mirror of
https://github.com/ollama/ollama.git
synced 2025-12-27 09:39:24 -05:00
Compare commits
2 Commits
main
...
parth/rend
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
92af238208 | ||
|
|
7461faf651 |
625
cmd/chat_template/chat_template.py
Normal file
625
cmd/chat_template/chat_template.py
Normal file
@@ -0,0 +1,625 @@
|
||||
#!/usr/bin/env python3
|
||||
# /// script
|
||||
# requires-python = ">=3.11"
|
||||
# dependencies = [
|
||||
# "transformers>=4.57.0",
|
||||
# "jinja2",
|
||||
# "fastapi",
|
||||
# "uvicorn",
|
||||
# "pydantic",
|
||||
# "requests",
|
||||
# ]
|
||||
# ///
|
||||
"""
|
||||
Chat Template Testing Tool
|
||||
|
||||
Test HuggingFace chat templates against Ollama renderers.
|
||||
|
||||
Usage:
|
||||
# Run predefined test cases against a HuggingFace model
|
||||
uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3
|
||||
|
||||
# Compare HuggingFace output with Ollama renderer
|
||||
uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3 --ollama-model intellect3
|
||||
|
||||
# Start server for manual curl testing
|
||||
uv run cmd/chat_template/chat_template.py --serve
|
||||
|
||||
# Show chat template for a model
|
||||
uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3 --show-template
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import sys
|
||||
from typing import Any
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
TEST_CASES = [
|
||||
{
|
||||
"name": "basic_user_message",
|
||||
"messages": [{"role": "user", "content": "Hello!"}],
|
||||
"tools": None,
|
||||
},
|
||||
{
|
||||
"name": "with_system_message",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello!"},
|
||||
],
|
||||
"tools": None,
|
||||
},
|
||||
{
|
||||
"name": "multi_turn_conversation",
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello"},
|
||||
{"role": "assistant", "content": "Hi there!"},
|
||||
{"role": "user", "content": "How are you?"},
|
||||
],
|
||||
"tools": None,
|
||||
},
|
||||
{
|
||||
"name": "with_tools",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "What is the weather?"},
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["location"],
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "The city"}
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
{
|
||||
"name": "tool_call_and_response",
|
||||
"messages": [
|
||||
{"role": "user", "content": "What is the weather in SF?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Let me check the weather.",
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_1",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": {"location": "San Francisco"},
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
{"role": "tool", "content": '{"temperature": 68}', "tool_call_id": "call_1"},
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["location"],
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "The city"}
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
{
|
||||
"name": "parallel_tool_calls",
|
||||
"messages": [
|
||||
{"role": "user", "content": "Get weather in SF and NYC"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_1",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": {"location": "San Francisco"},
|
||||
},
|
||||
},
|
||||
{
|
||||
"id": "call_2",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": {"location": "New York"},
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{"role": "tool", "content": '{"temperature": 68}', "tool_call_id": "call_1"},
|
||||
{"role": "tool", "content": '{"temperature": 55}', "tool_call_id": "call_2"},
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"location": {"type": "string"}},
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
# Thinking tests
|
||||
{
|
||||
"name": "assistant_with_thinking",
|
||||
"messages": [
|
||||
{"role": "user", "content": "What is 2+2?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "The answer is 4.",
|
||||
"thinking": "Let me calculate: 2 + 2 = 4. This is basic arithmetic.",
|
||||
},
|
||||
{"role": "user", "content": "And 3+3?"},
|
||||
],
|
||||
"tools": None,
|
||||
},
|
||||
{
|
||||
"name": "thinking_with_tool_call",
|
||||
"messages": [
|
||||
{"role": "user", "content": "What's the weather in Paris?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "I'll check the weather for you.",
|
||||
"thinking": "The user wants to know the weather in Paris. I should call the get_weather function.",
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_1",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": {"location": "Paris"},
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
{"role": "tool", "content": '{"temperature": 18, "condition": "cloudy"}', "tool_call_id": "call_1"},
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get current weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"location": {"type": "string"}},
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
{
|
||||
"name": "thinking_only_no_content",
|
||||
"messages": [
|
||||
{"role": "user", "content": "Think about this silently."},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "", # HuggingFace requires content field
|
||||
"thinking": "I'm thinking about this but won't respond with visible content.",
|
||||
},
|
||||
{"role": "user", "content": "What did you think?"},
|
||||
],
|
||||
"tools": None,
|
||||
},
|
||||
]
|
||||
|
||||
# Cache for tokenizers
|
||||
_tokenizer_cache: dict[str, Any] = {}
|
||||
|
||||
|
||||
def get_tokenizer(model_name: str):
|
||||
"""Get or create tokenizer for the given model."""
|
||||
if model_name not in _tokenizer_cache:
|
||||
print(f"Loading tokenizer for {model_name}...", file=sys.stderr)
|
||||
_tokenizer_cache[model_name] = AutoTokenizer.from_pretrained(model_name)
|
||||
return _tokenizer_cache[model_name]
|
||||
|
||||
|
||||
def apply_template(
|
||||
model: str,
|
||||
messages: list[dict],
|
||||
tools: list[dict] | None = None,
|
||||
) -> str:
|
||||
"""Apply HuggingFace chat template to messages."""
|
||||
tokenizer = get_tokenizer(model)
|
||||
|
||||
if tools:
|
||||
return tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tools=tools,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
else:
|
||||
return tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
|
||||
|
||||
def get_ollama_prompt(
|
||||
ollama_model: str,
|
||||
messages: list[dict],
|
||||
tools: list[dict] | None = None,
|
||||
ollama_host: str = "http://localhost:11434",
|
||||
) -> str | None:
|
||||
"""Get rendered prompt from Ollama using debug_render_only."""
|
||||
import requests
|
||||
|
||||
# Convert messages to Ollama format
|
||||
ollama_messages = []
|
||||
for msg in messages:
|
||||
ollama_msg = {"role": msg["role"]}
|
||||
if "content" in msg:
|
||||
ollama_msg["content"] = msg["content"]
|
||||
if "thinking" in msg:
|
||||
ollama_msg["thinking"] = msg["thinking"]
|
||||
if "tool_calls" in msg:
|
||||
# Convert tool_calls to Ollama format
|
||||
tool_calls = []
|
||||
for tc in msg["tool_calls"]:
|
||||
tool_call = {
|
||||
"function": {
|
||||
"name": tc["function"]["name"],
|
||||
"arguments": tc["function"]["arguments"],
|
||||
}
|
||||
}
|
||||
if "id" in tc:
|
||||
tool_call["id"] = tc["id"]
|
||||
tool_calls.append(tool_call)
|
||||
ollama_msg["tool_calls"] = tool_calls
|
||||
if "tool_call_id" in msg:
|
||||
ollama_msg["tool_call_id"] = msg["tool_call_id"]
|
||||
ollama_messages.append(ollama_msg)
|
||||
|
||||
payload = {
|
||||
"model": ollama_model,
|
||||
"messages": ollama_messages,
|
||||
"stream": False,
|
||||
"_debug_render_only": True,
|
||||
}
|
||||
|
||||
if tools:
|
||||
payload["tools"] = tools
|
||||
|
||||
try:
|
||||
resp = requests.post(f"{ollama_host}/api/chat", json=payload, timeout=30)
|
||||
resp.raise_for_status()
|
||||
data = resp.json()
|
||||
# Field name is _debug_info with underscore prefix
|
||||
if "_debug_info" in data and "rendered_template" in data["_debug_info"]:
|
||||
return data["_debug_info"]["rendered_template"]
|
||||
return None
|
||||
except requests.exceptions.ConnectionError:
|
||||
print(f" [ERROR] Cannot connect to Ollama at {ollama_host}", file=sys.stderr)
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f" [ERROR] Ollama request failed: {e}", file=sys.stderr)
|
||||
return None
|
||||
|
||||
|
||||
def compute_diff(hf_prompt: str, ollama_prompt: str) -> str:
|
||||
"""Compute a unified diff between HuggingFace and Ollama prompts."""
|
||||
import difflib
|
||||
|
||||
hf_lines = hf_prompt.splitlines(keepends=True)
|
||||
ollama_lines = ollama_prompt.splitlines(keepends=True)
|
||||
|
||||
diff = difflib.unified_diff(
|
||||
ollama_lines,
|
||||
hf_lines,
|
||||
fromfile="Ollama",
|
||||
tofile="HuggingFace",
|
||||
lineterm="",
|
||||
)
|
||||
return "".join(diff)
|
||||
|
||||
|
||||
def print_test_output(
|
||||
name: str,
|
||||
messages: list[dict],
|
||||
tools: list[dict] | None,
|
||||
hf_prompt: str,
|
||||
ollama_prompt: str | None = None,
|
||||
as_repr: bool = False,
|
||||
):
|
||||
"""Print test output in a format suitable for Go test creation and LLM diffing."""
|
||||
print(f"\n{'='*60}")
|
||||
print(f"Test: {name}")
|
||||
print("=" * 60)
|
||||
print("\n--- Input Messages ---")
|
||||
print(json.dumps(messages, indent=2))
|
||||
if tools:
|
||||
print("\n--- Tools ---")
|
||||
print(json.dumps(tools, indent=2))
|
||||
|
||||
if ollama_prompt is not None:
|
||||
# Comparison mode
|
||||
if hf_prompt == ollama_prompt:
|
||||
print("\n--- Result: MATCH ---")
|
||||
print("\n--- Prompt (both identical) ---")
|
||||
if as_repr:
|
||||
print(repr(hf_prompt))
|
||||
else:
|
||||
print(hf_prompt)
|
||||
else:
|
||||
print("\n--- Result: MISMATCH ---")
|
||||
print("\n--- HuggingFace Prompt ---")
|
||||
if as_repr:
|
||||
print(repr(hf_prompt))
|
||||
else:
|
||||
print(hf_prompt)
|
||||
print("\n--- Ollama Prompt ---")
|
||||
if as_repr:
|
||||
print(repr(ollama_prompt))
|
||||
else:
|
||||
print(ollama_prompt)
|
||||
print("\n--- Diff (Ollama -> HuggingFace) ---")
|
||||
diff = compute_diff(hf_prompt, ollama_prompt)
|
||||
if diff:
|
||||
print(diff)
|
||||
else:
|
||||
print("(no line-level diff, check whitespace)")
|
||||
else:
|
||||
# HuggingFace only mode
|
||||
print("\n--- HuggingFace Prompt ---")
|
||||
if as_repr:
|
||||
print(repr(hf_prompt))
|
||||
else:
|
||||
print(hf_prompt)
|
||||
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
def run_tests(
|
||||
model: str,
|
||||
as_repr: bool = False,
|
||||
test_filter: str | None = None,
|
||||
ollama_model: str | None = None,
|
||||
ollama_host: str = "http://localhost:11434",
|
||||
):
|
||||
"""Run all predefined test cases against a model."""
|
||||
if ollama_model:
|
||||
print(f"\nComparing HuggingFace ({model}) vs Ollama ({ollama_model})\n")
|
||||
else:
|
||||
print(f"\nRunning tests against: {model}\n")
|
||||
|
||||
matches = 0
|
||||
mismatches = 0
|
||||
errors = 0
|
||||
|
||||
for test_case in TEST_CASES:
|
||||
name = test_case["name"]
|
||||
messages = test_case["messages"]
|
||||
tools = test_case["tools"]
|
||||
|
||||
# Filter tests if specified
|
||||
if test_filter and test_filter.lower() not in name.lower():
|
||||
continue
|
||||
|
||||
try:
|
||||
hf_prompt = apply_template(model, messages, tools)
|
||||
|
||||
ollama_prompt = None
|
||||
if ollama_model:
|
||||
ollama_prompt = get_ollama_prompt(
|
||||
ollama_model, messages, tools, ollama_host
|
||||
)
|
||||
if ollama_prompt is None:
|
||||
errors += 1
|
||||
elif hf_prompt == ollama_prompt:
|
||||
matches += 1
|
||||
else:
|
||||
mismatches += 1
|
||||
|
||||
print_test_output(
|
||||
name, messages, tools, hf_prompt, ollama_prompt, as_repr=as_repr
|
||||
)
|
||||
except Exception as e:
|
||||
errors += 1
|
||||
print(f"\n{'='*60}")
|
||||
print(f"Test: {name} - FAILED")
|
||||
print(f"--- Input Messages ---")
|
||||
print(json.dumps(messages, indent=2))
|
||||
if tools:
|
||||
print(f"--- Tools ---")
|
||||
print(json.dumps(tools, indent=2))
|
||||
print(f"--- Error ---")
|
||||
print(f"{e}")
|
||||
print("=" * 60)
|
||||
|
||||
# Print summary if comparing
|
||||
if ollama_model:
|
||||
total = matches + mismatches + errors
|
||||
print(f"\n{'='*60}")
|
||||
print("SUMMARY")
|
||||
print("=" * 60)
|
||||
print(f" Total: {total}")
|
||||
print(f" Matches: {matches}")
|
||||
print(f" Mismatches: {mismatches}")
|
||||
print(f" Errors: {errors}")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
def show_template(model: str):
|
||||
"""Show the chat template for a model."""
|
||||
tokenizer = get_tokenizer(model)
|
||||
print(f"\nChat template for {model}:\n")
|
||||
print("-" * 60)
|
||||
print(tokenizer.chat_template)
|
||||
print("-" * 60)
|
||||
|
||||
|
||||
def start_server(host: str = "0.0.0.0", port: int = 8000):
|
||||
"""Start the FastAPI server for manual testing."""
|
||||
from typing import Optional, List, Dict, Any as TypingAny
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from pydantic import BaseModel
|
||||
import uvicorn
|
||||
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
content: Optional[str] = None
|
||||
tool_calls: Optional[List[Dict[str, TypingAny]]] = None
|
||||
tool_call_id: Optional[str] = None
|
||||
|
||||
class GeneratePromptRequest(BaseModel):
|
||||
messages: List[Message]
|
||||
model: str = "PrimeIntellect/INTELLECT-3"
|
||||
tools: Optional[List[Dict[str, TypingAny]]] = None
|
||||
inject_tools_as_functions: bool = False
|
||||
|
||||
class GeneratePromptResponse(BaseModel):
|
||||
prompt: str
|
||||
model: str
|
||||
|
||||
app = FastAPI(title="HuggingFace Prompt Generator", version="1.0.0")
|
||||
|
||||
@app.post("/generate-prompt", response_model=GeneratePromptResponse)
|
||||
async def generate_prompt(request: GeneratePromptRequest):
|
||||
try:
|
||||
messages = []
|
||||
for msg in request.messages:
|
||||
message_dict = {"role": msg.role}
|
||||
if msg.content is not None:
|
||||
message_dict["content"] = msg.content
|
||||
if msg.tool_calls is not None:
|
||||
tool_calls = []
|
||||
for tc in msg.tool_calls:
|
||||
tc_copy = tc.copy()
|
||||
if "function" in tc_copy and "arguments" in tc_copy["function"]:
|
||||
args = tc_copy["function"]["arguments"]
|
||||
if isinstance(args, str):
|
||||
try:
|
||||
tc_copy["function"]["arguments"] = json.loads(args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
tool_calls.append(tc_copy)
|
||||
message_dict["tool_calls"] = tool_calls
|
||||
if msg.tool_call_id is not None:
|
||||
message_dict["tool_call_id"] = msg.tool_call_id
|
||||
messages.append(message_dict)
|
||||
|
||||
prompt = apply_template(request.model, messages, request.tools)
|
||||
return GeneratePromptResponse(prompt=prompt, model=request.model)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
return {"status": "healthy"}
|
||||
|
||||
print(f"Starting server on http://{host}:{port}")
|
||||
print("Endpoints:")
|
||||
print(" POST /generate-prompt - Generate prompt from messages")
|
||||
print(" GET /health - Health check")
|
||||
uvicorn.run(app, host=host, port=port)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="HuggingFace Prompt Testing Tool",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog=__doc__,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
"-m",
|
||||
type=str,
|
||||
help="HuggingFace model name (e.g., PrimeIntellect/INTELLECT-3)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ollama-model",
|
||||
"-o",
|
||||
type=str,
|
||||
help="Ollama model name to compare against (e.g., qwen3-coder)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ollama-host",
|
||||
type=str,
|
||||
default="http://localhost:11434",
|
||||
help="Ollama server URL (default: http://localhost:11434)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serve",
|
||||
"-s",
|
||||
action="store_true",
|
||||
help="Start FastAPI server for manual curl testing",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port",
|
||||
"-p",
|
||||
type=int,
|
||||
default=8000,
|
||||
help="Server port (default: 8000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--show-template",
|
||||
"-t",
|
||||
action="store_true",
|
||||
help="Show the chat template for the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repr",
|
||||
"-r",
|
||||
action="store_true",
|
||||
help="Output prompts as Python repr (shows escape sequences)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--filter",
|
||||
"-f",
|
||||
type=str,
|
||||
help="Filter tests by name (substring match)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.serve:
|
||||
start_server(port=args.port)
|
||||
elif args.model:
|
||||
if args.show_template:
|
||||
show_template(args.model)
|
||||
else:
|
||||
run_tests(
|
||||
args.model,
|
||||
as_repr=args.repr,
|
||||
test_filter=args.filter,
|
||||
ollama_model=args.ollama_model,
|
||||
ollama_host=args.ollama_host,
|
||||
)
|
||||
else:
|
||||
parser.print_help()
|
||||
print("\nExample usage:")
|
||||
print(" uv run cmd/chat_template/chat_template.py --model PrimeIntellect/INTELLECT-3")
|
||||
print(" uv run cmd/chat_template/chat_template.py --model Qwen/Qwen3-Coder-480B-A35B-Instruct --ollama-model qwen3-coder")
|
||||
print(" uv run cmd/chat_template/chat_template.py --serve")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user