Compare commits

..

1 Commits

Author SHA1 Message Date
Michael Yang
46e485f32c runner: disable embedding models in ollama engine 2025-09-02 10:42:16 -07:00
96 changed files with 677 additions and 4941 deletions

View File

@@ -65,36 +65,14 @@ jobs:
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
cuda-version: '12.8'
flags: ''
runner_dir: 'cuda_v12'
- os: windows
arch: amd64
preset: 'CUDA 13'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
flags: ''
runner_dir: 'cuda_v13'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runner_dir: ''
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -118,7 +96,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
@@ -160,7 +138,7 @@ jobs:
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
@@ -254,7 +232,7 @@ jobs:
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_sbsa) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;

View File

@@ -46,7 +46,7 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
container: nvidia/cuda:12.8.1-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -78,17 +78,8 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
@@ -111,8 +102,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path

View File

@@ -38,7 +38,7 @@ if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
@@ -81,7 +81,7 @@ if(CMAKE_CUDA_COMPILER)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA

View File

@@ -18,14 +18,6 @@
"name": "CUDA",
"inherits": [ "Default" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
@@ -34,14 +26,6 @@
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],
@@ -88,21 +72,11 @@
"configurePreset": "CUDA",
"targets": [ "ggml-cuda" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 12"
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],

View File

@@ -1,7 +1,6 @@
# vim: filetype=dockerfile
ARG FLAVOR=${TARGETARCH}
ARG PARALLEL=8
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
@@ -35,51 +34,26 @@ ENV LDFLAGS=-s
FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
FROM base AS cuda-11
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@@ -87,11 +61,10 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
@@ -99,11 +72,10 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
@@ -120,14 +92,10 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama
FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/cuda_sbsa
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6

View File

@@ -413,8 +413,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
### Cloud
@@ -604,7 +602,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends

View File

@@ -222,17 +222,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf("unmarshal: %w", err)
}
if response.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
return AuthorizationError{
StatusCode: response.StatusCode,
Status: response.Status,
PublicKey: pubKey,
}
} else if response.StatusCode >= http.StatusBadRequest {
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -438,16 +428,3 @@ func (c *Client) Version(ctx context.Context) (string, error) {
return version.Version, nil
}
// Signout will disconnect an ollama instance from ollama.com
func (c *Client) Signout(ctx context.Context, encodedKey string) error {
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
}
func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
var resp UserResponse
if err := c.do(ctx, http.MethodPost, "/api/me", nil, &resp); err != nil {
return nil, err
}
return &resp, nil
}

View File

@@ -11,8 +11,6 @@ import (
"strings"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
@@ -38,19 +36,6 @@ func (e StatusError) Error() string {
}
}
type AuthorizationError struct {
StatusCode int
Status string
PublicKey string `json:"public_key"`
}
func (e AuthorizationError) Error() string {
if e.Status != "" {
return e.Status
}
return "something went wrong, please see the ollama server logs for details"
}
// ImageData represents the raw binary data of an image file.
type ImageData []byte
@@ -328,29 +313,13 @@ func (t *ToolFunction) String() string {
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Message contains the message or part of a message from the model.
Message Message `json:"message"`
// Done specifies if the response is complete.
Done bool `json:"done"`
// DoneReason is the reason the model stopped generating text.
DoneReason string `json:"done_reason,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
Metrics
}
@@ -360,6 +329,13 @@ type DebugInfo struct {
ImageCount int `json:"image_count,omitempty"`
}
// DebugTemplateResponse is returned when _debug_render_only is set to true
type DebugTemplateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
DebugInfo DebugInfo `json:"_debug_info"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@@ -412,12 +388,8 @@ type EmbedRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Truncate truncates the input to fit the model's max sequence length.
Truncate *bool `json:"truncate,omitempty"`
// Dimensions truncates the output embedding to the specified dimension.
Dimensions int `json:"dimensions,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
}
@@ -455,47 +427,18 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
// Model is the model name to create.
Model string `json:"model"`
// Stream specifies whether the response is streaming; it is true by default.
Stream *bool `json:"stream,omitempty"`
// Quantize is the quantization format for the model; leave blank to not change the quantization level.
Model string `json:"model"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// From is the name of the model or file to use as the source.
From string `json:"from,omitempty"`
// RemoteHost is the URL of the upstream ollama API for the model (if any).
RemoteHost string `json:"remote_host,omitempty"`
// Files is a map of files include when creating the model.
Files map[string]string `json:"files,omitempty"`
// Adapters is a map of LoRA adapters to include when creating the model.
Adapters map[string]string `json:"adapters,omitempty"`
// Template is the template used when constructing a request to the model.
Template string `json:"template,omitempty"`
// License is a string or list of strings for licenses.
License any `json:"license,omitempty"`
// System is the system prompt for the model.
System string `json:"system,omitempty"`
// Parameters is a map of hyper-parameters which are applied to the model.
Parameters map[string]any `json:"parameters,omitempty"`
// Messages is a list of messages added to the model before chat and generation requests.
Messages []Message `json:"messages,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
From string `json:"from,omitempty"`
Files map[string]string `json:"files,omitempty"`
Adapters map[string]string `json:"adapters,omitempty"`
Template string `json:"template,omitempty"`
License any `json:"license,omitempty"`
System string `json:"system,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Messages []Message `json:"messages,omitempty"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -533,12 +476,8 @@ type ShowResponse struct {
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
@@ -597,14 +536,12 @@ type ProcessResponse struct {
// ListModelResponse is a single model description in [ListResponse].
type ListModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
// ProcessModelResponse is a single model description in [ProcessResponse].
@@ -628,12 +565,6 @@ type GenerateResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
@@ -657,8 +588,6 @@ type GenerateResponse struct {
Metrics
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
}
// ModelDetails provides details about a model.
@@ -671,18 +600,6 @@ type ModelDetails struct {
QuantizationLevel string `json:"quantization_level"`
}
// UserResponse provides information about a user.
type UserResponse struct {
ID uuid.UUID `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
// Tensor describes the metadata for a given tensor.
type Tensor struct {
Name string `json:"name"`

View File

@@ -19,31 +19,6 @@ import (
const defaultPrivateKey = "id_ed25519"
func keyPath() (string, error) {
fileIsReadable := func(fp string) bool {
info, err := os.Stat(fp)
if err != nil {
return false
}
// Check that it's a regular file, not a directory or other file type
if !info.Mode().IsRegular() {
return false
}
// Try to open it to check readability
file, err := os.Open(fp)
if err != nil {
return false
}
file.Close()
return true
}
systemPath := filepath.Join("/usr/share/ollama/.ollama", defaultPrivateKey)
if fileIsReadable(systemPath) {
return systemPath, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err

View File

@@ -5,7 +5,6 @@ import (
"context"
"crypto/ed25519"
"crypto/rand"
"encoding/base64"
"encoding/json"
"encoding/pem"
"errors"
@@ -15,7 +14,6 @@ import (
"math"
"net"
"net/http"
"net/url"
"os"
"os/signal"
"path/filepath"
@@ -37,7 +35,6 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
@@ -50,8 +47,6 @@ import (
"github.com/ollama/ollama/version"
)
const ConnectInstructions = "To sign in, navigate to:\n https://ollama.com/connect?name=%s&key=%s\n\n"
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
@@ -61,8 +56,10 @@ func ensureThinkingSupport(ctx context.Context, client *api.Client, name string)
if err != nil {
return
}
if slices.Contains(resp.Capabilities, model.CapabilityThinking) {
return
for _, cap := range resp.Capabilities {
if cap == model.CapabilityThinking {
return
}
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
@@ -291,17 +288,7 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
Think: opts.Think,
}
return client.Generate(cmd.Context(), req, func(r api.GenerateResponse) error {
if r.RemoteModel != "" && opts.ShowConnect {
p.StopAndClear()
if strings.HasPrefix(r.RemoteHost, "https://ollama.com") {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on 'ollama.com' ⚡\n", r.RemoteModel)
} else {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on '%s'\n", r.RemoteModel, r.RemoteHost)
}
}
return nil
})
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
}
func StopHandler(cmd *cobra.Command, args []string) error {
@@ -322,10 +309,9 @@ func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
ShowConnect: true,
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
}
format, err := cmd.Flags().GetString("format")
@@ -383,7 +369,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
prompts = append([]string{string(in)}, prompts...)
opts.ShowConnect = false
opts.WordWrap = false
interactive = false
}
@@ -450,21 +435,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
if errors.As(err, &sErr) && sErr.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
// the server and the client both have the same public key
if pubKey == sErr.PublicKey {
h, _ := os.Hostname()
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
fmt.Printf("You need to be signed in to Ollama to run Cloud models.\n\n")
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
}
return nil
}
return err
}
@@ -485,56 +455,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generate(cmd, opts)
}
func SigninHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
user, err := client.Whoami(cmd.Context())
if err != nil {
return err
}
if user != nil && user.Name != "" {
fmt.Printf("You are already signed in as user '%s'\n", user.Name)
fmt.Println()
return nil
}
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
h, _ := os.Hostname()
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
return nil
}
func SignoutHandler(cmd *cobra.Command, args []string) error {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
err = client.Signout(cmd.Context(), encKey)
if err != nil {
return err
}
fmt.Println("You have signed out of ollama.com")
fmt.Println()
return nil
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -587,8 +507,7 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if spinner != nil {
spinner.Stop()
}
errStr := strings.ToLower(err.Error())
if strings.Contains(errStr, "access denied") || strings.Contains(errStr, "unauthorized") {
if strings.Contains(err.Error(), "access denied") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
return err
@@ -622,14 +541,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
for _, m := range models.Models {
if len(args) == 0 || strings.HasPrefix(strings.ToLower(m.Name), strings.ToLower(args[0])) {
var size string
if m.RemoteModel != "" {
size = "-"
} else {
size = format.HumanBytes(m.Size)
}
data = append(data, []string{m.Name, m.Digest[:12], size, format.HumanTime(m.ModifiedAt, "Never")})
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
}
}
@@ -714,8 +626,8 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
KeepAlive: &api.Duration{Duration: 0},
}
if err := loadOrUnloadModel(cmd, opts); err != nil {
if !strings.Contains(strings.ToLower(err.Error()), "not found") {
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", args[0])
if !strings.Contains(err.Error(), "not found") {
return fmt.Errorf("unable to stop existing running model \"%s\": %s", args[0], err)
}
}
@@ -826,36 +738,12 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
}
tableRender("Model", func() (rows [][]string) {
if resp.RemoteHost != "" {
rows = append(rows, []string{"", "Remote model", resp.RemoteModel})
rows = append(rows, []string{"", "Remote URL", resp.RemoteHost})
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
var paramStr string
if resp.Details.ParameterSize != "" {
paramStr = resp.Details.ParameterSize
} else if v, ok := resp.ModelInfo["general.parameter_count"]; ok {
if f, ok := v.(float64); ok {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "context length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ModelInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "context length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64), 'f', -1, 64)})
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
@@ -1103,7 +991,6 @@ type runOptions struct {
KeepAlive *api.Duration
Think *api.ThinkValue
HideThinking bool
ShowConnect bool
}
type displayResponseState struct {
@@ -1659,22 +1546,6 @@ func NewCLI() *cobra.Command {
pushCmd.Flags().Bool("insecure", false, "Use an insecure registry")
signinCmd := &cobra.Command{
Use: "signin",
Short: "Sign in to ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SigninHandler,
}
signoutCmd := &cobra.Command{
Use: "signout",
Short: "Sign out from ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SignoutHandler,
}
listCmd := &cobra.Command{
Use: "list",
Aliases: []string{"ls"},
@@ -1769,8 +1640,6 @@ func NewCLI() *cobra.Command {
stopCmd,
pullCmd,
pushCmd,
signinCmd,
signoutCmd,
listCmd,
psCmd,
copyCmd,

View File

@@ -3,7 +3,6 @@ package cmd
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
@@ -305,8 +304,6 @@ func TestDeleteHandler(t *testing.T) {
w.WriteHeader(http.StatusOK)
} else {
w.WriteHeader(http.StatusNotFound)
errPayload := `{"error":"model '%s' not found"}`
w.Write([]byte(fmt.Sprintf(errPayload, req.Name)))
}
return
}
@@ -349,7 +346,7 @@ func TestDeleteHandler(t *testing.T) {
}
err := DeleteHandler(cmd, []string{"test-model-not-found"})
if err == nil || !strings.Contains(err.Error(), "model 'test-model-not-found' not found") {
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
}
}
@@ -502,7 +499,7 @@ func TestPushHandler(t *testing.T) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "403: {\"errors\":[{\"code\":\"ACCESS DENIED\", \"message\":\"access denied\"}]}",
"error": "access denied",
})
if err != nil {
t.Fatal(err)
@@ -525,7 +522,6 @@ func TestPushHandler(t *testing.T) {
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
initializeKeypair()
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")

View File

@@ -28,7 +28,6 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@@ -55,11 +54,9 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
break
}
}
@@ -93,7 +90,6 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

View File

@@ -96,7 +96,7 @@ type safetensor struct {
func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind()
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
if st.dtype == "BF16" && kind != tensorKindFP32 {
kind = tensorKindBF16
}

View File

@@ -230,65 +230,3 @@ func TestSafetensors(t *testing.T) {
})
}
}
func TestSafetensorKind(t *testing.T) {
tests := []struct {
name string
st safetensor
expected uint32
}{
{
name: "BF16 dtype with non-v. prefix and non-FP32 base kind should return BF16",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindBF16,
},
{
name: "BF16 dtype with v. prefix should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "v.weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindFP16,
},
{
name: "BF16 dtype with FP32 base kind should return FP32",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10}, // will default to FP32
},
dtype: "BF16",
},
expected: tensorKindFP32,
},
{
name: "Non-BF16 dtype should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "FP16",
},
expected: tensorKindFP16,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.st.Kind()
if result != tt.expected {
t.Errorf("Kind() = %d, expected %d", result, tt.expected)
}
})
}
}

View File

@@ -16,7 +16,7 @@ import (
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaVariant(gpuInfos []CudaGPUInfo) string {
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
@@ -43,22 +43,14 @@ func cudaVariant(gpuInfos []CudaGPUInfo) string {
}
}
}
return "sbsa"
}
// Check GPU compute capability FIRST, lowest common denominator if multi-gpu
for _, gpuInfo := range gpuInfos {
if gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5) {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// The detected driver is older than Feb 2023
slog.Warn("old CUDA driver detected - please upgrade to a newer driver", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
return "v11"
}
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if len(gpuInfos) > 0 && gpuInfos[0].DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfos[0].DriverMajor, gpuInfos[0].DriverMinor))
return "v12"
}
return "v13"
return "v12"
}

View File

@@ -284,8 +284,18 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
@@ -323,24 +333,6 @@ func GetGPUInfo() GpuInfoList {
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel

View File

@@ -1708,7 +1708,6 @@ Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
### Examples

View File

@@ -11,10 +11,6 @@ Then build and run Ollama from the root directory of the repository:
go run . serve
```
> [!NOTE]
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
## macOS (Apple Silicon)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.

View File

@@ -11,13 +11,12 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
> [!NOTE]
> If you are upgrading from a prior version, you **MUST** remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
Download and extract the package:
```shell
curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
sudo rm -rf /usr/lib/ollama
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```

View File

@@ -92,9 +92,6 @@ If none of those resolve the problem, gather additional information and file an
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
You may get more details for initialization failures by enabling debug prints in the uvm driver. You should only use this temporarily while troubleshooting
- `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm uvm_debug_prints=1`
## AMD GPU Discovery

View File

@@ -134,17 +134,6 @@ func LoadTimeout() (loadTimeout time.Duration) {
return loadTimeout
}
func Remotes() []string {
var r []string
raw := strings.TrimSpace(Var("OLLAMA_REMOTES"))
if raw == "" {
r = []string{"ollama.com"}
} else {
r = strings.Split(raw, ",")
}
return r
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
@@ -196,6 +185,8 @@ var (
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
// Enable the new memory estimation logic
NewMemoryEstimates = Bool("OLLAMA_NEW_ESTIMATES")
)
func String(s string) func() string {
@@ -281,7 +272,7 @@ func AsMap() map[string]EnvVar {
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
"OLLAMA_NEW_ESTIMATES": {"OLLAMA_NEW_ESTIMATES", NewMemoryEstimates(), "Enable the new memory estimation logic"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

View File

@@ -57,28 +57,10 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() []uint64 {
headCountDefault := uint32(1)
headCount := kv.UintOrArrayValueAsArray("attention.head_count", headCountDefault)
if len(headCount) == 1 {
headCountDefault = headCount[0]
}
nLayers := int(kv.BlockCount())
if len(headCount) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCount)", len(headCount), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCount) {
out[i] = uint64(headCountDefault)
} else {
out[i] = uint64(headCount[i])
}
}
return out
}
func (kv KV) HeadCountMax() uint64 {
// TODO(drifkin): using the max value can cause an overestimation. In the
// future if array values become more popular, we can adapt the more invasive
// <https://github.com/ollama/ollama/pull/10225>
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
}
@@ -86,27 +68,6 @@ func (kv KV) HeadCountMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
}
func (kv KV) HeadCountKV() []uint64 {
headCountKVDefault := uint32(1)
headCountKV := kv.UintOrArrayValueAsArray("attention.head_count_kv", headCountKVDefault)
if len(headCountKV) == 1 {
headCountKVDefault = headCountKV[0]
}
nLayers := int(kv.BlockCount())
if len(headCountKV) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCountKV)", len(headCountKV), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCountKV) {
out[i] = uint64(headCountKVDefault)
} else {
out[i] = uint64(headCountKV[i])
}
}
return out
}
func (kv KV) HeadCountKVMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
}
@@ -139,26 +100,6 @@ func (kv KV) ChatTemplate() string {
return kv.String("tokenizer.chat_template")
}
// ssm architecture parameters
func (kv KV) SSMConvKernel() uint64 {
return uint64(kv.Uint("ssm.conv_kernel"))
}
func (kv KV) SSMInnerSize() uint64 {
return uint64(kv.Uint("ssm.inner_size"))
}
func (kv KV) SSMStateSize() uint64 {
return uint64(kv.Uint("ssm.state_size"))
}
func (kv KV) SSMGroupCount() uint64 {
return uint64(kv.Uint("ssm.group_count"))
}
// general types
func (kv KV) String(key string, defaultValue ...string) string {
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
@@ -190,27 +131,22 @@ func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
}
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
arrVal := kv.UintOrArrayValueAsArray(key, defaultValue)
return slices.Min(arrVal), slices.Max(arrVal)
}
func (kv KV) UintOrArrayValueAsArray(key string, defaultValue uint32) []uint32 {
if u32, ok := keyValue(kv, key, uint32(0)); ok {
return []uint32{u32}
return u32, u32
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
return u32s.values
min := slices.Min(u32s.values)
max := slices.Max(u32s.values)
return min, max
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
dst := make([]uint32, len(i32s.values))
for i, v := range i32s.values {
if v < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "i", i, "v", v)
}
dst[i] = uint32(v)
min := slices.Min(i32s.values)
max := slices.Max(i32s.values)
if min < 0 || max < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "min", min, "max", max)
}
return dst
return uint32(min), uint32(max)
}
return []uint32{defaultValue}
return defaultValue, defaultValue
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
@@ -239,11 +175,14 @@ func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
}
func (kv KV) OllamaEngineRequired() bool {
if kv.Uint("pooling_type") > 0 {
return false
}
return slices.Contains([]string{
"gemma3",
"gemma3n",
"mistral3",
"qwen3",
"llama4",
"mllama",
"qwen25vl",
@@ -551,9 +490,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCountMax()
headsArr := f.KV().HeadCount()
headsKV := f.KV().HeadCountKVMax()
headsKVArr := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
embeddingHeads := f.KV().EmbeddingHeadCountMax()
@@ -563,51 +500,12 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
// Default for models unless special-cased below. These defaults mirror the
// cache usage in llama.cpp under the assumption that models without special
// cases below will use the llamarunner and caching will be handled by the
// llama.cpp layer.
//
// This also assumes that a layer without heads or headsKV set is recurrent
// which is usually the case. Some models (eg nemotronh) use "blocks" in
// place of layers where some are MLP blocks that don't have any cache.
// Models like this will need a special case below to be accurately
// estimated.
var kvTotal uint64
kv = make([]uint64, f.KV().BlockCount())
kvSizeAttn := uint64(0)
kvSizeRecurrent := uint64(0)
for i := range kv {
headsL := headsArr[i]
headsKVL := headsKVArr[i]
if headsL > 0 && headsKVL > 0 {
// full attention layer
// NOTE: Assumes uniform values for all attn layers
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKVL) * bytesPerElement)
kvSizeAttn += kv[i]
} else {
// recurrent layer
ssmDConv := f.KV().SSMConvKernel()
ssmDState := f.KV().SSMStateSize()
ssmDInner := f.KV().SSMInnerSize()
ssmNGroups := f.KV().SSMGroupCount()
nEmbdR := uint64(0)
if ssmDConv > 0 {
nEmbdR = (ssmDConv - 1) * (ssmDInner + 2*ssmNGroups*ssmDState)
}
nEmbdS := ssmDState * ssmDInner
// recurrent always uses F32 in llama.cpp backend
// https://github.com/ggml-org/llama.cpp/blob/master/src/llama-model.cpp#L18644
bytesPerElementRecurrent := kvCacheBytesPerElement("f32")
kv[i] = (nEmbdR + nEmbdS) * uint64(bytesPerElementRecurrent)
kvSizeRecurrent += kv[i]
}
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kvTotal += kv[i]
}
slog.Debug("default cache size estimate", "attention MiB", float32(kvSizeAttn)/(1024.*1024.), "attention bytes", kvSizeAttn, "recurrent MiB", float32(kvSizeRecurrent)/(1024.*1024.), "recurrent bytes", kvSizeRecurrent)
switch f.KV().Architecture() {
case "llama", "llama4":
@@ -865,26 +763,17 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
if cacheType == "" || cacheType == "f16" {
return true
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gptoss", "gpt-oss"}, arch) {
// gpt-oss uses attention with sinks which does not support quantized cache types
slog.Warn("model only supports non-quantized cache types", "model", arch)
return false
slog.Warn("model only supports non-quantized cache types ", "mode", arch)
return cacheType == "f16"
}
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
if isEmbedding {
return false
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gemma2"}, arch) {
if f.KV().Uint("pooling_type") > 0 {
return false
}
@@ -908,8 +797,6 @@ func kvCacheBytesPerElement(cacheType string) float64 {
return 1 // 1/2 of fp16
case "q4_0":
return 0.5 // 1/4 of fp16
case "f32":
return 4 // f32 (default for recurrent)
default:
return 2 // f16 (default)
}

View File

@@ -1,6 +1,7 @@
package harmony
import (
"context"
"fmt"
"log/slog"
"strings"
@@ -291,7 +292,7 @@ func (h *HarmonyMessageHandler) AddContent(content string, toolParser *HarmonyTo
for _, event := range events {
switch event := event.(type) {
case HarmonyEventHeaderComplete:
logutil.Trace("harmony event header complete", "header", event.Header)
slog.Log(context.TODO(), logutil.LevelTrace, "harmony event header complete", "header", event.Header)
switch event.Header.Channel {
case "analysis":
if event.Header.Recipient != "" {
@@ -314,7 +315,7 @@ func (h *HarmonyMessageHandler) AddContent(content string, toolParser *HarmonyTo
h.state = harmonyMessageState_Normal
}
case HarmonyEventContentEmitted:
logutil.Trace("harmony event content", "content", event.Content, "state", h.state)
slog.Log(context.TODO(), logutil.LevelTrace, "harmony event content", "content", event.Content, "state", h.state)
if h.state == harmonyMessageState_Normal {
contentSb.WriteString(event.Content)
} else if h.state == harmonyMessageState_Thinking {

View File

@@ -410,99 +410,3 @@ func TestAPIEmbeddings(t *testing.T) {
t.Errorf("zero length embedding response")
}
}
func TestAPIToolCalling(t *testing.T) {
initialTimeout := 60 * time.Second
streamTimeout := 30 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
modelName := "qwen3:0.6b"
if err := PullIfMissing(ctx, client, modelName); err != nil {
t.Fatalf("pull failed %s", err)
}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
},
},
},
},
}
req := api.ChatRequest{
Model: modelName,
Messages: []api.Message{
{
Role: "user",
Content: "Call get_weather with location set to San Francisco.",
},
},
Tools: tools,
Options: map[string]any{
"temperature": 0,
},
}
stallTimer := time.NewTimer(initialTimeout)
var gotToolCall bool
var lastToolCall api.ToolCall
fn := func(response api.ChatResponse) error {
if len(response.Message.ToolCalls) > 0 {
gotToolCall = true
lastToolCall = response.Message.ToolCalls[len(response.Message.ToolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
}
if !gotToolCall {
t.Fatalf("expected at least one tool call, got none")
}
if lastToolCall.Function.Name != "get_weather" {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if _, ok := lastToolCall.Function.Arguments["location"]; !ok {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String())
}
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat")
}
}

View File

@@ -121,7 +121,6 @@ func TestMultiModelStress(t *testing.T) {
// The intent is to go 1 over what can fit so we force the scheduler to thrash
targetLoadCount := 0
slog.Info("Loading models to find how many can fit in VRAM before overflowing")
chooseModels:
for i, model := range chosenModels {
req := &api.GenerateRequest{Model: model}
slog.Info("loading", "model", model)
@@ -143,13 +142,6 @@ chooseModels:
slog.Info("found model load capacity", "target", targetLoadCount, "current", loaded, "chosen", chosenModels[:targetLoadCount])
break
}
// Effectively limit model count to 2 on CPU only systems to avoid thrashing and timeouts
for _, m := range models.Models {
if m.SizeVRAM == 0 {
slog.Info("model running on CPU", "name", m.Name, "target", targetLoadCount, "chosen", chosenModels[:targetLoadCount])
break chooseModels
}
}
}
}
if targetLoadCount == len(chosenModels) {

View File

@@ -36,7 +36,7 @@ func TestLongInputContext(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia", "europe", "individuals", "coalition", "conflict"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia", "individuals", "coalition", "conflict"}, 120*time.Second, 10*time.Second)
}
func TestContextExhaustion(t *testing.T) {
@@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: "Write me a story in english with a lot of emojis",
Prompt: "Write me a story with a ton of emojis?",
Stream: &stream,
Options: map[string]any{
"temperature": 0,

View File

@@ -8,7 +8,6 @@ import (
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
@@ -39,14 +38,14 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
defer cleanup()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Model: "all-minilm",
Prompt: "why is the sky blue?",
}
res, err := embeddingTestHelper(ctx, client, t, req)
if err != nil {
t.Fatal(err)
t.Fatalf("error: %v", err)
}
if len(res.Embedding) != 384 {
@@ -74,8 +73,9 @@ func TestAllMiniLMEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatal(err)
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 1 {
@@ -111,8 +111,9 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatal(err)
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 2 {
@@ -154,135 +155,93 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
truncTrue, truncFalse := true, false
want, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why",
})
if err != nil {
t.Fatal(err)
type testReq struct {
Name string
Request api.EmbedRequest
}
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
}{
reqs := []testReq{
{
name: "target truncation",
request: api.EmbedRequest{
Name: "Target Truncation",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "default truncate",
request: api.EmbedRequest{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
Options: map[string]any{"num_ctx": 1},
},
},
{
name: "explicit truncate",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
}
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
})
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, client, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
}
}
func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
return client.Embeddings(ctx, &req)
response, err := client.Embeddings(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}
func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
return client.Embed(ctx, &req)
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}

View File

@@ -502,22 +502,6 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in %s", genReq.Model, anyResp, response)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
@@ -533,14 +517,21 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %s", genErr, genReq.Model, genReq.Prompt)
}
verify()
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in %s", genReq.Model, anyResp, response)
}
slog.Info("test pass", "model", genReq.Model, "prompt", genReq.Prompt, "contains", anyResp, "response", response)
case <-ctx.Done():
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for generate")
verify()
t.Error("outer test context done while waiting for generate")
}
return context
}
@@ -561,7 +552,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
Model: smol,
Prompt: "how do rainbows form? Be brief but factual in your reply",
Prompt: "what is the origin of the US thanksgiving holiday? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
@@ -579,9 +570,9 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
[][]string{
{"sunlight", "scattering", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorbs", "wavelength"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigments", "particles", "iron oxide", "rust", "air", "water", "mixture", "mixing"},
{"water", "droplet", "refracted", "reflect", "color", "spectrum"},
{"england", "english", "massachusetts", "pilgrims", "colonists", "independence", "british", "feast", "family", "gatherings", "traditions", "turkey", "colonial", "period", "harvest", "agricultural", "european settlers", "american revolution", "civil war", "16th century", "17th century", "native american", "united states", "cultural", "hardship", "autumn", "festival"},
{"fourth", "july", "declaration", "independence"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor"},
{"nitrogen", "oxygen", "carbon", "dioxide"},
}
}
@@ -608,22 +599,6 @@ func DoChat(ctx context.Context, t *testing.T, client *api.Client, req api.ChatR
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in \"%s\" -- request was:%v", req.Model, anyResp, response, req.Messages)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
@@ -639,14 +614,23 @@ func DoChat(ctx context.Context, t *testing.T, client *api.Client, req api.ChatR
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %v", genErr, req.Model, req.Messages)
}
verify()
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in \"%s\" -- request was:%v", req.Model, anyResp, response, req.Messages)
}
slog.Info("test pass", "model", req.Model, "messages", req.Messages, "contains", anyResp, "response", response)
case <-ctx.Done():
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for chat")
verify()
t.Error("outer test context done while waiting for generate")
}
return &api.Message{Role: role, Content: buf.String()}
}

View File

@@ -515,34 +515,33 @@ func (c *MtmdContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32,
}
nChunks := C.mtmd_input_chunks_size(ic)
numEmbed := llamaContext.Model().NEmbd()
embed := make([][]float32, 0)
lastChunkSize := 0
for i := range int(nChunks) {
chunk := C.mtmd_input_chunks_get(ic, C.size_t(i))
numTokens := int(C.mtmd_input_chunk_get_n_tokens(chunk))
slog.Debug("chunk tokens", "index", i, "numTokens", numTokens)
lastChunkSize = numTokens
// Encode the chunk
if C.int32_t(0) != C.mtmd_encode_chunk(c.c, chunk) {
return nil, errors.New("unable to encode mtmd image chunk")
}
// Get the embeddings for this chunk
chunkEmbed := make([][]float32, numTokens)
chunkEmbd := C.mtmd_get_output_embd(c.c)
if nil == chunkEmbd {
continue
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(chunkEmbd), numTokens*numEmbed)
rows := make([]float32, len(s))
copy(rows, s)
for i := range numTokens {
chunkEmbed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
embed = append(embed, chunkEmbed...)
}
slog.Debug("image embeddings", "totalEmbeddings", len(embed))
// Get the embeddings
embed := make([][]float32, lastChunkSize)
embd := C.mtmd_get_output_embd(c.c)
if nil == embd {
return nil, errors.New("failed to get image embedding")
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(embd), numEmbed*lastChunkSize)
rows := make([]float32, len(s))
copy(rows, s)
for i := range lastChunkSize {
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
return embed, nil
}

View File

@@ -1,28 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Fri, 29 Aug 2025 16:53:08 -0700
Subject: [PATCH] harden uncaught exception registration
---
ggml/src/ggml.cpp | 8 ++++++--
1 file changed, 6 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml.cpp b/ggml/src/ggml.cpp
index 0d388d45..f5bcb446 100644
--- a/ggml/src/ggml.cpp
+++ b/ggml/src/ggml.cpp
@@ -19,8 +19,12 @@ static bool ggml_uncaught_exception_init = []{
return false;
}
const auto prev{std::get_terminate()};
- GGML_ASSERT(prev != ggml_uncaught_exception);
- previous_terminate_handler = prev;
+ // GGML_ASSERT(prev != ggml_uncaught_exception);
+ if (prev != ggml_uncaught_exception) {
+ previous_terminate_handler = prev;
+ } else {
+ GGML_LOG_WARN("%s double registration of ggml_uncaught_exception\n", __func__);
+ }
std::set_terminate(ggml_uncaught_exception);
return true;
}();

View File

@@ -202,7 +202,7 @@ func estimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
var kvct string
if useFlashAttention {
requested := strings.ToLower(envconfig.KvCacheType())
if f.SupportsKVCacheType(requested) {
if requested != "" && f.SupportsKVCacheType(requested) {
kvct = requested
}
}

View File

@@ -148,11 +148,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
var textProcessor model.TextProcessor
var err error
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
if len(projectors) == 0 {
textProcessor, err = model.NewTextProcessor(modelPath)
} else {
err = errors.New("split vision models aren't supported")
}
textProcessor, err = model.NewTextProcessor(modelPath)
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
@@ -165,6 +161,11 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}
newEstimates := textProcessor != nil && envconfig.NewMemoryEstimates()
if newEstimates {
slog.Info("enabling new memory estimates")
}
// Verify the requested context size is <= the model training size
trainCtx := f.KV().ContextLength()
if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
@@ -172,8 +173,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
opts.NumCtx = int(trainCtx)
}
opts.NumBatch = min(opts.NumBatch, opts.NumCtx)
loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
defaultThreads := discover.GetSystemInfo().GetOptimalThreadCount()
@@ -219,7 +218,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if f.SupportsKVCacheType(kvct) {
if kvct != "" && f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
@@ -432,7 +431,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}()
if textProcessor != nil {
if newEstimates {
return &ollamaServer{llmServer: s}, nil
} else {
return &llamaServer{llmServer: s, ggml: f}, nil
@@ -679,12 +678,8 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
if !(len(gpus) == 1 && gpus[0].Library == "cpu") {
for _, gpu := range gpus {
available := gpu.FreeMemory - envconfig.GpuOverhead() - gpu.MinimumMemory
if gpu.FreeMemory < envconfig.GpuOverhead()+gpu.MinimumMemory {
available = 0
}
slog.Info("gpu memory", "id", gpu.ID,
"available", format.HumanBytes2(available),
"available", format.HumanBytes2(gpu.FreeMemory-envconfig.GpuOverhead()-gpu.MinimumMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
"minimum", format.HumanBytes2(gpu.MinimumMemory),
"overhead", format.HumanBytes2(envconfig.GpuOverhead()))
@@ -866,7 +861,7 @@ func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs d
}
layers[i] += memory.CPU.Weights[i].Size
layers[i] += memory.CPU.Cache[i].Size
logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
slog.Log(context.TODO(), logutil.LevelTrace, "layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
}
gpuLayers := ml.GPULayersList{}

View File

@@ -1,12 +1,9 @@
package logutil
import (
"context"
"io"
"log/slog"
"path/filepath"
"runtime"
"time"
)
const LevelTrace slog.Level = -8
@@ -30,19 +27,3 @@ func NewLogger(w io.Writer, level slog.Level) *slog.Logger {
},
}))
}
type key string
func Trace(msg string, args ...any) {
TraceContext(context.WithValue(context.TODO(), key("skip"), 1), msg, args...)
}
func TraceContext(ctx context.Context, msg string, args ...any) {
if logger := slog.Default(); logger.Enabled(ctx, LevelTrace) {
skip, _ := ctx.Value(key("skip")).(int)
pc, _, _, _ := runtime.Caller(1 + skip)
record := slog.NewRecord(time.Now(), LevelTrace, msg, pc)
record.Add(args...)
logger.Handler().Handle(ctx, record)
}
}

View File

@@ -266,7 +266,7 @@ func (m DeviceMemory) LogValue() slog.Value {
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputWeights are always located on the CPU and cannot be moved
// InputsWeights are always located on the CPU and cannot be moved
InputWeights Memory
// CPU model components are located in system memory. This does not
@@ -416,7 +416,6 @@ type Tensor interface {
AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
@@ -430,13 +429,12 @@ type Tensor interface {
Sin(ctx Context) Tensor
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
SILU(ctx Context, up ...Tensor) Tensor
RELU(ctx Context, up ...Tensor) Tensor
GELU(ctx Context) Tensor
QuickGELU(ctx Context) Tensor
SILU(ctx Context) Tensor
RELU(ctx Context) Tensor
Sigmoid(ctx Context) Tensor
// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
SwiGLU(ctx Context, up Tensor, alpha, limit float32) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor

View File

@@ -271,7 +271,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
@@ -378,7 +378,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
for bs := range maps.Values(bbs) {
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
slog.Log(context.TODO(), logutil.LevelTrace, "model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
@@ -811,7 +811,7 @@ func (c *Context) Reserve() {
}
}
logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
slog.Log(context.TODO(), logutil.LevelTrace, "compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferStatus.size)))
}
@@ -1205,13 +1205,6 @@ func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
@@ -1431,46 +1424,35 @@ func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
}
}
func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
func (t *Tensor) QuickGELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_quick_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
func (t *Tensor) SwiGLU(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),

View File

@@ -19,12 +19,8 @@ static bool ggml_uncaught_exception_init = []{
return false;
}
const auto prev{std::get_terminate()};
// GGML_ASSERT(prev != ggml_uncaught_exception);
if (prev != ggml_uncaught_exception) {
previous_terminate_handler = prev;
} else {
GGML_LOG_WARN("%s double registration of ggml_uncaught_exception\n", __func__);
}
GGML_ASSERT(prev != ggml_uncaught_exception);
previous_terminate_handler = prev;
std::set_terminate(ggml_uncaught_exception);
return true;
}();

View File

@@ -26,7 +26,6 @@ func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache
}
func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
ctx.Forward(query)
if key != nil && value != nil {
if query.Dim(0) != key.Dim(0) {
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
@@ -40,7 +39,6 @@ func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scal
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
}
ctx.Forward(key, value)
if cache != nil {
cache.Put(ctx, key, value)
}

View File

@@ -1,42 +0,0 @@
package pooling
import (
"github.com/ollama/ollama/ml"
)
type Type uint32
const (
TypeNone Type = iota
TypeMean
TypeCLS
TypeLast
)
func (t Type) String() string {
switch t {
case TypeMean:
return "Mean"
case TypeCLS:
return "CLS"
case TypeLast:
return "Last"
default:
return "Unknown"
}
}
func (t Type) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
switch t {
case TypeMean:
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
return hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
case TypeCLS:
return hiddenStates.View(ctx, 0, hiddenStates.Dim(0))
case TypeLast:
hiddenStates = hiddenStates.View(ctx, (hiddenStates.Dim(1)-1)*hiddenStates.Stride(1), hiddenStates.Dim(0))
return hiddenStates
default:
panic("unknown pooling type")
}
}

View File

@@ -1,79 +0,0 @@
package pooling_test
import (
"bytes"
"os"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/discover"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn/pooling"
)
func setup(tb testing.TB, n int) ml.Backend {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "*.bin")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
if err := fsggml.WriteGGUF(f, fsggml.KV{
"general.architecture": "test",
"test.block_count": uint32(1),
}, []*fsggml.Tensor{
{Name: "blk.0.weight", Shape: []uint64{1}, WriterTo: bytes.NewBuffer(make([]byte, 4))},
}); err != nil {
tb.Fatal(err)
}
var gpuLayers ml.GPULayersList
if gpus := discover.GetGPUInfo(); len(gpus) > 0 {
gpuLayers = append(gpuLayers, ml.GPULayers{
ID: gpus[0].ID,
Layers: slices.Collect(func(yield func(int) bool) {
for i := range n {
if !yield(i) {
return
}
}
}),
})
}
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true, GPULayers: gpuLayers})
if err != nil {
tb.Fatal(err)
}
return b
}
func TestForward(t *testing.T) {
cases := map[pooling.Type][]float32{
pooling.TypeMean: {4, 5, 6, 7, 8, 9, 10, 11},
pooling.TypeCLS: {0, 1, 2, 3, 4, 5, 6, 7},
pooling.TypeLast: {8, 9, 10, 11, 12, 13, 14, 15},
}
for typ, want := range cases {
t.Run(typ.String(), func(t *testing.T) {
b := setup(t, 99)
defer b.Close()
ctx := b.NewContext()
defer ctx.Close()
tt := ctx.Input().Arange(0, 16, 1, ml.DTypeF32).Reshape(ctx, 8, 2)
tt = typ.Forward(ctx, tt)
ctx.Forward(tt).Compute(tt)
if diff := cmp.Diff(want, tt.Floats()); diff != "" {
t.Error(diff)
}
})
}
}

View File

@@ -2,6 +2,7 @@ package model
import (
"cmp"
"context"
"fmt"
"iter"
"log/slog"
@@ -201,11 +202,12 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = bpe.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
@@ -241,6 +243,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
logutil.Trace("decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
return sb.String(), nil
}

View File

@@ -54,9 +54,10 @@ type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
@@ -65,8 +66,7 @@ type Batch struct {
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
}

View File

@@ -1,10 +1,12 @@
package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
_ "image/png"
"log/slog"
"os"
"reflect"
"strconv"
@@ -20,15 +22,10 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model/input"
)
var (
ErrNoVisionModel = errors.New("this model is missing data required for image input")
ErrUnsupportedModel = errors.New("model not supported")
ErrUnsupportedTokenizer = errors.New("tokenizer not supported")
)
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
@@ -107,12 +104,19 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return nil, err
}
m, err := modelForArch(b.Config())
arch := b.Config().Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(b.Config())
if err != nil {
return nil, err
}
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
return m, nil
@@ -124,38 +128,30 @@ func NewTextProcessor(s string) (TextProcessor, error) {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
m, err := modelForArch(meta.KV())
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(kv)
if err != nil {
return nil, err
}
tp, ok := m.(TextProcessor)
if !ok {
return nil, ErrUnsupportedTokenizer
return nil, fmt.Errorf("%v is not a TextProcessor", m)
}
return tp, nil
}
func modelForArch(c fs.Config) (Model, error) {
arch := c.Architecture()
if pooling.Type(c.Uint("pooling_type")) != pooling.TypeNone {
arch = arch + "_embed"
}
f, ok := models[arch]
if !ok {
return nil, ErrUnsupportedModel
}
return f(c)
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
@@ -202,7 +198,7 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
names := fn(tagsCopy)
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
logutil.Trace("found tensor", "", tensor)
slog.Log(context.TODO(), logutil.LevelTrace, "found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
@@ -243,7 +239,7 @@ func setPointer(base Base, v reflect.Value, tags []Tag) {
vv = vv.Elem()
}
vv = reflect.Indirect(vv)
vv = vv.Elem()
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}

View File

@@ -1,9 +1,9 @@
package model
import (
"errors"
"reflect"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
@@ -12,6 +12,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@@ -147,58 +148,39 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
}
}
func TestModelForArch(t *testing.T) {
type fakeModel struct {
Model
func TestGetTextProcessor(t *testing.T) {
tp, err := getTextProcessor(fsggml.KV{})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
type fakeEmbeddingModel struct {
Model
models["dummy"] = func(fs.Config) (Model, error) {
return notTextProcessorModel{}, nil
}
models["model"] = func(c fs.Config) (Model, error) { return fakeModel{}, nil }
models["model_embed"] = func(c fs.Config) (Model, error) { return fakeEmbeddingModel{}, nil }
cases := []struct {
name string
config fs.Config
want any
err error
}{
{
name: "model",
config: fsggml.KV{
"general.architecture": "model",
},
want: fakeModel{},
},
{
name: "embedding",
config: fsggml.KV{
"general.architecture": "model",
"model.pooling_type": uint32(1),
},
want: fakeEmbeddingModel{},
},
{
name: "unsupported",
config: fsggml.KV{
"general.architecture": "unsupported",
},
err: ErrUnsupportedModel,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got, err := modelForArch(tt.config)
if !errors.Is(err, tt.err) {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, got); diff != "" {
t.Errorf("modelForArch() returned unexpected values (-want +got):\n%s", diff)
}
})
tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
}
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
panic("unimplemented")
}
func (notTextProcessorModel) Backend() ml.Backend {
panic("unimplemented")
}
func (notTextProcessorModel) Config() config {
panic("unimplemented")
}

View File

@@ -1,181 +0,0 @@
package bert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.View(ctx, 0, m.hiddenSize))
hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))))
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
// Attention
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
// MLP
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := a.Query.Forward(ctx, hiddenStates)
if a.QueryNorm != nil {
query = a.QueryNorm.Forward(ctx, query, opts.eps)
}
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key := a.Key.Forward(ctx, hiddenStates)
if a.KeyNorm != nil {
key = a.KeyNorm.Forward(ctx, key, opts.eps)
}
key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
value := a.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
poolingType pooling.Type
eps float32
normalize bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func New(c fs.Config) (model.Model, error) {
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
processor = model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
//nolint:misspell
// NOTE: "seperator_token_id" is a typo in model metadata but we need to
// support it for compatibility.
c.Uint("tokenizer.ggml.seperator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", true),
},
}, nil
}
func init() {
model.Register("bert", New)
model.Register("bert_embed", New)
}

View File

@@ -24,7 +24,7 @@ type Options struct {
type Model struct {
model.Base
model.SentencePiece
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -40,7 +40,7 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePiece: model.NewSentencePiece(
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -63,7 +63,7 @@ func New(c fs.Config) (model.Model, error) {
attnValLen: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 10000.0),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
finalLogitSoftcap: c.Float("final_logit_softcapping"),
},
@@ -88,7 +88,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -98,7 +98,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -128,7 +128,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, 1/m.Options.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
}
type MLP struct {
@@ -138,7 +138,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -176,6 +176,7 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
@@ -192,7 +193,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = batch.Outputs
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)

View File

@@ -1,62 +0,0 @@
package gemma3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePiece
*TextModel
poolingType pooling.Type
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
}
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
kvcache.NewCausalCache(m.Shift),
)
return m, nil
}

View File

@@ -16,7 +16,7 @@ import (
type Model struct {
model.Base
model.SentencePiece
model.SentencePieceModel
*VisionModel `gguf:"v"`
*TextModel
@@ -55,7 +55,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePiece: model.NewSentencePiece(
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -141,11 +141,12 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}

View File

@@ -53,10 +53,7 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: 1,
// NOTE: the rope.scaling.factor is set incorrectly in the official QAT weights
// (8 instead of 1)
// ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
},
}
@@ -87,7 +84,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -98,7 +95,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -116,7 +113,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, 1/m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
}
type TextMLP struct {
@@ -126,7 +123,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -162,10 +159,8 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
// set image embeddings
@@ -196,12 +191,12 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = batch.Outputs
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return hiddenState
return m.Output.Forward(ctx, hiddenState)
}

View File

@@ -10,7 +10,7 @@ import (
type Model struct {
model.Base
model.SentencePiece
model.SentencePieceModel
*TextModel
}
@@ -23,7 +23,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
SentencePiece: model.NewSentencePiece(
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),

View File

@@ -83,7 +83,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Rows(ctx, batch.Outputs)
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
@@ -95,7 +95,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.ropeBaseLocal
}
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
type TextScaledWordEmbedding struct {
@@ -170,7 +170,8 @@ func (d TextLayer) Forward(ctx ml.Context, hiddenStates, perLayerInput, position
}
active = d.PerLayerInputGate.Forward(ctx, active)
active = active.GELU(ctx, perLayerInput)
active = active.GELU(ctx)
active = active.Mul(ctx, perLayerInput)
active = d.PerLayerProjection.Forward(ctx, active)
active = d.PostPerLayerNorm.Forward(ctx, active, opts.eps)
@@ -256,14 +257,14 @@ func (attn TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Ten
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
query = attn.QueryNorm.Forward(ctx, query, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
var key, value ml.Tensor
if !sharedKV {
key = attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
key = attn.KeyNorm.Forward(ctx, key, opts.eps)
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
value = attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
@@ -291,7 +292,7 @@ func (mlp TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, activationSpa
hiddenStates = hiddenStates.Sub(ctx, cutoff).RELU(ctx)
}
hiddenStates = hiddenStates.GELU(ctx, upStates)
hiddenStates = hiddenStates.GELU(ctx).Mul(ctx, upStates)
hiddenStates = mlp.Down.Forward(ctx, hiddenStates)
return hiddenStates
}
@@ -349,7 +350,7 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeBase: c.Float("rope.freq_base", 1_000_000),
ropeBaseLocal: c.Float("rope.freq_base_local", 10_000),
ropeScale: c.Float("rope.scaling.factor", 1.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
activationSparsityScale: c.Floats("activation_sparsity_scale"),

View File

@@ -41,8 +41,8 @@ func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, err
}
var outputs ml.Tensor
if i == len(m.TransformerBlocks)-1 {
outputs = batch.Outputs
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
@@ -210,7 +210,7 @@ func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *
up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
}
hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
hiddenStates = gate.SwiGLU(ctx, up, 1.702, 7)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)

View File

@@ -2,6 +2,7 @@ package llama
import (
"cmp"
"fmt"
"math"
"github.com/ollama/ollama/fs"
@@ -22,60 +23,51 @@ type Options struct {
type Model struct {
model.Base
model.TextProcessor
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
*Options
}
func New(c fs.Config) (model.Model, error) {
if c.Uint("expert_count") > 0 {
// TODO: support mixtures of experts
return nil, model.ErrUnsupportedModel
// This model currently only supports the gpt2 tokenizer
if c.String("tokenizer.ggml.model") == "llama" {
return nil, fmt.Errorf("unsupported tokenizer: llama")
}
var processor model.TextProcessor
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
// Best effort detection of library/deepseek-coder model(s) which are incompatible
if c.String("general.name") == "deepseek-ai" {
return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
}
switch c.String("tokenizer.ggml.model") {
case "gpt2":
processor = model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&vocabulary,
)
case "llama":
processor = model.NewSentencePiece(&vocabulary)
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 1e5),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
@@ -106,8 +98,8 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
@@ -116,7 +108,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
}
type MLP struct {
@@ -126,7 +118,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -168,10 +160,10 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, &m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -176,7 +176,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -33,8 +33,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
if useRope {
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
}
if opts.useQKNorm {
@@ -58,14 +58,14 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextExperts struct {
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -76,9 +76,9 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.Forward(ctx, hiddenStates, experts)
gateStates := e.Gate.Forward(ctx, hiddenStates, experts)
downStates := e.Down.Forward(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
upStates := e.Up.Weight.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.Weight.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.Weight.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
@@ -96,7 +96,7 @@ type TextSharedExpert struct {
}
func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -196,7 +196,7 @@ func newTextModel(c fs.Config) *TextModel {
numExpertsUsed: int(c.Uint("expert_used_count")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
interleaveLayerStep: int(c.Uint("interleave_moe_layer_step", 1)),
noRopeInterval: int(c.Uint("no_rope_interval", 4)),
@@ -248,5 +248,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
}

View File

@@ -159,8 +159,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -40,11 +40,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -55,7 +55,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -65,7 +65,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -132,7 +132,7 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
}

View File

@@ -51,7 +51,7 @@ type VisionMLP struct {
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@@ -107,9 +107,10 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -26,11 +26,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -45,7 +45,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
}
return key, nil
@@ -58,7 +58,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -244,7 +244,7 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
crossAttentionLayers: c.Ints("attention.cross_attention_layers"),
},
}

View File

@@ -1,7 +1,6 @@
package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"

View File

@@ -43,8 +43,8 @@ func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
@@ -59,7 +59,7 @@ type MLP struct {
}
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -111,7 +111,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
@@ -124,7 +124,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
func New(c fs.Config) (model.Model, error) {
@@ -160,7 +160,7 @@ func New(c fs.Config) (model.Model, error) {
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
},
}

View File

@@ -140,8 +140,9 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
}
func init() {

View File

@@ -38,7 +38,7 @@ func NewTextModel(c fs.Config) *TextModel {
originalContextLength: int(c.Uint("context_length", 128000)),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
@@ -60,11 +60,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -78,7 +78,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
}
// MLP implements the feed-forward network component with SwiGLU activation
@@ -90,7 +90,7 @@ type MLP struct {
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
// Apply SwiGLU activation gating
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
// Project back to hidden dimension
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@@ -100,7 +100,8 @@ type VisionMLP struct {
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@@ -1,73 +0,0 @@
package qwen3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.BytePairEncoding
*Model
poolingType pooling.Type
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbed(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
layers[i].MLP = &dense{}
}
m := embedModel{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Model: &Model{
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
},
poolingType: pooling.Type(c.Uint("pooling_type")),
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}

View File

@@ -30,10 +30,10 @@ func (o Options) headDim() int {
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
Query *nn.Linear `gguf:"attn_q"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
@@ -52,8 +52,8 @@ func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
@@ -65,10 +65,10 @@ type MLP interface {
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
@@ -87,9 +87,13 @@ func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
upStates := mlp.Up.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
hiddenStates = mlp.Gate.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.SILU(ctx)
hiddenStates = hiddenStates.Mul(ctx, upStates)
experts := mlp.Down.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
@@ -107,8 +111,7 @@ type dense struct {
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).
SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -151,39 +154,29 @@ type Model struct {
*Options
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
return m.Output.Forward(ctx, hiddenStates), nil
}
// Forward implements model.Model.
func (m *Model) forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
if m.Cache != nil {
m.Cache.SetLayer(i)
}
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
return m.OutputNorm.Forward(ctx, hiddenStates, m.eps), nil
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
var _ model.Model = (*Model)(nil)
@@ -223,7 +216,7 @@ func New(c fs.Config) (model.Model, error) {
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
@@ -237,5 +230,4 @@ func New(c fs.Config) (model.Model, error) {
func init() {
model.Register("qwen3", New)
model.Register("qwen3moe", New)
model.Register("qwen3_embed", newEmbed)
}

View File

@@ -1,37 +0,0 @@
package parsers
import (
"github.com/ollama/ollama/api"
)
type Parser interface {
Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error)
HasToolSupport() bool
HasThinkingSupport() bool
}
func ParserForName(name string) Parser {
switch name {
case "qwen3-coder":
parser := &Qwen3CoderParser{}
return parser
case "passthrough":
return &PassthroughParser{}
default:
return nil
}
}
type PassthroughParser struct{}
func (p *PassthroughParser) Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error) {
return s, "", nil, nil
}
func (p *PassthroughParser) HasToolSupport() bool {
return false
}
func (p *PassthroughParser) HasThinkingSupport() bool {
return false
}

View File

@@ -1,447 +0,0 @@
package parsers
import (
"context"
"encoding/json"
"encoding/xml"
"fmt"
"log/slog"
"math"
"regexp"
"strconv"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
)
type qwenParserState int
const (
toolOpenTag = "<tool_call>"
toolCloseTag = "</tool_call>"
)
const (
qwenParserState_LookingForToolStart qwenParserState = iota
qwenParserState_CollectingToolContent
)
type Qwen3CoderParser struct {
state qwenParserState
acc strings.Builder
}
func (p *Qwen3CoderParser) HasToolSupport() bool {
return true
}
func (p *Qwen3CoderParser) HasThinkingSupport() bool {
return false
}
func (p *Qwen3CoderParser) Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error) {
p.acc.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var sb strings.Builder
for _, event := range events {
switch event := event.(type) {
case qwenEventRawToolCall:
toolCall, err := parseToolCall(event, tools)
if err != nil {
slog.Warn("qwen tool call parsing failed", "error", err)
return "", "", nil, err
}
toolCalls = append(toolCalls, toolCall)
case qwenEventContent:
// TODO(drifkin): if the same turn contains multiple interleaved content
// events, we naively append them together here. See the note below about
// `qwenEvent`s for more details
sb.WriteString(event.content)
}
}
return sb.String(), "", toolCalls, nil
}
func (p *Qwen3CoderParser) parseEvents() []qwenEvent {
var all []qwenEvent
keepLooping := true
for keepLooping {
var events []qwenEvent
events, keepLooping = eat(p)
if len(events) > 0 {
all = append(all, events...)
}
}
if len(all) > 0 {
slog.Log(context.TODO(), logutil.LevelTrace, "qwen events parsed", "events", all, "state", p.state, "acc", p.acc.String())
}
return all
}
// we use some internal event types in order to communicate between `Add` and
// `eat`. We do this to support interleaving content and parallel tool calls in
// the parser, even though qwen3-coder isn't supposed to do this. Our API
// doesn't currently support models outputting multiple messages in a turn, so
// we wouldn't be able to represent it yet, but there's no reason to prevent the
// parser from supporting it, especially for future models if they end up using
// a similar format.
type qwenEvent interface {
isQwenEvent()
}
type qwenEventRawToolCall struct {
raw string
}
type qwenEventContent struct {
content string
}
func (qwenEventContent) isQwenEvent() {}
func (qwenEventRawToolCall) isQwenEvent() {}
// eat consumes the parser's buffer, and returns a list of any unambiguous
// events from the current parser state. If the parser transitions to another
// state, it may have additional events to emit on the next call, which is what
// the second return value indicates
func eat(p *Qwen3CoderParser) ([]qwenEvent, bool) {
var events []qwenEvent
switch p.state {
case qwenParserState_LookingForToolStart:
if strings.Contains(p.acc.String(), toolOpenTag) {
// we found a full tool open tag, so we can emit the content before the
// tag, being sure to trim any trailing whitespace
split := strings.SplitN(p.acc.String(), toolOpenTag, 2)
before := split[0]
before = strings.TrimRightFunc(before, unicode.IsSpace)
if len(before) > 0 {
events = append(events, qwenEventContent{content: before})
}
after := split[1]
p.acc.Reset()
p.acc.WriteString(after)
p.state = qwenParserState_CollectingToolContent
return events, true
} else if overlap := overlap(p.acc.String(), toolOpenTag); overlap > 0 {
// we found a partial tool open tag, so we can emit the unambiguous part,
// which is the (trailing-whitespace trimmed) content before the partial
// tool open tag
beforePartialTag := p.acc.String()[:len(p.acc.String())-overlap]
trailingWhitespaceLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWhitespaceLen
unambiguous := p.acc.String()[:ambiguousStart]
ambiguous := p.acc.String()[ambiguousStart:]
p.acc.Reset()
p.acc.WriteString(ambiguous)
events = append(events, qwenEventContent{content: unambiguous})
return events, false
} else {
// we found content that is entirely not a tool call. We should withhold
// any trailing whitespace in case this is the end of the content
whitespaceLen := trailingWhitespaceLen(p.acc.String())
ambiguousStart := len(p.acc.String()) - whitespaceLen
unambiguous := p.acc.String()[:ambiguousStart]
ambiguous := p.acc.String()[ambiguousStart:]
p.acc.Reset()
p.acc.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, qwenEventContent{content: unambiguous})
}
return events, false
}
case qwenParserState_CollectingToolContent:
if strings.Contains(p.acc.String(), toolCloseTag) {
split := strings.SplitN(p.acc.String(), toolCloseTag, 2)
before := split[0]
if len(before) == 0 {
slog.Warn("qwen tool call closing tag found but no content before it")
}
// remove any whitespace between the tool call and any content after it
after := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.acc.Reset()
p.acc.WriteString(after)
events = append(events, qwenEventRawToolCall{raw: before})
p.state = qwenParserState_LookingForToolStart
return events, true
} else {
// note that we don't need to check the overlap here because we only plan
// on parsing the tool call once we see the full closing tag. We don't
// stream back the unparsed tool content, so there's no need to be eager
// here
return events, false
}
default:
panic("unreachable")
}
}
// TODO(drifkin): move this to a shared location
// longest overlap between suffix of s and prefix of delim
func overlap(s, delim string) int {
max := min(len(delim), len(s))
for i := max; i > 0; i-- {
if strings.HasSuffix(s, delim[:i]) {
return i
}
}
return 0
}
func trailingWhitespaceLen(s string) int {
for i := len(s) - 1; i >= 0; i-- {
if !unicode.IsSpace(rune(s[i])) {
return len(s) - i - 1
}
}
return len(s)
}
type XMLFunctionCall struct {
XMLName xml.Name `xml:"function"`
Name string `xml:"name,attr"`
Parameters []XMLParameter `xml:"parameter"`
}
type XMLParameter struct {
Name string `xml:"name,attr"`
Value string `xml:",chardata"`
}
// parseToolCall parses a raw tool call string into an api.ToolCall.
// The raw string follows an xml-like format, here's an example:
//
// <function=get_current_temperature>
// <parameter=location>
// San Francisco
// </parameter>
// <parameter=unit>
// celsius
// </parameter>
// </function>
func parseToolCall(raw qwenEventRawToolCall, tools []api.Tool) (api.ToolCall, error) {
toolCall := api.ToolCall{}
xmlString := transformToXML(raw.raw)
var functionCall XMLFunctionCall
err := xml.Unmarshal([]byte(xmlString), &functionCall)
if err != nil {
return api.ToolCall{}, err
}
toolCall.Function = api.ToolCallFunction{
Name: functionCall.Name,
}
// Find the matching tool to get parameter types
var matchedTool *api.Tool
for i := range tools {
if tools[i].Function.Name == functionCall.Name {
matchedTool = &tools[i]
break
}
}
toolCall.Function.Arguments = make(api.ToolCallFunctionArguments)
for _, parameter := range functionCall.Parameters {
// Look up the parameter type if we found the tool
var paramType api.PropertyType
if matchedTool != nil && matchedTool.Function.Parameters.Properties != nil {
if prop, ok := matchedTool.Function.Parameters.Properties[parameter.Name]; ok {
paramType = prop.Type
}
}
toolCall.Function.Arguments[parameter.Name] = parseValue(parameter.Value, paramType)
}
return toolCall, nil
}
// parseValue converts a raw string value to the appropriate type based on the parameter type specification.
//
// For union types (multiple types in PropertyType, which we support but doesn't
// seem as though the reference parser does type coercion with those types in
// mind) we use a type precedence approach:
// 1. null - checked first regardless of declared types (matches reference implementation)
// 2. boolean - only "true"/"false" are valid booleans
// 3. integer - must parse as a whole number
// 4. number - must parse as numeric (returns int if no decimal part)
// 5. array - must parse as valid JSON array
// 6. object - must parse as valid JSON object
// 7. string - always succeeds (least specific type)
//
// This precedence ensures we return the most specific type that successfully parses,
// following the principle of least surprise. For example, with PropertyType{"string", "number"},
// "123" becomes 123 (number), while "hello" becomes "hello" (string).
func parseValue(raw string, paramType api.PropertyType) any {
// first remove a single leading newlines, and a single trailing newline (if
// they exist). This follows the reference implementation
raw = strings.TrimPrefix(raw, "\n")
raw = strings.TrimSuffix(raw, "\n")
// Check for null first (case-insensitive) - this takes precedence over any type
if strings.ToLower(raw) == "null" {
return nil
}
// If no type is specified, default to string
if len(paramType) == 0 {
return raw
}
// Check if any of the specified types match, using type precedence
// Order: boolean -> integer -> number -> array -> object -> string
typeSet := make(map[string]bool)
for _, t := range paramType {
typeSet[t] = true
}
// Try boolean first (most restrictive)
if typeSet["boolean"] {
lower := strings.ToLower(raw)
switch lower {
case "true":
return true
case "false":
return false
}
// If not a valid boolean but boolean is the only type, return false (matching reference)
if len(paramType) == 1 {
return false
}
// Otherwise try other types
}
// Try integer
if typeSet["integer"] {
if i, err := strconv.ParseInt(raw, 10, 64); err == nil {
// Return as int if it fits in int32, otherwise int64
if i >= math.MinInt32 && i <= math.MaxInt32 {
return int(i)
}
return i
}
// If integer is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// Try number (float)
if typeSet["number"] {
if f, err := strconv.ParseFloat(raw, 64); err == nil {
// If the number has no decimal part, return as int (matching reference)
if f == math.Trunc(f) {
i := int64(f)
if i >= math.MinInt32 && i <= math.MaxInt32 {
return int(i)
}
return i
}
return f
}
// If number is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// Try array
if typeSet["array"] {
var arr []interface{}
if err := json.Unmarshal([]byte(raw), &arr); err == nil {
return arr
}
// If array is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// Try object
if typeSet["object"] {
var obj map[string]interface{}
if err := json.Unmarshal([]byte(raw), &obj); err == nil {
return obj
}
// If object is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// String always succeeds (or if "string" is in the type set)
if typeSet["string"] {
return raw
}
// If we get here, none of the types matched and string wasn't an option
// We return string as a fallback. The reference implementation will attempt
// to parse the value as a python literal, but we purposefully don't support
// that
return raw
}
var (
qwenTagRegex = regexp.MustCompile(`<(\w+)=([^>]+)>`)
qwenXMLTagRegex = regexp.MustCompile(`</?(?:function|parameter)(?:\s+name="[^"]*")?>`)
)
// transformToXML transforms a raw qwen tool call with xml-like tags into valid
// xml so that it can be parsed by any xml parser
func transformToXML(raw string) string {
// take the form `<tag=abc>` and transform it to `<tag name="abc">`, taking
// care to properly escape the string that becomes the attribute value
transformed := qwenTagRegex.ReplaceAllStringFunc(raw, func(match string) string {
groups := qwenTagRegex.FindStringSubmatch(match)
tag := groups[1]
var escapedValue strings.Builder
xml.EscapeText(&escapedValue, []byte(groups[2]))
return fmt.Sprintf(`<%s name="%s">`, tag, escapedValue.String())
})
// Walk the resulting string, escaping any character data that sits between the
// xml tags we just emitted
var out strings.Builder
lastIdx := 0
for _, loc := range qwenXMLTagRegex.FindAllStringIndex(transformed, -1) {
if loc[0] > lastIdx {
escapeTextNode(&out, transformed[lastIdx:loc[0]])
}
out.WriteString(transformed[loc[0]:loc[1]])
lastIdx = loc[1]
}
if lastIdx < len(transformed) {
escapeTextNode(&out, transformed[lastIdx:])
}
return out.String()
}
// escapeTextNode escapes XML character data without altering other characters
// like newlines or tabs (which is why we don't use xml.EscapeText for this)
func escapeTextNode(sb *strings.Builder, s string) {
for _, r := range s {
switch r {
case '&':
sb.WriteString("&amp;")
case '<':
sb.WriteString("&lt;")
case '>':
sb.WriteString("&gt;")
default:
sb.WriteRune(r)
}
}
}

View File

@@ -1,878 +0,0 @@
package parsers
import (
"reflect"
"testing"
"github.com/ollama/ollama/api"
)
// tool creates a test tool with the given name and properties
func tool(name string, props map[string]api.ToolProperty) api.Tool {
t := api.Tool{Type: "function", Function: api.ToolFunction{Name: name}}
t.Function.Parameters.Type = "object"
t.Function.Parameters.Properties = props
return t
}
func TestQwenParserStreaming(t *testing.T) {
type step struct {
input string
wantEvents []qwenEvent
}
cases := []struct {
desc string
steps []step
only bool
}{
{
desc: "simple message streamed word by word",
steps: []step{
{
input: "hi",
wantEvents: []qwenEvent{qwenEventContent{content: "hi"}},
},
{
input: " there",
wantEvents: []qwenEvent{qwenEventContent{content: " there"}},
},
},
},
{
desc: "content before tool call",
steps: []step{
{
input: "hi there<tool_call>",
wantEvents: []qwenEvent{qwenEventContent{content: "hi there"}},
},
},
},
{
desc: "multiple tool calls in one message",
steps: []step{
{
input: "before1<tool_call>in tool call</tool_call>after1<tool_call>in tool call 2</tool_call>after2",
wantEvents: []qwenEvent{
qwenEventContent{content: "before1"},
qwenEventRawToolCall{raw: "in tool call"},
qwenEventContent{content: "after1"},
qwenEventRawToolCall{raw: "in tool call 2"},
qwenEventContent{content: "after2"},
},
},
},
},
{
desc: "tool calls with split tags",
steps: []step{
{
input: "before<tool",
wantEvents: []qwenEvent{
qwenEventContent{content: "before"},
},
},
{
input: "_call>in tool call</tool",
wantEvents: []qwenEvent{},
},
{
input: "_call>af",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "in tool call"},
qwenEventContent{content: "af"},
},
},
{
input: "ter",
wantEvents: []qwenEvent{
qwenEventContent{content: "ter"},
},
},
},
},
{
desc: "trailing whitespace between content and tool call",
steps: []step{
{
input: "abc\n<tool_call>def</tool_call>",
wantEvents: []qwenEvent{
qwenEventContent{content: "abc"},
qwenEventRawToolCall{raw: "def"},
},
},
},
},
{
desc: "trailing whitespace between tool call and content",
steps: []step{
{
input: "<tool_call>abc</tool_call>\ndef",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "abc"},
qwenEventContent{content: "def"},
},
},
},
},
{
desc: "empty content before tool call",
steps: []step{
{
input: "\n<tool_call>abc</tool_call>",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "abc"},
},
},
},
},
{
desc: "partial tool open tag fakeout",
steps: []step{
{
input: "abc\n<tool_call",
wantEvents: []qwenEvent{
// \n should not be emitted yet because `<tool_call` might be a tool
// open tag, in which case the whitespace should be trimmed
qwenEventContent{content: "abc"},
},
},
{
input: " fakeout",
wantEvents: []qwenEvent{
qwenEventContent{content: "\n<tool_call fakeout"},
},
},
},
},
{
desc: "token-by-token whitespace handling",
steps: []step{
{
input: "a",
wantEvents: []qwenEvent{
qwenEventContent{content: "a"},
},
},
{
input: "\n",
wantEvents: []qwenEvent{},
},
{
input: "b",
wantEvents: []qwenEvent{
qwenEventContent{content: "\nb"},
},
},
},
},
}
anyOnlies := false
for _, tc := range cases {
if tc.only {
anyOnlies = true
}
}
for _, tc := range cases {
if anyOnlies && !tc.only {
continue
}
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3CoderParser{}
for i, step := range tc.steps {
parser.acc.WriteString(step.input)
gotEvents := parser.parseEvents()
if len(gotEvents) == 0 && len(step.wantEvents) == 0 {
// avoid deep equal on empty vs. nil slices
continue
}
if !reflect.DeepEqual(gotEvents, step.wantEvents) {
t.Errorf("step %d: input %q: got events %#v, want %#v", i, step.input, gotEvents, step.wantEvents)
}
}
})
}
}
func TestQwenToolParser(t *testing.T) {
type step struct {
name string
rawToolCall string
tools []api.Tool
wantToolCall api.ToolCall
}
steps := []step{
{
name: "simple tool call",
tools: []api.Tool{},
rawToolCall: `<function=get_current_temperature>
<parameter=location>
San Francisco
</parameter>
<parameter=unit>
celsius
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_current_temperature",
Arguments: map[string]any{
"location": "San Francisco",
"unit": "celsius",
},
},
},
},
{
name: "names with spaces",
tools: []api.Tool{},
rawToolCall: `<function=get current temperature>
<parameter=location with spaces>
San Francisco
</parameter>
<parameter=unit with spaces>
celsius
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get current temperature",
Arguments: map[string]any{
"location with spaces": "San Francisco",
"unit with spaces": "celsius",
},
},
},
},
// this mirrors the reference implementation's behavior, but unclear if it
// ever happens. If so, then we should probably remove them instead, this
// test is to just document the current behavior and test that we don't get
// xml errors
{
name: "names with quotes",
tools: []api.Tool{},
rawToolCall: `<function="get current temperature">
<parameter="location with spaces">
San Francisco
</parameter>
<parameter="unit with spaces">
"celsius"
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "\"get current temperature\"",
Arguments: map[string]any{
"\"location with spaces\"": "San Francisco",
"\"unit with spaces\"": "\"celsius\"",
},
},
},
},
{
name: "tool call with typed parameters",
tools: []api.Tool{
tool("calculate", map[string]api.ToolProperty{
"x": {Type: api.PropertyType{"number"}},
"y": {Type: api.PropertyType{"integer"}},
"enabled": {Type: api.PropertyType{"boolean"}},
"items": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `<function=calculate>
<parameter=x>
3.14
</parameter>
<parameter=y>
42
</parameter>
<parameter=enabled>
true
</parameter>
<parameter=items>
["a", "b", "c"]
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: map[string]any{
"x": 3.14,
"y": 42,
"enabled": true,
"items": []any{"a", "b", "c"},
},
},
},
},
// regression test for <https://github.com/ollama/ollama/issues/12357>
{
name: "ampersands in parameter values",
tools: []api.Tool{},
rawToolCall: `<function=exec>
<parameter=command>
ls && echo "done"
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "exec",
Arguments: map[string]any{
"command": "ls && echo \"done\"",
},
},
},
},
{
name: "angle brackets in parameter values",
tools: []api.Tool{},
rawToolCall: `<function=exec>
<parameter=command>
ls && echo "a > b and a < b"
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "exec",
Arguments: map[string]any{
"command": "ls && echo \"a > b and a < b\"",
},
},
},
},
}
for i, step := range steps {
gotToolCall, err := parseToolCall(qwenEventRawToolCall{raw: step.rawToolCall}, step.tools)
if err != nil {
t.Errorf("step %d (%s): %v", i, step.name, err)
}
if !reflect.DeepEqual(gotToolCall, step.wantToolCall) {
t.Errorf("step %d (%s): got tool call %#v, want %#v", i, step.name, gotToolCall, step.wantToolCall)
}
}
}
func TestQwenToolCallValueParsing(t *testing.T) {
cases := []struct {
desc string
raw string
paramType api.PropertyType
want any
}{
{
desc: "default string value (no type specified)",
paramType: api.PropertyType{},
raw: "some-string",
want: "some-string",
},
{
desc: "trim a single leading and trailing newline",
paramType: api.PropertyType{},
raw: "\nsome-string\n",
want: "some-string",
},
{
desc: "trim at most one leading and trailing newline",
paramType: api.PropertyType{},
raw: "\n\nsome-string\n\n",
want: "\nsome-string\n",
},
{
desc: "newline really has to be the first character to be trimmed",
paramType: api.PropertyType{},
raw: " \nsome-string\n ",
want: " \nsome-string\n ",
},
{
desc: "numeric type",
paramType: api.PropertyType{"number"},
raw: "123",
want: 123,
},
// Integer parsing tests
{
desc: "integer type",
paramType: api.PropertyType{"integer"},
raw: "42",
want: 42,
},
{
desc: "negative integer",
paramType: api.PropertyType{"integer"},
raw: "-100",
want: -100,
},
{
desc: "zero integer",
paramType: api.PropertyType{"integer"},
raw: "0",
want: 0,
},
{
desc: "integer with leading zeros",
paramType: api.PropertyType{"integer"},
raw: "007",
want: 7,
},
{
desc: "large integer",
paramType: api.PropertyType{"integer"},
raw: "2147483648", // Just beyond int32 max
want: int64(2147483648),
},
// Float/number parsing tests
{
desc: "float type",
paramType: api.PropertyType{"number"},
raw: "3.14",
want: 3.14,
},
{
desc: "negative float",
paramType: api.PropertyType{"number"},
raw: "-273.15",
want: -273.15,
},
{
desc: "float without decimal part",
paramType: api.PropertyType{"number"},
raw: "100.0",
want: 100,
},
{
desc: "scientific notation positive",
paramType: api.PropertyType{"number"},
raw: "1.23e5",
want: 123000, // Will be int since it has no decimal part
},
{
desc: "scientific notation negative",
paramType: api.PropertyType{"number"},
raw: "1.5e-3",
want: 0.0015,
},
{
desc: "very small float",
paramType: api.PropertyType{"number"},
raw: "0.00000001",
want: 0.00000001,
},
// String parsing tests
{
desc: "explicit string type",
paramType: api.PropertyType{"string"},
raw: "hello world",
want: "hello world",
},
{
desc: "string with special characters",
paramType: api.PropertyType{"string"},
raw: "/usr/local/bin/test-file_v2.0.sh",
want: "/usr/local/bin/test-file_v2.0.sh",
},
{
desc: "string with quotes",
paramType: api.PropertyType{"string"},
raw: `He said "hello" to me`,
want: `He said "hello" to me`,
},
{
desc: "multiline string",
paramType: api.PropertyType{"string"},
raw: "line one\nline two\nline three",
want: "line one\nline two\nline three",
},
{
desc: "empty string",
paramType: api.PropertyType{"string"},
raw: "",
want: "",
},
{
desc: "string that looks like a number",
paramType: api.PropertyType{"string"},
raw: "12345",
want: "12345",
},
// Boolean parsing tests
{
desc: "boolean true",
paramType: api.PropertyType{"boolean"},
raw: "true",
want: true,
},
{
desc: "boolean false",
paramType: api.PropertyType{"boolean"},
raw: "false",
want: false,
},
{
desc: "boolean case insensitive true",
paramType: api.PropertyType{"boolean"},
raw: "True",
want: true,
},
{
desc: "boolean case insensitive false",
paramType: api.PropertyType{"boolean"},
raw: "FALSE",
want: false,
},
// Null parsing tests
{
desc: "null value lowercase",
paramType: api.PropertyType{"string"},
raw: "null",
want: nil,
},
{
desc: "null value case insensitive",
paramType: api.PropertyType{"integer"},
raw: "NULL",
want: nil,
},
// Array parsing tests
{
desc: "array of strings",
paramType: api.PropertyType{"array"},
raw: `["foo", "bar", "baz"]`,
want: []any{"foo", "bar", "baz"},
},
{
desc: "array of numbers",
paramType: api.PropertyType{"array"},
raw: `[1, 2.5, 3]`,
want: []any{float64(1), 2.5, float64(3)},
},
{
desc: "array of mixed types",
paramType: api.PropertyType{"array"},
raw: `["string", 123, true, null]`,
want: []any{"string", float64(123), true, nil},
},
{
desc: "empty array",
paramType: api.PropertyType{"array"},
raw: `[]`,
want: []any{},
},
// Object parsing tests
{
desc: "simple object",
paramType: api.PropertyType{"object"},
raw: `{"key": "value", "number": 42}`,
want: map[string]any{"key": "value", "number": float64(42)},
},
{
desc: "nested object",
paramType: api.PropertyType{"object"},
raw: `{"outer": {"inner": "value"}}`,
want: map[string]any{"outer": map[string]any{"inner": "value"}},
},
{
desc: "empty object",
paramType: api.PropertyType{"object"},
raw: `{}`,
want: map[string]any{},
},
// Error cases and fallback behavior
{
desc: "invalid integer falls back to string",
paramType: api.PropertyType{"integer"},
raw: "not-a-number",
want: "not-a-number",
},
{
desc: "invalid float falls back to string",
paramType: api.PropertyType{"number"},
raw: "3.14.159",
want: "3.14.159",
},
{
desc: "invalid boolean falls back to false",
paramType: api.PropertyType{"boolean"},
raw: "yes",
want: false,
},
{
desc: "invalid JSON array falls back to string",
paramType: api.PropertyType{"array"},
raw: "[1, 2, unclosed",
want: "[1, 2, unclosed",
},
{
desc: "invalid JSON object falls back to string",
paramType: api.PropertyType{"object"},
raw: `{"key": unclosed`,
want: `{"key": unclosed`,
},
// Edge cases
{
desc: "integer overflow should use int64",
paramType: api.PropertyType{"integer"},
raw: "2147483648", // Beyond int32 max
want: int64(2147483648),
},
{
desc: "float with many decimal places",
paramType: api.PropertyType{"number"},
raw: "3.141592653589793",
want: 3.141592653589793,
},
{
desc: "string with JSON-like content",
paramType: api.PropertyType{"string"},
raw: `{"this": "is", "just": "a string"}`,
want: `{"this": "is", "just": "a string"}`,
},
{
desc: "whitespace-only string",
paramType: api.PropertyType{"string"},
raw: " ",
want: " ",
},
// Unknown parameter (no type specified in tools)
{
desc: "parameter not in tool definition defaults to string",
paramType: api.PropertyType{},
raw: "some value",
want: "some value",
},
// Union type tests
{
desc: "string or number union - valid number",
paramType: api.PropertyType{"string", "number"},
raw: "42.5",
want: 42.5,
},
{
desc: "string or number union - non-numeric string",
paramType: api.PropertyType{"string", "number"},
raw: "hello",
want: "hello",
},
{
desc: "number or string union - valid number (order shouldn't matter)",
paramType: api.PropertyType{"number", "string"},
raw: "42.5",
want: 42.5,
},
{
desc: "integer or null union - valid integer",
paramType: api.PropertyType{"integer", "null"},
raw: "123",
want: 123,
},
{
desc: "integer or null union - null value",
paramType: api.PropertyType{"integer", "null"},
raw: "null",
want: nil,
},
{
desc: "null or integer union - null value (order shouldn't matter)",
paramType: api.PropertyType{"null", "integer"},
raw: "null",
want: nil,
},
{
desc: "boolean or string union - valid boolean",
paramType: api.PropertyType{"boolean", "string"},
raw: "true",
want: true,
},
{
desc: "boolean or string union - non-boolean becomes string",
paramType: api.PropertyType{"boolean", "string"},
raw: "yes",
want: "yes",
},
{
desc: "string or boolean union - valid boolean (precedence test)",
paramType: api.PropertyType{"string", "boolean"},
raw: "false",
want: false, // Should be boolean, not string "false"
},
{
desc: "integer or number union - integer value",
paramType: api.PropertyType{"integer", "number"},
raw: "42",
want: 42,
},
{
desc: "integer or number union - float value",
paramType: api.PropertyType{"integer", "number"},
raw: "42.5",
want: 42.5,
},
{
desc: "number or integer union - integer value (precedence test)",
paramType: api.PropertyType{"number", "integer"},
raw: "42",
want: 42, // Should try integer first due to precedence
},
{
desc: "array or object union - valid array",
paramType: api.PropertyType{"array", "object"},
raw: `[1, 2, 3]`,
want: []any{float64(1), float64(2), float64(3)},
},
{
desc: "array or object union - valid object",
paramType: api.PropertyType{"array", "object"},
raw: `{"key": "value"}`,
want: map[string]any{"key": "value"},
},
{
desc: "object or array union - valid array (precedence test)",
paramType: api.PropertyType{"object", "array"},
raw: `[1, 2, 3]`,
want: []any{float64(1), float64(2), float64(3)},
},
{
desc: "complex multi-type union - null",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "null",
want: nil,
},
{
desc: "complex multi-type union - boolean",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "true",
want: true,
},
{
desc: "complex multi-type union - number",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "3.14",
want: 3.14,
},
{
desc: "complex multi-type union - string",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "hello",
want: "hello",
},
{
desc: "integer string union - integer string becomes integer",
paramType: api.PropertyType{"integer", "string"},
raw: "123",
want: 123,
},
{
desc: "string integer union - integer string becomes integer (precedence)",
paramType: api.PropertyType{"string", "integer"},
raw: "123",
want: 123, // Integer has higher precedence than string
},
}
for _, tc := range cases {
t.Run(tc.desc, func(t *testing.T) {
got := parseValue(tc.raw, tc.paramType)
if !reflect.DeepEqual(got, tc.want) {
t.Errorf("got %v (type %T), want %v (type %T)", got, got, tc.want, tc.want)
}
})
}
}
func TestQwenXMLTransform(t *testing.T) {
cases := []struct {
desc string
raw string
want string
}{
{
desc: "simple example",
raw: `<function=get_current_temperature>
<parameter=location>
San Francisco
</parameter>
<parameter=unit>
celsius
</parameter>
</function>`,
want: `<function name="get_current_temperature">
<parameter name="location">
San Francisco
</parameter>
<parameter name="unit">
celsius
</parameter>
</function>`,
},
// even though quotes aren't expected in these tags, we have these tests to
// make sure they're escaped so they don't blow up the xml parser in case
// they happen
{
desc: "names with quotes",
raw: `<function="get current temperature">
<parameter="location with spaces">
San Francisco
</parameter>
<parameter="unit with spaces">
celsius
</parameter>
</function>`,
want: `<function name="&#34;get current temperature&#34;">
<parameter name="&#34;location with spaces&#34;">
San Francisco
</parameter>
<parameter name="&#34;unit with spaces&#34;">
celsius
</parameter>
</function>`,
},
{
desc: "ampersands in parameter values",
raw: `<function=get_current_temperature>
<parameter=location>
San Francisco & San Jose
</parameter>
</function>`,
want: `<function name="get_current_temperature">
<parameter name="location">
San Francisco &amp; San Jose
</parameter>
</function>`,
},
}
for _, tc := range cases {
got := transformToXML(tc.raw)
if got != tc.want {
t.Errorf("got %q, want %q", got, tc.want)
}
}
}
func TestTrailingWhitespaceLen(t *testing.T) {
cases := []struct {
desc string
s string
want int
}{
{desc: "no whitespace", s: "abc", want: 0},
{desc: "trailing whitespace", s: "abc ", want: 1},
{desc: "trailing whitespace with newlines", s: "abc \n", want: 2},
{desc: "only whitespace", s: " \n ", want: 4},
{desc: "leading whitespace doesn't count", s: " \n abc", want: 0},
}
for _, tc := range cases {
got := trailingWhitespaceLen(tc.s)
if got != tc.want {
t.Errorf("got %d, want %d", got, tc.want)
}
}
}

View File

@@ -1,217 +0,0 @@
package renderers
import (
"encoding/json"
"fmt"
"reflect"
"strings"
"github.com/ollama/ollama/api"
)
var (
imStartTag = "<|im_start|>"
imEndTag = "<|im_end|>"
)
// renderAdditionalKeys renders all JSON fields except the ones in handledKeys
// This follows the same approach from the reference implementation, which gives
// a particular key ordering
func renderAdditionalKeys(obj any, handledKeys map[string]bool) string {
data, err := json.Marshal(obj)
if err != nil {
return ""
}
var m map[string]any
if err := json.Unmarshal(data, &m); err != nil {
return ""
}
var sb strings.Builder
for key, value := range m {
if handledKeys[key] {
continue
}
// Check if value is a map or array (needs JSON serialization)
switch v := value.(type) {
case map[string]any, []any:
jsonBytes, _ := json.Marshal(v)
// TODO(drifkin): it would be nice to format the JSON here similarly to
// python's default json.dumps behavior (spaces after commas and colons).
// This would let us be byte-for-byte compatible with the reference
// implementation for most common inputs
jsonStr := string(jsonBytes)
sb.WriteString("\n<" + key + ">" + jsonStr + "</" + key + ">")
case nil:
continue
default:
// Simple types, convert to string
sb.WriteString("\n<" + key + ">" + fmt.Sprintf("%v", value) + "</" + key + ">")
}
}
return sb.String()
}
func Qwen3CoderRenderer(messages []api.Message, tools []api.Tool, _ *api.ThinkValue) (string, error) {
var sb strings.Builder
// filter out system messages and choose the first (if any) to win
var systemMessage string
var filteredMessages []api.Message
for _, message := range messages {
if message.Role != "system" {
filteredMessages = append(filteredMessages, message)
continue
}
if systemMessage == "" {
systemMessage = message.Content
}
}
if systemMessage != "" || len(tools) > 0 {
sb.WriteString(imStartTag + "system\n")
// if we have tools but no system message, match the reference implementation by providing a default system message
if systemMessage == "" {
systemMessage = "You are Qwen, a helpful AI assistant that can interact with a computer to solve tasks."
}
sb.WriteString(systemMessage)
if len(tools) > 0 {
sb.WriteString("\n\n# Tools\n\nYou have access to the following functions:\n\n")
sb.WriteString("<tools>")
for _, tool := range tools {
sb.WriteString("\n")
sb.WriteString("<function>\n")
sb.WriteString("<name>" + tool.Function.Name + "</name>")
if tool.Function.Description != "" {
sb.WriteString("\n<description>" + tool.Function.Description + "</description>")
}
sb.WriteString("\n<parameters>")
for name, prop := range tool.Function.Parameters.Properties {
sb.WriteString("\n<parameter>")
sb.WriteString("\n<name>" + name + "</name>")
if len(prop.Type) > 0 {
// TODO(!!!)(drifkin): we should match the reference implementation for
// more complex types here instead of using this format
sb.WriteString("\n<type>" + prop.ToTypeScriptType() + "</type>")
}
if prop.Description != "" {
sb.WriteString("\n<description>" + prop.Description + "</description>")
}
// Render any additional keys not already handled
handledKeys := map[string]bool{
"type": true,
"description": true,
}
sb.WriteString(renderAdditionalKeys(prop, handledKeys))
sb.WriteString("\n</parameter>")
}
// Render extra keys for parameters (everything except 'type' and 'properties')
paramHandledKeys := map[string]bool{
"type": true,
"properties": true,
}
sb.WriteString(renderAdditionalKeys(tool.Function.Parameters, paramHandledKeys))
sb.WriteString("\n</parameters>")
sb.WriteString("\n</function>")
}
sb.WriteString("\n</tools>")
sb.WriteString("\n\nIf you choose to call a function ONLY reply in the following format with NO suffix:\n\n<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n- Required parameters MUST be specified\n- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n</IMPORTANT>")
}
sb.WriteString(imEndTag + "\n")
}
for i, message := range filteredMessages {
lastMessage := i == len(filteredMessages)-1
prefill := lastMessage && message.Role == "assistant"
switch message.Role {
case "assistant":
if len(message.ToolCalls) > 0 {
sb.WriteString(imStartTag + "assistant\n")
if message.Content != "" {
sb.WriteString(message.Content + "\n")
}
for _, toolCall := range message.ToolCalls {
sb.WriteString("\n<tool_call>\n<function=" + toolCall.Function.Name + ">")
for name, value := range toolCall.Function.Arguments {
valueStr := formatToolCallArgument(value)
sb.WriteString("\n<parameter=" + name + ">\n" + valueStr + "\n</parameter>")
}
sb.WriteString("\n</function>\n</tool_call>")
}
sb.WriteString("<|im_end|>\n")
} else {
sb.WriteString(imStartTag + "assistant\n")
sb.WriteString(message.Content)
if !prefill {
sb.WriteString(imEndTag + "\n")
}
}
case "tool":
// consecutive tool responses should share a single `<im_start>user`, but
// have their own <tool_response> tags
// only start a new user block if this is the first tool response
if i == 0 || filteredMessages[i-1].Role != "tool" {
sb.WriteString(imStartTag + "user\n")
}
sb.WriteString("<tool_response>\n")
sb.WriteString(message.Content)
sb.WriteString("\n</tool_response>\n")
// close the user block only if this is the last tool response
if i == len(filteredMessages)-1 || filteredMessages[i+1].Role != "tool" {
sb.WriteString(imEndTag + "\n")
}
default:
sb.WriteString(imStartTag + message.Role + "\n")
sb.WriteString(message.Content)
sb.WriteString(imEndTag + "\n")
}
if lastMessage && !prefill {
sb.WriteString(imStartTag + "assistant\n")
}
}
return sb.String(), nil
}
func formatToolCallArgument(value any) string {
if value == nil {
return "null"
}
switch v := value.(type) {
case string:
return v
case []byte:
return string(v)
}
if reflect.TypeOf(value) != nil {
kind := reflect.TypeOf(value).Kind()
if kind == reflect.Map || kind == reflect.Slice || kind == reflect.Array {
if marshalled, err := json.Marshal(value); err == nil {
return string(marshalled)
}
}
}
return fmt.Sprintf("%v", value)
}

View File

@@ -1,338 +0,0 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestQwen3CoderRenderer(t *testing.T) {
tests := []struct {
name string
msgs []api.Message
tools []api.Tool
expected string
}{
{
name: "basic",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
},
expected: `<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Hello, how are you?<|im_end|>
<|im_start|>assistant
`,
},
{
name: "with tools and response",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "What is the weather like in San Francisco?"},
{
Role: "assistant",
Content: "I'll check the weather in San Francisco for you.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{
"unit": "fahrenheit",
},
},
},
},
},
{Role: "tool", Content: "{\"location\": \"San Francisco, CA\", \"temperature\": 68, \"condition\": \"partly cloudy\", \"humidity\": 65, \"wind_speed\": 12}", ToolName: "get_weather"},
{Role: "user", Content: "That sounds nice! What about New York?"},
},
tools: []api.Tool{
{Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Required: []string{"unit"},
Properties: map[string]api.ToolProperty{
"unit": {Type: api.PropertyType{"string"}, Enum: []any{"celsius", "fahrenheit"}, Description: "The unit of temperature"},
// TODO(drifkin): add multiple params back once we have predictable
// order via some sort of ordered map type (see
// <https://github.com/ollama/ollama/issues/12244>)
/*
"location": {Type: api.PropertyType{"string"}, Description: "The city and state, e.g. San Francisco, CA"},
*/
},
},
}},
},
expected: `<|im_start|>system
You are a helpful assistant with access to tools.
# Tools
You have access to the following functions:
<tools>
<function>
<name>get_weather</name>
<description>Get the current weather in a given location</description>
<parameters>
<parameter>
<name>unit</name>
<type>string</type>
<description>The unit of temperature</description>
<enum>["celsius","fahrenheit"]</enum>
</parameter>
<required>["unit"]</required>
</parameters>
</function>
</tools>
If you choose to call a function ONLY reply in the following format with NO suffix:
<tool_call>
<function=example_function_name>
<parameter=example_parameter_1>
value_1
</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>
</tool_call>
<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags
- Required parameters MUST be specified
- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after
- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls
</IMPORTANT><|im_end|>
<|im_start|>user
What is the weather like in San Francisco?<|im_end|>
<|im_start|>assistant
I'll check the weather in San Francisco for you.
<tool_call>
<function=get_weather>
<parameter=unit>
fahrenheit
</parameter>
</function>
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"location": "San Francisco, CA", "temperature": 68, "condition": "partly cloudy", "humidity": 65, "wind_speed": 12}
</tool_response>
<|im_end|>
<|im_start|>user
That sounds nice! What about New York?<|im_end|>
<|im_start|>assistant
`,
},
{
name: "parallel tool calls",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "call double(1) and triple(2)"},
{Role: "assistant", Content: "I'll call double(1) and triple(2) for you.", ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{Name: "double", Arguments: map[string]any{"number": "1"}}},
{Function: api.ToolCallFunction{Name: "triple", Arguments: map[string]any{"number": "2"}}},
}},
{Role: "tool", Content: "{\"number\": 2}", ToolName: "double"},
{Role: "tool", Content: "{\"number\": 6}", ToolName: "triple"},
},
tools: []api.Tool{
{Function: api.ToolFunction{Name: "double", Description: "Double a number", Parameters: api.ToolFunctionParameters{Properties: map[string]api.ToolProperty{
"number": {Type: api.PropertyType{"string"}, Description: "The number to double"},
}}}},
{Function: api.ToolFunction{Name: "triple", Description: "Triple a number", Parameters: api.ToolFunctionParameters{Properties: map[string]api.ToolProperty{
"number": {Type: api.PropertyType{"string"}, Description: "The number to triple"},
}}}},
},
expected: `<|im_start|>system
You are a helpful assistant with access to tools.
# Tools
You have access to the following functions:
<tools>
<function>
<name>double</name>
<description>Double a number</description>
<parameters>
<parameter>
<name>number</name>
<type>string</type>
<description>The number to double</description>
</parameter>
</parameters>
</function>
<function>
<name>triple</name>
<description>Triple a number</description>
<parameters>
<parameter>
<name>number</name>
<type>string</type>
<description>The number to triple</description>
</parameter>
</parameters>
</function>
</tools>
If you choose to call a function ONLY reply in the following format with NO suffix:
<tool_call>
<function=example_function_name>
<parameter=example_parameter_1>
value_1
</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>
</tool_call>
<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags
- Required parameters MUST be specified
- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after
- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls
</IMPORTANT><|im_end|>
<|im_start|>user
call double(1) and triple(2)<|im_end|>
<|im_start|>assistant
I'll call double(1) and triple(2) for you.
<tool_call>
<function=double>
<parameter=number>
1
</parameter>
</function>
</tool_call>
<tool_call>
<function=triple>
<parameter=number>
2
</parameter>
</function>
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"number": 2}
</tool_response>
<tool_response>
{"number": 6}
</tool_response>
<|im_end|>
<|im_start|>assistant
`,
},
{
name: "prefill",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Tell me something interesting."},
{Role: "assistant", Content: "I'll tell you something interesting about cats"},
},
expected: `<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Tell me something interesting.<|im_end|>
<|im_start|>assistant
I'll tell you something interesting about cats`,
},
{
name: "complex tool call arguments should remain json encoded",
msgs: []api.Message{
{Role: "user", Content: "call tool"},
{Role: "assistant", ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{
Name: "echo",
Arguments: map[string]any{
"payload": map[string]any{"foo": "bar"},
},
}},
}},
{Role: "tool", Content: "{\"payload\": {\"foo\": \"bar\"}}", ToolName: "echo"},
},
expected: `<|im_start|>user
call tool<|im_end|>
<|im_start|>assistant
<tool_call>
<function=echo>
<parameter=payload>
{"foo":"bar"}
</parameter>
</function>
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"payload": {"foo": "bar"}}
</tool_response>
<|im_end|>
<|im_start|>assistant
`,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := Qwen3CoderRenderer(tt.msgs, tt.tools, nil)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
}
func TestFormatToolCallArgument(t *testing.T) {
tests := []struct {
name string
arg any
expected string
}{
{
name: "string",
arg: "foo",
// notice no quotes around the string
expected: "foo",
},
{
name: "map",
arg: map[string]any{"foo": "bar"},
expected: "{\"foo\":\"bar\"}",
},
{
name: "number",
arg: 1,
expected: "1",
},
{
name: "boolean",
arg: true,
expected: "true",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := formatToolCallArgument(tt.arg)
if got != tt.expected {
t.Errorf("formatToolCallArgument(%v) = %v, want %v", tt.arg, got, tt.expected)
}
})
}
}

View File

@@ -1,26 +0,0 @@
package renderers
import (
"fmt"
"github.com/ollama/ollama/api"
)
type rendererFunc func([]api.Message, []api.Tool, *api.ThinkValue) (string, error)
func RenderWithRenderer(name string, msgs []api.Message, tools []api.Tool, think *api.ThinkValue) (string, error) {
renderer := rendererForName(name)
if renderer == nil {
return "", fmt.Errorf("unknown renderer %q", name)
}
return renderer(msgs, tools, think)
}
func rendererForName(name string) rendererFunc {
switch name {
case "qwen3-coder":
return Qwen3CoderRenderer
default:
return nil
}
}

View File

@@ -2,6 +2,7 @@ package model
import (
"container/heap"
"context"
"fmt"
"log/slog"
"strconv"
@@ -12,19 +13,19 @@ import (
const spmWhitespaceSep = "▁"
type SentencePiece struct {
type SentencePieceModel struct {
maxTokenLen int
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePiece)(nil)
var _ TextProcessor = (*SentencePieceModel)(nil)
func (spm SentencePiece) Vocabulary() *Vocabulary {
func (spm SentencePieceModel) Vocabulary() *Vocabulary {
return spm.vocab
}
func NewSentencePiece(vocab *Vocabulary) SentencePiece {
logutil.Trace("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
slog.Log(context.TODO(), logutil.LevelTrace, "Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
var maxTokenLen int
@@ -38,21 +39,21 @@ func NewSentencePiece(vocab *Vocabulary) SentencePiece {
}
}
logutil.Trace("Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
slog.Log(context.TODO(), logutil.LevelTrace, "Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
"max token len", maxTokenLen)
return SentencePiece{
return SentencePieceModel{
maxTokenLen: maxTokenLen,
vocab: vocab,
}
}
func (spm SentencePiece) Is(id int32, special Special) bool {
func (spm SentencePieceModel) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm SentencePiece) Encode(s string, addSpecial bool) ([]int32, error) {
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
id := spm.vocab.Encode(special)
@@ -181,11 +182,12 @@ func (spm SentencePiece) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = spm.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
@@ -218,7 +220,7 @@ func (q *queue) Pop() interface{} {
return item
}
func (spm SentencePiece) Decode(ids []int32) (string, error) {
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
data := spm.vocab.Decode(id)
@@ -244,6 +246,6 @@ func (spm SentencePiece) Decode(ids []int32) (string, error) {
}
}
logutil.Trace("decoded", "ids", ids, "string", sb.String())
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "ids", ids, "string", sb.String())
return sb.String(), nil
}

View File

@@ -12,7 +12,7 @@ import (
"github.com/ollama/ollama/convert/sentencepiece"
)
func loadSentencePieceVocab(t *testing.T) SentencePiece {
func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
t.Helper()
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
@@ -45,7 +45,7 @@ func loadSentencePieceVocab(t *testing.T) SentencePiece {
}
}
return NewSentencePiece(&v)
return NewSentencePieceModel(&v)
}
func TestSentencePieceEncode(t *testing.T) {
@@ -115,7 +115,7 @@ func TestSentencePieceEncode(t *testing.T) {
})
}
func TestSentencePieceDecodeByteTokens(t *testing.T) {
func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
vocab := &Vocabulary{
Values: []string{
"normal",
@@ -134,7 +134,7 @@ func TestSentencePieceDecodeByteTokens(t *testing.T) {
Scores: []float32{0, 0, 0, 0, 0},
}
spm := NewSentencePiece(vocab)
spm := NewSentencePieceModel(vocab)
tests := []struct {
name string

View File

@@ -49,7 +49,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
}
slog.Debug("adding bos token to prompt", "id", v.BOS[0])
slog.Debug("adding bos token to prompt", "id", v.BOS)
ids = append([]int32{v.BOS[0]}, ids...)
}
@@ -58,7 +58,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
}
slog.Debug("adding eos token to prompt", "id", v.EOS[0])
slog.Debug("adding eos token to prompt", "id", v.EOS)
ids = append(ids, v.EOS[0])
}

View File

@@ -1,167 +0,0 @@
package model
import (
"fmt"
"iter"
"strings"
"unicode"
"github.com/ollama/ollama/logutil"
)
type WordPiece struct {
vocab *Vocabulary
}
// ggmlPrefix is the prefix used by GGML vocabularies to indicate word boundaries.
// this differs from original word piece which uses "##" to indicate subwords.
const ggmlPrefix = "▁"
var wordPieceReplacer = strings.NewReplacer(
" .", ".",
" ?", "?",
" !", "!",
" ,", ",",
" ' ", "'",
" n't", "n't",
" 'm", "'m",
" do not", " don't",
" 's", "'s",
" 've", "'ve",
" 're", "'re",
)
// Decode implements TextProcessor.
func (wpm WordPiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for i, id := range ids {
if id < 0 || int(id) >= len(wpm.vocab.Values) {
return "", fmt.Errorf("invalid token id: %d", id)
}
var separator string
piece := wpm.vocab.Values[id]
if i > 0 &&
(strings.HasPrefix(piece, ggmlPrefix) ||
(strings.HasPrefix(piece, "[") && strings.HasSuffix(piece, "]"))) {
separator = " "
}
sb.WriteString(wordPieceReplacer.Replace(separator + strings.TrimPrefix(piece, ggmlPrefix)))
}
return sb.String(), nil
}
// words splits a string into words, treating CJK characters as separate words.
// TODO: this is specifically for BERT and may need to be adjusted or refactored for other models.
func (wpm WordPiece) words(s string) iter.Seq[string] {
return func(yield func(string) bool) {
runes := make([]rune, 0, len(s)*3)
for _, r := range s {
switch {
case r >= 0x4E00 && r <= 0x9FFF,
r >= 0x3400 && r <= 0x4DBF,
r >= 0x20000 && r <= 0x2A6DF,
r >= 0x2A700 && r <= 0x2B73F,
r >= 0x2B740 && r <= 0x2B81F,
r >= 0x2B820 && r <= 0x2CEAF,
r >= 0xF900 && r <= 0xFAFF,
r >= 0x2F800 && r <= 0x2FA1F:
runes = append(runes, ' ', r, ' ')
default:
runes = append(runes, r)
}
}
for w := range strings.FieldsFuncSeq(string(runes), unicode.IsSpace) {
// split on but keep punctuation
var start int
for start < len(w) {
end := strings.IndexFunc(w[start:], unicode.IsPunct)
if end < 0 {
end = len(w) - start
} else if end == 0 {
end = 1
}
if !yield(w[start : start+end]) {
return
}
start += end
}
}
}
}
// Encode implements TextProcessor.
func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
var ids []int32
// TODO: use [UNK] from config
unk := wpm.vocab.Encode("[UNK]")
for word := range wpm.words(s) {
var start int
var pieces []int32
for start < len(word) {
end := len(word)
var piece int32
for start < end {
subword := word[start:end]
if start == 0 {
subword = ggmlPrefix + subword
}
// TODO: some models might not want [ToLower]
piece = wpm.vocab.Encode(strings.ToLower(subword))
if piece >= 0 {
break
}
end--
}
if piece < 0 {
// Unknown token
pieces = pieces[:0]
break
}
pieces = append(pieces, piece)
start = end
}
if len(pieces) > 0 {
ids = append(ids, pieces...)
} else {
ids = append(ids, unk)
}
}
if addSpecial && len(ids) > 0 {
ids = wpm.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
// Is implements TextProcessor.
func (wpm WordPiece) Is(id int32, special Special) bool {
return wpm.vocab.Is(id, special)
}
// Vocabulary implements TextProcessor.
func (wpm WordPiece) Vocabulary() *Vocabulary {
return wpm.vocab
}
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary) WordPiece {
return WordPiece{
vocab: vocab,
}
}

View File

@@ -1,51 +0,0 @@
package model
import (
"slices"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWordPiece(t *testing.T) {
wpm := NewWordPiece(
&Vocabulary{
Values: []string{"[UNK]", "[CLS]", "[SEP]", "▁hello", "▁world", "s", "▁!", "▁@", "▁#"},
AddBOS: true,
AddEOS: true,
BOS: []int32{1},
EOS: []int32{2},
})
ids, err := wpm.Encode("Hello world!", true)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff([]int32{1, 3, 4, 6, 2}, ids); diff != "" {
t.Errorf("unexpected ids (-want +got):\n%s", diff)
}
words, err := wpm.Decode(ids)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff("[CLS] hello world! [SEP]", words); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
}
func TestWordPieceWords(t *testing.T) {
var wpm WordPiece
basic := slices.Collect(wpm.words("Hey friend! How are you?!?"))
if diff := cmp.Diff([]string{"Hey", "friend", "!", "How", "are", "you", "?", "!", "?"}, basic); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
chinese := slices.Collect(wpm.words("野口里佳 Noguchi Rika"))
if diff := cmp.Diff([]string{"野", "口", "里", "佳", "Noguchi", "Rika"}, chinese); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
}

View File

@@ -76,9 +76,8 @@ type JsonSchema struct {
}
type EmbedRequest struct {
Input any `json:"input"`
Model string `json:"model"`
Dimensions int `json:"dimensions,omitempty"`
Input any `json:"input"`
Model string `json:"model"`
}
type StreamOptions struct {
@@ -105,18 +104,16 @@ type ChatCompletionRequest struct {
Tools []api.Tool `json:"tools"`
Reasoning *Reasoning `json:"reasoning,omitempty"`
ReasoningEffort *string `json:"reasoning_effort,omitempty"`
DebugRenderOnly bool `json:"_debug_render_only"`
}
type ChatCompletion struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Model string `json:"model"`
SystemFingerprint string `json:"system_fingerprint"`
Choices []Choice `json:"choices"`
Usage Usage `json:"usage,omitempty"`
DebugInfo *api.DebugInfo `json:"_debug_info,omitempty"`
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Model string `json:"model"`
SystemFingerprint string `json:"system_fingerprint"`
Choices []Choice `json:"choices"`
Usage Usage `json:"usage,omitempty"`
}
type ChatCompletionChunk struct {
@@ -143,7 +140,6 @@ type CompletionRequest struct {
Temperature *float32 `json:"temperature"`
TopP float32 `json:"top_p"`
Suffix string `json:"suffix"`
DebugRenderOnly bool `json:"_debug_render_only"`
}
type Completion struct {
@@ -276,8 +272,8 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
}
return nil
}(r.DoneReason),
}}, Usage: toUsage(r),
DebugInfo: r.DebugInfo,
}},
Usage: toUsage(r),
}
}
@@ -571,14 +567,13 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
return &api.ChatRequest{
Model: r.Model,
Messages: messages,
Format: format,
Options: options,
Stream: &r.Stream,
Tools: r.Tools,
Think: think,
DebugRenderOnly: r.DebugRenderOnly,
Model: r.Model,
Messages: messages,
Format: format,
Options: options,
Stream: &r.Stream,
Tools: r.Tools,
Think: think,
}, nil
}
@@ -652,12 +647,11 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
}
return api.GenerateRequest{
Model: r.Model,
Prompt: r.Prompt,
Options: options,
Stream: &r.Stream,
Suffix: r.Suffix,
DebugRenderOnly: r.DebugRenderOnly,
Model: r.Model,
Prompt: r.Prompt,
Options: options,
Stream: &r.Stream,
Suffix: r.Suffix,
}, nil
}
@@ -1011,7 +1005,7 @@ func EmbeddingsMiddleware() gin.HandlerFunc {
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input, Dimensions: req.Dimensions}); err != nil {
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
return
}

View File

@@ -100,10 +100,6 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
req.System = c.Args
case "license":
licenses = append(licenses, c.Args)
case "renderer":
req.Renderer = c.Args
case "parser":
req.Parser = c.Args
case "message":
role, msg, _ := strings.Cut(c.Args, ": ")
messages = append(messages, api.Message{Role: role, Content: msg})
@@ -250,7 +246,7 @@ func filesForModel(path string) ([]string, error) {
for _, match := range matches {
if ct, err := detectContentType(match); err != nil {
return nil, err
} else if len(contentType) > 0 && ct != contentType {
} else if ct != contentType {
return nil, fmt.Errorf("invalid content type: expected %s for %s", ct, match)
}
}
@@ -259,8 +255,7 @@ func filesForModel(path string) ([]string, error) {
}
var files []string
// some safetensors files do not properly match "application/octet-stream", so skip checking their contentType
if st, _ := glob(filepath.Join(path, "*.safetensors"), ""); len(st) > 0 {
if st, _ := glob(filepath.Join(path, "*.safetensors"), "application/octet-stream"); len(st) > 0 {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
@@ -324,7 +319,7 @@ func (c Command) String() string {
switch c.Name {
case "model":
fmt.Fprintf(&sb, "FROM %s", c.Args)
case "license", "template", "system", "adapter", "renderer", "parser":
case "license", "template", "system", "adapter":
fmt.Fprintf(&sb, "%s %s", strings.ToUpper(c.Name), quote(c.Args))
case "message":
role, message, _ := strings.Cut(c.Args, ": ")
@@ -350,7 +345,7 @@ const (
var (
errMissingFrom = errors.New("no FROM line")
errInvalidMessageRole = errors.New("message role must be one of \"system\", \"user\", or \"assistant\"")
errInvalidCommand = errors.New("command must be one of \"from\", \"license\", \"template\", \"system\", \"adapter\", \"renderer\", \"parser\", \"parameter\", or \"message\"")
errInvalidCommand = errors.New("command must be one of \"from\", \"license\", \"template\", \"system\", \"adapter\", \"parameter\", or \"message\"")
)
type ParserError struct {
@@ -610,7 +605,7 @@ func isValidMessageRole(role string) bool {
func isValidCommand(cmd string) bool {
switch strings.ToLower(cmd) {
case "from", "license", "template", "system", "adapter", "renderer", "parser", "parameter", "message":
case "from", "license", "template", "system", "adapter", "parameter", "message":
return true
default:
return false

View File

@@ -198,34 +198,6 @@ BADCOMMAND param1 value1
}
}
func TestParseFileRenderer(t *testing.T) {
input := `
FROM foo
RENDERER renderer1
`
reader := strings.NewReader(input)
modelfile, err := ParseFile(reader)
require.NoError(t, err)
assert.Equal(t, []Command{{Name: "model", Args: "foo"}, {Name: "renderer", Args: "renderer1"}}, modelfile.Commands)
}
func TestParseFileParser(t *testing.T) {
input := `
FROM foo
PARSER parser1
`
reader := strings.NewReader(input)
modelfile, err := ParseFile(reader)
require.NoError(t, err)
assert.Equal(t, []Command{{Name: "model", Args: "foo"}, {Name: "parser", Args: "parser1"}}, modelfile.Commands)
}
func TestParseFileMessages(t *testing.T) {
cases := []struct {
input string

View File

@@ -204,8 +204,13 @@ func (c *InputCache) ShiftDiscard(inputLen int, numKeep int) int {
targetFree = max(targetFree, 1)
currentFree := c.numCtx - inputLen
discard := targetFree - currentFree
return max(targetFree-currentFree, 0)
if discard < 0 {
discard = 0
}
return discard
}
type ErrReprocessInputs struct {

View File

@@ -34,8 +34,8 @@ type InputCache struct {
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
numCtx := kvSize / int32(numSlots)
if int(numCtx) < batchSize {
return nil, fmt.Errorf("kv size must be at least as large as batch size * parallel (kv: %v batch: %v parallel: %v)", kvSize, batchSize, numSlots)
if numCtx < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
@@ -70,9 +70,11 @@ func kvCacheTypeFromStr(s string) ml.DType {
}
func (c *InputCache) Close() {
if c != nil && c.cache != nil {
c.cache.Close()
if c == nil {
return
}
c.cache.Close()
}
// Locking: Operations on InputCacheSlot (including finding one
@@ -93,7 +95,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []*input.Input, cachePrompt bool) (*InputCacheSlot, []*input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []*input.Input) (*InputCacheSlot, []*input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -111,10 +113,6 @@ func (c *InputCache) LoadCacheSlot(prompt []*input.Input, cachePrompt bool) (*In
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()
@@ -242,8 +240,13 @@ func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
targetFree = max(targetFree, 1)
currentFree := c.numCtx - inputLen
discard := targetFree - currentFree
return max(targetFree-currentFree, 0)
if discard < 0 {
discard = 0
}
return discard
}
type ErrReprocessInputs struct {

View File

@@ -393,7 +393,7 @@ func TestLoadCacheSlot(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt, true)
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
// Check error state
if (err != nil) != tt.wantErr {

View File

@@ -17,6 +17,7 @@ import (
"reflect"
"regexp"
"runtime"
"runtime/debug"
"strconv"
"strings"
"sync"
@@ -31,7 +32,6 @@ import (
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
@@ -405,8 +405,6 @@ func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
supportsAsync := pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone
var activeBatch batchState
for {
select {
@@ -420,12 +418,7 @@ func (s *Server) run(ctx context.Context) {
if err != nil {
panic(err)
}
if supportsAsync {
go s.computeBatch(activeBatch)
} else {
s.computeBatch(activeBatch)
}
go s.computeBatch(activeBatch)
}
}
}
@@ -436,12 +429,12 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
// before setting up the next batch so the seqs inputs are ready to receive their
// token values and we get the correct input pointers for the batchInputs
if pendingBatch.ctx != nil {
logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
<-pendingBatch.computeStartedCh
logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
} else {
logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch no pending batch detected", "batchID", s.batchID)
// No pendingBatch, so the inputs will be ready in the seqs immediately
nextBatch.inputsReadyCh = make(chan struct{}, 1)
nextBatch.inputsReadyCh <- struct{}{}
@@ -467,7 +460,6 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
var batchInputs []*input.Input
var batchOutputs []int32
var batch input.Batch
resumeSeq := -1
@@ -550,11 +542,11 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
batch.Sequences = append(batch.Sequences, seq.cache.Id)
seq.iBatch = len(batchOutputs)
if i+1 == len(seq.inputs) || seq.embeddingOnly {
batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
seq.iBatch = len(batch.Outputs)
if i+1 == len(seq.inputs) {
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
}
logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
seq.pendingInputs = append(seq.pendingInputs, inp)
}
@@ -568,7 +560,7 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
}
if len(batchInputs) == 0 {
logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch no batchInputs, going idle", "batchID", s.batchID)
nextBatch.ctx.Close()
nextBatch.ctx = nil
return
@@ -577,7 +569,6 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
batch.Outputs = nextBatch.ctx.Input().FromIntSlice(batchOutputs, len(batchOutputs))
nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
if err != nil {
err = fmt.Errorf("failed to build graph: %w", err)
@@ -598,14 +589,14 @@ func (s *Server) computeBatch(activeBatch batchState) {
defer activeBatch.ctx.Close()
// Wait until inputs are ready
logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
<-activeBatch.inputsReadyCh
logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: inputs are ready", "batchID", activeBatch.id)
// Once we complete, signal the next batch of inputs are ready
// This will unblock the next computeBatch, or forwardBatch if new seqs come in
defer func() {
logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: outputs are ready", "batchID", activeBatch.id)
activeBatch.outputsReadyCh <- struct{}{}
}()
@@ -635,7 +626,7 @@ func (s *Server) computeBatch(activeBatch batchState) {
// Detect if the sequence we're processing has already been completed and replaced
// with a new sequence
if seq != activeBatch.seqs[i] {
logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
continue
}
@@ -675,19 +666,18 @@ func (s *Server) computeBatch(activeBatch batchState) {
activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
activeBatch.ctx.ComputeWithNotify(
func() {
logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
activeBatch.computeStartedCh <- struct{}{}
},
activeBatch.modelOutput)
logits := activeBatch.modelOutput.Floats()
outputs := activeBatch.modelOutput.Floats()
logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: logits ready", "batchID", activeBatch.id)
s.mu.Lock()
defer s.mu.Unlock()
logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: decoding", "batchID", activeBatch.id)
for i, seq := range s.seqs {
if seq == nil || nextBatchTokens[i] == nil {
continue
@@ -699,15 +689,16 @@ func (s *Server) computeBatch(activeBatch batchState) {
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
seq.embedding <- outputs
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported", "id", activeBatch.id, "seqIdx", i)
s.removeSequence(i, llm.DoneReasonStop)
continue
}
// sample a token
vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
vocabSize := len(logits) / len(activeBatch.batch.Outputs)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(logits), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
token, err := seq.sampler.Sample(logits[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
if err != nil {
s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
return
@@ -720,7 +711,7 @@ func (s *Server) computeBatch(activeBatch batchState) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
s.removeSequence(i, llm.DoneReasonStop)
continue
}
@@ -843,7 +834,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
@@ -899,67 +890,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
if pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
return
}
var req llm.EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
if err != nil {
http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embedding request due to client closing the connection")
} else {
http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
Embedding: <-seq.embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
@@ -1048,8 +978,12 @@ func (s *Server) reserveWorstCaseGraph() error {
batch.Positions[i] = int32(i)
}
batch.Outputs = make([]int32, s.parallel)
for i := range batch.Outputs {
batch.Outputs[i] = int32(i)
}
batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
cache := s.model.Config().Cache
if cache != nil {
@@ -1083,13 +1017,9 @@ func (s *Server) allocModel(
// Convert memory allocation panics to errors
defer func() {
if r := recover(); r != nil {
debug.PrintStack()
if err, ok := r.(error); ok {
var noMem ml.ErrNoMem
if errors.As(err, &noMem) {
panicErr = noMem
} else {
panic(r)
}
panicErr = err
} else {
panic(r)
}
@@ -1276,7 +1206,10 @@ func Execute(args []string) error {
mux := http.NewServeMux()
// TODO: support embeddings
mux.HandleFunc("POST /load", server.load)
mux.HandleFunc("POST /embedding", server.embeddings)
mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
})
mux.HandleFunc("POST /completion", server.completion)
mux.HandleFunc("GET /health", server.health)

View File

@@ -78,7 +78,7 @@ function checkEnv() {
}
function buildCPU() {
function buildOllama() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
@@ -90,72 +90,20 @@ function buildCPU() {
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component CPU --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
function buildCUDA11() {
# CUDA v11 claims to be compatible with MSVC 2022, but the latest updates are no longer compatible
# 19.40 is the last compiler version that works, but recent udpates are 19.43
# So this pins to MSVC 2019 for best compatibility
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v11")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V11")) { $x=$hashEnv[$_]; if (test-path -literalpath "$x\bin\nvcc.exe" ) { $cuda=$x} }}
write-host "Building CUDA v11 backend libraries $cuda"
$env:CUDAToolkit_ROOT=$cuda
& cmake --fresh --preset "CUDA 11" -T cuda="$cuda" -DCMAKE_CUDA_COMPILER="$cuda\bin\nvcc.exe" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR -DOLLAMA_RUNNER_DIR="cuda_v11"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildCUDA12() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v12.8")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V12_8")) { $x=$hashEnv[$_]; if (test-path -literalpath "$x\bin\nvcc.exe" ) { $cuda=$x} }}
write-host "Building CUDA v12 backend libraries $cuda"
$env:CUDAToolkit_ROOT=$cuda
& cmake --fresh --preset "CUDA 12" -T cuda="$cuda" --install-prefix $script:DIST_DIR -DOLLAMA_RUNNER_DIR="cuda_v12"
if ("$script:CUDA_DIRS".Contains("v12")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V12")) { $v12="$_" }}
$env:CUDAToolkit_ROOT=$hashEnv[$v12]
write-host "Building CUDA v12 backend libraries"
& cmake --fresh --preset "CUDA 12" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 12" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildCUDA13() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v13")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V13")) { $x=$hashEnv[$_]; if (test-path -literalpath "$x\bin\nvcc.exe" ) { $cuda=$x} }}
$env:CUDAToolkit_ROOT=$cuda
write-host "Building CUDA v13 backend libraries $cuda"
& cmake --fresh --preset "CUDA 13" -T cuda="$cuda" --install-prefix $script:DIST_DIR -DOLLAMA_RUNNER_DIR="cuda_v13"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 13" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildROCm() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
if ($env:HIP_PATH) {
write-host "Building ROCm backend libraries"
if (-Not (get-command -ErrorAction silent ninja)) {
@@ -181,10 +129,6 @@ function buildROCm() {
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildOllama() {
mkdir -Force -path "${script:DIST_DIR}\"
write-host "Building ollama CLI"
& go build -trimpath -ldflags "-s -w -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" .
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -292,10 +236,6 @@ function distZip() {
checkEnv
try {
if ($($args.count) -eq 0) {
buildCPU
buildCUDA12
buildCUDA13
buildROCm
buildOllama
buildApp
gatherDependencies

View File

@@ -16,7 +16,6 @@ OLLAMA_COMMON_BUILD_ARGS="--build-arg=VERSION \
--build-arg=OLLAMA_FAST_BUILD \
--build-arg=CUSTOM_CPU_FLAGS \
--build-arg=GPU_RUNNER_CPU_FLAGS \
--build-arg=PARALLEL \
--build-arg=AMDGPU_TARGETS"
echo "Building Ollama"

View File

@@ -10,11 +10,8 @@ import (
"io"
"io/fs"
"log/slog"
"net"
"net/http"
"net/url"
"os"
"path"
"path/filepath"
"slices"
"strings"
@@ -42,14 +39,6 @@ var (
)
func (s *Server) CreateHandler(c *gin.Context) {
config := &ConfigV2{
OS: "linux",
Architecture: "amd64",
RootFS: RootFS{
Type: "layers",
},
}
var r api.CreateRequest
if err := c.ShouldBindJSON(&r); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
@@ -59,9 +48,6 @@ func (s *Server) CreateHandler(c *gin.Context) {
return
}
config.Renderer = r.Renderer
config.Parser = r.Parser
for v := range r.Files {
if !fs.ValidPath(v) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": errFilePath.Error()})
@@ -91,34 +77,20 @@ func (s *Server) CreateHandler(c *gin.Context) {
oldManifest, _ := ParseNamedManifest(name)
var baseLayers []*layerGGML
var err error
var remote bool
if r.From != "" {
slog.Debug("create model from model name", "from", r.From)
slog.Debug("create model from model name")
fromName := model.ParseName(r.From)
if !fromName.IsValid() {
ch <- gin.H{"error": errtypes.InvalidModelNameErrMsg, "status": http.StatusBadRequest}
return
}
if r.RemoteHost != "" {
ru, err := remoteURL(r.RemoteHost)
if err != nil {
ch <- gin.H{"error": "bad remote", "status": http.StatusBadRequest}
return
}
config.RemoteModel = r.From
config.RemoteHost = ru
remote = true
} else {
ctx, cancel := context.WithCancel(c.Request.Context())
defer cancel()
ctx, cancel := context.WithCancel(c.Request.Context())
defer cancel()
baseLayers, err = parseFromModel(ctx, fromName, fn)
if err != nil {
ch <- gin.H{"error": err.Error()}
}
baseLayers, err = parseFromModel(ctx, fromName, fn)
if err != nil {
ch <- gin.H{"error": err.Error()}
}
} else if r.Files != nil {
baseLayers, err = convertModelFromFiles(r.Files, baseLayers, false, fn)
@@ -138,7 +110,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
}
var adapterLayers []*layerGGML
if !remote && r.Adapters != nil {
if r.Adapters != nil {
adapterLayers, err = convertModelFromFiles(r.Adapters, baseLayers, true, fn)
if err != nil {
for _, badReq := range []error{errNoFilesProvided, errOnlyOneAdapterSupported, errOnlyGGUFSupported, errUnknownType, errFilePath} {
@@ -156,56 +128,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
baseLayers = append(baseLayers, adapterLayers...)
}
// Info is not currently exposed by Modelfiles, but allows overriding various
// config values
if r.Info != nil {
caps, ok := r.Info["capabilities"]
if ok {
switch tcaps := caps.(type) {
case []any:
caps := make([]string, len(tcaps))
for i, c := range tcaps {
str, ok := c.(string)
if !ok {
continue
}
caps[i] = str
}
config.Capabilities = append(config.Capabilities, caps...)
}
}
strFromInfo := func(k string) string {
v, ok := r.Info[k]
if ok {
val := v.(string)
return val
}
return ""
}
vFromInfo := func(k string) float64 {
v, ok := r.Info[k]
if ok {
val := v.(float64)
return val
}
return 0
}
config.ModelFamily = strFromInfo("model_family")
if config.ModelFamily != "" {
config.ModelFamilies = []string{config.ModelFamily}
}
config.BaseName = strFromInfo("base_name")
config.FileType = strFromInfo("quantization_level")
config.ModelType = strFromInfo("parameter_size")
config.ContextLen = int(vFromInfo("context_length"))
config.EmbedLen = int(vFromInfo("embedding_length"))
}
if err := createModel(r, name, baseLayers, config, fn); err != nil {
if err := createModel(r, name, baseLayers, fn); err != nil {
if errors.Is(err, errBadTemplate) {
ch <- gin.H{"error": err.Error(), "status": http.StatusBadRequest}
return
@@ -231,51 +154,6 @@ func (s *Server) CreateHandler(c *gin.Context) {
streamResponse(c, ch)
}
func remoteURL(raw string) (string, error) {
// Specialcase: user supplied only a path ("/foo/bar").
if strings.HasPrefix(raw, "/") {
return (&url.URL{
Scheme: "http",
Host: net.JoinHostPort("localhost", "11434"),
Path: path.Clean(raw),
}).String(), nil
}
if !strings.Contains(raw, "://") {
raw = "http://" + raw
}
if raw == "ollama.com" || raw == "http://ollama.com" {
raw = "https://ollama.com:443"
}
u, err := url.Parse(raw)
if err != nil {
return "", fmt.Errorf("parse error: %w", err)
}
if u.Host == "" {
u.Host = "localhost"
}
hostPart, portPart, err := net.SplitHostPort(u.Host)
if err == nil {
u.Host = net.JoinHostPort(hostPart, portPart)
} else {
u.Host = net.JoinHostPort(u.Host, "11434")
}
if u.Path != "" {
u.Path = path.Clean(u.Path)
}
if u.Path == "/" {
u.Path = ""
}
return u.String(), nil
}
func convertModelFromFiles(files map[string]string, baseLayers []*layerGGML, isAdapter bool, fn func(resp api.ProgressResponse)) ([]*layerGGML, error) {
switch detectModelTypeFromFiles(files) {
case "safetensors":
@@ -438,7 +316,15 @@ func kvFromLayers(baseLayers []*layerGGML) (ggml.KV, error) {
return ggml.KV{}, fmt.Errorf("no base model was found")
}
func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML, config *ConfigV2, fn func(resp api.ProgressResponse)) (err error) {
func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML, fn func(resp api.ProgressResponse)) (err error) {
config := ConfigV2{
OS: "linux",
Architecture: "amd64",
RootFS: RootFS{
Type: "layers",
},
}
var layers []Layer
for _, layer := range baseLayers {
if layer.GGML != nil {
@@ -518,7 +404,7 @@ func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML,
return err
}
configLayer, err := createConfigLayer(layers, *config)
configLayer, err := createConfigLayer(layers, config)
if err != nil {
return err
}

View File

@@ -104,154 +104,3 @@ func TestConvertFromSafetensors(t *testing.T) {
})
}
}
func TestRemoteURL(t *testing.T) {
tests := []struct {
name string
input string
expected string
hasError bool
}{
{
name: "absolute path",
input: "/foo/bar",
expected: "http://localhost:11434/foo/bar",
hasError: false,
},
{
name: "absolute path with cleanup",
input: "/foo/../bar",
expected: "http://localhost:11434/bar",
hasError: false,
},
{
name: "root path",
input: "/",
expected: "http://localhost:11434/",
hasError: false,
},
{
name: "host without scheme",
input: "example.com",
expected: "http://example.com:11434",
hasError: false,
},
{
name: "host with port",
input: "example.com:8080",
expected: "http://example.com:8080",
hasError: false,
},
{
name: "full URL",
input: "https://example.com:8080/path",
expected: "https://example.com:8080/path",
hasError: false,
},
{
name: "full URL with path cleanup",
input: "https://example.com:8080/path/../other",
expected: "https://example.com:8080/other",
hasError: false,
},
{
name: "ollama.com special case",
input: "ollama.com",
expected: "https://ollama.com:443",
hasError: false,
},
{
name: "http ollama.com special case",
input: "http://ollama.com",
expected: "https://ollama.com:443",
hasError: false,
},
{
name: "URL with only host",
input: "http://example.com",
expected: "http://example.com:11434",
hasError: false,
},
{
name: "URL with root path cleaned",
input: "http://example.com/",
expected: "http://example.com:11434",
hasError: false,
},
{
name: "invalid URL",
input: "http://[::1]:namedport", // invalid port
expected: "",
hasError: true,
},
{
name: "empty string",
input: "",
expected: "http://localhost:11434",
hasError: false,
},
{
name: "host with scheme but no port",
input: "http://localhost",
expected: "http://localhost:11434",
hasError: false,
},
{
name: "complex path cleanup",
input: "/a/b/../../c/./d",
expected: "http://localhost:11434/c/d",
hasError: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := remoteURL(tt.input)
if tt.hasError {
if err == nil {
t.Errorf("expected error but got none")
}
return
}
if err != nil {
t.Errorf("unexpected error: %v", err)
return
}
if result != tt.expected {
t.Errorf("expected %q, got %q", tt.expected, result)
}
})
}
}
func TestRemoteURL_Idempotent(t *testing.T) {
// Test that applying remoteURL twice gives the same result as applying it once
testInputs := []string{
"/foo/bar",
"example.com",
"https://example.com:8080/path",
"ollama.com",
"http://localhost:11434",
}
for _, input := range testInputs {
t.Run(input, func(t *testing.T) {
firstResult, err := remoteURL(input)
if err != nil {
t.Fatalf("first call failed: %v", err)
}
secondResult, err := remoteURL(firstResult)
if err != nil {
t.Fatalf("second call failed: %v", err)
}
if firstResult != secondResult {
t.Errorf("function is not idempotent: first=%q, second=%q", firstResult, secondResult)
}
})
}
}

View File

@@ -24,7 +24,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/gguf"
"github.com/ollama/ollama/model/parsers"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
@@ -74,38 +73,29 @@ func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for completion capability
if m.ModelPath != "" {
f, err := gguf.Open(m.ModelPath)
if err == nil {
defer f.Close()
f, err := gguf.Open(m.ModelPath)
if err == nil {
defer f.Close()
if f.KeyValue("pooling_type").Valid() {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
// If no embedding is specified, we assume the model supports completion
capabilities = append(capabilities, model.CapabilityCompletion)
}
if f.KeyValue("vision.block_count").Valid() {
capabilities = append(capabilities, model.CapabilityVision)
}
if f.KeyValue("pooling_type").Valid() {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
slog.Error("couldn't open model file", "error", err)
// If no embedding is specified, we assume the model supports completion
capabilities = append(capabilities, model.CapabilityCompletion)
}
} else if len(m.Config.Capabilities) > 0 {
for _, c := range m.Config.Capabilities {
capabilities = append(capabilities, model.Capability(c))
if f.KeyValue("vision.block_count").Valid() {
capabilities = append(capabilities, model.CapabilityVision)
}
} else {
slog.Warn("unknown capabilities for model", "model", m.Name)
slog.Error("couldn't open model file", "error", err)
}
if m.Template == nil {
return capabilities
}
builtinParser := parsers.ParserForName(m.Config.Parser)
// Check for tools capability
if slices.Contains(m.Template.Vars(), "tools") || (builtinParser != nil && builtinParser.HasToolSupport()) {
if slices.Contains(m.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
@@ -119,16 +109,10 @@ func (m *Model) Capabilities() []model.Capability {
capabilities = append(capabilities, model.CapabilityVision)
}
// Skip the thinking check if it's already set
if slices.Contains(capabilities, "thinking") {
return capabilities
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(m.Template.Template)
hasTags := openingTag != "" && closingTag != ""
isGptoss := slices.Contains([]string{"gptoss", "gpt-oss"}, m.Config.ModelFamily)
if hasTags || isGptoss || (builtinParser != nil && builtinParser.HasThinkingSupport()) {
if hasTags || slices.Contains([]string{"gptoss", "gpt-oss"}, m.Config.ModelFamily) {
capabilities = append(capabilities, model.CapabilityThinking)
}
@@ -214,20 +198,6 @@ func (m *Model) String() string {
})
}
if m.Config.Renderer != "" {
modelfile.Commands = append(modelfile.Commands, parser.Command{
Name: "renderer",
Args: m.Config.Renderer,
})
}
if m.Config.Parser != "" {
modelfile.Commands = append(modelfile.Commands, parser.Command{
Name: "parser",
Args: m.Config.Parser,
})
}
for k, v := range m.Options {
switch v := v.(type) {
case []any:
@@ -266,19 +236,8 @@ type ConfigV2 struct {
ModelFormat string `json:"model_format"`
ModelFamily string `json:"model_family"`
ModelFamilies []string `json:"model_families"`
ModelType string `json:"model_type"` // shown as Parameter Size
FileType string `json:"file_type"` // shown as Quantization Level
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
// used for remotes
Capabilities []string `json:"capabilities,omitempty"`
ContextLen int `json:"context_length,omitempty"`
EmbedLen int `json:"embedding_length,omitempty"`
BaseName string `json:"base_name,omitempty"`
ModelType string `json:"model_type"`
FileType string `json:"file_type"`
// required by spec
Architecture string `json:"architecture"`

View File

@@ -25,7 +25,10 @@ func Loop(ctx context.Context, maxBackoff time.Duration) iter.Seq2[int, error] {
// n^2 backoff timer is a little smoother than the
// common choice of 2^n.
d := min(time.Duration(n*n)*10*time.Millisecond, maxBackoff)
d := time.Duration(n*n) * 10 * time.Millisecond
if d > maxBackoff {
d = maxBackoff
}
// Randomize the delay between 0.5-1.5 x msec, in order
// to prevent accidental "thundering herd" problems.
d = time.Duration(float64(d) * (rand.Float64() + 0.5))

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/model/renderers"
"github.com/ollama/ollama/template"
)
@@ -42,12 +41,18 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
}
}
p, err := renderPrompt(m, append(system, msgs[i:]...), tools, think)
if err != nil {
thinkVal := false
thinkLevel := ""
if think != nil {
thinkVal = think.Bool()
thinkLevel = think.String()
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", nil, err
}
s, err := tokenize(ctx, p)
s, err := tokenize(ctx, b.String())
if err != nil {
return "", nil, err
}
@@ -96,23 +101,6 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
}
// truncate any messages that do not fit into the context window
p, err := renderPrompt(m, append(system, msgs[currMsgIdx:]...), tools, think)
if err != nil {
return "", nil, err
}
return p, images, nil
}
func renderPrompt(m *Model, msgs []api.Message, tools []api.Tool, think *api.ThinkValue) (string, error) {
if m.Config.Renderer != "" {
rendered, err := renderers.RenderWithRenderer(m.Config.Renderer, msgs, tools, think)
if err != nil {
return "", err
}
return rendered, nil
}
var b bytes.Buffer
thinkVal := false
thinkLevel := ""
@@ -120,8 +108,9 @@ func renderPrompt(m *Model, msgs []api.Message, tools []api.Tool, think *api.Thi
thinkVal = think.Bool()
thinkLevel = think.String()
}
if err := m.Template.Execute(&b, template.Values{Messages: msgs, Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", err
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", nil, err
}
return b.String(), nil
return b.String(), images, nil
}

View File

@@ -15,7 +15,6 @@ import (
"net"
"net/http"
"net/netip"
"net/url"
"os"
"os/signal"
"slices"
@@ -36,7 +35,6 @@ import (
"github.com/ollama/ollama/harmony"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/model/parsers"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/registry"
@@ -190,83 +188,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
if m.Config.RemoteHost != "" && m.Config.RemoteModel != "" {
origModel := req.Model
remoteURL, err := url.Parse(m.Config.RemoteHost)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if !slices.Contains(envconfig.Remotes(), remoteURL.Hostname()) {
slog.Info("remote model", "remotes", envconfig.Remotes(), "remoteURL", m.Config.RemoteHost, "hostname", remoteURL.Hostname())
c.JSON(http.StatusBadRequest, gin.H{"error": "this server cannot run this remote model"})
return
}
req.Model = m.Config.RemoteModel
if req.Template == "" && m.Template.String() != "" {
req.Template = m.Template.String()
}
if req.Options == nil {
req.Options = map[string]any{}
}
for k, v := range m.Options {
if _, ok := req.Options[k]; !ok {
req.Options[k] = v
}
}
// update the system prompt from the model if one isn't already specified
if req.System == "" && m.System != "" {
req.System = m.System
}
if len(m.Messages) > 0 {
slog.Warn("embedded messages in the model not supported with '/api/generate'; try '/api/chat' instead")
}
fn := func(resp api.GenerateResponse) error {
resp.Model = origModel
resp.RemoteModel = m.Config.RemoteModel
resp.RemoteHost = m.Config.RemoteHost
data, err := json.Marshal(resp)
if err != nil {
return err
}
if _, err = c.Writer.Write(append(data, '\n')); err != nil {
return err
}
c.Writer.Flush()
return nil
}
client := api.NewClient(remoteURL, http.DefaultClient)
err = client.Generate(c, &req, fn)
if err != nil {
var authError api.AuthorizationError
if errors.As(err, &authError) {
c.JSON(authError.StatusCode, gin.H{"error": "unauthorized", "public_key": authError.PublicKey})
return
}
var apiError api.StatusError
if errors.As(err, &apiError) {
c.JSON(apiError.StatusCode, apiError)
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
return
}
// expire the runner
if req.Prompt == "" && req.KeepAlive != nil && req.KeepAlive.Duration == 0 {
s.sched.expireRunner(m)
@@ -408,10 +329,10 @@ func (s *Server) GenerateHandler(c *gin.Context) {
// If debug mode is enabled, return the rendered template instead of calling the model
if req.DebugRenderOnly {
c.JSON(http.StatusOK, api.GenerateResponse{
c.JSON(http.StatusOK, api.DebugTemplateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
DebugInfo: &api.DebugInfo{
DebugInfo: api.DebugInfo{
RenderedTemplate: prompt,
ImageCount: len(images),
},
@@ -427,9 +348,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
OpeningTag: openingTag,
ClosingTag: closingTag,
}
if strings.HasSuffix(strings.TrimSpace(prompt), openingTag) {
thinkingState.AddContent(openingTag)
}
}
}
@@ -570,6 +488,7 @@ func (s *Server) EmbedHandler(c *gin.Context) {
}
truncate := true
if req.Truncate != nil && !*req.Truncate {
truncate = false
}
@@ -632,27 +551,11 @@ func (s *Server) EmbedHandler(c *gin.Context) {
ctxLen := min(opts.NumCtx, int(kvData.ContextLength()))
if len(tokens) > ctxLen {
if !truncate {
c.JSON(http.StatusBadRequest, gin.H{"error": "input exceeds maximum context length"})
return
}
if bos := kvData.Uint("tokenizer.ggml.bos_token_id"); tokens[0] != int(bos) && kvData.Bool("add_bos_token", true) {
ctxLen--
}
if eos := kvData.Uint("tokenizer.ggml.eos_token_id"); tokens[len(tokens)-1] != int(eos) && kvData.Bool("add_eos_token", true) {
ctxLen--
}
slog.Info("", "ctxLen", ctxLen, "tokenCount", len(tokens))
if ctxLen <= 0 {
// return error if the truncated input would be empty or just special tokens
c.JSON(http.StatusBadRequest, gin.H{"error": "input after truncation exceeds maximum context length"})
c.JSON(http.StatusBadRequest, gin.H{"error": "input length exceeds maximum context length"})
return
}
tokens = tokens[:ctxLen]
s, err = r.Detokenize(c.Request.Context(), tokens)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
@@ -673,12 +576,7 @@ func (s *Server) EmbedHandler(c *gin.Context) {
if err != nil {
return err
}
// TODO: this first normalization should be done by the model
embedding = normalize(embedding)
if req.Dimensions > 0 && req.Dimensions < len(embedding) {
embedding = normalize(embedding[:req.Dimensions])
}
embeddings[i] = embedding
embeddings[i] = normalize(embedding)
return nil
})
}
@@ -704,7 +602,11 @@ func normalize(vec []float32) []float32 {
sum += v * v
}
norm := float32(1.0 / max(math.Sqrt(float64(sum)), 1e-12))
norm := float32(0.0)
if sum > 0 {
norm = float32(1.0 / math.Sqrt(float64(sum)))
}
for i := range vec {
vec[i] *= norm
}
@@ -1019,28 +921,6 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
ModifiedAt: manifest.fi.ModTime(),
}
if m.Config.RemoteHost != "" {
resp.RemoteHost = m.Config.RemoteHost
resp.RemoteModel = m.Config.RemoteModel
if m.Config.ModelFamily != "" {
resp.ModelInfo = make(map[string]any)
resp.ModelInfo["general.architecture"] = m.Config.ModelFamily
if m.Config.BaseName != "" {
resp.ModelInfo["general.basename"] = m.Config.BaseName
}
if m.Config.ContextLen > 0 {
resp.ModelInfo[fmt.Sprintf("%s.context_length", m.Config.ModelFamily)] = m.Config.ContextLen
}
if m.Config.EmbedLen > 0 {
resp.ModelInfo[fmt.Sprintf("%s.embedding_length", m.Config.ModelFamily)] = m.Config.EmbedLen
}
}
}
var params []string
cs := 30
for k, v := range m.Options {
@@ -1071,11 +951,6 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
fmt.Fprint(&sb, m.String())
resp.Modelfile = sb.String()
// skip loading tensor information if this is a remote model
if m.Config.RemoteHost != "" && m.Config.RemoteModel != "" {
return resp, nil
}
kvData, tensors, err := getModelData(m.ModelPath, req.Verbose)
if err != nil {
return nil, err
@@ -1152,13 +1027,11 @@ func (s *Server) ListHandler(c *gin.Context) {
// tag should never be masked
models = append(models, api.ListModelResponse{
Model: n.DisplayShortest(),
Name: n.DisplayShortest(),
RemoteModel: cf.RemoteModel,
RemoteHost: cf.RemoteHost,
Size: m.Size(),
Digest: m.digest,
ModifiedAt: m.fi.ModTime(),
Model: n.DisplayShortest(),
Name: n.DisplayShortest(),
Size: m.Size(),
Digest: m.digest,
ModifiedAt: m.fi.ModTime(),
Details: api.ModelDetails{
Format: cf.ModelFormat,
Family: cf.ModelFamily,
@@ -1418,9 +1291,6 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.POST("/api/show", s.ShowHandler)
r.DELETE("/api/delete", s.DeleteHandler)
r.DELETE("/api/user/keys/:encodedKey", s.SignoutHandler)
r.POST("/api/me", s.WhoamiHandler)
// Create
r.POST("/api/create", s.CreateHandler)
r.POST("/api/blobs/:digest", s.CreateBlobHandler)
@@ -1617,49 +1487,6 @@ func streamResponse(c *gin.Context, ch chan any) {
})
}
func (s *Server) WhoamiHandler(c *gin.Context) {
// todo allow other hosts
u, err := url.Parse("https://ollama.com")
if err != nil {
slog.Error(err.Error())
c.JSON(http.StatusInternalServerError, gin.H{"error": "URL parse error"})
return
}
client := api.NewClient(u, http.DefaultClient)
user, err := client.Whoami(c)
if err != nil {
slog.Error(err.Error())
}
c.JSON(http.StatusOK, user)
}
func (s *Server) SignoutHandler(c *gin.Context) {
encodedKey := c.Param("encodedKey")
// todo allow other hosts
u, err := url.Parse("https://ollama.com")
if err != nil {
slog.Error(err.Error())
c.JSON(http.StatusInternalServerError, gin.H{"error": "URL parse error"})
return
}
client := api.NewClient(u, http.DefaultClient)
err = client.Signout(c, encodedKey)
if err != nil {
slog.Error(err.Error())
if strings.Contains(err.Error(), "page not found") || strings.Contains(err.Error(), "invalid credentials") {
c.JSON(http.StatusNotFound, gin.H{"error": "you are not currently signed in"})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": "there was an error signing out"})
return
}
c.JSON(http.StatusOK, nil)
}
func (s *Server) PsHandler(c *gin.Context) {
models := []api.ProcessModelResponse{}
@@ -1716,34 +1543,21 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
name := model.ParseName(req.Model)
if !name.IsValid() {
c.JSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
name, err := getExistingName(name)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
m, err := GetModel(req.Model)
if err != nil {
switch {
case os.IsNotExist(err):
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
case err.Error() == errtypes.InvalidModelNameErrMsg:
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}
return
}
// expire the runner
if len(req.Messages) == 0 && req.KeepAlive != nil && int(req.KeepAlive.Seconds()) == 0 {
s.sched.expireRunner(m)
if len(req.Messages) == 0 && req.KeepAlive != nil && req.KeepAlive.Duration == 0 {
model, err := GetModel(req.Model)
if err != nil {
switch {
case os.IsNotExist(err):
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
case err.Error() == errtypes.InvalidModelNameErrMsg:
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}
return
}
s.sched.expireRunner(model)
c.JSON(http.StatusOK, api.ChatResponse{
Model: req.Model,
@@ -1755,76 +1569,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
if m.Config.RemoteHost != "" && m.Config.RemoteModel != "" {
origModel := req.Model
remoteURL, err := url.Parse(m.Config.RemoteHost)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if !slices.Contains(envconfig.Remotes(), remoteURL.Hostname()) {
slog.Info("remote model", "remotes", envconfig.Remotes(), "remoteURL", m.Config.RemoteHost, "hostname", remoteURL.Hostname())
c.JSON(http.StatusBadRequest, gin.H{"error": "this server cannot run this remote model"})
return
}
req.Model = m.Config.RemoteModel
if req.Options == nil {
req.Options = map[string]any{}
}
msgs := append(m.Messages, req.Messages...)
if req.Messages[0].Role != "system" && m.System != "" {
msgs = append([]api.Message{{Role: "system", Content: m.System}}, msgs...)
}
msgs = filterThinkTags(msgs, m)
req.Messages = msgs
for k, v := range m.Options {
if _, ok := req.Options[k]; !ok {
req.Options[k] = v
}
}
fn := func(resp api.ChatResponse) error {
resp.Model = origModel
resp.RemoteModel = m.Config.RemoteModel
resp.RemoteHost = m.Config.RemoteHost
data, err := json.Marshal(resp)
if err != nil {
return err
}
if _, err = c.Writer.Write(append(data, '\n')); err != nil {
return err
}
c.Writer.Flush()
return nil
}
client := api.NewClient(remoteURL, http.DefaultClient)
err = client.Chat(c, &req, fn)
if err != nil {
var authError api.AuthorizationError
if errors.As(err, &authError) {
c.JSON(authError.StatusCode, gin.H{"error": "unauthorized", "public_key": authError.PublicKey})
return
}
var apiError api.StatusError
if errors.As(err, &apiError) {
c.JSON(apiError.StatusCode, apiError)
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
return
}
caps := []model.Capability{model.CapabilityCompletion}
if len(req.Tools) > 0 {
caps = append(caps, model.CapabilityTools)
@@ -1833,6 +1577,17 @@ func (s *Server) ChatHandler(c *gin.Context) {
caps = append(caps, model.CapabilityThinking)
}
name := model.ParseName(req.Model)
if !name.IsValid() {
c.JSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
name, err := getExistingName(name)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), name.String(), caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support chat", req.Model)})
@@ -1861,15 +1616,10 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
msgs = filterThinkTags(msgs, m)
var builtinParser parsers.Parser
if m.Config.Parser != "" {
builtinParser = parsers.ParserForName(m.Config.Parser)
}
var harmonyMessageHandler *harmony.HarmonyMessageHandler
var harmonyToolParser *harmony.HarmonyToolCallAccumulator
useHarmony := shouldUseHarmony(m) || m.Config.Parser == "harmony"
useHarmony := shouldUseHarmony(m)
processedTools := req.Tools
if useHarmony {
@@ -1899,10 +1649,10 @@ func (s *Server) ChatHandler(c *gin.Context) {
// If debug mode is enabled, return the rendered template instead of calling the model
if req.DebugRenderOnly {
c.JSON(http.StatusOK, api.ChatResponse{
c.JSON(http.StatusOK, api.DebugTemplateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
DebugInfo: &api.DebugInfo{
DebugInfo: api.DebugInfo{
RenderedTemplate: prompt,
ImageCount: len(images),
},
@@ -1962,7 +1712,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
// TODO(drifkin): fold this as much as possibleinto the generic m.Config.Parser logic
if useHarmony {
content, thinking, toolContent := harmonyMessageHandler.AddContent(r.Content, harmonyToolParser)
res.Message.Content = content
@@ -1989,27 +1738,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
ch <- res
}
return
} else if builtinParser != nil {
slog.Log(context.TODO(), logutil.LevelTrace, "builtin parser input", "parser", m.Config.Parser, "content", r.Content)
content, thinking, toolCalls, err := builtinParser.Add(r.Content, req.Tools)
if err != nil {
ch <- gin.H{"error": err.Error()}
return
}
res.Message.Content = content
res.Message.Thinking = thinking
res.Message.ToolCalls = toolCalls
if res.Message.Content != "" || res.Message.Thinking != "" || len(res.Message.ToolCalls) > 0 || r.Done {
slog.Log(context.TODO(), logutil.LevelTrace, "builtin parser output", "parser", m.Config.Parser, "content", content, "thinking", thinking, "toolCalls", toolCalls, "done", r.Done)
ch <- res
} else {
slog.Log(context.TODO(), logutil.LevelTrace, "builtin parser empty output", "parser", m.Config.Parser)
}
return
}

View File

@@ -11,7 +11,6 @@ import (
"net/http/httptest"
"os"
"path/filepath"
"reflect"
"slices"
"strings"
"testing"
@@ -21,7 +20,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/types/model"
)
var stream bool = false
@@ -617,78 +615,6 @@ func TestCreateTemplateSystem(t *testing.T) {
})
}
func TestCreateAndShowRemoteModel(t *testing.T) {
gin.SetMode(gin.TestMode)
var s Server
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test",
From: "bob",
RemoteHost: "https://ollama.com",
Info: map[string]any{
"capabilities": []string{"completion", "tools", "thinking"},
"model_family": "gptoss",
"context_length": 131072,
"embedding_length": 2880,
"quantization_level": "MXFP4",
"parameter_size": "20.9B",
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("exected status code 200, actual %d", w.Code)
}
w = createRequest(t, s.ShowHandler, api.ShowRequest{Model: "test"})
if w.Code != http.StatusOK {
t.Fatalf("exected status code 200, actual %d", w.Code)
}
var resp api.ShowResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
expectedDetails := api.ModelDetails{
ParentModel: "",
Format: "",
Family: "gptoss",
Families: []string{"gptoss"},
ParameterSize: "20.9B",
QuantizationLevel: "MXFP4",
}
if !reflect.DeepEqual(resp.Details, expectedDetails) {
t.Errorf("model details: expected %#v, actual %#v", expectedDetails, resp.Details)
}
expectedCaps := []model.Capability{
model.Capability("completion"),
model.Capability("tools"),
model.Capability("thinking"),
}
if !slices.Equal(resp.Capabilities, expectedCaps) {
t.Errorf("capabilities: expected %#v, actual %#v", expectedCaps, resp.Capabilities)
}
v, ok := resp.ModelInfo["gptoss.context_length"]
ctxlen := v.(float64)
if !ok || int(ctxlen) != 131072 {
t.Errorf("context len: expected %d, actual %d", 131072, int(ctxlen))
}
v, ok = resp.ModelInfo["gptoss.embedding_length"]
embedlen := v.(float64)
if !ok || int(embedlen) != 2880 {
t.Errorf("embed len: expected %d, actual %d", 2880, int(embedlen))
}
fmt.Printf("resp = %#v\n", resp)
}
func TestCreateLicenses(t *testing.T) {
gin.SetMode(gin.TestMode)

View File

@@ -180,7 +180,7 @@ func TestGenerateDebugRenderOnly(t *testing.T) {
t.Errorf("expected status %d, got %d, body: %s", http.StatusOK, w.Code, w.Body.String())
}
var response api.GenerateResponse
var response api.DebugTemplateResponse
if err := json.Unmarshal(w.Body.Bytes(), &response); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
@@ -385,7 +385,7 @@ func TestChatDebugRenderOnly(t *testing.T) {
t.Errorf("expected status %d, got %d, body: %s", http.StatusOK, w.Code, w.Body.String())
}
var response api.ChatResponse
var response api.DebugTemplateResponse
if err := json.Unmarshal(w.Body.Bytes(), &response); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}

View File

@@ -126,15 +126,7 @@ func TestRoutes(t *testing.T) {
t.Fatalf("failed to create model: %v", err)
}
config := &ConfigV2{
OS: "linux",
Architecture: "amd64",
RootFS: RootFS{
Type: "layers",
},
}
if err := createModel(r, modelName, baseLayers, config, fn); err != nil {
if err := createModel(r, modelName, baseLayers, fn); err != nil {
t.Fatal(err)
}
}

View File

@@ -382,7 +382,10 @@ func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *Llm
// load creates a new model based on req and loads it. If requireFull is true then the model must be loaded fully onto GPUs
// (if any). Returns whether the scheduler needs to evict a model to make this one fit.
func (s *Scheduler) load(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, requireFull bool) bool {
numParallel := max(int(envconfig.NumParallel()), 1)
numParallel := int(envconfig.NumParallel())
if numParallel < 1 {
numParallel = 1
}
// Embedding models should always be loaded with parallel=1
if req.model.CheckCapabilities(model.CapabilityCompletion) != nil {