Compare commits

..

1 Commits

Author SHA1 Message Date
ParthSareen
5d3eeb43c0 convert: check file size for safetensors to warn for improper conversion 2025-12-10 17:58:16 -08:00
43 changed files with 523 additions and 5089 deletions

View File

@@ -555,7 +555,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama)
- [Swollama for Swift]([https://github.com/marcusziade/Swollama](https://github.com/guitaripod/Swollama) with [DocC]( https://guitaripod.github.io/Swollama/documentation/swollama)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)

View File

@@ -347,7 +347,7 @@ type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]).
//
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.mdx
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse

View File

@@ -191,6 +191,13 @@ func LaunchNewApp() {
C.launchApp(appName)
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
p := C.CString(path)
defer C.free(unsafe.Pointer(p))
C.uiRequest(p)
}
func registerLaunchAgent(hasCompletedFirstRun bool) {
// Remove any stale Login Item registrations
C.unregisterSelfFromLoginItem()

View File

@@ -263,6 +263,11 @@ func createLoginShortcut() error {
return nil
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
wintray.SendUIRequestMessage(path)
}
func LaunchNewApp() {
}

View File

@@ -169,47 +169,37 @@ DlgResult fileDlg(FileDlgParams* params) {
}
NSArray* urls = [panel URLs];
if([urls count] == 0) {
return DLG_CANCEL;
}
if(self->params->allowMultiple) {
if(self->params->allowMultiple && [urls count] >= 1) {
// For multiple files, we need to return all paths separated by null bytes
char* bufPtr = self->params->buf;
int remainingBuf = self->params->nbuf;
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
} else {
// Single file/directory selection - write path to buffer
NSURL* url = [urls firstObject];
if(![url getFileSystemRepresentation:self->params->buf maxLength:self->params->nbuf]) {
return DLG_URLFAIL;
}
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
}
return DLG_OK;

View File

@@ -15,7 +15,7 @@ const multiFileBufferSize = w32.MAX_PATH * 10
type WinDlgError int
func (e WinDlgError) Error() string {
return fmt.Sprintf("CommDlgExtendedError: %#x", int(e))
return fmt.Sprintf("CommDlgExtendedError: %#x", e)
}
func err() error {

View File

@@ -224,7 +224,9 @@ func (s *Server) cmd(ctx context.Context) (*exec.Cmd, error) {
if _, err := os.Stat(settings.Models); err == nil {
env["OLLAMA_MODELS"] = settings.Models
} else {
slog.Warn("models path not accessible, using default", "path", settings.Models, "err", err)
slog.Warn("models path not accessible, clearing models setting", "path", settings.Models, "err", err)
settings.Models = ""
s.store.SetSettings(settings)
}
}
if settings.ContextLength > 0 {

View File

@@ -12,13 +12,13 @@ import (
"log/slog"
"net/http"
"net/http/httputil"
"net/url"
"os"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
"sync"
"time"
"github.com/google/uuid"
@@ -117,66 +117,40 @@ func (s *Server) log() *slog.Logger {
// ollamaProxy creates a reverse proxy handler to the Ollama server
func (s *Server) ollamaProxy() http.Handler {
var (
proxy http.Handler
proxyMu sync.Mutex
)
ollamaHost := os.Getenv("OLLAMA_HOST")
if ollamaHost == "" {
ollamaHost = "http://127.0.0.1:11434"
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
proxyMu.Lock()
p := proxy
proxyMu.Unlock()
if !strings.HasPrefix(ollamaHost, "http://") && !strings.HasPrefix(ollamaHost, "https://") {
ollamaHost = "http://" + ollamaHost
}
if p == nil {
proxyMu.Lock()
if proxy == nil {
var err error
for i := range 2 {
if i > 0 {
s.log().Warn("ollama server not ready, retrying", "attempt", i+1)
time.Sleep(1 * time.Second)
}
target, err := url.Parse(ollamaHost)
if err != nil {
s.log().Error("failed to parse OLLAMA_HOST", "error", err, "host", ollamaHost)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "failed to configure proxy", http.StatusInternalServerError)
})
}
err = WaitForServer(context.Background(), 10*time.Second)
if err == nil {
break
}
}
s.log().Info("configuring ollama proxy", "target", target.String())
if err != nil {
proxyMu.Unlock()
s.log().Error("ollama server not ready after retries", "error", err)
http.Error(w, "Ollama server is not ready", http.StatusServiceUnavailable)
return
}
proxy := httputil.NewSingleHostReverseProxy(target)
target := envconfig.Host()
s.log().Info("configuring ollama proxy", "target", target.String())
originalDirector := proxy.Director
proxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy := httputil.NewSingleHostReverseProxy(target)
proxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
originalDirector := newProxy.Director
newProxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
proxy = newProxy
p = newProxy
} else {
p = proxy
}
proxyMu.Unlock()
}
p.ServeHTTP(w, r)
})
return proxy
}
type errHandlerFunc func(http.ResponseWriter, *http.Request) error

View File

@@ -158,16 +158,16 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
case uint32(UI_REQUEST_MSG_ID):
// Requests for the UI must always come from the main event thread
l := int(wParam)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l) //nolint:govet,gosec
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l)
t.app.UIRun(path)
case WM_COPYDATA:
// Handle URL scheme requests from other instances
if lParam != 0 {
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam)) //nolint:govet,gosec
if cds.DwData == 1 { // Our identifier for URL scheme messages
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam))
if cds.DwData == 1 { // Our identifier for URL scheme messages
// Convert the data back to string
data := make([]byte, cds.CbData)
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData]) //nolint:govet,gosec
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData])
urlScheme := string(data)
handleURLSchemeRequest(urlScheme)
lResult = 1 // Return non-zero to indicate success

View File

@@ -182,8 +182,6 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "Ministral3ForCausalLM":
conv = &mistral3CausalModel{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":

View File

@@ -30,15 +30,13 @@ type mistral3Model struct {
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
ScalingBeta float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"text_config"`
VisionModel struct {
@@ -52,9 +50,6 @@ type mistral3Model struct {
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
RopeParameters struct {
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
@@ -77,22 +72,10 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.TextModel.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.TextModel.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.TextModel.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.TextModel.RopeParameters.BetaSlow
if p.TextModel.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.TextModel.RopeParameters.Mscale
}
if p.TextModel.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.TextModel.RopeParameters.MscaleAllDim
}
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
}
if p.TextModel.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.TextModel.RopeParameters.Llama4ScalingBeta
kv["mistral3.rope.scaling_beta"] = p.TextModel.RopeParameters.ScalingBeta
}
// Vision configuration
@@ -105,7 +88,7 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = cmp.Or(p.VisionModel.RopeTheta, p.VisionModel.RopeParameters.RopeTheta)
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex

View File

@@ -1,181 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3CausalModel struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
}
func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.NumHiddenLayers
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.HiddenSize
kv["mistral3.feed_forward_length"] = p.IntermediateSize
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["mistral3.attention.key_length"] = p.HeadDim
kv["mistral3.attention.value_length"] = p.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
if p.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
}
if p.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
}
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
if p.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
return kv
}
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3CausalModel) Replacements() []string {
return []string{
"model.norm", "output_norm",
"model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -37,6 +37,10 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
return nil, err
}
if n <= 0 || n > 100<<20 {
return nil, fmt.Errorf("invalid safetensors file %q (header size: %d): file may be corrupted or a Git LFS pointer", p, n)
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, err

View File

@@ -50,7 +50,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -507,7 +507,7 @@ The `message` object has the following fields:
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1189,7 +1189,7 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
- `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.mdx#valid-parameters-and-values) for a list of parameters)
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
@@ -1698,7 +1698,7 @@ Generate embeddings from a model
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
@@ -1817,7 +1817,7 @@ Generate embeddings from a model
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,46 +0,0 @@
# extract-examples
Extracts code examples from MDX files to a temp directory so you can run them.
## Usage
```shell
go run docs/tools/extract-examples/main.go <mdx-file>
```
## Example
```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```
Output:
```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
- 01_basic.py
- 01_basic.js
- 01_basic.sh
- 02_responses.py
- 02_responses.js
- 02_responses.sh
- 03_vision.py
- 03_vision.js
- 03_vision.sh
Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
To run examples:
cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
npm install # for JS examples
then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```
## How it works
- Parses MDX files looking for fenced code blocks with filenames (e.g., ` ```python basic.py `)
- Groups examples by their `<CodeGroup>` and prefixes filenames with `01_`, `02_`, etc.
- Writes all extracted files to a temp directory

View File

@@ -1,137 +0,0 @@
package main
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
)
func main() {
if len(os.Args) < 2 {
fmt.Fprintln(os.Stderr, "Usage: go run extract-examples.go <mdx-file>")
os.Exit(1)
}
mdxFile := os.Args[1]
f, err := os.Open(mdxFile)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
defer f.Close()
// Create temp directory
tempDir, err := os.MkdirTemp("", "mdx-examples-*")
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating temp dir: %v\n", err)
os.Exit(1)
}
fmt.Printf("Extracting code examples to: %s\n\n", tempDir)
// Patterns
codeBlockStart := regexp.MustCompile("^```([a-zA-Z0-9_-]+)\\s+([^\\s]+)$")
codeGroupStart := regexp.MustCompile("^<CodeGroup")
codeGroupEnd := regexp.MustCompile("^</CodeGroup>")
scanner := bufio.NewScanner(f)
inCodeBlock := false
inCodeGroup := false
var currentFile string
var content strings.Builder
count := 0
codeGroupNum := 0
for scanner.Scan() {
line := scanner.Text()
// Track CodeGroup boundaries
if codeGroupStart.MatchString(line) {
inCodeGroup = true
codeGroupNum++
continue
}
if codeGroupEnd.MatchString(line) {
inCodeGroup = false
continue
}
if inCodeBlock {
if line == "```" {
// End of code block - write file
if currentFile != "" {
outPath := filepath.Join(tempDir, currentFile)
if err := os.WriteFile(outPath, []byte(content.String()), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing %s: %v\n", currentFile, err)
} else {
fmt.Printf(" - %s\n", currentFile)
count++
}
}
inCodeBlock = false
currentFile = ""
content.Reset()
} else {
content.WriteString(line)
content.WriteString("\n")
}
} else {
if matches := codeBlockStart.FindStringSubmatch(line); matches != nil {
inCodeBlock = true
filename := matches[2]
// Prefix with CodeGroup number if inside a CodeGroup
if inCodeGroup {
currentFile = fmt.Sprintf("%02d_%s", codeGroupNum, filename)
} else {
currentFile = filename
}
content.Reset()
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintf(os.Stderr, "Error reading file: %v\n", err)
os.Exit(1)
}
// Write package.json for JavaScript dependencies
packageJSON := `{
"name": "mdx-examples",
"type": "module",
"dependencies": {
"openai": "^4",
"ollama": "^0.5"
}
}
`
if err := os.WriteFile(filepath.Join(tempDir, "package.json"), []byte(packageJSON), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing package.json: %v\n", err)
}
// Write pyproject.toml for Python dependencies
pyprojectTOML := `[project]
name = "mdx-examples"
version = "0.0.0"
dependencies = [
"openai",
"ollama",
]
`
if err := os.WriteFile(filepath.Join(tempDir, "pyproject.toml"), []byte(pyprojectTOML), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing pyproject.toml: %v\n", err)
}
fmt.Printf("\n")
fmt.Printf("Extracted %d file(s) to %s\n", count, tempDir)
fmt.Printf("\n")
fmt.Printf("To run examples:\n")
fmt.Printf("\n")
fmt.Printf(" cd %s\n npm install # for JS examples\n", tempDir)
fmt.Printf("\n")
fmt.Printf("then run individual files with `node file.js`, `python file.py`, `bash file.sh`\n")
}

View File

@@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/ml"
)
type GGML struct {
@@ -551,7 +550,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention ml.FlashAttentionType) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
@@ -792,7 +791,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention == ml.FlashAttentionEnabled {
if useFlashAttention {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
@@ -810,14 +809,6 @@ func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// KVCacheTypeIsQuantized checks if the requested cache type is a quantized type
func (f GGML) KVCacheTypeIsQuantized(cacheType string) bool {
if cacheType == "" || cacheType == "f16" || cacheType == "f32" || cacheType == "bf16" {
return false
}
return true
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]

View File

@@ -487,63 +487,6 @@ func TestEmbedTruncation(t *testing.T) {
}
}
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()
// Test with progressively larger inputs
testCases := []struct {
name string
inputWords int
}{
{"medium_input_256_words", 256},
{"large_input_512_words", 512},
{"very_large_input_800_words", 800},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
words := make([]string, tc.inputWords)
for i := range words {
words[i] = "word"
}
input := strings.Join(words, " ")
req := api.EmbedRequest{
Model: model,
Input: input,
KeepAlive: &api.Duration{Duration: 30 * time.Second},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatalf("embedding failed for %d words: %v", tc.inputWords, err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) == 0 {
t.Fatal("expected non-empty embedding")
}
t.Logf("Successfully embedded %d words (%d tokens)", tc.inputWords, res.PromptEvalCount)
})
}
})
}
}
// TestEmbedStatusCode tests that errors from the embedding endpoint
// properly preserve their HTTP status codes when returned to the client.
// This test specifically checks the error handling path in EmbedHandler

View File

@@ -118,22 +118,18 @@ type ContextParams struct {
c C.struct_llama_context_params
}
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention ml.FlashAttentionType, kvCacheType string) ContextParams {
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
params := C.llama_context_default_params()
params.n_ctx = C.uint(numCtx)
params.n_batch = C.uint(batchSize * numSeqMax)
params.n_ubatch = C.uint(batchSize)
params.n_batch = C.uint(batchSize)
params.n_seq_max = C.uint(numSeqMax)
params.n_threads = C.int(threads)
params.n_threads_batch = params.n_threads
params.embeddings = C.bool(true)
switch flashAttention {
case ml.FlashAttentionEnabled:
params.flash_attn_type = int32(C.LLAMA_FLASH_ATTN_TYPE_ENABLED)
case ml.FlashAttentionDisabled:
params.flash_attn_type = int32(C.LLAMA_FLASH_ATTN_TYPE_DISABLED)
case ml.FlashAttentionAuto:
params.flash_attn_type = int32(C.LLAMA_FLASH_ATTN_TYPE_AUTO)
if flashAttention {
params.flash_attn_type = C.LLAMA_FLASH_ATTN_TYPE_ENABLED
} else {
params.flash_attn_type = C.LLAMA_FLASH_ATTN_TYPE_DISABLED
}
params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

View File

@@ -188,11 +188,6 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
if len(projectors) > 0 && llamaModel != nil {
loadRequest.ProjectorPath = projectors[0]
}
// Determine if the user has forced FA on or off
faUserSet := false
if envconfig.FlashAttention(true) == envconfig.FlashAttention(false) {
faUserSet = true
}
fa := envconfig.FlashAttention(f.FlashAttention())
@@ -210,51 +205,19 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
kvct := strings.ToLower(envconfig.KvCacheType())
if textProcessor == nil {
flashAttention := ml.FlashAttentionAuto
if faUserSet {
if fa {
flashAttention = ml.FlashAttentionEnabled
} else {
flashAttention = ml.FlashAttentionDisabled
}
}
if fa {
slog.Info("enabling flash attention")
loadRequest.FlashAttention = true
if kvct != "" {
if f.KVCacheTypeIsQuantized(kvct) {
if flashAttention != ml.FlashAttentionEnabled {
slog.Warn("OLLAMA_FLASH_ATTENTION must be enabled to use a quantized OLLAMA_KV_CACHE_TYPE", "type", kvct)
loadRequest.KvCacheType = ""
} else if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("unsupported OLLAMA_KV_CACHE_TYPE", "type", kvct)
}
} else {
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("unsupported OLLAMA_KV_CACHE_TYPE", "type", kvct)
}
}
}
loadRequest.FlashAttention = flashAttention
} else {
// For Ollama engine, use our SupportsFlashAttention logic
if fa {
slog.Info("enabling flash attention")
loadRequest.FlashAttention = ml.FlashAttentionEnabled
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
}
} else if kvct != "" && kvct != "f16" {
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
}
} else if kvct != "" && kvct != "f16" {
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
}
gpuLibs := ml.LibraryPaths(gpus)
@@ -472,7 +435,7 @@ type LoadRequest struct {
LoraPath []string
Parallel int
BatchSize int
FlashAttention ml.FlashAttentionType
FlashAttention bool
KvSize int
KvCacheType string
NumThreads int
@@ -511,13 +474,6 @@ func (s *llamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, system
s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
}
// Check if embedding model and adjust batch size accordingly
_, isEmbedding := s.ggml.KV()[fmt.Sprintf("%s.pooling_type", s.ggml.KV().Architecture())]
if isEmbedding && s.loadRequest.BatchSize < s.options.NumCtx {
s.loadRequest.BatchSize = s.options.NumCtx
slog.Info("embedding model detected, setting batch size to context length", "batch_size", s.loadRequest.BatchSize)
}
kv, graphPartialOffload, graphFullOffload := s.ggml.GraphSize(uint64(s.options.NumCtx), uint64(s.loadRequest.BatchSize),
s.loadRequest.Parallel, s.loadRequest.KvCacheType, s.loadRequest.FlashAttention)

View File

@@ -433,111 +433,3 @@ func ChatMiddleware() gin.HandlerFunc {
c.Next()
}
}
type ResponsesWriter struct {
BaseWriter
converter *openai.ResponsesStreamConverter
model string
stream bool
responseID string
itemID string
}
func (w *ResponsesWriter) writeEvent(eventType string, data any) error {
d, err := json.Marshal(data)
if err != nil {
return err
}
_, err = w.ResponseWriter.Write([]byte(fmt.Sprintf("event: %s\ndata: %s\n\n", eventType, d)))
if err != nil {
return err
}
if f, ok := w.ResponseWriter.(http.Flusher); ok {
f.Flush()
}
return nil
}
func (w *ResponsesWriter) writeResponse(data []byte) (int, error) {
var chatResponse api.ChatResponse
if err := json.Unmarshal(data, &chatResponse); err != nil {
return 0, err
}
if w.stream {
w.ResponseWriter.Header().Set("Content-Type", "text/event-stream")
events := w.converter.Process(chatResponse)
for _, event := range events {
if err := w.writeEvent(event.Event, event.Data); err != nil {
return 0, err
}
}
return len(data), nil
}
// Non-streaming response
w.ResponseWriter.Header().Set("Content-Type", "application/json")
response := openai.ToResponse(w.model, w.responseID, w.itemID, chatResponse)
return len(data), json.NewEncoder(w.ResponseWriter).Encode(response)
}
func (w *ResponsesWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(data)
}
return w.writeResponse(data)
}
func ResponsesMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ResponsesRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
chatReq, err := openai.FromResponsesRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
// Check if client requested streaming (defaults to false)
streamRequested := req.Stream != nil && *req.Stream
// Pass streaming preference to the underlying chat request
chatReq.Stream = &streamRequested
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
responseID := fmt.Sprintf("resp_%d", rand.Intn(999999))
itemID := fmt.Sprintf("msg_%d", rand.Intn(999999))
w := &ResponsesWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
converter: openai.NewResponsesStreamConverter(responseID, itemID, req.Model),
model: req.Model,
stream: streamRequested,
responseID: responseID,
itemID: itemID,
}
// Set headers based on streaming mode
if streamRequested {
c.Writer.Header().Set("Content-Type", "text/event-stream")
c.Writer.Header().Set("Cache-Control", "no-cache")
c.Writer.Header().Set("Connection", "keep-alive")
}
c.Writer = w
c.Next()
}
}

View File

@@ -74,7 +74,7 @@ type BackendParams struct {
GPULayers GPULayersList
// FlashAttention indicates that we should use a fused flash attention kernel
FlashAttention FlashAttentionType
FlashAttention bool
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))

View File

@@ -109,7 +109,7 @@ type Backend struct {
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
flashAttention ml.FlashAttentionType
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
@@ -684,7 +684,7 @@ func (b *Backend) NewContextSize(n int) ml.Context {
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention == ml.FlashAttentionEnabled {
if b.flashAttention {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 256, PermutedV: true}
@@ -1676,7 +1676,7 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sin
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention == ml.FlashAttentionEnabled {
if t.b.flashAttention {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)

View File

@@ -492,32 +492,6 @@ func FlashAttentionSupported(l []DeviceInfo) bool {
return true
}
type FlashAttentionType int32
const (
// Aligned with llama_flash_attn_type
FlashAttentionAuto FlashAttentionType = -1
FlashAttentionDisabled FlashAttentionType = 0
FlashAttentionEnabled FlashAttentionType = 1
)
func (f FlashAttentionType) LogValue() slog.Value {
return slog.AnyValue(f.String())
}
func (f FlashAttentionType) String() string {
switch f {
case FlashAttentionAuto:
return "Auto"
case FlashAttentionDisabled:
return "Disabled"
case FlashAttentionEnabled:
return "Enabled"
default:
return "unknown"
}
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variables
// Set mustFilter true to enable filtering of CUDA devices

View File

@@ -2,6 +2,7 @@ package gemma3
import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
@@ -12,26 +13,25 @@ import (
)
type TextConfig struct {
hiddenSize, contextLength, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase float32
largeModelScaling bool
slidingWindow uint32
slidingWindowPattern []bool
ropeBase float32
ropeType string
ropeOriginalContext int
ropeExtrapolation float32
ropeBetaFast float32
ropeBetaSlow float32
finalLogitSoftcap float32
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase float32
largeModelScaling bool
slidingWindowPattern []bool
ropeBase float32
ropeType string
ropeOriginalContext int
ropeExtrapolation float32
ropeBetaFast float32
ropeBetaSlow float32
finalLogitSoftcap float32
}
func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, base, scale float32) ml.Tensor {
func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, base float32) ml.Tensor {
ropeOpts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(scale))))
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
ropeOpts = append(ropeOpts,
rope.WithOriginalContextLength(o.ropeOriginalContext),
rope.WithExtrapolationFactor(o.ropeExtrapolation),
@@ -41,7 +41,7 @@ func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positi
)
}
return nn.RoPE(ctx, states, positions, o.attnKeyLen, base, 1./scale, ropeOpts...)
return nn.RoPE(ctx, states, positions, o.attnKeyLen, base, 1./o.ropeScale, ropeOpts...)
}
type TextModel struct {
@@ -55,9 +55,6 @@ type TextModel struct {
const (
gemmaGlobalCacheCount = 6
gemma1BLayerCount = 26
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
@@ -73,7 +70,6 @@ func newTextModel(c fs.Config) *TextModel {
Layers: make([]TextLayer, numBlocks),
TextConfig: &TextConfig{
hiddenSize: int(c.Uint("embedding_length")),
contextLength: int(c.Uint("context_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length", 256)),
@@ -81,7 +77,6 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeBase: c.Float("rope.freq_base", 1000000.0),
slidingWindow: c.Uint("attention.sliding_window"),
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
ropeType: c.String("rope.scaling.type"),
ropeOriginalContext: int(c.Uint("rope.scaling.original_context_length")),
@@ -93,20 +88,14 @@ func newTextModel(c fs.Config) *TextModel {
},
}
// Apply corrections for older versions of the Gemma 3 models
// by looking at whether they use sliding window attention and
// based on their layer counts.
if m.TextConfig.slidingWindow < uint32(m.TextConfig.contextLength) {
switch numBlocks {
case gemma1BLayerCount:
// The 1B model has final logit softcapping set to 30.0
// but it should be 0.0
m.TextConfig.finalLogitSoftcap = 0.0
case gemma4BLayerCount, gemma12BLayerCount, gemma27BLayerCount:
// The 4B, 12B, and 27B models have rope scale unset
// but it shuold be set to 8.0
m.TextConfig.ropeScale = 8.0
}
// Google's Gemma 3 release with sliding window attention does
// not use final logit softcapping, and so force it to 0.0
// TODO (jmorganca): this should ideally be set to 0.0 in the
// model configuration instead of here, as future versions of
// models may include both sliding window attention and final
// logit softcapping.
if slices.Contains(m.TextConfig.slidingWindowPattern, true) {
m.TextConfig.finalLogitSoftcap = 0.0
}
if numBlocks == gemma27BLayerCount {
@@ -125,31 +114,31 @@ type TextSelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (opts *TextConfig) ropeValuesForLayer(layer int) (base float32, scale float32) {
func (opts *TextConfig) ropeBaseForLayer(layer int) float32 {
if opts.slidingWindowPattern != nil && opts.slidingWindowPattern[layer] {
return opts.ropeLocalBase, 1.0
return opts.ropeLocalBase
}
// Standard Gemma3: only every n-th layer is global,
// where n = gemmaGlobalCacheCount, otherwise use
// the local rope base
if (layer+1)%gemmaGlobalCacheCount > 0 {
return opts.ropeLocalBase, 1.0
return opts.ropeLocalBase
}
// default to global rope base
return opts.ropeBase, opts.ropeScale
return opts.ropeBase
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeBase, ropeScale := opts.ropeValuesForLayer(layer)
ropeBase := opts.ropeBaseForLayer(layer)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs, ropeBase, ropeScale)
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs, ropeBase)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -160,7 +149,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs, ropeBase, ropeScale)
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs, ropeBase)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -173,8 +162,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeBase, ropeScale := m.TextConfig.ropeValuesForLayer(layer)
return m.applyRotaryPositionEmbeddings(ctx, key, shift, ropeBase, ropeScale), nil
return m.applyRotaryPositionEmbeddings(ctx, key, shift, m.TextConfig.ropeBaseForLayer(layer)), nil
}
type TextMLP struct {

View File

@@ -8,7 +8,6 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
@@ -18,30 +17,10 @@ type TextOptions struct {
eps, ropeBase, ropeScale float32
ropeOrigPosEmbeddings int
ropeScalingBeta float32
ropeType string
ropeExtrapolation float32
ropeBetaFast float32
ropeBetaSlow float32
ropeMscale float32
ropeMscaleAllDim float32
}
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
var ropeOpts []func(*rope.Options)
if o.ropeType == "yarn" {
if o.ropeMscale != 0 && o.ropeMscaleAllDim != 0 {
ropeOpts = append(ropeOpts, rope.WithAttentionFactor(1.0/float32(0.1*math.Log(float64(o.ropeScale))+1.0)))
}
ropeOpts = append(ropeOpts,
rope.WithOriginalContextLength(o.ropeOrigPosEmbeddings),
rope.WithExtrapolationFactor(o.ropeExtrapolation),
rope.WithBetaFast(o.ropeBetaFast),
rope.WithBetaSlow(o.ropeBetaSlow),
)
}
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale, ropeOpts...)
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale)
}
type TextModel struct {
@@ -171,15 +150,9 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeOrigPosEmbeddings: int(c.Uint("rope.scaling.original_context_length")),
ropeScalingBeta: c.Float("rope.scaling_beta", 0.1),
ropeBetaFast: c.Float("rope.scaling.beta_fast", 32.0),
ropeBetaSlow: c.Float("rope.scaling.beta_slow", 1.0),
ropeType: c.String("rope.scaling.type"),
ropeMscale: c.Float("rope.scaling.mscale"),
ropeMscaleAllDim: c.Float("rope.scaling.mscale_all_dim"),
ropeExtrapolation: c.Float("rope.scaling.extrapolation_factor", 1),
ropeScalingBeta: c.Float("rope.scaling_beta"),
},
}
}

View File

@@ -1,292 +0,0 @@
package parsers
import (
"encoding/json"
"errors"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type DeepSeekParserState int
const (
DeepSeekCollectingThinking DeepSeekParserState = iota
DeepSeekCollectingContent
DeepSeekCollectingToolCalls
DeepSeekCollectingToolOutput
)
const (
deepseekThinkingCloseTag = "</think>"
deepseekToolCallsBeginTag = "<tool▁calls▁begin>"
deepseekToolCallsEndTag = "<tool▁calls▁end>"
deepseekToolCallBeginTag = "<tool▁call▁begin>"
deepseekToolCallEndTag = "<tool▁call▁end>"
deepseekToolSepTag = "<tool▁sep>"
deepseekToolOutputBeginTag = "<tool▁output▁begin>"
deepseekToolOutputEndTag = "<tool▁output▁end>"
)
type DeepSeekParser struct {
state DeepSeekParserState
buffer strings.Builder
hasThinkingSupport bool
}
func (p *DeepSeekParser) HasToolSupport() bool {
return true
}
func (p *DeepSeekParser) HasThinkingSupport() bool {
return p.hasThinkingSupport
}
func (p *DeepSeekParser) setInitialState(lastMessage *api.Message, tools []api.Tool, thinkValue *api.ThinkValue) {
prefill := lastMessage != nil && lastMessage.Role == "assistant"
// Check both model capability AND request preference
thinkingEnabled := p.HasThinkingSupport() && (thinkValue == nil || thinkValue.Bool())
if !thinkingEnabled {
p.state = DeepSeekCollectingContent
return
}
if prefill && lastMessage.Content != "" {
p.state = DeepSeekCollectingContent
return
}
p.state = DeepSeekCollectingThinking
}
func (p *DeepSeekParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.setInitialState(lastMessage, tools, thinkValue)
return tools
}
type deepseekEvent interface {
isDeepSeekEvent()
}
type deepseekEventThinkingContent struct {
content string
}
type deepseekEventContent struct {
content string
}
type deepseekEventToolCall struct {
toolCall api.ToolCall
}
func (deepseekEventThinkingContent) isDeepSeekEvent() {}
func (deepseekEventContent) isDeepSeekEvent() {}
func (deepseekEventToolCall) isDeepSeekEvent() {}
func (p *DeepSeekParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case deepseekEventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case deepseekEventThinkingContent:
thinkingSb.WriteString(event.content)
case deepseekEventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *DeepSeekParser) parseEvents() []deepseekEvent {
var all []deepseekEvent
keepLooping := true
for keepLooping {
var events []deepseekEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
func (p *DeepSeekParser) eat() ([]deepseekEvent, bool) {
var events []deepseekEvent
bufStr := p.buffer.String()
if bufStr == "" {
return events, false
}
switch p.state {
case DeepSeekCollectingThinking:
if strings.Contains(bufStr, deepseekThinkingCloseTag) { // thinking[</think>] -> content
split := strings.SplitN(bufStr, deepseekThinkingCloseTag, 2)
thinking := split[0]
thinking = strings.TrimRightFunc(thinking, unicode.IsSpace)
remaining := split[1]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingContent
if len(thinking) > 0 {
events = append(events, deepseekEventThinkingContent{content: thinking})
}
return events, true
} else if overlapLen := overlap(bufStr, deepseekThinkingCloseTag); overlapLen > 0 { // partial </think>
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, deepseekEventThinkingContent{content: unambiguous})
}
return events, false
} else { // otherwise its thinking content
whitespaceLen := trailingWhitespaceLen(bufStr)
ambiguousStart := len(bufStr) - whitespaceLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, deepseekEventThinkingContent{content: unambiguous})
}
return events, false
}
case DeepSeekCollectingContent:
switch {
case strings.Contains(bufStr, deepseekToolCallsBeginTag): // content[<tool▁calls▁begin>] -> tool calls
split := strings.SplitN(bufStr, deepseekToolCallsBeginTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingToolCalls
if len(contentBefore) > 0 {
events = append(events, deepseekEventContent{content: contentBefore})
}
return events, true
case strings.Contains(bufStr, deepseekToolOutputBeginTag): // content[<tool▁output▁begin>] -> tool output
split := strings.SplitN(bufStr, deepseekToolOutputBeginTag, 2)
contentBefore := split[0] // Don't trim whitespace - preserve spaces
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingToolOutput
if len(contentBefore) > 0 {
events = append(events, deepseekEventContent{content: contentBefore})
}
return events, true
default: // otherwise its content
p.buffer.Reset()
if len(bufStr) > 0 {
events = append(events, deepseekEventContent{content: bufStr})
}
return events, false
}
case DeepSeekCollectingToolCalls:
if idx := strings.Index(bufStr, deepseekToolCallBeginTag); idx != -1 {
startIdx := idx + len(deepseekToolCallBeginTag)
if endIdx := strings.Index(bufStr[startIdx:], deepseekToolCallEndTag); endIdx != -1 {
toolCallContent := bufStr[startIdx : startIdx+endIdx]
if toolCall, err := p.parseToolCallContent(toolCallContent); err == nil {
remaining := bufStr[startIdx+endIdx+len(deepseekToolCallEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
events = append(events, deepseekEventToolCall{toolCall: toolCall})
return events, true
} else {
slog.Warn("deepseek tool call parsing failed", "error", err)
}
}
}
if idx := strings.Index(bufStr, deepseekToolCallsEndTag); idx != -1 {
remaining := bufStr[idx+len(deepseekToolCallsEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingContent
return events, true
}
return events, false
case DeepSeekCollectingToolOutput:
if idx := strings.Index(bufStr, deepseekToolOutputEndTag); idx != -1 {
toolOutputContent := bufStr[:idx]
remaining := bufStr[idx+len(deepseekToolOutputEndTag):]
// Don't trim whitespace - preserve spaces after tool output tags
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingContent
if len(toolOutputContent) > 0 {
events = append(events, deepseekEventContent{content: toolOutputContent})
}
return events, true
}
return events, false
}
return events, false
}
func (p *DeepSeekParser) parseToolCallContent(content string) (api.ToolCall, error) {
// Expected format: tool_name<tool▁sep>{args}
parts := strings.SplitN(content, deepseekToolSepTag, 2)
if len(parts) < 2 {
return api.ToolCall{}, errors.New("invalid format")
}
toolName := strings.TrimSpace(parts[0])
argsJSON := strings.TrimSpace(parts[1])
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(argsJSON), &args); err != nil {
return api.ToolCall{}, err
}
return api.ToolCall{
Function: api.ToolCallFunction{
Name: toolName,
Arguments: args,
},
}, nil
}

View File

@@ -1,721 +0,0 @@
package parsers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestDeepSeekParser(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
hasThinking bool
}{
{
name: "simple_content",
input: "Hello, how are you?",
expectedContent: "Hello, how are you?",
hasThinking: false,
},
{
name: "thinking_content",
input: "I need to think about this...</think>The answer is 42.",
expectedThinking: "I need to think about this...",
expectedContent: "The answer is 42.",
hasThinking: true,
},
{
name: "no_thinking_simple",
input: "Just a regular response.",
expectedContent: "Just a regular response.",
hasThinking: false,
},
{
name: "thinking_with_newlines",
input: "Let me think:\n- Point 1\n- Point 2</think>\n\nHere's my answer.",
expectedThinking: "Let me think:\n- Point 1\n- Point 2",
expectedContent: "Here's my answer.",
hasThinking: true,
},
{
name: "tool_call_simple",
input: "I'll check the weather.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Paris\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "I'll check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
hasThinking: false,
},
{
name: "multiple_tool_calls",
input: "Getting weather for both cities.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Paris\"}<tool▁call▁end><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"London\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Getting weather for both cities.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "London",
},
},
},
},
hasThinking: false,
},
{
name: "tool_output",
input: "Here's the weather: <tool▁output▁begin>Temperature: 22°C, Sunny<tool▁output▁end> Hope that helps!",
expectedContent: "Here's the weather: Temperature: 22°C, Sunny Hope that helps!",
hasThinking: false,
},
{
name: "complex_tool_arguments",
input: "Processing data.<tool▁calls▁begin><tool▁call▁begin>process_data<tool▁sep>{\"items\":[\"item1\",\"item2\"],\"config\":{\"enabled\":true,\"threshold\":0.95}}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Processing data.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []interface{}{"item1", "item2"},
"config": map[string]interface{}{"enabled": true, "threshold": 0.95},
},
},
},
},
hasThinking: false,
},
{
name: "thinking_with_tool_call", // technically this can't happen, but the parser can handle it
input: "Let me check the weather...</think>I'll get that for you.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Paris\"}<tool▁call▁end><tool▁calls▁end>",
expectedThinking: "Let me check the weather...",
expectedContent: "I'll get that for you.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
hasThinking: true,
},
{
name: "empty_content",
input: "",
expectedContent: "",
hasThinking: false,
},
{
name: "only_thinking",
input: "Just thinking content</think>",
expectedThinking: "Just thinking content",
expectedContent: "",
hasThinking: true,
},
{
name: "multiple_tool_outputs",
input: "Results: <tool▁output▁begin>Paris: 22°C<tool▁output▁end> and <tool▁output▁begin>London: 18°C<tool▁output▁end>",
expectedContent: "Results: Paris: 22°C and London: 18°C",
hasThinking: false,
},
{
name: "unicode_content",
input: "مرحبا بالعالم! 你好世界! 🌍",
expectedContent: "مرحبا بالعالم! 你好世界! 🌍",
hasThinking: false,
},
{
name: "emoji_passthrough",
input: "Task completed ✅ 🎉",
expectedContent: "Task completed ✅ 🎉",
hasThinking: false,
},
{
name: "emoji_after_tool_call",
input: "I'll help you.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Tokyo\"}<tool▁call▁end><tool▁calls▁end>完成 ✅",
expectedContent: "I'll help you.完成 ✅",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
hasThinking: false,
},
{
name: "newlines_and_whitespace",
input: "Line 1\n\nLine 3\t\tTabbed content",
expectedContent: "Line 1\n\nLine 3\t\tTabbed content",
hasThinking: false,
},
{
name: "thinking_with_unicode",
input: "我在思考这个问题...</think>答案是42。",
expectedThinking: "我在思考这个问题...",
expectedContent: "答案是42。",
hasThinking: true,
},
{
name: "tool_call_with_unicode_args",
input: "Searching for information.<tool▁calls▁begin><tool▁call▁begin>search<tool▁sep>{\"query\":\"北京天气\",\"language\":\"中文\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Searching for information.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "search",
Arguments: api.ToolCallFunctionArguments{
"query": "北京天气",
"language": "中文",
},
},
},
},
hasThinking: false,
},
{
name: "tool_output_with_unicode",
input: "天气信息: <tool▁output▁begin>北京: 25°C, 晴天<tool▁output▁end> 希望对您有帮助!",
expectedContent: "天气信息: 北京: 25°C, 晴天 希望对您有帮助!",
hasThinking: false,
},
{
name: "mixed_content_with_special_chars",
input: "Price: $100 & tax @ 10% = $110 <tool▁output▁begin>Total: $110<tool▁output▁end> (final)",
expectedContent: "Price: $100 & tax @ 10% = $110 Total: $110 (final)",
hasThinking: false,
},
{
name: "tool_call_with_special_chars",
input: "Processing data.<tool▁calls▁begin><tool▁call▁begin>execute_command<tool▁sep>{\"command\":\"ls && echo \\\"done\\\"\",\"path\":\"/home/user\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Processing data.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "execute_command",
Arguments: api.ToolCallFunctionArguments{
"command": "ls && echo \"done\"",
"path": "/home/user",
},
},
},
},
hasThinking: false,
},
{
name: "thinking_with_special_chars",
input: "Let me calculate: 2+2=4 & 3*3=9...</think>The results are correct!",
expectedThinking: "Let me calculate: 2+2=4 & 3*3=9...",
expectedContent: "The results are correct!",
hasThinking: true,
},
{
name: "empty_tool_call_args",
input: "Pinging server.<tool▁calls▁begin><tool▁call▁begin>ping<tool▁sep>{}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Pinging server.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "ping",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
hasThinking: false,
},
{
name: "empty_tool_output",
input: "Checking status: <tool▁output▁begin><tool▁output▁end> No output received.",
expectedContent: "Checking status: No output received.",
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
content, thinking, calls, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedCalls, calls); diff != "" {
t.Errorf("Tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestDeepSeekParser_Streaming(t *testing.T) {
tests := []struct {
name string
chunks []string
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
hasThinking bool
}{
{
name: "streaming_simple_content",
chunks: []string{"Hello, ", "how are ", "you?"},
expectedContent: "Hello, how are you?",
hasThinking: false,
},
{
name: "streaming_thinking",
chunks: []string{"I need to ", "think about this", "...</think>", "The answer is 42."},
expectedThinking: "I need to think about this...",
expectedContent: "The answer is 42.",
hasThinking: true,
},
{
name: "streaming_tool_call",
chunks: []string{"I'll check weather.", "<tool▁calls▁begin>", "<tool▁call▁begin>get_weather", "<tool▁sep>{\"location\":\"Paris\"}", "<tool▁call▁end><tool▁calls▁end>"},
expectedContent: "I'll check weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
hasThinking: false,
},
{
name: "streaming_thinking_with_partial_tag",
chunks: []string{"Thinking about this", "...</", "think>", "Done thinking."},
expectedThinking: "Thinking about this...",
expectedContent: "Done thinking.",
hasThinking: true,
},
{
name: "streaming_tool_output",
chunks: []string{"Weather info: ", "<tool▁output▁begin>", "25°C, Sunny", "<tool▁output▁end>", " Enjoy!"},
expectedContent: "Weather info: 25°C, Sunny Enjoy!",
hasThinking: false,
},
{
name: "streaming_with_split_tags",
chunks: []string{"Content before ", "<tool▁calls▁begin><tool▁call▁begin>test", "<tool▁sep>{}", "<tool▁call▁end><tool▁calls▁end>", " after"},
expectedContent: "Content before after",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
hasThinking: false,
},
{
name: "streaming_thinking_with_split_end_tag",
chunks: []string{"Thinking content", "</th", "ink>", "Regular content"},
expectedThinking: "Thinking content",
expectedContent: "Regular content",
hasThinking: true,
},
{
name: "streaming_unicode_content",
chunks: []string{"مرحبا ", "بالعالم! ", "你好", "世界!"},
expectedContent: "مرحبا بالعالم! 你好世界!",
hasThinking: false,
},
{
name: "streaming_multiple_tool_outputs",
chunks: []string{"Results: ", "<tool▁output▁begin>", "Paris: 22°C", "<tool▁output▁end>", " and ", "<tool▁output▁begin>", "London: 18°C", "<tool▁output▁end>"},
expectedContent: "Results: Paris: 22°C and London: 18°C",
hasThinking: false,
},
{
name: "streaming_tool_call_with_split_json",
chunks: []string{"Processing.", "<tool▁calls▁begin><tool▁call▁begin>calc<tool▁sep>{\"x\":", "42,\"y\":", "24}<tool▁call▁end><tool▁calls▁end>"},
expectedContent: "Processing.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "calc",
Arguments: api.ToolCallFunctionArguments{
"x": float64(42),
"y": float64(24),
},
},
},
},
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
var allContent, allThinking string
var allCalls []api.ToolCall
for i, chunk := range tt.chunks {
done := i == len(tt.chunks)-1
content, thinking, calls, err := parser.Add(chunk, done)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
}
if diff := cmp.Diff(tt.expectedContent, allContent); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, allThinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedCalls, allCalls); diff != "" {
t.Errorf("Tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestDeepSeekParser_HasThinkingSupport(t *testing.T) {
tests := []struct {
name string
hasThinking bool
expectedSupport bool
}{
{
name: "thinking_enabled",
hasThinking: true,
expectedSupport: true,
},
{
name: "thinking_disabled",
hasThinking: false,
expectedSupport: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
if got := parser.HasThinkingSupport(); got != tt.expectedSupport {
t.Errorf("HasThinkingSupport() = %v, want %v", got, tt.expectedSupport)
}
})
}
}
func TestDeepSeekParser_HasToolSupport(t *testing.T) {
parser := &DeepSeekParser{}
if !parser.HasToolSupport() {
t.Error("HasToolSupport() should return true")
}
}
func TestDeepSeekParser_Init(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: true}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "test_tool",
},
},
}
returnedTools := parser.Init(tools, nil, &api.ThinkValue{Value: true})
if diff := cmp.Diff(tools, returnedTools); diff != "" {
t.Errorf("Init() returned tools mismatch (-want +got):\n%s", diff)
}
// Test initial state is set to thinking when enabled
if parser.state != DeepSeekCollectingThinking {
t.Errorf("Expected initial state to be DeepSeekCollectingThinking, got %v", parser.state)
}
}
func TestDeepSeekParser_parseToolCallContent(t *testing.T) {
tests := []struct {
name string
content string
expected api.ToolCall
expectError bool
}{
{
name: "valid_tool_call",
content: "get_weather<tool▁sep>{\"location\":\"Paris\"}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
{
name: "complex_arguments",
content: "process_data<tool▁sep>{\"items\":[\"a\",\"b\"],\"config\":{\"enabled\":true}}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []interface{}{"a", "b"},
"config": map[string]interface{}{"enabled": true},
},
},
},
},
{
name: "empty_arguments",
content: "ping<tool▁sep>{}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "ping",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
{
name: "unicode_in_tool_name",
content: "获取天气<tool▁sep>{\"城市\":\"北京\"}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "获取天气",
Arguments: api.ToolCallFunctionArguments{
"城市": "北京",
},
},
},
},
{
name: "special_chars_in_arguments",
content: "execute<tool▁sep>{\"command\":\"ls && echo \\\"done\\\"\",\"path\":\"/home/user\"}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "execute",
Arguments: api.ToolCallFunctionArguments{
"command": "ls && echo \"done\"",
"path": "/home/user",
},
},
},
},
{
name: "numeric_arguments",
content: "calculate<tool▁sep>{\"x\":3.14,\"y\":42,\"enabled\":true}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: api.ToolCallFunctionArguments{
"x": 3.14,
"y": float64(42),
"enabled": true,
},
},
},
},
{
name: "invalid_format_no_separator",
content: "get_weather{\"location\":\"Paris\"}",
expectError: true,
},
{
name: "invalid_json",
content: "get_weather<tool▁sep>{invalid json}",
expectError: true,
},
{
name: "empty_tool_name",
content: "<tool▁sep>{\"arg\":\"value\"}",
expectError: false, // This should work, just empty name
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "",
Arguments: api.ToolCallFunctionArguments{
"arg": "value",
},
},
},
},
{
name: "missing_json_part",
content: "tool_name<tool▁sep>",
expectError: true,
},
}
parser := &DeepSeekParser{}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := parser.parseToolCallContent(tt.content)
if tt.expectError {
if err == nil {
t.Error("Expected error but got none")
}
return
}
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if diff := cmp.Diff(tt.expected, result); diff != "" {
t.Errorf("parseToolCallContent() mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestDeepSeekParser_EdgeCases(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
hasThinking bool
}{
{
name: "nested_think_tags_in_thinking",
input: "Outer thinking <think>inner</think> content</think>Final content",
expectedThinking: "Outer thinking <think>inner",
expectedContent: "content</think>Final content",
hasThinking: true,
},
{
name: "multiple_think_close_tags",
input: "First thought</think>Second thought</think>Final content",
expectedThinking: "First thought",
expectedContent: "Second thought</think>Final content",
hasThinking: true,
},
{
name: "empty_thinking_content",
input: "</think>Just content",
expectedThinking: "",
expectedContent: "Just content",
hasThinking: true,
},
{
name: "thinking_disabled_with_think_tags",
input: "Some content</think>More content",
expectedContent: "Some content</think>More content",
hasThinking: false,
},
{
name: "malformed_tool_call_missing_sep",
input: "Testing.<tool▁calls▁begin><tool▁call▁begin>bad_tool{\"arg\":\"value\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Testing.",
hasThinking: false,
},
{
name: "malformed_tool_call_invalid_json",
input: "Testing.<tool▁calls▁begin><tool▁call▁begin>bad_tool<tool▁sep>{invalid json}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Testing.",
hasThinking: false,
},
{
name: "partial_tool_tag_at_end",
input: "Content with partial <tool▁calls▁",
expectedContent: "Content with partial <tool▁calls▁",
hasThinking: false,
},
{
name: "partial_think_tag_at_end",
input: "Thinking content</th",
expectedContent: "Thinking content</th",
hasThinking: false,
},
{
name: "partial_think_tag_at_end_with_thinking",
input: "Thinking content</th",
expectedThinking: "Thinking content",
expectedContent: "",
hasThinking: true,
},
{
name: "whitespace_only_content",
input: " \n\t ",
expectedContent: " \n\t ",
hasThinking: false,
},
{
name: "tool_output_with_newlines",
input: "Output:\n<tool▁output▁begin>Line 1\nLine 2\nLine 3<tool▁output▁end>\nDone.",
expectedContent: "Output:\nLine 1\nLine 2\nLine 3\nDone.",
hasThinking: false,
},
{
name: "consecutive_tool_calls",
input: "First.<tool▁calls▁begin><tool▁call▁begin>tool1<tool▁sep>{}<tool▁call▁end><tool▁calls▁end>Second.<tool▁calls▁begin><tool▁call▁begin>tool2<tool▁sep>{}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "First.",
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
content, thinking, _, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -58,8 +58,6 @@ func ParserForName(name string) Parser {
return harmony.NewHarmonyMessageHandler()
case "cogito":
return &CogitoParser{}
case "deepseek":
return &DeepSeekParser{hasThinkingSupport: true}
case "olmo3":
return &Olmo3Parser{}
case "olmo3-think":

View File

@@ -10,15 +10,12 @@ import (
)
const (
olmo3DefaultSystemMessage = "You are a helpful function-calling AI assistant. "
olmo31DefaultSystemMessage = "You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai. "
olmo3NoFunctionsMessage = "You do not currently have access to any functions. "
olmo3WithFunctionsMessage = "You are provided with function signatures within <functions></functions> XML tags. You may call one or more functions to assist with the user query. Output any function calls within <function_calls></function_calls> XML tags. Do not make assumptions about what values to plug into functions."
olmo3DefaultSystemMessage = "You are a helpful function-calling AI assistant. "
olmo3NoFunctionsMessage = "You do not currently have access to any functions. "
olmo3WithFunctionsMessage = "You are provided with function signatures within <functions></functions> XML tags. You may call one or more functions to assist with the user query. Output any function calls within <function_calls></function_calls> XML tags. Do not make assumptions about what values to plug into functions."
)
type Olmo3Renderer struct {
UseExtendedSystemMessage bool
}
type Olmo3Renderer struct{}
func (r *Olmo3Renderer) Render(messages []api.Message, tools []api.Tool, _ *api.ThinkValue) (string, error) {
var sb strings.Builder
@@ -54,11 +51,7 @@ func (r *Olmo3Renderer) Render(messages []api.Message, tools []api.Tool, _ *api.
} else {
// Default system message - single newline after "system"
sb.WriteString("<|im_start|>system\n")
if r.UseExtendedSystemMessage {
sb.WriteString(olmo31DefaultSystemMessage)
} else {
sb.WriteString(olmo3DefaultSystemMessage)
}
sb.WriteString(olmo3DefaultSystemMessage)
if len(tools) > 0 {
functionsJSON, err := marshalWithSpaces(tools)
@@ -147,7 +140,7 @@ func (r *Olmo3Renderer) Render(messages []api.Message, tools []api.Tool, _ *api.
}
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n")
sb.WriteString("<|im_start|>assistant\n\n")
}
return sb.String(), nil

View File

@@ -24,7 +24,7 @@ func TestOlmo3Renderer(t *testing.T) {
"You are a helpful function-calling AI assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "with system message no tools",
@@ -36,7 +36,7 @@ func TestOlmo3Renderer(t *testing.T) {
"You are a helpful assistant.<|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "with system message and tools",
@@ -64,7 +64,7 @@ func TestOlmo3Renderer(t *testing.T) {
`You are a helpful assistant.<functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"What is the weather?<|im_end|>\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "default system with tools - includes function instruction",
@@ -93,7 +93,7 @@ func TestOlmo3Renderer(t *testing.T) {
`<functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"What is the weather?<|im_end|>\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "assistant with tool calls - function call syntax",
@@ -141,7 +141,7 @@ func TestOlmo3Renderer(t *testing.T) {
`Let me check the weather.<function_calls>get_weather(location="San Francisco")</function_calls><|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "multi-turn conversation",
@@ -159,7 +159,7 @@ func TestOlmo3Renderer(t *testing.T) {
"Hi there!<|im_end|>\n" +
"<|im_start|>user\n" +
"How are you?<|im_end|>\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "parallel tool calls - newline separated",
@@ -214,7 +214,7 @@ func TestOlmo3Renderer(t *testing.T) {
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 55}<|im_end|>` + "\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "tool call with multiple arguments",
@@ -259,7 +259,7 @@ func TestOlmo3Renderer(t *testing.T) {
"Book a flight<|im_end|>\n" +
"<|im_start|>assistant\n" +
`<function_calls>book_flight(from="SFO", to="NYC")</function_calls><|im_end|>` + "\n" +
"<|im_start|>assistant\n",
"<|im_start|>assistant\n\n",
},
{
name: "assistant prefill - no generation prompt",

View File

@@ -1,31 +1,31 @@
package renderers
import (
"encoding/json"
"strings"
"github.com/ollama/ollama/api"
)
type Olmo3ThinkVariant int
const (
// Olmo3Think32B is for allenai/Olmo-3-32B-Think
Olmo3Think32B Olmo3ThinkVariant = iota
// Olmo31Think is for allenai/Olmo-3-7B-Think and allenai/Olmo-3.1-32B-Think (includes model info)
Olmo31Think
olmo3ThinkDefaultSystemMessage = "You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai."
olmo3ThinkNoFunctionsMessage = " You do not currently have access to any functions."
)
const (
olmo3ThinkFunctionsSuffix = " You do not currently have access to any functions. <functions></functions>"
olmo3Think32BSystemMessage = "You are a helpful AI assistant."
olmo31ThinkSystemMessage = "You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai."
)
type Olmo3ThinkRenderer struct{}
type Olmo3ThinkRenderer struct {
Variant Olmo3ThinkVariant
type olmo3ThinkToolCall struct {
ID string `json:"id,omitempty"`
Type string `json:"type,omitempty"`
Function olmo3ThinkToolCallFunc `json:"function"`
}
func (r *Olmo3ThinkRenderer) Render(messages []api.Message, _ []api.Tool, _ *api.ThinkValue) (string, error) {
type olmo3ThinkToolCallFunc struct {
Name string `json:"name"`
Arguments string `json:"arguments"`
}
func (r *Olmo3ThinkRenderer) Render(messages []api.Message, tools []api.Tool, _ *api.ThinkValue) (string, error) {
var sb strings.Builder
var systemMessage *api.Message
@@ -37,31 +37,34 @@ func (r *Olmo3ThinkRenderer) Render(messages []api.Message, _ []api.Tool, _ *api
}
continue
}
// Skip tool messages - Think models don't support tools
if message.Role == "tool" {
continue
}
filteredMessages = append(filteredMessages, message)
}
sb.WriteString("<|im_start|>system\n")
systemContent := olmo3ThinkDefaultSystemMessage
if systemMessage != nil {
sb.WriteString(systemMessage.Content)
sb.WriteString(olmo3ThinkFunctionsSuffix)
} else {
// Default system message varies by variant
switch r.Variant {
case Olmo3Think32B:
sb.WriteString(olmo3Think32BSystemMessage)
default: // Olmo3Think7B, Olmo31Think use same template - diverges from HF but confirmed difference from team
sb.WriteString(olmo31ThinkSystemMessage)
}
systemContent = systemMessage.Content
}
sb.WriteString("<|im_start|>system\n")
sb.WriteString(systemContent)
if len(tools) > 0 {
functionsJSON, err := marshalWithSpaces(tools)
if err != nil {
return "", err
}
sb.WriteString(" <functions>")
sb.WriteString(string(functionsJSON))
sb.WriteString("</functions>")
} else {
sb.WriteString(olmo3ThinkNoFunctionsMessage)
sb.WriteString(" <functions></functions>")
}
sb.WriteString("<|im_end|>\n")
for _, message := range filteredMessages {
for i, message := range filteredMessages {
lastMessage := i == len(filteredMessages)-1
switch message.Role {
case "user":
sb.WriteString("<|im_start|>user\n")
@@ -70,15 +73,58 @@ func (r *Olmo3ThinkRenderer) Render(messages []api.Message, _ []api.Tool, _ *api
case "assistant":
sb.WriteString("<|im_start|>assistant\n")
if message.Content != "" {
sb.WriteString(message.Content)
}
if len(message.ToolCalls) > 0 {
toolCalls := make([]olmo3ThinkToolCall, len(message.ToolCalls))
for j, tc := range message.ToolCalls {
argsJSON, err := json.Marshal(tc.Function.Arguments)
if err != nil {
return "", err
}
toolCalls[j] = olmo3ThinkToolCall{
ID: tc.ID,
Type: "function",
Function: olmo3ThinkToolCallFunc{
Name: tc.Function.Name,
Arguments: string(argsJSON),
},
}
}
toolCallsJSON, err := marshalWithSpaces(toolCalls)
if err != nil {
return "", err
}
sb.WriteString("<function_calls>")
sb.WriteString(string(toolCallsJSON))
sb.WriteString("</function_calls>")
}
if !lastMessage {
sb.WriteString("<|im_end|>\n")
}
case "tool":
sb.WriteString("<|im_start|>environment\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
}
}
// Always add generation prompt with <think> tag for thinking models
sb.WriteString("<|im_start|>assistant\n<think>")
needsGenerationPrompt := true
if len(filteredMessages) > 0 {
lastMsg := filteredMessages[len(filteredMessages)-1]
if lastMsg.Role == "assistant" && len(lastMsg.ToolCalls) == 0 && lastMsg.Content != "" {
needsGenerationPrompt = false
}
}
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n<think>")
}
return sb.String(), nil
}

View File

@@ -11,27 +11,24 @@ import (
func TestOlmo3ThinkRenderer(t *testing.T) {
tests := []struct {
name string
variant Olmo3ThinkVariant
msgs []api.Message
tools []api.Tool
expected string
}{
{
name: "7b_basic_without_system",
variant: Olmo31Think,
name: "basic without system - adds default system",
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "7b_with_custom_system",
variant: Olmo31Think,
name: "with system message no tools",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
@@ -44,9 +41,9 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
"<think>",
},
{
name: "7b_tools_ignored",
variant: Olmo31Think,
name: "with system message and tools",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "What is the weather?"},
},
tools: []api.Tool{
@@ -55,20 +52,27 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}, Description: "The city"},
},
},
},
},
},
expected: "<|im_start|>system\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
`You are a helpful assistant. <functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"What is the weather?<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "7b_tool_calls_and_tool_messages_ignored",
variant: Olmo31Think,
name: "assistant with tool calls",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "What is the weather in SF?"},
{
Role: "assistant",
@@ -77,33 +81,53 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
{
ID: "call_1",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"location": "San Francisco"},
Name: "get_weather",
Arguments: map[string]any{
"location": "San Francisco",
},
},
},
},
},
{Role: "tool", Content: `{"temperature": 68}`, ToolName: "get_weather"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}, Description: "The city"},
},
},
},
},
{Role: "tool", Content: `{"temperature": 68}`},
},
expected: "<|im_start|>system\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
`You are a helpful assistant. <functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"What is the weather in SF?<|im_end|>\n" +
"<|im_start|>assistant\n" +
"Let me check the weather.<|im_end|>\n" +
`Let me check the weather.<function_calls>[{"id": "call_1", "type": "function", "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}}]</function_calls><|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "7b_multi_turn_conversation",
variant: Olmo31Think,
name: "multi-turn conversation",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "Hi there!"},
{Role: "user", Content: "How are you?"},
},
expected: "<|im_start|>system\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"You are a helpful assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello<|im_end|>\n" +
"<|im_start|>assistant\n" +
@@ -114,56 +138,73 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
"<think>",
},
{
name: "32b_basic_without_system",
variant: Olmo3Think32B,
name: "parallel tool calls",
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
{Role: "user", Content: "Get weather in SF and NYC"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_1",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"location": "San Francisco"},
},
},
{
ID: "call_2",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"location": "New York"},
},
},
},
},
{Role: "tool", Content: `{"temperature": 68}`, ToolName: "get_weather"},
{Role: "tool", Content: `{"temperature": 55}`, ToolName: "get_weather"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}},
},
},
},
},
},
expected: "<|im_start|>system\n" +
"You are a helpful AI assistant.<|im_end|>\n" +
`You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai. <functions>[{"type": "function", "function": {"name": "get_weather", "parameters": {"type": "object", "properties": {"location": {"type": "string"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"Get weather in SF and NYC<|im_end|>\n" +
"<|im_start|>assistant\n" +
`<function_calls>[{"id": "call_1", "type": "function", "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}}, {"id": "call_2", "type": "function", "function": {"name": "get_weather", "arguments": "{\"location\":\"New York\"}"}}]</function_calls><|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 55}<|im_end|>` + "\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "32b_with_custom_system_gets_suffix",
variant: Olmo3Think32B,
name: "assistant message only content no tool calls",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
{Role: "user", Content: "Tell me a joke"},
{Role: "assistant", Content: "Why did the chicken cross the road?"},
{Role: "user", Content: "I don't know, why?"},
},
expected: "<|im_start|>system\n" +
"You are a helpful assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"Tell me a joke<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "31_basic_without_system",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"Why did the chicken cross the road?<|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "31_with_custom_system_gets_suffix",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are a helpful assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"I don't know, why?<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
@@ -171,7 +212,7 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := (&Olmo3ThinkRenderer{Variant: tt.variant}).Render(tt.msgs, tt.tools, nil)
rendered, err := (&Olmo3ThinkRenderer{}).Render(tt.msgs, tt.tools, nil)
if err != nil {
t.Fatal(err)
}

View File

@@ -60,18 +60,10 @@ func rendererForName(name string) Renderer {
renderer := &CogitoRenderer{isThinking: true}
return renderer
case "olmo3":
renderer := &Olmo3Renderer{UseExtendedSystemMessage: false}
return renderer
case "olmo3.1":
renderer := &Olmo3Renderer{UseExtendedSystemMessage: true}
renderer := &Olmo3Renderer{}
return renderer
case "olmo3-think":
// Used for Olmo-3-7B-Think and Olmo-3.1-32B-Think (same template)
renderer := &Olmo3ThinkRenderer{Variant: Olmo31Think}
return renderer
case "olmo3-32b-think":
// Used for Olmo-3-32B-Think
renderer := &Olmo3ThinkRenderer{Variant: Olmo3Think32B}
renderer := &Olmo3ThinkRenderer{}
return renderer
default:
return nil

View File

@@ -487,9 +487,29 @@ func FromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
}
img, err := decodeImageURL(url)
types := []string{"jpeg", "jpg", "png", "webp"}
valid := false
// support blank mime type to match api/chat taking just unadorned base64
if strings.HasPrefix(url, "data:;base64,") {
url = strings.TrimPrefix(url, "data:;base64,")
valid = true
}
for _, t := range types {
prefix := "data:image/" + t + ";base64,"
if strings.HasPrefix(url, prefix) {
url = strings.TrimPrefix(url, prefix)
valid = true
break
}
}
if !valid {
return nil, errors.New("invalid image input")
}
img, err := base64.StdEncoding.DecodeString(url)
if err != nil {
return nil, err
return nil, errors.New("invalid message format")
}
messages = append(messages, api.Message{Role: msg.Role, Images: []api.ImageData{img}})
@@ -628,35 +648,6 @@ func nameFromToolCallID(messages []Message, toolCallID string) string {
return ""
}
// decodeImageURL decodes a base64 data URI into raw image bytes.
func decodeImageURL(url string) (api.ImageData, error) {
types := []string{"jpeg", "jpg", "png", "webp"}
// Support blank mime type to match /api/chat's behavior of taking just unadorned base64
if strings.HasPrefix(url, "data:;base64,") {
url = strings.TrimPrefix(url, "data:;base64,")
} else {
valid := false
for _, t := range types {
prefix := "data:image/" + t + ";base64,"
if strings.HasPrefix(url, prefix) {
url = strings.TrimPrefix(url, prefix)
valid = true
break
}
}
if !valid {
return nil, errors.New("invalid image input")
}
}
img, err := base64.StdEncoding.DecodeString(url)
if err != nil {
return nil, errors.New("invalid image input")
}
return img, nil
}
// FromCompletionToolCall converts OpenAI ToolCall format to api.ToolCall
func FromCompletionToolCall(toolCalls []ToolCall) ([]api.ToolCall, error) {
apiToolCalls := make([]api.ToolCall, len(toolCalls))

View File

File diff suppressed because it is too large Load Diff

View File

File diff suppressed because it is too large Load Diff

View File

@@ -26,7 +26,6 @@ import (
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/runner/common"
)
@@ -833,7 +832,7 @@ func (s *Server) loadModel(
ppath string,
kvSize int,
kvCacheType string,
flashAttention ml.FlashAttentionType,
flashAttention bool,
threads int,
multiUserCache bool,
) {
@@ -843,7 +842,7 @@ func (s *Server) loadModel(
panic(err)
}
ctxParams := llama.NewContextParams(kvSize, s.batchSize, s.parallel, threads, flashAttention, kvCacheType)
ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention, kvCacheType)
s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
if err != nil {
panic(err)

View File

@@ -1203,22 +1203,16 @@ func (s *Server) allocModel(
return errors.New("loras are not yet implemented")
}
if s.model.Config().Cache == nil {
if parallel > 1 {
parallel = 1
slog.Warn("model does not support caching, disabling parallel processing")
}
if s.batchSize < kvSize {
s.batchSize = kvSize
slog.Warn("model does not support caching, setting batch size to context length", "batch_size", kvSize)
}
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
if err != nil {
return err
}
if !s.cache.enabled && parallel > 1 {
parallel = 1
slog.Warn("model does not support caching, disabling parallel processing")
}
s.parallel = parallel
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

View File

@@ -1532,7 +1532,6 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.POST("/v1/embeddings", middleware.EmbeddingsMiddleware(), s.EmbedHandler)
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
if rc != nil {
// wrap old with new
@@ -2394,4 +2393,3 @@ func filterThinkTags(msgs []api.Message, m *Model) []api.Message {
}
return msgs
}

View File

@@ -127,9 +127,6 @@ var funcs = template.FuncMap{
// Default format is YYYY-MM-DD
return time.Now().Format("2006-01-02")
},
"yesterdayDate": func(args ...string) string {
return time.Now().AddDate(0, 0, -1).Format("2006-01-02")
},
"toTypeScriptType": func(v any) string {
if param, ok := v.(api.ToolProperty); ok {
return param.ToTypeScriptType()

View File

@@ -10,7 +10,6 @@ import (
"slices"
"strings"
"testing"
"time"
"github.com/google/go-cmp/cmp"
@@ -452,72 +451,6 @@ func TestExecuteWithSuffix(t *testing.T) {
}
}
func TestDateFunctions(t *testing.T) {
t.Run("currentDate", func(t *testing.T) {
tmpl, err := Parse("{{- range .Messages }}{{ .Content }}{{ end }} Today is {{ currentDate }}")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, Values{Messages: []api.Message{{Role: "user", Content: "Hello"}}}); err != nil {
t.Fatal(err)
}
expected := "Hello Today is " + time.Now().Format("2006-01-02")
if b.String() != expected {
t.Errorf("got %q, want %q", b.String(), expected)
}
})
t.Run("yesterdayDate", func(t *testing.T) {
tmpl, err := Parse("{{- range .Messages }}{{ .Content }}{{ end }} Yesterday was {{ yesterdayDate }}")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, Values{Messages: []api.Message{{Role: "user", Content: "Hello"}}}); err != nil {
t.Fatal(err)
}
expected := "Hello Yesterday was " + time.Now().AddDate(0, 0, -1).Format("2006-01-02")
if b.String() != expected {
t.Errorf("got %q, want %q", b.String(), expected)
}
})
t.Run("yesterdayDate format", func(t *testing.T) {
tmpl, err := Parse("{{- range .Messages }}{{ end }}{{ yesterdayDate }}")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, Values{Messages: []api.Message{{Role: "user", Content: "Hello"}}}); err != nil {
t.Fatal(err)
}
// Verify the format matches YYYY-MM-DD
result := b.String()
if len(result) != 10 {
t.Errorf("expected date length 10, got %d: %q", len(result), result)
}
// Parse and verify it's a valid date
parsed, err := time.Parse("2006-01-02", result)
if err != nil {
t.Errorf("failed to parse date %q: %v", result, err)
}
// Verify it's yesterday
yesterday := time.Now().AddDate(0, 0, -1)
if parsed.Year() != yesterday.Year() || parsed.Month() != yesterday.Month() || parsed.Day() != yesterday.Day() {
t.Errorf("expected yesterday's date, got %v", parsed)
}
})
}
func TestCollate(t *testing.T) {
cases := []struct {
name string