Compare commits

...

33 Commits

Author SHA1 Message Date
ParthSareen
92af238208 wip 2025-12-02 12:17:36 -08:00
ParthSareen
7461faf651 script to render templates 2025-12-01 18:03:04 -08:00
Daniel Hiltgen
554172759c win: warn if ggml-base detected in PATH (#13289)
If the user has somehow installed another GGML based app which places a
ggml-base lib somewhere in their PATH, we can experience runtime problems
due to incompatibilities.  This change adds a warning message if we detect
a ggml-base outside of our install location to aid in troubleshooting.
2025-12-01 15:36:47 -08:00
Bruce MacDonald
5b6a8e6001 api/client: handle non-json streaming errors (#13007)
While processing the response stream during a chat or generation if an error is occurred it is parsed and returned to the user. The issue with the existing code is that this assumed the response would be valid JSON, which is not a safe assumption and caused cryptic error messages to be displayed due to parsing failures:
`invalid character 'i' looking for beginning of value`

This change updates the stream function to return the raw error string if it cant be parsed as JSON. This should help with debugging issues by making sure the actual error reaches the user.
2025-12-01 15:10:16 -08:00
Daniel Hiltgen
467bbc0dd5 jetpack: require exact match or skip cuda_jetpack* (#13288)
The cuda_jetpack libs will enumerate discrete GPUs on SBSA systems
which leads to runtime failures of missing kernels.  This fix
requires an exact match to enable jetpacks instead of relying on
enumeration to filter out supported libraries.
2025-12-01 12:48:16 -08:00
Jeffrey Morgan
6d9f9323c5 .gitattributes: add app/webview to linguist-vendored (#13274) 2025-11-29 23:46:10 -05:00
Ondrej Kokes
0c2489605d docs: fix output formatting in faq.mdx (#13231)
There were a few Markdown typos in one FAQ answer. It now renders as a proper ascii table.
2025-11-28 19:19:21 -05:00
EntropyYue
8b1b89a984 docs: remove deprecated parameters (#13237) 2025-11-26 11:03:09 +09:00
Eva H
47e272c35a app/cmd: update ollama help to navigate to ollama doc instead of github page (#13174) 2025-11-20 16:30:35 -05:00
Jeffrey Morgan
417a81fda3 app: open app instead of always navigating to / on connect (#13164) 2025-11-20 12:59:17 -08:00
Daniel Hiltgen
dba62ff3a5 discovery: fix cuda overlap case (#13176)
Recent refactoring introduced a regression for filtering cuda overlap to favor newest supported version.
2025-11-20 12:15:37 -08:00
Grace
d70e935526 Parser for Cogito v2 (#13145) 2025-11-19 17:21:07 -08:00
Michael Yang
5c1063df7f deepseek2: upgrade to run v3+ models (#13166)
the check for mla omits v3 and r1 which should not return unsupported.
instead check the tokenizer for compatibility
2025-11-19 17:05:39 -08:00
Jesse Gross
cb485b2019 kvcache: Run tests both with and without PermutedV
The causal cache can store data differently depending on what is
best for the backend. We should run tests both ways.
2025-11-19 16:45:30 -08:00
nicole pardal
b2af50960f nomic-embed: nomic-embed-text defaulted to ollama runner (#13144) 2025-11-19 13:03:44 -08:00
Michael Yang
eac5b8bfbd chore: mark vulkan shaders as vendored files 2025-11-19 12:01:23 -08:00
Patrick Devine
604e43b28d models: enable deepseek2 (deepseek v3.1 w/ MLA) on the new engine (#13151) 2025-11-18 22:03:50 -08:00
Jesse Gross
53985b3c4d kvcache: Use SetRows to store cache data
We currently copy data into the KV cache in contiguous buffers using
ggml_cpy(). ggml_set_rows() was introduced to allow scatter operation
so that contiguous buffers are no longer required. The direct primary
benefit of this is that we no longer need to perform defragmentation.

However, GGML recently removed an optimization for ggml_cpy() and
we picked it up in 544b673 "ggml update to b6840 (#12791)". This
caused a roughly 40% drop in token generation performance on CUDA
due to CUDA graphs no longer being used. By switching to
ggml_set_rows(), the original optimization is no longer necessary
and CUDA performance is restored.

Fixes #13112
2025-11-18 20:42:28 -08:00
Jesse Gross
b6e02cbbd2 ggml: Automatically make tensors contiguous on reshape
GGML requires tensors to be contiguous for reshape and if
this is not the case, it will assert fail. Contiguous is an
expensive operation, so it's best to do it lazily when it is
actually required rather than ahead of time when it may not
be needed.
2025-11-18 20:42:28 -08:00
Grace
91935631ac Renderer for Cogito v2 (#13139) 2025-11-18 19:06:34 -08:00
nicole pardal
8de30b568a nomic-embed-text model implementation (#13071) 2025-11-18 18:28:10 -08:00
Daniel Hiltgen
485da9fd35 win: exit instead of abort (#13138)
Calling abort on windows triggers the C++ runtime to attempt a debugger
attach, which causes the crashed runners to hang instead of exit, leading
to a timeout instead of a fast failure during discovery.
2025-11-18 16:33:33 -08:00
Michael Yang
0796d79d19 cuda: skip large batches
cuda panics on batches larger than 1024 so skip those and fallback to
cpu
2025-11-18 16:11:37 -08:00
Michael Yang
92981ae3f2 deepseekocr 2025-11-18 16:11:37 -08:00
Lhiam Andrei Lingco
8ed1adf3db docs: fix typo in vscode.mdx (#13116) 2025-11-18 13:18:42 -08:00
Michael Yang
440a3823a6 fix(tokenizer): add special tokens to empty inputs (#13091) 2025-11-18 11:16:56 -08:00
Michael Yang
718961de68 migrate to golangci-lint v2 (#13109)
* migrate to golangci-lint v2
* copyloopvar
2025-11-18 11:00:26 -08:00
SamareshSingh
330f62a7fa docs: add Void Editor to community integrations (#13124)
Void is an open source AI code editor and Cursor alternative that supports
Ollama. It's built on VS Code and allows users to connect directly to Ollama
for private LLM usage without going through a middleman backend.

Key features:
- Open source Cursor alternative
- Direct Ollama integration
- VS Code fork with full compatibility
- Agent mode and MCP support
- Works with any open source model

Fixes #12919

Signed-off-by: Samaresh Kumar Singh <ssam3003@gmail.com>
2025-11-17 19:20:36 -08:00
Grace
584e2d646f Add deepseek v3.1 (#13063)
* Add mla for flash attention
* Revert to using chunks
2025-11-17 18:03:21 -08:00
Eva H
1fd4cb87b2 app/cmd: restrict ollama:// URL scheme to supported paths (#13120) 2025-11-17 20:10:45 -05:00
Cerussite
4aba2e8b72 discover: Support cgroups cores and memory limitations (#10292)
* Add supports for cgroups cores and memory limitations

* fix compile error and add logs

* remove cpu info log
2025-11-17 16:13:03 -08:00
Daniel Hiltgen
2f36d769aa bring back sysfs based VRAM information for AMD (#12871)
* build: optimize dockerfile context for iterating

This moves the copy of the source into the layer AFTER
doing software installs so we don't have to go through
the RPM install for cuda, etc. every time you touch a
source file.

* amd: implement linux sysfs based VRAM lookup

This adds a C++ implementation of sysfs DRM VRAM discovery
for more accurate free VRAM data on linux for AMD GPUs.
2025-11-17 15:40:58 -08:00
Daniel Hiltgen
399eacf486 ci: fix missing vulkan binaries in linux bundles (#13123) 2025-11-17 15:39:59 -08:00
74 changed files with 4794 additions and 896 deletions

4
.gitattributes vendored
View File

@@ -15,8 +15,12 @@ ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored
ml/backend/**/*.comp linguist-vendored
ml/backend/**/*.glsl linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
app/webview linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated

View File

@@ -366,6 +366,7 @@ jobs:
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/vulkan*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;

View File

@@ -226,12 +226,9 @@ jobs:
if: always()
run: go test -count=1 -benchtime=1x ./...
# TODO(bmizerany): replace this heavy tool with just the
# tools/checks/binaries we want and then make them all run in parallel
# across jobs, not on a single tiny vm on Github Actions.
- uses: golangci/golangci-lint-action@v6
- uses: golangci/golangci-lint-action@v9
with:
args: --timeout 10m0s -v
only-new-issues: true
patches:
runs-on: ubuntu-latest
@@ -240,4 +237,4 @@ jobs:
- name: Verify patches apply cleanly and do not change files
run: |
make -f Makefile.sync clean checkout apply-patches sync
git diff --compact-summary --exit-code
git diff --compact-summary --exit-code

View File

@@ -1,41 +1,77 @@
run:
timeout: 5m
version: "2"
linters:
default: none
enable:
- asasalint
- bidichk
- bodyclose
- containedctx
- copyloopvar
- errcheck
- errorlint
- exptostd
- gocheckcompilerdirectives
- gofmt
- gofumpt
- gosimple
- gocritic
- govet
- ineffassign
- intrange
- makezero
- misspell
- modernize
- nilerr
- nilnil
- nolintlint
- nosprintfhostport
- perfsprint
- prealloc
- sloglint
- staticcheck
- unconvert
- unused
- usestdlibvars
- usetesting
- wastedassign
- whitespace
disable:
- usestdlibvars
- errcheck
linters-settings:
staticcheck:
checks:
- all
- -SA1019 # omit Deprecated check
severity:
default-severity: error
rules:
- linters:
- gofmt
- goimports
- intrange
severity: info
settings:
errcheck:
exclude-functions:
- fmt.Fprintf
perfsprint:
strconcat: false
concat-loop: false
staticcheck:
checks:
- all
# Using a deprecated function, variable, constant or field.
# https://staticcheck.dev/docs/checks/#SA1019
- -SA1019
# Incorrect or missing package comment.
# https://staticcheck.dev/docs/checks/#ST1000
- -ST1000
# Poorly chosen identifier.
# https://staticcheck.dev/docs/checks/#ST1003
- -ST1003
# The documentation of an exported function should start with the function's name.
# https://staticcheck.dev/docs/checks/#ST1020
- -ST1020
# The documentation of an exported type should start with type's name.
# https://staticcheck.dev/docs/checks/#ST1021
- -ST1021
# The documentation of an exported variable or constant should start with variable's name.
# https://staticcheck.dev/docs/checks/#ST1022
- -ST1022
usestdlibvars:
http-method: false
http-status-code: false
formatters:
enable:
- gci
- gofmt
- gofumpt
settings:
gci:
sections:
- standard
- default
- localmodule

View File

@@ -39,14 +39,14 @@ ENV CC=clang CXX=clang++
FROM base-${TARGETARCH} AS base
ARG CMAKEVERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s
FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
@@ -57,6 +57,8 @@ ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
@@ -67,6 +69,8 @@ ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
@@ -78,6 +82,8 @@ ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
@@ -87,6 +93,8 @@ RUN --mount=type=cache,target=/root/.ccache \
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
@@ -118,6 +126,8 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS vulkan
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'Vulkan' \
&& cmake --build --parallel --preset 'Vulkan' \

View File

@@ -367,6 +367,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VS Code extension for multi-file/whole-repo coding
- [Void](https://github.com/voideditor/void) (Open source AI code editor and Cursor alternative)
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)

View File

@@ -226,7 +226,14 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
bts := scanner.Bytes()
if err := json.Unmarshal(bts, &errorResponse); err != nil {
return fmt.Errorf("unmarshal: %w", err)
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
ErrorMessage: string(bts),
}
}
return errors.New(string(bts))
}
if response.StatusCode == http.StatusUnauthorized {

View File

@@ -55,6 +55,7 @@ func TestClientFromEnvironment(t *testing.T) {
type testError struct {
message string
statusCode int
raw bool // if true, write message as-is instead of JSON encoding
}
func (e testError) Error() string {
@@ -111,6 +112,20 @@ func TestClientStream(t *testing.T) {
},
},
},
{
name: "plain text error response",
responses: []any{
"internal server error",
},
wantErr: "internal server error",
},
{
name: "HTML error page",
responses: []any{
"<html><body>404 Not Found</body></html>",
},
wantErr: "404 Not Found",
},
}
for _, tc := range testCases {
@@ -135,6 +150,12 @@ func TestClientStream(t *testing.T) {
return
}
if str, ok := resp.(string); ok {
fmt.Fprintln(w, str)
flusher.Flush()
continue
}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
@@ -173,9 +194,10 @@ func TestClientStream(t *testing.T) {
func TestClientDo(t *testing.T) {
testCases := []struct {
name string
response any
wantErr string
name string
response any
wantErr string
wantStatusCode int
}{
{
name: "immediate error response",
@@ -183,7 +205,8 @@ func TestClientDo(t *testing.T) {
message: "test error message",
statusCode: http.StatusBadRequest,
},
wantErr: "test error message",
wantErr: "test error message",
wantStatusCode: http.StatusBadRequest,
},
{
name: "server error response",
@@ -191,7 +214,8 @@ func TestClientDo(t *testing.T) {
message: "internal error",
statusCode: http.StatusInternalServerError,
},
wantErr: "internal error",
wantErr: "internal error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "successful response",
@@ -203,6 +227,26 @@ func TestClientDo(t *testing.T) {
Success: true,
},
},
{
name: "plain text error response",
response: testError{
message: "internal server error",
statusCode: http.StatusInternalServerError,
raw: true,
},
wantErr: "internal server error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "HTML error page",
response: testError{
message: "<html><body>404 Not Found</body></html>",
statusCode: http.StatusNotFound,
raw: true,
},
wantErr: "<html><body>404 Not Found</body></html>",
wantStatusCode: http.StatusNotFound,
},
}
for _, tc := range testCases {
@@ -210,11 +254,16 @@ func TestClientDo(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
if !errResp.raw {
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
} else {
// Write raw message (simulates non-JSON error responses)
fmt.Fprint(w, errResp.message)
}
return
}
@@ -241,6 +290,15 @@ func TestClientDo(t *testing.T) {
if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
}
if tc.wantStatusCode != 0 {
if statusErr, ok := err.(StatusError); ok {
if statusErr.StatusCode != tc.wantStatusCode {
t.Errorf("status code mismatch: got %d, want %d", statusErr.StatusCode, tc.wantStatusCode)
}
} else {
t.Errorf("expected StatusError, got %T", err)
}
}
return
}

View File

@@ -397,8 +397,8 @@ func checkUserLoggedIn(uiServerPort int) bool {
// handleConnectURLScheme fetches the connect URL and opens it in the browser
func handleConnectURLScheme() {
if checkUserLoggedIn(uiServerPort) {
slog.Info("user is already logged in, opening settings instead")
sendUIRequestMessage("/")
slog.Info("user is already logged in, opening app instead")
showWindow(wv.webview.Window())
return
}
@@ -434,37 +434,30 @@ func openInBrowser(url string) {
}
}
// parseURLScheme parses an ollama:// URL and returns whether it's a connect URL and the UI path
func parseURLScheme(urlSchemeRequest string) (isConnect bool, uiPath string, err error) {
// parseURLScheme parses an ollama:// URL and validates it
// Supports: ollama:// (open app) and ollama://connect (OAuth)
func parseURLScheme(urlSchemeRequest string) (isConnect bool, err error) {
parsedURL, err := url.Parse(urlSchemeRequest)
if err != nil {
return false, "", err
return false, fmt.Errorf("invalid URL: %w", err)
}
// Check if this is a connect URL
if parsedURL.Host == "connect" || strings.TrimPrefix(parsedURL.Path, "/") == "connect" {
return true, "", nil
return true, nil
}
// Extract the UI path
path := "/"
if parsedURL.Path != "" && parsedURL.Path != "/" {
// For URLs like ollama:///settings, use the path directly
path = parsedURL.Path
} else if parsedURL.Host != "" {
// For URLs like ollama://settings (without triple slash),
// the "settings" part is parsed as the host, not the path.
// We need to convert it to a path by prepending "/"
// This also handles ollama://settings/ where Windows adds a trailing slash
path = "/" + parsedURL.Host
// Allow bare ollama:// or ollama:/// to open the app
if (parsedURL.Host == "" && parsedURL.Path == "") || parsedURL.Path == "/" {
return false, nil
}
return false, path, nil
return false, fmt.Errorf("unsupported ollama:// URL path: %s", urlSchemeRequest)
}
// handleURLSchemeInCurrentInstance processes URL scheme requests in the current instance
func handleURLSchemeInCurrentInstance(urlSchemeRequest string) {
isConnect, uiPath, err := parseURLScheme(urlSchemeRequest)
isConnect, err := parseURLScheme(urlSchemeRequest)
if err != nil {
slog.Error("failed to parse URL scheme request", "url", urlSchemeRequest, "error", err)
return
@@ -473,6 +466,8 @@ func handleURLSchemeInCurrentInstance(urlSchemeRequest string) {
if isConnect {
handleConnectURLScheme()
} else {
sendUIRequestMessage(uiPath)
if wv.webview != nil {
showWindow(wv.webview.Window())
}
}
}

View File

@@ -24,27 +24,14 @@ bool firstTimeRun,startHidden; // Set in run before initialization
for (NSURL *url in urls) {
if ([url.scheme isEqualToString:@"ollama"]) {
NSString *path = url.path;
if (!path || [path isEqualToString:@""]) {
// For URLs like ollama://settings (without triple slash),
// the "settings" part is parsed as the host, not the path.
// We need to convert it to a path by prepending "/"
if (url.host && ![url.host isEqualToString:@""]) {
path = [@"/" stringByAppendingString:url.host];
} else {
path = @"/";
}
}
if ([path isEqualToString:@"/connect"] || [url.host isEqualToString:@"connect"]) {
if (path && ([path isEqualToString:@"/connect"] || [url.host isEqualToString:@"connect"])) {
// Special case: handle connect by opening browser instead of app
handleConnectURL();
} else {
// Set app to be active and visible
[NSApp setActivationPolicy:NSApplicationActivationPolicyRegular];
[NSApp activateIgnoringOtherApps:YES];
// Open the path with the UI
[self uiRequest:path];
}
break;
@@ -260,7 +247,7 @@ bool firstTimeRun,startHidden; // Set in run before initialization
}
- (void)openHelp:(id)sender {
NSURL *url = [NSURL URLWithString:@"https://github.com/ollama/ollama/tree/main/docs"];
NSURL *url = [NSURL URLWithString:@"https://docs.ollama.com/"];
[[NSWorkspace sharedWorkspace] openURL:url];
}

View File

@@ -138,7 +138,7 @@ func (app *appCallbacks) HandleURLScheme(urlScheme string) {
// handleURLSchemeRequest processes URL scheme requests from other instances
func handleURLSchemeRequest(urlScheme string) {
isConnect, uiPath, err := parseURLScheme(urlScheme)
isConnect, err := parseURLScheme(urlScheme)
if err != nil {
slog.Error("failed to parse URL scheme request", "url", urlScheme, "error", err)
return
@@ -147,7 +147,9 @@ func handleURLSchemeRequest(urlScheme string) {
if isConnect {
handleConnectURLScheme()
} else {
sendUIRequestMessage(uiPath)
if wv.webview != nil {
showWindow(wv.webview.Window())
}
}
}

View File

@@ -0,0 +1,625 @@
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "transformers>=4.57.0",
# "jinja2",
# "fastapi",
# "uvicorn",
# "pydantic",
# "requests",
# ]
# ///
"""
Chat Template Testing Tool
Test HuggingFace chat templates against Ollama renderers.
Usage:
# Run predefined test cases against a HuggingFace model
uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3
# Compare HuggingFace output with Ollama renderer
uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3 --ollama-model intellect3
# Start server for manual curl testing
uv run cmd/chat_template/chat_template.py --serve
# Show chat template for a model
uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3 --show-template
"""
import argparse
import json
import sys
from typing import Any
from transformers import AutoTokenizer
TEST_CASES = [
{
"name": "basic_user_message",
"messages": [{"role": "user", "content": "Hello!"}],
"tools": None,
},
{
"name": "with_system_message",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"},
],
"tools": None,
},
{
"name": "multi_turn_conversation",
"messages": [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
{"role": "user", "content": "How are you?"},
],
"tools": None,
},
{
"name": "with_tools",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather?"},
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"required": ["location"],
"properties": {
"location": {"type": "string", "description": "The city"}
},
},
},
}
],
},
{
"name": "tool_call_and_response",
"messages": [
{"role": "user", "content": "What is the weather in SF?"},
{
"role": "assistant",
"content": "Let me check the weather.",
"tool_calls": [
{
"id": "call_1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {"location": "San Francisco"},
},
}
],
},
{"role": "tool", "content": '{"temperature": 68}', "tool_call_id": "call_1"},
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"required": ["location"],
"properties": {
"location": {"type": "string", "description": "The city"}
},
},
},
}
],
},
{
"name": "parallel_tool_calls",
"messages": [
{"role": "user", "content": "Get weather in SF and NYC"},
{
"role": "assistant",
"tool_calls": [
{
"id": "call_1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {"location": "San Francisco"},
},
},
{
"id": "call_2",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {"location": "New York"},
},
},
],
},
{"role": "tool", "content": '{"temperature": 68}', "tool_call_id": "call_1"},
{"role": "tool", "content": '{"temperature": 55}', "tool_call_id": "call_2"},
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
},
}
],
},
# Thinking tests
{
"name": "assistant_with_thinking",
"messages": [
{"role": "user", "content": "What is 2+2?"},
{
"role": "assistant",
"content": "The answer is 4.",
"thinking": "Let me calculate: 2 + 2 = 4. This is basic arithmetic.",
},
{"role": "user", "content": "And 3+3?"},
],
"tools": None,
},
{
"name": "thinking_with_tool_call",
"messages": [
{"role": "user", "content": "What's the weather in Paris?"},
{
"role": "assistant",
"content": "I'll check the weather for you.",
"thinking": "The user wants to know the weather in Paris. I should call the get_weather function.",
"tool_calls": [
{
"id": "call_1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {"location": "Paris"},
},
}
],
},
{"role": "tool", "content": '{"temperature": 18, "condition": "cloudy"}', "tool_call_id": "call_1"},
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
},
}
],
},
{
"name": "thinking_only_no_content",
"messages": [
{"role": "user", "content": "Think about this silently."},
{
"role": "assistant",
"content": "", # HuggingFace requires content field
"thinking": "I'm thinking about this but won't respond with visible content.",
},
{"role": "user", "content": "What did you think?"},
],
"tools": None,
},
]
# Cache for tokenizers
_tokenizer_cache: dict[str, Any] = {}
def get_tokenizer(model_name: str):
"""Get or create tokenizer for the given model."""
if model_name not in _tokenizer_cache:
print(f"Loading tokenizer for {model_name}...", file=sys.stderr)
_tokenizer_cache[model_name] = AutoTokenizer.from_pretrained(model_name)
return _tokenizer_cache[model_name]
def apply_template(
model: str,
messages: list[dict],
tools: list[dict] | None = None,
) -> str:
"""Apply HuggingFace chat template to messages."""
tokenizer = get_tokenizer(model)
if tools:
return tokenizer.apply_chat_template(
messages,
tools=tools,
tokenize=False,
add_generation_prompt=True,
)
else:
return tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
def get_ollama_prompt(
ollama_model: str,
messages: list[dict],
tools: list[dict] | None = None,
ollama_host: str = "http://localhost:11434",
) -> str | None:
"""Get rendered prompt from Ollama using debug_render_only."""
import requests
# Convert messages to Ollama format
ollama_messages = []
for msg in messages:
ollama_msg = {"role": msg["role"]}
if "content" in msg:
ollama_msg["content"] = msg["content"]
if "thinking" in msg:
ollama_msg["thinking"] = msg["thinking"]
if "tool_calls" in msg:
# Convert tool_calls to Ollama format
tool_calls = []
for tc in msg["tool_calls"]:
tool_call = {
"function": {
"name": tc["function"]["name"],
"arguments": tc["function"]["arguments"],
}
}
if "id" in tc:
tool_call["id"] = tc["id"]
tool_calls.append(tool_call)
ollama_msg["tool_calls"] = tool_calls
if "tool_call_id" in msg:
ollama_msg["tool_call_id"] = msg["tool_call_id"]
ollama_messages.append(ollama_msg)
payload = {
"model": ollama_model,
"messages": ollama_messages,
"stream": False,
"_debug_render_only": True,
}
if tools:
payload["tools"] = tools
try:
resp = requests.post(f"{ollama_host}/api/chat", json=payload, timeout=30)
resp.raise_for_status()
data = resp.json()
# Field name is _debug_info with underscore prefix
if "_debug_info" in data and "rendered_template" in data["_debug_info"]:
return data["_debug_info"]["rendered_template"]
return None
except requests.exceptions.ConnectionError:
print(f" [ERROR] Cannot connect to Ollama at {ollama_host}", file=sys.stderr)
return None
except Exception as e:
print(f" [ERROR] Ollama request failed: {e}", file=sys.stderr)
return None
def compute_diff(hf_prompt: str, ollama_prompt: str) -> str:
"""Compute a unified diff between HuggingFace and Ollama prompts."""
import difflib
hf_lines = hf_prompt.splitlines(keepends=True)
ollama_lines = ollama_prompt.splitlines(keepends=True)
diff = difflib.unified_diff(
ollama_lines,
hf_lines,
fromfile="Ollama",
tofile="HuggingFace",
lineterm="",
)
return "".join(diff)
def print_test_output(
name: str,
messages: list[dict],
tools: list[dict] | None,
hf_prompt: str,
ollama_prompt: str | None = None,
as_repr: bool = False,
):
"""Print test output in a format suitable for Go test creation and LLM diffing."""
print(f"\n{'='*60}")
print(f"Test: {name}")
print("=" * 60)
print("\n--- Input Messages ---")
print(json.dumps(messages, indent=2))
if tools:
print("\n--- Tools ---")
print(json.dumps(tools, indent=2))
if ollama_prompt is not None:
# Comparison mode
if hf_prompt == ollama_prompt:
print("\n--- Result: MATCH ---")
print("\n--- Prompt (both identical) ---")
if as_repr:
print(repr(hf_prompt))
else:
print(hf_prompt)
else:
print("\n--- Result: MISMATCH ---")
print("\n--- HuggingFace Prompt ---")
if as_repr:
print(repr(hf_prompt))
else:
print(hf_prompt)
print("\n--- Ollama Prompt ---")
if as_repr:
print(repr(ollama_prompt))
else:
print(ollama_prompt)
print("\n--- Diff (Ollama -> HuggingFace) ---")
diff = compute_diff(hf_prompt, ollama_prompt)
if diff:
print(diff)
else:
print("(no line-level diff, check whitespace)")
else:
# HuggingFace only mode
print("\n--- HuggingFace Prompt ---")
if as_repr:
print(repr(hf_prompt))
else:
print(hf_prompt)
print("=" * 60)
def run_tests(
model: str,
as_repr: bool = False,
test_filter: str | None = None,
ollama_model: str | None = None,
ollama_host: str = "http://localhost:11434",
):
"""Run all predefined test cases against a model."""
if ollama_model:
print(f"\nComparing HuggingFace ({model}) vs Ollama ({ollama_model})\n")
else:
print(f"\nRunning tests against: {model}\n")
matches = 0
mismatches = 0
errors = 0
for test_case in TEST_CASES:
name = test_case["name"]
messages = test_case["messages"]
tools = test_case["tools"]
# Filter tests if specified
if test_filter and test_filter.lower() not in name.lower():
continue
try:
hf_prompt = apply_template(model, messages, tools)
ollama_prompt = None
if ollama_model:
ollama_prompt = get_ollama_prompt(
ollama_model, messages, tools, ollama_host
)
if ollama_prompt is None:
errors += 1
elif hf_prompt == ollama_prompt:
matches += 1
else:
mismatches += 1
print_test_output(
name, messages, tools, hf_prompt, ollama_prompt, as_repr=as_repr
)
except Exception as e:
errors += 1
print(f"\n{'='*60}")
print(f"Test: {name} - FAILED")
print(f"--- Input Messages ---")
print(json.dumps(messages, indent=2))
if tools:
print(f"--- Tools ---")
print(json.dumps(tools, indent=2))
print(f"--- Error ---")
print(f"{e}")
print("=" * 60)
# Print summary if comparing
if ollama_model:
total = matches + mismatches + errors
print(f"\n{'='*60}")
print("SUMMARY")
print("=" * 60)
print(f" Total: {total}")
print(f" Matches: {matches}")
print(f" Mismatches: {mismatches}")
print(f" Errors: {errors}")
print("=" * 60)
def show_template(model: str):
"""Show the chat template for a model."""
tokenizer = get_tokenizer(model)
print(f"\nChat template for {model}:\n")
print("-" * 60)
print(tokenizer.chat_template)
print("-" * 60)
def start_server(host: str = "0.0.0.0", port: int = 8000):
"""Start the FastAPI server for manual testing."""
from typing import Optional, List, Dict, Any as TypingAny
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import uvicorn
class Message(BaseModel):
role: str
content: Optional[str] = None
tool_calls: Optional[List[Dict[str, TypingAny]]] = None
tool_call_id: Optional[str] = None
class GeneratePromptRequest(BaseModel):
messages: List[Message]
model: str = "PrimeIntellect/INTELLECT-3"
tools: Optional[List[Dict[str, TypingAny]]] = None
inject_tools_as_functions: bool = False
class GeneratePromptResponse(BaseModel):
prompt: str
model: str
app = FastAPI(title="HuggingFace Prompt Generator", version="1.0.0")
@app.post("/generate-prompt", response_model=GeneratePromptResponse)
async def generate_prompt(request: GeneratePromptRequest):
try:
messages = []
for msg in request.messages:
message_dict = {"role": msg.role}
if msg.content is not None:
message_dict["content"] = msg.content
if msg.tool_calls is not None:
tool_calls = []
for tc in msg.tool_calls:
tc_copy = tc.copy()
if "function" in tc_copy and "arguments" in tc_copy["function"]:
args = tc_copy["function"]["arguments"]
if isinstance(args, str):
try:
tc_copy["function"]["arguments"] = json.loads(args)
except json.JSONDecodeError:
pass
tool_calls.append(tc_copy)
message_dict["tool_calls"] = tool_calls
if msg.tool_call_id is not None:
message_dict["tool_call_id"] = msg.tool_call_id
messages.append(message_dict)
prompt = apply_template(request.model, messages, request.tools)
return GeneratePromptResponse(prompt=prompt, model=request.model)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
return {"status": "healthy"}
print(f"Starting server on http://{host}:{port}")
print("Endpoints:")
print(" POST /generate-prompt - Generate prompt from messages")
print(" GET /health - Health check")
uvicorn.run(app, host=host, port=port)
def main():
parser = argparse.ArgumentParser(
description="HuggingFace Prompt Testing Tool",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
parser.add_argument(
"--model",
"-m",
type=str,
help="HuggingFace model name (e.g., PrimeIntellect/INTELLECT-3)",
)
parser.add_argument(
"--ollama-model",
"-o",
type=str,
help="Ollama model name to compare against (e.g., qwen3-coder)",
)
parser.add_argument(
"--ollama-host",
type=str,
default="http://localhost:11434",
help="Ollama server URL (default: http://localhost:11434)",
)
parser.add_argument(
"--serve",
"-s",
action="store_true",
help="Start FastAPI server for manual curl testing",
)
parser.add_argument(
"--port",
"-p",
type=int,
default=8000,
help="Server port (default: 8000)",
)
parser.add_argument(
"--show-template",
"-t",
action="store_true",
help="Show the chat template for the model",
)
parser.add_argument(
"--repr",
"-r",
action="store_true",
help="Output prompts as Python repr (shows escape sequences)",
)
parser.add_argument(
"--filter",
"-f",
type=str,
help="Filter tests by name (substring match)",
)
args = parser.parse_args()
if args.serve:
start_server(port=args.port)
elif args.model:
if args.show_template:
show_template(args.model)
else:
run_tests(
args.model,
as_repr=args.repr,
test_filter=args.filter,
ollama_model=args.ollama_model,
ollama_host=args.ollama_host,
)
else:
parser.print_help()
print("\nExample usage:")
print(" uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3")
print(" uv run cmd/chat_template/chat_template.py --model Qwen/Qwen3-Coder-480B-A35B-Instruct --ollama-model qwen3-coder")
print(" uv run cmd/chat_template/chat_template.py --serve")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -206,6 +206,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
case "DeepseekOCRForCausalLM":
conv = &deepseekocr{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -0,0 +1,136 @@
package convert
import (
"fmt"
"github.com/ollama/ollama/fs/ggml"
)
type deepseekocr struct {
ModelParameters
LanguageConfig struct {
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NumRoutedExperts uint32 `json:"n_routed_experts"`
NumSharedExperts uint32 `json:"n_shared_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
FirstKDenseReplace uint32 `json:"first_k_dense_replace"`
} `json:"language_config"`
VisionConfig struct {
ImageSize uint32 `json:"image_size"`
Width struct {
Vision struct {
Heads uint32 `json:"heads"`
ImageSize uint32 `json:"image_size"`
Layers uint32 `json:"layers"`
PatchSize uint32 `json:"patch_size"`
Width uint32 `json:"width"`
} `json:"clip-l-14-224"`
Sam struct {
GlobalAttentionIndexes []int32 `json:"global_attn_indexes"`
Heads uint32 `json:"heads"`
Layers uint32 `json:"layers"`
Width uint32 `json:"width"`
} `json:"sam_vit_b"`
}
} `json:"vision_config"`
}
func (m *deepseekocr) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "deepseekocr"
kv["block_count"] = m.LanguageConfig.HiddenLayers
kv["context_length"] = m.LanguageConfig.MaxPositionEmbeddings
kv["embedding_length"] = m.LanguageConfig.HiddenSize
kv["feed_forward_length"] = m.LanguageConfig.IntermediateSize
kv["attention.head_count"] = m.LanguageConfig.NumAttentionHeads
kv["attention.head_count_kv"] = m.LanguageConfig.NumKeyValueHeads
kv["expert_count"] = m.LanguageConfig.NumRoutedExperts
kv["expert_used_count"] = m.LanguageConfig.NumExpertsPerToken
kv["leading_dense_block_count"] = m.LanguageConfig.FirstKDenseReplace
kv["vision.block_count"] = m.VisionConfig.Width.Vision.Layers
kv["vision.embedding_length"] = m.VisionConfig.Width.Vision.Width
kv["vision.head_count"] = m.VisionConfig.Width.Vision.Heads
kv["vision.image_size"] = m.VisionConfig.Width.Vision.ImageSize
kv["vision.patch_size"] = m.VisionConfig.Width.Vision.PatchSize
kv["sam.block_count"] = m.VisionConfig.Width.Sam.Layers
kv["sam.embedding_length"] = m.VisionConfig.Width.Sam.Width
kv["sam.head_count"] = m.VisionConfig.Width.Sam.Heads
kv["sam.global_attention_indexes"] = m.VisionConfig.Width.Sam.GlobalAttentionIndexes
return kv
}
func (m *deepseekocr) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, m.LanguageConfig.HiddenLayers*3)
for i := range m.LanguageConfig.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *deepseekocr) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
"mlp.gate", "ffn_gate_inp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"model.norm", "output_norm",
"lm_head", "output",
"model.vision_model", "v",
"embeddings.patch_embedding", "patch_embd",
"embeddings.class_embedding", "class_embd",
"embeddings.position_embedding", "position_embd",
"transformer.layers", "blk",
"model.projector", "mm",
"model.image_newline", "mm.image_newline",
//nolint:misspell // this misspelling is upstream. fixing it breaks the model
"model.view_seperator", "mm.view_seperator",
"model.sam_model.patch_embed.proj", "s.patch_embd",
"model.sam_model.pos_embed", "s.position_embd",
"model.sam_model.blocks", "s.blk",
"model.sam_model.neck", "s.neck",
"model.sam_model.net_", "s.net_",
}
}

View File

@@ -44,7 +44,10 @@ func (t tensorBase) Kind() uint32 {
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" {
t.name == "v.post_tile_position_embd.weight" ||
t.name == "s.position_embd" ||
strings.HasSuffix(t.name, "rel_pos_h") ||
strings.HasSuffix(t.name, "rel_pos_w") {
// these tensors are always F32
return tensorKindFP32
}

View File

@@ -96,7 +96,10 @@ type safetensor struct {
func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind()
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
if st.dtype == "BF16" &&
!strings.HasPrefix(st.name, "v.") &&
!strings.HasPrefix(st.name, "s.") &&
kind != tensorKindFP32 {
kind = tensorKindBF16
}

View File

@@ -2,6 +2,7 @@ package discover
import (
"bufio"
"errors"
"fmt"
"io"
"log/slog"
@@ -10,12 +11,21 @@ import (
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"github.com/ollama/ollama/format"
)
func GetCPUMem() (memInfo, error) {
mem, err := getCPUMem()
if err != nil {
return memInfo{}, err
}
return getCPUMemByCgroups(mem), nil
}
func getCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
f, err := os.Open("/proc/meminfo")
@@ -56,6 +66,32 @@ func GetCPUMem() (memInfo, error) {
return mem, nil
}
func getCPUMemByCgroups(mem memInfo) memInfo {
total, err := getUint64ValueFromFile("/sys/fs/cgroup/memory.max")
if err == nil {
mem.TotalMemory = total
}
used, err := getUint64ValueFromFile("/sys/fs/cgroup/memory.current")
if err == nil {
mem.FreeMemory = mem.TotalMemory - used
}
return mem
}
func getUint64ValueFromFile(path string) (uint64, error) {
f, err := os.Open(path)
if err != nil {
return 0, err
}
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
return strconv.ParseUint(line, 10, 64)
}
return 0, errors.New("empty file content")
}
const CpuInfoFilename = "/proc/cpuinfo"
type linuxCpuInfo struct {
@@ -74,7 +110,41 @@ func GetCPUDetails() []CPU {
return nil
}
defer file.Close()
return linuxCPUDetails(file)
cpus := linuxCPUDetails(file)
return overwriteThreadCountByLinuxCgroups(cpus)
}
func overwriteThreadCountByLinuxCgroups(cpus []CPU) []CPU {
file, err := os.Open("/sys/fs/cgroup/cpu.max")
if err != nil {
return cpus
}
defer file.Close()
scanner := bufio.NewScanner(file)
for scanner.Scan() {
line := scanner.Text()
if sl := strings.Split(line, " "); len(sl) == 2 {
allowdUs, err := strconv.ParseInt(sl[0], 10, 64)
if err != nil {
slog.Warn("failed to parse CPU allowed micro secs", "error", err)
return cpus
}
unitUs, err := strconv.ParseInt(sl[1], 10, 64)
if err != nil {
slog.Warn("failed to parse CPU unit micro secs", "error", err)
return cpus
}
threads := int(max(allowdUs/unitUs, 1))
cpu := cpus[0]
cpu.CoreCount = threads
cpu.ThreadCount = threads
return []CPU{cpu}
}
}
return cpus
}
func linuxCPUDetails(file io.Reader) []CPU {

View File

@@ -65,6 +65,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
}
slog.Info("discovering available GPUs...")
detectIncompatibleLibraries()
// Warn if any user-overrides are set which could lead to incorrect GPU discovery
overrideWarnings()
@@ -98,6 +99,9 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
continue
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
continue
} else if jetpack == "" && strings.Contains(filepath.Base(dir), "cuda_jetpack") {
slog.Debug("jetpack not detected (set JETSON_JETPACK or OLLAMA_LLM_LIBRARY to override), skipping", "libDir", dir)
continue
} else if !envconfig.EnableVulkan() && strings.Contains(filepath.Base(dir), "vulkan") {
slog.Info("experimental Vulkan support disabled. To enable, set OLLAMA_VULKAN=1")
continue
@@ -125,10 +129,20 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
supportedMu := sync.Mutex{}
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
for i := range devices {
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
if !devices[i].NeedsInitValidation() {
// No need to validate, add to the supported map
supportedMu.Lock()
if _, ok := supported[devices[i].Library]; !ok {
supported[devices[i].Library] = make(map[string]map[string]int)
}
if _, ok := supported[devices[i].Library][libDir]; !ok {
supported[devices[i].Library][libDir] = make(map[string]int)
}
supported[devices[i].Library][libDir][devices[i].ID] = i
supportedMu.Unlock()
continue
}
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
slog.Debug("verifying if device is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID)
wg.Add(1)
go func(i int) {
@@ -474,3 +488,16 @@ func overrideWarnings() {
slog.Warn("if GPUs are not correctly discovered, unset and try again")
}
}
func detectIncompatibleLibraries() {
if runtime.GOOS != "windows" {
return
}
basePath, err := exec.LookPath("ggml-base.dll")
if err != nil || basePath == "" {
return
}
if !strings.HasPrefix(basePath, ml.LibOllamaPath) {
slog.Warn("potentially incompatible library detected in PATH", "location", basePath)
}
}

View File

@@ -57,8 +57,13 @@ ollama ps
```
<Info>
**Output**: ``` NAME ID SIZE PROCESSOR UNTIL llama3:70b bcfb190ca3a7 42 GB
100% GPU 4 minutes from now ```
**Output**:
```
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
</Info>
The `Processor` column will show which memory the model was loaded in to:
@@ -385,4 +390,4 @@ Ollama for Windows and macOS register as a login item during installation. You
- In `Task Manager` go to the `Startup apps` tab, search for `ollama` then click `Disable`
**MacOS**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@@ -1,34 +1,34 @@
---
title: VS Code
title: VS Code
---
## Install
Install [VS Code](https://code.visualstudio.com/download).
Install [VS Code](https://code.visualstudio.com/download).
## Usage with Ollama
## Usage with Ollama
1. Open Copilot side bar found in top right window
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/vscode-sidebar.png"
alt="VS Code chat Sidebar"
width="75%"
/>
</div>
2. Select the model drowpdown > **Manage models**
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/vscode-models.png"
alt="VS Code model picker"
width="75%"
/>
</div>
<div style={{ display: "flex", justifyContent: "center" }}>
<img
src="/images/vscode-sidebar.png"
alt="VS Code chat Sidebar"
width="75%"
/>
</div>
2. Select the model dropdown > **Manage models**
<div style={{ display: "flex", justifyContent: "center" }}>
<img
src="/images/vscode-models.png"
alt="VS Code model picker"
width="75%"
/>
</div>
3. Enter **Ollama** under **Provider Dropdown** and select desired models (e.g `qwen3, qwen3-coder:480b-cloud`)
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/vscode-model-options.png"
alt="VS Code model options dropdown"
width="75%"
/>
</div>
<div style={{ display: "flex", justifyContent: "center" }}>
<img
src="/images/vscode-model-options.png"
alt="VS Code model options dropdown"
width="75%"
/>
</div>

View File

@@ -149,9 +149,6 @@ PARAMETER <parameter> <parametervalue>
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |

View File

@@ -249,6 +249,9 @@ func (kv KV) OllamaEngineRequired() bool {
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"deepseekocr",
"deepseek2",
"nomic-bert",
}, kv.Architecture())
}

View File

@@ -305,7 +305,7 @@ func readGGUFV1StringsData(llm *gguf, r io.Reader, a *array[string]) (any, error
a.values[i] = e
} else {
discardGGUFString(llm, r)
_ = discardGGUFString(llm, r)
}
}
@@ -568,7 +568,6 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
g.SetLimit(runtime.GOMAXPROCS(0))
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
for _, t := range ts {
t := t
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
g.Go(func() error {
_, err := t.WriteTo(w)

1
go.mod
View File

@@ -17,7 +17,6 @@ require (
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.12.0
golang.org/x/sys v0.36.0
)
require (

View File

@@ -388,9 +388,9 @@ func NewFunctionNameMap() *FunctionNameMap {
}
}
// Init initializes the handler with tools and optional last message
// Init initializes the handler with tools, optional last message, and think value
// Implements the Parser interface
func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
// Initialize the harmony parser
if h.HarmonyParser == nil {
h.HarmonyParser = &HarmonyParser{

View File

@@ -3,7 +3,6 @@ package kvcache
import (
"errors"
"fmt"
"log/slog"
"math"
"slices"
@@ -40,18 +39,18 @@ type Causal struct {
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// starting location for data storage for this batch
curLoc int
// size of the current batch
curBatchSize int
// locations for data storage for this batch
curLoc ml.Tensor
// mask of the cache as used by this batch
curMask ml.Tensor
// the active layer for Get and Put
curLayer int
// locations in the cache that are needed for this batch
curCellRange cellRange
@@ -206,45 +205,47 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curPositions = batch.Positions
c.opts.Except = nil
var locs []int32
if !reserve {
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
locs, err = c.findLocs()
if err != nil {
return err
}
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
loc := int(locs[i])
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
c.cells[loc] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
seqRange.min = min(seqRange.min, c.curLoc+i)
c.curCellRange.min = min(c.curCellRange.min, c.curLoc+i)
seqRange.min = min(seqRange.min, loc)
c.curCellRange.min = min(c.curCellRange.min, loc)
seqRange.max = max(seqRange.max, c.curLoc+i)
c.curCellRange.max = max(c.curCellRange.max, c.curLoc+i)
seqRange.max = max(seqRange.max, loc)
c.curCellRange.max = max(c.curCellRange.max, loc)
c.cellRanges[seq] = seqRange
}
} else {
// If we are reserving memory, don't update any of the cache metadata but set the size
// to the worst case.
c.curLoc = 0
locs = make([]int32, c.curBatchSize)
for i := range locs {
locs[i] = int32(i)
}
c.curCellRange.min = 0
c.curCellRange.max = len(c.cells) - 1
}
c.curLoc = ctx.Input().FromInts(locs, len(locs))
c.curMask = c.buildMask(ctx)
return nil
@@ -257,22 +258,20 @@ func newRange() cellRange {
}
}
// Find the first contiguous block of at least curBatchSize
func (c *Causal) findStartLoc() (int, error) {
var start, count int
// Returns a slice of locations where each token in the batch should be stored
func (c *Causal) findLocs() ([]int32, error) {
loc := make([]int32, 0, c.curBatchSize)
for i := range c.cells {
if len(c.cells[i].sequences) == 0 {
count++
if count >= c.curBatchSize {
return start, nil
loc = append(loc, int32(i))
if len(loc) >= c.curBatchSize {
return loc, nil
}
} else {
start = i + 1
count = 0
}
}
return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
return nil, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
}
func (c *Causal) updateSlidingWindow() {
@@ -402,145 +401,6 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
return maskTensor
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
for i, key := range c.keys {
if key == nil {
continue
}
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
if c.config.PermutedV {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
}
ctx.Forward(
kSrcView.Copy(ctx, kDstView),
vSrcView.Copy(ctx, vDstView),
)
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see that the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v). We also need to refer to the original
// k and v cache tensors - once per layer, not per move.
layers := 0
for _, key := range c.keys {
if key == nil {
continue
}
layers++
}
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
src := len(c.cells) - 1
for dst := 0; dst < src; dst++ {
if len(c.cells[dst].sequences) == 0 {
for ; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute()
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute()
}
ctx.Close()
// Reset range metadata
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if slices.Contains(cell.sequences, seq) {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
c.updateSlidingWindow()
}
func (c *Causal) SetLayer(layer int) {
c.curLayer = layer
}
@@ -625,18 +485,25 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
}
}
rowSize := c.keys[c.curLayer].Stride(2)
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
key = key.Reshape(ctx, kHeadDim*numKVHeads, batchSize)
keyCache := c.keys[c.curLayer]
keyCache = keyCache.Reshape(ctx, kHeadDim*numKVHeads, len(c.cells))
ctx.Forward(keyCache.SetRows(ctx, key, c.curLoc))
if c.config.PermutedV {
elemSize := c.values[c.curLayer].Stride(0)
value = value.Reshape(ctx, vHeadDim*numKVHeads, 1, batchSize)
value = value.Permute(ctx, 2, 0, 1, 3)
value = value.Permute(ctx, 1, 2, 0, 3)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
valueCache := c.values[c.curLayer]
valueCache = valueCache.Reshape(ctx, 1, len(c.cells), vHeadDim*numKVHeads)
ctx.Forward(valueCache.SetRows(ctx, value, c.curLoc))
} else {
rowSize := c.values[c.curLayer].Stride(2)
value = value.Reshape(ctx, vHeadDim*numKVHeads, batchSize)
valueCache := c.values[c.curLayer]
valueCache = valueCache.Reshape(ctx, vHeadDim*numKVHeads, len(c.cells))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
ctx.Forward(valueCache.SetRows(ctx, value, c.curLoc))
}
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -20,10 +20,10 @@ fix vulkan PCI ID and ID handling
ggml/src/ggml-cuda/vendors/hip.h | 3 +
ggml/src/ggml-impl.h | 8 +
ggml/src/ggml-metal/ggml-metal.cpp | 2 +
ggml/src/ggml-vulkan/ggml-vulkan.cpp | 209 +++++++++++--
ggml/src/mem_hip.cpp | 452 +++++++++++++++++++++++++++
ggml/src/mem_nvml.cpp | 209 +++++++++++++
9 files changed, 926 insertions(+), 30 deletions(-)
ggml/src/ggml-vulkan/ggml-vulkan.cpp | 209 +++++++++--
ggml/src/mem_hip.cpp | 529 +++++++++++++++++++++++++++
ggml/src/mem_nvml.cpp | 209 +++++++++++
9 files changed, 1003 insertions(+), 30 deletions(-)
create mode 100644 ggml/src/mem_hip.cpp
create mode 100644 ggml/src/mem_nvml.cpp
@@ -58,7 +58,7 @@ index f9a6587f1..03f359ae9 100644
target_include_directories(ggml-base PRIVATE .)
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index c9333689f..41b00af83 100644
index c9333689f..f1a20e7fe 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -261,6 +261,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
@@ -111,7 +111,7 @@ index c9333689f..41b00af83 100644
+ if (ggml_hip_mgmt_init() == 0) {
+ int status = ggml_hip_get_device_memory(ctx->pci_bus_id.c_str(), free, total);
+ if (status == 0) {
+ GGML_LOG_DEBUG("%s device %s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, ctx->pci_bus_id.c_str(), *free, *total);
+ GGML_LOG_DEBUG("%s device %s utilizing AMD specific memory reporting free: %zu total: %zu\n", __func__, ctx->pci_bus_id.c_str(), *free, *total);
+ ggml_hip_mgmt_release();
+ return;
+ }
@@ -243,7 +243,7 @@ index 05ff6a5a6..032dee76d 100644
/* .async = */ true,
/* .host_buffer = */ false,
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 3a6bbe564..d2c278a35 100644
index 3a6bbe564..ca02ea079 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -229,6 +229,7 @@ class vk_memory_logger;
@@ -337,7 +337,7 @@ index 3a6bbe564..d2c278a35 100644
+ if (ggml_hip_mgmt_init() == 0) {
+ int status = ggml_hip_get_device_memory(ctx->pci_id != "" ? ctx->pci_id.c_str() : ctx->uuid.c_str(), free, total);
+ if (status == 0) {
+ GGML_LOG_DEBUG("%s device %s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, ctx->pci_id != "" ? ctx->pci_id.c_str() : ctx->uuid.c_str(), *free, *total);
+ GGML_LOG_DEBUG("%s device %s utilizing AMD specific memory reporting free: %zu total: %zu\n", __func__, ctx->pci_id != "" ? ctx->pci_id.c_str() : ctx->uuid.c_str(), *free, *total);
+ ggml_hip_mgmt_release();
+ return;
+ }
@@ -548,11 +548,12 @@ index 3a6bbe564..d2c278a35 100644
}
diff --git a/ggml/src/mem_hip.cpp b/ggml/src/mem_hip.cpp
new file mode 100644
index 000000000..5a7f5d465
index 000000000..c1949b899
--- /dev/null
+++ b/ggml/src/mem_hip.cpp
@@ -0,0 +1,452 @@
@@ -0,0 +1,529 @@
+#include "ggml.h"
+#include "ggml-impl.h"
+
+#ifdef _WIN32
+// AMD Device Library eXtra (ADLX)
@@ -570,7 +571,6 @@ index 000000000..5a7f5d465
+// Unused function parameters are commented out to avoid unnecessary type
+// definitions.
+
+#include "ggml-impl.h"
+#include <filesystem>
+#include <mutex>
+
@@ -990,15 +990,92 @@ index 000000000..5a7f5d465
+
+#else // #ifdef _WIN32
+
+#include <fstream>
+#include <iostream>
+#include <sstream>
+#include <string>
+#include <vector>
+#include <filesystem>
+
+#include <sys/stat.h>
+#include <dirent.h>
+#include <unistd.h>
+#include <glob.h>
+namespace fs = std::filesystem;
+
+extern "C" {
+
+// TODO Linux implementation of accurate VRAM reporting
+int ggml_hip_mgmt_init() {
+ return -1;
+ return 0;
+}
+void ggml_hip_mgmt_release() {}
+int ggml_hip_get_device_memory(const char *id, size_t *free, size_t *total) {
+ return -1;
+ GGML_LOG_INFO("%s searching for device %s\n", __func__, id);
+ const std::string drmDeviceGlob = "/sys/class/drm/card*/device/uevent";
+ const std::string drmTotalMemoryFile = "mem_info_vram_total";
+ const std::string drmUsedMemoryFile = "mem_info_vram_used";
+ const std::string drmUeventPCISlotLabel = "PCI_SLOT_NAME=";
+
+ glob_t glob_result;
+ glob(drmDeviceGlob.c_str(), GLOB_NOSORT, NULL, &glob_result);
+
+ for (size_t i = 0; i < glob_result.gl_pathc; ++i) {
+ const char* device_file = glob_result.gl_pathv[i];
+ std::ifstream file(device_file);
+ if (!file.is_open()) {
+ std::cerr << "Failed to open sysfs node" << std::endl;
+ globfree(&glob_result);
+ return 1;
+ }
+
+ std::string line;
+ while (std::getline(file, line)) {
+ // Check for PCI_SLOT_NAME label
+ if (line.find(drmUeventPCISlotLabel) == 0) {
+ std::istringstream iss(line.substr(drmUeventPCISlotLabel.size()));
+ std::string pciSlot;
+ iss >> pciSlot;
+ if (pciSlot == std::string(id)) {
+ std::string dir = fs::path(device_file).parent_path().string();
+
+ std::string totalFile = dir + "/" + drmTotalMemoryFile;
+ std::ifstream totalFileStream(totalFile.c_str());
+ if (!totalFileStream.is_open()) {
+ GGML_LOG_DEBUG("%s Failed to read sysfs node %s\n", __func__, totalFile.c_str());
+ file.close();
+ globfree(&glob_result);
+ return 1;
+ }
+
+ uint64_t memory;
+ totalFileStream >> memory;
+ *total = memory;
+
+ std::string usedFile = dir + "/" + drmUsedMemoryFile;
+ std::ifstream usedFileStream(usedFile.c_str());
+ if (!usedFileStream.is_open()) {
+ GGML_LOG_DEBUG("%s Failed to read sysfs node %s\n", __func__, usedFile.c_str());
+ file.close();
+ globfree(&glob_result);
+ return 1;
+ }
+
+ uint64_t memoryUsed;
+ usedFileStream >> memoryUsed;
+ *free = memory - memoryUsed;
+
+ file.close();
+ globfree(&glob_result);
+ return 0;
+ }
+ }
+ }
+
+ file.close();
+ }
+ GGML_LOG_DEBUG("%s unable to find matching device\n", __func__);
+ globfree(&glob_result);
+ return 1;
+}
+
+} // extern "C"

View File

@@ -38,7 +38,7 @@ index 44ae76d66..639d551a2 100644
#ifdef __cplusplus
}
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index d2c278a35..221e29509 100644
index ca02ea079..c12b069e5 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -73,6 +73,7 @@ DispatchLoaderDynamic & ggml_vk_default_dispatcher();

View File

@@ -11,7 +11,7 @@ vidmem optimization.
1 file changed, 1 insertion(+), 4 deletions(-)
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 221e29509..18b7cbccf 100644
index c12b069e5..76c78c2ea 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -5654,14 +5654,11 @@ static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& sr

View File

@@ -50,7 +50,7 @@ Subject: [PATCH] Vulkan MMQ Integer Dot Refactor and K-Quant support (#16536)
create mode 100644 ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_shmem_types.glsl
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 18b7cbccf..53b57c179 100644
index 76c78c2ea..7669ed206 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -488,6 +488,7 @@ struct vk_device_struct {

View File

@@ -58,7 +58,7 @@ index 639d551a2..e5c446d1d 100644
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 53b57c179..b2855b078 100644
index 7669ed206..63a762ec2 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -387,12 +387,76 @@ static constexpr uint32_t num_argsort_pipelines = 11;

View File

@@ -31,7 +31,7 @@ Add new backend tests.
6 files changed, 371 insertions(+), 117 deletions(-)
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index b2855b078..aaf4334b5 100644
index 63a762ec2..db92a7901 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -458,6 +458,11 @@ static topk_moe_mode ggml_vk_num_additional_ops_to_topk_moe_mode(uint32_t num) {

View File

@@ -9,7 +9,7 @@ Subject: [PATCH] vulkan: Handle argsort with a large number of rows (#16851)
2 files changed, 16 insertions(+), 4 deletions(-)
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index aaf4334b5..3604ceb04 100644
index db92a7901..e959674d1 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -1084,6 +1084,7 @@ struct vk_op_soft_max_push_constants {

View File

@@ -20,7 +20,7 @@ Subject: [PATCH] vulkan: Fix crash when FP16 mul_mat accumulation is not
1 file changed, 13 insertions(+), 7 deletions(-)
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 3604ceb04..80185d9f0 100644
index e959674d1..903050b0b 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -146,8 +146,13 @@ static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline);

View File

@@ -0,0 +1,25 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <git@mxy.ng>
Date: Tue, 18 Nov 2025 11:13:04 -0800
Subject: [PATCH] ggml-cuda: skip large batches
cuda panics on batches larger than 1024 so mark it as unsupported to
fallback to cpu
---
ggml/src/ggml-cuda/ggml-cuda.cu | 3 +++
1 file changed, 3 insertions(+)
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index f1a20e7fe..1a71e07c9 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -3677,6 +3677,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
return false;
}
+ if (op->op == GGML_OP_MUL_MAT && b->ne[2] * b->ne[3] > 1024) {
+ return false;
+ }
#ifdef GGML_USE_MUSA
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
if (b->ne[2]*b->ne[3] > 1 && !ggml_is_transposed(a) && !ggml_is_transposed(b)) {

View File

@@ -0,0 +1,28 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Tue, 18 Nov 2025 09:58:23 -0800
Subject: [PATCH] win: exit instead of abort
---
ggml/src/ggml.c | 7 ++++++-
1 file changed, 6 insertions(+), 1 deletion(-)
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 9be35c1be..923c33d05 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -229,8 +229,13 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
fprintf(stderr, "%s\n", message);
ggml_print_backtrace();
}
-
+#if defined(_WIN32)
+ fflush(stderr);
+ fflush(stdout);
+ exit(1);
+#else
abort();
+#endif
}
// ggml_print_backtrace is registered with std::set_terminate by ggml.cpp

View File

@@ -173,6 +173,7 @@ type Tensor interface {
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
QuickGELU(ctx Context, up ...Tensor) Tensor
SILU(ctx Context, up ...Tensor) Tensor
RELU(ctx Context, up ...Tensor) Tensor
Sigmoid(ctx Context) Tensor
@@ -193,6 +194,7 @@ type Tensor interface {
Repeat(ctx Context, dim, n int) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
SetRows(ctx Context, src Tensor, idxs Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
Duplicate(ctx Context) Tensor
@@ -207,6 +209,8 @@ type Tensor interface {
Stddev(ctx Context) Tensor
Sqr(ctx Context) Tensor
Sqrt(ctx Context) Tensor
Interpolate(ctx Context, dims [4]int, samplingMode SamplingMode) Tensor
}
// ScaledDotProductAttention implements a fused attention
@@ -230,7 +234,7 @@ type Tensor interface {
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, scale float64) Tensor
ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, vmla Tensor, scale float64) Tensor
}
type number interface {
@@ -372,3 +376,10 @@ const (
DTypeI32
DTypeMXFP4
)
type SamplingMode int
const (
SamplingModeNearest SamplingMode = iota
SamplingModeBilinear
)

View File

@@ -314,7 +314,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
"altup_proj", "altup_unembd_proj",
"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
createTensor(tensor{source: t}, output.bts, blocks)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm.") || strings.HasPrefix(t.Name, "s."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts, blocks)
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
@@ -499,7 +499,6 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range b.meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
for i := range tts {
@@ -1339,6 +1338,13 @@ func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) SetRows(ctx ml.Context, src ml.Tensor, idxs ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_set_rows(ctx.(*Context).ctx, t.t, src.(*Tensor).t, idxs.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1379,6 +1385,10 @@ func inferShape(t *Tensor, shape []int) {
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
if !C.ggml_is_contiguous(t.t) {
return t.Contiguous(ctx, shape...)
}
if slices.Contains(shape, -1) {
inferShape(t, shape)
}
@@ -1568,6 +1578,16 @@ func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) QuickGELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
var tt *C.struct_ggml_tensor
if len(t2) > 0 {
tt = C.ggml_geglu_quick_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t)
} else {
tt = C.ggml_gelu_quick_inplace(ctx.(*Context).ctx, t.t)
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
@@ -1625,7 +1645,7 @@ func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
}
}
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor {
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, vmla ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {
kqMask = mask.(*Tensor).t
@@ -1642,6 +1662,16 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sin
C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t)
}
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
if vmla != nil {
var cur ml.Tensor = &Tensor{b: t.b, t: kqv}
cur = cur.Permute(ctx, 0, 2, 1, 3)
cur = vmla.Mulmat(ctx, cur)
cur = cur.Permute(ctx, 0, 2, 1, 3)
cur = cur.Contiguous(ctx)
kqv = cur.(*Tensor).t
}
return &Tensor{b: t.b, t: kqv}
} else {
kq := key.MulmatFullPrec(ctx, query)
@@ -1654,6 +1684,10 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sin
}
kqv := value.Mulmat(ctx, kq)
if vmla != nil {
kqv = vmla.Mulmat(ctx, kqv)
}
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
@@ -1711,6 +1745,23 @@ func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Interpolate(ctx ml.Context, dims [4]int, samplingMode ml.SamplingMode) ml.Tensor {
var mode C.uint32_t
switch samplingMode {
case ml.SamplingModeNearest:
mode = C.GGML_SCALE_MODE_NEAREST
case ml.SamplingModeBilinear:
mode = C.GGML_SCALE_MODE_BILINEAR
default:
panic("unsupported interpolate mode")
}
return &Tensor{
b: t.b,
t: C.ggml_interpolate(ctx.(*Context).ctx, t.t, C.int64_t(dims[0]), C.int64_t(dims[1]), C.int64_t(dims[2]), C.int64_t(dims[3]), mode),
}
}
// Slice returns a view of the tensor sliced along dim from low to high in step steps.
// Slice panics if the dimension is invalid or the slice parameters are out of range.
// If dim=0 and step>1, the tensor is a copy rather than a view to ensure proper shape.

View File

@@ -3513,7 +3513,7 @@ static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t *
if (ggml_hip_mgmt_init() == 0) {
int status = ggml_hip_get_device_memory(ctx->pci_bus_id.c_str(), free, total);
if (status == 0) {
GGML_LOG_DEBUG("%s device %s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, ctx->pci_bus_id.c_str(), *free, *total);
GGML_LOG_DEBUG("%s device %s utilizing AMD specific memory reporting free: %zu total: %zu\n", __func__, ctx->pci_bus_id.c_str(), *free, *total);
ggml_hip_mgmt_release();
return;
}
@@ -3677,6 +3677,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
return false;
}
if (op->op == GGML_OP_MUL_MAT && b->ne[2] * b->ne[3] > 1024) {
return false;
}
#ifdef GGML_USE_MUSA
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
if (b->ne[2]*b->ne[3] > 1 && !ggml_is_transposed(a) && !ggml_is_transposed(b)) {

View File

@@ -13212,7 +13212,7 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
if (ggml_hip_mgmt_init() == 0) {
int status = ggml_hip_get_device_memory(ctx->pci_id != "" ? ctx->pci_id.c_str() : ctx->uuid.c_str(), free, total);
if (status == 0) {
GGML_LOG_DEBUG("%s device %s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, ctx->pci_id != "" ? ctx->pci_id.c_str() : ctx->uuid.c_str(), *free, *total);
GGML_LOG_DEBUG("%s device %s utilizing AMD specific memory reporting free: %zu total: %zu\n", __func__, ctx->pci_id != "" ? ctx->pci_id.c_str() : ctx->uuid.c_str(), *free, *total);
ggml_hip_mgmt_release();
return;
}

View File

@@ -229,8 +229,13 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
fprintf(stderr, "%s\n", message);
ggml_print_backtrace();
}
#if defined(_WIN32)
fflush(stderr);
fflush(stdout);
exit(1);
#else
abort();
#endif
}
// ggml_print_backtrace is registered with std::set_terminate by ggml.cpp

View File

@@ -1,4 +1,5 @@
#include "ggml.h"
#include "ggml-impl.h"
#ifdef _WIN32
// AMD Device Library eXtra (ADLX)
@@ -16,7 +17,6 @@
// Unused function parameters are commented out to avoid unnecessary type
// definitions.
#include "ggml-impl.h"
#include <filesystem>
#include <mutex>
@@ -436,15 +436,92 @@ int ggml_hip_get_device_memory(const char *id, size_t *free, size_t *total) {
#else // #ifdef _WIN32
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <filesystem>
#include <sys/stat.h>
#include <dirent.h>
#include <unistd.h>
#include <glob.h>
namespace fs = std::filesystem;
extern "C" {
// TODO Linux implementation of accurate VRAM reporting
int ggml_hip_mgmt_init() {
return -1;
return 0;
}
void ggml_hip_mgmt_release() {}
int ggml_hip_get_device_memory(const char *id, size_t *free, size_t *total) {
return -1;
GGML_LOG_INFO("%s searching for device %s\n", __func__, id);
const std::string drmDeviceGlob = "/sys/class/drm/card*/device/uevent";
const std::string drmTotalMemoryFile = "mem_info_vram_total";
const std::string drmUsedMemoryFile = "mem_info_vram_used";
const std::string drmUeventPCISlotLabel = "PCI_SLOT_NAME=";
glob_t glob_result;
glob(drmDeviceGlob.c_str(), GLOB_NOSORT, NULL, &glob_result);
for (size_t i = 0; i < glob_result.gl_pathc; ++i) {
const char* device_file = glob_result.gl_pathv[i];
std::ifstream file(device_file);
if (!file.is_open()) {
std::cerr << "Failed to open sysfs node" << std::endl;
globfree(&glob_result);
return 1;
}
std::string line;
while (std::getline(file, line)) {
// Check for PCI_SLOT_NAME label
if (line.find(drmUeventPCISlotLabel) == 0) {
std::istringstream iss(line.substr(drmUeventPCISlotLabel.size()));
std::string pciSlot;
iss >> pciSlot;
if (pciSlot == std::string(id)) {
std::string dir = fs::path(device_file).parent_path().string();
std::string totalFile = dir + "/" + drmTotalMemoryFile;
std::ifstream totalFileStream(totalFile.c_str());
if (!totalFileStream.is_open()) {
GGML_LOG_DEBUG("%s Failed to read sysfs node %s\n", __func__, totalFile.c_str());
file.close();
globfree(&glob_result);
return 1;
}
uint64_t memory;
totalFileStream >> memory;
*total = memory;
std::string usedFile = dir + "/" + drmUsedMemoryFile;
std::ifstream usedFileStream(usedFile.c_str());
if (!usedFileStream.is_open()) {
GGML_LOG_DEBUG("%s Failed to read sysfs node %s\n", __func__, usedFile.c_str());
file.close();
globfree(&glob_result);
return 1;
}
uint64_t memoryUsed;
usedFileStream >> memoryUsed;
*free = memory - memoryUsed;
file.close();
globfree(&glob_result);
return 0;
}
}
}
file.close();
}
GGML_LOG_DEBUG("%s unable to find matching device\n", __func__);
globfree(&glob_result);
return 1;
}
} // extern "C"

View File

@@ -22,10 +22,14 @@ import (
//
// Attention output with shape [d_v, heads, seq_len_q]
func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
return AttentionWithSinks(ctx, query, key, value, nil, scale, cache)
return AttentionWithVMLA(ctx, query, key, value, nil, nil, scale, cache)
}
func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
return AttentionWithVMLA(ctx, query, key, value, sinks, nil, scale, cache)
}
func AttentionWithVMLA(ctx ml.Context, query, key, value, sinks ml.Tensor, vmla ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
ctx.Forward(query)
if key != nil && value != nil {
if query.Dim(0) != key.Dim(0) {
@@ -56,7 +60,7 @@ func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scal
// Only use the fast SDPA implementation if we have a cache, since that's what
// will do any expected backend-specific transformations for us
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil {
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, sinks, scale)
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, sinks, vmla, scale)
} else {
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
@@ -71,6 +75,11 @@ func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scal
kq = kq.Softmax(ctx)
kqv := value.Mulmat(ctx, kq)
if vmla != nil {
kqv = vmla.Mulmat(ctx, kqv)
}
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}

View File

@@ -237,7 +237,7 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
if addSpecial && len(ids) > 0 {
if addSpecial {
ids = bpe.vocab.addSpecials(ids)
}

View File

@@ -25,12 +25,15 @@ const (
// Composite returns an image with the alpha channel removed by drawing over a white background.
func Composite(img image.Image) image.Image {
dst := image.NewRGBA(img.Bounds())
white := color.RGBA{255, 255, 255, 255}
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
return CompositeColor(img, white)
}
// CompositeColor returns an image with the alpha channel removed by drawing over a white background.
func CompositeColor(img image.Image, color color.Color) image.Image {
dst := image.NewRGBA(img.Bounds())
draw.Draw(dst, dst.Bounds(), &image.Uniform{color}, image.Point{}, draw.Src)
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
return dst
}
@@ -55,6 +58,31 @@ func Resize(img image.Image, newSize image.Point, method int) image.Image {
return dst
}
// Pad returns an image which has been resized to fit within a new size, preserving aspect ratio, and padded with a color.
func Pad(img image.Image, newSize image.Point, color color.Color, kernel draw.Interpolator) image.Image {
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
draw.Draw(dst, dst.Bounds(), &image.Uniform{color}, image.Point{}, draw.Src)
var minPoint, maxPoint image.Point
if img.Bounds().Dx() > img.Bounds().Dy() {
// landscape
height := newSize.X * img.Bounds().Dy() / img.Bounds().Dx()
minPoint = image.Point{0, (newSize.Y - height) / 2}
maxPoint = image.Point{newSize.X, height + minPoint.Y}
} else {
// portrait
width := newSize.Y * img.Bounds().Dx() / img.Bounds().Dy()
minPoint = image.Point{(newSize.X - width) / 2, 0}
maxPoint = image.Point{minPoint.X + width, newSize.Y}
}
kernel.Scale(dst, image.Rectangle{
Min: minPoint,
Max: maxPoint,
}, img, img.Bounds(), draw.Over, nil)
return dst
}
// Normalize returns a slice of float32 containing each of the r, g, b values for an image normalized around a value.
func Normalize(img image.Image, mean, std [3]float32, rescale bool, channelFirst bool) []float32 {
var pixelVals []float32

View File

@@ -156,6 +156,7 @@ func New(c fs.Config) (model.Model, error) {
)),
},
},
true,
)
default:
return nil, model.ErrUnsupportedTokenizer

View File

@@ -3,6 +3,7 @@ package deepseek2
// uses deepseek 2 architecture but written based on deepseek 3 model
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
@@ -16,6 +17,7 @@ import (
)
type Options struct {
isMLA bool
numExpertsUsed int
numExperts int
normTopKProb bool
@@ -32,8 +34,6 @@ type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength,
originalContextLength int
eps,
@@ -62,6 +62,9 @@ type Attention struct {
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
KB *nn.Linear `gguf:"attn_k_b"`
VB *nn.Linear `gguf:"attn_v_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
@@ -69,7 +72,7 @@ func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor
seqLength := hiddenStates.Dim(1)
var query ml.Tensor
if opts.qLoraRank == 0 { // nil {
if opts.qLoraRank == 0 {
query = attn.Q.Forward(ctx, hiddenStates)
} else {
query = attn.QA.Forward(ctx, hiddenStates)
@@ -88,21 +91,35 @@ func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor
compressedKV.Stride(1), compressedKV.Dim(1),
)
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
qRot := fast.RoPE(ctx, queryChunks[1], positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
kRot = fast.RoPE(ctx, kRot, positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
var attention ml.Tensor
query = qRot.Concat(ctx, queryChunks[0], 0)
key := kRot.Concat(ctx, kvChunks[0], 0)
if !opts.isMLA { // v3
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
query = qRot.Concat(ctx, queryChunks[0], 0)
key := kRot.Concat(ctx, kvChunks[0], 0)
attention = nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
} else { // v3.1
qPass := queryChunks[0].Permute(ctx, 0, 2, 1, 3)
qPassAbsorb := attn.KB.Forward(ctx, qPass)
qPassAbsorb = qPassAbsorb.Permute(ctx, 0, 2, 1, 3)
query = qRot.Concat(ctx, qPassAbsorb, 0)
kPass = kPass.Reshape(ctx, opts.kvLoraRank, 1, seqLength)
key := kRot.Concat(ctx, kPass, 0)
value := kPass
attention = nn.AttentionWithVMLA(ctx, query, key, value, nil, attn.VB.Weight, opts.kqScale, cache)
}
attention := nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
}
@@ -233,6 +250,34 @@ func New(c fs.Config) (model.Model, error) {
mScale := float32(1.0 + float64(c.Float("rope.scaling.yarn_log_multiplier"))*math.Log(float64(c.Float("rope.scaling.factor"))))
kqScale := float64(mScale) * float64(mScale) / math.Sqrt(float64(c.Uint("attention.key_length")))
isMLA := c.Uint("attention.key_length_mla") != 0 && c.Uint("attention.value_length_mla") != 0
keyLength := int(cmp.Or(c.Uint("attention.key_length_mla"), c.Uint("attention.key_length")))
valueLength := int(cmp.Or(c.Uint("attention.value_length_mla"), c.Uint("attention.value_length")))
var pre []string
switch c.String("tokenizer.ggml.pre") {
case "deepseek-v3":
pre = []string{
// Split regex into multiple parts (according to DeepSeek3's regex)
"\\p{N}{1,3}",
`[一-龥぀-ゟ゠-ヿ]+`,
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
}
case "deepseek-llm":
// TODO: these models haven't been vetted so skip for now
// pre = []string{
// "[\r\n]",
// "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ--ℝℤΩℨK--ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA--z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
// "\\s?[!-/:-~---‟ -。]+",
// "\\s+$",
// "[一-龥ࠀ-一가-퟿]+",
// "[0-9]",
// }
fallthrough
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
@@ -247,18 +292,14 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
// Split regex into multiple parts (according to DeepSeek3's regex)
"\\p{N}{1,3}",
`[一-龥぀-ゟ゠-ヿ]+`,
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
pre...,
),
Layers: layers,
Options: &Options{
isMLA: isMLA,
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
@@ -266,13 +307,13 @@ func New(c fs.Config) (model.Model, error) {
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("expert_weights_norm", true),
qLoraRank: int(c.Uint("attention.q_lora_rank")), //&qLoraRankVal,
qLoraRank: int(c.Uint("attention.q_lora_rank")),
kvLoraRank: int(c.Uint("attention.kv_lora_rank")),
qkHeadDim: int(c.Uint("attention.key_length")),
vHeadDim: int(c.Uint("attention.value_length")),
qkHeadDim: keyLength,
vHeadDim: valueLength,
qkRopeHeadDim: int(c.Uint("rope.dimension_count")),
qkNopeHeadDim: int(c.Uint("attention.key_length")) - int(c.Uint("rope.dimension_count")),
kqNopeHeadDim: int(c.Uint("attention.key_length")) - int(c.Uint("rope.dimension_count")),
qkNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
kqNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
routedScalingFactor: c.Float("expert_weights_scale"),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),

View File

@@ -0,0 +1,83 @@
package deepseekocr
import (
"bytes"
"image"
"image/color"
"math"
"slices"
"golang.org/x/image/draw"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/imageproc"
)
type ratio struct {
x, y int
}
func ProcessImage(ctx ml.Context, bts []byte) (ml.Tensor, ml.Tensor, []int, error) {
img, _, err := image.Decode(bytes.NewReader(bts))
if err != nil {
return nil, nil, nil, err
}
minNum, maxNum, imageSize, baseSize := 2, 9, 640, 1024
var targetRatios []ratio
for n := minNum; n <= maxNum; n++ {
for i := 1; i <= n; i++ {
for j := 1; j <= n; j++ {
if i*j <= maxNum && i*j >= minNum && !slices.Contains(targetRatios, ratio{i, j}) {
targetRatios = append(targetRatios, ratio{i, j})
}
}
}
}
targetRatio := findBestAspectRatio(targetRatios, img.Bounds().Dx(), img.Bounds().Dy(), imageSize)
targetWidth, targetHeight := imageSize*targetRatio.x, imageSize*targetRatio.y
blocks := targetRatio.x * targetRatio.y
mean := imageproc.ImageNetStandardMean
std := imageproc.ImageNetStandardSTD
var patches []float32
resized := imageproc.Resize(img, image.Point{X: targetWidth, Y: targetHeight}, imageproc.ResizeBilinear)
for i := range blocks {
patch := image.NewRGBA(image.Rect(0, 0, imageSize, imageSize))
draw.Draw(patch, patch.Bounds(), resized, image.Point{
X: i % (targetWidth / imageSize) * imageSize,
Y: i / (targetWidth / imageSize) * imageSize,
}, draw.Over)
patches = append(patches, imageproc.Normalize(patch, mean, std, true, true)...)
}
img = imageproc.CompositeColor(img, color.Gray{})
img = imageproc.Pad(img, image.Point{X: baseSize, Y: baseSize}, color.Gray{127}, draw.BiLinear)
return ctx.Input().FromFloats(patches, imageSize, imageSize, 3, blocks),
ctx.Input().FromFloats(imageproc.Normalize(img, mean, std, true, true), baseSize, baseSize, 3),
[]int{targetRatio.x, targetRatio.y},
nil
}
func findBestAspectRatio(targetRatios []ratio, width, height, imageSize int) ratio {
bestDiff := math.MaxFloat64
best := ratio{1, 1}
realRatio := float64(width) / float64(height)
for _, target := range targetRatios {
targetRatio := float64(target.x) / float64(target.y)
diff := math.Abs(realRatio - targetRatio)
if diff < bestDiff {
bestDiff = diff
best = target
} else if diff == bestDiff {
if float64(width*height) > 0.5*float64(imageSize*imageSize*best.x*best.y) {
best = target
}
}
}
return best
}

View File

@@ -0,0 +1,192 @@
package deepseekocr
import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
Sam *samModel `gguf:"s"`
Vision *visionModel `gguf:"v"`
Text *textModel
ImageNewline ml.Tensor `gguf:"mm.image_newline"`
//nolint:misspell // this misspelling is upstream. fixing it breaks the model
ViewSeperator ml.Tensor `gguf:"mm.view_seperator"`
Projector *nn.Linear `gguf:"mm.layers"`
}
func (m *Model) EncodeMultimodal(ctx ml.Context, bts []byte) ([]input.Multimodal, error) {
patches, original, crop, err := ProcessImage(ctx, bts)
if err != nil {
return nil, err
}
var outputs []ml.Tensor
if true { // TODO: local features if sum(patches) != 0
samOutputs := m.Sam.Forward(ctx, patches)
visionOutputs := m.Vision.Forward(ctx, patches, samOutputs)
samOutputs = samOutputs.Reshape(ctx, -1, samOutputs.Dim(2), samOutputs.Dim(3)).Permute(ctx, 1, 0, 2, 3)
visionOutputs = visionOutputs.Slice(ctx, 1, 1, visionOutputs.Dim(1), 1)
localOutputs := visionOutputs.Concat(ctx, samOutputs, 0)
localOutputs = m.Projector.Forward(ctx, localOutputs)
hw := int(math.Sqrt(float64(localOutputs.Dim(1))))
localOutputs = localOutputs.Reshape(ctx, -1, hw, crop[0], crop[1])
localOutputs = localOutputs.Permute(ctx, 0, 2, 1, 3)
localOutputs = localOutputs.Contiguous(ctx, -1, crop[0]*hw, crop[1]*hw)
localOutputs = localOutputs.Concat(ctx, m.ImageNewline.Repeat(ctx, 2, localOutputs.Dim(2)), 1)
localOutputs = localOutputs.Reshape(ctx, localOutputs.Dim(0), -1)
outputs = append(outputs, localOutputs)
}
samOutputs := m.Sam.Forward(ctx, original)
visionOutputs := m.Vision.Forward(ctx, original, samOutputs)
samOutputs = samOutputs.Reshape(ctx, -1, samOutputs.Dim(2), samOutputs.Dim(3)).Permute(ctx, 1, 0, 2, 3)
visionOutputs = visionOutputs.Slice(ctx, 1, 1, visionOutputs.Dim(1), 1)
globalOutputs := visionOutputs.Concat(ctx, samOutputs, 0)
globalOutputs = m.Projector.Forward(ctx, globalOutputs)
hw := int(math.Sqrt(float64(globalOutputs.Dim(1))))
globalOutputs = globalOutputs.Reshape(ctx, -1, hw, hw)
globalOutputs = globalOutputs.Concat(ctx, m.ImageNewline.Repeat(ctx, 2, globalOutputs.Dim(2)), 1)
globalOutputs = globalOutputs.Reshape(ctx, globalOutputs.Dim(0), -1)
outputs = append(outputs, globalOutputs, m.ViewSeperator)
return []input.Multimodal{
{Tensor: outputs[0].Stack(ctx, 1, outputs[1:]...)},
}, nil
}
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
outputs := make([]*input.Input, 0, len(inputs))
for i := range inputs {
if inputs[i].Multimodal == nil {
outputs = append(outputs, inputs[i])
continue
}
t := inputs[i].Multimodal[0].Tensor
outputs = append(outputs, &input.Input{
Token: 128815,
Multimodal: inputs[i].Multimodal,
MultimodalHash: inputs[i].MultimodalHash,
SameBatch: t.Dim(1) - 1,
})
outputs = slices.Grow(outputs, t.Dim(1)-1)
outputs = append(outputs, slices.Repeat([]*input.Input{{Token: 128815}}, t.Dim(1)-1)...)
}
return outputs, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
inputsEmbeds := m.Text.TokenEmbedding.Forward(ctx, batch.Inputs).Duplicate(ctx)
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
for _, mm := range batch.Multimodal {
t := mm.Multimodal[0].Tensor
ctx.Forward(t.Copy(ctx, inputsEmbeds.View(ctx, mm.Index*inputsEmbeds.Stride(1), t.Dim(0)*t.Dim(1))))
}
hiddenStates := inputsEmbeds
for i, block := range m.Text.Blocks {
if m.Cache != nil {
m.Cache.SetLayer(i)
}
var outputs ml.Tensor
if i == len(m.Text.Blocks)-1 {
outputs = batch.Outputs
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Text.Options)
}
hiddenStates = m.Text.OutputNorm.Forward(ctx, hiddenStates, m.Text.Options.eps)
return m.Text.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("deepseekocr", func(c fs.Config) (model.Model, error) {
textBlocks := make([]textBlock, c.Uint("block_count"))
leadingDenseBlockCount := int(c.Uint("leading_dense_block_count", 1))
for i := range textBlocks {
if i >= leadingDenseBlockCount {
textBlocks[i].FeedForward = &textMoe{}
} else {
textBlocks[i].FeedForward = &textMLP{}
}
}
m := Model{
TextProcessor: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
// Split regex into multiple parts (according to DeepSeek3's regex)
"\\p{N}{1,3}",
`[一-龥぀-ゟ゠-ヿ]+`,
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
),
Text: &textModel{
Blocks: textBlocks,
Options: textOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
ropeBase: c.Float("rope.freq_base", 10_000),
ropeScale: c.Float("rope.scaling.factor", 1.0),
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-6),
},
},
Vision: &visionModel{
Blocks: make([]visionBlock, c.Uint("vision.block_count")),
Options: visionOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.head_count")),
imageSize: int(c.Uint("vision.image_size", 224)),
patchSize: int(c.Uint("vision.patch_size", 14)),
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-5),
},
},
Sam: &samModel{
Blocks: make([]samBlock, c.Uint("sam.block_count")),
Options: samOptions{
hiddenSize: int(c.Uint("sam.embedding_length")),
numHeads: int(c.Uint("sam.head_count")),
eps: c.Float("sam.attention.layer_norm_epsilon", 1e-6),
globalAttentionLayers: c.Ints("sam.global_attention_indexes"),
},
},
}
m.Cache = kvcache.NewCausalCache(m.Text.Shift)
return &m, nil
})
}

View File

@@ -0,0 +1,225 @@
package deepseekocr
import (
"math"
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type samModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_embd"`
PositionEmbedding ml.Tensor `gguf:"position_embd"`
Blocks []samBlock `gguf:"blk"`
Neck *samNeck `gguf:"neck"`
Net2 *nn.Conv2D `gguf:"net_2"`
Net3 *nn.Conv2D `gguf:"net_3"`
Options samOptions
}
func (m *samModel) absolutePositionEmbedding(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
source := m.PositionEmbedding.Dim(1)
target := hiddenStates.Dim(2)
if source != target {
positionEmbed := m.PositionEmbedding.Permute(ctx, 2, 0, 1, 3)
positionEmbed = positionEmbed.Interpolate(ctx, [4]int{target, target, hiddenStates.Dim(0), 1}, ml.SamplingModeBilinear)
return positionEmbed.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
}
return m.PositionEmbedding
}
func (m *samModel) Forward(ctx ml.Context, t ml.Tensor) ml.Tensor {
hiddenStates := m.PatchEmbedding.Forward(ctx, t, 16, 16, 0, 0, 1, 1)
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
if m.PositionEmbedding != nil {
hiddenStates = hiddenStates.Add(ctx, m.absolutePositionEmbedding(ctx, hiddenStates))
}
for i, block := range m.Blocks {
var windowSize int
if !slices.Contains(m.Options.globalAttentionLayers, int32(i)) {
windowSize = 14
}
hiddenStates = block.Forward(ctx, hiddenStates, windowSize, m.Options)
}
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = m.Neck.Forward(ctx, hiddenStates, m.Options)
hiddenStates = m.Net2.Forward(ctx, hiddenStates, 2, 2, 1, 1, 1, 1)
hiddenStates = m.Net3.Forward(ctx, hiddenStates, 2, 2, 1, 1, 1, 1)
return hiddenStates
}
type samOptions struct {
hiddenSize,
numHeads int
eps float32
globalAttentionLayers []int32
}
func (o samOptions) headDim() int {
return o.hiddenSize / o.numHeads
}
type samBlock struct {
Norm1 *nn.LayerNorm `gguf:"norm1"`
Attention *samAttention `gguf:"attn"`
Norm2 *nn.LayerNorm `gguf:"norm2"`
FeedForward *samMLP `gguf:"mlp"`
}
func (m *samBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, windowSize int, opts samOptions) ml.Tensor {
c, w, h := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
residual := hiddenStates
hiddenStates = m.Norm1.Forward(ctx, hiddenStates, opts.eps)
var pw, ph int
if windowSize > 0 {
pw = (windowSize - hiddenStates.Dim(1)%windowSize) % windowSize
ph = (windowSize - hiddenStates.Dim(2)%windowSize) % windowSize
if pw > 0 || ph > 0 {
hiddenStates = hiddenStates.Pad(ctx, 0, pw, ph, 0)
}
hiddenStates = hiddenStates.Reshape(ctx, c*windowSize, (w+pw)/windowSize, windowSize, -1)
hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx, c, windowSize, windowSize, -1)
}
hiddenStates = m.Attention.Forward(ctx, hiddenStates, opts)
if windowSize > 0 {
hiddenStates = hiddenStates.Reshape(ctx, c*windowSize, windowSize, (w+pw)/windowSize, -1)
hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3)
hiddenStates = hiddenStates.Contiguous(ctx, c, w+pw, h+ph, -1)
hiddenStates = hiddenStates.Pad(ctx, 0, -pw, -ph, 0)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = m.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = m.FeedForward.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type samAttention struct {
QKV *nn.Linear `gguf:"qkv"`
Output *nn.Linear `gguf:"proj"`
RelativePosition *struct {
Height ml.Tensor `gguf:"h"`
Width ml.Tensor `gguf:"w"`
} `gguf:",pre:rel_pos_"`
}
func relativeCoordinates(ctx ml.Context, qn, kn int) ml.Tensor {
s := make([]int32, qn*kn)
for i := range qn {
for j := range kn {
q := i * max(kn/qn, 1)
k := j * max(qn/kn, 1)
s[i*kn+j] = int32(q - k + (kn-1)*max(qn/kn, 1))
}
}
return ctx.Input().FromInts(s, qn*kn)
}
func relativePositions(ctx ml.Context, positions ml.Tensor, qn, kn int) ml.Tensor {
maxRelativeDistance := 2*max(qn, kn) - 1
if positions.Dim(1) != maxRelativeDistance {
// linear interpolation kernel not available so approx. with bilinear interpolation
positions = positions.Interpolate(ctx, [4]int{positions.Dim(0), maxRelativeDistance, 1, 1}, ml.SamplingModeBilinear)
}
rc := relativeCoordinates(ctx, qn, kn)
return positions.Rows(ctx, rc).Reshape(ctx, positions.Dim(0), kn, qn)
}
func (m *samAttention) decomposedRelativePositions(ctx ml.Context, query ml.Tensor, qn, kn []int) (ml.Tensor, ml.Tensor) {
qh, qw := qn[0], qn[1]
kh, kw := kn[0], kn[1]
rh := relativePositions(ctx, m.RelativePosition.Height, qh, kh)
rw := relativePositions(ctx, m.RelativePosition.Width, qw, kw)
query = query.Contiguous(ctx, query.Dim(0), qw, qh, -1)
rh = rh.Mulmat(ctx, query).Reshape(ctx, 1, kh, qh*qw, -1)
rw = rw.Mulmat(ctx, query.Permute(ctx, 0, 2, 1, 3)).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx, kw, 1, qh*qw, -1)
return rh, rw
}
func (m *samAttention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts samOptions) ml.Tensor {
w, h, b := hiddenStates.Dim(1), hiddenStates.Dim(2), hiddenStates.Dim(3)
qkv := m.QKV.Forward(ctx, hiddenStates)
qkv = qkv.Reshape(ctx, opts.headDim(), -1, w*h, b)
chunks := qkv.Chunk(ctx, 1, opts.numHeads)
query, key, value := chunks[0], chunks[1], chunks[2]
ctx.Forward(query, key, value)
query = query.Permute(ctx, 0, 2, 1, 3)
rh, rw := m.decomposedRelativePositions(ctx, query, []int{h, w}, []int{h, w})
mask := rh.Repeat(ctx, 0, rw.Dim(0)).Add(ctx, rw)
mask = mask.Reshape(ctx, h*w, -1, opts.numHeads, b)
key = key.Permute(ctx, 0, 2, 1, 3)
scores := key.MulmatFullPrec(ctx, query)
scores = scores.Scale(ctx, 1/math.Sqrt(float64(opts.headDim())))
scores = scores.Add(ctx, mask)
scores = scores.Softmax(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3)
attention = attention.Contiguous(ctx, -1, w, h, b)
return m.Output.Forward(ctx, attention)
}
type samMLP struct {
Lin1 *nn.Linear `gguf:"lin1"`
Lin2 *nn.Linear `gguf:"lin2"`
}
func (m *samMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts samOptions) ml.Tensor {
return m.Lin2.Forward(ctx, m.Lin1.Forward(ctx, hiddenStates).GELU(ctx))
}
type LayerNorm2D struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (ln *LayerNorm2D) Forward(ctx ml.Context, x ml.Tensor, eps float32) ml.Tensor {
x = x.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
u := x.Mean(ctx)
d := x.Sub(ctx, u)
s := d.Sqr(ctx).Mean(ctx)
x = d.Div(ctx, s.Add(ctx, ctx.Input().FromFloats([]float32{eps}, 1)).Sqrt(ctx))
x = x.Mul(ctx, ln.Weight).Add(ctx, ln.Bias)
return x.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
}
type samNeck struct {
C1 *nn.Conv2D `gguf:"0"`
LN1 *LayerNorm2D `gguf:"1"`
C2 *nn.Conv2D `gguf:"2"`
LN2 *LayerNorm2D `gguf:"3"`
}
func (m *samNeck) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts samOptions) ml.Tensor {
hiddenStates = m.C1.Forward(ctx, hiddenStates, 1, 1, 0, 0, 1, 1)
hiddenStates = m.LN1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = m.C2.Forward(ctx, hiddenStates, 1, 1, 1, 1, 1, 1)
hiddenStates = m.LN2.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}

View File

@@ -0,0 +1,140 @@
package deepseekocr
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
)
type textModel struct {
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Blocks []textBlock `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output"`
Options textOptions
}
func (m *textModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.Options.applyRotaryPositionalEmbedding(ctx, key, shift), nil
}
type textOptions struct {
hiddenSize,
numHeads,
numKVHeads,
numExperts,
numExpertsUsed int
ropeBase,
ropeScale,
eps float32
}
func (o textOptions) headDim() int {
return o.hiddenSize / o.numHeads
}
func (o textOptions) applyRotaryPositionalEmbedding(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
return fast.RoPE(ctx, t, p, o.headDim(), o.ropeBase, 1/o.ropeScale, rope.WithTypeNeoX())
}
type textBlock struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *textAttention
MLPNNorm *nn.RMSNorm `gguf:"ffn_norm"`
FeedForward textFeedForward
}
func (m *textBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts textOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = m.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = m.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = m.MLPNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = m.FeedForward.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type textAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (m *textAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts textOptions) ml.Tensor {
query := m.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, -1)
key := m.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, -1)
value := m.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, -1)
query = opts.applyRotaryPositionalEmbedding(ctx, query, positions)
key = opts.applyRotaryPositionalEmbedding(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, -1, attention.Dim(2))
return m.Output.Forward(ctx, attention)
}
type textFeedForward interface {
Forward(ml.Context, ml.Tensor, textOptions) ml.Tensor
}
type textMoe struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
SharedExperts *textMLP `gguf:",suf:_shexp"`
}
func (m *textMoe) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts textOptions) ml.Tensor {
scores := m.Router.Forward(ctx, hiddenStates).Softmax(ctx)
indices := scores.TopK(ctx, opts.numExpertsUsed)
weights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, indices)
experts := hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
experts = m.Gate.Forward(ctx, experts, indices).SILU(ctx, m.Up.Forward(ctx, experts, indices))
experts = m.Down.Forward(ctx, experts, indices)
experts = experts.Mul(ctx, weights)
expert := func(i int) ml.Tensor {
return experts.View(
ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2),
)
}
routedStates := expert(0)
for i := 1; i < opts.numExpertsUsed; i++ {
routedStates = routedStates.Add(ctx, expert(i))
}
sharedStates := m.SharedExperts.Forward(ctx, hiddenStates, opts)
return routedStates.Add(ctx, sharedStates)
}
type textMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *textMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ textOptions) ml.Tensor {
hiddenStates = m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates))
return m.Down.Forward(ctx, hiddenStates)
}

View File

@@ -0,0 +1,117 @@
package deepseekocr
import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type visionModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_embd"`
ClassEmbedding ml.Tensor `gguf:"class_embd"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
PreLayerNorm *nn.LayerNorm `gguf:"pre_layrnorm"`
Blocks []visionBlock `gguf:"blk"`
Options visionOptions
}
func (m *visionModel) absolutePositionEmbedding(ctx ml.Context, embeds ml.Tensor) ml.Tensor {
numPatches := m.Options.imageSize / m.Options.patchSize * m.Options.imageSize / m.Options.patchSize
positions := ctx.Arange(0, float32(numPatches+1), 1, ml.DTypeI32)
positionEmbeds := m.PositionEmbedding.Forward(ctx, positions)
source := int(math.Sqrt(float64(positionEmbeds.Dim(1) - 1)))
target := int(math.Sqrt(float64(embeds.Dim(1) - 1)))
if source != target {
newPositionEmbeds := positionEmbeds.Slice(ctx, 1, 1, positionEmbeds.Dim(1), 1)
newPositionEmbeds = newPositionEmbeds.Reshape(ctx, -1, source, source)
newPositionEmbeds = newPositionEmbeds.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
newPositionEmbeds = newPositionEmbeds.Interpolate(ctx, [4]int{target, target, embeds.Dim(0), 1}, ml.SamplingModeBilinear)
newPositionEmbeds = newPositionEmbeds.Permute(ctx, 1, 2, 0, 3)
newPositionEmbeds = newPositionEmbeds.Contiguous(ctx, -1, target*target)
positionEmbeds = positionEmbeds.Slice(ctx, 1, 0, 1, 1).Concat(ctx, newPositionEmbeds, 1)
}
return positionEmbeds
}
func (m *visionModel) Forward(ctx ml.Context, pixelValues, patchEmbeds ml.Tensor) ml.Tensor {
if patchEmbeds == nil {
patchEmbeds = m.PatchEmbedding.Forward(ctx, pixelValues, m.Options.patchSize, m.Options.patchSize, 0, 0, 1, 1)
}
patchEmbeds = patchEmbeds.Reshape(ctx, -1, patchEmbeds.Dim(2), patchEmbeds.Dim(3))
patchEmbeds = patchEmbeds.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
classEmbeds := m.ClassEmbedding.Repeat(ctx, 2, patchEmbeds.Dim(2))
embeds := classEmbeds.Concat(ctx, patchEmbeds, 1)
embeds = embeds.Add(ctx, m.absolutePositionEmbedding(ctx, embeds))
hiddenStates := m.PreLayerNorm.Forward(ctx, embeds, m.Options.eps)
for _, block := range m.Blocks {
hiddenStates = block.Forward(ctx, hiddenStates, m.Options)
}
return hiddenStates
}
type visionOptions struct {
hiddenSize,
numHeads int
eps float32
imageSize, patchSize int
}
func (o visionOptions) headDim() int {
return o.hiddenSize / o.numHeads
}
type visionBlock struct {
Norm1 *nn.LayerNorm `gguf:"layer_norm1"`
Attention *visionAttention `gguf:"self_attn"`
Norm2 *nn.LayerNorm `gguf:"layer_norm2"`
FeedForward *visionMLP `gguf:"mlp"`
}
func (m *visionBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts visionOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = m.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = m.Attention.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = m.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = m.FeedForward.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type visionAttention struct {
QKV *nn.Linear `gguf:"qkv_proj"`
Output *nn.Linear `gguf:"out_proj"`
}
func (m *visionAttention) Forward(ctx ml.Context, t ml.Tensor, opts visionOptions) ml.Tensor {
qkv := m.QKV.Forward(ctx, t)
qkv = qkv.Reshape(ctx, opts.headDim(), -1, qkv.Dim(1), qkv.Dim(2))
chunks := qkv.Chunk(ctx, 1, opts.numHeads)
query, key, value := chunks[0], chunks[1], chunks[2]
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
attention = attention.Reshape(ctx, -1, attention.Dim(2), attention.Dim(3))
return m.Output.Forward(ctx, attention)
}
type visionMLP struct {
FC1 *nn.Linear `gguf:"fc1"`
FC2 *nn.Linear `gguf:"fc2"`
}
func (m *visionMLP) Forward(ctx ml.Context, t ml.Tensor) ml.Tensor {
return m.FC2.Forward(ctx, m.FC1.Forward(ctx, t).QuickGELU(ctx))
}

View File

@@ -3,6 +3,7 @@ package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/deepseek2"
_ "github.com/ollama/ollama/model/models/deepseekocr"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"
@@ -11,6 +12,7 @@ import (
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
_ "github.com/ollama/ollama/model/models/nomicbert"
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"

View File

@@ -0,0 +1,170 @@
package nomicbert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
type Options struct {
hiddenSize int
numHeads int
headDim int
eps float32
poolingType pooling.Type
normalize bool
ropeFreqBase float32
}
// Single Encoder Layer
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
type Attention struct {
QKV *nn.Linear `gguf:"attn_qkv"`
Output *nn.Linear `gguf:"attn_output"`
}
type MLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
typeEmbed := m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1)
hiddenStates = hiddenStates.Add(ctx, typeEmbed)
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, positions, &m.Options)
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, positions, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
qkv := a.QKV.Forward(ctx, hiddenStates)
qkv = qkv.Reshape(ctx, opts.headDim, opts.numHeads*3, batchSize)
chunks := qkv.Chunk(ctx, 1, opts.numHeads)
query, key, value := chunks[0], chunks[1], chunks[2]
query = fast.RoPE(ctx, query, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(opts.headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hidden := m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates))
return m.Down.Forward(ctx, hidden)
}
func New(c fs.Config) (model.Model, error) {
hiddenSize := int(c.Uint("embedding_length"))
numHeads := int(c.Uint("attention.head_count"))
headDim := hiddenSize / numHeads
processor := model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
false,
)
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: hiddenSize,
numHeads: numHeads,
headDim: headDim,
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", false),
ropeFreqBase: c.Float("rope.freq_base", 1000.0),
},
}, nil
}
func init() {
model.Register("nomic-bert", New)
model.Register("nomic-bert_embed", New)
}

319
model/parsers/cogito.go Normal file
View File

@@ -0,0 +1,319 @@
package parsers
import (
"encoding/json"
"errors"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type CogitoParserState int
const (
CogitoCollectingThinking CogitoParserState = iota
CogitoCollectingContent
CogitoCollectingToolCalls
CogitoCollectingToolOutput
)
const (
cogitoThinkingCloseTag = "</think>"
cogitoToolCallsBeginTag = "<tool▁calls▁begin>"
cogitoToolCallsEndTag = "<tool▁calls▁end>"
cogitoToolCallBeginTag = "<tool▁call▁begin>"
cogitoToolCallEndTag = "<tool▁call▁end>"
cogitoToolSepTag = "<tool▁sep>"
cogitoToolOutputBeginTag = "<tool▁output▁begin>"
cogitoToolOutputEndTag = "<tool▁output▁end>"
cogitoToolOutputsBeginTag = "<tool▁outputs▁begin>"
cogitoToolOutputsEndTag = "<tool▁outputs▁end>"
)
type CogitoParser struct {
state CogitoParserState
buffer strings.Builder
}
func (p *CogitoParser) HasToolSupport() bool {
return true
}
func (p *CogitoParser) HasThinkingSupport() bool {
return true
}
func (p *CogitoParser) setInitialState(lastMessage *api.Message, tools []api.Tool, thinkValue *api.ThinkValue) {
prefill := lastMessage != nil && lastMessage.Role == "assistant"
// Check both model capability AND request preference
thinkingEnabled := thinkValue != nil && thinkValue.Bool()
// thinkingEnabled should be set to false for tools
if !thinkingEnabled {
p.state = CogitoCollectingContent
return
}
if prefill && lastMessage.Content != "" {
p.state = CogitoCollectingContent
return
}
// Note: for cogito, if there are tools, then we don't want to be thinking
if len(tools) > 0 {
p.state = CogitoCollectingContent
return
}
p.state = CogitoCollectingThinking
}
func (p *CogitoParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.setInitialState(lastMessage, tools, thinkValue)
return tools
}
type cogitoEvent interface {
isCogitoEvent()
}
type cogitoEventThinkingContent struct {
content string
}
type cogitoEventContent struct {
content string
}
type cogitoEventToolCall struct {
toolCall api.ToolCall
}
func (cogitoEventThinkingContent) isCogitoEvent() {}
func (cogitoEventContent) isCogitoEvent() {}
func (cogitoEventToolCall) isCogitoEvent() {}
func (p *CogitoParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case cogitoEventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case cogitoEventThinkingContent:
thinkingSb.WriteString(event.content)
case cogitoEventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *CogitoParser) parseEvents() []cogitoEvent {
var all []cogitoEvent
keepLooping := true
for keepLooping {
var events []cogitoEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
func (p *CogitoParser) eat() ([]cogitoEvent, bool) {
var events []cogitoEvent
bufStr := p.buffer.String()
if bufStr == "" {
return events, false
}
switch p.state {
case CogitoCollectingThinking:
if strings.Contains(bufStr, cogitoThinkingCloseTag) { // thinking[</think>] -> content
split := strings.SplitN(bufStr, cogitoThinkingCloseTag, 2)
thinking := split[0]
thinking = strings.TrimRightFunc(thinking, unicode.IsSpace)
remaining := split[1]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = CogitoCollectingContent
if len(thinking) > 0 {
events = append(events, cogitoEventThinkingContent{content: thinking})
}
return events, true
} else if overlapLen := overlap(bufStr, cogitoThinkingCloseTag); overlapLen > 0 { // partial </think>
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, cogitoEventThinkingContent{content: unambiguous})
}
return events, false
} else { // otherwise its thinking content
whitespaceLen := trailingWhitespaceLen(bufStr)
ambiguousStart := len(bufStr) - whitespaceLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, cogitoEventThinkingContent{content: unambiguous})
}
return events, false
}
case CogitoCollectingContent:
switch {
case strings.Contains(bufStr, cogitoToolCallsBeginTag): // content[<tool▁calls▁begin>] -> tool calls
split := strings.SplitN(bufStr, cogitoToolCallsBeginTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = CogitoCollectingToolCalls
if len(contentBefore) > 0 {
events = append(events, cogitoEventContent{content: contentBefore})
}
return events, true
case strings.Contains(bufStr, cogitoToolOutputsBeginTag): // content[<tool▁outputs▁begin>] -> tool outputs
split := strings.SplitN(bufStr, cogitoToolOutputsBeginTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = CogitoCollectingToolOutput
if len(contentBefore) > 0 {
events = append(events, cogitoEventContent{content: contentBefore})
}
return events, true
default: // otherwise its content
p.buffer.Reset()
if len(bufStr) > 0 {
events = append(events, cogitoEventContent{content: bufStr})
}
return events, false
}
case CogitoCollectingToolCalls:
if idx := strings.Index(bufStr, cogitoToolCallBeginTag); idx != -1 {
startIdx := idx + len(cogitoToolCallBeginTag)
if endIdx := strings.Index(bufStr[startIdx:], cogitoToolCallEndTag); endIdx != -1 {
toolCallContent := bufStr[startIdx : startIdx+endIdx]
if toolCall, err := p.parseToolCallContent(toolCallContent); err == nil {
remaining := bufStr[startIdx+endIdx+len(cogitoToolCallEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
events = append(events, cogitoEventToolCall{toolCall: toolCall})
return events, true
} else {
slog.Warn("cogito tool call parsing failed", "error", err)
}
}
}
if idx := strings.Index(bufStr, cogitoToolCallsEndTag); idx != -1 {
remaining := bufStr[idx+len(cogitoToolCallsEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = CogitoCollectingContent
return events, true
}
return events, false
case CogitoCollectingToolOutput:
if idx := strings.Index(bufStr, cogitoToolOutputBeginTag); idx != -1 {
startIdx := idx + len(cogitoToolOutputBeginTag)
if endIdx := strings.Index(bufStr[startIdx:], cogitoToolOutputEndTag); endIdx != -1 {
remaining := bufStr[startIdx+endIdx+len(cogitoToolOutputEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
return events, true
}
}
if idx := strings.Index(bufStr, cogitoToolOutputsEndTag); idx != -1 {
remaining := bufStr[idx+len(cogitoToolOutputsEndTag):]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = CogitoCollectingContent
return events, true
}
return events, false
}
return events, false
}
func (p *CogitoParser) parseToolCallContent(content string) (api.ToolCall, error) {
// Expected format: function<tool▁sep>tool_name\n```json\n{args}\n```
parts := strings.SplitN(content, cogitoToolSepTag, 2)
if len(parts) < 2 {
return api.ToolCall{}, errors.New("invalid format")
}
nameAndArgs := parts[1]
jsonStart := strings.Index(nameAndArgs, "\n```json\n")
if jsonStart == -1 {
return api.ToolCall{}, errors.New("invalid format")
}
toolName := strings.TrimSpace(nameAndArgs[:jsonStart])
jsonContent := nameAndArgs[jsonStart+len("\n```json\n"):]
jsonEnd := strings.Index(jsonContent, "\n```")
if jsonEnd == -1 {
return api.ToolCall{}, errors.New("invalid format")
}
argsJSON := jsonContent[:jsonEnd]
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(argsJSON), &args); err != nil {
return api.ToolCall{}, err
}
return api.ToolCall{
Function: api.ToolCallFunction{
Name: toolName,
Arguments: args,
},
}, nil
}

View File

@@ -0,0 +1,565 @@
package parsers
import (
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestCogitoParser(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
expectedToolCalls []api.ToolCall
tools []api.Tool
lastMessage *api.Message
}{
{
name: "simple_content",
input: "This is a simple response.",
expectedContent: "This is a simple response.",
expectedThinking: "",
},
{
name: "thinking_only",
input: "This is thinking content.</think>This is response content.",
expectedContent: "This is response content.",
expectedThinking: "This is thinking content.",
},
{
name: "tool_call_simple",
input: `<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end><tool▁calls▁end>`,
expectedToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}},
},
},
},
},
},
},
{
name: "thinking_with_tool_call",
input: `I need to check the weather.</think><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end><tool▁calls▁end>`,
expectedContent: "I need to check the weather.</think>",
expectedThinking: "", // No thinking when tools are present (Cogito-specific behavior)
expectedToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}},
},
},
},
},
},
},
{
name: "multiple_tool_calls",
input: `<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end>
<tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"London"}
` + "```" + `<tool▁call▁end><tool▁calls▁end>`,
expectedToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "London",
},
},
},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Properties: map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}},
},
},
},
},
},
},
{
name: "complex_tool_arguments",
input: `<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>process_data
` + "```json\n" + `{"items":["item1","item2"],"config":{"enabled":true,"threshold":0.95},"count":42}
` + "```" + `<tool▁call▁end><tool▁calls▁end>`,
expectedToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []any{"item1", "item2"},
"config": map[string]any{"enabled": true, "threshold": 0.95},
"count": 42.0,
},
},
},
},
},
{
name: "tool_output_parsing",
input: `<tool▁outputs▁begin><tool▁output▁begin>{"temperature": 22, "condition": "sunny"}<tool▁output▁end><tool▁outputs▁end>`,
expectedContent: "",
expectedThinking: "",
},
{
name: "thinking_with_multiline_content",
input: `This is line 1
This is line 2
This is line 3</think>Final response here.`,
expectedContent: "Final response here.",
expectedThinking: "This is line 1\nThis is line 2\nThis is line 3",
},
{
name: "no_thinking_simple",
input: "This is content.",
expectedContent: "This is content.",
expectedThinking: "",
},
{
name: "prefill_content_only",
input: "Continuing from previous content.",
expectedContent: "Continuing from previous content.",
lastMessage: &api.Message{
Role: "assistant",
Content: "Previous content",
},
},
{
name: "prefill_with_thinking",
input: "Continuing thinking</think>Continuing content.",
expectedContent: "Continuing content.",
expectedThinking: "Continuing thinking",
lastMessage: &api.Message{
Role: "assistant",
},
},
// Edge cases
{
name: "nested_think_tags_in_thinking",
input: "I'm thinking <think>nested</think> more thinking</think>Final content.",
expectedContent: "more thinking</think>Final content.",
expectedThinking: "I'm thinking <think>nested",
},
{
name: "multiple_think_close_tags",
input: "First thinking</think>Content</think>More content.",
expectedContent: "Content</think>More content.",
expectedThinking: "First thinking",
},
{
name: "empty_thinking_content",
input: "</think>Just content here.",
expectedContent: "</think>Just content here.",
expectedThinking: "",
},
{
name: "thinking_disabled_with_think_tags",
input: "Content with </think> tags should be treated as content.",
expectedContent: "Content with </think> tags should be treated as content.",
expectedThinking: "",
lastMessage: &api.Message{
Role: "assistant",
Content: "existing", // Forces non-thinking mode
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Use thinking-enabled parser for tests that expect thinking
hasThinking := tt.expectedThinking != ""
parser := &CogitoParser{} // it has thinking support
parser.Init(tt.tools, tt.lastMessage, &api.ThinkValue{Value: hasThinking}) // but we should set it with the request that the user wants
content, thinking, toolCalls, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedToolCalls, toolCalls); diff != "" {
t.Errorf("tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestCogitoParser_Streaming(t *testing.T) {
parser := &CogitoParser{}
parser.Init(nil, nil, &api.ThinkValue{Value: true})
chunks := []string{
"This is ",
"thinking content",
".</think>This is ",
"content.<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>test_tool\n```json\n{\"arg\":\"value\"}\n```<tool▁call▁end><tool▁calls▁end>",
}
var finalContent, finalThinking strings.Builder
var finalToolCalls []api.ToolCall
for i, chunk := range chunks {
done := i == len(chunks)-1
content, thinking, toolCalls, err := parser.Add(chunk, done)
if err != nil {
t.Fatalf("Add() error on chunk %d: %v", i, err)
}
finalContent.WriteString(content)
finalThinking.WriteString(thinking)
finalToolCalls = append(finalToolCalls, toolCalls...)
}
expectedContent := "This is content."
expectedThinking := "This is thinking content."
expectedToolCalls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test_tool",
Arguments: api.ToolCallFunctionArguments{
"arg": "value",
},
},
},
}
if finalContent.String() != expectedContent {
t.Errorf("expected content %q, got %q", expectedContent, finalContent.String())
}
if finalThinking.String() != expectedThinking {
t.Errorf("expected thinking %q, got %q", expectedThinking, finalThinking.String())
}
if diff := cmp.Diff(expectedToolCalls, finalToolCalls); diff != "" {
t.Errorf("tool calls mismatch (-want +got):\n%s", diff)
}
}
func TestCogitoParser_StreamingEdgeCases(t *testing.T) {
tests := []struct {
name string
chunks []string
expectedContent string
expectedThinking string
expectedToolCalls []api.ToolCall
hasThinkingSupport bool
}{
{
name: "split_thinking_tag",
chunks: []string{
"This is thinking content</thi",
"nk>This is content.",
},
expectedContent: "This is content.",
expectedThinking: "This is thinking content",
hasThinkingSupport: true,
},
{
name: "split_tool_calls_begin_tag_conservative_parsing",
chunks: []string{
"Content before<tool▁calls▁beg",
"in><tool▁call▁begin>function<tool▁sep>test\n```json\n{}\n```<tool▁call▁end><tool▁calls▁end>",
},
// Parser is conservative - treats incomplete tags as content
expectedContent: "Content before<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>test\n```json\n{}\n```<tool▁call▁end><tool▁calls▁end>",
expectedToolCalls: nil,
hasThinkingSupport: false,
},
{
name: "thinking_disabled_with_split_tags",
chunks: []string{
"Content with </thi",
"nk> should be treated as content.",
},
expectedContent: "Content with </think> should be treated as content.",
expectedThinking: "",
hasThinkingSupport: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &CogitoParser{}
parser.Init(nil, nil, &api.ThinkValue{Value: tt.hasThinkingSupport})
var finalContent, finalThinking strings.Builder
var finalToolCalls []api.ToolCall
for i, chunk := range tt.chunks {
done := i == len(tt.chunks)-1
content, thinking, toolCalls, err := parser.Add(chunk, done)
if err != nil {
t.Fatalf("Add() error on chunk %d: %v", i, err)
}
finalContent.WriteString(content)
finalThinking.WriteString(thinking)
finalToolCalls = append(finalToolCalls, toolCalls...)
}
if finalContent.String() != tt.expectedContent {
t.Errorf("expected content %q, got %q", tt.expectedContent, finalContent.String())
}
if finalThinking.String() != tt.expectedThinking {
t.Errorf("expected thinking %q, got %q", tt.expectedThinking, finalThinking.String())
}
if diff := cmp.Diff(tt.expectedToolCalls, finalToolCalls); diff != "" {
t.Errorf("tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestCogitoParser_HasToolSupport(t *testing.T) {
parser := &CogitoParser{}
if !parser.HasToolSupport() {
t.Error("CogitoParser should support tools")
}
}
func TestCogitoParser_Init(t *testing.T) {
parser := &CogitoParser{}
tools := []api.Tool{
{Function: api.ToolFunction{Name: "test_tool"}},
}
lastMessage := &api.Message{Role: "assistant", Content: "previous"}
returnedTools := parser.Init(tools, lastMessage, nil)
if len(returnedTools) != len(tools) {
t.Errorf("expected %d tools returned, got %d", len(tools), len(returnedTools))
}
}
func TestCogitoParser_parseToolCallContent(t *testing.T) {
tests := []struct {
name string
content string
expected api.ToolCall
expectError bool
}{
{
name: "valid_tool_call_standard_format",
content: `function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
expectError: false,
},
{
name: "valid_tool_call_complex_args",
content: `function<tool▁sep>process_data
` + "```json\n" + `{"items":["item1","item2"],"config":{"enabled":true},"count":42}
` + "```",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []any{"item1", "item2"},
"config": map[string]any{"enabled": true},
"count": 42.0,
},
},
},
expectError: false,
},
{
name: "valid_tool_call_empty_args",
content: `function<tool▁sep>no_args_tool
` + "```json\n" + `{}
` + "```",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "no_args_tool",
Arguments: api.ToolCallFunctionArguments{},
},
},
expectError: false,
},
{
name: "missing_separator",
content: `functionget_weather` + "```json\n" + `{"location":"Paris"}` + "\n```",
expected: api.ToolCall{},
expectError: true,
},
{
name: "invalid_function_type",
content: `not_function<tool▁sep>get_weather` + "```json\n" + `{"location":"Paris"}` + "\n```",
expected: api.ToolCall{},
expectError: true,
},
{
name: "missing_json_block_start",
content: `function<tool▁sep>get_weather{"location":"Paris"}` + "```",
expected: api.ToolCall{},
expectError: true,
},
{
name: "missing_json_block_end",
content: `function<tool▁sep>get_weather` + "```json\n" + `{"location":"Paris"}`,
expected: api.ToolCall{},
expectError: true,
},
{
name: "invalid_json",
content: `function<tool▁sep>get_weather` + "```json\n" + `{location:Paris}` + "\n```",
expected: api.ToolCall{},
expectError: true,
},
{
name: "empty_function_type",
content: `<tool▁sep>get_weather` + "```json\n" + `{"location":"Paris"}` + "\n```",
expected: api.ToolCall{},
expectError: true,
},
{
name: "tool_with_spaces_in_name",
content: `function<tool▁sep> get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
expectError: false,
},
{
name: "tool_with_multiline_json",
content: `function<tool▁sep>get_weather
` + "```json\n" + `{
"location": "Paris",
"units": "metric"
}
` + "```",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
"units": "metric",
},
},
},
expectError: false,
},
{
name: "tool_with_nested_objects",
content: `function<tool▁sep>complex_tool
` + "```json\n" + `{"nested":{"deep":{"value":123}}}
` + "```",
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "complex_tool",
Arguments: api.ToolCallFunctionArguments{
"nested": map[string]any{
"deep": map[string]any{
"value": 123.0,
},
},
},
},
},
expectError: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &CogitoParser{}
result, err := parser.parseToolCallContent(tt.content)
if tt.expectError {
if err == nil {
t.Errorf("expected error but got none")
}
return
}
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if diff := cmp.Diff(tt.expected, result); diff != "" {
t.Errorf("tool call mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -6,9 +6,9 @@ import (
)
type Parser interface {
// Init initializes the parser with tools and optional last message for chat prefill
// Init initializes the parser with tools, optional last message for chat prefill, and think value
// Returns processed tools if the parser needs to modify them (e.g., harmony renames them)
Init(tools []api.Tool, lastMessage *api.Message) []api.Tool
Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool
// Add processes streamed content and returns parsed content, thinking, and tool calls
// The done flag indicates if this is the last chunk (used for draining accumulators)
Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error)
@@ -52,6 +52,8 @@ func ParserForName(name string) Parser {
return &PassthroughParser{}
case "harmony":
return harmony.NewHarmonyMessageHandler()
case "cogito":
return &CogitoParser{}
default:
return nil
}
@@ -59,7 +61,7 @@ func ParserForName(name string) Parser {
type PassthroughParser struct{}
func (p *PassthroughParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (p *PassthroughParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
return tools // passthrough doesn't modify tools
}

View File

@@ -10,7 +10,7 @@ type mockParser struct {
name string
}
func (m *mockParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (m *mockParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
return tools
}

View File

@@ -43,7 +43,7 @@ func (p *Qwen3CoderParser) HasThinkingSupport() bool {
return false
}
func (p *Qwen3CoderParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (p *Qwen3CoderParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
return tools // Qwen doesn't modify tools
}
@@ -432,7 +432,7 @@ func transformToXML(raw string) string {
groups := qwenTagRegex.FindStringSubmatch(match)
tag := groups[1]
var escapedValue strings.Builder
xml.EscapeText(&escapedValue, []byte(groups[2]))
_ = xml.EscapeText(&escapedValue, []byte(groups[2])) // error is always nil for strings.Builder
return fmt.Sprintf(`<%s name="%s">`, tag, escapedValue.String())
})

View File

@@ -54,7 +54,7 @@ func (p *Qwen3VLParser) setInitialState(lastMessage *api.Message) {
p.state = CollectingThinkingContent
}
func (p *Qwen3VLParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (p *Qwen3VLParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
p.setInitialState(lastMessage)
return tools

View File

@@ -198,7 +198,7 @@ func TestQwen3VLNonThinkingParserStreaming(t *testing.T) {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: false}
parser.Init([]api.Tool{}, nil)
parser.Init([]api.Tool{}, nil, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
@@ -515,7 +515,7 @@ func TestQwenOldParserStreaming(t *testing.T) {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: false}
parser.Init([]api.Tool{}, nil)
parser.Init([]api.Tool{}, nil, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
@@ -822,7 +822,7 @@ func TestQwen3VLNonThinkingToolCallWhitespaceHandling(t *testing.T) {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: false}
parser.Init([]api.Tool{}, nil)
parser.Init([]api.Tool{}, nil, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)

View File

@@ -205,7 +205,7 @@ func TestQwen3VLThinkingParserStreaming(t *testing.T) {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: true}
parser.Init([]api.Tool{}, nil)
parser.Init([]api.Tool{}, nil, nil)
// parser.state = CollectingThinkingContent
for i, step := range tc.steps {
@@ -386,7 +386,7 @@ func TestQwen3VLParserState(t *testing.T) {
for _, tc := range cases {
parser := Qwen3VLParser{hasThinkingSupport: tc.hasThinking}
parser.Init(nil, tc.last)
parser.Init(nil, tc.last, nil)
if parser.state != tc.wantState {
t.Errorf("%s: got state %v, want %v", tc.desc, parser.state, tc.wantState)
}
@@ -437,7 +437,7 @@ func TestQwen3VLThinkingParserWithThinkingPrefill(t *testing.T) {
for _, tc := range cases {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: true}
parser.Init([]api.Tool{}, last)
parser.Init([]api.Tool{}, last, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
@@ -500,7 +500,7 @@ func TestQwen3VLThinkingParserWithNonThinkingPrefill(t *testing.T) {
for _, tc := range cases {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: true}
parser.Init([]api.Tool{}, last)
parser.Init([]api.Tool{}, last, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
@@ -523,7 +523,7 @@ func TestQwen3VLThinkingParserStreamingAssistantPrefillContent(t *testing.T) {
// last message is assistant with content ⇒ start in CollectingContent
last := &api.Message{Role: "assistant", Content: "has content"}
parser := Qwen3VLParser{hasThinkingSupport: true}
parser.Init([]api.Tool{}, last)
parser.Init([]api.Tool{}, last, nil)
type step struct {
input string
@@ -750,7 +750,7 @@ func TestQwen3VLThinkingWhitespaceHandling(t *testing.T) {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: true}
parser.Init([]api.Tool{}, nil)
parser.Init([]api.Tool{}, nil, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
@@ -859,7 +859,7 @@ func TestQwen3VLToolCallWhitespaceHandling(t *testing.T) {
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3VLParser{hasThinkingSupport: true}
parser.Init([]api.Tool{}, tc.prefillMsg)
parser.Init([]api.Tool{}, tc.prefillMsg, nil)
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)

129
model/renderers/cogito.go Normal file
View File

@@ -0,0 +1,129 @@
package renderers
import (
"encoding/json"
"strings"
"github.com/ollama/ollama/api"
)
type CogitoRenderer struct {
isThinking bool
}
func (r *CogitoRenderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
defaultPrompt := "You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco."
// thinking is enabled: model must support it AND user must request it (true)
enableThinking := r.isThinking && (thinkValue != nil && thinkValue.Bool())
var systemPrompt string
var conversationMessages []api.Message
if len(messages) > 0 && messages[0].Role == "system" {
systemPrompt = messages[0].Content
conversationMessages = messages[1:]
} else {
conversationMessages = messages
}
var finalSystemPrompt string
if enableThinking {
finalSystemPrompt = "Enable deep thinking subroutine.\n\n" + defaultPrompt
if systemPrompt != "" {
finalSystemPrompt += "\n\n" + systemPrompt + "\n\n"
}
} else {
finalSystemPrompt = defaultPrompt
if systemPrompt != "" {
finalSystemPrompt += "\n\n" + systemPrompt
}
}
if len(tools) > 0 {
if finalSystemPrompt != "" {
finalSystemPrompt += "\nYou have the following functions available:\n"
} else {
finalSystemPrompt = "You have the following functions available:\n"
}
for _, tool := range tools {
toolJSON, _ := json.MarshalIndent(tool, "", " ") // TODO(gguo): double check json format
finalSystemPrompt += "```json\n" + string(toolJSON) + "\n```\n"
}
}
sb.WriteString("<begin▁of▁sentence>" + finalSystemPrompt)
outputsOpen := false
isLastUser := false
for i, message := range conversationMessages {
switch message.Role {
case "user":
isLastUser = true
sb.WriteString("<User>" + message.Content + "<Assistant>")
case "assistant":
isLastUser = false
if len(message.ToolCalls) > 0 {
if message.Content != "" {
sb.WriteString(message.Content)
}
sb.WriteString("<tool▁calls▁begin>")
for j, toolCall := range message.ToolCalls {
sb.WriteString("<tool▁call▁begin>function<tool▁sep>" + toolCall.Function.Name)
argsJSON, _ := json.Marshal(toolCall.Function.Arguments)
sb.WriteString("\n```json\n" + string(argsJSON) + "\n```")
sb.WriteString("<tool▁call▁end>")
if j < len(message.ToolCalls)-1 {
sb.WriteString("\n")
}
}
sb.WriteString("<tool▁calls▁end><end▁of▁sentence>")
} else {
sb.WriteString(message.Content + "<end▁of▁sentence>")
}
case "tool":
isLastUser = false
if !outputsOpen {
sb.WriteString("<tool▁outputs▁begin>")
outputsOpen = true
}
sb.WriteString("<tool▁output▁begin>" + message.Content + "<tool▁output▁end>")
hasNextTool := i+1 < len(conversationMessages) && conversationMessages[i+1].Role == "tool"
if hasNextTool {
sb.WriteString("\n")
} else {
sb.WriteString("<tool▁outputs▁end>")
outputsOpen = false
}
}
}
if outputsOpen {
sb.WriteString("<tool▁outputs▁end>")
}
if !isLastUser {
sb.WriteString("<Assistant>")
}
if enableThinking {
sb.WriteString("<think>\n")
}
return sb.String(), nil
}

View File

@@ -0,0 +1,491 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestCogitoRenderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
}{
{
name: "basic user message",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello, how are you?<Assistant>`,
},
{
name: "basic with system message",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You are a helpful assistant.<User>Hello, how are you?<Assistant>`,
},
{
name: "conversation with assistant response",
messages: []api.Message{
{Role: "user", Content: "What is the capital of France?"},
{Role: "assistant", Content: "The capital of France is Paris."},
{Role: "user", Content: "Fantastic!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>What is the capital of France?<Assistant>The capital of France is Paris.<end▁of▁sentence><User>Fantastic!<Assistant>`,
},
{
name: "thinking enabled without system",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello, how are you?<Assistant><think>
`,
},
{
name: "thinking enabled with system",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You are a helpful assistant.
<User>Hello, how are you?<Assistant><think>
`,
},
{
name: "thinking disabled",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello, how are you?<Assistant>`,
},
{
name: "with tools",
messages: []api.Message{
{Role: "user", Content: "What's the weather like?"},
},
thinkValue: &api.ThinkValue{Value: false},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
},
Required: []string{"location"},
},
},
},
},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You have the following functions available:
` + "```json\n" + `{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"required": [
"location"
],
"properties": {
"location": {
"type": "string",
"description": "City name"
}
}
}
}
}
` + "```\n" + `<User>What's the weather like?<Assistant>`,
},
{
name: "assistant with tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
Content: "I'll check the weather in Paris for you.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>What's the weather in Paris?<Assistant>I'll check the weather in Paris for you.<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end><tool▁calls▁end><end▁of▁sentence><Assistant>`,
},
{
name: "tool response",
messages: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
},
{Role: "tool", Content: "Temperature: 22°C, Sunny"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>What's the weather in Paris?<Assistant><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end><tool▁calls▁end><end▁of▁sentence><tool▁outputs▁begin><tool▁output▁begin>Temperature: 22°C, Sunny<tool▁output▁end><tool▁outputs▁end><Assistant>`,
},
{
name: "multiple tool responses",
messages: []api.Message{
{Role: "user", Content: "Get weather for Paris and London"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "London",
},
},
},
},
},
{Role: "tool", Content: "Paris: 22°C, Sunny"},
{Role: "tool", Content: "London: 18°C, Cloudy"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Get weather for Paris and London<Assistant><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end>
<tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"London"}
` + "```" + `<tool▁call▁end><tool▁calls▁end><end▁of▁sentence><tool▁outputs▁begin><tool▁output▁begin>Paris: 22°C, Sunny<tool▁output▁end>
<tool▁output▁begin>London: 18°C, Cloudy<tool▁output▁end><tool▁outputs▁end><Assistant>`,
},
{
name: "thinking with tools",
messages: []api.Message{
{Role: "user", Content: "What's the weather like?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
},
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You have the following functions available:
` + "```json\n" + `{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"required": [
"location"
],
"properties": {
"location": {
"type": "string",
"description": "City name"
}
}
}
}
}
` + "```\n" + `<User>What's the weather like?<Assistant><think>
`,
},
// test cases based on cogito
{
name: "single_turn_thinking_false",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello<Assistant>`,
},
{
name: "single_turn_thinking_true",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello<Assistant><think>
`,
},
{
name: "multi_turn_thinking_false",
messages: []api.Message{
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "Hi there!"},
{Role: "user", Content: "How are you?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello<Assistant>Hi there!<end▁of▁sentence><User>How are you?<Assistant>`,
},
{
name: "multi_turn_thinking_true",
messages: []api.Message{
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "Hi there!"},
{Role: "user", Content: "How are you?"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello<Assistant>Hi there!<end▁of▁sentence><User>How are you?<Assistant><think>
`,
},
{
name: "multi_with_system_thinking_false",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant"},
{Role: "user", Content: "Start"},
{Role: "assistant", Content: "Okay"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You are a helpful assistant<User>Start<Assistant>Okay<end▁of▁sentence><Assistant>`,
},
{
name: "multi_with_system_thinking_true",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant"},
{Role: "user", Content: "Start"},
{Role: "assistant", Content: "Okay"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You are a helpful assistant
<User>Start<Assistant>Okay<end▁of▁sentence><Assistant><think>
`,
},
{
name: "multi_with_system2_thinking_false",
messages: []api.Message{
{Role: "system", Content: "You are a pirate chatbot who always responds in pirate speak!"},
{Role: "user", Content: "Give me a short introduction to LLMs."},
{Role: "assistant", Content: "Arrr! I'm a pirate"},
{Role: "user", Content: "Tell me more about LLMs."},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You are a pirate chatbot who always responds in pirate speak!<User>Give me a short introduction to LLMs.<Assistant>Arrr! I'm a pirate<end▁of▁sentence><User>Tell me more about LLMs.<Assistant>`,
},
{
name: "multi_with_system2_thinking_true",
messages: []api.Message{
{Role: "system", Content: "You are a pirate chatbot who always responds in pirate speak!"},
{Role: "user", Content: "Give me a short introduction to LLMs."},
{Role: "assistant", Content: "Arrr! I'm a pirate"},
{Role: "user", Content: "Tell me more about LLMs."},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
You are a pirate chatbot who always responds in pirate speak!
<User>Give me a short introduction to LLMs.<Assistant>Arrr! I'm a pirate<end▁of▁sentence><User>Tell me more about LLMs.<Assistant><think>
`,
},
// tools
{
name: "tool_calls_only_no_content",
messages: []api.Message{
{Role: "user", Content: "Get weather for Paris"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: api.ToolCallFunctionArguments{
"location": "Paris",
},
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Get weather for Paris<Assistant><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>get_weather
` + "```json\n" + `{"location":"Paris"}
` + "```" + `<tool▁call▁end><tool▁calls▁end><end▁of▁sentence><Assistant>`,
},
{
name: "complex_tool_arguments",
messages: []api.Message{
{Role: "user", Content: "Process complex data"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: api.ToolCallFunctionArguments{
"items": []any{"item1", "item2", "item3"},
"config": map[string]any{
"enabled": true,
"threshold": 0.95,
"tags": []string{"important", "urgent"},
},
},
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Process complex data<Assistant><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>process_data
` + "```json\n" + `{"config":{"enabled":true,"tags":["important","urgent"],"threshold":0.95},"items":["item1","item2","item3"]}
` + "```" + `<tool▁call▁end><tool▁calls▁end><end▁of▁sentence><Assistant>`,
},
{
name: "empty_messages",
messages: []api.Message{
{Role: "system", Content: ""},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: ""},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hello<Assistant><end▁of▁sentence><Assistant>`,
},
{
name: "thinking_with_empty_assistant_content",
messages: []api.Message{
{Role: "user", Content: "Think about this"},
{Role: "assistant", Content: ""},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `<begin▁of▁sentence>Enable deep thinking subroutine.
You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Think about this<Assistant><end▁of▁sentence><Assistant><think>
`,
},
{
name: "multiple_system_messages",
messages: []api.Message{
{Role: "system", Content: "First instruction"},
{Role: "system", Content: "Second instruction"},
{Role: "user", Content: "Hello"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.
First instruction<User>Hello<Assistant>`,
},
{
name: "special_characters_in_content",
messages: []api.Message{
{Role: "user", Content: "What about <|special|> tokens and \"quotes\"?"},
{Role: "assistant", Content: "They're handled normally in content."},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>What about <|special|> tokens and "quotes"?<Assistant>They're handled normally in content.<end▁of▁sentence><Assistant>`,
},
{
name: "long_conversation_multiple_rounds",
messages: []api.Message{
{Role: "user", Content: "Hi"},
{Role: "assistant", Content: "Hello!"},
{Role: "user", Content: "How are you?"},
{Role: "assistant", Content: "Good, thanks!"},
{Role: "user", Content: "What's the weather?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<begin▁of▁sentence>You are Cogito, an AI assistant created by Deep Cogito, which is an AI research lab based in San Francisco.<User>Hi<Assistant>Hello!<end▁of▁sentence><User>How are you?<Assistant>Good, thanks!<end▁of▁sentence><User>What's the weather?<Assistant>`,
},
}
renderer := &CogitoRenderer{isThinking: true}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatalf("Render() error = %v", err)
}
if diff := cmp.Diff(tt.expected, rendered); diff != "" {
t.Errorf("Render() mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -56,6 +56,9 @@ func rendererForName(name string) Renderer {
case "qwen3-vl-thinking":
renderer := &Qwen3VLRenderer{isThinking: true, useImgTags: RenderImgTags}
return renderer
case "cogito":
renderer := &CogitoRenderer{isThinking: true}
return renderer
default:
return nil
}

View File

@@ -181,7 +181,7 @@ func (spm SentencePiece) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
if addSpecial && len(ids) > 0 {
if addSpecial {
ids = spm.vocab.addSpecials(ids)
}

View File

@@ -45,7 +45,7 @@ func (v *Vocabulary) Is(id int32, special Special) bool {
func (v *Vocabulary) addSpecials(ids []int32) []int32 {
if v.AddBOS && len(v.BOS) > 0 {
if slices.Contains(v.BOS, ids[0]) {
if len(ids) > 0 && slices.Contains(v.BOS, ids[0]) {
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
}
@@ -54,7 +54,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
}
if v.AddEOS && len(v.EOS) > 0 {
if slices.Contains(v.BOS, ids[len(ids)-1]) {
if len(ids) > 0 && slices.Contains(v.BOS, ids[len(ids)-1]) {
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
}

View File

@@ -1,8 +1,12 @@
package model
import "testing"
import (
"testing"
func TestVocabulary_SpecialVocabulary(t *testing.T) {
"github.com/google/go-cmp/cmp"
)
func TestSpecialVocabulary(t *testing.T) {
vocab := &Vocabulary{
Values: []string{"<|startoftext|>", "<|endoftext|>", "<|tool_call_start|>", "<|tool_call_end|>", "hi"},
Types: []int32{TOKEN_TYPE_CONTROL, TOKEN_TYPE_CONTROL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_NORMAL},
@@ -14,3 +18,90 @@ func TestVocabulary_SpecialVocabulary(t *testing.T) {
t.Errorf("expected 4 special tokens, got %d", len(specialVocab))
}
}
func TestAddSpecialVocabulary(t *testing.T) {
cases := []struct {
name string
vocab *Vocabulary
input []int32
want []int32
}{
{
name: "add bos",
vocab: &Vocabulary{
BOS: []int32{0},
EOS: []int32{1},
AddBOS: true,
AddEOS: false,
},
input: []int32{2, 3, 4},
want: []int32{0, 2, 3, 4},
},
{
// TODO(mxyng): this is to match previous behaviour
name: "add bos when already present",
vocab: &Vocabulary{
BOS: []int32{0},
EOS: []int32{1},
AddBOS: true,
AddEOS: false,
},
input: []int32{0, 2, 3, 4},
want: []int32{0, 0, 2, 3, 4},
},
{
name: "add eos",
vocab: &Vocabulary{
BOS: []int32{0},
EOS: []int32{1},
AddBOS: false,
AddEOS: true,
},
input: []int32{2, 3, 4},
want: []int32{2, 3, 4, 1},
},
{
// TODO(mxyng): this is to match previous behaviour
name: "add eos when already present",
vocab: &Vocabulary{
BOS: []int32{0},
EOS: []int32{1},
AddBOS: false,
AddEOS: true,
},
input: []int32{2, 3, 4, 1},
want: []int32{2, 3, 4, 1, 1},
},
{
name: "add both",
vocab: &Vocabulary{
BOS: []int32{0},
EOS: []int32{1},
AddBOS: true,
AddEOS: true,
},
input: []int32{2, 3, 4},
want: []int32{0, 2, 3, 4, 1},
},
{
name: "add bos to empty inputs",
vocab: &Vocabulary{
BOS: []int32{0},
EOS: []int32{1},
AddBOS: true,
AddEOS: false,
},
input: []int32{},
want: []int32{0},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got := tt.vocab.addSpecials(tt.input)
if diff := cmp.Diff(tt.want, got); diff != "" {
t.Errorf("no match (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -10,7 +10,8 @@ import (
)
type WordPiece struct {
vocab *Vocabulary
vocab *Vocabulary
lowercase bool
}
// ggmlPrefix is the prefix used by GGML vocabularies to indicate word boundaries.
@@ -114,8 +115,10 @@ func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
subword = ggmlPrefix + subword
}
// TODO: some models might not want [ToLower]
piece = wpm.vocab.Encode(strings.ToLower(subword))
if wpm.lowercase {
subword = strings.ToLower(subword)
}
piece = wpm.vocab.Encode(subword)
if piece >= 0 {
break
}
@@ -140,7 +143,7 @@ func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
if addSpecial && len(ids) > 0 {
if addSpecial {
ids = wpm.vocab.addSpecials(ids)
}
@@ -160,8 +163,9 @@ func (wpm WordPiece) Vocabulary() *Vocabulary {
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary) WordPiece {
func NewWordPiece(vocab *Vocabulary, lowercase bool) WordPiece {
return WordPiece{
vocab: vocab,
vocab: vocab,
lowercase: lowercase,
}
}

View File

@@ -15,7 +15,9 @@ func TestWordPiece(t *testing.T) {
AddEOS: true,
BOS: []int32{1},
EOS: []int32{2},
})
},
true, // lowercase
)
ids, err := wpm.Encode("Hello world!", true)
if err != nil {

View File

@@ -175,7 +175,6 @@ func quantize(in, out *os.File, orig *fsggml.GGML, newFileType fsggml.FileType,
origTensors := orig.Tensors().Items()
outputTensors := make([]*fsggml.Tensor, len(origTensors))
for i, tensor := range origTensors {
tensor := tensor
newType := newType(tensor, kv, qs, newFileType)
newTensor := &fsggml.Tensor{
Name: tensor.Name,

View File

@@ -340,7 +340,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
builtinParser = parsers.ParserForName(m.Config.Parser)
if builtinParser != nil {
// no tools or last message for generate endpoint
builtinParser.Init(nil, nil)
builtinParser.Init(nil, nil, req.Think)
}
}
@@ -2051,7 +2051,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
lastMessage = &msgs[len(msgs)-1]
}
// Initialize parser and get processed tools
processedTools = builtinParser.Init(req.Tools, lastMessage)
processedTools = builtinParser.Init(req.Tools, lastMessage, req.Think)
}
}

View File

@@ -219,7 +219,6 @@ func TestParse(t *testing.T) {
}
for _, tt := range validCases {
tt := tt
t.Run(tt.name, func(t *testing.T) {
t.Parallel()