Compare commits

..

24 Commits

Author SHA1 Message Date
Grace Guo
e1878e6e33 remove cherry pick manually 2025-12-15 15:00:28 -08:00
Grace Guo
f0733c13b5 multiturn tests 2025-12-15 14:07:34 -08:00
Grace Guo
07162c509f deepseek3 renderer 2025-12-15 14:07:34 -08:00
Grace Guo
5be8277683 tests 2025-12-15 14:07:34 -08:00
Grace Guo
ec65cc3690 init deepseek parser 2025-12-15 14:07:34 -08:00
Parth Sareen
e3731fb160 renderers: add olmo3.1 and olmo3 fixes (#13447) 2025-12-15 11:26:43 -08:00
Eva H
8dbc9e7b68 app/ui: handle unspecified bind addresses and wait for server in ollama proxy (#13159) 2025-12-15 13:33:09 -05:00
Daniel Hiltgen
abe67acf8a Revert "Enable Ollama engine by default" (#13481)
This reverts commit 56f754f46b.
2025-12-15 09:55:45 -08:00
Jeffrey Morgan
4ff8a691bc model: default gemma 3 rope scale to 1.0, apply corrections based on layer counts (#13453) 2025-12-12 17:51:56 -08:00
Jeffrey Morgan
1b308e1d2a model: fix global layer rope scale values for gemma 3 (#13452) 2025-12-12 16:29:01 -08:00
Daniel Hiltgen
bd6c1d6b49 flash attn: add auto mode for llama engine (#13052)
* flash attn: add auto mode for llama engine

If the user does not specify fa in the environment, use auto-mode.

* review comments

* ensure kv cache quantized types have FA explicitly enabled

additional review comments
2025-12-12 13:27:19 -08:00
Jeffrey Morgan
3af5d3b738 model: force rope factor 1.0 for Gemma 3 (#13445) 2025-12-12 13:27:08 -08:00
Daniel Hiltgen
7730895158 Enable Ollama engine by default (#13443)
This changes the default behavior to use the Ollama engine for supported
models, while retaining the ability to disable the Ollama engine and
fall back to the Llama engine.  Models in the OllamaEngineRequired list
will always run on the Ollama engine.
2025-12-12 11:48:43 -08:00
Eva H
de9ecfd01c tidy up lint warnings on windows (#13430) 2025-12-12 11:43:35 -05:00
Eva H
95fdd8d619 fix: select and update models folder in settings (#13412) 2025-12-12 11:09:37 -05:00
Devon Rifkin
9f7822851c docs: add docs for v1/responses and rework openai compat section (#13416)
* docs: add docs for v1/responses and rework openai compat section

I reworked the examples to be separated by topic and to be fully
runnable (i.e., they now log output instead of just suggesting how a
call might be made).

We now use `<CodeGroup>`s so that each example has a dropdown on the
docs site for users to choose, which makes the examples a lot more
digestible (since you only see approx 1/3 of the code you used to).

I also added a new tool to extract code examples into files so that it's
easier to actually run them and check that they work.

## Example

```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```

Output:

```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

  - 01_basic.py
  - 01_basic.js
  - 01_basic.sh
  - 02_responses.py
  - 02_responses.js
  - 02_responses.sh
  - 03_vision.py
  - 03_vision.js
  - 03_vision.sh

Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

To run examples:

  cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
  npm install   # for JS examples

then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```

In the future we should consider actually running the examples in CI and
having some sort of acceptance test so we can automatically detect when
our examples break. So this is just a start in that direction.

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2025-12-11 17:39:40 -08:00
Parth Sareen
9b2035d194 openai: add tool call appending to previous assistant message (#13434)
* openai: add tool call appending to previous asst message

* add tests for thinking appending
2025-12-11 17:30:12 -08:00
Alexander Gusak
93d45d7a04 docs: fix link to modelfile.mdx (#13220) 2025-12-11 16:14:45 -08:00
JJ
709f842457 Update README.md (#13373)
Correct Markdown syntax for Swollama GitHub and DocC documentation links
2025-12-11 16:08:57 -08:00
Jeffrey Morgan
2dfb74410d model: fix rotary embeddings for ministral 3 (#13432) 2025-12-11 16:02:05 -08:00
Devon Rifkin
1eb5e75972 openai: add v1/responses support (#13351)
Only supporting the stateless part of the API.

Doc updates to come once this is shipped.

Closes: #9659
2025-12-11 15:37:10 -08:00
nicole pardal
3475d915cb embeddings: modified batch size (#13429)
This PR detects embedding models and sets batch_size = context_size so the full input fits in a single batch.
Previously, if batch size was smaller than the input, tokens could be split across batches and cause a SIGTRAP crash.
This change ensures all tokens stay in one batch and prevents crashes.
Fixes: #12938 #13054

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-12-11 15:36:31 -08:00
Jeffrey Morgan
48e78e9be1 template: add yesterdayDate helper function (#13431) 2025-12-11 14:47:55 -08:00
Jeffrey Morgan
a838421ea3 model: conversion and hyperparameter fixes for ministral and devstral (#13424) 2025-12-11 13:04:00 -08:00
43 changed files with 5089 additions and 523 deletions

View File

@@ -555,7 +555,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift]([https://github.com/marcusziade/Swollama](https://github.com/guitaripod/Swollama) with [DocC]( https://guitaripod.github.io/Swollama/documentation/swollama)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)

View File

@@ -347,7 +347,7 @@ type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]).
//
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.mdx
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse

View File

@@ -191,13 +191,6 @@ func LaunchNewApp() {
C.launchApp(appName)
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
p := C.CString(path)
defer C.free(unsafe.Pointer(p))
C.uiRequest(p)
}
func registerLaunchAgent(hasCompletedFirstRun bool) {
// Remove any stale Login Item registrations
C.unregisterSelfFromLoginItem()

View File

@@ -263,11 +263,6 @@ func createLoginShortcut() error {
return nil
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
wintray.SendUIRequestMessage(path)
}
func LaunchNewApp() {
}

View File

@@ -169,37 +169,47 @@ DlgResult fileDlg(FileDlgParams* params) {
}
NSArray* urls = [panel URLs];
if(self->params->allowMultiple && [urls count] >= 1) {
if([urls count] == 0) {
return DLG_CANCEL;
}
if(self->params->allowMultiple) {
// For multiple files, we need to return all paths separated by null bytes
char* bufPtr = self->params->buf;
int remainingBuf = self->params->nbuf;
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
} else {
// Single file/directory selection - write path to buffer
NSURL* url = [urls firstObject];
if(![url getFileSystemRepresentation:self->params->buf maxLength:self->params->nbuf]) {
return DLG_URLFAIL;
}
}
return DLG_OK;

View File

@@ -15,7 +15,7 @@ const multiFileBufferSize = w32.MAX_PATH * 10
type WinDlgError int
func (e WinDlgError) Error() string {
return fmt.Sprintf("CommDlgExtendedError: %#x", e)
return fmt.Sprintf("CommDlgExtendedError: %#x", int(e))
}
func err() error {

View File

@@ -224,9 +224,7 @@ func (s *Server) cmd(ctx context.Context) (*exec.Cmd, error) {
if _, err := os.Stat(settings.Models); err == nil {
env["OLLAMA_MODELS"] = settings.Models
} else {
slog.Warn("models path not accessible, clearing models setting", "path", settings.Models, "err", err)
settings.Models = ""
s.store.SetSettings(settings)
slog.Warn("models path not accessible, using default", "path", settings.Models, "err", err)
}
}
if settings.ContextLength > 0 {

View File

@@ -12,13 +12,13 @@ import (
"log/slog"
"net/http"
"net/http/httputil"
"net/url"
"os"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
"sync"
"time"
"github.com/google/uuid"
@@ -117,40 +117,66 @@ func (s *Server) log() *slog.Logger {
// ollamaProxy creates a reverse proxy handler to the Ollama server
func (s *Server) ollamaProxy() http.Handler {
ollamaHost := os.Getenv("OLLAMA_HOST")
if ollamaHost == "" {
ollamaHost = "http://127.0.0.1:11434"
}
var (
proxy http.Handler
proxyMu sync.Mutex
)
if !strings.HasPrefix(ollamaHost, "http://") && !strings.HasPrefix(ollamaHost, "https://") {
ollamaHost = "http://" + ollamaHost
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
proxyMu.Lock()
p := proxy
proxyMu.Unlock()
target, err := url.Parse(ollamaHost)
if err != nil {
s.log().Error("failed to parse OLLAMA_HOST", "error", err, "host", ollamaHost)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "failed to configure proxy", http.StatusInternalServerError)
})
}
if p == nil {
proxyMu.Lock()
if proxy == nil {
var err error
for i := range 2 {
if i > 0 {
s.log().Warn("ollama server not ready, retrying", "attempt", i+1)
time.Sleep(1 * time.Second)
}
s.log().Info("configuring ollama proxy", "target", target.String())
err = WaitForServer(context.Background(), 10*time.Second)
if err == nil {
break
}
}
proxy := httputil.NewSingleHostReverseProxy(target)
if err != nil {
proxyMu.Unlock()
s.log().Error("ollama server not ready after retries", "error", err)
http.Error(w, "Ollama server is not ready", http.StatusServiceUnavailable)
return
}
originalDirector := proxy.Director
proxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
target := envconfig.Host()
s.log().Info("configuring ollama proxy", "target", target.String())
proxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
newProxy := httputil.NewSingleHostReverseProxy(target)
return proxy
originalDirector := newProxy.Director
newProxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
proxy = newProxy
p = newProxy
} else {
p = proxy
}
proxyMu.Unlock()
}
p.ServeHTTP(w, r)
})
}
type errHandlerFunc func(http.ResponseWriter, *http.Request) error

View File

@@ -158,16 +158,16 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
case uint32(UI_REQUEST_MSG_ID):
// Requests for the UI must always come from the main event thread
l := int(wParam)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l) //nolint:govet,gosec
t.app.UIRun(path)
case WM_COPYDATA:
// Handle URL scheme requests from other instances
if lParam != 0 {
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam))
if cds.DwData == 1 { // Our identifier for URL scheme messages
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam)) //nolint:govet,gosec
if cds.DwData == 1 { // Our identifier for URL scheme messages
// Convert the data back to string
data := make([]byte, cds.CbData)
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData])
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData]) //nolint:govet,gosec
urlScheme := string(data)
handleURLSchemeRequest(urlScheme)
lResult = 1 // Return non-zero to indicate success

View File

@@ -182,6 +182,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "Ministral3ForCausalLM":
conv = &mistral3CausalModel{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":

View File

@@ -30,13 +30,15 @@ type mistral3Model struct {
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
ScalingBeta float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
} `json:"text_config"`
VisionModel struct {
@@ -50,6 +52,9 @@ type mistral3Model struct {
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
RopeParameters struct {
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
@@ -72,10 +77,22 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.TextModel.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.TextModel.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.TextModel.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.TextModel.RopeParameters.BetaSlow
if p.TextModel.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.TextModel.RopeParameters.Mscale
}
if p.TextModel.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.TextModel.RopeParameters.MscaleAllDim
}
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = p.TextModel.RopeParameters.ScalingBeta
}
if p.TextModel.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.TextModel.RopeParameters.Llama4ScalingBeta
}
// Vision configuration
@@ -88,7 +105,7 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["mistral3.vision.rope.freq_base"] = cmp.Or(p.VisionModel.RopeTheta, p.VisionModel.RopeParameters.RopeTheta)
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex

View File

@@ -0,0 +1,181 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3CausalModel struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
}
func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.NumHiddenLayers
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.HiddenSize
kv["mistral3.feed_forward_length"] = p.IntermediateSize
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["mistral3.attention.key_length"] = p.HeadDim
kv["mistral3.attention.value_length"] = p.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
if p.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
}
if p.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
}
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
if p.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
return kv
}
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3CausalModel) Replacements() []string {
return []string{
"model.norm", "output_norm",
"model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -37,10 +37,6 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
return nil, err
}
if n <= 0 || n > 100<<20 {
return nil, fmt.Errorf("invalid safetensors file %q (header size: %d): file may be corrupted or a Git LFS pointer", p, n)
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, err

View File

@@ -50,7 +50,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -507,7 +507,7 @@ The `message` object has the following fields:
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1189,7 +1189,7 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
- `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.mdx#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
@@ -1698,7 +1698,7 @@ Generate embeddings from a model
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
@@ -1817,7 +1817,7 @@ Generate embeddings from a model
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,46 @@
# extract-examples
Extracts code examples from MDX files to a temp directory so you can run them.
## Usage
```shell
go run docs/tools/extract-examples/main.go <mdx-file>
```
## Example
```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```
Output:
```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
- 01_basic.py
- 01_basic.js
- 01_basic.sh
- 02_responses.py
- 02_responses.js
- 02_responses.sh
- 03_vision.py
- 03_vision.js
- 03_vision.sh
Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
To run examples:
cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
npm install # for JS examples
then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```
## How it works
- Parses MDX files looking for fenced code blocks with filenames (e.g., ` ```python basic.py `)
- Groups examples by their `<CodeGroup>` and prefixes filenames with `01_`, `02_`, etc.
- Writes all extracted files to a temp directory

View File

@@ -0,0 +1,137 @@
package main
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
)
func main() {
if len(os.Args) < 2 {
fmt.Fprintln(os.Stderr, "Usage: go run extract-examples.go <mdx-file>")
os.Exit(1)
}
mdxFile := os.Args[1]
f, err := os.Open(mdxFile)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
defer f.Close()
// Create temp directory
tempDir, err := os.MkdirTemp("", "mdx-examples-*")
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating temp dir: %v\n", err)
os.Exit(1)
}
fmt.Printf("Extracting code examples to: %s\n\n", tempDir)
// Patterns
codeBlockStart := regexp.MustCompile("^```([a-zA-Z0-9_-]+)\\s+([^\\s]+)$")
codeGroupStart := regexp.MustCompile("^<CodeGroup")
codeGroupEnd := regexp.MustCompile("^</CodeGroup>")
scanner := bufio.NewScanner(f)
inCodeBlock := false
inCodeGroup := false
var currentFile string
var content strings.Builder
count := 0
codeGroupNum := 0
for scanner.Scan() {
line := scanner.Text()
// Track CodeGroup boundaries
if codeGroupStart.MatchString(line) {
inCodeGroup = true
codeGroupNum++
continue
}
if codeGroupEnd.MatchString(line) {
inCodeGroup = false
continue
}
if inCodeBlock {
if line == "```" {
// End of code block - write file
if currentFile != "" {
outPath := filepath.Join(tempDir, currentFile)
if err := os.WriteFile(outPath, []byte(content.String()), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing %s: %v\n", currentFile, err)
} else {
fmt.Printf(" - %s\n", currentFile)
count++
}
}
inCodeBlock = false
currentFile = ""
content.Reset()
} else {
content.WriteString(line)
content.WriteString("\n")
}
} else {
if matches := codeBlockStart.FindStringSubmatch(line); matches != nil {
inCodeBlock = true
filename := matches[2]
// Prefix with CodeGroup number if inside a CodeGroup
if inCodeGroup {
currentFile = fmt.Sprintf("%02d_%s", codeGroupNum, filename)
} else {
currentFile = filename
}
content.Reset()
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintf(os.Stderr, "Error reading file: %v\n", err)
os.Exit(1)
}
// Write package.json for JavaScript dependencies
packageJSON := `{
"name": "mdx-examples",
"type": "module",
"dependencies": {
"openai": "^4",
"ollama": "^0.5"
}
}
`
if err := os.WriteFile(filepath.Join(tempDir, "package.json"), []byte(packageJSON), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing package.json: %v\n", err)
}
// Write pyproject.toml for Python dependencies
pyprojectTOML := `[project]
name = "mdx-examples"
version = "0.0.0"
dependencies = [
"openai",
"ollama",
]
`
if err := os.WriteFile(filepath.Join(tempDir, "pyproject.toml"), []byte(pyprojectTOML), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing pyproject.toml: %v\n", err)
}
fmt.Printf("\n")
fmt.Printf("Extracted %d file(s) to %s\n", count, tempDir)
fmt.Printf("\n")
fmt.Printf("To run examples:\n")
fmt.Printf("\n")
fmt.Printf(" cd %s\n npm install # for JS examples\n", tempDir)
fmt.Printf("\n")
fmt.Printf("then run individual files with `node file.js`, `python file.py`, `bash file.sh`\n")
}

View File

@@ -13,6 +13,7 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/ml"
)
type GGML struct {
@@ -550,7 +551,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention ml.FlashAttentionType) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
@@ -791,7 +792,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
if useFlashAttention == ml.FlashAttentionEnabled {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
@@ -809,6 +810,14 @@ func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// KVCacheTypeIsQuantized checks if the requested cache type is a quantized type
func (f GGML) KVCacheTypeIsQuantized(cacheType string) bool {
if cacheType == "" || cacheType == "f16" || cacheType == "f32" || cacheType == "bf16" {
return false
}
return true
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]

View File

@@ -487,6 +487,63 @@ func TestEmbedTruncation(t *testing.T) {
}
}
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()
// Test with progressively larger inputs
testCases := []struct {
name string
inputWords int
}{
{"medium_input_256_words", 256},
{"large_input_512_words", 512},
{"very_large_input_800_words", 800},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
words := make([]string, tc.inputWords)
for i := range words {
words[i] = "word"
}
input := strings.Join(words, " ")
req := api.EmbedRequest{
Model: model,
Input: input,
KeepAlive: &api.Duration{Duration: 30 * time.Second},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatalf("embedding failed for %d words: %v", tc.inputWords, err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) == 0 {
t.Fatal("expected non-empty embedding")
}
t.Logf("Successfully embedded %d words (%d tokens)", tc.inputWords, res.PromptEvalCount)
})
}
})
}
}
// TestEmbedStatusCode tests that errors from the embedding endpoint
// properly preserve their HTTP status codes when returned to the client.
// This test specifically checks the error handling path in EmbedHandler

View File

@@ -118,18 +118,22 @@ type ContextParams struct {
c C.struct_llama_context_params
}
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention ml.FlashAttentionType, kvCacheType string) ContextParams {
params := C.llama_context_default_params()
params.n_ctx = C.uint(numCtx)
params.n_batch = C.uint(batchSize)
params.n_batch = C.uint(batchSize * numSeqMax)
params.n_ubatch = C.uint(batchSize)
params.n_seq_max = C.uint(numSeqMax)
params.n_threads = C.int(threads)
params.n_threads_batch = params.n_threads
params.embeddings = C.bool(true)
if flashAttention {
params.flash_attn_type = C.LLAMA_FLASH_ATTN_TYPE_ENABLED
} else {
params.flash_attn_type = C.LLAMA_FLASH_ATTN_TYPE_DISABLED
switch flashAttention {
case ml.FlashAttentionEnabled:
params.flash_attn_type = int32(C.LLAMA_FLASH_ATTN_TYPE_ENABLED)
case ml.FlashAttentionDisabled:
params.flash_attn_type = int32(C.LLAMA_FLASH_ATTN_TYPE_DISABLED)
case ml.FlashAttentionAuto:
params.flash_attn_type = int32(C.LLAMA_FLASH_ATTN_TYPE_AUTO)
}
params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

View File

@@ -188,6 +188,11 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
if len(projectors) > 0 && llamaModel != nil {
loadRequest.ProjectorPath = projectors[0]
}
// Determine if the user has forced FA on or off
faUserSet := false
if envconfig.FlashAttention(true) == envconfig.FlashAttention(false) {
faUserSet = true
}
fa := envconfig.FlashAttention(f.FlashAttention())
@@ -205,19 +210,51 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
kvct := strings.ToLower(envconfig.KvCacheType())
if fa {
slog.Info("enabling flash attention")
loadRequest.FlashAttention = true
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
if textProcessor == nil {
flashAttention := ml.FlashAttentionAuto
if faUserSet {
if fa {
flashAttention = ml.FlashAttentionEnabled
} else {
flashAttention = ml.FlashAttentionDisabled
}
}
if kvct != "" {
if f.KVCacheTypeIsQuantized(kvct) {
if flashAttention != ml.FlashAttentionEnabled {
slog.Warn("OLLAMA_FLASH_ATTENTION must be enabled to use a quantized OLLAMA_KV_CACHE_TYPE", "type", kvct)
loadRequest.KvCacheType = ""
} else if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("unsupported OLLAMA_KV_CACHE_TYPE", "type", kvct)
}
} else {
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("unsupported OLLAMA_KV_CACHE_TYPE", "type", kvct)
}
}
}
loadRequest.FlashAttention = flashAttention
} else {
// For Ollama engine, use our SupportsFlashAttention logic
if fa {
slog.Info("enabling flash attention")
loadRequest.FlashAttention = ml.FlashAttentionEnabled
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
}
} else if kvct != "" && kvct != "f16" {
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
}
} else if kvct != "" && kvct != "f16" {
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
}
gpuLibs := ml.LibraryPaths(gpus)
@@ -435,7 +472,7 @@ type LoadRequest struct {
LoraPath []string
Parallel int
BatchSize int
FlashAttention bool
FlashAttention ml.FlashAttentionType
KvSize int
KvCacheType string
NumThreads int
@@ -474,6 +511,13 @@ func (s *llamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, system
s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
}
// Check if embedding model and adjust batch size accordingly
_, isEmbedding := s.ggml.KV()[fmt.Sprintf("%s.pooling_type", s.ggml.KV().Architecture())]
if isEmbedding && s.loadRequest.BatchSize < s.options.NumCtx {
s.loadRequest.BatchSize = s.options.NumCtx
slog.Info("embedding model detected, setting batch size to context length", "batch_size", s.loadRequest.BatchSize)
}
kv, graphPartialOffload, graphFullOffload := s.ggml.GraphSize(uint64(s.options.NumCtx), uint64(s.loadRequest.BatchSize),
s.loadRequest.Parallel, s.loadRequest.KvCacheType, s.loadRequest.FlashAttention)

View File

@@ -433,3 +433,111 @@ func ChatMiddleware() gin.HandlerFunc {
c.Next()
}
}
type ResponsesWriter struct {
BaseWriter
converter *openai.ResponsesStreamConverter
model string
stream bool
responseID string
itemID string
}
func (w *ResponsesWriter) writeEvent(eventType string, data any) error {
d, err := json.Marshal(data)
if err != nil {
return err
}
_, err = w.ResponseWriter.Write([]byte(fmt.Sprintf("event: %s\ndata: %s\n\n", eventType, d)))
if err != nil {
return err
}
if f, ok := w.ResponseWriter.(http.Flusher); ok {
f.Flush()
}
return nil
}
func (w *ResponsesWriter) writeResponse(data []byte) (int, error) {
var chatResponse api.ChatResponse
if err := json.Unmarshal(data, &chatResponse); err != nil {
return 0, err
}
if w.stream {
w.ResponseWriter.Header().Set("Content-Type", "text/event-stream")
events := w.converter.Process(chatResponse)
for _, event := range events {
if err := w.writeEvent(event.Event, event.Data); err != nil {
return 0, err
}
}
return len(data), nil
}
// Non-streaming response
w.ResponseWriter.Header().Set("Content-Type", "application/json")
response := openai.ToResponse(w.model, w.responseID, w.itemID, chatResponse)
return len(data), json.NewEncoder(w.ResponseWriter).Encode(response)
}
func (w *ResponsesWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(data)
}
return w.writeResponse(data)
}
func ResponsesMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ResponsesRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
chatReq, err := openai.FromResponsesRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
// Check if client requested streaming (defaults to false)
streamRequested := req.Stream != nil && *req.Stream
// Pass streaming preference to the underlying chat request
chatReq.Stream = &streamRequested
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
responseID := fmt.Sprintf("resp_%d", rand.Intn(999999))
itemID := fmt.Sprintf("msg_%d", rand.Intn(999999))
w := &ResponsesWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
converter: openai.NewResponsesStreamConverter(responseID, itemID, req.Model),
model: req.Model,
stream: streamRequested,
responseID: responseID,
itemID: itemID,
}
// Set headers based on streaming mode
if streamRequested {
c.Writer.Header().Set("Content-Type", "text/event-stream")
c.Writer.Header().Set("Cache-Control", "no-cache")
c.Writer.Header().Set("Connection", "keep-alive")
}
c.Writer = w
c.Next()
}
}

View File

@@ -74,7 +74,7 @@ type BackendParams struct {
GPULayers GPULayersList
// FlashAttention indicates that we should use a fused flash attention kernel
FlashAttention bool
FlashAttention FlashAttentionType
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))

View File

@@ -109,7 +109,7 @@ type Backend struct {
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
flashAttention bool
flashAttention ml.FlashAttentionType
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
@@ -684,7 +684,7 @@ func (b *Backend) NewContextSize(n int) ml.Context {
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention {
if b.flashAttention == ml.FlashAttentionEnabled {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 256, PermutedV: true}
@@ -1676,7 +1676,7 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sin
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention {
if t.b.flashAttention == ml.FlashAttentionEnabled {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)

View File

@@ -492,6 +492,32 @@ func FlashAttentionSupported(l []DeviceInfo) bool {
return true
}
type FlashAttentionType int32
const (
// Aligned with llama_flash_attn_type
FlashAttentionAuto FlashAttentionType = -1
FlashAttentionDisabled FlashAttentionType = 0
FlashAttentionEnabled FlashAttentionType = 1
)
func (f FlashAttentionType) LogValue() slog.Value {
return slog.AnyValue(f.String())
}
func (f FlashAttentionType) String() string {
switch f {
case FlashAttentionAuto:
return "Auto"
case FlashAttentionDisabled:
return "Disabled"
case FlashAttentionEnabled:
return "Enabled"
default:
return "unknown"
}
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variables
// Set mustFilter true to enable filtering of CUDA devices

View File

@@ -2,7 +2,6 @@ package gemma3
import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
@@ -13,25 +12,26 @@ import (
)
type TextConfig struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase float32
largeModelScaling bool
slidingWindowPattern []bool
ropeBase float32
ropeType string
ropeOriginalContext int
ropeExtrapolation float32
ropeBetaFast float32
ropeBetaSlow float32
finalLogitSoftcap float32
hiddenSize, contextLength, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase float32
largeModelScaling bool
slidingWindow uint32
slidingWindowPattern []bool
ropeBase float32
ropeType string
ropeOriginalContext int
ropeExtrapolation float32
ropeBetaFast float32
ropeBetaSlow float32
finalLogitSoftcap float32
}
func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, base float32) ml.Tensor {
func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, base, scale float32) ml.Tensor {
ropeOpts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(scale))))
ropeOpts = append(ropeOpts,
rope.WithOriginalContextLength(o.ropeOriginalContext),
rope.WithExtrapolationFactor(o.ropeExtrapolation),
@@ -41,7 +41,7 @@ func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positi
)
}
return nn.RoPE(ctx, states, positions, o.attnKeyLen, base, 1./o.ropeScale, ropeOpts...)
return nn.RoPE(ctx, states, positions, o.attnKeyLen, base, 1./scale, ropeOpts...)
}
type TextModel struct {
@@ -55,6 +55,9 @@ type TextModel struct {
const (
gemmaGlobalCacheCount = 6
gemma1BLayerCount = 26
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
@@ -70,6 +73,7 @@ func newTextModel(c fs.Config) *TextModel {
Layers: make([]TextLayer, numBlocks),
TextConfig: &TextConfig{
hiddenSize: int(c.Uint("embedding_length")),
contextLength: int(c.Uint("context_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length", 256)),
@@ -77,6 +81,7 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeBase: c.Float("rope.freq_base", 1000000.0),
slidingWindow: c.Uint("attention.sliding_window"),
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
ropeType: c.String("rope.scaling.type"),
ropeOriginalContext: int(c.Uint("rope.scaling.original_context_length")),
@@ -88,14 +93,20 @@ func newTextModel(c fs.Config) *TextModel {
},
}
// Google's Gemma 3 release with sliding window attention does
// not use final logit softcapping, and so force it to 0.0
// TODO (jmorganca): this should ideally be set to 0.0 in the
// model configuration instead of here, as future versions of
// models may include both sliding window attention and final
// logit softcapping.
if slices.Contains(m.TextConfig.slidingWindowPattern, true) {
m.TextConfig.finalLogitSoftcap = 0.0
// Apply corrections for older versions of the Gemma 3 models
// by looking at whether they use sliding window attention and
// based on their layer counts.
if m.TextConfig.slidingWindow < uint32(m.TextConfig.contextLength) {
switch numBlocks {
case gemma1BLayerCount:
// The 1B model has final logit softcapping set to 30.0
// but it should be 0.0
m.TextConfig.finalLogitSoftcap = 0.0
case gemma4BLayerCount, gemma12BLayerCount, gemma27BLayerCount:
// The 4B, 12B, and 27B models have rope scale unset
// but it shuold be set to 8.0
m.TextConfig.ropeScale = 8.0
}
}
if numBlocks == gemma27BLayerCount {
@@ -114,31 +125,31 @@ type TextSelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (opts *TextConfig) ropeBaseForLayer(layer int) float32 {
func (opts *TextConfig) ropeValuesForLayer(layer int) (base float32, scale float32) {
if opts.slidingWindowPattern != nil && opts.slidingWindowPattern[layer] {
return opts.ropeLocalBase
return opts.ropeLocalBase, 1.0
}
// Standard Gemma3: only every n-th layer is global,
// where n = gemmaGlobalCacheCount, otherwise use
// the local rope base
if (layer+1)%gemmaGlobalCacheCount > 0 {
return opts.ropeLocalBase
return opts.ropeLocalBase, 1.0
}
// default to global rope base
return opts.ropeBase
return opts.ropeBase, opts.ropeScale
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeBase := opts.ropeBaseForLayer(layer)
ropeBase, ropeScale := opts.ropeValuesForLayer(layer)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs, ropeBase)
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs, ropeBase, ropeScale)
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -149,7 +160,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs, ropeBase)
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs, ropeBase, ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -162,7 +173,8 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift, m.TextConfig.ropeBaseForLayer(layer)), nil
ropeBase, ropeScale := m.TextConfig.ropeValuesForLayer(layer)
return m.applyRotaryPositionEmbeddings(ctx, key, shift, ropeBase, ropeScale), nil
}
type TextMLP struct {

View File

@@ -8,6 +8,7 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
@@ -17,10 +18,30 @@ type TextOptions struct {
eps, ropeBase, ropeScale float32
ropeOrigPosEmbeddings int
ropeScalingBeta float32
ropeType string
ropeExtrapolation float32
ropeBetaFast float32
ropeBetaSlow float32
ropeMscale float32
ropeMscaleAllDim float32
}
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale)
var ropeOpts []func(*rope.Options)
if o.ropeType == "yarn" {
if o.ropeMscale != 0 && o.ropeMscaleAllDim != 0 {
ropeOpts = append(ropeOpts, rope.WithAttentionFactor(1.0/float32(0.1*math.Log(float64(o.ropeScale))+1.0)))
}
ropeOpts = append(ropeOpts,
rope.WithOriginalContextLength(o.ropeOrigPosEmbeddings),
rope.WithExtrapolationFactor(o.ropeExtrapolation),
rope.WithBetaFast(o.ropeBetaFast),
rope.WithBetaSlow(o.ropeBetaSlow),
)
}
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale, ropeOpts...)
}
type TextModel struct {
@@ -150,9 +171,15 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeOrigPosEmbeddings: int(c.Uint("rope.scaling.original_context_length")),
ropeScalingBeta: c.Float("rope.scaling_beta"),
ropeScalingBeta: c.Float("rope.scaling_beta", 0.1),
ropeBetaFast: c.Float("rope.scaling.beta_fast", 32.0),
ropeBetaSlow: c.Float("rope.scaling.beta_slow", 1.0),
ropeType: c.String("rope.scaling.type"),
ropeMscale: c.Float("rope.scaling.mscale"),
ropeMscaleAllDim: c.Float("rope.scaling.mscale_all_dim"),
ropeExtrapolation: c.Float("rope.scaling.extrapolation_factor", 1),
},
}
}

292
model/parsers/deepseek.go Normal file
View File

@@ -0,0 +1,292 @@
package parsers
import (
"encoding/json"
"errors"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type DeepSeekParserState int
const (
DeepSeekCollectingThinking DeepSeekParserState = iota
DeepSeekCollectingContent
DeepSeekCollectingToolCalls
DeepSeekCollectingToolOutput
)
const (
deepseekThinkingCloseTag = "</think>"
deepseekToolCallsBeginTag = "<tool▁calls▁begin>"
deepseekToolCallsEndTag = "<tool▁calls▁end>"
deepseekToolCallBeginTag = "<tool▁call▁begin>"
deepseekToolCallEndTag = "<tool▁call▁end>"
deepseekToolSepTag = "<tool▁sep>"
deepseekToolOutputBeginTag = "<tool▁output▁begin>"
deepseekToolOutputEndTag = "<tool▁output▁end>"
)
type DeepSeekParser struct {
state DeepSeekParserState
buffer strings.Builder
hasThinkingSupport bool
}
func (p *DeepSeekParser) HasToolSupport() bool {
return true
}
func (p *DeepSeekParser) HasThinkingSupport() bool {
return p.hasThinkingSupport
}
func (p *DeepSeekParser) setInitialState(lastMessage *api.Message, tools []api.Tool, thinkValue *api.ThinkValue) {
prefill := lastMessage != nil && lastMessage.Role == "assistant"
// Check both model capability AND request preference
thinkingEnabled := p.HasThinkingSupport() && (thinkValue == nil || thinkValue.Bool())
if !thinkingEnabled {
p.state = DeepSeekCollectingContent
return
}
if prefill && lastMessage.Content != "" {
p.state = DeepSeekCollectingContent
return
}
p.state = DeepSeekCollectingThinking
}
func (p *DeepSeekParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.setInitialState(lastMessage, tools, thinkValue)
return tools
}
type deepseekEvent interface {
isDeepSeekEvent()
}
type deepseekEventThinkingContent struct {
content string
}
type deepseekEventContent struct {
content string
}
type deepseekEventToolCall struct {
toolCall api.ToolCall
}
func (deepseekEventThinkingContent) isDeepSeekEvent() {}
func (deepseekEventContent) isDeepSeekEvent() {}
func (deepseekEventToolCall) isDeepSeekEvent() {}
func (p *DeepSeekParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case deepseekEventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case deepseekEventThinkingContent:
thinkingSb.WriteString(event.content)
case deepseekEventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *DeepSeekParser) parseEvents() []deepseekEvent {
var all []deepseekEvent
keepLooping := true
for keepLooping {
var events []deepseekEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
func (p *DeepSeekParser) eat() ([]deepseekEvent, bool) {
var events []deepseekEvent
bufStr := p.buffer.String()
if bufStr == "" {
return events, false
}
switch p.state {
case DeepSeekCollectingThinking:
if strings.Contains(bufStr, deepseekThinkingCloseTag) { // thinking[</think>] -> content
split := strings.SplitN(bufStr, deepseekThinkingCloseTag, 2)
thinking := split[0]
thinking = strings.TrimRightFunc(thinking, unicode.IsSpace)
remaining := split[1]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingContent
if len(thinking) > 0 {
events = append(events, deepseekEventThinkingContent{content: thinking})
}
return events, true
} else if overlapLen := overlap(bufStr, deepseekThinkingCloseTag); overlapLen > 0 { // partial </think>
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, deepseekEventThinkingContent{content: unambiguous})
}
return events, false
} else { // otherwise its thinking content
whitespaceLen := trailingWhitespaceLen(bufStr)
ambiguousStart := len(bufStr) - whitespaceLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, deepseekEventThinkingContent{content: unambiguous})
}
return events, false
}
case DeepSeekCollectingContent:
switch {
case strings.Contains(bufStr, deepseekToolCallsBeginTag): // content[<tool▁calls▁begin>] -> tool calls
split := strings.SplitN(bufStr, deepseekToolCallsBeginTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingToolCalls
if len(contentBefore) > 0 {
events = append(events, deepseekEventContent{content: contentBefore})
}
return events, true
case strings.Contains(bufStr, deepseekToolOutputBeginTag): // content[<tool▁output▁begin>] -> tool output
split := strings.SplitN(bufStr, deepseekToolOutputBeginTag, 2)
contentBefore := split[0] // Don't trim whitespace - preserve spaces
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingToolOutput
if len(contentBefore) > 0 {
events = append(events, deepseekEventContent{content: contentBefore})
}
return events, true
default: // otherwise its content
p.buffer.Reset()
if len(bufStr) > 0 {
events = append(events, deepseekEventContent{content: bufStr})
}
return events, false
}
case DeepSeekCollectingToolCalls:
if idx := strings.Index(bufStr, deepseekToolCallBeginTag); idx != -1 {
startIdx := idx + len(deepseekToolCallBeginTag)
if endIdx := strings.Index(bufStr[startIdx:], deepseekToolCallEndTag); endIdx != -1 {
toolCallContent := bufStr[startIdx : startIdx+endIdx]
if toolCall, err := p.parseToolCallContent(toolCallContent); err == nil {
remaining := bufStr[startIdx+endIdx+len(deepseekToolCallEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
events = append(events, deepseekEventToolCall{toolCall: toolCall})
return events, true
} else {
slog.Warn("deepseek tool call parsing failed", "error", err)
}
}
}
if idx := strings.Index(bufStr, deepseekToolCallsEndTag); idx != -1 {
remaining := bufStr[idx+len(deepseekToolCallsEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingContent
return events, true
}
return events, false
case DeepSeekCollectingToolOutput:
if idx := strings.Index(bufStr, deepseekToolOutputEndTag); idx != -1 {
toolOutputContent := bufStr[:idx]
remaining := bufStr[idx+len(deepseekToolOutputEndTag):]
// Don't trim whitespace - preserve spaces after tool output tags
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = DeepSeekCollectingContent
if len(toolOutputContent) > 0 {
events = append(events, deepseekEventContent{content: toolOutputContent})
}
return events, true
}
return events, false
}
return events, false
}
func (p *DeepSeekParser) parseToolCallContent(content string) (api.ToolCall, error) {
// Expected format: tool_name<tool▁sep>{args}
parts := strings.SplitN(content, deepseekToolSepTag, 2)
if len(parts) < 2 {
return api.ToolCall{}, errors.New("invalid format")
}
toolName := strings.TrimSpace(parts[0])
argsJSON := strings.TrimSpace(parts[1])
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(argsJSON), &args); err != nil {
return api.ToolCall{}, err
}
return api.ToolCall{
Function: api.ToolCallFunction{
Name: toolName,
Arguments: args,
},
}, nil
}

View File

@@ -0,0 +1,721 @@
package parsers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestDeepSeekParser(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
hasThinking bool
}{
{
name: "simple_content",
input: "Hello, how are you?",
expectedContent: "Hello, how are you?",
hasThinking: false,
},
{
name: "thinking_content",
input: "I need to think about this...</think>The answer is 42.",
expectedThinking: "I need to think about this...",
expectedContent: "The answer is 42.",
hasThinking: true,
},
{
name: "no_thinking_simple",
input: "Just a regular response.",
expectedContent: "Just a regular response.",
hasThinking: false,
},
{
name: "thinking_with_newlines",
input: "Let me think:\n- Point 1\n- Point 2</think>\n\nHere's my answer.",
expectedThinking: "Let me think:\n- Point 1\n- Point 2",
expectedContent: "Here's my answer.",
hasThinking: true,
},
{
name: "tool_call_simple",
input: "I'll check the weather.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Paris\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "I'll check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
hasThinking: false,
},
{
name: "multiple_tool_calls",
input: "Getting weather for both cities.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Paris\"}<tool▁call▁end><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"London\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Getting weather for both cities.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "London",
},
},
},
},
hasThinking: false,
},
{
name: "tool_output",
input: "Here's the weather: <tool▁output▁begin>Temperature: 22°C, Sunny<tool▁output▁end> Hope that helps!",
expectedContent: "Here's the weather: Temperature: 22°C, Sunny Hope that helps!",
hasThinking: false,
},
{
name: "complex_tool_arguments",
input: "Processing data.<tool▁calls▁begin><tool▁call▁begin>process_data<tool▁sep>{\"items\":[\"item1\",\"item2\"],\"config\":{\"enabled\":true,\"threshold\":0.95}}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Processing data.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []interface{}{"item1", "item2"},
"config": map[string]interface{}{"enabled": true, "threshold": 0.95},
},
},
},
},
hasThinking: false,
},
{
name: "thinking_with_tool_call", // technically this can't happen, but the parser can handle it
input: "Let me check the weather...</think>I'll get that for you.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Paris\"}<tool▁call▁end><tool▁calls▁end>",
expectedThinking: "Let me check the weather...",
expectedContent: "I'll get that for you.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
hasThinking: true,
},
{
name: "empty_content",
input: "",
expectedContent: "",
hasThinking: false,
},
{
name: "only_thinking",
input: "Just thinking content</think>",
expectedThinking: "Just thinking content",
expectedContent: "",
hasThinking: true,
},
{
name: "multiple_tool_outputs",
input: "Results: <tool▁output▁begin>Paris: 22°C<tool▁output▁end> and <tool▁output▁begin>London: 18°C<tool▁output▁end>",
expectedContent: "Results: Paris: 22°C and London: 18°C",
hasThinking: false,
},
{
name: "unicode_content",
input: "مرحبا بالعالم! 你好世界! 🌍",
expectedContent: "مرحبا بالعالم! 你好世界! 🌍",
hasThinking: false,
},
{
name: "emoji_passthrough",
input: "Task completed ✅ 🎉",
expectedContent: "Task completed ✅ 🎉",
hasThinking: false,
},
{
name: "emoji_after_tool_call",
input: "I'll help you.<tool▁calls▁begin><tool▁call▁begin>get_weather<tool▁sep>{\"location\":\"Tokyo\"}<tool▁call▁end><tool▁calls▁end>完成 ✅",
expectedContent: "I'll help you.完成 ✅",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
hasThinking: false,
},
{
name: "newlines_and_whitespace",
input: "Line 1\n\nLine 3\t\tTabbed content",
expectedContent: "Line 1\n\nLine 3\t\tTabbed content",
hasThinking: false,
},
{
name: "thinking_with_unicode",
input: "我在思考这个问题...</think>答案是42。",
expectedThinking: "我在思考这个问题...",
expectedContent: "答案是42。",
hasThinking: true,
},
{
name: "tool_call_with_unicode_args",
input: "Searching for information.<tool▁calls▁begin><tool▁call▁begin>search<tool▁sep>{\"query\":\"北京天气\",\"language\":\"中文\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Searching for information.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "search",
Arguments: api.ToolCallFunctionArguments{
"query": "北京天气",
"language": "中文",
},
},
},
},
hasThinking: false,
},
{
name: "tool_output_with_unicode",
input: "天气信息: <tool▁output▁begin>北京: 25°C, 晴天<tool▁output▁end> 希望对您有帮助!",
expectedContent: "天气信息: 北京: 25°C, 晴天 希望对您有帮助!",
hasThinking: false,
},
{
name: "mixed_content_with_special_chars",
input: "Price: $100 & tax @ 10% = $110 <tool▁output▁begin>Total: $110<tool▁output▁end> (final)",
expectedContent: "Price: $100 & tax @ 10% = $110 Total: $110 (final)",
hasThinking: false,
},
{
name: "tool_call_with_special_chars",
input: "Processing data.<tool▁calls▁begin><tool▁call▁begin>execute_command<tool▁sep>{\"command\":\"ls && echo \\\"done\\\"\",\"path\":\"/home/user\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Processing data.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "execute_command",
Arguments: api.ToolCallFunctionArguments{
"command": "ls && echo \"done\"",
"path": "/home/user",
},
},
},
},
hasThinking: false,
},
{
name: "thinking_with_special_chars",
input: "Let me calculate: 2+2=4 & 3*3=9...</think>The results are correct!",
expectedThinking: "Let me calculate: 2+2=4 & 3*3=9...",
expectedContent: "The results are correct!",
hasThinking: true,
},
{
name: "empty_tool_call_args",
input: "Pinging server.<tool▁calls▁begin><tool▁call▁begin>ping<tool▁sep>{}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Pinging server.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "ping",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
hasThinking: false,
},
{
name: "empty_tool_output",
input: "Checking status: <tool▁output▁begin><tool▁output▁end> No output received.",
expectedContent: "Checking status: No output received.",
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
content, thinking, calls, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedCalls, calls); diff != "" {
t.Errorf("Tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestDeepSeekParser_Streaming(t *testing.T) {
tests := []struct {
name string
chunks []string
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
hasThinking bool
}{
{
name: "streaming_simple_content",
chunks: []string{"Hello, ", "how are ", "you?"},
expectedContent: "Hello, how are you?",
hasThinking: false,
},
{
name: "streaming_thinking",
chunks: []string{"I need to ", "think about this", "...</think>", "The answer is 42."},
expectedThinking: "I need to think about this...",
expectedContent: "The answer is 42.",
hasThinking: true,
},
{
name: "streaming_tool_call",
chunks: []string{"I'll check weather.", "<tool▁calls▁begin>", "<tool▁call▁begin>get_weather", "<tool▁sep>{\"location\":\"Paris\"}", "<tool▁call▁end><tool▁calls▁end>"},
expectedContent: "I'll check weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
hasThinking: false,
},
{
name: "streaming_thinking_with_partial_tag",
chunks: []string{"Thinking about this", "...</", "think>", "Done thinking."},
expectedThinking: "Thinking about this...",
expectedContent: "Done thinking.",
hasThinking: true,
},
{
name: "streaming_tool_output",
chunks: []string{"Weather info: ", "<tool▁output▁begin>", "25°C, Sunny", "<tool▁output▁end>", " Enjoy!"},
expectedContent: "Weather info: 25°C, Sunny Enjoy!",
hasThinking: false,
},
{
name: "streaming_with_split_tags",
chunks: []string{"Content before ", "<tool▁calls▁begin><tool▁call▁begin>test", "<tool▁sep>{}", "<tool▁call▁end><tool▁calls▁end>", " after"},
expectedContent: "Content before after",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
hasThinking: false,
},
{
name: "streaming_thinking_with_split_end_tag",
chunks: []string{"Thinking content", "</th", "ink>", "Regular content"},
expectedThinking: "Thinking content",
expectedContent: "Regular content",
hasThinking: true,
},
{
name: "streaming_unicode_content",
chunks: []string{"مرحبا ", "بالعالم! ", "你好", "世界!"},
expectedContent: "مرحبا بالعالم! 你好世界!",
hasThinking: false,
},
{
name: "streaming_multiple_tool_outputs",
chunks: []string{"Results: ", "<tool▁output▁begin>", "Paris: 22°C", "<tool▁output▁end>", " and ", "<tool▁output▁begin>", "London: 18°C", "<tool▁output▁end>"},
expectedContent: "Results: Paris: 22°C and London: 18°C",
hasThinking: false,
},
{
name: "streaming_tool_call_with_split_json",
chunks: []string{"Processing.", "<tool▁calls▁begin><tool▁call▁begin>calc<tool▁sep>{\"x\":", "42,\"y\":", "24}<tool▁call▁end><tool▁calls▁end>"},
expectedContent: "Processing.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "calc",
Arguments: api.ToolCallFunctionArguments{
"x": float64(42),
"y": float64(24),
},
},
},
},
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
var allContent, allThinking string
var allCalls []api.ToolCall
for i, chunk := range tt.chunks {
done := i == len(tt.chunks)-1
content, thinking, calls, err := parser.Add(chunk, done)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
}
if diff := cmp.Diff(tt.expectedContent, allContent); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, allThinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedCalls, allCalls); diff != "" {
t.Errorf("Tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestDeepSeekParser_HasThinkingSupport(t *testing.T) {
tests := []struct {
name string
hasThinking bool
expectedSupport bool
}{
{
name: "thinking_enabled",
hasThinking: true,
expectedSupport: true,
},
{
name: "thinking_disabled",
hasThinking: false,
expectedSupport: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
if got := parser.HasThinkingSupport(); got != tt.expectedSupport {
t.Errorf("HasThinkingSupport() = %v, want %v", got, tt.expectedSupport)
}
})
}
}
func TestDeepSeekParser_HasToolSupport(t *testing.T) {
parser := &DeepSeekParser{}
if !parser.HasToolSupport() {
t.Error("HasToolSupport() should return true")
}
}
func TestDeepSeekParser_Init(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: true}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "test_tool",
},
},
}
returnedTools := parser.Init(tools, nil, &api.ThinkValue{Value: true})
if diff := cmp.Diff(tools, returnedTools); diff != "" {
t.Errorf("Init() returned tools mismatch (-want +got):\n%s", diff)
}
// Test initial state is set to thinking when enabled
if parser.state != DeepSeekCollectingThinking {
t.Errorf("Expected initial state to be DeepSeekCollectingThinking, got %v", parser.state)
}
}
func TestDeepSeekParser_parseToolCallContent(t *testing.T) {
tests := []struct {
name string
content string
expected api.ToolCall
expectError bool
}{
{
name: "valid_tool_call",
content: "get_weather<tool▁sep>{\"location\":\"Paris\"}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
{
name: "complex_arguments",
content: "process_data<tool▁sep>{\"items\":[\"a\",\"b\"],\"config\":{\"enabled\":true}}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []interface{}{"a", "b"},
"config": map[string]interface{}{"enabled": true},
},
},
},
},
{
name: "empty_arguments",
content: "ping<tool▁sep>{}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "ping",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
{
name: "unicode_in_tool_name",
content: "获取天气<tool▁sep>{\"城市\":\"北京\"}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "获取天气",
Arguments: api.ToolCallFunctionArguments{
"城市": "北京",
},
},
},
},
{
name: "special_chars_in_arguments",
content: "execute<tool▁sep>{\"command\":\"ls && echo \\\"done\\\"\",\"path\":\"/home/user\"}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "execute",
Arguments: api.ToolCallFunctionArguments{
"command": "ls && echo \"done\"",
"path": "/home/user",
},
},
},
},
{
name: "numeric_arguments",
content: "calculate<tool▁sep>{\"x\":3.14,\"y\":42,\"enabled\":true}",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: api.ToolCallFunctionArguments{
"x": 3.14,
"y": float64(42),
"enabled": true,
},
},
},
},
{
name: "invalid_format_no_separator",
content: "get_weather{\"location\":\"Paris\"}",
expectError: true,
},
{
name: "invalid_json",
content: "get_weather<tool▁sep>{invalid json}",
expectError: true,
},
{
name: "empty_tool_name",
content: "<tool▁sep>{\"arg\":\"value\"}",
expectError: false, // This should work, just empty name
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "",
Arguments: api.ToolCallFunctionArguments{
"arg": "value",
},
},
},
},
{
name: "missing_json_part",
content: "tool_name<tool▁sep>",
expectError: true,
},
}
parser := &DeepSeekParser{}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := parser.parseToolCallContent(tt.content)
if tt.expectError {
if err == nil {
t.Error("Expected error but got none")
}
return
}
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if diff := cmp.Diff(tt.expected, result); diff != "" {
t.Errorf("parseToolCallContent() mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestDeepSeekParser_EdgeCases(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
hasThinking bool
}{
{
name: "nested_think_tags_in_thinking",
input: "Outer thinking <think>inner</think> content</think>Final content",
expectedThinking: "Outer thinking <think>inner",
expectedContent: "content</think>Final content",
hasThinking: true,
},
{
name: "multiple_think_close_tags",
input: "First thought</think>Second thought</think>Final content",
expectedThinking: "First thought",
expectedContent: "Second thought</think>Final content",
hasThinking: true,
},
{
name: "empty_thinking_content",
input: "</think>Just content",
expectedThinking: "",
expectedContent: "Just content",
hasThinking: true,
},
{
name: "thinking_disabled_with_think_tags",
input: "Some content</think>More content",
expectedContent: "Some content</think>More content",
hasThinking: false,
},
{
name: "malformed_tool_call_missing_sep",
input: "Testing.<tool▁calls▁begin><tool▁call▁begin>bad_tool{\"arg\":\"value\"}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Testing.",
hasThinking: false,
},
{
name: "malformed_tool_call_invalid_json",
input: "Testing.<tool▁calls▁begin><tool▁call▁begin>bad_tool<tool▁sep>{invalid json}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "Testing.",
hasThinking: false,
},
{
name: "partial_tool_tag_at_end",
input: "Content with partial <tool▁calls▁",
expectedContent: "Content with partial <tool▁calls▁",
hasThinking: false,
},
{
name: "partial_think_tag_at_end",
input: "Thinking content</th",
expectedContent: "Thinking content</th",
hasThinking: false,
},
{
name: "partial_think_tag_at_end_with_thinking",
input: "Thinking content</th",
expectedThinking: "Thinking content",
expectedContent: "",
hasThinking: true,
},
{
name: "whitespace_only_content",
input: " \n\t ",
expectedContent: " \n\t ",
hasThinking: false,
},
{
name: "tool_output_with_newlines",
input: "Output:\n<tool▁output▁begin>Line 1\nLine 2\nLine 3<tool▁output▁end>\nDone.",
expectedContent: "Output:\nLine 1\nLine 2\nLine 3\nDone.",
hasThinking: false,
},
{
name: "consecutive_tool_calls",
input: "First.<tool▁calls▁begin><tool▁call▁begin>tool1<tool▁sep>{}<tool▁call▁end><tool▁calls▁end>Second.<tool▁calls▁begin><tool▁call▁begin>tool2<tool▁sep>{}<tool▁call▁end><tool▁calls▁end>",
expectedContent: "First.",
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &DeepSeekParser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
content, thinking, _, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -58,6 +58,8 @@ func ParserForName(name string) Parser {
return harmony.NewHarmonyMessageHandler()
case "cogito":
return &CogitoParser{}
case "deepseek":
return &DeepSeekParser{hasThinkingSupport: true}
case "olmo3":
return &Olmo3Parser{}
case "olmo3-think":

View File

@@ -10,12 +10,15 @@ import (
)
const (
olmo3DefaultSystemMessage = "You are a helpful function-calling AI assistant. "
olmo3NoFunctionsMessage = "You do not currently have access to any functions. "
olmo3WithFunctionsMessage = "You are provided with function signatures within <functions></functions> XML tags. You may call one or more functions to assist with the user query. Output any function calls within <function_calls></function_calls> XML tags. Do not make assumptions about what values to plug into functions."
olmo3DefaultSystemMessage = "You are a helpful function-calling AI assistant. "
olmo31DefaultSystemMessage = "You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai. "
olmo3NoFunctionsMessage = "You do not currently have access to any functions. "
olmo3WithFunctionsMessage = "You are provided with function signatures within <functions></functions> XML tags. You may call one or more functions to assist with the user query. Output any function calls within <function_calls></function_calls> XML tags. Do not make assumptions about what values to plug into functions."
)
type Olmo3Renderer struct{}
type Olmo3Renderer struct {
UseExtendedSystemMessage bool
}
func (r *Olmo3Renderer) Render(messages []api.Message, tools []api.Tool, _ *api.ThinkValue) (string, error) {
var sb strings.Builder
@@ -51,7 +54,11 @@ func (r *Olmo3Renderer) Render(messages []api.Message, tools []api.Tool, _ *api.
} else {
// Default system message - single newline after "system"
sb.WriteString("<|im_start|>system\n")
sb.WriteString(olmo3DefaultSystemMessage)
if r.UseExtendedSystemMessage {
sb.WriteString(olmo31DefaultSystemMessage)
} else {
sb.WriteString(olmo3DefaultSystemMessage)
}
if len(tools) > 0 {
functionsJSON, err := marshalWithSpaces(tools)
@@ -140,7 +147,7 @@ func (r *Olmo3Renderer) Render(messages []api.Message, tools []api.Tool, _ *api.
}
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n\n")
sb.WriteString("<|im_start|>assistant\n")
}
return sb.String(), nil

View File

@@ -24,7 +24,7 @@ func TestOlmo3Renderer(t *testing.T) {
"You are a helpful function-calling AI assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "with system message no tools",
@@ -36,7 +36,7 @@ func TestOlmo3Renderer(t *testing.T) {
"You are a helpful assistant.<|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "with system message and tools",
@@ -64,7 +64,7 @@ func TestOlmo3Renderer(t *testing.T) {
`You are a helpful assistant.<functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"What is the weather?<|im_end|>\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "default system with tools - includes function instruction",
@@ -93,7 +93,7 @@ func TestOlmo3Renderer(t *testing.T) {
`<functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"<|im_start|>user\n" +
"What is the weather?<|im_end|>\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "assistant with tool calls - function call syntax",
@@ -141,7 +141,7 @@ func TestOlmo3Renderer(t *testing.T) {
`Let me check the weather.<function_calls>get_weather(location="San Francisco")</function_calls><|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "multi-turn conversation",
@@ -159,7 +159,7 @@ func TestOlmo3Renderer(t *testing.T) {
"Hi there!<|im_end|>\n" +
"<|im_start|>user\n" +
"How are you?<|im_end|>\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "parallel tool calls - newline separated",
@@ -214,7 +214,7 @@ func TestOlmo3Renderer(t *testing.T) {
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 55}<|im_end|>` + "\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "tool call with multiple arguments",
@@ -259,7 +259,7 @@ func TestOlmo3Renderer(t *testing.T) {
"Book a flight<|im_end|>\n" +
"<|im_start|>assistant\n" +
`<function_calls>book_flight(from="SFO", to="NYC")</function_calls><|im_end|>` + "\n" +
"<|im_start|>assistant\n\n",
"<|im_start|>assistant\n",
},
{
name: "assistant prefill - no generation prompt",

View File

@@ -1,31 +1,31 @@
package renderers
import (
"encoding/json"
"strings"
"github.com/ollama/ollama/api"
)
type Olmo3ThinkVariant int
const (
olmo3ThinkDefaultSystemMessage = "You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai."
olmo3ThinkNoFunctionsMessage = " You do not currently have access to any functions."
// Olmo3Think32B is for allenai/Olmo-3-32B-Think
Olmo3Think32B Olmo3ThinkVariant = iota
// Olmo31Think is for allenai/Olmo-3-7B-Think and allenai/Olmo-3.1-32B-Think (includes model info)
Olmo31Think
)
type Olmo3ThinkRenderer struct{}
const (
olmo3ThinkFunctionsSuffix = " You do not currently have access to any functions. <functions></functions>"
olmo3Think32BSystemMessage = "You are a helpful AI assistant."
olmo31ThinkSystemMessage = "You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai."
)
type olmo3ThinkToolCall struct {
ID string `json:"id,omitempty"`
Type string `json:"type,omitempty"`
Function olmo3ThinkToolCallFunc `json:"function"`
type Olmo3ThinkRenderer struct {
Variant Olmo3ThinkVariant
}
type olmo3ThinkToolCallFunc struct {
Name string `json:"name"`
Arguments string `json:"arguments"`
}
func (r *Olmo3ThinkRenderer) Render(messages []api.Message, tools []api.Tool, _ *api.ThinkValue) (string, error) {
func (r *Olmo3ThinkRenderer) Render(messages []api.Message, _ []api.Tool, _ *api.ThinkValue) (string, error) {
var sb strings.Builder
var systemMessage *api.Message
@@ -37,34 +37,31 @@ func (r *Olmo3ThinkRenderer) Render(messages []api.Message, tools []api.Tool, _
}
continue
}
// Skip tool messages - Think models don't support tools
if message.Role == "tool" {
continue
}
filteredMessages = append(filteredMessages, message)
}
systemContent := olmo3ThinkDefaultSystemMessage
if systemMessage != nil {
systemContent = systemMessage.Content
}
sb.WriteString("<|im_start|>system\n")
sb.WriteString(systemContent)
if len(tools) > 0 {
functionsJSON, err := marshalWithSpaces(tools)
if err != nil {
return "", err
}
sb.WriteString(" <functions>")
sb.WriteString(string(functionsJSON))
sb.WriteString("</functions>")
if systemMessage != nil {
sb.WriteString(systemMessage.Content)
sb.WriteString(olmo3ThinkFunctionsSuffix)
} else {
sb.WriteString(olmo3ThinkNoFunctionsMessage)
sb.WriteString(" <functions></functions>")
// Default system message varies by variant
switch r.Variant {
case Olmo3Think32B:
sb.WriteString(olmo3Think32BSystemMessage)
default: // Olmo3Think7B, Olmo31Think use same template - diverges from HF but confirmed difference from team
sb.WriteString(olmo31ThinkSystemMessage)
}
}
sb.WriteString("<|im_end|>\n")
for i, message := range filteredMessages {
lastMessage := i == len(filteredMessages)-1
for _, message := range filteredMessages {
switch message.Role {
case "user":
sb.WriteString("<|im_start|>user\n")
@@ -73,58 +70,15 @@ func (r *Olmo3ThinkRenderer) Render(messages []api.Message, tools []api.Tool, _
case "assistant":
sb.WriteString("<|im_start|>assistant\n")
if message.Content != "" {
sb.WriteString(message.Content)
}
if len(message.ToolCalls) > 0 {
toolCalls := make([]olmo3ThinkToolCall, len(message.ToolCalls))
for j, tc := range message.ToolCalls {
argsJSON, err := json.Marshal(tc.Function.Arguments)
if err != nil {
return "", err
}
toolCalls[j] = olmo3ThinkToolCall{
ID: tc.ID,
Type: "function",
Function: olmo3ThinkToolCallFunc{
Name: tc.Function.Name,
Arguments: string(argsJSON),
},
}
}
toolCallsJSON, err := marshalWithSpaces(toolCalls)
if err != nil {
return "", err
}
sb.WriteString("<function_calls>")
sb.WriteString(string(toolCallsJSON))
sb.WriteString("</function_calls>")
}
if !lastMessage {
sb.WriteString("<|im_end|>\n")
}
case "tool":
sb.WriteString("<|im_start|>environment\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
}
}
needsGenerationPrompt := true
if len(filteredMessages) > 0 {
lastMsg := filteredMessages[len(filteredMessages)-1]
if lastMsg.Role == "assistant" && len(lastMsg.ToolCalls) == 0 && lastMsg.Content != "" {
needsGenerationPrompt = false
}
}
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n<think>")
}
// Always add generation prompt with <think> tag for thinking models
sb.WriteString("<|im_start|>assistant\n<think>")
return sb.String(), nil
}

View File

@@ -11,24 +11,27 @@ import (
func TestOlmo3ThinkRenderer(t *testing.T) {
tests := []struct {
name string
variant Olmo3ThinkVariant
msgs []api.Message
tools []api.Tool
expected string
}{
{
name: "basic without system - adds default system",
name: "7b_basic_without_system",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "with system message no tools",
name: "7b_with_custom_system",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
@@ -41,9 +44,9 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
"<think>",
},
{
name: "with system message and tools",
name: "7b_tools_ignored",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "What is the weather?"},
},
tools: []api.Tool{
@@ -52,27 +55,20 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}, Description: "The city"},
},
},
},
},
},
expected: "<|im_start|>system\n" +
`You are a helpful assistant. <functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"<|im_start|>user\n" +
"What is the weather?<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "assistant with tool calls",
name: "7b_tool_calls_and_tool_messages_ignored",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "What is the weather in SF?"},
{
Role: "assistant",
@@ -81,53 +77,33 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
{
ID: "call_1",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{
"location": "San Francisco",
},
},
},
},
},
{Role: "tool", Content: `{"temperature": 68}`, ToolName: "get_weather"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}, Description: "The city"},
Name: "get_weather",
Arguments: map[string]any{"location": "San Francisco"},
},
},
},
},
{Role: "tool", Content: `{"temperature": 68}`},
},
expected: "<|im_start|>system\n" +
`You are a helpful assistant. <functions>[{"type": "function", "function": {"name": "get_weather", "description": "Get the current weather", "parameters": {"type": "object", "required": ["location"], "properties": {"location": {"type": "string", "description": "The city"}}}}}]</functions><|im_end|>` + "\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"<|im_start|>user\n" +
"What is the weather in SF?<|im_end|>\n" +
"<|im_start|>assistant\n" +
`Let me check the weather.<function_calls>[{"id": "call_1", "type": "function", "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}}]</function_calls><|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 68}<|im_end|>` + "\n" +
"Let me check the weather.<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "multi-turn conversation",
name: "7b_multi_turn_conversation",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "Hi there!"},
{Role: "user", Content: "How are you?"},
},
expected: "<|im_start|>system\n" +
"You are a helpful assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"<|im_start|>user\n" +
"Hello<|im_end|>\n" +
"<|im_start|>assistant\n" +
@@ -138,73 +114,56 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
"<think>",
},
{
name: "parallel tool calls",
name: "32b_basic_without_system",
variant: Olmo3Think32B,
msgs: []api.Message{
{Role: "user", Content: "Get weather in SF and NYC"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_1",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"location": "San Francisco"},
},
},
{
ID: "call_2",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"location": "New York"},
},
},
},
},
{Role: "tool", Content: `{"temperature": 68}`, ToolName: "get_weather"},
{Role: "tool", Content: `{"temperature": 55}`, ToolName: "get_weather"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}},
},
},
},
},
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
`You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai. <functions>[{"type": "function", "function": {"name": "get_weather", "parameters": {"type": "object", "properties": {"location": {"type": "string"}}}}}]</functions><|im_end|>` + "\n" +
"You are a helpful AI assistant.<|im_end|>\n" +
"<|im_start|>user\n" +
"Get weather in SF and NYC<|im_end|>\n" +
"<|im_start|>assistant\n" +
`<function_calls>[{"id": "call_1", "type": "function", "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}}, {"id": "call_2", "type": "function", "function": {"name": "get_weather", "arguments": "{\"location\":\"New York\"}"}}]</function_calls><|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 68}<|im_end|>` + "\n" +
"<|im_start|>environment\n" +
`{"temperature": 55}<|im_end|>` + "\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "assistant message only content no tool calls",
name: "32b_with_custom_system_gets_suffix",
variant: Olmo3Think32B,
msgs: []api.Message{
{Role: "user", Content: "Tell me a joke"},
{Role: "assistant", Content: "Why did the chicken cross the road?"},
{Role: "user", Content: "I don't know, why?"},
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are OLMo, a helpful function-calling AI assistant built by Ai2. Your date cutoff is November 2024, and your model weights are available at https://huggingface.co/allenai. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"You are a helpful assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Tell me a joke<|im_end|>\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"Why did the chicken cross the road?<|im_end|>\n" +
"<think>",
},
{
name: "31_basic_without_system",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.<|im_end|>\n" +
"<|im_start|>user\n" +
"I don't know, why?<|im_end|>\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
{
name: "31_with_custom_system_gets_suffix",
variant: Olmo31Think,
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
expected: "<|im_start|>system\n" +
"You are a helpful assistant. You do not currently have access to any functions. <functions></functions><|im_end|>\n" +
"<|im_start|>user\n" +
"Hello!<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>",
},
@@ -212,7 +171,7 @@ func TestOlmo3ThinkRenderer(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := (&Olmo3ThinkRenderer{}).Render(tt.msgs, tt.tools, nil)
rendered, err := (&Olmo3ThinkRenderer{Variant: tt.variant}).Render(tt.msgs, tt.tools, nil)
if err != nil {
t.Fatal(err)
}

View File

@@ -60,10 +60,18 @@ func rendererForName(name string) Renderer {
renderer := &CogitoRenderer{isThinking: true}
return renderer
case "olmo3":
renderer := &Olmo3Renderer{}
renderer := &Olmo3Renderer{UseExtendedSystemMessage: false}
return renderer
case "olmo3.1":
renderer := &Olmo3Renderer{UseExtendedSystemMessage: true}
return renderer
case "olmo3-think":
renderer := &Olmo3ThinkRenderer{}
// Used for Olmo-3-7B-Think and Olmo-3.1-32B-Think (same template)
renderer := &Olmo3ThinkRenderer{Variant: Olmo31Think}
return renderer
case "olmo3-32b-think":
// Used for Olmo-3-32B-Think
renderer := &Olmo3ThinkRenderer{Variant: Olmo3Think32B}
return renderer
default:
return nil

View File

@@ -487,29 +487,9 @@ func FromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
}
types := []string{"jpeg", "jpg", "png", "webp"}
valid := false
// support blank mime type to match api/chat taking just unadorned base64
if strings.HasPrefix(url, "data:;base64,") {
url = strings.TrimPrefix(url, "data:;base64,")
valid = true
}
for _, t := range types {
prefix := "data:image/" + t + ";base64,"
if strings.HasPrefix(url, prefix) {
url = strings.TrimPrefix(url, prefix)
valid = true
break
}
}
if !valid {
return nil, errors.New("invalid image input")
}
img, err := base64.StdEncoding.DecodeString(url)
img, err := decodeImageURL(url)
if err != nil {
return nil, errors.New("invalid message format")
return nil, err
}
messages = append(messages, api.Message{Role: msg.Role, Images: []api.ImageData{img}})
@@ -648,6 +628,35 @@ func nameFromToolCallID(messages []Message, toolCallID string) string {
return ""
}
// decodeImageURL decodes a base64 data URI into raw image bytes.
func decodeImageURL(url string) (api.ImageData, error) {
types := []string{"jpeg", "jpg", "png", "webp"}
// Support blank mime type to match /api/chat's behavior of taking just unadorned base64
if strings.HasPrefix(url, "data:;base64,") {
url = strings.TrimPrefix(url, "data:;base64,")
} else {
valid := false
for _, t := range types {
prefix := "data:image/" + t + ";base64,"
if strings.HasPrefix(url, prefix) {
url = strings.TrimPrefix(url, prefix)
valid = true
break
}
}
if !valid {
return nil, errors.New("invalid image input")
}
}
img, err := base64.StdEncoding.DecodeString(url)
if err != nil {
return nil, errors.New("invalid image input")
}
return img, nil
}
// FromCompletionToolCall converts OpenAI ToolCall format to api.ToolCall
func FromCompletionToolCall(toolCalls []ToolCall) ([]api.ToolCall, error) {
apiToolCalls := make([]api.ToolCall, len(toolCalls))

1015
openai/responses.go Normal file
View File

File diff suppressed because it is too large Load Diff

1842
openai/responses_test.go Normal file
View File

File diff suppressed because it is too large Load Diff

View File

@@ -26,6 +26,7 @@ import (
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/runner/common"
)
@@ -832,7 +833,7 @@ func (s *Server) loadModel(
ppath string,
kvSize int,
kvCacheType string,
flashAttention bool,
flashAttention ml.FlashAttentionType,
threads int,
multiUserCache bool,
) {
@@ -842,7 +843,7 @@ func (s *Server) loadModel(
panic(err)
}
ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention, kvCacheType)
ctxParams := llama.NewContextParams(kvSize, s.batchSize, s.parallel, threads, flashAttention, kvCacheType)
s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
if err != nil {
panic(err)

View File

@@ -1203,16 +1203,22 @@ func (s *Server) allocModel(
return errors.New("loras are not yet implemented")
}
if s.model.Config().Cache == nil {
if parallel > 1 {
parallel = 1
slog.Warn("model does not support caching, disabling parallel processing")
}
if s.batchSize < kvSize {
s.batchSize = kvSize
slog.Warn("model does not support caching, setting batch size to context length", "batch_size", kvSize)
}
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
if err != nil {
return err
}
if !s.cache.enabled && parallel > 1 {
parallel = 1
slog.Warn("model does not support caching, disabling parallel processing")
}
s.parallel = parallel
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

View File

@@ -1532,6 +1532,7 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.POST("/v1/embeddings", middleware.EmbeddingsMiddleware(), s.EmbedHandler)
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
if rc != nil {
// wrap old with new
@@ -2393,3 +2394,4 @@ func filterThinkTags(msgs []api.Message, m *Model) []api.Message {
}
return msgs
}

View File

@@ -127,6 +127,9 @@ var funcs = template.FuncMap{
// Default format is YYYY-MM-DD
return time.Now().Format("2006-01-02")
},
"yesterdayDate": func(args ...string) string {
return time.Now().AddDate(0, 0, -1).Format("2006-01-02")
},
"toTypeScriptType": func(v any) string {
if param, ok := v.(api.ToolProperty); ok {
return param.ToTypeScriptType()

View File

@@ -10,6 +10,7 @@ import (
"slices"
"strings"
"testing"
"time"
"github.com/google/go-cmp/cmp"
@@ -451,6 +452,72 @@ func TestExecuteWithSuffix(t *testing.T) {
}
}
func TestDateFunctions(t *testing.T) {
t.Run("currentDate", func(t *testing.T) {
tmpl, err := Parse("{{- range .Messages }}{{ .Content }}{{ end }} Today is {{ currentDate }}")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, Values{Messages: []api.Message{{Role: "user", Content: "Hello"}}}); err != nil {
t.Fatal(err)
}
expected := "Hello Today is " + time.Now().Format("2006-01-02")
if b.String() != expected {
t.Errorf("got %q, want %q", b.String(), expected)
}
})
t.Run("yesterdayDate", func(t *testing.T) {
tmpl, err := Parse("{{- range .Messages }}{{ .Content }}{{ end }} Yesterday was {{ yesterdayDate }}")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, Values{Messages: []api.Message{{Role: "user", Content: "Hello"}}}); err != nil {
t.Fatal(err)
}
expected := "Hello Yesterday was " + time.Now().AddDate(0, 0, -1).Format("2006-01-02")
if b.String() != expected {
t.Errorf("got %q, want %q", b.String(), expected)
}
})
t.Run("yesterdayDate format", func(t *testing.T) {
tmpl, err := Parse("{{- range .Messages }}{{ end }}{{ yesterdayDate }}")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, Values{Messages: []api.Message{{Role: "user", Content: "Hello"}}}); err != nil {
t.Fatal(err)
}
// Verify the format matches YYYY-MM-DD
result := b.String()
if len(result) != 10 {
t.Errorf("expected date length 10, got %d: %q", len(result), result)
}
// Parse and verify it's a valid date
parsed, err := time.Parse("2006-01-02", result)
if err != nil {
t.Errorf("failed to parse date %q: %v", result, err)
}
// Verify it's yesterday
yesterday := time.Now().AddDate(0, 0, -1)
if parsed.Year() != yesterday.Year() || parsed.Month() != yesterday.Month() || parsed.Day() != yesterday.Day() {
t.Errorf("expected yesterday's date, got %v", parsed)
}
})
}
func TestCollate(t *testing.T) {
cases := []struct {
name string