id, node_a_id, 5005)
conn_a_c = create_connection(node_a_id, node_c_id, 5006)
# Update node profiles with network interfaces before adding to topology
assert node_a.node_profile is not None
assert node_b.node_profile is not None
assert node_c.node_profile is not None
node_a.node_profile = NodePerformanceProfile(
npp = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_a.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_a_b.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_a_c.send_back_multiaddr.ip_address,
),
],
system=node_a.node_profile.system,
)
node_b.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_b.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_b_a.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_b_c.send_back_multiaddr.ip_address,
),
],
system=node_b.node_profile.system,
)
node_c.node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=node_c.node_profile.memory,
network_interfaces=[
NetworkInterfaceInfo(
name="en3",
ip_address=conn_c_b.send_back_multiaddr.ip_address,
),
NetworkInterfaceInfo(
name="en4",
ip_address=conn_c_a.send_back_multiaddr.ip_address,
),
],
system=node_c.node_profile.system,
memory=MemoryUsage.from_bytes(
ram_total=0,
ram_available=0,
swap_total=0,
swap_available=0,
),
network_interfaces=[],
system=SystemPerformanceProfile(),
)
npp_a = copy(npp)
npp_a.network_interfaces = [
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.5"),
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.2"),
]
npp_b = copy(npp)
npp_b.network_interfaces = [
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.1"),
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.4"),
]
npp_c = copy(npp)
npp_c.network_interfaces = [
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.3"),
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.6"),
]
node_profiles = {
node_a_id: npp_a,
node_b_id: npp_b,
node_c_id: npp_c,
}
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_node(node_c)
topology = Topology()
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
topology.add_connection(conn_a_b)
topology.add_connection(conn_b_a)
@@ -356,11 +389,12 @@ def test_get_mlx_jaccl_coordinators(
topology.add_connection(conn_c_a)
topology.add_connection(conn_a_c)
cycle = [node_a, node_b, node_c]
# act
coordinators = get_mlx_jaccl_coordinators(
cycle, coordinator_port=5000, cycle_digraph=topology
node_a_id,
coordinator_port=5000,
cycle_digraph=topology,
node_profiles=node_profiles,
)
# assert
@@ -381,19 +415,128 @@ def test_get_mlx_jaccl_coordinators(
f"Coordinator for {node_id} should use port 5000"
)
# Rank 0 (node_a) treats this as the listen socket so should listen on all
# IPs
# Rank 0 (node_a) treats this as the listen socket so should listen on all IPs
assert coordinators[node_a_id].startswith("0.0.0.0:"), (
"Rank 0 node should use localhost as coordinator"
"Rank 0 node should use 0.0.0.0 as coordinator listen address"
)
# Non-rank-0 nodes should use the specific IP from their connection to rank 0
# node_b uses the IP from conn_b_a (node_b -> node_a)
assert coordinators[node_b_id] == (
f"{conn_b_a.send_back_multiaddr.ip_address}:5000"
assert isinstance(conn_b_a.edge, SocketConnection)
assert (
coordinators[node_b_id] == f"{conn_b_a.edge.sink_multiaddr.ip_address}:5000"
), "node_b should use the IP from conn_b_a"
# node_c uses the IP from conn_c_a (node_c -> node_a)
assert isinstance(conn_c_a.edge, SocketConnection)
assert coordinators[node_c_id] == (
f"{conn_c_a.send_back_multiaddr.ip_address}:5000"
f"{conn_c_a.edge.sink_multiaddr.ip_address}:5000"
), "node_c should use the IP from conn_c_a"
class TestAllocateLayersProportionally:
def test_empty_node_list_raises(self):
with pytest.raises(ValueError, match="empty node list"):
allocate_layers_proportionally(total_layers=10, memory_fractions=[])
def test_zero_layers_raises(self):
with pytest.raises(ValueError, match="need at least 1 layer per node"):
allocate_layers_proportionally(total_layers=0, memory_fractions=[0.5, 0.5])
def test_negative_layers_raises(self):
with pytest.raises(ValueError, match="need at least 1 layer per node"):
allocate_layers_proportionally(total_layers=-1, memory_fractions=[0.5, 0.5])
def test_fewer_layers_than_nodes_raises(self):
with pytest.raises(ValueError, match="need at least 1 layer per node"):
allocate_layers_proportionally(
total_layers=2, memory_fractions=[0.33, 0.33, 0.34]
)
def test_equal_distribution(self):
result = allocate_layers_proportionally(
total_layers=12, memory_fractions=[0.25, 0.25, 0.25, 0.25]
)
assert result == [3, 3, 3, 3]
assert sum(result) == 12
def test_proportional_distribution(self):
result = allocate_layers_proportionally(
total_layers=12, memory_fractions=[0.25, 0.25, 0.50]
)
assert result == [3, 3, 6]
assert sum(result) == 12
def test_extreme_imbalance_ensures_minimum(self):
result = allocate_layers_proportionally(
total_layers=20, memory_fractions=[0.975, 0.0125, 0.0125]
)
assert all(layers >= 1 for layers in result)
assert sum(result) == 20
# Small nodes get minimum 1 layer
assert result == [18, 1, 1]
def test_single_node_gets_all_layers(self):
result = allocate_layers_proportionally(total_layers=10, memory_fractions=[1.0])
assert result == [10]
def test_minimum_viable_allocation(self):
result = allocate_layers_proportionally(
total_layers=3, memory_fractions=[0.33, 0.33, 0.34]
)
assert result == [1, 1, 1]
assert sum(result) == 3
def test_get_shard_assignments_insufficient_memory_raises():
"""Test that ValueError is raised when a node has insufficient memory for its layers."""
node_a_id = NodeId()
node_b_id = NodeId()
node_c_id = NodeId()
topology = Topology()
# Node C has only 10 KB but would need 50 KB for 1 layer (1000 KB / 20 layers)
node_a = create_node_profile(900 * 1024)
node_b = create_node_profile(50 * 1024)
node_c = create_node_profile(10 * 1024) # Insufficient memory
topology.add_node(node_a_id)
topology.add_node(node_b_id)
topology.add_node(node_c_id)
conn_a_b = Connection(
source=node_a_id, sink=node_b_id, edge=create_socket_connection(1)
)
conn_b_c = Connection(
source=node_b_id, sink=node_c_id, edge=create_socket_connection(2)
)
conn_c_a = Connection(
source=node_c_id, sink=node_a_id, edge=create_socket_connection(3)
)
conn_b_a = Connection(
source=node_b_id, sink=node_a_id, edge=create_socket_connection(3)
)
topology.add_connection(conn_a_b)
topology.add_connection(conn_b_c)
topology.add_connection(conn_c_a)
topology.add_connection(conn_b_a)
profiles = {
node_a_id: node_a,
node_b_id: node_b,
node_c_id: node_c,
}
model_meta = ModelMetadata(
model_id=ModelId("test-model"),
pretty_name="Test Model",
n_layers=20,
storage_size=Memory.from_kb(1000),
hidden_size=1000,
supports_tensor=True,
)
cycles = topology.get_cycles()
selected_cycle = cycles[0]
with pytest.raises(ValueError, match="insufficient memory"):
get_shard_assignments(model_meta, selected_cycle, Sharding.Pipeline, profiles)

View File

@@ -1,13 +1,14 @@
import pytest
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
MemoryUsage,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from exo.shared.types.topology import Connection, ConnectionProfile, NodeId, NodeInfo
from exo.shared.types.topology import Connection, SocketConnection
@pytest.fixture
@@ -16,20 +17,15 @@ def topology() -> Topology:
@pytest.fixture
def connection() -> Connection:
return Connection(
local_node_id=NodeId(),
send_back_node_id=NodeId(),
send_back_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/1235"),
connection_profile=ConnectionProfile(
throughput=1000, latency=1000, jitter=1000
),
def socket_connection() -> SocketConnection:
return SocketConnection(
sink_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/1235"),
)
@pytest.fixture
def node_profile() -> NodePerformanceProfile:
memory_profile = MemoryPerformanceProfile.from_bytes(
memory_profile = MemoryUsage.from_bytes(
ram_total=1000, ram_available=1000, swap_total=1000, swap_available=1000
)
system_profile = SystemPerformanceProfile()
@@ -43,162 +39,91 @@ def node_profile() -> NodePerformanceProfile:
)
@pytest.fixture
def connection_profile() -> ConnectionProfile:
return ConnectionProfile(throughput=1000, latency=1000, jitter=1000)
def test_add_node(topology: Topology, node_profile: NodePerformanceProfile):
def test_add_node(topology: Topology):
# arrange
node_id = NodeId()
# act
topology.add_node(NodeInfo(node_id=node_id, node_profile=node_profile))
topology.add_node(node_id)
# assert
data = topology.get_node_profile(node_id)
assert data == node_profile
assert topology.node_is_leaf(node_id)
def test_add_connection(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
def test_add_connection(topology: Topology, socket_connection: SocketConnection):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
node_a = NodeId()
node_b = NodeId()
connection = Connection(source=node_a, sink=node_b, edge=socket_connection)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(connection)
# act
data = topology.get_connection_profile(connection)
data = list(topology.list_connections())
# assert
assert data == connection.connection_profile
assert data == [connection]
def test_update_node_profile(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
new_node_profile = NodePerformanceProfile(
model_id="test",
chip_id="test",
friendly_name="test",
memory=MemoryPerformanceProfile.from_bytes(
ram_total=1000, ram_available=1000, swap_total=1000, swap_available=1000
),
network_interfaces=[],
system=SystemPerformanceProfile(),
)
# act
topology.update_node_profile(
connection.local_node_id, node_profile=new_node_profile
)
# assert
data = topology.get_node_profile(connection.local_node_id)
assert data == new_node_profile
def test_update_connection_profile(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
new_connection_profile = ConnectionProfile(
throughput=2000, latency=2000, jitter=2000
)
connection = Connection(
local_node_id=connection.local_node_id,
send_back_node_id=connection.send_back_node_id,
send_back_multiaddr=connection.send_back_multiaddr,
connection_profile=new_connection_profile,
)
# act
topology.update_connection_profile(connection)
# assert
data = topology.get_connection_profile(connection)
assert data == new_connection_profile
assert topology.node_is_leaf(node_a)
assert topology.node_is_leaf(node_b)
def test_remove_connection_still_connected(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
topology: Topology, socket_connection: SocketConnection
):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
node_a = NodeId()
node_b = NodeId()
conn = Connection(source=node_a, sink=node_b, edge=socket_connection)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(conn)
# act
topology.remove_connection(connection)
topology.remove_connection(conn)
# assert
assert topology.get_connection_profile(connection) is None
assert list(topology.get_all_connections_between(node_a, node_b)) == []
def test_remove_node_still_connected(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
topology: Topology, socket_connection: SocketConnection
):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
node_a = NodeId()
node_b = NodeId()
conn = Connection(source=node_a, sink=node_b, edge=socket_connection)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(conn)
assert list(topology.out_edges(node_a)) == [conn]
# act
topology.remove_node(connection.local_node_id)
topology.remove_node(node_b)
# assert
assert topology.get_node_profile(connection.local_node_id) is None
assert list(topology.out_edges(node_a)) == []
def test_list_nodes(
topology: Topology, node_profile: NodePerformanceProfile, connection: Connection
):
def test_list_nodes(topology: Topology, socket_connection: SocketConnection):
# arrange
topology.add_node(
NodeInfo(node_id=connection.local_node_id, node_profile=node_profile)
)
topology.add_node(
NodeInfo(node_id=connection.send_back_node_id, node_profile=node_profile)
)
topology.add_connection(connection)
node_a = NodeId()
node_b = NodeId()
conn = Connection(source=node_a, sink=node_b, edge=socket_connection)
topology.add_node(node_a)
topology.add_node(node_b)
topology.add_connection(conn)
assert list(topology.out_edges(node_a)) == [conn]
# act
nodes = list(topology.list_nodes())
# assert
assert len(nodes) == 2
assert all(isinstance(node, NodeInfo) for node in nodes)
assert {node.node_id for node in nodes} == {
connection.local_node_id,
connection.send_back_node_id,
}
assert all(isinstance(node, NodeId) for node in nodes)
assert set(node for node in nodes) == set([node_a, node_b])

View File

@@ -11,10 +11,8 @@ from exo.shared.types.events import (
IndexedEvent,
InstanceCreated,
InstanceDeleted,
NodeCreated,
NodeDownloadProgress,
NodeMemoryMeasured,
NodePerformanceMeasured,
NodeGatheredInfo,
NodeTimedOut,
RunnerDeleted,
RunnerStatusUpdated,
@@ -27,13 +25,23 @@ from exo.shared.types.events import (
TopologyEdgeCreated,
TopologyEdgeDeleted,
)
from exo.shared.types.profiling import NodePerformanceProfile, SystemPerformanceProfile
from exo.shared.types.profiling import NodePerformanceProfile
from exo.shared.types.state import State
from exo.shared.types.tasks import Task, TaskId, TaskStatus
from exo.shared.types.topology import NodeInfo
from exo.shared.types.topology import Connection, RDMAConnection
from exo.shared.types.worker.downloads import DownloadProgress
from exo.shared.types.worker.instances import Instance, InstanceId
from exo.shared.types.worker.runners import RunnerId, RunnerStatus
from exo.utils.info_gatherer.info_gatherer import (
MacmonMetrics,
MacThunderboltConnections,
MacThunderboltIdentifiers,
MemoryUsage,
MiscData,
NodeConfig,
NodeNetworkInterfaces,
StaticNodeInformation,
)
def event_apply(event: Event, state: State) -> State:
@@ -47,16 +55,12 @@ def event_apply(event: Event, state: State) -> State:
return apply_instance_created(event, state)
case InstanceDeleted():
return apply_instance_deleted(event, state)
case NodeCreated():
return apply_topology_node_created(event, state)
case NodeTimedOut():
return apply_node_timed_out(event, state)
case NodePerformanceMeasured():
return apply_node_performance_measured(event, state)
case NodeDownloadProgress():
return apply_node_download_progress(event, state)
case NodeMemoryMeasured():
return apply_node_memory_measured(event, state)
case NodeGatheredInfo():
return apply_node_gathered_info(event, state)
case RunnerDeleted():
return apply_runner_deleted(event, state)
case RunnerStatusUpdated():
@@ -188,7 +192,7 @@ def apply_runner_deleted(event: RunnerDeleted, state: State) -> State:
def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
topology = copy.copy(state.topology)
topology = copy.deepcopy(state.topology)
state.topology.remove_node(event.node_id)
node_profiles = {
key: value for key, value in state.node_profiles.items() if key != event.node_id
@@ -196,8 +200,12 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
last_seen = {
key: value for key, value in state.last_seen.items() if key != event.node_id
}
downloads = {
key: value for key, value in state.downloads.items() if key != event.node_id
}
return state.model_copy(
update={
"downloads": downloads,
"topology": topology,
"node_profiles": node_profiles,
"last_seen": last_seen,
@@ -205,103 +213,68 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
)
def apply_node_performance_measured(
event: NodePerformanceMeasured, state: State
) -> State:
new_profiles: Mapping[NodeId, NodePerformanceProfile] = {
**state.node_profiles,
event.node_id: event.node_profile,
}
last_seen: Mapping[NodeId, datetime] = {
**state.last_seen,
event.node_id: datetime.fromisoformat(event.when),
}
state = state.model_copy(update={"node_profiles": new_profiles})
topology = copy.copy(state.topology)
# TODO: NodeCreated
if not topology.contains_node(event.node_id):
topology.add_node(NodeInfo(node_id=event.node_id))
topology.update_node_profile(event.node_id, event.node_profile)
def apply_node_gathered_info(event: NodeGatheredInfo, state: State) -> State:
topology = copy.deepcopy(state.topology)
topology.add_node(event.node_id)
info = event.info
profile = state.node_profiles.get(event.node_id, NodePerformanceProfile())
match info:
case MacmonMetrics():
profile.system = info.system_profile
profile.memory = info.memory
case MemoryUsage():
profile.memory = info
case NodeConfig():
pass
case MiscData():
profile.friendly_name = info.friendly_name
case StaticNodeInformation():
profile.model_id = info.model
profile.chip_id = info.chip
case NodeNetworkInterfaces():
profile.network_interfaces = info.ifaces
case MacThunderboltIdentifiers():
profile.tb_interfaces = info.idents
case MacThunderboltConnections():
conn_map = {
tb_ident.domain_uuid: (nid, tb_ident.rdma_interface)
for nid in state.node_profiles
for tb_ident in state.node_profiles[nid].tb_interfaces
}
as_rdma_conns = [
Connection(
source=event.node_id,
sink=conn_map[tb_conn.sink_uuid][0],
edge=RDMAConnection(
source_rdma_iface=conn_map[tb_conn.source_uuid][1],
sink_rdma_iface=conn_map[tb_conn.sink_uuid][1],
),
)
for tb_conn in info.conns
if tb_conn.source_uuid in conn_map
if tb_conn.sink_uuid in conn_map
]
topology.replace_all_out_rdma_connections(event.node_id, as_rdma_conns)
last_seen = {**state.last_seen, event.node_id: datetime.fromisoformat(event.when)}
new_profiles = {**state.node_profiles, event.node_id: profile}
return state.model_copy(
update={
"node_profiles": new_profiles,
"topology": topology,
"last_seen": last_seen,
"topology": topology,
}
)
def apply_node_memory_measured(event: NodeMemoryMeasured, state: State) -> State:
existing = state.node_profiles.get(event.node_id)
topology = copy.copy(state.topology)
if existing is None:
created = NodePerformanceProfile(
model_id="unknown",
chip_id="unknown",
friendly_name="Unknown",
memory=event.memory,
network_interfaces=[],
system=SystemPerformanceProfile(
# TODO: flops_fp16=0.0,
gpu_usage=0.0,
temp=0.0,
sys_power=0.0,
pcpu_usage=0.0,
ecpu_usage=0.0,
ane_power=0.0,
),
)
created_profiles: Mapping[NodeId, NodePerformanceProfile] = {
**state.node_profiles,
event.node_id: created,
}
last_seen: Mapping[NodeId, datetime] = {
**state.last_seen,
event.node_id: datetime.fromisoformat(event.when),
}
if not topology.contains_node(event.node_id):
topology.add_node(NodeInfo(node_id=event.node_id))
# TODO: NodeCreated
topology.update_node_profile(event.node_id, created)
return state.model_copy(
update={
"node_profiles": created_profiles,
"topology": topology,
"last_seen": last_seen,
}
)
updated = existing.model_copy(update={"memory": event.memory})
updated_profiles: Mapping[NodeId, NodePerformanceProfile] = {
**state.node_profiles,
event.node_id: updated,
}
# TODO: NodeCreated
if not topology.contains_node(event.node_id):
topology.add_node(NodeInfo(node_id=event.node_id))
topology.update_node_profile(event.node_id, updated)
return state.model_copy(
update={"node_profiles": updated_profiles, "topology": topology}
)
def apply_topology_node_created(event: NodeCreated, state: State) -> State:
topology = copy.copy(state.topology)
topology.add_node(NodeInfo(node_id=event.node_id))
return state.model_copy(update={"topology": topology})
def apply_topology_edge_created(event: TopologyEdgeCreated, state: State) -> State:
topology = copy.copy(state.topology)
topology.add_connection(event.edge)
topology = copy.deepcopy(state.topology)
topology.add_connection(event.conn)
return state.model_copy(update={"topology": topology})
def apply_topology_edge_deleted(event: TopologyEdgeDeleted, state: State) -> State:
topology = copy.copy(state.topology)
if not topology.contains_connection(event.edge):
return state
topology.remove_connection(event.edge)
topology = copy.deepcopy(state.topology)
topology.remove_connection(event.conn)
# TODO: Clean up removing the reverse connection
return state.model_copy(update={"topology": topology})

View File

@@ -38,6 +38,7 @@ EXO_TEST_LOG = EXO_CACHE_HOME / "exo_test.log"
# Identity (config)
EXO_NODE_ID_KEYPAIR = EXO_CONFIG_HOME / "node_id.keypair"
EXO_CONFIG_FILE = EXO_CONFIG_HOME / "config.toml"
# libp2p topics for event forwarding
LIBP2P_LOCAL_EVENTS_TOPIC = "worker_events"

View File

@@ -11,9 +11,6 @@ class InterceptLogger(HypercornLogger):
def __init__(self, config: Config):
super().__init__(config)
assert self.error_logger
# TODO: Decide if we want to provide access logs
# assert self.access_logger
# self.access_logger.handlers = [_InterceptHandler()]
self.error_logger.handlers = [_InterceptHandler()]

View File

@@ -43,7 +43,4 @@ def test_apply_two_node_download_progress():
NodeDownloadProgress(download_progress=event2), state
)
# TODO: This test is failing. We should support the following:
# 1. Downloading multiple models concurrently on the same node (one per runner is fine).
# 2. Downloading a model, it completes, then downloading a different model on the same node.
assert new_state.downloads == {NodeId("node-1"): [event1, event2]}

View File

@@ -1,7 +1,7 @@
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.state import State
from exo.shared.types.topology import Connection
from exo.shared.types.topology import Connection, SocketConnection
def test_state_serialization_roundtrip() -> None:
@@ -12,9 +12,11 @@ def test_state_serialization_roundtrip() -> None:
node_b = NodeId("node-b")
connection = Connection(
local_node_id=node_a,
send_back_node_id=node_b,
send_back_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/10001"),
source=node_a,
sink=node_b,
edge=SocketConnection(
sink_multiaddr=Multiaddr(address="/ip4/127.0.0.1/tcp/10001"),
),
)
state = State()
@@ -23,5 +25,11 @@ def test_state_serialization_roundtrip() -> None:
json_repr = state.model_dump_json()
restored_state = State.model_validate_json(json_repr)
assert state.topology.to_snapshot() == restored_state.topology.to_snapshot()
assert (
state.topology.to_snapshot().nodes
== restored_state.topology.to_snapshot().nodes
)
assert set(state.topology.to_snapshot().connections) == set(
restored_state.topology.to_snapshot().connections
)
assert restored_state.model_dump_json() == json_repr

View File

@@ -1,203 +1,227 @@
import contextlib
from collections.abc import Mapping, Sequence
from dataclasses import dataclass, field
from typing import Iterable
import rustworkx as rx
from pydantic import BaseModel, ConfigDict
from exo.shared.types.common import NodeId
from exo.shared.types.profiling import ConnectionProfile, NodePerformanceProfile
from exo.shared.types.topology import Connection, NodeInfo
from exo.shared.types.topology import (
Connection,
Cycle,
RDMAConnection,
SocketConnection,
)
class TopologySnapshot(BaseModel):
nodes: list[NodeInfo]
connections: list[Connection]
nodes: Sequence[NodeId]
connections: Mapping[
NodeId, Mapping[NodeId, Sequence[SocketConnection | RDMAConnection]]
]
model_config = ConfigDict(frozen=True, extra="forbid", strict=True)
model_config = ConfigDict(frozen=True, extra="forbid")
@dataclass
class Topology:
def __init__(self) -> None:
self._graph: rx.PyDiGraph[NodeInfo, Connection] = rx.PyDiGraph()
self._node_id_to_rx_id_map: dict[NodeId, int] = dict()
self._rx_id_to_node_id_map: dict[int, NodeId] = dict()
self._edge_id_to_rx_id_map: dict[Connection, int] = dict()
_graph: rx.PyDiGraph[NodeId, SocketConnection | RDMAConnection] = field(
init=False, default_factory=rx.PyDiGraph
)
_vertex_indices: dict[NodeId, int] = field(init=False, default_factory=dict)
def to_snapshot(self) -> TopologySnapshot:
return TopologySnapshot(
nodes=list(self.list_nodes()),
connections=list(self.list_connections()),
nodes=list(self.list_nodes()), connections=self.map_connections()
)
@classmethod
def from_snapshot(cls, snapshot: TopologySnapshot) -> "Topology":
topology = cls()
for node in snapshot.nodes:
for node_id in snapshot.nodes:
with contextlib.suppress(ValueError):
topology.add_node(node)
topology.add_node(node_id)
for connection in snapshot.connections:
topology.add_connection(connection)
for source in snapshot.connections:
for sink in snapshot.connections[source]:
for edge in snapshot.connections[source][sink]:
topology.add_connection(
Connection(source=source, sink=sink, edge=edge)
)
return topology
def add_node(self, node: NodeInfo) -> None:
if node.node_id in self._node_id_to_rx_id_map:
def add_node(self, node_id: NodeId) -> None:
if node_id in self._vertex_indices:
return
rx_id = self._graph.add_node(node)
self._node_id_to_rx_id_map[node.node_id] = rx_id
self._rx_id_to_node_id_map[rx_id] = node.node_id
rx_id = self._graph.add_node(node_id)
self._vertex_indices[node_id] = rx_id
def node_is_leaf(self, node_id: NodeId) -> bool:
return (
node_id in self._node_id_to_rx_id_map
and len(self._graph.neighbors(self._node_id_to_rx_id_map[node_id])) == 1
node_id in self._vertex_indices
and len(self._graph.neighbors(self._vertex_indices[node_id])) <= 1
)
def neighbours(self, node_id: NodeId) -> list[NodeId]:
return [
self._rx_id_to_node_id_map[rx_id]
for rx_id in self._graph.neighbors(self._node_id_to_rx_id_map[node_id])
self._graph[rx_id]
for rx_id in self._graph.neighbors(self._vertex_indices[node_id])
]
def out_edges(self, node_id: NodeId) -> list[tuple[NodeId, Connection]]:
if node_id not in self._node_id_to_rx_id_map:
def out_edges(self, node_id: NodeId) -> Iterable[Connection]:
if node_id not in self._vertex_indices:
return []
return [
(self._rx_id_to_node_id_map[nid], conn)
for _, nid, conn in self._graph.out_edges(
self._node_id_to_rx_id_map[node_id]
return (
Connection(source=self._graph[source], sink=self._graph[sink], edge=edge)
for source, sink, edge in self._graph.out_edges(
self._vertex_indices[node_id]
)
]
)
def contains_node(self, node_id: NodeId) -> bool:
return node_id in self._node_id_to_rx_id_map
return node_id in self._vertex_indices
def contains_connection(self, connection: Connection) -> bool:
return connection in self._edge_id_to_rx_id_map
def add_connection(
self,
connection: Connection,
) -> None:
if connection.local_node_id not in self._node_id_to_rx_id_map:
self.add_node(NodeInfo(node_id=connection.local_node_id))
if connection.send_back_node_id not in self._node_id_to_rx_id_map:
self.add_node(NodeInfo(node_id=connection.send_back_node_id))
if connection in self._edge_id_to_rx_id_map:
def add_connection(self, conn: Connection) -> None:
source, sink, edge = conn.source, conn.sink, conn.edge
del conn
if edge in self.get_all_connections_between(source, sink):
return
src_id = self._node_id_to_rx_id_map[connection.local_node_id]
sink_id = self._node_id_to_rx_id_map[connection.send_back_node_id]
if source not in self._vertex_indices:
self.add_node(source)
if sink not in self._vertex_indices:
self.add_node(sink)
rx_id = self._graph.add_edge(src_id, sink_id, connection)
self._edge_id_to_rx_id_map[connection] = rx_id
src_id = self._vertex_indices[source]
sink_id = self._vertex_indices[sink]
def list_nodes(self) -> Iterable[NodeInfo]:
return (self._graph[i] for i in self._graph.node_indices())
_ = self._graph.add_edge(src_id, sink_id, edge)
def list_connections(self) -> Iterable[Connection]:
return (connection for _, _, connection in self._graph.weighted_edge_list())
def get_all_connections_between(
self, source: NodeId, sink: NodeId
) -> Iterable[SocketConnection | RDMAConnection]:
if source not in self._vertex_indices:
return []
if sink not in self._vertex_indices:
return []
def get_node_profile(self, node_id: NodeId) -> NodePerformanceProfile | None:
src_id = self._vertex_indices[source]
sink_id = self._vertex_indices[sink]
try:
rx_idx = self._node_id_to_rx_id_map[node_id]
return self._graph.get_node_data(rx_idx).node_profile
except KeyError:
return None
return self._graph.get_all_edge_data(src_id, sink_id)
except rx.NoEdgeBetweenNodes:
return []
def update_node_profile(
self, node_id: NodeId, node_profile: NodePerformanceProfile
) -> None:
rx_idx = self._node_id_to_rx_id_map[node_id]
self._graph[rx_idx].node_profile = node_profile
def list_nodes(self) -> Iterable[NodeId]:
return self._graph.nodes()
def update_connection_profile(self, connection: Connection) -> None:
rx_idx = self._edge_id_to_rx_id_map[connection]
self._graph.update_edge_by_index(rx_idx, connection)
def map_connections(
self,
) -> Mapping[NodeId, Mapping[NodeId, Sequence[SocketConnection | RDMAConnection]]]:
base: dict[NodeId, dict[NodeId, list[SocketConnection | RDMAConnection]]] = {}
for src_id, sink_id, connection in self._graph.weighted_edge_list():
source = self._graph[src_id]
sink = self._graph[sink_id]
if source not in base:
base[source] = {}
if sink not in base[source]:
base[source][sink] = []
base[source][sink].append(connection)
return base
def get_connection_profile(
self, connection: Connection
) -> ConnectionProfile | None:
try:
rx_idx = self._edge_id_to_rx_id_map[connection]
return self._graph.get_edge_data_by_index(rx_idx).connection_profile
except KeyError:
return None
def list_connections(
self,
) -> Iterable[Connection]:
return (
(
Connection(
source=self._graph[src_id],
sink=self._graph[sink_id],
edge=connection,
)
)
for src_id, sink_id, connection in self._graph.weighted_edge_list()
)
def remove_node(self, node_id: NodeId) -> None:
if node_id not in self._node_id_to_rx_id_map:
if node_id not in self._vertex_indices:
return
for connection in self.list_connections():
if (
connection.local_node_id == node_id
or connection.send_back_node_id == node_id
):
self.remove_connection(connection)
rx_idx = self._node_id_to_rx_id_map[node_id]
rx_idx = self._vertex_indices[node_id]
self._graph.remove_node(rx_idx)
del self._node_id_to_rx_id_map[node_id]
del self._rx_id_to_node_id_map[rx_idx]
del self._vertex_indices[node_id]
def remove_connection(self, connection: Connection) -> None:
if connection not in self._edge_id_to_rx_id_map:
def replace_all_out_rdma_connections(
self, source: NodeId, new_connections: Sequence[Connection]
) -> None:
for conn_idx in self._graph.out_edge_indices(self._vertex_indices[source]):
if isinstance(self._graph.get_edge_data_by_index(conn_idx), RDMAConnection):
self._graph.remove_edge_from_index(conn_idx)
for conn in new_connections:
self.add_connection(conn)
def remove_connection(self, conn: Connection) -> None:
if (
conn.source not in self._vertex_indices
or conn.sink not in self._vertex_indices
):
return
rx_idx = self._edge_id_to_rx_id_map[connection]
self._graph.remove_edge_from_index(rx_idx)
del self._edge_id_to_rx_id_map[connection]
for conn_idx in self._graph.edge_indices_from_endpoints(
self._vertex_indices[conn.source], self._vertex_indices[conn.sink]
):
if self._graph.get_edge_data_by_index(conn_idx) == conn.edge:
self._graph.remove_edge_from_index(conn_idx)
def get_cycles(self) -> list[Cycle]:
"""Get simple cycles in the graph, including singleton cycles"""
def get_cycles(self) -> list[list[NodeInfo]]:
cycle_idxs = rx.simple_cycles(self._graph)
cycles: list[list[NodeInfo]] = []
cycles: list[Cycle] = []
for cycle_idx in cycle_idxs:
cycle = [self._graph[idx] for idx in cycle_idx]
cycle = Cycle(node_ids=[self._graph[idx] for idx in cycle_idx])
cycles.append(cycle)
for node_id in self.list_nodes():
cycles.append(Cycle(node_ids=[node_id]))
return cycles
def get_cycles_tb(self) -> list[list[NodeInfo]]:
def get_cycles_tb(self) -> list[Cycle]:
tb_edges = [
(u, v, conn)
for u, v, conn in self._graph.weighted_edge_list()
if conn.is_thunderbolt()
]
tb_graph: rx.PyDiGraph[NodeInfo, Connection] = rx.PyDiGraph()
tb_graph: rx.PyDiGraph[NodeId, SocketConnection] = rx.PyDiGraph()
tb_graph.add_nodes_from(self._graph.nodes())
for u, v, conn in tb_edges:
tb_graph.add_edge(u, v, conn)
if isinstance(conn, SocketConnection):
tb_graph.add_edge(u, v, conn)
cycle_idxs = rx.simple_cycles(tb_graph)
cycles: list[list[NodeInfo]] = []
cycles: list[Cycle] = []
for cycle_idx in cycle_idxs:
cycle = [tb_graph[idx] for idx in cycle_idx]
cycle = Cycle(node_ids=[tb_graph[idx] for idx in cycle_idx])
cycles.append(cycle)
return cycles
def get_subgraph_from_nodes(self, nodes: list[NodeInfo]) -> "Topology":
node_idxs = [node.node_id for node in nodes]
rx_idxs = [self._node_id_to_rx_id_map[idx] for idx in node_idxs]
def get_subgraph_from_nodes(self, node_ids: list[NodeId]) -> "Topology":
topology = Topology()
for rx_idx in rx_idxs:
topology.add_node(self._graph[rx_idx])
for node_id in node_ids:
topology.add_node(node_id)
for connection in self.list_connections():
if (
connection.local_node_id in node_idxs
and connection.send_back_node_id in node_idxs
):
if connection.source in node_ids and connection.sink in node_ids:
topology.add_connection(connection)
return topology
def is_thunderbolt_cycle(self, cycle: list[NodeInfo]) -> bool:
node_idxs = [node.node_id for node in cycle]
rx_idxs = [self._node_id_to_rx_id_map[idx] for idx in node_idxs]
def is_thunderbolt_cycle(self, cycle: Cycle) -> bool:
node_idxs = [node for node in cycle]
rx_idxs = [self._vertex_indices[idx] for idx in node_idxs]
for rid in rx_idxs:
for neighbor_rid in self._graph.neighbors(rid):
if neighbor_rid not in rx_idxs:

View File

@@ -11,10 +11,21 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
FinishReason = Literal[
"stop", "length", "tool_calls", "content_filter", "function_call"
"stop", "length", "tool_calls", "content_filter", "function_call", "error"
]
class ErrorInfo(BaseModel):
message: str
type: str
param: str | None = None
code: int
class ErrorResponse(BaseModel):
error: ErrorInfo
class ModelListModel(BaseModel):
id: str
object: str = "model"

View File

@@ -22,6 +22,7 @@ class TokenChunk(BaseChunk):
token_id: int
finish_reason: FinishReason | None = None
stats: GenerationStats | None = None
error_message: str | None = None
class ImageChunk(BaseChunk):

View File

@@ -2,14 +2,14 @@ from datetime import datetime
from pydantic import Field
from exo.shared.topology import Connection, NodePerformanceProfile
from exo.shared.topology import Connection
from exo.shared.types.chunks import GenerationChunk
from exo.shared.types.common import CommandId, Id, NodeId, SessionId
from exo.shared.types.profiling import MemoryPerformanceProfile
from exo.shared.types.tasks import Task, TaskId, TaskStatus
from exo.shared.types.worker.downloads import DownloadProgress
from exo.shared.types.worker.instances import Instance, InstanceId
from exo.shared.types.worker.runners import RunnerId, RunnerStatus
from exo.utils.info_gatherer.info_gatherer import GatheredInfo
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
@@ -76,25 +76,15 @@ class RunnerDeleted(BaseEvent):
runner_id: RunnerId
# TODO
class NodeCreated(BaseEvent):
node_id: NodeId
class NodeTimedOut(BaseEvent):
node_id: NodeId
class NodePerformanceMeasured(BaseEvent):
# TODO: bikeshed this name
class NodeGatheredInfo(BaseEvent):
node_id: NodeId
when: str # this is a manually cast datetime overrode by the master when the event is indexed, rather than the local time on the device
node_profile: NodePerformanceProfile
class NodeMemoryMeasured(BaseEvent):
node_id: NodeId
when: str # this is a manually cast datetime overrode by the master when the event is indexed, rather than the local time on the device
memory: MemoryPerformanceProfile
info: GatheredInfo
class NodeDownloadProgress(BaseEvent):
@@ -107,11 +97,11 @@ class ChunkGenerated(BaseEvent):
class TopologyEdgeCreated(BaseEvent):
edge: Connection
conn: Connection
class TopologyEdgeDeleted(BaseEvent):
edge: Connection
conn: Connection
Event = (
@@ -125,10 +115,8 @@ Event = (
| InstanceDeleted
| RunnerStatusUpdated
| RunnerDeleted
| NodeCreated
| NodeTimedOut
| NodePerformanceMeasured
| NodeMemoryMeasured
| NodeGatheredInfo
| NodeDownloadProgress
| ChunkGenerated
| TopologyEdgeCreated

View File

@@ -1,10 +1,11 @@
import re
from typing import ClassVar
from pydantic import BaseModel, computed_field, field_validator
from pydantic import BaseModel, ConfigDict, computed_field, field_validator
class Multiaddr(BaseModel):
model_config = ConfigDict(frozen=True)
address: str
PATTERNS: ClassVar[list[str]] = [

View File

@@ -1,12 +1,14 @@
from collections.abc import Sequence
from typing import Self
import psutil
from exo.shared.types.memory import Memory
from exo.shared.types.thunderbolt import ThunderboltIdentifier
from exo.utils.pydantic_ext import CamelCaseModel
class MemoryPerformanceProfile(CamelCaseModel):
class MemoryUsage(CamelCaseModel):
ram_total: Memory
ram_available: Memory
swap_total: Memory
@@ -44,7 +46,6 @@ class SystemPerformanceProfile(CamelCaseModel):
sys_power: float = 0.0
pcpu_usage: float = 0.0
ecpu_usage: float = 0.0
ane_power: float = 0.0
class NetworkInterfaceInfo(CamelCaseModel):
@@ -53,15 +54,12 @@ class NetworkInterfaceInfo(CamelCaseModel):
class NodePerformanceProfile(CamelCaseModel):
model_id: str
chip_id: str
friendly_name: str
memory: MemoryPerformanceProfile
network_interfaces: list[NetworkInterfaceInfo] = []
system: SystemPerformanceProfile
class ConnectionProfile(CamelCaseModel):
throughput: float
latency: float
jitter: float
model_id: str = "Unknown"
chip_id: str = "Unknown"
friendly_name: str = "Unknown"
memory: MemoryUsage = MemoryUsage.from_bytes(
ram_total=0, ram_available=0, swap_total=0, swap_available=0
)
network_interfaces: Sequence[NetworkInterfaceInfo] = []
tb_interfaces: Sequence[ThunderboltIdentifier] = []
system: SystemPerformanceProfile = SystemPerformanceProfile()

View File

@@ -0,0 +1,81 @@
import anyio
from pydantic import BaseModel, Field
from exo.utils.pydantic_ext import CamelCaseModel
class ThunderboltConnection(CamelCaseModel):
source_uuid: str
sink_uuid: str
class ThunderboltIdentifier(CamelCaseModel):
rdma_interface: str
domain_uuid: str
## Intentionally minimal, only collecting data we care about - there's a lot more
class _ReceptacleTag(BaseModel, extra="ignore"):
receptacle_id_key: str | None = None
class _ConnectivityItem(BaseModel, extra="ignore"):
domain_uuid_key: str | None = None
class ThunderboltConnectivityData(BaseModel, extra="ignore"):
domain_uuid_key: str | None = None
items: list[_ConnectivityItem] | None = Field(None, alias="_items")
receptacle_1_tag: _ReceptacleTag | None = None
def ident(self, ifaces: dict[str, str]) -> ThunderboltIdentifier | None:
if (
self.domain_uuid_key is None
or self.receptacle_1_tag is None
or self.receptacle_1_tag.receptacle_id_key is None
):
return
tag = f"Thunderbolt {self.receptacle_1_tag.receptacle_id_key}"
assert tag in ifaces # doesn't need to be an assertion but im confident
# if tag not in ifaces: return None
iface = f"rdma_{ifaces[tag]}"
return ThunderboltIdentifier(
rdma_interface=iface, domain_uuid=self.domain_uuid_key
)
def conn(self) -> ThunderboltConnection | None:
if self.domain_uuid_key is None or self.items is None:
return
sink_key = next(
(
item.domain_uuid_key
for item in self.items
if item.domain_uuid_key is not None
),
None,
)
if sink_key is None:
return None
return ThunderboltConnection(
source_uuid=self.domain_uuid_key, sink_uuid=sink_key
)
class ThunderboltConnectivity(BaseModel, extra="ignore"):
SPThunderboltDataType: list[ThunderboltConnectivityData] = []
@classmethod
async def gather(cls) -> list[ThunderboltConnectivityData] | None:
proc = await anyio.run_process(
["system_profiler", "SPThunderboltDataType", "-json"], check=False
)
if proc.returncode != 0:
return None
# Saving you from PascalCase while avoiding too much pydantic
return ThunderboltConnectivity.model_validate_json(
proc.stdout
).SPThunderboltDataType

View File

@@ -1,37 +1,41 @@
from collections.abc import Iterator
from dataclasses import dataclass
from exo.shared.types.common import NodeId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import ConnectionProfile, NodePerformanceProfile
from exo.utils.pydantic_ext import CamelCaseModel
from exo.utils.pydantic_ext import FrozenModel
class NodeInfo(CamelCaseModel):
node_id: NodeId
node_profile: NodePerformanceProfile | None = None
@dataclass(frozen=True)
class Cycle:
node_ids: list[NodeId]
def __len__(self) -> int:
return self.node_ids.__len__()
def __iter__(self) -> Iterator[NodeId]:
return self.node_ids.__iter__()
class Connection(CamelCaseModel):
local_node_id: NodeId
send_back_node_id: NodeId
send_back_multiaddr: Multiaddr
connection_profile: ConnectionProfile | None = None
def __hash__(self) -> int:
return hash(
(
self.local_node_id,
self.send_back_node_id,
self.send_back_multiaddr.address,
)
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, Connection):
raise ValueError("Cannot compare Connection with non-Connection")
return (
self.local_node_id == other.local_node_id
and self.send_back_node_id == other.send_back_node_id
and self.send_back_multiaddr == other.send_back_multiaddr
)
class RDMAConnection(FrozenModel):
source_rdma_iface: str
sink_rdma_iface: str
def is_thunderbolt(self) -> bool:
return str(self.send_back_multiaddr.ipv4_address).startswith("169.254")
return True
class SocketConnection(FrozenModel):
sink_multiaddr: Multiaddr
def __hash__(self):
return hash(self.sink_multiaddr.ip_address)
def is_thunderbolt(self) -> bool:
return str(self.sink_multiaddr.ipv4_address).startswith("169.254")
class Connection(FrozenModel):
source: NodeId
sink: NodeId
edge: RDMAConnection | SocketConnection

View File

@@ -30,7 +30,7 @@ class MlxRingInstance(BaseInstance):
class MlxJacclInstance(BaseInstance):
ibv_devices: list[list[str | None]]
jaccl_devices: list[list[str | None]]
jaccl_coordinators: dict[NodeId, str]

View File

@@ -1,43 +0,0 @@
import asyncio
from abc import ABC, abstractmethod
from collections.abc import Coroutine
from typing import Callable
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
SystemPerformanceProfile,
)
class ResourceCollector(ABC):
@abstractmethod
async def collect(self) -> SystemPerformanceProfile | MemoryPerformanceProfile: ...
class SystemResourceCollector(ResourceCollector):
async def collect(self) -> SystemPerformanceProfile: ...
class MemoryResourceCollector(ResourceCollector):
async def collect(self) -> MemoryPerformanceProfile: ...
class ResourceMonitor:
data_collectors: list[ResourceCollector]
effect_handlers: set[
Callable[[SystemPerformanceProfile | MemoryPerformanceProfile], None]
]
async def _collect(
self,
) -> list[SystemPerformanceProfile | MemoryPerformanceProfile]:
tasks: list[
Coroutine[None, None, SystemPerformanceProfile | MemoryPerformanceProfile]
] = [collector.collect() for collector in self.data_collectors]
return await asyncio.gather(*tasks)
async def collect(self) -> None:
profiles = await self._collect()
for profile in profiles:
for effect_handler in self.effect_handlers:
effect_handler(profile)

View File

@@ -0,0 +1,235 @@
import os
import shutil
import sys
import tomllib
from collections.abc import Sequence
from dataclasses import dataclass, field
from subprocess import CalledProcessError
from typing import Self, cast
import anyio
from anyio import create_task_group, open_process
from anyio.abc import TaskGroup
from anyio.streams.buffered import BufferedByteReceiveStream
from anyio.streams.text import TextReceiveStream
from loguru import logger
from exo.shared.constants import EXO_CONFIG_FILE
from exo.shared.types.memory import Memory
from exo.shared.types.profiling import (
MemoryUsage,
NetworkInterfaceInfo,
)
from exo.shared.types.thunderbolt import (
ThunderboltConnection,
ThunderboltConnectivity,
ThunderboltIdentifier,
)
from exo.utils.channels import Sender
from exo.utils.pydantic_ext import TaggedModel
from .macmon import MacmonMetrics
from .system_info import get_friendly_name, get_model_and_chip, get_network_interfaces
IS_DARWIN = sys.platform == "darwin"
class StaticNodeInformation(TaggedModel):
"""Node information that should NEVER change, to be gathered once at startup"""
model: str
chip: str
@classmethod
async def gather(cls) -> Self:
model, chip = await get_model_and_chip()
return cls(model=model, chip=chip)
class NodeNetworkInterfaces(TaggedModel):
ifaces: Sequence[NetworkInterfaceInfo]
class MacThunderboltIdentifiers(TaggedModel):
idents: Sequence[ThunderboltIdentifier]
class MacThunderboltConnections(TaggedModel):
conns: Sequence[ThunderboltConnection]
class NodeConfig(TaggedModel):
"""Node configuration from EXO_CONFIG_FILE, reloaded from the file only at startup. Other changes should come in through the API and propagate from there"""
@classmethod
async def gather(cls) -> Self | None:
cfg_file = anyio.Path(EXO_CONFIG_FILE)
await cfg_file.touch(exist_ok=True)
async with await cfg_file.open("rb") as f:
try:
contents = (await f.read()).decode("utf-8")
data = tomllib.loads(contents)
return cls.model_validate(data)
except (tomllib.TOMLDecodeError, UnicodeDecodeError):
logger.warning("Invalid config file, skipping...")
return None
class MiscData(TaggedModel):
"""Node information that may slowly change that doesn't fall into the other categories"""
friendly_name: str
@classmethod
async def gather(cls) -> Self:
return cls(friendly_name=await get_friendly_name())
async def _gather_iface_map() -> dict[str, str] | None:
proc = await anyio.run_process(
["networksetup", "-listallhardwareports"], check=False
)
if proc.returncode != 0:
return None
ports: dict[str, str] = {}
port = ""
for line in proc.stdout.decode("utf-8").split("\n"):
if line.startswith("Hardware Port:"):
port = line.split(": ")[1]
elif line.startswith("Device:"):
ports[port] = line.split(": ")[1]
port = ""
if "" in ports:
del ports[""]
return ports
GatheredInfo = (
MacmonMetrics
| MemoryUsage
| NodeNetworkInterfaces
| MacThunderboltIdentifiers
| MacThunderboltConnections
| NodeConfig
| MiscData
| StaticNodeInformation
)
@dataclass
class InfoGatherer:
info_sender: Sender[GatheredInfo]
interface_watcher_interval: float | None = 10
misc_poll_interval: float | None = 60
system_profiler_interval: float | None = 5 if IS_DARWIN else None
memory_poll_rate: float | None = None if IS_DARWIN else 1
macmon_interval: float | None = 1 if IS_DARWIN else None
_tg: TaskGroup = field(init=False, default_factory=create_task_group)
async def run(self):
async with self._tg as tg:
if IS_DARWIN:
if (macmon_path := shutil.which("macmon")) is not None:
tg.start_soon(self._monitor_macmon, macmon_path)
tg.start_soon(self._monitor_system_profiler_thunderbolt_data)
tg.start_soon(self._watch_system_info)
tg.start_soon(self._monitor_memory_usage)
tg.start_soon(self._monitor_misc)
nc = await NodeConfig.gather()
if nc is not None:
await self.info_sender.send(nc)
sni = await StaticNodeInformation.gather()
await self.info_sender.send(sni)
def shutdown(self):
self._tg.cancel_scope.cancel()
async def _monitor_misc(self):
if self.misc_poll_interval is None:
return
prev = await MiscData.gather()
await self.info_sender.send(prev)
while True:
curr = await MiscData.gather()
if prev != curr:
prev = curr
await self.info_sender.send(curr)
await anyio.sleep(self.misc_poll_interval)
async def _monitor_system_profiler_thunderbolt_data(self):
if self.system_profiler_interval is None:
return
iface_map = await _gather_iface_map()
if iface_map is None:
return
old_idents = []
while True:
data = await ThunderboltConnectivity.gather()
assert data is not None
idents = [it for i in data if (it := i.ident(iface_map)) is not None]
if idents != old_idents:
await self.info_sender.send(MacThunderboltIdentifiers(idents=idents))
old_idents = idents
conns = [it for i in data if (it := i.conn()) is not None]
await self.info_sender.send(MacThunderboltConnections(conns=conns))
await anyio.sleep(self.system_profiler_interval)
async def _monitor_memory_usage(self):
override_memory_env = os.getenv("OVERRIDE_MEMORY_MB")
override_memory: int | None = (
Memory.from_mb(int(override_memory_env)).in_bytes
if override_memory_env
else None
)
if self.memory_poll_rate is None:
return
while True:
await self.info_sender.send(
MemoryUsage.from_psutil(override_memory=override_memory)
)
await anyio.sleep(self.memory_poll_rate)
async def _watch_system_info(self):
if self.interface_watcher_interval is None:
return
old_nics = []
while True:
nics = get_network_interfaces()
if nics != old_nics:
old_nics = nics
await self.info_sender.send(NodeNetworkInterfaces(ifaces=nics))
await anyio.sleep(self.interface_watcher_interval)
async def _monitor_macmon(self, macmon_path: str):
if self.macmon_interval is None:
return
# macmon pipe --interval [interval in ms]
try:
async with await open_process(
[macmon_path, "pipe", "--interval", str(self.macmon_interval * 1000)]
) as p:
if not p.stdout:
logger.critical("MacMon closed stdout")
return
async for text in TextReceiveStream(
BufferedByteReceiveStream(p.stdout)
):
await self.info_sender.send(MacmonMetrics.from_raw_json(text))
except CalledProcessError as e:
stderr_msg = "no stderr"
stderr_output = cast(bytes | str | None, e.stderr)
if stderr_output is not None:
stderr_msg = (
stderr_output.decode()
if isinstance(stderr_output, bytes)
else str(stderr_output)
)
logger.warning(
f"MacMon failed with return code {e.returncode}: {stderr_msg}"
)

View File

@@ -0,0 +1,70 @@
from typing import Self
from pydantic import BaseModel
from exo.shared.types.profiling import MemoryUsage, SystemPerformanceProfile
from exo.utils.pydantic_ext import TaggedModel
class _TempMetrics(BaseModel, extra="ignore"):
"""Temperature-related metrics returned by macmon."""
cpu_temp_avg: float
gpu_temp_avg: float
class _MemoryMetrics(BaseModel, extra="ignore"):
"""Memory-related metrics returned by macmon."""
ram_total: int
ram_usage: int
swap_total: int
swap_usage: int
class RawMacmonMetrics(BaseModel, extra="ignore"):
"""Complete set of metrics returned by macmon.
Unknown fields are ignored for forward-compatibility.
"""
timestamp: str # ignored
temp: _TempMetrics
memory: _MemoryMetrics
ecpu_usage: tuple[int, float] # freq mhz, usage %
pcpu_usage: tuple[int, float] # freq mhz, usage %
gpu_usage: tuple[int, float] # freq mhz, usage %
all_power: float
ane_power: float
cpu_power: float
gpu_power: float
gpu_ram_power: float
ram_power: float
sys_power: float
class MacmonMetrics(TaggedModel):
system_profile: SystemPerformanceProfile
memory: MemoryUsage
@classmethod
def from_raw(cls, raw: RawMacmonMetrics) -> Self:
return cls(
system_profile=SystemPerformanceProfile(
gpu_usage=raw.gpu_usage[1],
temp=raw.temp.gpu_temp_avg,
sys_power=raw.sys_power,
pcpu_usage=raw.pcpu_usage[1],
ecpu_usage=raw.ecpu_usage[1],
),
memory=MemoryUsage.from_bytes(
ram_total=raw.memory.ram_total,
ram_available=(raw.memory.ram_total - raw.memory.ram_usage),
swap_total=raw.memory.swap_total,
swap_available=(raw.memory.swap_total - raw.memory.swap_usage),
),
)
@classmethod
def from_raw_json(cls, json: str) -> Self:
return cls.from_raw(RawMacmonMetrics.model_validate_json(json))

View File

@@ -1,3 +1,5 @@
from collections.abc import Mapping
import anyio
import httpx
from anyio import create_task_group
@@ -5,6 +7,7 @@ from loguru import logger
from exo.shared.topology import Topology
from exo.shared.types.common import NodeId
from exo.shared.types.profiling import NodePerformanceProfile
REACHABILITY_ATTEMPTS = 3
@@ -18,8 +21,9 @@ async def check_reachability(
"""Check if a node is reachable at the given IP and verify its identity."""
if ":" in target_ip:
# TODO: use real IpAddress types
target_ip = f"[{target_ip}]"
url = f"http://{target_ip}:52415/node_id"
url = f"http://[{target_ip}]:52415/node_id"
else:
url = f"http://{target_ip}:52415/node_id"
remote_node_id = None
last_error = None
@@ -73,7 +77,9 @@ async def check_reachability(
async def check_reachable(
topology: Topology, self_node_id: NodeId
topology: Topology,
self_node_id: NodeId,
node_profiles: Mapping[NodeId, NodePerformanceProfile],
) -> dict[NodeId, set[str]]:
"""Check which nodes are reachable and return their IPs."""
@@ -91,16 +97,16 @@ async def check_reachable(
httpx.AsyncClient(timeout=timeout, limits=limits) as client,
create_task_group() as tg,
):
for node in topology.list_nodes():
if not node.node_profile:
for node_id in topology.list_nodes():
if node_id not in node_profiles:
continue
if node.node_id == self_node_id:
if node_id == self_node_id:
continue
for iface in node.node_profile.network_interfaces:
for iface in node_profiles[node_id].network_interfaces:
tg.start_soon(
check_reachability,
iface.ip_address,
node.node_id,
node_id,
reachable,
client,
)

View File

@@ -0,0 +1,24 @@
import sys
import pytest
from exo.shared.types.thunderbolt import (
ThunderboltConnectivity,
)
from exo.utils.info_gatherer.info_gatherer import (
_gather_iface_map, # pyright: ignore[reportPrivateUsage]
)
@pytest.mark.anyio
@pytest.mark.skipif(
sys.platform != "darwin", reason="Thunderbolt info can only be gathered on macos"
)
async def test_tb_parsing():
data = await ThunderboltConnectivity.gather()
ifaces = await _gather_iface_map()
assert ifaces
assert data
for datum in data:
datum.ident(ifaces)
datum.conn()

View File

@@ -19,11 +19,20 @@ class CamelCaseModel(BaseModel):
alias_generator=to_camel,
validate_by_name=True,
extra="forbid",
# I want to reenable this ASAP, but it's causing an issue with TaskStatus
strict=True,
)
class FrozenModel(BaseModel):
model_config = ConfigDict(
alias_generator=to_camel,
validate_by_name=True,
extra="forbid",
strict=True,
frozen=True,
)
class TaggedModel(CamelCaseModel):
@model_serializer(mode="wrap")
def _serialize(self, handler: SerializerFunctionWrapHandler):

View File

@@ -28,9 +28,8 @@ def bar(send: MpSender[str]):
send.close()
# not async, just want the fail_after
@pytest.mark.anyio
async def test_channel_setup():
async def test_channel_ipc():
with fail_after(0.5):
s, r = mp_channel[str]()
p1 = mp.Process(target=foo, args=(r,))

View File

@@ -5,6 +5,7 @@ import shutil
import ssl
import time
import traceback
from collections.abc import Awaitable
from datetime import timedelta
from pathlib import Path
from typing import Callable, Literal
@@ -245,12 +246,15 @@ def create_http_session(
sock_read_timeout = 1800
sock_connect_timeout = 60
ssl_context = ssl.create_default_context(cafile=certifi.where())
ssl_context = ssl.create_default_context(
cafile=os.getenv("SSL_CERT_FILE") or certifi.where()
)
connector = aiohttp.TCPConnector(ssl=ssl_context)
return aiohttp.ClientSession(
auto_decompress=auto_decompress,
connector=connector,
proxy=os.getenv("HTTPS_PROXY") or os.getenv("HTTP_PROXY") or None,
timeout=aiohttp.ClientTimeout(
total=total_timeout,
connect=connect_timeout,
@@ -522,7 +526,7 @@ async def download_progress_for_local_path(
async def download_shard(
shard: ShardMetadata,
on_progress: Callable[[ShardMetadata, RepoDownloadProgress], None],
on_progress: Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]],
max_parallel_downloads: int = 8,
skip_download: bool = False,
allow_patterns: list[str] | None = None,
@@ -563,9 +567,9 @@ async def download_shard(
)
file_progress: dict[str, RepoFileDownloadProgress] = {}
def on_progress_wrapper(
async def on_progress_wrapper(
file: FileListEntry, curr_bytes: int, total_bytes: int, is_renamed: bool
):
) -> None:
start_time = (
file_progress[file.path].start_time
if file.path in file_progress
@@ -601,7 +605,7 @@ async def download_shard(
else "in_progress",
start_time=start_time,
)
on_progress(
await on_progress(
shard,
calculate_repo_progress(
shard,
@@ -629,14 +633,21 @@ async def download_shard(
semaphore = asyncio.Semaphore(max_parallel_downloads)
async def download_with_semaphore(file: FileListEntry):
def schedule_progress(
file: FileListEntry, curr_bytes: int, total_bytes: int, is_renamed: bool
) -> None:
asyncio.create_task(
on_progress_wrapper(file, curr_bytes, total_bytes, is_renamed)
)
async def download_with_semaphore(file: FileListEntry) -> None:
async with semaphore:
await download_file_with_retry(
str(shard.model_meta.model_id),
revision,
file.path,
target_dir,
lambda curr_bytes, total_bytes, is_renamed: on_progress_wrapper(
lambda curr_bytes, total_bytes, is_renamed: schedule_progress(
file, curr_bytes, total_bytes, is_renamed
),
)
@@ -648,7 +659,7 @@ async def download_shard(
final_repo_progress = calculate_repo_progress(
shard, str(shard.model_meta.model_id), revision, file_progress, all_start_time
)
on_progress(shard, final_repo_progress)
await on_progress(shard, final_repo_progress)
if gguf := next((f for f in filtered_file_list if f.path.endswith(".gguf")), None):
return target_dir / gguf.path, final_repo_progress
else:

View File

@@ -1,4 +1,5 @@
import asyncio
from collections.abc import Awaitable
from pathlib import Path
from typing import AsyncIterator, Callable
@@ -48,7 +49,8 @@ class SingletonShardDownloader(ShardDownloader):
self.active_downloads: dict[ShardMetadata, asyncio.Task[Path]] = {}
def on_progress(
self, callback: Callable[[ShardMetadata, RepoDownloadProgress], None]
self,
callback: Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]],
) -> None:
self.shard_downloader.on_progress(callback)
@@ -83,7 +85,8 @@ class CachedShardDownloader(ShardDownloader):
self.cache: dict[tuple[str, ShardMetadata], Path] = {}
def on_progress(
self, callback: Callable[[ShardMetadata, RepoDownloadProgress], None]
self,
callback: Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]],
) -> None:
self.shard_downloader.on_progress(callback)
@@ -113,17 +116,18 @@ class ResumableShardDownloader(ShardDownloader):
def __init__(self, max_parallel_downloads: int = 8):
self.max_parallel_downloads = max_parallel_downloads
self.on_progress_callbacks: list[
Callable[[ShardMetadata, RepoDownloadProgress], None]
Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]]
] = []
def on_progress_wrapper(
async def on_progress_wrapper(
self, shard: ShardMetadata, progress: RepoDownloadProgress
) -> None:
for callback in self.on_progress_callbacks:
callback(shard, progress)
await callback(shard, progress)
def on_progress(
self, callback: Callable[[ShardMetadata, RepoDownloadProgress], None]
self,
callback: Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]],
) -> None:
self.on_progress_callbacks.append(callback)

View File

@@ -1,4 +1,5 @@
from abc import ABC, abstractmethod
from collections.abc import Awaitable
from copy import copy
from datetime import timedelta
from pathlib import Path
@@ -31,7 +32,8 @@ class ShardDownloader(ABC):
@abstractmethod
def on_progress(
self, callback: Callable[[ShardMetadata, RepoDownloadProgress], None]
self,
callback: Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]],
) -> None:
pass
@@ -59,7 +61,8 @@ class NoopShardDownloader(ShardDownloader):
return Path("/tmp/noop_shard")
def on_progress(
self, callback: Callable[[ShardMetadata, RepoDownloadProgress], None]
self,
callback: Callable[[ShardMetadata, RepoDownloadProgress], Awaitable[None]],
) -> None:
pass

View File

@@ -1,7 +1,10 @@
import os
import threading
from abc import ABC, abstractmethod
from collections.abc import Callable
from functools import partial
from inspect import signature
from typing import TYPE_CHECKING, Callable, Protocol, cast
from typing import TYPE_CHECKING, Any, Protocol, cast
import mlx.core as mx
import mlx.nn as nn
@@ -29,6 +32,40 @@ from mlx_lm.models.qwen3_next import Qwen3NextSparseMoeBlock
from exo.shared.logging import logger
from exo.shared.types.worker.shards import PipelineShardMetadata
TimeoutCallback = Callable[[], None]
def eval_with_timeout(
mlx_item: Any, # pyright: ignore[reportAny]
timeout_seconds: float = 60.0,
on_timeout: TimeoutCallback | None = None,
) -> None:
"""Evaluate MLX item with a hard timeout.
If on_timeout callback is provided, it will be called before terminating
the process. This allows the runner to send a failure event before exit.
"""
completed = threading.Event()
def watchdog() -> None:
if not completed.wait(timeout=timeout_seconds):
logger.error(
f"mlx_item evaluation timed out after {timeout_seconds:.0f}s. "
"This may indicate an issue with FAST_SYNCH and tensor parallel sharding. "
"Terminating process."
)
if on_timeout is not None:
on_timeout()
os._exit(1)
watchdog_thread = threading.Thread(target=watchdog, daemon=True)
watchdog_thread.start()
try:
mx.eval(mlx_item) # pyright: ignore[reportAny]
finally:
completed.set()
class _LayerCallable(Protocol):
"""Structural type that any compatible layer must satisfy.
@@ -46,9 +83,11 @@ class CustomMlxLayer(nn.Module):
def __init__(self, original_layer: _LayerCallable):
super().__init__()
# Set twice to avoid __setattr__ recursion
object.__setattr__(self, "_original_layer", original_layer)
self.original_layer: _LayerCallable = original_layer
@property
def original_layer(self) -> _LayerCallable:
return cast(_LayerCallable, object.__getattribute__(self, "_original_layer"))
# Calls __getattr__ for any attributes not found on nn.Module (e.g. use_sliding)
if not TYPE_CHECKING:
@@ -58,7 +97,7 @@ class CustomMlxLayer(nn.Module):
return super().__getattr__(name)
except AttributeError:
original_layer = object.__getattribute__(self, "_original_layer")
return object.__getattribute__(original_layer, name)
return getattr(original_layer, name)
class PipelineFirstLayer(CustomMlxLayer):
@@ -106,7 +145,6 @@ class PipelineLastLayer(CustomMlxLayer):
if cache is not None:
cache.keys = mx.depends(cache.keys, output) # type: ignore[reportUnknownMemberType]
output = mx.distributed.all_gather(output, group=self.group)[-output.shape[0] :]
return output
@@ -135,10 +173,30 @@ def _get_layers(inner_model_instance: nn.Module) -> list[_LayerCallable]:
return layers
class _IdentityModule(nn.Module):
"""Identity module that returns input unchanged. Used to skip computation."""
def __call__(self, x: mx.array, *args: object, **kwargs: object) -> mx.array:
return x
class _IdentityLmHead(nn.Module):
"""Identity lm_head that returns zeros. Used for non-final pipeline ranks."""
def __init__(self, vocab_size: int, dtype: mx.Dtype = mx.float16):
super().__init__()
self.vocab_size = vocab_size
self.dtype = dtype
def __call__(self, x: mx.array) -> mx.array:
# Return zeros with correct shape (batch, seq, vocab_size)
return mx.zeros((*x.shape[:-1], self.vocab_size), dtype=self.dtype)
def pipeline_auto_parallel(
model: nn.Module,
group: mx.distributed.Group,
model_shard_meta: PipelineShardMetadata,
model_shard_meta: PipelineShardMetadata
) -> nn.Module:
"""
Automatically parallelize a model across multiple devices.
@@ -156,6 +214,7 @@ def pipeline_auto_parallel(
device_rank, world_size = model_shard_meta.device_rank, model_shard_meta.world_size
layers = layers[start_layer:end_layer]
layers[0] = PipelineFirstLayer(layers[0], device_rank, group=group)
layers[-1] = PipelineLastLayer(
layers[-1],
@@ -168,11 +227,21 @@ def pipeline_auto_parallel(
inner_model_instance.layer_types = inner_model_instance.layer_types[ # type: ignore
start_layer:end_layer
]
inner_model_instance.swa_idx = inner_model_instance.layer_types.index( # type: ignore
"sliding_attention"
# We can assume the model has at least one layer thanks to placement.
# If a layer type doesn't exist, we can set it to 0.
inner_model_instance.swa_idx = (
0
if "sliding_attention" not in inner_model_instance.layer_types # type: ignore
else inner_model_instance.layer_types.index( # type: ignore
"sliding_attention"
)
)
inner_model_instance.ga_idx = inner_model_instance.layer_types.index( # type: ignore
"full_attention"
inner_model_instance.ga_idx = (
0
if "full_attention" not in inner_model_instance.layer_types # type: ignore
else inner_model_instance.layer_types.index( # type: ignore
"full_attention"
)
)
_set_layers(model, layers)
@@ -181,12 +250,70 @@ def pipeline_auto_parallel(
"Expected a list of layers after auto-parallel initialisation"
)
return patch_pipeline_model(model, group)
def patch_pipeline_model[T](model: T, group: mx.distributed.Group) -> T:
# Patch __call__ on the model's class
cls = model.__class__
original_call = cls.__call__ # type :ignore
call_signature = signature(original_call) # type :ignore
def patched_call(
self: T,
*args: object,
**kwargs: object,
) -> mx.array:
logits: mx.array = original_call(self, *args, **kwargs) # type: ignore
cache = call_signature.bind_partial(self, *args, **kwargs).arguments.get(
"cache", None
)
# Add dependency to last cache entry to ensure distributed ops are evaluated
if cache is not None:
cache[-1].state = mx.depends(cache[-1].state, logits) # type: ignore
logits = mx.distributed.all_gather(logits, group=group)[
-logits.shape[0] :
] # type :ignore
return logits
cls.__call__ = patched_call
return model
def patch_tensor_model[T](model: T) -> T:
"""Patch model's __call__ to ensure distributed ops sync during inference."""
cls = model.__class__
original_call = cls.__call__
call_signature = signature(original_call)
def patched_call(
self: T,
*args: object,
**kwargs: object,
) -> mx.array:
logits: mx.array = original_call(self, *args, **kwargs) # pyright: ignore[reportAny]
cache = call_signature.bind_partial(self, *args, **kwargs).arguments.get(
"cache", None
)
# Add dependency to last cache entry to ensure distributed ops are evaluated
if cache is not None and len(cache) > 0: # pyright: ignore[reportAny]
cache[-1].state = mx.depends(cache[-1].state, logits) # pyright: ignore[reportAny,reportUnknownMemberType]
return logits
cls.__call__ = patched_call
return model
def tensor_auto_parallel(
model: nn.Module,
group: mx.distributed.Group,
timeout_seconds: float = 60.0,
on_timeout: TimeoutCallback | None = None,
) -> nn.Module:
all_to_sharded_linear = partial(
shard_linear,
@@ -231,7 +358,7 @@ def tensor_auto_parallel(
if hasattr(model, "shard"):
try:
model.shard(group) # type: ignore
return model
return patch_tensor_model(model)
except (AttributeError, TypeError, NameError):
pass
@@ -281,7 +408,10 @@ def tensor_auto_parallel(
else:
raise ValueError(f"Unsupported model type: {type(model)}")
return tensor_parallel_sharding_strategy.shard_model(model)
model = tensor_parallel_sharding_strategy.shard_model(
model, timeout_seconds, on_timeout
)
return patch_tensor_model(model)
class TensorParallelShardingStrategy(ABC):
@@ -301,13 +431,27 @@ class TensorParallelShardingStrategy(ABC):
self.N = group.size()
@abstractmethod
def shard_model(self, model: nn.Module) -> nn.Module: ...
def shard_model(
self,
model: nn.Module,
timeout_seconds: float,
on_timeout: TimeoutCallback | None,
) -> nn.Module: ...
class LlamaShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
def shard_model(
self,
model: nn.Module,
timeout_seconds: float,
on_timeout: TimeoutCallback | None,
) -> nn.Module:
model = cast(LlamaModel, model)
for layer in model.layers:
# Force load weights before sharding to avoid FAST_SYNCH deadlock
eval_with_timeout(
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
)
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
layer.self_attn.v_proj = self.all_to_sharded_linear(layer.self_attn.v_proj)
@@ -350,9 +494,17 @@ def _set_layers(model: nn.Module, layers: list[_LayerCallable]) -> None:
class DeepSeekShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
def shard_model(
self,
model: nn.Module,
timeout_seconds: float,
on_timeout: TimeoutCallback | None,
) -> nn.Module:
model = cast(DeepseekV3Model, model)
for layer in model.layers:
eval_with_timeout(
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
)
# Shard the self attention
if layer.self_attn.q_lora_rank is None:
layer.self_attn.q_proj = self.all_to_sharded_linear(
@@ -404,9 +556,17 @@ class ShardedDeepseekV3MoE(CustomMlxLayer):
class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
def shard_model(
self,
model: nn.Module,
timeout_seconds: float,
on_timeout: TimeoutCallback | None,
) -> nn.Module:
model = cast(MiniMaxModel, model)
for layer in model.layers:
eval_with_timeout(
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
)
# Shard the self attention
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
@@ -433,9 +593,17 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
class QwenShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
def shard_model(
self,
model: nn.Module,
timeout_seconds: float,
on_timeout: TimeoutCallback | None,
) -> nn.Module:
model = cast(Qwen3MoeModel, model)
for layer in model.layers:
eval_with_timeout(
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
)
# Shard the self attention
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
@@ -479,10 +647,18 @@ class ShardedQwenMoE(CustomMlxLayer):
class GptOssShardingStrategy(TensorParallelShardingStrategy):
def shard_model(self, model: nn.Module) -> nn.Module:
def shard_model(
self,
model: nn.Module,
timeout_seconds: float,
on_timeout: TimeoutCallback | None,
) -> nn.Module:
model = cast(GptOssMoeModel, model)
for layer in model.layers:
eval_with_timeout(
layer.parameters(), timeout_seconds / len(model.layers), on_timeout
)
layer.self_attn.q_proj = self.all_to_sharded_linear(layer.self_attn.q_proj)
layer.self_attn.k_proj = self.all_to_sharded_linear(layer.self_attn.k_proj)
layer.self_attn.v_proj = self.all_to_sharded_linear(layer.self_attn.v_proj)

View File

@@ -57,6 +57,8 @@ from exo.shared.types.worker.shards import (
from exo.worker.download.download_utils import build_model_path
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.auto_parallel import (
TimeoutCallback,
eval_with_timeout,
pipeline_auto_parallel,
tensor_auto_parallel,
)
@@ -82,6 +84,10 @@ def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
)
class ModelLoadingTimeoutError(Exception):
pass
def mx_barrier(group: Group | None = None):
mx.eval(
mx.distributed.all_sum(
@@ -145,20 +151,26 @@ def mlx_distributed_init(
group = mx.distributed.init(backend="ring", strict=True)
case MlxJacclInstance(
ibv_devices=ibv_devices, jaccl_coordinators=jaccl_coordinators
jaccl_devices=jaccl_devices, jaccl_coordinators=jaccl_coordinators
):
assert all(
jaccl_devices[i][i] is None for i in range(len(jaccl_devices))
)
# Use RDMA connectivity matrix
coordination_file = (
f"./hosts_{bound_instance.instance.instance_id}_{rank}.json"
)
ibv_devices_json = json.dumps(ibv_devices)
jaccl_devices_json = json.dumps(jaccl_devices)
with open(coordination_file, "w") as f:
_ = f.write(ibv_devices_json)
_ = f.write(jaccl_devices_json)
jaccl_coordinator = jaccl_coordinators[bound_instance.bound_node_id]
logger.info(f"rank {rank} MLX_IBV_DEVICES: {ibv_devices_json}")
# TODO: update once upstream fixes
logger.info(
f"rank {rank} MLX_IBV_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
)
logger.info(f"rank {rank} MLX_JACCL_COORDINATOR: {jaccl_coordinator}")
os.environ["MLX_IBV_DEVICES"] = coordination_file
os.environ["MLX_RANK"] = str(rank)
@@ -188,7 +200,9 @@ def initialize_mlx(
def load_mlx_items(
bound_instance: BoundInstance, group: Group | None
bound_instance: BoundInstance,
group: Group | None,
on_timeout: TimeoutCallback | None = None,
) -> tuple[Model, TokenizerWrapper]:
if group is None:
logger.info(f"Single device used for {bound_instance.instance}")
@@ -202,7 +216,9 @@ def load_mlx_items(
else:
logger.info("Starting distributed init")
start_time = time.perf_counter()
model, tokenizer = shard_and_load(bound_instance.bound_shard, group=group)
model, tokenizer = shard_and_load(
bound_instance.bound_shard, group=group, on_timeout=on_timeout
)
end_time = time.perf_counter()
logger.info(
f"Time taken to shard and load model: {(end_time - start_time):.2f}s"
@@ -216,6 +232,7 @@ def load_mlx_items(
def shard_and_load(
shard_metadata: ShardMetadata,
group: Group,
on_timeout: TimeoutCallback | None = None,
) -> tuple[nn.Module, TokenizerWrapper]:
model_path = build_model_path(shard_metadata.model_meta.model_id)
@@ -244,18 +261,30 @@ def shard_and_load(
logger.info(f"Group size: {group.size()}, group rank: {group.rank()}")
# Estimate timeout based on model size
base_timeout = float(os.environ.get("EXO_MODEL_LOAD_TIMEOUT", "60"))
model_size_gb = get_weights_size(shard_metadata).in_bytes / (1024**3)
timeout_seconds = base_timeout + model_size_gb / 5
logger.info(
f"Evaluating model parameters with timeout of {timeout_seconds:.0f}s "
f"(model size: {model_size_gb:.1f}GB)"
)
match shard_metadata:
case TensorShardMetadata():
logger.info(f"loading model from {model_path} with tensor parallelism")
model = tensor_auto_parallel(model, group)
model = tensor_auto_parallel(model, group, timeout_seconds, on_timeout)
case PipelineShardMetadata():
logger.info(f"loading model from {model_path} with pipeline parallelism")
model = pipeline_auto_parallel(model, group, shard_metadata)
model = pipeline_auto_parallel(
model, group, shard_metadata
)
# Skip eval for pipeline parallel to avoid fast synch issues
mx_barrier(group)
return model, tokenizer
mx.eval(model.parameters())
# TODO: Do we need this?
mx.eval(model)
# Eager eval for tensor parallel (ranks have same operations on sharded data)
eval_with_timeout(model.parameters(), timeout_seconds, on_timeout)
logger.debug("SHARDED")
logger.debug(model)

View File

@@ -16,8 +16,7 @@ from exo.shared.types.events import (
ForwarderEvent,
IndexedEvent,
NodeDownloadProgress,
NodeMemoryMeasured,
NodePerformanceMeasured,
NodeGatheredInfo,
TaskCreated,
TaskStatusUpdated,
TopologyEdgeCreated,
@@ -25,7 +24,6 @@ from exo.shared.types.events import (
)
from exo.shared.types.models import ModelId
from exo.shared.types.multiaddr import Multiaddr
from exo.shared.types.profiling import MemoryPerformanceProfile, NodePerformanceProfile
from exo.shared.types.state import State
from exo.shared.types.tasks import (
CreateRunner,
@@ -34,7 +32,7 @@ from exo.shared.types.tasks import (
Task,
TaskStatus,
)
from exo.shared.types.topology import Connection
from exo.shared.types.topology import Connection, SocketConnection
from exo.shared.types.worker.downloads import (
DownloadCompleted,
DownloadOngoing,
@@ -45,14 +43,14 @@ from exo.shared.types.worker.runners import RunnerId
from exo.shared.types.worker.shards import ShardMetadata
from exo.utils.channels import Receiver, Sender, channel
from exo.utils.event_buffer import OrderedBuffer
from exo.utils.info_gatherer.info_gatherer import GatheredInfo, InfoGatherer
from exo.utils.info_gatherer.net_profile import check_reachable
from exo.worker.download.download_utils import (
map_repo_download_progress_to_download_progress_data,
)
from exo.worker.download.shard_downloader import RepoDownloadProgress, ShardDownloader
from exo.worker.plan import plan
from exo.worker.runner.runner_supervisor import RunnerSupervisor
from exo.worker.utils import start_polling_memory_metrics, start_polling_node_metrics
from exo.worker.utils.net_profile import check_reachable
class Worker:
@@ -86,7 +84,7 @@ class Worker:
self.state: State = State()
self.download_status: dict[ModelId, DownloadProgress] = {}
self.runners: dict[RunnerId, RunnerSupervisor] = {}
self._tg: TaskGroup | None = None
self._tg: TaskGroup = create_task_group()
self._nack_cancel_scope: CancelScope | None = None
self._nack_attempts: int = 0
@@ -98,37 +96,13 @@ class Worker:
async def run(self):
logger.info("Starting Worker")
# TODO: CLEANUP HEADER
async def resource_monitor_callback(
node_performance_profile: NodePerformanceProfile,
) -> None:
await self.event_sender.send(
NodePerformanceMeasured(
node_id=self.node_id,
node_profile=node_performance_profile,
when=str(datetime.now(tz=timezone.utc)),
),
)
info_send, info_recv = channel[GatheredInfo]()
info_gatherer: InfoGatherer = InfoGatherer(info_send)
async def memory_monitor_callback(
memory_profile: MemoryPerformanceProfile,
) -> None:
await self.event_sender.send(
NodeMemoryMeasured(
node_id=self.node_id,
memory=memory_profile,
when=str(datetime.now(tz=timezone.utc)),
)
)
# END CLEANUP
async with create_task_group() as tg:
self._tg = tg
async with self._tg as tg:
tg.start_soon(info_gatherer.run)
tg.start_soon(self._forward_info, info_recv)
tg.start_soon(self.plan_step)
tg.start_soon(start_polling_node_metrics, resource_monitor_callback)
tg.start_soon(start_polling_memory_metrics, memory_monitor_callback)
tg.start_soon(self._emit_existing_download_progress)
tg.start_soon(self._connection_message_event_writer)
tg.start_soon(self._resend_out_for_delivery)
@@ -142,6 +116,17 @@ class Worker:
for runner in self.runners.values():
runner.shutdown()
async def _forward_info(self, recv: Receiver[GatheredInfo]):
with recv as info_stream:
async for info in info_stream:
await self.event_sender.send(
NodeGatheredInfo(
node_id=self.node_id,
when=str(datetime.now(tz=timezone.utc)),
info=info,
)
)
async def _event_applier(self):
with self.global_event_receiver as events:
async for f_event in events:
@@ -161,7 +146,6 @@ class Worker:
self._nack_cancel_scope is None
or self._nack_cancel_scope.cancel_called
):
assert self._tg
# Request the next index.
self._tg.start_soon(
self._nack_request, self.state.last_event_applied_idx + 1
@@ -252,8 +236,7 @@ class Worker:
await self.runners[self._task_to_runner_id(task)].start_task(task)
def shutdown(self):
if self._tg:
self._tg.cancel_scope.cancel()
self._tg.cancel_scope.cancel()
def _task_to_runner_id(self, task: Task):
instance = self.state.instances[task.instance_id]
@@ -270,24 +253,28 @@ class Worker:
match msg.connection_type:
case ConnectionMessageType.Connected:
return TopologyEdgeCreated(
edge=Connection(
local_node_id=self.node_id,
send_back_node_id=msg.node_id,
send_back_multiaddr=Multiaddr(
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
conn=Connection(
source=self.node_id,
sink=msg.node_id,
edge=SocketConnection(
sink_multiaddr=Multiaddr(
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
),
),
)
),
)
case ConnectionMessageType.Disconnected:
return TopologyEdgeDeleted(
edge=Connection(
local_node_id=self.node_id,
send_back_node_id=msg.node_id,
send_back_multiaddr=Multiaddr(
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
conn=Connection(
source=self.node_id,
sink=msg.node_id,
edge=SocketConnection(
sink_multiaddr=Multiaddr(
address=f"/ip4/{msg.remote_ipv4}/tcp/{msg.remote_tcp_port}"
),
),
)
),
)
async def _nack_request(self, since_idx: int) -> None:
@@ -336,7 +323,6 @@ class Worker:
event_sender=self.event_sender.clone(),
)
self.runners[task.bound_instance.bound_runner_id] = runner
assert self._tg
self._tg.start_soon(runner.run)
return runner
@@ -359,8 +345,7 @@ class Worker:
last_progress_time = 0.0
throttle_interval_secs = 1.0
# TODO: i hate callbacks
def download_progress_callback(
async def download_progress_callback(
shard: ShardMetadata, progress: RepoDownloadProgress
) -> None:
nonlocal self
@@ -372,11 +357,10 @@ class Worker:
total_bytes=progress.total_bytes,
)
self.download_status[shard.model_meta.model_id] = status
# Footgun!
self.event_sender.send_nowait(
await self.event_sender.send(
NodeDownloadProgress(download_progress=status)
)
self.event_sender.send_nowait(
await self.event_sender.send(
TaskStatusUpdated(
task_id=task.task_id, task_status=TaskStatus.Complete
)
@@ -393,13 +377,12 @@ class Worker:
),
)
self.download_status[shard.model_meta.model_id] = status
self.event_sender.send_nowait(
await self.event_sender.send(
NodeDownloadProgress(download_progress=status)
)
last_progress_time = current_time()
self.shard_downloader.on_progress(download_progress_callback)
assert self._tg
self._tg.start_soon(self.shard_downloader.ensure_shard, task.shard_metadata)
async def _forward_events(self) -> None:
@@ -420,9 +403,14 @@ class Worker:
async def _poll_connection_updates(self):
while True:
# TODO: EdgeDeleted
edges = set(self.state.topology.list_connections())
conns = await check_reachable(self.state.topology, self.node_id)
edges = set(
conn.edge for conn in self.state.topology.out_edges(self.node_id)
)
conns = await check_reachable(
self.state.topology,
self.node_id,
self.state.node_profiles,
)
for nid in conns:
for ip in conns[nid]:
if "127.0.0.1" in ip or "localhost" in ip:
@@ -430,26 +418,33 @@ class Worker:
f"Loopback connection should not happen: {ip=} for {nid=}"
)
edge = Connection(
local_node_id=self.node_id,
send_back_node_id=nid,
edge = SocketConnection(
# nonsense multiaddr
send_back_multiaddr=Multiaddr(address=f"/ip4/{ip}/tcp/52415")
sink_multiaddr=Multiaddr(address=f"/ip4/{ip}/tcp/52415")
if "." in ip
# nonsense multiaddr
else Multiaddr(address=f"/ip6/{ip}/tcp/52415"),
)
if edge not in edges:
logger.debug(f"ping discovered {edge=}")
await self.event_sender.send(TopologyEdgeCreated(edge=edge))
await self.event_sender.send(
TopologyEdgeCreated(
conn=Connection(
source=self.node_id, sink=nid, edge=edge
)
)
)
for nid, conn in self.state.topology.out_edges(self.node_id):
for conn in self.state.topology.out_edges(self.node_id):
if not isinstance(conn.edge, SocketConnection):
continue
if (
nid not in conns
or conn.send_back_multiaddr.ip_address not in conns.get(nid, set())
conn.sink not in conns
or conn.edge.sink_multiaddr.ip_address
not in conns.get(conn.sink, set())
):
logger.debug(f"ping failed to discover {conn=}")
await self.event_sender.send(TopologyEdgeDeleted(edge=conn))
await self.event_sender.send(TopologyEdgeDeleted(conn=conn))
await anyio.sleep(10)

View File

@@ -17,15 +17,23 @@ def entrypoint(
task_receiver: MpReceiver[Task],
_logger: "loguru.Logger",
) -> None:
if (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.ibv_devices) >= 2
fast_synch_override = os.environ.get("EXO_FAST_SYNCH")
if fast_synch_override == "on" or (
fast_synch_override != "off"
and (
isinstance(bound_instance.instance, MlxJacclInstance)
and len(bound_instance.instance.jaccl_devices) >= 2
)
):
os.environ["MLX_METAL_FAST_SYNCH"] = "1"
else:
os.environ["MLX_METAL_FAST_SYNCH"] = "0"
global logger
logger = _logger
logger.info(f"Fast synch flag: {os.environ['MLX_METAL_FAST_SYNCH']}")
# Import main after setting global logger - this lets us just import logger from this module
try:
from exo.worker.runner.runner import main

View File

@@ -67,6 +67,7 @@ def main(
bound_instance.bound_runner_id,
bound_instance.bound_shard,
)
device_rank = shard_metadata.device_rank
logger.info("hello from the runner")
if getattr(shard_metadata, "immediate_exception", False):
raise Exception("Fake exception - runner failed to spin up.")
@@ -118,7 +119,20 @@ def main(
)
)
model, tokenizer = load_mlx_items(bound_instance, group)
def on_model_load_timeout() -> None:
event_sender.send(
RunnerStatusUpdated(
runner_id=runner_id,
runner_status=RunnerFailed(
error_message="Model loading timed out"
),
)
)
time.sleep(0.5)
model, tokenizer = load_mlx_items(
bound_instance, group, on_timeout=on_model_load_timeout
)
current_status = RunnerLoaded()
logger.info("runner loaded")
@@ -148,8 +162,6 @@ def main(
case ChatCompletion(task_params=task_params, command_id=command_id) if (
isinstance(current_status, RunnerReady)
):
assert model
assert tokenizer
logger.info(f"received chat request: {str(task)[:500]}")
current_status = RunnerRunning()
logger.info("runner running")
@@ -158,41 +170,61 @@ def main(
runner_id=runner_id, runner_status=current_status
)
)
assert model
assert tokenizer
assert task_params.messages[0].content is not None
_check_for_debug_prompts(task_params.messages[0].content)
# Generate responses using the actual MLX generation
mlx_generator = mlx_generate(
model=model,
tokenizer=tokenizer,
task=task_params,
)
try:
_check_for_debug_prompts(task_params.messages[0].content)
# GPT-OSS specific parsing to match other model formats.
if isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
# Generate responses using the actual MLX generation
mlx_generator = mlx_generate(
model=model,
tokenizer=tokenizer,
task=task_params,
)
# TODO: Add tool call parser here
# GPT-OSS specific parsing to match other model formats.
if isinstance(model, GptOssModel):
mlx_generator = parse_gpt_oss(mlx_generator)
for response in mlx_generator:
match response:
case GenerationResponse():
if shard_metadata.device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
# TODO: Add tool call parser here
for response in mlx_generator:
match response:
case GenerationResponse():
if device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=response.token,
model=shard_metadata.model_meta.model_id,
text=response.text,
token_id=response.token,
finish_reason=response.finish_reason,
stats=response.stats,
),
)
)
)
# case TokenizedResponse():
# TODO: something here ig
# can we make this more explicit?
except Exception as e:
if device_rank == 0:
event_sender.send(
ChunkGenerated(
command_id=command_id,
chunk=TokenChunk(
idx=0,
model=shard_metadata.model_meta.model_id,
text="",
token_id=0,
finish_reason="error",
error_message=str(e),
),
)
)
raise
current_status = RunnerReady()
logger.info("runner ready")

View File

@@ -0,0 +1,201 @@
# type: ignore
import json
import os
import tempfile
import traceback
from dataclasses import dataclass
from pathlib import Path
from typing import Any, cast
import mlx.core as mx
import mlx.nn as nn
from exo.shared.constants import EXO_MODELS_DIR
from exo.shared.types.api import ChatCompletionMessage
from exo.shared.types.memory import Memory
from exo.shared.types.models import ModelId, ModelMetadata
from exo.shared.types.tasks import ChatCompletionTaskParams
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
from exo.worker.engines.mlx import Model
from exo.worker.engines.mlx.generator.generate import mlx_generate
from exo.worker.engines.mlx.utils_mlx import shard_and_load
class MockLayer(nn.Module):
def __init__(self) -> None:
super().__init__()
self.custom_attr = "test_value"
self.use_sliding = True
def __call__(self, x: mx.array, *args: object, **kwargs: object) -> mx.array:
return x * 2
@dataclass(frozen=True)
class PipelineTestConfig:
model_path: Path
total_layers: int
base_port: int
max_tokens: int
def create_hostfile(world_size: int, base_port: int) -> tuple[str, list[str]]:
hosts = [f"127.0.0.1:{base_port + i}" for i in range(world_size)]
with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f:
json.dump(hosts, f)
hostfile_path = f.name
return hostfile_path, hosts
# Use GPT OSS 20b to test as it is a model with a lot of strange behaviour
DEFAULT_GPT_OSS_CONFIG = PipelineTestConfig(
model_path=EXO_MODELS_DIR / "mlx-community--gpt-oss-20b-MXFP4-Q8",
total_layers=24,
base_port=29600,
max_tokens=200,
)
DEFAULT_GPT_OSS_MODEL_ID = "mlx-community/gpt-oss-20b-MXFP4-Q8"
def run_gpt_oss_pipeline_device(
rank: int,
world_size: int,
hostfile_path: str,
layer_splits: list[tuple[int, int]],
prompt_tokens: int,
prefill_step_size: int,
result_queue: Any, # pyright: ignore[reportAny]
max_tokens: int = 200,
) -> None:
os.environ["MLX_HOSTFILE"] = hostfile_path
os.environ["MLX_RANK"] = str(rank)
try:
group = mx.distributed.init(backend="ring", strict=True)
start_layer, end_layer = layer_splits[rank]
shard_meta = PipelineShardMetadata(
model_meta=ModelMetadata(
model_id=ModelId(DEFAULT_GPT_OSS_MODEL_ID),
pretty_name="GPT-OSS 20B",
storage_size=Memory.from_gb(12),
n_layers=24,
hidden_size=2880,
supports_tensor=False,
),
device_rank=rank,
world_size=world_size,
start_layer=start_layer,
end_layer=end_layer,
n_layers=24,
)
model, tokenizer = shard_and_load(shard_meta, group)
model = cast(Model, model)
# Generate a prompt of exact token length
base_text = "The quick brown fox jumps over the lazy dog. "
base_tokens = tokenizer.encode(base_text)
base_len = len(base_tokens)
# Build prompt with approximate target length
repeats = (prompt_tokens // base_len) + 2
long_text = base_text * repeats
tokens = tokenizer.encode(long_text)
# Truncate to exact target length
tokens = tokens[:prompt_tokens]
prompt_text = tokenizer.decode(tokens)
task = ChatCompletionTaskParams(
model=DEFAULT_GPT_OSS_MODEL_ID,
messages=[ChatCompletionMessage(role="user", content=prompt_text)],
max_tokens=max_tokens,
)
generated_text = ""
for response in mlx_generate(
model=model,
tokenizer=tokenizer,
task=task,
):
generated_text += response.text
if response.finish_reason is not None:
break
result_queue.put((rank, True, generated_text)) # pyright: ignore[reportAny]
except Exception as e:
result_queue.put((rank, False, f"{e}\n{traceback.format_exc()}")) # pyright: ignore[reportAny]
def run_gpt_oss_tensor_parallel_device(
rank: int,
world_size: int,
hostfile_path: str,
prompt_tokens: int,
prefill_step_size: int,
result_queue: Any, # pyright: ignore[reportAny]
max_tokens: int = 10,
) -> None:
os.environ["MLX_HOSTFILE"] = hostfile_path
os.environ["MLX_RANK"] = str(rank)
try:
group = mx.distributed.init(backend="ring", strict=True)
# For tensor parallelism, all devices run all layers
shard_meta = TensorShardMetadata(
model_meta=ModelMetadata(
model_id=ModelId(DEFAULT_GPT_OSS_MODEL_ID),
pretty_name="GPT-OSS 20B",
storage_size=Memory.from_gb(12),
n_layers=24,
hidden_size=2880,
supports_tensor=True,
),
device_rank=rank,
world_size=world_size,
start_layer=0,
end_layer=24,
n_layers=24,
)
model, tokenizer = shard_and_load(shard_meta, group)
model = cast(Model, model)
base_text = "The quick brown fox jumps over the lazy dog. "
base_tokens = tokenizer.encode(base_text)
base_len = len(base_tokens)
repeats = (prompt_tokens // base_len) + 2
long_text = base_text * repeats
tokens = tokenizer.encode(long_text)
tokens = tokens[:prompt_tokens]
prompt_text = tokenizer.decode(tokens)
task = ChatCompletionTaskParams(
model=DEFAULT_GPT_OSS_MODEL_ID,
messages=[ChatCompletionMessage(role="user", content=prompt_text)],
max_tokens=max_tokens,
)
generated_text = ""
for response in mlx_generate(
model=model,
tokenizer=tokenizer,
task=task,
):
generated_text += response.text
if response.finish_reason is not None:
break
result_queue.put((rank, True, generated_text)) # pyright: ignore[reportAny]
except Exception as e:
result_queue.put((rank, False, f"{e}\n{traceback.format_exc()}")) # pyright: ignore[reportAny]

View File

@@ -0,0 +1,146 @@
import json
import multiprocessing as mp
import os
import tempfile
from typing import Any
import mlx.core as mx
import mlx.nn as mlx_nn
import pytest
from exo.worker.engines.mlx.auto_parallel import (
CustomMlxLayer,
PipelineFirstLayer,
PipelineLastLayer,
patch_pipeline_model,
)
from exo.worker.tests.unittests.test_mlx.conftest import MockLayer
def run_pipeline_device(
rank: int,
world_size: int,
hostfile_path: str,
result_queue: Any, # pyright: ignore[reportAny]
) -> None:
import os
os.environ["MLX_HOSTFILE"] = hostfile_path
os.environ["MLX_RANK"] = str(rank)
class MockLayerInner(mlx_nn.Module):
def __init__(self) -> None:
super().__init__()
self.custom_attr = "test_value"
def __call__(self, x: mx.array, *args: object, **kwargs: object) -> mx.array:
return x * 2
class MockModel(mlx_nn.Module):
def __init__(self, layers: list[mlx_nn.Module]) -> None:
super().__init__()
self.layers = layers
def __call__(self, x: mx.array, *args: object, **kwargs: object) -> mx.array:
for layer in self.layers:
x = layer(x, *args, **kwargs) # pyright: ignore[reportUnknownVariableType]
return x # pyright: ignore[reportUnknownVariableType]
try:
group = mx.distributed.init(backend="ring", strict=True)
mock = MockLayerInner()
first = PipelineFirstLayer(mock, r=rank, group=group)
composed = PipelineLastLayer(first, r=rank, s=world_size, group=group)
# Wrap in a mock model, then wrap in PipelineParallelModel for all_gather
inner_model = MockModel([composed])
model = patch_pipeline_model(inner_model, group)
x = mx.ones((1, 4))
result = model(x)
mx.eval(result)
success = result.shape == x.shape
result_queue.put((rank, success, result)) # pyright: ignore[reportAny]
except Exception as e:
result_queue.put((rank, False, str(e))) # pyright: ignore[reportAny]
def test_single_wrapper_delegates_attributes() -> None:
mock = MockLayer()
wrapped = CustomMlxLayer(mock)
assert wrapped.custom_attr == "test_value" # type: ignore[attr-defined]
assert wrapped.use_sliding is True # type: ignore[attr-defined]
def test_composed_wrappers_delegate_attributes() -> None:
mock = MockLayer()
group = mx.distributed.init()
first = PipelineFirstLayer(mock, r=0, group=group)
composed = PipelineLastLayer(first, r=0, s=1, group=group)
assert composed.custom_attr == "test_value" # type: ignore[attr-defined]
assert composed.use_sliding is True # type: ignore[attr-defined]
def test_missing_attribute_raises() -> None:
mock = MockLayer()
wrapped = CustomMlxLayer(mock)
with pytest.raises(AttributeError):
_ = wrapped.nonexistent_attr # type: ignore[attr-defined]
def test_composed_call_works() -> None:
ctx = mp.get_context("spawn")
world_size = 2
base_port = 29500
hosts = [f"127.0.0.1:{base_port + i}" for i in range(world_size)]
with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f:
json.dump(hosts, f)
hostfile_path = f.name
try:
result_queue: Any = ctx.Queue()
processes: list[Any] = []
for rank in range(world_size):
p = ctx.Process(
target=run_pipeline_device,
args=(rank, world_size, hostfile_path, result_queue),
)
p.start()
processes.append(p)
for p in processes: # pyright: ignore[reportAny]
p.join(timeout=10) # pyright: ignore[reportAny]
results: dict[int, Any] = {}
errors: dict[int, str] = {}
while not result_queue.empty(): # pyright: ignore[reportAny]
rank, success, value = result_queue.get() # pyright: ignore[reportAny]
if success:
results[rank] = value
else:
errors[rank] = value
assert len(results) == world_size, (
f"Expected {world_size} results, got {len(results)}. Errors: {errors}"
)
for rank in range(world_size):
assert rank in results, (
f"Device {rank} failed: {errors.get(rank, 'unknown')}"
)
result_array = results[rank]
# Both devices see the final result (4.0) after all_gather
assert (result_array == 4.0).all(), (
f"Device {rank}: expected 4.0, got {result_array}"
)
finally:
os.unlink(hostfile_path)

View File

@@ -0,0 +1,230 @@
import multiprocessing as mp
import os
from dataclasses import dataclass
from typing import Any, Callable
import pytest
from exo.worker.tests.unittests.test_mlx.conftest import (
DEFAULT_GPT_OSS_CONFIG,
create_hostfile,
run_gpt_oss_pipeline_device,
run_gpt_oss_tensor_parallel_device,
)
def _check_model_exists() -> bool:
return DEFAULT_GPT_OSS_CONFIG.model_path.exists()
pytestmark = [
pytest.mark.skipif(
not _check_model_exists(),
reason=f"GPT-OSS model not found at {DEFAULT_GPT_OSS_CONFIG.model_path}",
),
]
@dataclass
class DistributedTestResult:
timed_out: bool
world_size: int
results: dict[int, tuple[bool, str]]
@property
def all_success(self) -> bool:
if len(self.results) != self.world_size:
return False
return all(r[0] for r in self.results.values())
def run_distributed_test(
world_size: int,
port_offset: int,
process_timeout: int,
target: Callable[..., None],
make_args: Callable[[int], tuple[Any, ...]],
) -> DistributedTestResult:
ctx = mp.get_context("spawn")
hostfile_path, _ = create_hostfile(
world_size, DEFAULT_GPT_OSS_CONFIG.base_port + port_offset
)
try:
result_queue: Any = ctx.Queue()
processes: list[Any] = []
for rank in range(world_size):
args = make_args(rank)
p = ctx.Process(
target=target,
args=(rank, world_size, hostfile_path, *args, result_queue),
)
p.start()
processes.append(p)
for p in processes: # pyright: ignore[reportAny]
p.join(timeout=process_timeout) # pyright: ignore[reportAny]
timed_out = any(p.is_alive() for p in processes) # pyright: ignore[reportAny]
for p in processes: # pyright: ignore[reportAny]
if p.is_alive(): # pyright: ignore[reportAny]
p.terminate() # pyright: ignore[reportAny]
p.join(timeout=5) # pyright: ignore[reportAny]
results: dict[int, tuple[bool, str]] = {}
while not result_queue.empty(): # pyright: ignore[reportAny]
rank, success, value = result_queue.get() # pyright: ignore[reportAny]
results[rank] = (success, value)
return DistributedTestResult(
timed_out=timed_out, world_size=world_size, results=results
)
finally:
os.unlink(hostfile_path)
def run_pipeline_test(
layer_splits: list[tuple[int, int]],
prompt_tokens: int,
prefill_step_size: int,
port_offset: int = 0,
process_timeout: int = 60,
) -> DistributedTestResult:
def make_args(rank: int) -> tuple[Any, ...]:
return (
layer_splits,
prompt_tokens,
prefill_step_size,
)
return run_distributed_test(
world_size=len(layer_splits),
port_offset=port_offset,
process_timeout=process_timeout,
target=run_gpt_oss_pipeline_device,
make_args=make_args,
)
def run_tensor_test(
prompt_tokens: int,
prefill_step_size: int,
port_offset: int = 0,
process_timeout: int = 60,
) -> DistributedTestResult:
def make_args(rank: int) -> tuple[Any, ...]:
return (
prompt_tokens,
prefill_step_size,
)
return run_distributed_test(
world_size=2,
port_offset=port_offset,
process_timeout=process_timeout,
target=run_gpt_oss_tensor_parallel_device,
make_args=make_args,
)
class TestPipelineParallelFix:
BUG_TRIGGER_SPLITS: list[tuple[int, int]] = [(0, 1), (1, 24)]
def test_pipeline_single_layer_first_device(self) -> None:
result = run_pipeline_test(
layer_splits=self.BUG_TRIGGER_SPLITS,
prompt_tokens=100,
prefill_step_size=64,
process_timeout=60,
)
assert not result.timed_out, "Unexpected timeout - fix may not be working"
assert result.all_success, f"Failures: {result.results}"
class TestPipelineSplitConfigurations:
@pytest.mark.parametrize(
"layer_splits",
[
[(0, 1), (1, 24)],
[(0, 6), (6, 24)],
[(0, 12), (12, 24)],
],
ids=["1_23", "6_18", "12_12"],
)
def test_pipeline_splits(
self,
layer_splits: list[tuple[int, int]],
) -> None:
result = run_pipeline_test(
layer_splits=layer_splits,
prompt_tokens=600,
prefill_step_size=512,
port_offset=100,
)
assert not result.timed_out, f"Timeout with {layer_splits}"
assert result.all_success, f"Failures with {layer_splits}: {result.results}"
class TestPrefillStepSizeBoundaries:
@pytest.mark.parametrize(
"prefill_step_size,prompt_tokens",
[
(512, 511),
(512, 512),
(512, 513),
(512, 1024),
],
ids=["under", "exact", "over", "double"],
)
def test_boundary_conditions(
self,
prefill_step_size: int,
prompt_tokens: int,
) -> None:
result = run_pipeline_test(
layer_splits=[(0, 12), (12, 24)],
prompt_tokens=prompt_tokens,
prefill_step_size=prefill_step_size,
port_offset=200,
)
assert not result.timed_out, f"Timeout: {prompt_tokens=}, {prefill_step_size=}"
assert result.all_success, f"Failures: {result.results}"
class TestTensorParallelFix:
def test_tensor_parallel(self) -> None:
result = run_tensor_test(
prompt_tokens=100,
prefill_step_size=64,
port_offset=400,
)
assert not result.timed_out, "Unexpected timeout"
assert result.all_success, f"Failures: {result.results}"
class TestTensorParallelBoundaries:
@pytest.mark.parametrize(
"prefill_step_size,prompt_tokens",
[
(512, 511),
(512, 512),
(512, 513),
(512, 1024),
],
ids=["under", "exact", "over", "double"],
)
def test_tensor_parallel_boundaries(
self,
prefill_step_size: int,
prompt_tokens: int,
) -> None:
result = run_tensor_test(
prompt_tokens=prompt_tokens,
prefill_step_size=prefill_step_size,
port_offset=500,
)
assert not result.timed_out, f"Timeout: {prompt_tokens=}, {prefill_step_size=}"
assert result.all_success, f"Failures: {result.results}"

View File

@@ -121,6 +121,21 @@ def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setattr(mlx_runner, "mlx_generate", fake_generate)
# Use a fake event_sender to remove test flakiness.
class EventCollector:
def __init__(self) -> None:
self.events: list[Event] = []
def send(self, event: Event) -> None:
self.events.append(event)
def close(self) -> None:
pass
def join(self) -> None:
pass
def _run(tasks: Iterable[Task]):
bound_instance = get_bound_mlx_ring_instance(
instance_id=INSTANCE_1_ID,
@@ -130,22 +145,20 @@ def _run(tasks: Iterable[Task]):
)
task_sender, task_receiver = mp_channel[Task]()
event_sender, event_receiver = mp_channel[Event]()
event_sender = EventCollector()
with task_sender, event_receiver:
with task_sender:
for t in tasks:
task_sender.send(t)
# worst monkeypatch known to man
# this is some c++ nonsense
event_sender.close = nothin
event_sender.join = nothin
task_receiver.close = nothin
task_receiver.join = nothin
mlx_runner.main(bound_instance, event_sender, task_receiver)
mlx_runner.main(bound_instance, event_sender, task_receiver) # type: ignore[arg-type]
return event_receiver.collect()
return event_sender.events
def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):

View File

@@ -1,6 +0,0 @@
from .profile import start_polling_memory_metrics, start_polling_node_metrics
__all__ = [
"start_polling_node_metrics",
"start_polling_memory_metrics",
]

View File

@@ -1,103 +0,0 @@
import platform
import shutil
from subprocess import CalledProcessError
from typing import cast
from anyio import run_process
from pydantic import BaseModel, ConfigDict, ValidationError
class MacMonError(Exception):
"""Exception raised for errors in the MacMon functions."""
def _get_binary_path() -> str:
"""
Get the path to the macmon binary.
Raises:
MacMonError: If the binary doesn't exist or can't be made executable.
"""
# Check for macOS with ARM chip
system = platform.system().lower()
machine = platform.machine().lower()
if system != "darwin" or not (
"arm" in machine or "m1" in machine or "m2" in machine
):
raise MacMonError("MacMon only supports macOS with Apple Silicon (ARM) chips")
path = shutil.which("macmon")
if path is None:
raise MacMonError("MacMon not found in PATH")
return path
class TempMetrics(BaseModel):
"""Temperature-related metrics returned by macmon."""
cpu_temp_avg: float
gpu_temp_avg: float
model_config = ConfigDict(extra="ignore")
class Metrics(BaseModel):
"""Complete set of metrics returned by macmon.
Unknown fields are ignored for forward-compatibility.
"""
all_power: float
ane_power: float
cpu_power: float
ecpu_usage: tuple[int, float]
gpu_power: float
gpu_ram_power: float
gpu_usage: tuple[int, float]
pcpu_usage: tuple[int, float]
ram_power: float
sys_power: float
temp: TempMetrics
timestamp: str
model_config = ConfigDict(extra="ignore")
async def get_metrics_async() -> Metrics:
"""
Asynchronously run the binary and return the metrics as a Python dictionary.
Args:
binary_path: Optional path to the binary. If not provided, will use the bundled binary.
Returns:
A mapping containing system metrics.
Raises:
MacMonError: If there's an error running the binary.
"""
path = _get_binary_path()
try:
# TODO: Keep Macmon running in the background?
result = await run_process([path, "pipe", "-s", "1"])
return Metrics.model_validate_json(result.stdout.decode().strip())
except ValidationError as e:
raise MacMonError(f"Error parsing JSON output: {e}") from e
except CalledProcessError as e:
stderr_msg = "no stderr"
stderr_output = cast(bytes | str | None, e.stderr)
if stderr_output is not None:
stderr_msg = (
stderr_output.decode()
if isinstance(stderr_output, bytes)
else str(stderr_output)
)
raise MacMonError(
f"MacMon failed with return code {e.returncode}: {stderr_msg}"
) from e

View File

@@ -1,114 +0,0 @@
import asyncio
import os
import platform
from typing import Any, Callable, Coroutine
import anyio
from loguru import logger
from exo.shared.types.memory import Memory
from exo.shared.types.profiling import (
MemoryPerformanceProfile,
NodePerformanceProfile,
SystemPerformanceProfile,
)
from .macmon import (
MacMonError,
Metrics,
)
from .macmon import (
get_metrics_async as macmon_get_metrics_async,
)
from .system_info import (
get_friendly_name,
get_model_and_chip,
get_network_interfaces,
)
async def get_metrics_async() -> Metrics | None:
"""Return detailed Metrics on macOS or a minimal fallback elsewhere."""
if platform.system().lower() == "darwin":
return await macmon_get_metrics_async()
def get_memory_profile() -> MemoryPerformanceProfile:
"""Construct a MemoryPerformanceProfile using psutil"""
override_memory_env = os.getenv("OVERRIDE_MEMORY_MB")
override_memory: int | None = (
Memory.from_mb(int(override_memory_env)).in_bytes
if override_memory_env
else None
)
return MemoryPerformanceProfile.from_psutil(override_memory=override_memory)
async def start_polling_memory_metrics(
callback: Callable[[MemoryPerformanceProfile], Coroutine[Any, Any, None]],
*,
poll_interval_s: float = 0.5,
) -> None:
"""Continuously poll and emit memory-only metrics at a faster cadence.
Parameters
- callback: coroutine called with a fresh MemoryPerformanceProfile each tick
- poll_interval_s: interval between polls
"""
while True:
try:
mem = get_memory_profile()
await callback(mem)
except MacMonError as e:
logger.opt(exception=e).error("Memory Monitor encountered error")
finally:
await anyio.sleep(poll_interval_s)
async def start_polling_node_metrics(
callback: Callable[[NodePerformanceProfile], Coroutine[Any, Any, None]],
):
poll_interval_s = 1.0
while True:
try:
metrics = await get_metrics_async()
if metrics is None:
return
network_interfaces = get_network_interfaces()
# these awaits could be joined but realistically they should be cached
model_id, chip_id = await get_model_and_chip()
friendly_name = await get_friendly_name()
# do the memory profile last to get a fresh reading to not conflict with the other memory profiling loop
memory_profile = get_memory_profile()
await callback(
NodePerformanceProfile(
model_id=model_id,
chip_id=chip_id,
friendly_name=friendly_name,
network_interfaces=network_interfaces,
memory=memory_profile,
system=SystemPerformanceProfile(
gpu_usage=metrics.gpu_usage[1],
temp=metrics.temp.gpu_temp_avg,
sys_power=metrics.sys_power,
pcpu_usage=metrics.pcpu_usage[1],
ecpu_usage=metrics.ecpu_usage[1],
ane_power=metrics.ane_power,
),
)
)
except asyncio.TimeoutError:
logger.warning(
"[resource_monitor] Operation timed out after 30s, skipping this cycle."
)
except MacMonError as e:
logger.opt(exception=e).error("Resource Monitor encountered error")
return
finally:
await anyio.sleep(poll_interval_s)

View File

@@ -1,77 +0,0 @@
"""Tests for macmon error handling.
These tests verify that MacMon errors are handled gracefully without
crashing the application or spamming logs.
"""
import platform
from subprocess import CalledProcessError
from unittest.mock import AsyncMock, patch
import pytest
from exo.worker.utils.macmon import MacMonError, get_metrics_async
@pytest.mark.skipif(
platform.system().lower() != "darwin" or "arm" not in platform.machine().lower(),
reason="MacMon only supports macOS with Apple Silicon",
)
class TestMacMonErrorHandling:
"""Test MacMon error handling."""
async def test_called_process_error_wrapped_as_macmon_error(self) -> None:
"""CalledProcessError should be wrapped as MacMonError."""
mock_error = CalledProcessError(
returncode=1,
cmd=["macmon", "pipe", "-s", "1"],
stderr=b"some error message",
)
with (
patch(
"exo.worker.utils.macmon.shutil.which", return_value="/usr/bin/macmon"
),
patch(
"exo.worker.utils.macmon.run_process", new_callable=AsyncMock
) as mock_run,
):
mock_run.side_effect = mock_error
with pytest.raises(MacMonError) as exc_info:
await get_metrics_async()
assert "MacMon failed with return code 1" in str(exc_info.value)
assert "some error message" in str(exc_info.value)
async def test_called_process_error_with_no_stderr(self) -> None:
"""CalledProcessError with no stderr should be handled gracefully."""
mock_error = CalledProcessError(
returncode=1,
cmd=["macmon", "pipe", "-s", "1"],
stderr=None,
)
with (
patch(
"exo.worker.utils.macmon.shutil.which", return_value="/usr/bin/macmon"
),
patch(
"exo.worker.utils.macmon.run_process", new_callable=AsyncMock
) as mock_run,
):
mock_run.side_effect = mock_error
with pytest.raises(MacMonError) as exc_info:
await get_metrics_async()
assert "MacMon failed with return code 1" in str(exc_info.value)
assert "no stderr" in str(exc_info.value)
async def test_macmon_not_found_raises_macmon_error(self) -> None:
"""When macmon is not found in PATH, MacMonError should be raised."""
with patch("exo.worker.utils.macmon.shutil.which", return_value=None):
with pytest.raises(MacMonError) as exc_info:
await get_metrics_async()
assert "MacMon not found in PATH" in str(exc_info.value)

View File

@@ -34,7 +34,8 @@ from exo.shared.types.worker.instances import (
)
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
from exo.utils.channels import MpReceiver, MpSender, mp_channel
from exo.utils.channels import MpReceiver, MpSender, channel, mp_channel
from exo.utils.info_gatherer.info_gatherer import GatheredInfo, InfoGatherer
from exo.worker.download.impl_shard_downloader import (
build_full_shard,
exo_shard_downloader,
@@ -65,6 +66,7 @@ async def main():
app = FastAPI()
app.post("/ring")(ring_backend)
app.post("/jaccl")(jaccl_backend)
app.post("/tb_detection")(tb_detection)
shutdown = anyio.Event()
await serve(
app, # type: ignore
@@ -76,6 +78,15 @@ async def main():
shutdown.set()
async def tb_detection():
send, recv = channel[GatheredInfo]()
ig = InfoGatherer(send)
with anyio.move_on_after(1):
await ig._monitor_system_profiler() # pyright: ignore[reportPrivateUsage]
with recv:
return recv.collect()
async def assert_downloads():
sd = exo_shard_downloader()
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
@@ -209,16 +220,16 @@ async def jaccl_backend(test: Tests):
break
else:
raise ValueError(f"{weird_hn} not in {test.devs}")
return await execute_test(test, jaccl_instance(test, iid, hn), hn)
return await execute_test(test, jaccl_instance(test, iid), hn)
def jaccl_instance(test: Tests, iid: InstanceId, hn: str):
def jaccl_instance(test: Tests, iid: InstanceId):
meta = MODEL_CARDS[test.model_id].metadata
world_size = len(test.devs)
return MlxJacclInstance(
instance_id=iid,
ibv_devices=[[None, "rdma_en3"], ["rdma_en3", None]],
jaccl_devices=[[None, "rdma_en3"], ["rdma_en3", None]],
# rank 0 is always coordinator
jaccl_coordinators={
NodeId(host[0]): test.devs[0][1] + ":52416" for host in test.devs