Compare commits

..

1 Commits

Author SHA1 Message Date
Bruce MacDonald
4819239e73 convert: cli for direct conversion 2025-01-13 14:15:14 -08:00
1028 changed files with 94690 additions and 864876 deletions

View File

@@ -3,9 +3,7 @@ ollama
app
macapp
dist
build
.env
.cache
test_data
.git
llama/build

13
.gitattributes vendored
View File

@@ -7,18 +7,5 @@ llama/**/*.cuh linguist-vendored
llama/**/*.m linguist-vendored
llama/**/*.metal linguist-vendored
ml/backend/**/*.c linguist-vendored
ml/backend/**/*.h linguist-vendored
ml/backend/**/*.cpp linguist-vendored
ml/backend/**/*.hpp linguist-vendored
ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
* text=auto
*.go text eol=lf

View File

@@ -9,14 +9,6 @@ body:
description: What happened? What did you expect to happen?
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false
- type: dropdown
id: os
attributes:

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,11 @@
name: test
env:
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
CUDA_12_WINDOWS_URL: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
CUDA_12_WINDOWS_VER: 12.4
concurrency:
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
# cancels running CI jobs and starts all new ones.
@@ -21,7 +27,7 @@ jobs:
changes:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.changes.outputs.changed }}
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
steps:
- uses: actions/checkout@v4
with:
@@ -29,226 +35,309 @@ jobs:
- id: changes
run: |
changed() {
local BASE=${{ github.event.pull_request.base.sha }}
local HEAD=${{ github.event.pull_request.head.sha }}
local MERGE_BASE=$(git merge-base $BASE $HEAD)
git diff-tree -r --no-commit-id --name-only "$MERGE_BASE" "$HEAD" \
git diff-tree -r --no-commit-id --name-only \
$(git merge-base ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }}) \
${{ github.event.pull_request.head.sha }} \
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
}
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
{
echo RUNNERS=$(changed 'llama/**')
} >>$GITHUB_OUTPUT
linux:
runners-linux-cuda:
needs: [changes]
if: needs.changes.outputs.changed == 'True'
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
strategy:
matrix:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
extra-packages: rocm-libs
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
cuda-version:
- '11.8.0'
runs-on: linux
container: ${{ matrix.container }}
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
steps:
- uses: actions/checkout@v4
- run: |
[ -n "${{ matrix.container }}" ] || sudo=sudo
$sudo apt-get update
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
apt-get update && apt-get install -y git build-essential curl
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/cache@v4
- uses: actions/checkout@v4
- uses: actions/setup-go@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
windows:
git config --global --add safe.directory /__w/ollama/ollama
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
make -j $cores cuda_v11
runners-linux-rocm:
needs: [changes]
if: needs.changes.outputs.changed == 'True'
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
strategy:
matrix:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
rocm-version:
- '6.1.2'
runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps:
- run: |
apt-get update && apt-get install -y git build-essential curl rocm-libs
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/checkout@v4
- uses: actions/setup-go@v4
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
make -j $cores rocm
# ROCm generation step
runners-windows-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
runs-on: windows
steps:
- run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- if: matrix.preset == 'CUDA'
name: Install CUDA ${{ matrix.cuda-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- if: matrix.preset == 'ROCm'
name: Install ROCm ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
}
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- uses: actions/checkout@v4
- uses: actions/cache@v4
- uses: actions/setup-go@v5
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:
CMAKE_GENERATOR: Ninja
go-version-file: go.mod
cache: true
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
go_mod_tidy:
runs-on: ubuntu-latest
# ROCM installation steps
- name: 'Cache ROCm installer'
id: cache-rocm
uses: actions/cache@v4
with:
path: rocm-install.exe
key: ${{ env.ROCM_WINDOWS_URL }}
- name: 'Conditionally Download ROCm'
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
- name: 'Install ROCm'
run: |
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: make rocm runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -C llama print-HIP_PATH print-HIP_LIB_DIR
make rocm
# CUDA generation step
runners-windows-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
runs-on: windows
steps:
- uses: actions/checkout@v4
- name: check that 'go mod tidy' is clean
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
test:
# CUDA installation steps
- name: 'Cache CUDA installer'
id: cache-cuda
uses: actions/cache@v4
with:
path: cuda-install.exe
key: ${{ env.CUDA_12_WINDOWS_URL }}
- name: 'Conditionally Download CUDA'
if: steps.cache-cuda.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
Invoke-WebRequest -Uri "${env:CUDA_12_WINDOWS_URL}" -OutFile "cuda-install.exe"
- name: 'Install CUDA'
run: |
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ env.CUDA_12_WINDOWS_VER }}"}
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
- name: 'Verify CUDA'
run: |
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: make cuda runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
runners-cpu:
needs: [changes]
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
os: [ubuntu-latest, macos-latest, windows-2019]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-2019
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
ARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
GOEXPERIMENT: 'synctest'
steps:
- name: checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
- name: cache restore
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
# Note: unlike the other setups, this is only grabbing the mod download
# cache, rather than the whole mod directory, as the download cache
# contains zips that can be unpacked in parallel faster than they can be
# fetched and extracted by tar
path: |
~/.cache/go-build
~/go/pkg/mod/cache
~\AppData\Local\go-build
# NOTE: The -3- here should be incremented when the scheme of data to be
# cached changes (e.g. path above changes).
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
restore-keys: |
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
- name: Setup Go
uses: actions/setup-go@v5
with:
# The caching strategy of setup-go is less than ideal, and wastes
# time by not saving artifacts due to small failures like the linter
# complaining, etc. This means subsequent have to rebuild their world
# again until all checks pass. For instance, if you mispell a word,
# you're punished until you fix it. This is more hostile than
# helpful.
cache: false
go-version-file: go.mod
# It is tempting to run this in a platform independent way, but the past
# shows this codebase will see introductions of platform specific code
# generation, and so we need to check this per platform to ensure we
# don't abuse go generate on specific platforms.
- name: check that 'go generate' is clean
if: always()
cache: true
- name: Add msys paths
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
go generate ./...
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- name: 'Build Windows Go Runners'
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make -j 4
- name: 'Build Unix Go Runners'
if: ${{ ! startsWith(matrix.os, 'windows-') }}
run: make -j 4
- run: go build .
- name: go test
if: always()
run: go test -count=1 -benchtime=1x ./...
# TODO(bmizerany): replace this heavy tool with just the
# tools/checks/binaries we want and then make them all run in parallel
# across jobs, not on a single tiny vm on Github Actions.
lint:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
arch: [amd64, arm64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-2019
arch: arm64
- os: macos-latest
arch: amd64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: Add msys paths
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: false
- run: |
case ${{ matrix.arch }} in
amd64) echo ARCH=x86_64 ;;
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 10m0s -v
- name: cache save
# Always save the cache, even if the job fails. The artifacts produced
# during the building of test binaries are not all for naught. They can
# be used to speed up subsequent runs.
if: always()
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
test:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
arch: [amd64]
exclude:
- os: ubuntu-latest
arch: arm64
- os: windows-2019
arch: arm64
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
steps:
- uses: actions/checkout@v4
with:
# Note: unlike the other setups, this is only grabbing the mod download
# cache, rather than the whole mod directory, as the download cache
# contains zips that can be unpacked in parallel faster than they can be
# fetched and extracted by tar
path: |
~/.cache/go-build
~/go/pkg/mod/cache
~\AppData\Local\go-build
# NOTE: The -3- here should be incremented when the scheme of data to be
# cached changes (e.g. path above changes).
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
submodules: recursive
- name: Add msys paths
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
if: ${{ startsWith(matrix.os, 'windows-') }}
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: |
case ${{ matrix.arch }} in
amd64) echo ARCH=amd64 ;;
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: go test ./...
patches:
needs: [changes]
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Verify patches apply cleanly and do not change files
with:
submodules: recursive
- name: Verify patches carry all the changes
run: |
make -f Makefile.sync clean checkout apply-patches sync
git diff --compact-summary --exit-code
make apply-patches sync && git diff --compact-summary --exit-code llama

6
.gitignore vendored
View File

@@ -4,13 +4,13 @@
.venv
.swp
dist
build
ollama
.cache
*.exe
.idea
test_data
*.crt
__debug_bin*
llama/build
__debug_bin*
llama/vendor
/ollama
cmd/convert/out

View File

@@ -6,6 +6,8 @@ linters:
- bidichk
- bodyclose
- containedctx
- contextcheck
- errcheck
- gocheckcompilerdirectives
- gofmt
- gofumpt
@@ -19,13 +21,12 @@ linters:
- nolintlint
- nosprintfhostport
- staticcheck
- tenv
- unconvert
- usetesting
- unused
- usestdlibvars
- wastedassign
- whitespace
disable:
- usestdlibvars
- errcheck
linters-settings:
staticcheck:
checks:
@@ -38,4 +39,5 @@ severity:
- gofmt
- goimports
- intrange
- usestdlibvars
severity: info

10
.prettierrc.json Normal file
View File

@@ -0,0 +1,10 @@
{
"trailingComma": "es5",
"tabWidth": 2,
"useTabs": false,
"semi": false,
"singleQuote": true,
"jsxSingleQuote": true,
"printWidth": 120,
"arrowParens": "avoid"
}

View File

@@ -1,139 +0,0 @@
cmake_minimum_required(VERSION 3.21)
project(Ollama C CXX)
include(CheckLanguage)
include(GNUInstallDirs)
find_package(Threads REQUIRED)
set(CMAKE_BUILD_TYPE Release)
set(BUILD_SHARED_LIBS ON)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(GGML_BUILD ON)
set(GGML_SHARED ON)
set(GGML_CCACHE ON)
set(GGML_BACKEND_DL ON)
set(GGML_BACKEND_SHARED ON)
set(GGML_SCHED_MAX_COPIES 4)
set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
set(GGML_CUDA_FA ON)
set(GGML_CUDA_COMPRESSION_MODE default)
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
set(CMAKE_BUILD_RPATH "@loader_path")
set(CMAKE_INSTALL_RPATH "@loader_path")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
if(NOT CPU_VARIANTS)
set(CPU_VARIANTS "ggml-cpu")
endif()
install(TARGETS ggml-base ${CPU_VARIANTS}
RUNTIME_DEPENDENCIES
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
)
check_language(CUDA)
if(CMAKE_CUDA_COMPILER)
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
set(CMAKE_CUDA_ARCHITECTURES "native")
endif()
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
)
check_language(HIP)
if(CMAKE_HIP_COMPILER)
set(HIP_PLATFORM "amd")
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()
if(AMDGPU_TARGETS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
endif()
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
install(RUNTIME_DEPENDENCY_SET rocm
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()
endif()
endif()

View File

@@ -1,127 +0,0 @@
{
"version": 3,
"configurePresets": [
{
"name": "Default",
"binaryDir": "${sourceDir}/build",
"installDir": "${sourceDir}/dist",
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Release",
"CMAKE_MSVC_RUNTIME_LIBRARY": "MultiThreaded"
}
},
{
"name": "CPU",
"inherits": [ "Default" ]
},
{
"name": "CUDA",
"inherits": [ "Default" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "72;87"
}
},
{
"name": "JetPack 6",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "87"
}
},
{
"name": "ROCm",
"inherits": [ "Default" ],
"cacheVariables": {
"CMAKE_HIP_PLATFORM": "amd"
}
},
{
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],
"buildPresets": [
{
"name": "Default",
"configurePreset": "Default",
"configuration": "Release"
},
{
"name": "CPU",
"configurePreset": "Default",
"targets": [ "ggml-cpu" ]
},
{
"name": "CUDA",
"configurePreset": "CUDA",
"targets": [ "ggml-cuda" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 12"
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],
"configurePreset": "JetPack 5"
},
{
"name": "JetPack 6",
"inherits": [ "CUDA" ],
"configurePreset": "JetPack 6"
},
{
"name": "ROCm",
"configurePreset": "ROCm",
"targets": [ "ggml-hip" ]
},
{
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"configurePreset": "ROCm 6"
}
]
}

View File

@@ -6,6 +6,8 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
## Pull requests
### Ideal issues
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
@@ -24,65 +26,11 @@ See the [development documentation](./docs/development.md) for instructions on h
* Changes that add significant friction to the user experience
* Changes that create a large future maintenance burden for maintainers and contributors
## Proposing a (non-trivial) change
### Best practices
> By "non-trivial", we mean a change that is not a bug fix or small
> documentation update. If you are unsure, please ask us on our [Discord
> server](https://discord.gg/ollama).
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
get feedback from the maintainers. This helps us understand the context of the
change and how it fits into Ollama's roadmap and prevents us from duplicating
work or you from spending time on a change that we may not be able to accept.
Tips for proposals:
* Explain the problem you are trying to solve, not what you are trying to do.
* Explain why the change is important.
* Explain how the change will be used.
* Explain how the change will be tested.
Additionally, for bonus points: Provide draft documentation you would expect to
see if the change were accepted.
## Pull requests
**Commit messages**
The title should look like:
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known
file in the root directory may use the file name.
The short description should start with a lowercase letter and be a
continuation of the sentence:
"This changes Ollama to..."
Examples:
llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clarity on good commit messages, and bad
docs: simplify manual installation with shorter curl commands
Bad Examples:
feat: add more emoji
fix: was not using famous web framework
chore: generify code
**Tests**
Please include tests. Strive to test behavior, not implementation.
**New dependencies**
Dependencies should be added sparingly. If you are adding a new dependency,
please explain why it is necessary and what other ways you attempted that
did not work without it.
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
* Tests: please add test coverage to changes where possible.
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
## Need help?

View File

@@ -1,155 +1,201 @@
# vim: filetype=dockerfile
ARG GOLANG_VERSION=1.22.8
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_VERSION_12=12.4.0
ARG ROCM_VERSION=6.1.2
ARG JETPACK_6=r36.2.0
ARG JETPACK_5=r35.4.1
ARG FLAVOR=${TARGETARCH}
ARG PARALLEL=8
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
#
### Then incremental builds will be much faster in this container
#
# make -j 10 dist
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
# TODO intel oneapi goes here...
ENV GOARCH amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
# Note: this does not contain jetson variants
#
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
#
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
ARG GOLANG_VERSION
ARG CUDA_VERSION_11
ARG CUDA_VERSION_12
COPY ./scripts/rh_linux_deps.sh /
RUN GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
dnf config-manager --set-enabled appstream && \
dnf clean all && \
dnf install -y \
zsh \
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
ENV GOARCH arm64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama/
ENTRYPOINT [ "zsh" ]
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& dnf install -y ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
# install epel-release for ccache
RUN yum install -y yum-utils epel-release \
&& dnf install -y clang ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
ENV CC=clang CXX=clang++
FROM base-${TARGETARCH} AS base
ARG CMAKEVERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s
FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
FROM base AS cuda-11
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
COPY go.mod go.sum .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
FROM --platform=linux/amd64 unified-builder-amd64 AS build-amd64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_SKIP_ROCM_GENERATE
ARG OLLAMA_FAST_BUILD
ARG VERSION
ARG CUSTOM_CPU_FLAGS
RUN --mount=type=cache,target=/root/.ccache \
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -j $(nproc) dist ; \
else \
make -j 5 dist ; \
fi
RUN cd dist/linux-$GOARCH && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
fi
# Jetsons need to be built in discrete stages
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
ENV GOARCH arm64
ARG VERSION
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist_cuda_v11 \
CUDA_ARCHITECTURES="72;87" \
GPU_RUNNER_VARIANT=_jetpack5 \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
FROM --platform=linux/amd64 scratch AS amd64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
ARG VERSION
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist_cuda_v12 \
CUDA_ARCHITECTURES="87" \
GPU_RUNNER_VARIANT=_jetpack6 \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6
FROM --platform=linux/arm64 unified-builder-arm64 AS build-arm64
COPY . .
ARG OLLAMA_SKIP_CUDA_GENERATE
ARG OLLAMA_FAST_BUILD
ARG VERSION
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 dist
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
RUN cd dist/linux-$GOARCH && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-jetpack5 && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
RUN cd dist/linux-$GOARCH-jetpack6 && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH AS dist
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:24.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin
# For amd64 container images, filter out cuda/rocm to minimize size
FROM build-amd64 AS runners-cuda-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
./dist/linux-amd64/lib/ollama/runners/rocm*
FROM build-amd64 AS runners-rocm-amd64
RUN rm -rf \
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
./dist/linux-amd64/lib/ollama/libcu*.so* \
./dist/linux-amd64/lib/ollama/runners/cuda*
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive /lib/ollama /usr/lib/ollama
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]

103
Makefile Normal file
View File

@@ -0,0 +1,103 @@
# top level makefile for Ollama
include make/common-defs.make
# Determine which if any GPU runners we should build
include make/cuda-v11-defs.make
include make/cuda-v12-defs.make
include make/rocm-defs.make
ifeq ($(CUSTOM_CPU_FLAGS),)
ifeq ($(ARCH),amd64)
RUNNER_TARGETS=cpu
endif
# Without CUSTOM_CPU_FLAGS we default to build both v11 and v12 if present
ifeq ($(OLLAMA_SKIP_CUDA_GENERATE),)
ifneq ($(CUDA_11_COMPILER),)
RUNNER_TARGETS += cuda_v11
endif
ifneq ($(CUDA_12_COMPILER),)
RUNNER_TARGETS += cuda_v12
endif
endif
else # CUSTOM_CPU_FLAGS is set, we'll build only the latest cuda version detected
ifneq ($(CUDA_12_COMPILER),)
RUNNER_TARGETS += cuda_v12
else ifneq ($(CUDA_11_COMPILER),)
RUNNER_TARGETS += cuda_v11
endif
endif
ifeq ($(OLLAMA_SKIP_ROCM_GENERATE),)
ifneq ($(HIP_COMPILER),)
RUNNER_TARGETS += rocm
endif
endif
all: runners exe
dist: $(addprefix dist_, $(RUNNER_TARGETS)) dist_exe
dist_%:
@$(MAKE) --no-print-directory -f make/Makefile.$* dist
runners: $(RUNNER_TARGETS)
$(RUNNER_TARGETS):
@$(MAKE) --no-print-directory -f make/Makefile.$@
exe dist_exe:
@$(MAKE) --no-print-directory -f make/Makefile.ollama $@
help-sync apply-patches create-patches sync sync-clean:
@$(MAKE) --no-print-directory -f make/Makefile.sync $@
test integration lint:
@$(MAKE) --no-print-directory -f make/Makefile.test $@
clean:
rm -rf $(BUILD_DIR) $(DIST_LIB_DIR) $(OLLAMA_EXE) $(DIST_OLLAMA_EXE)
go clean -cache
help:
@echo "The following make targets will help you build Ollama"
@echo ""
@echo " make all # (default target) Build Ollama llm subprocess runners, and the primary ollama executable"
@echo " make runners # Build Ollama llm subprocess runners; after you may use 'go build .' to build the primary ollama exectuable"
@echo " make <runner> # Build specific runners. Enabled: '$(RUNNER_TARGETS)'"
@echo " make dist # Build the runners and primary ollama executable for distribution"
@echo " make help-sync # Help information on vendor update targets"
@echo " make help-runners # Help information on runner targets"
@echo ""
@echo "The following make targets will help you test Ollama"
@echo ""
@echo " make test # Run unit tests"
@echo " make integration # Run integration tests. You must 'make all' first"
@echo " make lint # Run lint and style tests"
@echo ""
@echo "For more information see 'docs/development.md'"
@echo ""
help-runners:
@echo "The following runners will be built based on discovered GPU libraries: '$(RUNNER_TARGETS)'"
@echo ""
@echo "GPU Runner CPU Flags: '$(GPU_RUNNER_CPU_FLAGS)' (Override with CUSTOM_CPU_FLAGS)"
@echo ""
@echo "# CUDA_PATH sets the location where CUDA toolkits are present"
@echo "CUDA_PATH=$(CUDA_PATH)"
@echo " CUDA_11_PATH=$(CUDA_11_PATH)"
@echo " CUDA_11_COMPILER=$(CUDA_11_COMPILER)"
@echo " CUDA_12_PATH=$(CUDA_12_PATH)"
@echo " CUDA_12_COMPILER=$(CUDA_12_COMPILER)"
@echo ""
@echo "# HIP_PATH sets the location where the ROCm toolkit is present"
@echo "HIP_PATH=$(HIP_PATH)"
@echo " HIP_COMPILER=$(HIP_COMPILER)"
.PHONY: all exe dist help help-sync help-runners test integration lint runners clean $(RUNNER_TARGETS)
# Handy debugging for make variables
print-%:
@echo '$*=$($*)'

View File

@@ -1,72 +0,0 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=e54d41befcc1575f4c898c5ff4ef43970cead75f
.PHONY: help
help:
@echo "Available targets:"
@echo " sync Sync with upstream repositories"
@echo " checkout Checkout upstream repository"
@echo " apply-patches Apply patches to local repository"
@echo " format-patches Format patches from local repository"
@echo " clean Clean local repository"
@echo
@echo "Example:"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches sync"
.PHONY: sync
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
go generate ./$(@D)
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /) $@
.PHONY: ml/backend/ggml/ggml
ml/backend/ggml/ggml: llama/vendor
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /ggml/) $@
PATCHES=$(wildcard llama/patches/*.patch)
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
.PHONY: apply-patches
.NOTPARALLEL:
apply-patches: $(PATCHED)
llama/patches/.%.patched: llama/patches/%.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then \
touch $@; \
else \
echo "Patch failed. Resolve any conflicts then continue."; \
echo "1. Run 'git -C $(WORKDIR) am --continue'"; \
echo "2. Run 'make -f $(lastword $(MAKEFILE_LIST)) format-patches'"; \
echo "3. Run 'make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches'"; \
exit 1; \
fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
@git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched

182
README.md
View File

@@ -1,6 +1,6 @@
<div align="center">
  <a href="https://ollama.com">
<img alt="ollama" width="240" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
  <a href="https://ollama.com" />
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</a>
</div>
@@ -10,7 +10,7 @@ Get up and running with large language models.
### macOS
[Download](https://ollama.com/download/Ollama.dmg)
[Download](https://ollama.com/download/Ollama-darwin.zip)
### Windows
@@ -18,7 +18,7 @@ Get up and running with large language models.
### Linux
```shell
```
curl -fsSL https://ollama.com/install.sh | sh
```
@@ -40,10 +40,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
```shell
ollama run gemma3
```
ollama run llama3.2
```
## Model library
@@ -54,15 +54,6 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
@@ -71,7 +62,10 @@ Here are some example models that can be downloaded:
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
@@ -79,7 +73,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -98,13 +92,13 @@ Ollama supports importing GGUF models in the Modelfile:
2. Create the model in Ollama
```shell
```
ollama create example -f Modelfile
```
3. Run the model
```shell
```
ollama run example
```
@@ -116,7 +110,7 @@ See the [guide](docs/import.md) on importing models for more information.
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
```shell
```
ollama pull llama3.2
```
@@ -143,7 +137,7 @@ ollama run mario
Hello! It's your friend Mario.
```
For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
## CLI Reference
@@ -151,13 +145,13 @@ For more information on working with a Modelfile, see the [Modelfile](docs/model
`ollama create` is used to create a model from a Modelfile.
```shell
```
ollama create mymodel -f ./Modelfile
```
### Pull a model
```shell
```
ollama pull llama3.2
```
@@ -165,13 +159,13 @@ ollama pull llama3.2
### Remove a model
```shell
```
ollama rm llama3.2
```
### Copy a model
```shell
```
ollama cp llama3.2 my-model
```
@@ -190,39 +184,37 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
### Pass the prompt as an argument
```shell
ollama run llama3.2 "Summarize this file: $(cat README.md)"
```
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```shell
```
ollama show llama3.2
```
### List models on your computer
```shell
```
ollama list
```
### List which models are currently loaded
```shell
```
ollama ps
```
### Stop a model which is currently running
```shell
```
ollama stop llama3.2
```
@@ -238,13 +230,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
Next, start the server:
```shell
```
./ollama serve
```
Finally, in a separate shell, run a model:
```shell
```
./ollama run llama3.2
```
@@ -254,7 +246,7 @@ Ollama has a REST API for running and managing models.
### Generate a response
```shell
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt":"Why is the sky blue?"
@@ -263,7 +255,7 @@ curl http://localhost:11434/api/generate -d '{
### Chat with a model
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -279,7 +271,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
@@ -287,13 +278,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Saddle](https://github.com/jikkuatwork/saddle)
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-AGI)
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
@@ -314,8 +304,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
@@ -329,14 +317,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
@@ -345,34 +332,33 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita)
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG and deep research on Mac/Windows/Linux)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
@@ -383,38 +369,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
### Cloud
@@ -454,17 +408,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
- [ollama-bash-toolshed](https://github.com/attogram/ollama-bash-toolshed) - Bash scripts to chat with tool using models. Add new tools to your shed with ease. Runs on Ollama.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -479,15 +426,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Homebrew](https://formulae.brew.sh/formula/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
@@ -495,7 +441,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
@@ -534,26 +479,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
### Extensions & Plugins
@@ -575,7 +508,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
@@ -585,8 +518,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
@@ -597,23 +530,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@@ -10,7 +10,7 @@
// repository].
//
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
package api
import (
@@ -24,10 +24,7 @@ import (
"net/http"
"net/url"
"runtime"
"strconv"
"time"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/version"
@@ -79,14 +76,6 @@ func NewClient(base *url.URL, http *http.Client) *Client {
}
}
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
token, err := auth.Sign(ctx, []byte(challenge))
if err != nil {
return "", err
}
return token, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
@@ -108,21 +97,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil {
return err
@@ -132,10 +106,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
respObj, err := c.http.Do(request)
if err != nil {
return err
@@ -162,7 +132,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
const maxBufferSize = 512 * format.KiloByte
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
var buf io.Reader
var buf *bytes.Buffer
if data != nil {
bts, err := json.Marshal(data)
if err != nil {
@@ -173,22 +143,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
var err error
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil {
return err
@@ -198,10 +152,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
response, err := c.http.Do(request)
if err != nil {
return err
@@ -222,17 +172,11 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf("unmarshal: %w", err)
}
if response.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
return AuthorizationError{
StatusCode: response.StatusCode,
Status: response.Status,
PublicKey: pubKey,
}
} else if response.StatusCode >= http.StatusBadRequest {
if errorResponse.Error != "" {
return errors.New(errorResponse.Error)
}
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -240,10 +184,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
}
if errorResponse.Error != "" {
return errors.New(errorResponse.Error)
}
if err := fn(bts); err != nil {
return err
}
@@ -438,16 +378,3 @@ func (c *Client) Version(ctx context.Context) (string, error) {
return version.Version, nil
}
// Signout will disconnect an ollama instance from ollama.com
func (c *Client) Signout(ctx context.Context, encodedKey string) error {
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
}
func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
var resp UserResponse
if err := c.do(ctx, http.MethodPost, "/api/me", nil, &resp); err != nil {
return nil, err
}
return &resp, nil
}

View File

@@ -1,12 +1,6 @@
package api
import (
"encoding/json"
"fmt"
"net/http"
"net/http/httptest"
"net/url"
"strings"
"testing"
)
@@ -49,216 +43,3 @@ func TestClientFromEnvironment(t *testing.T) {
})
}
}
// testError represents an internal error type with status code and message
// this is used since the error response from the server is not a standard error struct
type testError struct {
message string
statusCode int
}
func (e testError) Error() string {
return e.message
}
func TestClientStream(t *testing.T) {
testCases := []struct {
name string
responses []any
wantErr string
}{
{
name: "immediate error response",
responses: []any{
testError{
message: "test error message",
statusCode: http.StatusBadRequest,
},
},
wantErr: "test error message",
},
{
name: "error after successful chunks, ok response",
responses: []any{
ChatResponse{Message: Message{Content: "partial response 1"}},
ChatResponse{Message: Message{Content: "partial response 2"}},
testError{
message: "mid-stream error",
statusCode: http.StatusOK,
},
},
wantErr: "mid-stream error",
},
{
name: "http status error takes precedence over general error",
responses: []any{
testError{
message: "custom error message",
statusCode: http.StatusInternalServerError,
},
},
wantErr: "500",
},
{
name: "successful stream completion",
responses: []any{
ChatResponse{Message: Message{Content: "chunk 1"}},
ChatResponse{Message: Message{Content: "chunk 2"}},
ChatResponse{
Message: Message{Content: "final chunk"},
Done: true,
DoneReason: "stop",
},
},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
flusher, ok := w.(http.Flusher)
if !ok {
t.Fatal("expected http.Flusher")
}
w.Header().Set("Content-Type", "application/x-ndjson")
for _, resp := range tc.responses {
if errResp, ok := resp.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
return
}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
flusher.Flush()
}
}))
defer ts.Close()
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var receivedChunks []ChatResponse
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
var resp ChatResponse
if err := json.Unmarshal(chunk, &resp); err != nil {
return fmt.Errorf("failed to unmarshal chunk: %w", err)
}
receivedChunks = append(receivedChunks, resp)
return nil
})
if tc.wantErr != "" {
if err == nil {
t.Fatal("expected error but got nil")
}
if !strings.Contains(err.Error(), tc.wantErr) {
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
}
return
}
if err != nil {
t.Errorf("unexpected error: %v", err)
}
})
}
}
func TestClientDo(t *testing.T) {
testCases := []struct {
name string
response any
wantErr string
}{
{
name: "immediate error response",
response: testError{
message: "test error message",
statusCode: http.StatusBadRequest,
},
wantErr: "test error message",
},
{
name: "server error response",
response: testError{
message: "internal error",
statusCode: http.StatusInternalServerError,
},
wantErr: "internal error",
},
{
name: "successful response",
response: struct {
ID string `json:"id"`
Success bool `json:"success"`
}{
ID: "msg_123",
Success: true,
},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
return
}
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
}))
defer ts.Close()
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var resp struct {
ID string `json:"id"`
Success bool `json:"success"`
}
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
if tc.wantErr != "" {
if err == nil {
t.Fatalf("got nil, want error %q", tc.wantErr)
}
if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
}
return
}
if err != nil {
t.Fatalf("got error %q, want nil", err)
}
if expectedResp, ok := tc.response.(struct {
ID string `json:"id"`
Success bool `json:"success"`
}); ok {
if resp.ID != expectedResp.ID {
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
}
if resp.Success != expectedResp.Success {
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
}
}
})
}
}

View File

@@ -2,10 +2,9 @@
Run the examples in this directory with:
```shell
```
go run example_name/main.go
```
## Chat - Chat with a model
- [chat/main.go](chat/main.go)

View File

@@ -10,11 +10,6 @@ import (
"strconv"
"strings"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
// StatusError is an error with an HTTP status code and message.
@@ -38,19 +33,6 @@ func (e StatusError) Error() string {
}
}
type AuthorizationError struct {
StatusCode int
Status string
PublicKey string `json:"public_key"`
}
func (e AuthorizationError) Error() string {
if e.Status != "" {
return e.Status
}
return "something went wrong, please see the ollama server logs for details"
}
// ImageData represents the raw binary data of an image file.
type ImageData []byte
@@ -91,24 +73,13 @@ type GenerateRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Images is an optional list of raw image bytes accompanying this
// Images is an optional list of base64-encoded images accompanying this
// request, for multimodal models.
Images []ImageData `json:"images,omitempty"`
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models. Needs to be a pointer so we can distinguish between false
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
Options map[string]interface{} `json:"options"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -133,16 +104,7 @@ type ChatRequest struct {
Tools `json:"tools,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models.
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
Options map[string]interface{} `json:"options"`
}
type Tools []Tool
@@ -161,14 +123,10 @@ func (t Tool) String() string {
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
Role string `json:"role"`
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
ToolName string `json:"tool_name,omitempty"`
}
func (m *Message) UnmarshalJSON(b []byte) error {
@@ -202,122 +160,21 @@ func (t *ToolCallFunctionArguments) String() string {
type Tool struct {
Type string `json:"type"`
Items any `json:"items,omitempty"`
Function ToolFunction `json:"function"`
}
// PropertyType can be either a string or an array of strings
type PropertyType []string
// UnmarshalJSON implements the json.Unmarshaler interface
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
// Try to unmarshal as a string first
var s string
if err := json.Unmarshal(data, &s); err == nil {
*pt = []string{s}
return nil
}
// If that fails, try to unmarshal as an array of strings
var a []string
if err := json.Unmarshal(data, &a); err != nil {
return err
}
*pt = a
return nil
}
// MarshalJSON implements the json.Marshaler interface
func (pt PropertyType) MarshalJSON() ([]byte, error) {
if len(pt) == 1 {
// If there's only one type, marshal as a string
return json.Marshal(pt[0])
}
// Otherwise marshal as an array
return json.Marshal([]string(pt))
}
// String returns a string representation of the PropertyType
func (pt PropertyType) String() string {
if len(pt) == 0 {
return ""
}
if len(pt) == 1 {
return pt[0]
}
return fmt.Sprintf("%v", []string(pt))
}
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
}
// ToTypeScriptType converts a ToolProperty to a TypeScript type string
func (tp ToolProperty) ToTypeScriptType() string {
if len(tp.AnyOf) > 0 {
var types []string
for _, anyOf := range tp.AnyOf {
types = append(types, anyOf.ToTypeScriptType())
}
return strings.Join(types, " | ")
}
if len(tp.Type) == 0 {
return "any"
}
if len(tp.Type) == 1 {
return mapToTypeScriptType(tp.Type[0])
}
var types []string
for _, t := range tp.Type {
types = append(types, mapToTypeScriptType(t))
}
return strings.Join(types, " | ")
}
// mapToTypeScriptType maps JSON Schema types to TypeScript types
func mapToTypeScriptType(jsonType string) string {
switch jsonType {
case "string":
return "string"
case "number", "integer":
return "number"
case "boolean":
return "boolean"
case "array":
return "any[]"
case "object":
return "Record<string, any>"
case "null":
return "null"
default:
return "any"
}
}
type ToolFunctionParameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
}
func (t *ToolFunctionParameters) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters ToolFunctionParameters `json:"parameters"`
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}
func (t *ToolFunction) String() string {
@@ -328,38 +185,16 @@ func (t *ToolFunction) String() string {
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Message contains the message or part of a message from the model.
Message Message `json:"message"`
// Done specifies if the response is complete.
Done bool `json:"done"`
// DoneReason is the reason the model stopped generating text.
DoneReason string `json:"done_reason,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
Metrics
}
// DebugInfo contains debug information for template rendering
type DebugInfo struct {
RenderedTemplate string `json:"rendered_template"`
ImageCount int `json:"image_count,omitempty"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@@ -387,6 +222,9 @@ type Options struct {
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
Stop []string `json:"stop,omitempty"`
}
@@ -396,7 +234,12 @@ type Runner struct {
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap *bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
@@ -412,14 +255,10 @@ type EmbedRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Truncate truncates the input to fit the model's max sequence length.
Truncate *bool `json:"truncate,omitempty"`
// Dimensions truncates the output embedding to the specified dimension.
Dimensions int `json:"dimensions,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
}
// EmbedResponse is the response from [Client.Embed].
@@ -445,7 +284,7 @@ type EmbeddingRequest struct {
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
}
// EmbeddingResponse is the response from [Client.Embeddings].
@@ -455,47 +294,18 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
// Model is the model name to create.
Model string `json:"model"`
// Stream specifies whether the response is streaming; it is true by default.
Stream *bool `json:"stream,omitempty"`
// Quantize is the quantization format for the model; leave blank to not change the quantization level.
Model string `json:"model"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// From is the name of the model or file to use as the source.
From string `json:"from,omitempty"`
// RemoteHost is the URL of the upstream ollama API for the model (if any).
RemoteHost string `json:"remote_host,omitempty"`
// Files is a map of files include when creating the model.
Files map[string]string `json:"files,omitempty"`
// Adapters is a map of LoRA adapters to include when creating the model.
Adapters map[string]string `json:"adapters,omitempty"`
// Template is the template used when constructing a request to the model.
Template string `json:"template,omitempty"`
// License is a string or list of strings for licenses.
License any `json:"license,omitempty"`
// System is the system prompt for the model.
System string `json:"system,omitempty"`
// Parameters is a map of hyper-parameters which are applied to the model.
Parameters map[string]any `json:"parameters,omitempty"`
// Messages is a list of messages added to the model before chat and generation requests.
Messages []Message `json:"messages,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
From string `json:"from,omitempty"`
Files map[string]string `json:"files,omitempty"`
Adapters map[string]string `json:"adapters,omitempty"`
Template string `json:"template,omitempty"`
License any `json:"license,omitempty"`
System string `json:"system,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Messages []Message `json:"messages,omitempty"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -520,7 +330,7 @@ type ShowRequest struct {
Template string `json:"template"`
Verbose bool `json:"verbose"`
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -528,22 +338,16 @@ type ShowRequest struct {
// ShowResponse is the response returned from [Client.Show].
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].
@@ -555,9 +359,9 @@ type CopyRequest struct {
// PullRequest is the request passed to [Client.Pull].
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
Username string `json:"username"` // Deprecated: ignored
Password string `json:"password"` // Deprecated: ignored
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead
@@ -597,26 +401,30 @@ type ProcessResponse struct {
// ListModelResponse is a single model description in [ListResponse].
type ListModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
// ProcessModelResponse is a single model description in [ProcessResponse].
type ProcessModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
ExpiresAt time.Time `json:"expires_at"`
SizeVRAM int64 `json:"size_vram"`
ContextLength int `json:"context_length"`
Name string `json:"name"`
Model string `json:"model"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
ExpiresAt time.Time `json:"expires_at"`
SizeVRAM int64 `json:"size_vram"`
}
type RetrieveModelResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
OwnedBy string `json:"owned_by"`
}
type TokenResponse struct {
@@ -628,22 +436,12 @@ type GenerateResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Response is the textual response itself.
Response string `json:"response"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
// Done specifies if the response is complete.
Done bool `json:"done"`
@@ -655,10 +453,6 @@ type GenerateResponse struct {
Context []int `json:"context,omitempty"`
Metrics
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
}
// ModelDetails provides details about a model.
@@ -671,25 +465,6 @@ type ModelDetails struct {
QuantizationLevel string `json:"quantization_level"`
}
// UserResponse provides information about a user.
type UserResponse struct {
ID uuid.UUID `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
// Tensor describes the metadata for a given tensor.
type Tensor struct {
Name string `json:"name"`
Type string `json:"type"`
Shape []uint64 `json:"shape"`
}
func (m *Metrics) Summary() {
if m.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
@@ -718,7 +493,7 @@ func (m *Metrics) Summary() {
}
}
func (opts *Options) FromMap(m map[string]any) error {
func (opts *Options) FromMap(m map[string]interface{}) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
@@ -775,12 +550,12 @@ func (opts *Options) FromMap(m map[string]any) error {
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []any, not []string
val, ok := val.([]any)
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []any to []string
// convert []interface{} to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
@@ -827,126 +602,24 @@ func DefaultOptions() Options {
RepeatPenalty: 1.1,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
Mirostat: 0,
MirostatTau: 5.0,
MirostatEta: 0.1,
Seed: -1,
Runner: Runner{
// options set when the model is loaded
NumCtx: int(envconfig.ContextLength()),
NumCtx: 2048,
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide
LowVRAM: false,
UseMLock: false,
UseMMap: nil,
},
}
}
// ThinkValue represents a value that can be a boolean or a string ("high", "medium", "low")
type ThinkValue struct {
// Value can be a bool or string
Value interface{}
}
// IsValid checks if the ThinkValue is valid
func (t *ThinkValue) IsValid() bool {
if t == nil || t.Value == nil {
return true // nil is valid (means not set)
}
switch v := t.Value.(type) {
case bool:
return true
case string:
return v == "high" || v == "medium" || v == "low"
default:
return false
}
}
// IsBool returns true if the value is a boolean
func (t *ThinkValue) IsBool() bool {
if t == nil || t.Value == nil {
return false
}
_, ok := t.Value.(bool)
return ok
}
// IsString returns true if the value is a string
func (t *ThinkValue) IsString() bool {
if t == nil || t.Value == nil {
return false
}
_, ok := t.Value.(string)
return ok
}
// Bool returns the value as a bool (true if enabled in any way)
func (t *ThinkValue) Bool() bool {
if t == nil || t.Value == nil {
return false
}
switch v := t.Value.(type) {
case bool:
return v
case string:
// Any string value ("high", "medium", "low") means thinking is enabled
return v == "high" || v == "medium" || v == "low"
default:
return false
}
}
// String returns the value as a string
func (t *ThinkValue) String() string {
if t == nil || t.Value == nil {
return ""
}
switch v := t.Value.(type) {
case string:
return v
case bool:
if v {
return "medium" // Default level when just true
}
return ""
default:
return ""
}
}
// UnmarshalJSON implements json.Unmarshaler
func (t *ThinkValue) UnmarshalJSON(data []byte) error {
// Try to unmarshal as bool first
var b bool
if err := json.Unmarshal(data, &b); err == nil {
t.Value = b
return nil
}
// Try to unmarshal as string
var s string
if err := json.Unmarshal(data, &s); err == nil {
// Validate string values
if s != "high" && s != "medium" && s != "low" {
return fmt.Errorf("invalid think value: %q (must be \"high\", \"medium\", \"low\", true, or false)", s)
}
t.Value = s
return nil
}
return fmt.Errorf("think must be a boolean or string (\"high\", \"medium\", \"low\")")
}
// MarshalJSON implements json.Marshaler
func (t *ThinkValue) MarshalJSON() ([]byte, error) {
if t == nil || t.Value == nil {
return []byte("null"), nil
}
return json.Marshal(t.Value)
}
type Duration struct {
time.Duration
}
@@ -971,7 +644,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(t * float64(time.Second))
d.Duration = time.Duration(int(t) * int(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)
@@ -989,7 +662,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
}
// FormatParams converts specified parameter options to their correct types
func FormatParams(params map[string][]string) (map[string]any, error) {
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
opts := Options{}
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
@@ -1003,7 +676,7 @@ func FormatParams(params map[string][]string) (map[string]any, error) {
}
}
out := make(map[string]any)
out := make(map[string]interface{})
// iterate params and set values based on json struct tags
for key, vals := range params {
if opt, ok := jsonOpts[key]; !ok {

View File

@@ -17,11 +17,6 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req string
exp *Duration
}{
{
name: "Unset",
req: `{ }`,
exp: nil,
},
{
name: "Positive Integer",
req: `{ "keep_alive": 42 }`,
@@ -30,7 +25,7 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
{
name: "Positive Float",
req: `{ "keep_alive": 42.5 }`,
exp: &Duration{42500 * time.Millisecond},
exp: &Duration{42 * time.Second},
},
{
name: "Positive Integer String",
@@ -139,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var oMap map[string]any
var oMap map[string]interface{}
err := json.Unmarshal([]byte(test.req), &oMap)
require.NoError(t, err)
opts := DefaultOptions()
@@ -236,255 +231,3 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
}
}
}
func TestToolFunction_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
wantErr string
}{
{
name: "valid enum with same types",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": ["a", "b", "c"]
}
}
}
}`,
wantErr: "",
},
{
name: "empty enum array",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": []
}
}
}
}`,
wantErr: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var tf ToolFunction
err := json.Unmarshal([]byte(tt.input), &tf)
if tt.wantErr != "" {
require.Error(t, err)
assert.Contains(t, err.Error(), tt.wantErr)
} else {
require.NoError(t, err)
}
})
}
}
func TestPropertyType_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expected PropertyType
}{
{
name: "string type",
input: `"string"`,
expected: PropertyType{"string"},
},
{
name: "array of types",
input: `["string", "number"]`,
expected: PropertyType{"string", "number"},
},
{
name: "array with single type",
input: `["string"]`,
expected: PropertyType{"string"},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var pt PropertyType
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(pt) != len(test.expected) {
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
}
for i, v := range pt {
if v != test.expected[i] {
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
}
}
})
}
}
func TestPropertyType_MarshalJSON(t *testing.T) {
tests := []struct {
name string
input PropertyType
expected string
}{
{
name: "single type",
input: PropertyType{"string"},
expected: `"string"`,
},
{
name: "multiple types",
input: PropertyType{"string", "number"},
expected: `["string","number"]`,
},
{
name: "empty type",
input: PropertyType{},
expected: `[]`,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
data, err := json.Marshal(test.input)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if string(data) != test.expected {
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
}
})
}
}
func TestThinking_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expectedThinking *ThinkValue
expectedError bool
}{
{
name: "true",
input: `{ "think": true }`,
expectedThinking: &ThinkValue{Value: true},
},
{
name: "false",
input: `{ "think": false }`,
expectedThinking: &ThinkValue{Value: false},
},
{
name: "unset",
input: `{ }`,
expectedThinking: nil,
},
{
name: "string_high",
input: `{ "think": "high" }`,
expectedThinking: &ThinkValue{Value: "high"},
},
{
name: "string_medium",
input: `{ "think": "medium" }`,
expectedThinking: &ThinkValue{Value: "medium"},
},
{
name: "string_low",
input: `{ "think": "low" }`,
expectedThinking: &ThinkValue{Value: "low"},
},
{
name: "invalid_string",
input: `{ "think": "invalid" }`,
expectedThinking: nil,
expectedError: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var req GenerateRequest
err := json.Unmarshal([]byte(test.input), &req)
if test.expectedError {
require.Error(t, err)
} else {
require.NoError(t, err)
if test.expectedThinking == nil {
assert.Nil(t, req.Think)
} else {
require.NotNil(t, req.Think)
assert.Equal(t, test.expectedThinking.Value, req.Think.Value)
}
}
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string
params ToolFunctionParameters
expected string
}{
{
name: "simple object with string property",
params: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
"name": {
Type: PropertyType{"string"},
Description: "The name of the person",
},
},
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
},
{
name: "marshal failure returns empty string",
params: ToolFunctionParameters{
Type: "object",
Defs: func() any {
// Create a cycle that will cause json.Marshal to fail
type selfRef struct {
Self *selfRef
}
s := &selfRef{}
s.Self = s
return s
}(),
Properties: map[string]ToolProperty{},
},
expected: "",
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
result := test.params.String()
assert.Equal(t, test.expected, result)
})
}
}

View File

@@ -1,142 +0,0 @@
package api
import (
"testing"
)
func TestToolParameterToTypeScriptType(t *testing.T) {
tests := []struct {
name string
param ToolProperty
expected string
}{
{
name: "single string type",
param: ToolProperty{
Type: PropertyType{"string"},
},
expected: "string",
},
{
name: "single number type",
param: ToolProperty{
Type: PropertyType{"number"},
},
expected: "number",
},
{
name: "integer maps to number",
param: ToolProperty{
Type: PropertyType{"integer"},
},
expected: "number",
},
{
name: "boolean type",
param: ToolProperty{
Type: PropertyType{"boolean"},
},
expected: "boolean",
},
{
name: "array type",
param: ToolProperty{
Type: PropertyType{"array"},
},
expected: "any[]",
},
{
name: "object type",
param: ToolProperty{
Type: PropertyType{"object"},
},
expected: "Record<string, any>",
},
{
name: "null type",
param: ToolProperty{
Type: PropertyType{"null"},
},
expected: "null",
},
{
name: "multiple types as union",
param: ToolProperty{
Type: PropertyType{"string", "number"},
},
expected: "string | number",
},
{
name: "string or null union",
param: ToolProperty{
Type: PropertyType{"string", "null"},
},
expected: "string | null",
},
{
name: "anyOf with single types",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"string"}},
{Type: PropertyType{"number"}},
},
},
expected: "string | number",
},
{
name: "anyOf with multiple types in each branch",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"string", "null"}},
{Type: PropertyType{"number"}},
},
},
expected: "string | null | number",
},
{
name: "nested anyOf",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"boolean"}},
{
AnyOf: []ToolProperty{
{Type: PropertyType{"string"}},
{Type: PropertyType{"number"}},
},
},
},
},
expected: "boolean | string | number",
},
{
name: "empty type returns any",
param: ToolProperty{
Type: PropertyType{},
},
expected: "any",
},
{
name: "unknown type maps to any",
param: ToolProperty{
Type: PropertyType{"unknown_type"},
},
expected: "any",
},
{
name: "multiple types including array",
param: ToolProperty{
Type: PropertyType{"string", "array", "null"},
},
expected: "string | any[] | null",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.param.ToTypeScriptType()
if result != tt.expected {
t.Errorf("ToTypeScriptType() = %q, want %q", result, tt.expected)
}
})
}
}

View File

@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
In the top directory of this repo, run the following powershell script
to build the ollama CLI, ollama app, and ollama installer.
```powershell
```
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
```

View File

@@ -4,14 +4,20 @@ import (
"fmt"
"log/slog"
"os"
"path/filepath"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/logutil"
)
func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug() {
level = slog.LevelDebug
}
var logFile *os.File
var err error
// Detect if we're a GUI app on windows, and if not, send logs to console
@@ -27,8 +33,20 @@ func InitLogging() {
return
}
}
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
slog.Info("ollama app started")
}

View File

@@ -19,31 +19,6 @@ import (
const defaultPrivateKey = "id_ed25519"
func keyPath() (string, error) {
fileIsReadable := func(fp string) bool {
info, err := os.Stat(fp)
if err != nil {
return false
}
// Check that it's a regular file, not a directory or other file type
if !info.Mode().IsRegular() {
return false
}
// Try to open it to check readability
file, err := os.Open(fp)
if err != nil {
return false
}
file.Close()
return true
}
systemPath := filepath.Join("/usr/share/ollama/.ollama", defaultPrivateKey)
if fileIsReadable(systemPath) {
return systemPath, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err

View File

@@ -5,7 +5,6 @@ import (
"context"
"crypto/ed25519"
"crypto/rand"
"encoding/base64"
"encoding/json"
"encoding/pem"
"errors"
@@ -15,13 +14,10 @@ import (
"math"
"net"
"net/http"
"net/url"
"os"
"os/signal"
"path/filepath"
"runtime"
"slices"
"sort"
"strconv"
"strings"
"sync/atomic"
@@ -33,40 +29,20 @@ import (
"github.com/olekukonko/tablewriter"
"github.com/spf13/cobra"
"golang.org/x/crypto/ssh"
"golang.org/x/sync/errgroup"
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/types/syncmap"
"github.com/ollama/ollama/version"
)
const ConnectInstructions = "To sign in, navigate to:\n https://ollama.com/connect?name=%s&key=%s\n\n"
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
return
}
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
if err != nil {
return
}
if slices.Contains(resp.Capabilities, model.CapabilityThinking) {
return
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
func getModelfileName(cmd *cobra.Command) (string, error) {
@@ -83,7 +59,7 @@ func getModelfileName(cmd *cobra.Command) (string, error) {
_, err = os.Stat(absName)
if err != nil {
return "", err
return filename, err
}
return absName, nil
@@ -129,7 +105,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
}
spinner.Stop()
req.Model = args[0]
req.Name = args[0]
quantize, _ := cmd.Flags().GetString("quantize")
if quantize != "" {
req.Quantize = quantize
@@ -140,54 +116,34 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
return err
}
var g errgroup.Group
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
files := syncmap.NewSyncMap[string, string]()
for f, digest := range req.Files {
g.Go(func() error {
if len(req.Files) > 0 {
fileMap := map[string]string{}
for f, digest := range req.Files {
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
return err
}
// TODO: this is incorrect since the file might be in a subdirectory
// instead this should take the path relative to the model directory
// but the current implementation does not allow this
files.Store(filepath.Base(f), digest)
return nil
})
fileMap[filepath.Base(f)] = digest
}
req.Files = fileMap
}
adapters := syncmap.NewSyncMap[string, string]()
for f, digest := range req.Adapters {
g.Go(func() error {
if len(req.Adapters) > 0 {
fileMap := map[string]string{}
for f, digest := range req.Adapters {
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
return err
}
// TODO: same here
adapters.Store(filepath.Base(f), digest)
return nil
})
fileMap[filepath.Base(f)] = digest
}
req.Adapters = fileMap
}
if err := g.Wait(); err != nil {
return err
}
req.Files = files.Items()
req.Adapters = adapters.Items()
bars := make(map[string]*progress.Bar)
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
bar, ok := bars[resp.Digest]
if !ok {
msg := resp.Status
if msg == "" {
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
}
bar = progress.NewBar(msg, resp.Total, resp.Completed)
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
bars[resp.Digest] = bar
p.Add(resp.Digest, bar)
}
@@ -256,7 +212,7 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, digest stri
}
}()
if err := client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
return "", err
}
return digest, nil
@@ -286,22 +242,9 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
req := &api.GenerateRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
Think: opts.Think,
}
return client.Generate(cmd.Context(), req, func(r api.GenerateResponse) error {
if r.RemoteModel != "" && opts.ShowConnect {
p.StopAndClear()
if strings.HasPrefix(r.RemoteHost, "https://ollama.com") {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on 'ollama.com' ⚡\n", r.RemoteModel)
} else {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on '%s'\n", r.RemoteModel, r.RemoteHost)
}
}
return nil
})
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
}
func StopHandler(cmd *cobra.Command, args []string) error {
@@ -313,7 +256,6 @@ func StopHandler(cmd *cobra.Command, args []string) error {
if strings.Contains(err.Error(), "not found") {
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
}
return err
}
return nil
}
@@ -322,10 +264,9 @@ func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
ShowConnect: true,
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]interface{}{},
}
format, err := cmd.Flags().GetString("format")
@@ -334,34 +275,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
opts.Format = format
thinkFlag := cmd.Flags().Lookup("think")
if thinkFlag.Changed {
thinkStr, err := cmd.Flags().GetString("think")
if err != nil {
return err
}
// Handle different values for --think
switch thinkStr {
case "", "true":
// --think or --think=true
opts.Think = &api.ThinkValue{Value: true}
case "false":
opts.Think = &api.ThinkValue{Value: false}
case "high", "medium", "low":
opts.Think = &api.ThinkValue{Value: thinkStr}
default:
return fmt.Errorf("invalid value for --think: %q (must be true, false, high, medium, or low)", thinkStr)
}
} else {
opts.Think = nil
}
hidethinking, err := cmd.Flags().GetBool("hidethinking")
if err != nil {
return err
}
opts.HideThinking = hidethinking
keepAlive, err := cmd.Flags().GetString("keepalive")
if err != nil {
return err
@@ -383,7 +296,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
prompts = append([]string{string(in)}, prompts...)
opts.ShowConnect = false
opts.WordWrap = false
interactive = false
}
@@ -426,45 +338,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below,
// these are left in for backwards compatibility with older servers
// that don't have the capabilities field in the model info
if len(info.ProjectorInfo) != 0 {
opts.MultiModal = true
}
for k := range info.ModelInfo {
if strings.Contains(k, ".vision.") {
opts.MultiModal = true
break
}
}
opts.MultiModal = len(info.ProjectorInfo) != 0
opts.ParentModel = info.Details.ParentModel
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
if errors.As(err, &sErr) && sErr.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
// the server and the client both have the same public key
if pubKey == sErr.PublicKey {
h, _ := os.Hostname()
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
fmt.Printf("You need to be signed in to Ollama to run Cloud models.\n\n")
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
}
return nil
}
return err
}
@@ -485,56 +363,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generate(cmd, opts)
}
func SigninHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
user, err := client.Whoami(cmd.Context())
if err != nil {
return err
}
if user != nil && user.Name != "" {
fmt.Printf("You are already signed in as user '%s'\n", user.Name)
fmt.Println()
return nil
}
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
h, _ := os.Hostname()
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
return nil
}
func SignoutHandler(cmd *cobra.Command, args []string) error {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
err = client.Signout(cmd.Context(), encKey)
if err != nil {
return err
}
fmt.Println("You have signed out of ollama.com")
fmt.Println()
return nil
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -587,8 +415,7 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if spinner != nil {
spinner.Stop()
}
errStr := strings.ToLower(err.Error())
if strings.Contains(errStr, "access denied") || strings.Contains(errStr, "unauthorized") {
if strings.Contains(err.Error(), "access denied") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
return err
@@ -622,14 +449,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
for _, m := range models.Models {
if len(args) == 0 || strings.HasPrefix(strings.ToLower(m.Name), strings.ToLower(args[0])) {
var size string
if m.RemoteModel != "" {
size = "-"
} else {
size = format.HumanBytes(m.Size)
}
data = append(data, []string{m.Name, m.Digest[:12], size, format.HumanTime(m.ModifiedAt, "Never")})
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
}
}
@@ -683,13 +503,12 @@ func ListRunningHandler(cmd *cobra.Command, args []string) error {
} else {
until = format.HumanTime(m.ExpiresAt, "Never")
}
ctxStr := strconv.Itoa(m.ContextLength)
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, ctxStr, until})
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, until})
}
}
table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"NAME", "ID", "SIZE", "PROCESSOR", "CONTEXT", "UNTIL"})
table.SetHeader([]string{"NAME", "ID", "SIZE", "PROCESSOR", "UNTIL"})
table.SetHeaderAlignment(tablewriter.ALIGN_LEFT)
table.SetAlignment(tablewriter.ALIGN_LEFT)
table.SetHeaderLine(false)
@@ -714,8 +533,8 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
KeepAlive: &api.Duration{Duration: 0},
}
if err := loadOrUnloadModel(cmd, opts); err != nil {
if !strings.Contains(strings.ToLower(err.Error()), "not found") {
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", args[0])
if !strings.Contains(err.Error(), "not found") {
return fmt.Errorf("unable to stop existing running model \"%s\": %s", args[0], err)
}
}
@@ -740,9 +559,8 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
parameters, errParams := cmd.Flags().GetBool("parameters")
system, errSystem := cmd.Flags().GetBool("system")
template, errTemplate := cmd.Flags().GetBool("template")
verbose, errVerbose := cmd.Flags().GetBool("verbose")
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate, errVerbose} {
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
if boolErr != nil {
return errors.New("error retrieving flags")
}
@@ -780,7 +598,7 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
}
req := api.ShowRequest{Name: args[0], Verbose: verbose}
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
@@ -803,10 +621,10 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil
}
return showInfo(resp, verbose, os.Stdout)
return showInfo(resp, os.Stdout)
}
func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
func showInfo(resp *api.ShowResponse, w io.Writer) error {
tableRender := func(header string, rows func() [][]string) {
fmt.Fprintln(w, " ", header)
table := tablewriter.NewWriter(w)
@@ -826,36 +644,12 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
}
tableRender("Model", func() (rows [][]string) {
if resp.RemoteHost != "" {
rows = append(rows, []string{"", "Remote model", resp.RemoteModel})
rows = append(rows, []string{"", "Remote URL", resp.RemoteHost})
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
var paramStr string
if resp.Details.ParameterSize != "" {
paramStr = resp.Details.ParameterSize
} else if v, ok := resp.ModelInfo["general.parameter_count"]; ok {
if f, ok := v.(float64); ok {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "context length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ModelInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "context length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64), 'f', -1, 64)})
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
@@ -864,15 +658,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
return
})
if len(resp.Capabilities) > 0 {
tableRender("Capabilities", func() (rows [][]string) {
for _, capability := range resp.Capabilities {
rows = append(rows, []string{"", capability.String()})
}
return
})
}
if resp.ProjectorInfo != nil {
tableRender("Projector", func() (rows [][]string) {
arch := resp.ProjectorInfo["general.architecture"].(string)
@@ -896,89 +681,12 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
})
}
if resp.ModelInfo != nil && verbose {
tableRender("Metadata", func() (rows [][]string) {
keys := make([]string, 0, len(resp.ModelInfo))
for k := range resp.ModelInfo {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
var v string
switch vData := resp.ModelInfo[k].(type) {
case bool:
v = fmt.Sprintf("%t", vData)
case string:
v = vData
case float64:
v = fmt.Sprintf("%g", vData)
case []any:
targetWidth := 10 // Small width where we are displaying the data in a column
var itemsToShow int
totalWidth := 1 // Start with 1 for opening bracket
// Find how many we can fit
for i := range vData {
itemStr := fmt.Sprintf("%v", vData[i])
width := runewidth.StringWidth(itemStr)
// Add separator width (", ") for all items except the first
if i > 0 {
width += 2
}
// Check if adding this item would exceed our width limit
if totalWidth+width > targetWidth && i > 0 {
break
}
totalWidth += width
itemsToShow++
}
// Format the output
if itemsToShow < len(vData) {
v = fmt.Sprintf("%v", vData[:itemsToShow])
v = strings.TrimSuffix(v, "]")
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
} else {
v = fmt.Sprintf("%v", vData)
}
default:
v = fmt.Sprintf("%T", vData)
}
rows = append(rows, []string{"", k, v})
}
return
})
}
if len(resp.Tensors) > 0 && verbose {
tableRender("Tensors", func() (rows [][]string) {
for _, t := range resp.Tensors {
rows = append(rows, []string{"", t.Name, t.Type, fmt.Sprint(t.Shape)})
}
return
})
}
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
count := 0
for scanner.Scan() {
text := strings.TrimSpace(scanner.Text())
if text == "" {
continue
for scanner.Scan() && (len(rows) < n || n < 0) {
if text := scanner.Text(); text != "" {
rows = append(rows, []string{"", strings.TrimSpace(text)})
}
count++
if n < 0 || count <= n {
rows = append(rows, []string{"", text})
}
}
if n >= 0 && count > n {
rows = append(rows, []string{"", "..."})
}
return
}
@@ -1033,38 +741,13 @@ func PullHandler(cmd *cobra.Command, args []string) error {
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
if resp.Completed == 0 {
// This is the initial status update for the
// layer, which the server sends before
// beginning the download, for clients to
// compute total size and prepare for
// downloads, if needed.
//
// Skipping this here to avoid showing a 0%
// progress bar, which *should* clue the user
// into the fact that many things are being
// downloaded and that the current active
// download is not that last. However, in rare
// cases it seems to be triggering to some, and
// it isn't worth explaining, so just ignore
// and regress to the old UI that keeps giving
// you the "But wait, there is more!" after
// each "100% done" bar, which is "better."
return nil
}
if spinner != nil {
spinner.Stop()
}
bar, ok := bars[resp.Digest]
if !ok {
name, isDigest := strings.CutPrefix(resp.Digest, "sha256:")
name = strings.TrimSpace(name)
if isDigest {
name = name[:min(12, len(name))]
}
bar = progress.NewBar(fmt.Sprintf("pulling %s:", name), resp.Total, resp.Completed)
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
bars[resp.Digest] = bar
p.Add(resp.Digest, bar)
}
@@ -1084,26 +767,27 @@ func PullHandler(cmd *cobra.Command, args []string) error {
}
request := api.PullRequest{Name: args[0], Insecure: insecure}
return client.Pull(cmd.Context(), &request, fn)
if err := client.Pull(cmd.Context(), &request, fn); err != nil {
return err
}
return nil
}
type generateContextKey string
type runOptions struct {
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
Think *api.ThinkValue
HideThinking bool
ShowConnect bool
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]interface{}
MultiModal bool
KeepAlive *api.Duration
}
type displayResponseState struct {
@@ -1142,11 +826,10 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
}
switch ch {
case ' ', '\t':
case ' ':
state.wordBuffer = ""
case '\n', '\r':
case '\n':
state.lineLength = 0
state.wordBuffer = ""
default:
state.wordBuffer += string(ch)
}
@@ -1160,26 +843,6 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
}
}
func thinkingOutputOpeningText(plainText bool) string {
text := "Thinking...\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
}
func thinkingOutputClosingText(plainText bool) string {
text := "...done thinking.\n\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
}
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -1204,55 +867,19 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
}()
var state *displayResponseState = &displayResponseState{}
var thinkingContent strings.Builder
var latest api.ChatResponse
var fullResponse strings.Builder
var thinkTagOpened bool = false
var thinkTagClosed bool = false
role := "assistant"
var role string
fn := func(response api.ChatResponse) error {
if response.Message.Content != "" || !opts.HideThinking {
p.StopAndClear()
}
p.StopAndClear()
latest = response
role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(false))
thinkTagOpened = true
thinkTagClosed = false
}
thinkingContent.WriteString(response.Message.Thinking)
displayResponse(response.Message.Thinking, opts.WordWrap, state)
}
content := response.Message.Content
if thinkTagOpened && !thinkTagClosed && (content != "" || len(response.Message.ToolCalls) > 0) {
if !strings.HasSuffix(thinkingContent.String(), "\n") {
fmt.Println()
}
fmt.Print(thinkingOutputClosingText(false))
thinkTagOpened = false
thinkTagClosed = true
state = &displayResponseState{}
}
// purposefully not putting thinking blocks in the response, which would
// only be needed if we later added tool calling to the cli (they get
// filtered out anyway since current models don't expect them unless you're
// about to finish some tool calls)
fullResponse.WriteString(content)
if response.Message.ToolCalls != nil {
toolCalls := response.Message.ToolCalls
if len(toolCalls) > 0 {
fmt.Print(renderToolCalls(toolCalls, false))
}
}
displayResponse(content, opts.WordWrap, state)
return nil
@@ -1267,7 +894,6 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
Messages: opts.Messages,
Format: json.RawMessage(opts.Format),
Options: opts.Options,
Think: opts.Think,
}
if opts.KeepAlive != nil {
@@ -1278,14 +904,6 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
if errors.Is(err, context.Canceled) {
return nil, nil
}
// this error should ideally be wrapped properly by the client
if strings.Contains(err.Error(), "upstream error") {
p.StopAndClear()
fmt.Println("An error occurred while processing your message. Please try again.")
fmt.Println()
return nil, nil
}
return nil, err
}
@@ -1337,49 +955,15 @@ func generate(cmd *cobra.Command, opts runOptions) error {
}()
var state *displayResponseState = &displayResponseState{}
var thinkingContent strings.Builder
var thinkTagOpened bool = false
var thinkTagClosed bool = false
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
fn := func(response api.GenerateResponse) error {
p.StopAndClear()
latest = response
content := response.Response
if response.Response != "" || !opts.HideThinking {
p.StopAndClear()
}
if response.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(plainText))
thinkTagOpened = true
thinkTagClosed = false
}
thinkingContent.WriteString(response.Thinking)
displayResponse(response.Thinking, opts.WordWrap, state)
}
if thinkTagOpened && !thinkTagClosed && (content != "" || len(response.ToolCalls) > 0) {
if !strings.HasSuffix(thinkingContent.String(), "\n") {
fmt.Println()
}
fmt.Print(thinkingOutputClosingText(plainText))
thinkTagOpened = false
thinkTagClosed = true
state = &displayResponseState{}
}
displayResponse(content, opts.WordWrap, state)
if response.ToolCalls != nil {
toolCalls := response.ToolCalls
if len(toolCalls) > 0 {
fmt.Print(renderToolCalls(toolCalls, plainText))
}
}
return nil
}
@@ -1403,7 +987,6 @@ func generate(cmd *cobra.Command, opts runOptions) error {
System: opts.System,
Options: opts.Options,
KeepAlive: opts.KeepAlive,
Think: opts.Think,
}
if err := client.Generate(ctx, &request, fn); err != nil {
@@ -1507,11 +1090,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := client.Heartbeat(cmd.Context()); err != nil {
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
if !strings.Contains(err.Error(), " refused") {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return fmt.Errorf("ollama server not responding - %w", err)
return errors.New("could not connect to ollama app, is it running?")
}
}
return nil
@@ -1582,14 +1165,14 @@ func NewCLI() *cobra.Command {
createCmd := &cobra.Command{
Use: "create MODEL",
Short: "Create a model",
Short: "Create a model from a Modelfile",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: CreateHandler,
}
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\")")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
showCmd := &cobra.Command{
Use: "show MODEL",
@@ -1604,7 +1187,6 @@ func NewCLI() *cobra.Command {
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
showCmd.Flags().Bool("template", false, "Show template of a model")
showCmd.Flags().Bool("system", false, "Show system message of a model")
showCmd.Flags().BoolP("verbose", "v", false, "Show detailed model information")
runCmd := &cobra.Command{
Use: "run MODEL [PROMPT]",
@@ -1619,9 +1201,6 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
runCmd.Flags().String("think", "", "Enable thinking mode: true/false or high/medium/low for supported models")
runCmd.Flags().Lookup("think").NoOptDefVal = "true"
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
stopCmd := &cobra.Command{
Use: "stop MODEL",
@@ -1659,22 +1238,6 @@ func NewCLI() *cobra.Command {
pushCmd.Flags().Bool("insecure", false, "Use an insecure registry")
signinCmd := &cobra.Command{
Use: "signin",
Short: "Sign in to ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SigninHandler,
}
signoutCmd := &cobra.Command{
Use: "signout",
Short: "Sign out from ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SignoutHandler,
}
listCmd := &cobra.Command{
Use: "list",
Aliases: []string{"ls"},
@@ -1689,6 +1252,7 @@ func NewCLI() *cobra.Command {
PreRunE: checkServerHeartbeat,
RunE: ListRunningHandler,
}
copyCmd := &cobra.Command{
Use: "cp SOURCE DESTINATION",
Short: "Copy a model",
@@ -1707,6 +1271,7 @@ func NewCLI() *cobra.Command {
runnerCmd := &cobra.Command{
Use: "runner",
Short: llama.PrintSystemInfo(),
Hidden: true,
RunE: func(cmd *cobra.Command, args []string) error {
return runner.Execute(os.Args[1:])
@@ -1741,7 +1306,6 @@ func NewCLI() *cobra.Command {
appendEnvDocs(cmd, []envconfig.EnvVar{
envVars["OLLAMA_DEBUG"],
envVars["OLLAMA_HOST"],
envVars["OLLAMA_CONTEXT_LENGTH"],
envVars["OLLAMA_KEEP_ALIVE"],
envVars["OLLAMA_MAX_LOADED_MODELS"],
envVars["OLLAMA_MAX_QUEUE"],
@@ -1750,6 +1314,7 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_KV_CACHE_TYPE"],
envVars["OLLAMA_LLM_LIBRARY"],
@@ -1769,8 +1334,6 @@ func NewCLI() *cobra.Command {
stopCmd,
pullCmd,
pushCmd,
signinCmd,
signoutCmd,
listCmd,
psCmd,
copyCmd,
@@ -1780,70 +1343,3 @@ func NewCLI() *cobra.Command {
return rootCmd
}
// If the user has explicitly set thinking options, either through the CLI or
// through the `/set think` or `set nothink` interactive options, then we
// respect them. Otherwise, we check model capabilities to see if the model
// supports thinking. If the model does support thinking, we enable it.
// Otherwise, we unset the thinking option (which is different than setting it
// to false).
//
// If capabilities are not provided, we fetch them from the server.
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*api.ThinkValue, error) {
if explicitlySetByUser {
return runOpts.Think, nil
}
if caps == nil {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
ret, err := client.Show(context.Background(), &api.ShowRequest{
Model: runOpts.Model,
})
if err != nil {
return nil, err
}
caps = &ret.Capabilities
}
thinkingSupported := false
for _, cap := range *caps {
if cap == model.CapabilityThinking {
thinkingSupported = true
}
}
if thinkingSupported {
return &api.ThinkValue{Value: true}, nil
}
return nil, nil
}
func renderToolCalls(toolCalls []api.ToolCall, plainText bool) string {
out := ""
formatExplanation := ""
formatValues := ""
if !plainText {
formatExplanation = readline.ColorGrey + readline.ColorBold
formatValues = readline.ColorDefault
out += formatExplanation
}
for i, toolCall := range toolCalls {
argsAsJSON, err := json.Marshal(toolCall.Function.Arguments)
if err != nil {
return ""
}
if i > 0 {
out += "\n"
}
// all tool calls are unexpected since we don't currently support registering any in the CLI
out += fmt.Sprintf(" Model called a non-existent function '%s()' with arguments: %s", formatValues+toolCall.Function.Name+formatExplanation, formatValues+string(argsAsJSON)+formatExplanation)
}
if !plainText {
out += readline.ColorDefault
}
return out
}

View File

@@ -2,21 +2,19 @@ package cmd
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
func TestShowInfo(t *testing.T) {
@@ -28,7 +26,7 @@ func TestShowInfo(t *testing.T) {
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, false, &b); err != nil {
}, &b); err != nil {
t.Fatal(err)
}
@@ -58,7 +56,7 @@ func TestShowInfo(t *testing.T) {
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, false, &b); err != nil {
}, &b); err != nil {
t.Fatal(err)
}
@@ -69,60 +67,6 @@ func TestShowInfo(t *testing.T) {
embedding length 0
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("verbose model", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "8B",
QuantizationLevel: "FP16",
},
Parameters: `
stop up`,
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(8_000_000_000),
"some.true_bool": true,
"some.false_bool": false,
"test.context_length": float64(1000),
"test.embedding_length": float64(11434),
},
Tensors: []api.Tensor{
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
},
}, true, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 8B
context length 1000
embedding length 11434
quantization FP16
Parameters
stop up
Metadata
general.architecture test
general.parameter_count 8e+09
some.false_bool false
some.true_bool true
test.context_length 1000
test.embedding_length 11434
Tensors
blk.0.attn_k.weight BF16 [42 3117]
blk.0.attn_q.weight FP16 [3117 42]
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
@@ -144,7 +88,7 @@ func TestShowInfo(t *testing.T) {
stop you
stop up
temperature 99`,
}, false, &b); err != nil {
}, &b); err != nil {
t.Fatal(err)
}
@@ -181,7 +125,7 @@ func TestShowInfo(t *testing.T) {
"clip.vision.embedding_length": float64(0),
"clip.vision.projection_dim": float64(0),
},
}, false, &b); err != nil {
}, &b); err != nil {
t.Fatal(err)
}
@@ -214,7 +158,7 @@ func TestShowInfo(t *testing.T) {
Ahoy, matey!
Weigh anchor!
`,
}, false, &b); err != nil {
}, &b); err != nil {
t.Fatal(err)
}
@@ -226,7 +170,6 @@ Weigh anchor!
System
You are a pirate!
Ahoy, matey!
...
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
@@ -244,7 +187,7 @@ Weigh anchor!
QuantizationLevel: "FP16",
},
License: license,
}, false, &b); err != nil {
}, &b); err != nil {
t.Fatal(err)
}
@@ -262,34 +205,6 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("capabilities", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
}, false, &b); err != nil {
t.Fatal(err)
}
expect := " Model\n" +
" architecture test \n" +
" parameters 7B \n" +
" quantization FP16 \n" +
"\n" +
" Capabilities\n" +
" vision \n" +
" tools \n" +
"\n"
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}
func TestDeleteHandler(t *testing.T) {
@@ -305,8 +220,6 @@ func TestDeleteHandler(t *testing.T) {
w.WriteHeader(http.StatusOK)
} else {
w.WriteHeader(http.StatusNotFound)
errPayload := `{"error":"model '%s' not found"}`
w.Write([]byte(fmt.Sprintf(errPayload, req.Name)))
}
return
}
@@ -340,7 +253,7 @@ func TestDeleteHandler(t *testing.T) {
t.Cleanup(mockServer.Close)
cmd := &cobra.Command{}
cmd.SetContext(t.Context())
cmd.SetContext(context.TODO())
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
t.Fatalf("DeleteHandler failed: %v", err)
}
@@ -349,7 +262,7 @@ func TestDeleteHandler(t *testing.T) {
}
err := DeleteHandler(cmd, []string{"test-model-not-found"})
if err == nil || !strings.Contains(err.Error(), "model 'test-model-not-found' not found") {
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
}
}
@@ -366,7 +279,7 @@ func TestGetModelfileName(t *testing.T) {
name: "no modelfile specified, no modelfile exists",
modelfileName: "",
fileExists: false,
expectedName: "",
expectedName: "Modelfile",
expectedErr: os.ErrNotExist,
},
{
@@ -380,7 +293,7 @@ func TestGetModelfileName(t *testing.T) {
name: "modelfile specified, no modelfile exists",
modelfileName: "crazyfile",
fileExists: false,
expectedName: "",
expectedName: "crazyfile",
expectedErr: os.ErrNotExist,
},
{
@@ -402,6 +315,11 @@ func TestGetModelfileName(t *testing.T) {
var expectedFilename string
if tt.fileExists {
tempDir, err := os.MkdirTemp("", "modelfiledir")
defer os.RemoveAll(tempDir)
if err != nil {
t.Fatalf("temp modelfile dir creation failed: %v", err)
}
var fn string
if tt.modelfileName != "" {
fn = tt.modelfileName
@@ -409,11 +327,10 @@ func TestGetModelfileName(t *testing.T) {
fn = "Modelfile"
}
tempFile, err := os.CreateTemp(t.TempDir(), fn)
tempFile, err := os.CreateTemp(tempDir, fn)
if err != nil {
t.Fatalf("temp modelfile creation failed: %v", err)
}
defer tempFile.Close()
expectedFilename = tempFile.Name()
err = cmd.Flags().Set("file", expectedFilename)
@@ -502,7 +419,7 @@ func TestPushHandler(t *testing.T) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "403: {\"errors\":[{\"code\":\"ACCESS DENIED\", \"message\":\"access denied\"}]}",
"error": "access denied",
})
if err != nil {
t.Fatal(err)
@@ -525,11 +442,10 @@ func TestPushHandler(t *testing.T) {
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
initializeKeypair()
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(t.Context())
cmd.SetContext(context.TODO())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
@@ -574,96 +490,6 @@ func TestPushHandler(t *testing.T) {
}
}
func TestListHandler(t *testing.T) {
tests := []struct {
name string
args []string
serverResponse []api.ListModelResponse
expectedError string
expectedOutput string
}{
{
name: "list all models",
args: []string{},
serverResponse: []api.ListModelResponse{
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
},
expectedOutput: "NAME ID SIZE MODIFIED \n" +
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
"model2 sha256:def45 2.0 KB 2 days ago \n",
},
{
name: "filter models by prefix",
args: []string{"model1"},
serverResponse: []api.ListModelResponse{
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
},
expectedOutput: "NAME ID SIZE MODIFIED \n" +
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
},
{
name: "server error",
args: []string{},
expectedError: "server error",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
http.Error(w, "not found", http.StatusNotFound)
return
}
if tt.expectedError != "" {
http.Error(w, tt.expectedError, http.StatusInternalServerError)
return
}
response := api.ListResponse{Models: tt.serverResponse}
if err := json.NewEncoder(w).Encode(response); err != nil {
t.Fatal(err)
}
}))
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
cmd := &cobra.Command{}
cmd.SetContext(t.Context())
// Capture stdout
oldStdout := os.Stdout
r, w, _ := os.Pipe()
os.Stdout = w
err := ListHandler(cmd, tt.args)
// Restore stdout and get output
w.Close()
os.Stdout = oldStdout
output, _ := io.ReadAll(r)
if tt.expectedError == "" {
if err != nil {
t.Errorf("expected no error, got %v", err)
}
if got := string(output); got != tt.expectedOutput {
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
}
} else {
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
}
}
})
}
}
func TestCreateHandler(t *testing.T) {
tests := []struct {
name string
@@ -689,7 +515,7 @@ func TestCreateHandler(t *testing.T) {
return
}
if req.Model != "test-model" {
if req.Name != "test-model" {
t.Errorf("expected model name 'test-model', got %s", req.Name)
}
@@ -729,7 +555,7 @@ func TestCreateHandler(t *testing.T) {
}))
t.Setenv("OLLAMA_HOST", mockServer.URL)
t.Cleanup(mockServer.Close)
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
tempFile, err := os.CreateTemp("", "modelfile")
if err != nil {
t.Fatal(err)
}
@@ -749,7 +575,7 @@ func TestCreateHandler(t *testing.T) {
}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(t.Context())
cmd.SetContext(context.TODO())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
@@ -790,132 +616,3 @@ func TestCreateHandler(t *testing.T) {
})
}
}
func TestNewCreateRequest(t *testing.T) {
tests := []struct {
name string
from string
opts runOptions
expected *api.CreateRequest
}{
{
"basic test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "",
Prompt: "You are a fun AI agent",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
},
},
{
"parent model as filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "/some/file/like/etc/passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model as windows filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"options test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Options: map[string]any{
"temperature": 1.0,
},
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
Parameters: map[string]any{
"temperature": 1.0,
},
},
},
{
"messages test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
actual := NewCreateRequest(tt.from, tt.opts)
if !cmp.Equal(actual, tt.expected) {
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
}
})
}
}

75
cmd/convert/main.go Normal file
View File

@@ -0,0 +1,75 @@
package main
import (
"fmt"
"os"
"path/filepath"
"runtime"
"github.com/ollama/ollama/convert"
)
func main() {
// Check if directory path is provided
if len(os.Args) != 2 {
fmt.Printf("expected one argument (directory path), got %d\n", len(os.Args)-1)
os.Exit(1)
}
dirPath := os.Args[1]
if err := convertFromDirectory(dirPath); err != nil {
fmt.Fprintf(os.Stderr, "error: %v\n", err)
os.Exit(1)
}
fmt.Println("conversion completed successfully")
}
func convertFromDirectory(dirPath string) error {
// Verify the directory exists and is accessible
info, err := os.Stat(dirPath)
if err != nil {
if os.IsNotExist(err) {
return fmt.Errorf("directory does not exist: %s", dirPath)
}
if os.IsPermission(err) {
return fmt.Errorf("permission denied accessing directory: %s", dirPath)
}
return fmt.Errorf("error accessing directory: %v", err)
}
if !info.IsDir() {
return fmt.Errorf("%s is not a directory", dirPath)
}
// Get the directory where the script is located
_, scriptPath, _, ok := runtime.Caller(0)
if !ok {
return fmt.Errorf("could not determine script location")
}
scriptDir := filepath.Dir(scriptPath)
// Create out directory relative to the script location
outDir := filepath.Join(scriptDir, "out")
if err := os.MkdirAll(outDir, 0755); err != nil {
return fmt.Errorf("failed to create output directory: %v", err)
}
// Create output file in the out directory
outFile := filepath.Join(outDir, "model.fp16")
fmt.Printf("writing output to: %s\n", outFile)
t, err := os.Create(outFile)
if err != nil {
return fmt.Errorf("failed to create output file: %v", err)
}
defer t.Close()
// Use standard os.DirFS to read from directory
if err := convert.ConvertModel(os.DirFS(dirPath), t); err != nil {
// Clean up the output file if conversion fails
os.Remove(outFile)
return fmt.Errorf("model conversion failed: %v", err)
}
return nil
}

View File

@@ -18,7 +18,6 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
)
type MultilineState int
@@ -44,7 +43,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
if opts.MultiModal {
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
}
fmt.Fprintln(os.Stderr, "")
@@ -62,8 +61,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
fmt.Fprintln(os.Stderr, "")
}
@@ -130,7 +127,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
var sb strings.Builder
var multiline MultilineState
var thinkExplicitlySet bool = opts.Think != nil
for {
line, err := scanner.Readline()
@@ -198,19 +194,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
continue
}
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue
@@ -271,35 +255,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
thinkValue := api.ThinkValue{Value: true}
var maybeLevel string
if len(args) > 2 {
maybeLevel = args[2]
}
if maybeLevel != "" {
// TODO(drifkin): validate the level, could be model dependent
// though... It will also be validated on the server once a call is
// made.
thinkValue.Value = maybeLevel
}
opts.Think = &thinkValue
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
if maybeLevel != "" {
fmt.Printf("Set 'think' mode to '%s'.\n", maybeLevel)
} else {
fmt.Println("Set 'think' mode.")
}
case "nothink":
opts.Think = &api.ThinkValue{Value: false}
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
@@ -388,7 +343,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] {
case "info":
_ = showInfo(resp, false, os.Stderr)
_ = showInfo(resp, os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
@@ -398,21 +353,18 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println("Model defined parameters:")
if resp.Parameters == "" {
fmt.Println(" No additional parameters were specified for this model.")
fmt.Println("No parameters were specified for this model.")
} else {
for _, l := range strings.Split(resp.Parameters, "\n") {
fmt.Printf(" %s\n", l)
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf("%-*s %v\n", 30, k, v)
}
fmt.Println()
}
}
fmt.Println()
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf(" %-*s %v\n", 30, k, v)
}
fmt.Println()
fmt.Println("Model defined parameters:")
fmt.Println(resp.Parameters)
}
case "system":
switch {
@@ -491,12 +443,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
assistant, err := chat(cmd, opts)
if err != nil {
if strings.Contains(err.Error(), "does not support thinking") ||
strings.Contains(err.Error(), "invalid think value") {
fmt.Printf("error: %v\n", err)
sb.Reset()
continue
}
return err
}
if assistant != nil {
@@ -509,16 +455,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
parentModel := opts.ParentModel
modelName := model.ParseName(parentModel)
if !modelName.IsValid() {
parentModel = ""
}
req := &api.CreateRequest{
Model: name,
From: cmp.Or(parentModel, opts.Model),
Name: name,
From: cmp.Or(opts.ParentModel, opts.Model),
}
if opts.System != "" {
@@ -552,7 +491,6 @@ func normalizeFilePath(fp string) string {
"\\\\", "\\", // Escaped backslash
"\\*", "*", // Escaped asterisk
"\\?", "?", // Escaped question mark
"\\~", "~", // Escaped tilde
).Replace(fp)
}
@@ -560,7 +498,7 @@ func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
@@ -580,8 +518,6 @@ func extractFileData(input string) (string, []api.ImageData, error) {
return "", imgs, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
input = strings.ReplaceAll(input, "'"+fp+"'", "")
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
@@ -602,7 +538,7 @@ func getImageData(filePath string) ([]byte, error) {
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}

View File

@@ -1,8 +1,6 @@
package cmd
import (
"os"
"path/filepath"
"testing"
"github.com/stretchr/testify/assert"
@@ -12,17 +10,14 @@ func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
res := extractFileNames(input)
assert.Len(t, res, 7)
assert.Len(t, res, 5)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.JPG")
assert.Contains(t, res[5], "six.webp")
assert.Contains(t, res[6], "seven.WEBP")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbetween1")
assert.NotContains(t, res, "./1.svg")
@@ -33,12 +28,10 @@ func TestExtractFilenames(t *testing.T) {
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
d:\path with\spaces\thirteen.WEBP some ending
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
`
res = extractFileNames(input)
assert.Len(t, res, 13)
assert.Len(t, res, 10)
assert.NotContains(t, res, "inbetween2")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
@@ -56,31 +49,4 @@ d:\path with\spaces\thirteen.WEBP some ending
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.PNG")
assert.Contains(t, res[9], "E:")
assert.Contains(t, res[10], "eleven.webp")
assert.Contains(t, res[10], "c:")
assert.Contains(t, res[11], "twelve.WebP")
assert.Contains(t, res[11], "c:")
assert.Contains(t, res[12], "thirteen.WEBP")
assert.Contains(t, res[12], "d:")
}
// Ensure that file paths wrapped in single quotes are removed with the quotes.
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
dir := t.TempDir()
fp := filepath.Join(dir, "img.jpg")
data := make([]byte, 600)
copy(data, []byte{
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xd9,
})
if err := os.WriteFile(fp, data, 0o600); err != nil {
t.Fatalf("failed to write test image: %v", err)
}
input := "before '" + fp + "' after"
cleaned, imgs, err := extractFileData(input)
assert.NoError(t, err)
assert.Len(t, imgs, 1)
assert.Equal(t, cleaned, "before after")
}

View File

@@ -4,7 +4,7 @@ import (
"fmt"
"os"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/llama/runner"
)
func main() {

View File

@@ -5,7 +5,7 @@ import (
"errors"
"os"
"os/exec"
"regexp"
"strings"
"github.com/ollama/ollama/api"
)
@@ -19,12 +19,11 @@ func startApp(ctx context.Context, client *api.Client) error {
if err != nil {
return err
}
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
if !strings.Contains(link, "Ollama.app") {
return errors.New("could not find ollama app")
}
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
return err
}
return waitForServer(ctx, client)

View File

@@ -4,27 +4,17 @@ import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"syscall"
"unsafe"
"github.com/ollama/ollama/api"
"golang.org/x/sys/windows"
)
const (
Installer = "OllamaSetup.exe"
)
func startApp(ctx context.Context, client *api.Client) error {
if len(isProcRunning(Installer)) > 0 {
return fmt.Errorf("upgrade in progress...")
}
// log.Printf("XXX Attempting to find and start ollama app")
AppName := "ollama app.exe"
exe, err := os.Executable()
if err != nil {
@@ -45,11 +35,14 @@ func startApp(ctx context.Context, client *api.Client) error {
}
}
}
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
cmd := exec.Command(cmd_path, "/c", appExe)
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
@@ -63,50 +56,3 @@ func startApp(ctx context.Context, client *api.Client) error {
}
return waitForServer(ctx, client)
}
func isProcRunning(procName string) []uint32 {
pids := make([]uint32, 2048)
var ret uint32
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
if ret > uint32(len(pids)) {
pids = make([]uint32, ret+10)
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
}
if ret < uint32(len(pids)) {
pids = pids[:ret]
}
var matches []uint32
for _, pid := range pids {
if pid == 0 {
continue
}
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
if err != nil {
continue
}
defer windows.CloseHandle(hProcess)
var module windows.Handle
var cbNeeded uint32
cb := (uint32)(unsafe.Sizeof(module))
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
continue
}
var sz uint32 = 1024 * 8
moduleName := make([]uint16, sz)
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
continue
}
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
if strings.EqualFold(exeFile, procName) {
matches = append(matches, pid)
}
}
return matches
}

View File

@@ -1,63 +0,0 @@
package cmd
import (
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
// Test that a warning is printed when thinking is requested but not supported.
func TestWarnMissingThinking(t *testing.T) {
cases := []struct {
capabilities []model.Capability
expectWarn bool
}{
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
{capabilities: []model.Capability{}, expectWarn: true},
}
for _, tc := range cases {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
}
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatalf("decode request: %v", err)
}
resp := api.ShowResponse{Capabilities: tc.capabilities}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("encode response: %v", err)
}
}))
defer srv.Close()
t.Setenv("OLLAMA_HOST", srv.URL)
client, err := api.ClientFromEnvironment()
if err != nil {
t.Fatal(err)
}
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
ensureThinkingSupport(t.Context(), client, "m")
w.Close()
os.Stderr = oldStderr
out, _ := io.ReadAll(r)
warned := strings.Contains(string(out), "warning:")
if tc.expectWarn && !warned {
t.Errorf("expected warning, got none")
}
if !tc.expectWarn && warned {
t.Errorf("did not expect warning, got: %s", string(out))
}
}
}

View File

@@ -1,26 +1,20 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
TextModel struct {
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
}
type AdapterParameters struct {
@@ -33,8 +27,8 @@ type AdapterParameters struct {
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
kv := ggml.KV{
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
@@ -53,17 +47,14 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
if len(sv.IDs) > 0 {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
}
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
return kv
}
func (p AdapterParameters) KV() ggml.KV {
func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
@@ -71,7 +62,7 @@ func (p AdapterParameters) KV() ggml.KV {
alpha = p.LoraParameters.Alpha
}
kv := ggml.KV{
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
@@ -88,17 +79,27 @@ func (ModelParameters) specialTokenTypes() []string {
}
}
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) ggml.KV
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []*ggml.Tensor
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
@@ -107,15 +108,17 @@ type moreParser interface {
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(ggml.KV) ggml.KV
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []*ggml.Tensor
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@@ -150,14 +153,14 @@ func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
return err
}
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, f *os.File) error {
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
@@ -174,38 +177,20 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
var conv ModelConverter
switch p.Architectures[0] {
case "LlamaForCausalLM":
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llamaModel{}
case "MllamaForConditionalGeneration":
conv = &mllamaModel{}
case "Llama4ForConditionalGeneration":
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Gemma3nForConditionalGeneration":
conv = &gemma3nModel{}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":
conv = &qwen2Model{}
case "Qwen2_5_VLForConditionalGeneration":
conv = &qwen25VLModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
return errors.New("unsupported architecture")
}
if err := json.Unmarshal(bts, conv); err != nil {
@@ -223,22 +208,17 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
return err
}
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
vocabSize := int(p.VocabSize)
switch {
case vocabSize == 0:
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens):
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
case vocabSize < len(t.Vocabulary.Tokens):
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
@@ -248,13 +228,5 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
return err
}
return writeFile(f, conv.KV(t), conv.Tensors(ts))
}
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
for i := range ts {
ts[i].Shape = slices.Clone(ts[i].Shape)
slices.Reverse(ts[i].Shape)
}
return ggml.WriteGGUF(f, kv, ts)
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
}

View File

@@ -8,7 +8,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
@@ -28,7 +28,6 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@@ -55,11 +54,9 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
break
}
}
@@ -88,12 +85,11 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@@ -136,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@@ -147,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
continue
}
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,76 +0,0 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type commandrModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
UseQKNorm bool `json:"use_qk_norm"`
MaxLength uint32 `json:"model_max_length"`
LogitScale float32 `json:"logit_scale"`
NCtx uint32 `json:"n_ctx"`
}
var _ ModelConverter = (*commandrModel)(nil)
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "command-r"
kv["general.name"] = "command-r"
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
kv["command-r.embedding_length"] = p.HiddenSize
kv["command-r.block_count"] = p.HiddenLayers
kv["command-r.feed_forward_length"] = p.IntermediateSize
kv["command-r.attention.head_count"] = p.NumAttentionHeads
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
kv["command-r.rope.freq_base"] = p.RopeTheta
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
kv["command-r.logit_scale"] = p.LogitScale
kv["command-r.rope.scaling.type"] = "none"
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *commandrModel) Replacements() []string {
return []string{
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"self_attn.k_proj", "attn_k",
"self_attn.o_proj", "attn_output",
"self_attn.q_proj", "attn_q",
"self_attn.v_proj", "attn_v",
"model.norm", "output_norm",
"model.embed_tokens", "token_embd",
}
}

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type gemmaModel struct {
@@ -23,7 +23,7 @@ type gemmaModel struct {
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
if strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,6 +1,8 @@
package convert
import "github.com/ollama/ollama/fs/ggml"
import (
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
gemmaModel
@@ -9,7 +11,7 @@ type gemma2Model struct {
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,142 +0,0 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type gemma3Model struct {
gemmaModel
Architecture string
TextModel struct {
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
SlidingWindow uint32 `json:"sliding_window"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
ImageSize uint32 `json:"image_size"` // image_size 560
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
}
const (
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3"
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
kv["gemma3.block_count"] = numBlocks
var (
numHeads uint32
numKVHeads uint32
)
switch numBlocks {
case gemma4BLayerCount:
numHeads = 8
numKVHeads = 4
case gemma12BLayerCount:
numHeads = 16
numKVHeads = 8
case gemma27BLayerCount:
numHeads = 32
numKVHeads = 16
default:
numHeads = p.NumAttentionHeads
numKVHeads = p.NumKeyValueHeads
}
kv["gemma3.attention.head_count"] = numHeads
kv["gemma3.attention.head_count_kv"] = numKVHeads
switch p.Architecture {
case "Gemma3ForCausalLM":
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
}
if p.MultiModalTokensPerImage > 0 {
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
}
return kv
}
func (p *gemma3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"vision_tower.vision_model.embeddings", "v",
"vision_tower.vision_model", "v",
"vision_model.vision_model.embeddings", "v",
"vision_model.vision_model", "v",
"language_model.", "",
"model.layers", "blk",
"encoder.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.out_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"input_projection_weight", "input_projection.weight",
"multi_modal_projector", "mm",
}
}

View File

@@ -1,165 +0,0 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"gonum.org/v1/gonum/stat/distuv"
)
type gemma3nModel struct {
ModelParameters
TextModel struct {
ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
AltupActiveIdx uint32 `json:"altup_active_idx"`
AltupCoefClip float32 `json:"altup_coef_clip"`
AltupCorrectScale bool `json:"altup_correct_scale"`
AltupLRMultiplier float32 `json:"altup_lr_multiplier"`
AltupNumInputs uint32 `json:"altup_num_inputs"`
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenSizePerLayerInput uint32 `json:"hidden_size_per_layer_input"`
IntermediateSize uint32 `json:"intermediate_size"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NumKVSharedLayers uint32 `json:"num_kv_shared_layers"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
} `json:"text_config"`
VisionModel struct{} `json:"vision_config"`
}
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3n"
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
norm := distuv.Normal{Mu: 0, Sigma: 1}
for _, v := range m.TextModel.ActivationSparsityPattern {
if !yield(float32(norm.Quantile(float64(v)))) {
break
}
}
})
kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for _, t := range m.TextModel.LayerTypes {
if !yield(t == "sliding_attention") {
break
}
}
})
kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
kv["gemma3n.head_dim"] = m.TextModel.HeadDim
kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
return kv
}
func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
out, ts := mergeTensors(ts,
merge{"altup_proj.*.weight", "altup_proj.weight"},
merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
)
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "audio_tower"),
strings.Contains(t.Name(), "embed_audio"),
strings.Contains(t.Name(), "vision_tower"),
strings.Contains(t.Name(), "embed_vision"):
// TODO: handle audio and vision towers
continue
case strings.Contains(t.Name(), "altup_predict_coef"),
strings.Contains(t.Name(), "altup_correct_coef"):
if m.TextModel.AltupCoefClip > 0 {
t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
if err != nil {
return nil, err
}
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
})
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *gemma3nModel) Replacements() []string {
return []string{
"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
"model.language_model.embed_tokens", "token_embd",
"model.language_model.per_layer_model_projection", "per_layer_model_proj",
"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
"model.language_model.altup_unembed_projections", "altup_unembd_proj",
"model.language_model.norm", "output_norm",
"model.language_model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
"post_feedforward_layernorm", "post_ffw_norm",
"per_layer_input_gate", "inp_gate",
"per_layer_projection", "proj",
"post_per_layer_input_norm", "post_norm",
"altup.", "altup_",
"modality_router", "router",
"prediction_coefs", "predict_coef",
"correction_coefs", "correct_coef",
"correct_output_scale", "correct_scale.weight",
"laurel.", "laurel_",
"linear_left", "l",
"linear_right", "r",
"post_laurel_norm", "post_norm",
}
}

View File

@@ -1,223 +0,0 @@
package convert
import (
"bytes"
"cmp"
"encoding/binary"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type gptossModel struct {
ModelParameters
HiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
LocalExperts uint32 `json:"num_local_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
RopeScaling struct {
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*gptossModel)(nil)
func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gptoss"
kv["general.file_type"] = uint32(4)
kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
kv["gptoss.block_count"] = m.HiddenLayers
kv["gptoss.embedding_length"] = m.HiddenSize
kv["gptoss.feed_forward_length"] = m.IntermediateSize
kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
kv["gptoss.expert_used_count"] = m.ExpertsPerToken
kv["gptoss.attention.head_count"] = m.AttentionHeads
kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
kv["gptoss.attention.key_length"] = m.HeadDim
kv["gptoss.attention.value_length"] = m.HeadDim
kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
kv["gptoss.attention.sliding_window"] = m.SlidingWindow
kv["gptoss.rope.freq_base"] = m.RopeTheta
kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
kv["tokenizer.ggml.add_bos_token"] = false
kv["tokenizer.ggml.eos_token_id"] = uint32(199999) // <|endoftext|>
kv["tokenizer.ggml.eos_token_ids"] = []int32{
199999, /* <|endoftext|> */
200002, /* <|return|> */
200012, /* <|call|> */
}
kv["tokenizer.ggml.add_eos_token"] = false
return kv
}
func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
mxfp4s := make(map[string]*mxfp4)
for _, t := range ts {
if strings.HasSuffix(t.Name(), ".blocks") || strings.HasSuffix(t.Name(), ".scales") {
dot := strings.LastIndex(t.Name(), ".")
name, suffix := t.Name()[:dot], t.Name()[dot+1:]
if _, ok := mxfp4s[name]; !ok {
mxfp4s[name] = &mxfp4{}
}
switch suffix {
case "blocks":
mxfp4s[name].blocks = t
case "scales":
mxfp4s[name].scales = t
}
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
for name, mxfp4 := range mxfp4s {
dims := mxfp4.blocks.Shape()
if !strings.HasSuffix(name, ".weight") {
name += ".weight"
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
WriterTo: mxfp4,
})
}
return out
}
func (m *gptossModel) Replacements() []string {
var replacements []string
if m.MaxPositionEmbeddings > 0 {
// hf flavored model
replacements = []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_out",
"self_attn.sinks", "attn_sinks",
"post_attention_layernorm", "ffn_norm",
"mlp.router", "ffn_gate_inp",
"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
"mlp.experts.down_proj_", "ffn_down_exps.",
"model.norm", "output_norm",
}
} else {
replacements = []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
}
}
return replacements
}
type mxfp4 struct {
blocks, scales Tensor
}
func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
var b bytes.Buffer
if _, err := m.blocks.WriteTo(&b); err != nil {
return 0, err
}
blocksDims := make([]int, len(m.blocks.Shape()))
for i, d := range m.blocks.Shape() {
blocksDims[i] = int(d)
}
bts := b.Bytes()
var tmp [16]byte
for i := 0; i < b.Len(); i += 16 {
for j := range 8 {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[i+j], bts[i+j+8]
tmp[2*j+0] = (a & 0x0F) | (b << 4)
tmp[2*j+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[i:i+16], tmp[:])
}
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
var s bytes.Buffer
if _, err := m.scales.WriteTo(&s); err != nil {
return 0, err
}
scalesDims := slices.Repeat([]int{1}, len(m.blocks.Shape()))
for i, d := range m.scales.Shape() {
scalesDims[i] = int(d)
}
var scales tensor.Tensor = tensor.New(tensor.WithShape(scalesDims...), tensor.WithBacking(s.Bytes()))
out, err := tensor.Concat(3, scales, blocks)
if err != nil {
return 0, err
}
out = tensor.Materialize(out)
if err := out.Reshape(out.Shape().TotalSize()); err != nil {
return 0, err
}
u8s, err := native.VectorU8(out.(*tensor.Dense))
if err != nil {
return 0, err
}
if err := binary.Write(w, binary.LittleEndian, u8s); err != nil {
return 0, err
}
return int64(len(u8s)), nil
}

View File

@@ -9,7 +9,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type llamaModel struct {
@@ -28,12 +28,12 @@ type llamaModel struct {
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
factors ropeFactor
} `json:"rope_scaling"`
@@ -42,13 +42,11 @@ type llamaModel struct {
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
HeadDim uint32 `json:"head_dim"`
skipRepack bool
}
var _ ModelConverter = (*llamaModel)(nil)
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
@@ -72,10 +70,6 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.HeadDim > 0 {
kv["llama.attention.head_dim"] = p.HeadDim
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
@@ -90,7 +84,7 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
@@ -126,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@@ -139,14 +133,12 @@ func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
}
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
if !p.skipRepack {
t.SetRepacker(p.repack)
}
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
@@ -182,9 +174,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
if strings.HasSuffix(name, "attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
} else if strings.HasSuffix(name, "attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@@ -1,169 +0,0 @@
package convert
import (
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type llama4Model struct {
ModelParameters
TextModel struct {
llamaModel
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
NumLocalExperts uint32 `json:"num_local_experts"`
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
UseQKNorm bool `json:"use_qk_norm"`
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
AttentionChunkSize uint32 `json:"attention_chunk_size"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
RopeTheta float32 `json:"rope_theta"`
NormEpsilon float32 `json:"norm_eps"`
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
} `json:"vision_config"`
}
// KV implements ModelConverter.
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama4"
for k, v := range p.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
}
}
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
return kv
}
// Replacements implements ModelConverter.
func (p *llama4Model) Replacements() []string {
return append(
p.TextModel.Replacements(),
"language_model.", "",
"vision_model", "v",
"multi_modal_projector", "mm",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.", "ffn_",
"shared_expert.down_proj", "down_shexp",
"shared_expert.gate_proj", "gate_shexp",
"shared_expert.up_proj", "up_shexp",
"experts.down_proj", "down_exps.weight",
"experts.gate_up_proj", "gate_up_exps.weight",
"router", "gate_inp",
"patch_embedding.linear", "patch_embedding",
)
}
// Tensors implements ModelConverter.
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var textTensors []Tensor
for _, t := range ts {
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
// gate and up projectors are fused
// dims[1], dims[2] must be swapped
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
halfDim := int(t.Shape()[2]) / 2
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
// clone tensor since we need separate repackers
tt := t.Clone()
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
out = append(out, &ggml.Tensor{
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
Kind: tt.Kind(),
Shape: newShape,
WriterTo: tt,
})
}
} else if strings.Contains(t.Name(), "ffn_down_exps") {
// dims[1], dims[2] must be swapped
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
t.SetRepacker(p.repack())
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2], newShape[1]
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: newShape,
WriterTo: t,
})
} else {
textTensors = append(textTensors, t)
}
}
p.TextModel.skipRepack = true
out = append(out, p.TextModel.Tensors(textTensors)...)
return out
}
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
return func(name string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err := t.Slice(slice...)
if err != nil {
return nil, err
}
if err := t.T(0, 2, 1); err != nil {
return nil, err
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View File

@@ -7,7 +7,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
@@ -18,7 +18,7 @@ type llamaAdapter struct {
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

View File

@@ -1,190 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3Model struct {
ModelParameters
ImageTokenIndex uint32 `json:"image_token_index"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
VisionFeatureLayer int32 `json:"vision_feature_layer"`
TextModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
ImageSize uint32 `json:"image_size"`
NumChannels uint32 `json:"num_channels"`
PatchSize uint32 `json:"patch_size"`
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
}
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
if p.ProjectorHiddenAct != "" {
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
}
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3Model) Replacements() []string {
return []string{
"language_model.model.norm", "output_norm",
"language_model.model.", "",
"language_model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.TextModel.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -2,8 +2,11 @@ package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type mixtralModel struct {
@@ -12,7 +15,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
@@ -26,39 +29,66 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
merges := make([]merge, 0, p.NumHiddenLayers*6)
for i := range p.NumHiddenLayers {
merges = append(merges, merge{
fmt.Sprintf("blk.%d.*.w1.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w1.bias", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.bias", i),
fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.bias", i),
fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
out, ts := mergeTensors(ts, merges...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"model.layers", "blk",
"block_sparse_moe.gate", "ffn_gate_inp",
"block_sparse_moe.experts.", ".",
)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -1,179 +0,0 @@
package convert
import (
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type mllamaModel struct {
ModelParameters
TextModel struct {
llamaModel
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumGlobalLayers uint32 `json:"num_global_layers"`
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
NumChannels uint32 `json:"num_channels"`
MaxNumTiles uint32 `json:"max_num_tiles"`
NormEpsilon float32 `json:"norm_eps"`
RopeTheta float32 `json:"rope.freq_base"`
} `json:"vision_config"`
}
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "mllama"
for k, v := range m.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
}
}
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
return kv
}
func (m *mllamaModel) Replacements() []string {
return append(
m.TextModel.Replacements(),
"language_model.", "",
"gate_attn", "attn_gate",
"gate_ffn", "ffn_gate",
"cross_attn.", "cross_attn_",
"vision_model", "v",
"class_embedding", "class_embd",
"patch_embedding", "patch_embd",
"gated_positional_embedding.tile_embedding", "tile_position_embd",
"gated_positional_embedding.embedding", "position_embd.weight",
"gated_positional_embedding", "position_embd",
"embedding.weight", "weight",
"pre_tile_positional_embedding", "pre_tile_position_embd",
"post_tile_positional_embedding", "post_tile_position_embd",
"layernorm_pre", "pre_ln",
"layernorm_post", "post_ln",
"global_transformer.layers", "global.blk",
"transformer.layers", "blk",
"mlp.fc1", "ffn_up",
"mlp.fc2", "ffn_down",
"multi_modal_projector", "mm.0",
)
}
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
text = append(text, t)
} else if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: tt,
})
}
} else {
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
t.SetRepacker(m.repack(t.Name()))
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return append(out, m.TextModel.Tensors(text)...)
}
func (m *mllamaModel) repack(name string) Repacker {
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
heads := m.VisionModel.AttentionHeads
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := t.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := t.Reshape(dims...); err != nil {
return nil, err
}
if err := t.Transpose(); err != nil {
return nil, err
}
} else {
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View File

@@ -8,7 +8,7 @@ import (
"strings"
"sync"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
type phi3Model struct {
@@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]*ggml.Tensor, 0, len(ts)+2)
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, &ggml.Tensor{
}, llm.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
})
}
out = append(out, &ggml.Tensor{
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
@@ -118,5 +118,6 @@ func (p *phi3Model) Replacements() []string {
type ropeFactor []float32
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
return 0, binary.Write(w, binary.LittleEndian, r)
err := binary.Write(w, binary.LittleEndian, r)
return 0, err
}

View File

@@ -1,81 +0,0 @@
package convert
import "github.com/ollama/ollama/fs/ggml"
type qwen2Model struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
}
var _ ModelConverter = (*qwen2Model)(nil)
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen2"
kv["qwen2.block_count"] = q.HiddenLayers
kv["qwen2.context_length"] = q.MaxPositionEmbeddings
kv["qwen2.embedding_length"] = q.HiddenSize
kv["qwen2.feed_forward_length"] = q.IntermediateSize
kv["qwen2.attention.head_count"] = q.NumAttentionHeads
kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
kv["qwen2.rope.freq_base"] = q.RopeTheta
kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
switch q.RopeScaling.Type {
case "":
// no scaling
case "yarn":
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
default:
panic("unknown rope scaling type")
}
return kv
}
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *qwen2Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.q_proj", "attn_q",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"model.norm", "output_norm",
}
}

View File

@@ -1,102 +0,0 @@
package convert
import (
"cmp"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen25VLModel struct {
qwen2Model
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_chans"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
SpatialPatchSize uint32 `json:"spatial_patch_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
} `json:"vision_config"`
}
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"
for k, v := range q.qwen2Model.KV(t) {
if strings.HasPrefix(k, "qwen2.") {
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
}
}
if q.VisionModel.FullAttentionBlocks == nil {
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
}
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
return kv
}
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
func (p *qwen25VLModel) Replacements() []string {
return append(
p.qwen2Model.Replacements(),
"visual", "v",
"blocks", "blk",
"attn.proj", "attn_out",
"norm1", "ln1",
"norm2", "ln2",
)
}

View File

@@ -11,14 +11,16 @@ import (
"io"
"io/fs"
"log/slog"
"maps"
"math"
"os"
"path/filepath"
"slices"
"strings"
"testing"
"github.com/ollama/ollama/fs/ggml"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/llm"
)
type tensorData struct {
@@ -27,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@@ -46,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, err := ggml.Decode(r, -1)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
@@ -58,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
@@ -73,7 +75,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tens
}
}
for _, tensor := range tensors.Items() {
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
@@ -106,8 +108,6 @@ func TestConvertModel(t *testing.T) {
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
"Qwen2.5-0.5B-Instruct",
"c4ai-command-r-v01",
}
for i := range cases {
@@ -129,14 +129,15 @@ func TestConvertModel(t *testing.T) {
if err != nil {
t.Fatal(err)
}
defer expectFile.Close()
var expect map[string]string
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
t.Fatal(err)
}
for _, k := range slices.Sorted(maps.Keys(expect)) {
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
@@ -329,7 +330,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, err := ggml.Decode(r, -1)
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
@@ -340,7 +341,9 @@ func TestConvertAdapter(t *testing.T) {
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
for _, k := range slices.Sorted(maps.Keys(c.Expected)) {
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {

58
convert/fs.go Normal file
View File

@@ -0,0 +1,58 @@
package convert
import (
"archive/zip"
"errors"
"io"
"io/fs"
"os"
"path/filepath"
)
type ZipReader struct {
r *zip.Reader
p string
// limit is the maximum size of a file that can be read directly
// from the zip archive. Files larger than this size will be extracted
limit int64
}
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
return &ZipReader{r, p, limit}
}
func (z *ZipReader) Open(name string) (fs.File, error) {
r, err := z.r.Open(name)
if err != nil {
return nil, err
}
defer r.Close()
if fi, err := r.Stat(); err != nil {
return nil, err
} else if fi.Size() < z.limit {
return r, nil
}
if !filepath.IsLocal(name) {
return nil, zip.ErrInsecurePath
}
n := filepath.Join(z.p, name)
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
w, err := os.Create(n)
if err != nil {
return nil, err
}
defer w.Close()
if _, err := io.Copy(w, r); err != nil {
return nil, err
}
} else if err != nil {
return nil, err
}
return os.Open(n)
}

View File

@@ -11,15 +11,14 @@ type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(Repacker)
SetRepacker(repacker)
WriteTo(io.Writer) (int64, error)
Clone() Tensor
}
type tensorBase struct {
name string
shape []uint64
repacker Repacker
name string
shape []uint64
repacker
}
func (t tensorBase) Name() string {
@@ -31,46 +30,42 @@ func (t tensorBase) Shape() []uint64 {
}
const (
tensorKindFP32 uint32 = iota
tensorKindFP16
tensorKindBF16 = 30
tensorKindMXFP4 = 39
tensorKindF32 uint32 = iota
tensorKindF16
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
strings.HasSuffix(t.name, ".bias") ||
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" {
t.name == "token_types.weight" {
// these tensors are always F32
return tensorKindFP32
return 0
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return tensorKindFP32
return tensorKindF32
default:
return tensorKindFP16
return tensorKindF16
}
}
func (t *tensorBase) SetRepacker(fn Repacker) {
func (t *tensorBase) SetRepacker(fn repacker) {
t.repacker = fn
}
type Repacker func(string, []float32, []uint64) ([]float32, error)
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{
{"*.safetensors", parseSafetensors},
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},

View File

@@ -1,7 +1,6 @@
package convert
import (
"bufio"
"bytes"
"encoding/binary"
"encoding/json"
@@ -9,12 +8,12 @@ import (
"fmt"
"io"
"io/fs"
"maps"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
@@ -47,7 +46,8 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
return nil, err
}
keys := slices.Sorted(maps.Keys(headers))
keys := maps.Keys(headers)
slices.Sort(keys)
names := make(map[string]struct{}, len(keys))
@@ -94,30 +94,6 @@ type safetensor struct {
*tensorBase
}
func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind()
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
kind = tensorKindBF16
}
return kind
}
func (st safetensor) Clone() Tensor {
return &safetensor{
fs: st.fs,
path: st.path,
dtype: st.dtype,
offset: st.offset,
size: st.size,
tensorBase: &tensorBase{
name: st.name,
repacker: st.repacker,
shape: slices.Clone(st.shape),
},
}
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := st.fs.Open(st.path)
if err != nil {
@@ -125,41 +101,26 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
}
defer f.Close()
r, err := func() (io.Reader, error) {
if readerAt, ok := f.(io.ReaderAt); ok {
return io.NewSectionReader(readerAt, st.offset, st.size), nil
} else if seeker, ok := f.(io.Seeker); ok {
_, err := seeker.Seek(st.offset, io.SeekStart)
return f, err
} else {
_, err := io.CopyN(io.Discard, f, st.offset)
return f, err
if seeker, ok := f.(io.Seeker); ok {
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
} else {
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
return 0, err
}
}()
if err != nil {
return 0, err
}
br := bufio.NewReaderSize(r, min(32<<10, int(st.size)))
// special case when input and output are same type and the
// tensor doesn't need repacking
if (st.repacker == nil) &&
((st.dtype == "F32" && st.Kind() == tensorKindFP32) ||
(st.dtype == "F16" && st.Kind() == tensorKindFP16) ||
(st.dtype == "U8")) {
return io.CopyN(w, br, st.size)
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(br, binary.LittleEndian, f32s); err != nil {
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(br, binary.LittleEndian, u16s); err != nil {
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
return 0, err
}
@@ -170,7 +131,7 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(br, binary.LittleEndian, u8s); err != nil {
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
return 0, err
}
@@ -187,18 +148,15 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
}
switch st.Kind() {
case tensorKindFP32:
return int64(len(f32s) * 4), binary.Write(w, binary.LittleEndian, f32s)
case tensorKindFP16:
case tensorKindF32:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case tensorKindF16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return int64(len(f16s) * 2), binary.Write(w, binary.LittleEndian, f16s)
case tensorKindBF16:
u8s := bfloat16.EncodeFloat32(f32s)
return int64(len(u8s)), binary.Write(w, binary.LittleEndian, u8s)
return 0, binary.Write(w, binary.LittleEndian, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}

View File

@@ -1,294 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"os"
"path/filepath"
"testing"
"github.com/d4l3k/go-bfloat16"
"github.com/google/go-cmp/cmp"
"github.com/x448/float16"
)
func TestSafetensors(t *testing.T) {
t.Parallel()
root, err := os.OpenRoot(t.TempDir())
if err != nil {
t.Fatal(err)
}
defer root.Close()
cases := []struct {
name,
dtype string
offset,
size int64
shape []uint64
setup func(*testing.T, *os.File)
want []byte
}{
{
name: "fp32-fp32",
dtype: "F32",
size: 32 * 4, // 32 floats, each 4 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "fp32-fp16",
dtype: "F32",
size: 32 * 4, // 32 floats, each 4 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
},
},
{
name: "fp16-fp16",
dtype: "F16",
size: 32 * 2, // 32 floats, each 2 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
u16s := make([]uint16, 32)
for i := range u16s {
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
}
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
},
},
{
name: "fp16-fp32",
dtype: "F16",
size: 32 * 2, // 32 floats, each 2 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
u16s := make([]uint16, 32)
for i := range u16s {
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
}
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "bf16-bf16",
dtype: "BF16",
size: 32 * 2, // 32 brain floats, each 2 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x80, 0x3f, 0x00, 0x40, 0x40, 0x40, 0x80, 0x40, 0xa0, 0x40, 0xc0, 0x40, 0xe0, 0x40,
0x00, 0x41, 0x10, 0x41, 0x20, 0x41, 0x30, 0x41, 0x40, 0x41, 0x50, 0x41, 0x60, 0x41, 0x70, 0x41,
0x80, 0x41, 0x88, 0x41, 0x90, 0x41, 0x98, 0x41, 0xa0, 0x41, 0xa8, 0x41, 0xb0, 0x41, 0xb8, 0x41,
0xc0, 0x41, 0xc8, 0x41, 0xd0, 0x41, 0xd8, 0x41, 0xe0, 0x41, 0xe8, 0x41, 0xf0, 0x41, 0xf8, 0x41,
},
},
{
name: "bf16-fp32",
dtype: "BF16",
size: 32 * 2, // 32 brain floats, each 2 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "u8-u8",
dtype: "U8",
size: 32, // 32 brain floats, each 1 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
u8s := make([]uint8, 32)
for i := range u8s {
u8s[i] = uint8(i)
}
if err := binary.Write(f, binary.LittleEndian, u8s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
path := filepath.Base(t.Name())
st := safetensor{
fs: root.FS(),
path: path,
dtype: tt.dtype,
offset: tt.offset,
size: tt.size,
tensorBase: &tensorBase{
name: tt.name,
shape: tt.shape,
},
}
f, err := root.Create(path)
if err != nil {
t.Fatal(err)
}
defer f.Close()
tt.setup(t, f)
var b bytes.Buffer
if _, err := st.WriteTo(&b); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, b.Bytes()); diff != "" {
t.Errorf("safetensor.WriteTo() mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestSafetensorKind(t *testing.T) {
tests := []struct {
name string
st safetensor
expected uint32
}{
{
name: "BF16 dtype with non-v. prefix and non-FP32 base kind should return BF16",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindBF16,
},
{
name: "BF16 dtype with v. prefix should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "v.weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindFP16,
},
{
name: "BF16 dtype with FP32 base kind should return FP32",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10}, // will default to FP32
},
dtype: "BF16",
},
expected: tensorKindFP32,
},
{
name: "Non-BF16 dtype should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "FP16",
},
expected: tensorKindFP16,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.st.Kind()
if result != tt.expected {
t.Errorf("Kind() = %d, expected %d", result, tt.expected)
}
})
}
}

View File

@@ -43,17 +43,6 @@ type torch struct {
*tensorBase
}
func (t torch) Clone() Tensor {
return torch{
storage: t.storage,
tensorBase: &tensorBase{
name: t.name,
shape: t.shape,
repacker: t.repacker,
},
}
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

View File

@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
var file_sentencepiece_model_proto_goTypes = []any{
var file_sentencepiece_model_proto_goTypes = []interface{}{
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
return
}
if !protoimpl.UnsafeEnabled {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TrainerSpec); i {
case 0:
return &v.state
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*NormalizerSpec); i {
case 0:
return &v.state
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*SelfTestData); i {
case 0:
return &v.state
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ModelProto); i {
case 0:
return &v.state
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*SelfTestData_Sample); i {
case 0:
return &v.state
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ModelProto_SentencePiece); i {
case 0:
return &v.state

View File

@@ -1,129 +0,0 @@
package convert
import (
"cmp"
"io"
"iter"
"path"
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type split struct {
*strings.Replacer
dim int
// fn is an optional function to apply to the tensor after slicing
fn func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided unless a specific count is given.
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
var offset int
for _, split := range splits {
t := t.Clone()
shape := slices.Clone(t.Shape())
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(slice...)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
if split.fn != nil {
tt, err = split.fn(tt)
if err != nil {
return nil, err
}
}
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: split.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
}) {
break
}
}
}
}
type merge struct {
pattern, name string
}
// mergeTensors merges tensors that match a given pattern into a single tensor.
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
var matched []Tensor
for i := range merges {
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
matched, _ := path.Match(merges[i].pattern, t.Name())
return matched
})
if len(matched) > 0 {
out = append(out, &ggml.Tensor{
Name: merges[i].name,
Kind: matched[0].Kind(),
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
WriterTo: mergeGroup(matched),
})
}
}
return out, unmatched
}
// slicesSplitFunc splits a slice into two slices based on a predicate function.
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
for _, e := range s {
if fn(e) {
matched = append(matched, e)
} else {
unmatched = append(unmatched, e)
}
}
return matched, unmatched
}
type mergeGroup []Tensor
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
for _, t := range g {
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -1,953 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"iter"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
)
type fakeTensor struct {
name string
shape []uint64
data []float32
repacker Repacker
}
func (f fakeTensor) Name() string {
return f.name
}
func (f fakeTensor) Shape() []uint64 {
return f.shape
}
func (f fakeTensor) Kind() uint32 {
return 0
}
func (f *fakeTensor) SetRepacker(fn Repacker) {
f.repacker = fn
}
func (f fakeTensor) Clone() Tensor {
return &fakeTensor{
name: f.name,
shape: slices.Clone(f.shape),
data: slices.Clone(f.data),
repacker: f.repacker,
}
}
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
data := f.data
if f.repacker != nil {
data, err = f.repacker(f.name, data, f.shape)
if err != nil {
return 0, err
}
}
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
return 0, err
}
return int64(len(data) * 4), nil
}
func mul(shape []uint64) int {
n := 1
for _, dim := range shape {
n *= int(dim)
}
return n
}
func TestSplitDim(t *testing.T) {
t.Run("2d", func(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 3, 6, 7, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{2, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 6, 10}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{3, 7, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 6, 10, 3, 7, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
})
t.Run("3d", func(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4, 2},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{2, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 12, 13, 20, 21}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{6, 7, 14, 15, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
})
}
func TestMerge(t *testing.T) {
unmatched := []Tensor{
&fakeTensor{
name: "a.0.b",
shape: []uint64{5, 2},
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
},
&fakeTensor{
name: "a.1.b",
shape: []uint64{5, 2},
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
},
&fakeTensor{
name: "c.0.d",
shape: []uint64{5, 2},
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
},
&fakeTensor{
name: "c.1.d",
shape: []uint64{5, 2},
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
},
&fakeTensor{
name: "e.0.f",
shape: []uint64{5, 2},
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
},
}
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
for i := range n {
got := matched[i]
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
t.Errorf("unexpected (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := got.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, 20)
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
offset := 10 + (i * 20)
want := make([]float32, 20)
for j := range 20 {
want[j] = float32(offset + j)
}
if diff := cmp.Diff(want, f32s); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
}
t.Run("single merge", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
if len(unmatched) != 3 {
t.Error("expected 3 remaining tensors, got", len(unmatched))
}
if len(matched) != 1 {
t.Error("expected 1 merged tensor, got", len(matched))
}
checkMatched(t, 1, matched)
})
t.Run("multiple merges", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
if len(unmatched) != 1 {
t.Error("expected 1 remaining tensors, got", len(unmatched))
}
if len(matched) != 2 {
t.Error("expected 2 merged tensor, got", len(matched))
}
checkMatched(t, 2, matched)
})
t.Run("no match", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
if len(unmatched) != 5 {
t.Error("expected 5 remaining tensors, got", len(unmatched))
}
if len(matched) != 0 {
t.Error("expected no merged tensors, got", len(matched))
}
})
}

View File

@@ -1,314 +0,0 @@
{
"general.architecture": "qwen2",
"general.file_type": "1",
"general.parameter_count": "494032768",
"general.quantization_version": "2",
"output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390",
"qwen2.attention.head_count": "14",
"qwen2.attention.head_count_kv": "2",
"qwen2.attention.layer_norm_rms_epsilon": "1e-06",
"qwen2.block_count": "24",
"qwen2.context_length": "32768",
"qwen2.embedding_length": "896",
"qwen2.feed_forward_length": "4864",
"qwen2.rope.freq_base": "1e+06",
"token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.add_padding_token": "false",
"tokenizer.ggml.eos_token_id": "151645",
"tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.padding_token_id": "151643",
"tokenizer.ggml.pre": "qwen2",
"tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d",
"tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055",
"tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34",
"blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1",
"blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8",
"blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3",
"blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98",
"blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063",
"blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583",
"blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9",
"blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84",
"blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147",
"blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6",
"blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f",
"blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff",
"blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f",
"blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d",
"blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434",
"blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016",
"blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e",
"blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a",
"blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631",
"blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c",
"blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521",
"blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e",
"blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c",
"blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8",
"blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401",
"blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71",
"blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a",
"blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264",
"blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59",
"blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f",
"blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3",
"blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16",
"blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4",
"blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945",
"blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4",
"blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112",
"blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0",
"blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9",
"blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31",
"blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c",
"blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3",
"blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef",
"blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8",
"blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2",
"blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6",
"blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144",
"blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac",
"blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa",
"blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751",
"blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73",
"blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f",
"blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9",
"blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a",
"blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551",
"blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa",
"blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2",
"blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81",
"blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991",
"blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab",
"blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3",
"blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0",
"blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d",
"blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba",
"blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a",
"blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a",
"blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb",
"blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525",
"blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333",
"blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb",
"blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d",
"blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb",
"blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57",
"blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1",
"blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d",
"blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d",
"blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0",
"blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038",
"blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1",
"blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee",
"blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1",
"blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d",
"blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450",
"blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56",
"blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57",
"blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b",
"blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739",
"blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf",
"blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62",
"blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208",
"blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55",
"blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c",
"blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e",
"blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc",
"blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc",
"blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e",
"blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6",
"blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8",
"blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5",
"blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6",
"blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1",
"blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4",
"blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b",
"blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324",
"blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355",
"blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba",
"blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2",
"blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410",
"blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff",
"blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1",
"blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a",
"blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a",
"blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a",
"blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00",
"blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5",
"blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703",
"blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80",
"blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51",
"blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e",
"blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008",
"blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f",
"blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2",
"blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad",
"blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075",
"blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c",
"blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f",
"blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696",
"blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e",
"blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122",
"blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300",
"blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403",
"blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59",
"blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73",
"blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee",
"blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6",
"blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59",
"blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad",
"blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34",
"blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad",
"blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d",
"blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be",
"blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395",
"blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f",
"blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112",
"blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82",
"blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c",
"blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437",
"blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9",
"blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88",
"blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376",
"blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade",
"blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0",
"blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5",
"blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e",
"blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52",
"blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba",
"blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37",
"blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe",
"blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861",
"blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37",
"blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8",
"blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8",
"blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8",
"blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f",
"blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1",
"blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f",
"blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42",
"blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4",
"blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094",
"blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011",
"blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31",
"blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0",
"blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f",
"blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea",
"blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005",
"blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e",
"blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df",
"blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527",
"blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787",
"blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d",
"blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91",
"blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480",
"blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa",
"blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c",
"blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f",
"blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96",
"blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35",
"blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5",
"blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42",
"blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82",
"blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6",
"blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5",
"blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187",
"blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8",
"blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd",
"blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769",
"blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2",
"blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b",
"blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce",
"blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f",
"blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e",
"blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a",
"blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887",
"blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7",
"blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce",
"blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393",
"blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d",
"blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923",
"blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6",
"blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a",
"blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e",
"blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e",
"blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752",
"blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82",
"blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513",
"blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a",
"blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62",
"blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0",
"blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156",
"blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9",
"blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6",
"blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59",
"blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b",
"blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2",
"blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0",
"blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8",
"blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646",
"blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31",
"blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347",
"blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5",
"blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f",
"blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82",
"blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8",
"blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045",
"blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469",
"blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259",
"blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665",
"blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114",
"blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81",
"blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda",
"blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514",
"blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111",
"blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb",
"blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411",
"blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6",
"blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3",
"blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500",
"blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7",
"blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b",
"blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91",
"blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f",
"blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510",
"blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3",
"blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744",
"blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f",
"blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656",
"blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec",
"blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0",
"blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9",
"blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec",
"blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1",
"blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12",
"blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72",
"blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1",
"blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa",
"blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93",
"blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a",
"blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717",
"blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5",
"blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5",
"blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577",
"blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d",
"blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53",
"blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2",
"blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62",
"blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb",
"blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2",
"blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e",
"blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4",
"blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd",
"blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8",
"blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123",
"blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24",
"blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9",
"blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e",
"blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152",
"blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42",
"blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a",
"blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822"
}

View File

@@ -1,344 +0,0 @@
{
"general.architecture": "command-r",
"general.name": "command-r",
"command-r.attention.head_count": "64",
"command-r.attention.head_count_kv": "64",
"command-r.attention.layer_norm_epsilon": "1e-05",
"command-r.block_count": "40",
"command-r.context_length": "131072",
"command-r.embedding_length": "8192",
"command-r.feed_forward_length": "22528",
"command-r.logit_scale": "0.0625",
"command-r.rope.freq_base": "8e+06",
"command-r.rope.scaling.type": "none",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "5",
"tokenizer.ggml.eos_token_id": "255001",
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
}

View File

@@ -8,10 +8,11 @@ import (
"fmt"
"io/fs"
"log/slog"
"maps"
"os"
"slices"
"strings"
"golang.org/x/exp/maps"
)
const (
@@ -99,8 +100,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
t.Pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
t.Pre = "deepseek-coder"
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
t.Pre = "qwen2"
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
// noop, empty pretokenizer
default:
@@ -109,7 +108,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil {
return nil, err
} else {
@@ -171,34 +169,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
}
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
for _, st := range specialTokenTypes {
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
var ids []int32
if err := json.Unmarshal(bts, &ids); err != nil {
// value is not a list so the existing ID is used
continue
}
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
return sv.Type == st
}); i >= 0 {
t.SpecialVocabulary[i].IDs = ids
}
}
}
}
return t, nil
}
@@ -259,8 +229,11 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
tokens[token.ID] = token
}
keys := maps.Keys(tokens)
slices.Sort(keys)
v := Vocabulary{Model: "gpt2"}
for _, k := range slices.Sorted(maps.Keys(tokens)) {
for _, k := range keys {
token := tokens[k]
v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
@@ -305,9 +278,6 @@ type SpecialVocabulary struct {
ID int
Content string
AddToken bool
// IDs is populated by generation_config.json
IDs []int32
}
func (sv SpecialVocabulary) Key() string {

View File

@@ -6,9 +6,7 @@ import (
"errors"
"fmt"
"io/fs"
"log/slog"
"os"
"reflect"
"slices"
"google.golang.org/protobuf/proto"
@@ -17,8 +15,6 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
slog.Debug("using spm vocabulary")
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
@@ -47,19 +43,10 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
v.Types = append(v.Types, int32(t))
default:
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
if slices.Contains(ast, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
for _, t := range ast {
if t.Content == piece.GetPiece() {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
break
}
}
v.Types = append(v.Types, tt)
}
}
@@ -91,16 +78,10 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return cmp.Compare(i.id, j.id)
})
for _, t := range ts {
if t.id < len(v.Tokens) {
if v.Tokens[t.id] == t.content {
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
continue
}
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
}
if t.id != len(v.Tokens) {
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
}
v.Tokens = append(v.Tokens, t.content)
@@ -111,15 +92,7 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
type specialToken struct {
Content string `json:"content"`
Lstrip bool `json:"lstrip"`
Normalized bool `json:"normalized"`
Rstrip bool `json:"rstrip"`
SingleWord bool `json:"single_word"`
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
@@ -129,43 +102,12 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
defer f.Close()
var m struct {
AdditionalSpecialTokens any `json:"additional_special_tokens"`
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
var ast []specialToken
switch st := m.AdditionalSpecialTokens.(type) {
case []string:
for _, s := range st {
ast = append(ast, specialToken{Content: s})
}
case []any:
for _, s := range st {
// marshal and unmarshal the object to get the special token
tMap := s.(map[string]any)
data, err := json.Marshal(tMap)
if err != nil {
return nil, err
}
var token specialToken
err = json.Unmarshal(data, &token)
if err != nil {
return nil, err
}
ast = append(ast, token)
}
default:
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
}
slog.Debug("spm tokenizer", "additional tokens", ast)
return ast, nil
return m.AdditionalSpecialTokens, nil
}

View File

@@ -247,67 +247,6 @@ func TestParseTokenizer(t *testing.T) {
Pre: "default",
},
},
{
name: "generation config eos token ids",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<bos>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<eot>",
"special": true
},
{
"id": 3,
"content": "<eom>",
"special": true
}
],
"model": {
"vocab": {
"<bos>": 0,
"<eos>": 1,
"<eot>": 2,
"<eom>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>"
}`),
"generation_config.json": strings.NewReader(`{
"bos_token_id": 0,
"eos_token_id": [1, 2, 3]
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
},
Pre: "default",
},
},
}
for _, tt := range cases {

View File

@@ -9,6 +9,8 @@ import (
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
@@ -39,10 +41,13 @@ func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
// Prefer explicit HIP env var

View File

@@ -58,7 +58,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
driverMajor, driverMinor, err := AMDDriverVersion()
if err != nil {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn("ollama recommends running the https://www.amd.com/en/support/download/linux-drivers.html", "error", err)
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
}
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
@@ -77,7 +77,8 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
var libDir string
depPaths := LibraryDirs()
libDir := ""
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
@@ -97,7 +98,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
return a < b
})
gpuCount := 0
gpuOrdinalID := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
@@ -188,6 +188,10 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
continue
}
// Keep track of numeric IDs based on valid GPUs
gpuID := gpuCount
gpuCount += 1
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
@@ -266,7 +270,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuOrdinalID)
ID = strconv.Itoa(gpuID)
}
gpuInfo := RocmGPUInfo{
@@ -277,7 +281,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
filterID: gpuOrdinalID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
@@ -285,40 +288,13 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuCount,
index: gpuID,
}
// Keep track of numeric IDs based on valid GPUs
gpuCount += 1
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if (uniqueID != 0 && visible == gpuInfo.ID) || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "index", gpuInfo.index, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
// Ordinal IDs are based on the visible GPUs
gpuOrdinalID += 1
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
@@ -331,7 +307,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
}
if int(major) < minVer {
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
slog.Warn(reason, "gpu", gpuInfo.ID)
slog.Warn(reason, "gpu", gpuID)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
@@ -340,8 +316,29 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
continue
}
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "available", format.HumanBytes2(totalMemory-usedMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
// Final validation is gfx compatibility - load the library if we haven't already loaded it
// even if the user overrides, we still need to validate the library
@@ -356,8 +353,9 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
})
return nil, err
}
depPaths = append(depPaths, libDir)
}
gpuInfo.DependencyPath = []string{libDir}
gpuInfo.DependencyPath = depPaths
if gfxOverride == "" {
// Only load supported list once
@@ -395,7 +393,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, "HSA_ENABLE_SDMA=0")
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
}
// The GPU has passed all the verification steps and is supported
@@ -524,26 +522,19 @@ func verifyKFDDriverAccess() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
ids = append(ids, info.ID)
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES=" + strings.Join(ids, ",")
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -5,6 +5,7 @@ import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"slices"
"strconv"
@@ -49,13 +50,14 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
slog.Info(err.Error())
return nil, err
}
depPaths := LibraryDirs()
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
depPaths = append(depPaths, libDir)
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
@@ -111,8 +113,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
filterID: i,
DependencyPath: []string{libDir},
DependencyPath: depPaths,
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
@@ -163,7 +164,9 @@ func AMDValidateLibDir() (string, error) {
}
// Installer payload (if we're running from some other location)
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil
@@ -201,26 +204,19 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
ids = append(ids, info.ID)
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES=" + strings.Join(ids, ",")
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -12,7 +12,7 @@ func IsNUMA() bool {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]any{}
ids := map[string]interface{}{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)

View File

@@ -3,7 +3,6 @@
package discover
import (
"fmt"
"log/slog"
"os"
"regexp"
@@ -16,7 +15,20 @@ import (
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaVariant(gpuInfos []CudaGPUInfo) string {
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "cuda" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
@@ -45,20 +57,8 @@ func cudaVariant(gpuInfos []CudaGPUInfo) string {
}
}
// Check GPU compute capability FIRST, lowest common denominator if multi-gpu
for _, gpuInfo := range gpuInfos {
if gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5) {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
return "v11"
}
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if len(gpuInfos) > 0 && gpuInfos[0].DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfos[0].DriverMajor, gpuInfos[0].DriverMinor))
return "v12"
}
return "v13"
return "v12"
}

View File

@@ -23,6 +23,7 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type cudaHandles struct {
@@ -100,7 +101,15 @@ func initCudaHandles() *cudaHandles {
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
if runtime.GOOS == "windows" {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
libDirs := LibraryDirs()
for _, d := range libDirs {
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(d, CudartMgmtName))
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
@@ -231,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPaths := LibraryDirs()
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
@@ -239,9 +248,11 @@ func GetGPUInfo() GpuInfoList {
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
ID: "0",
memInfo: mem,
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
ID: "0",
DependencyPath: depPaths,
},
CPUs: details,
},
@@ -263,8 +274,6 @@ func GetGPUInfo() GpuInfoList {
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
driverMajor = int(cHandles.cudart.driver_major)
driverMinor = int(cHandles.cudart.driver_minor)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
@@ -284,8 +293,22 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPaths != nil {
gpuInfo.DependencyPath = depPaths
// Check for variant specific directory
if variant != "" {
for _, d := range depPaths {
if _, err := os.Stat(filepath.Join(d, "cuda_"+variant)); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{filepath.Join(d, "cuda_"+variant)}, gpuInfo.DependencyPath...)
break
}
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
@@ -323,24 +346,6 @@ func GetGPUInfo() GpuInfoList {
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel
@@ -371,7 +376,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = []string{LibOllamaPath}
gpuInfo.DependencyPath = depPaths
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
@@ -379,15 +384,6 @@ func GetGPUInfo() GpuInfoList {
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
@@ -516,30 +512,33 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
// Start with our bundled libraries
patterns := []string{}
for _, d := range LibraryDirs() {
patterns = append(patterns, filepath.Join(d, baseLibName))
}
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
default:
return gpuLibPaths
}
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(p, baseLibName))
patterns = append(patterns, filepath.Join(d, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
@@ -689,7 +688,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
}
func getVerboseState() C.uint16_t {
if envconfig.LogLevel() < slog.LevelInfo {
if envconfig.Debug() {
return C.uint16_t(1)
}
return C.uint16_t(0)
@@ -697,16 +696,45 @@ func getVerboseState() C.uint16_t {
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return nil
return "", ""
}
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
return vd
}
func LibraryDirs() []string {
// dependencies can exist wherever we found the runners (e.g. build tree for developers) and relative to the executable
// This can be simplified once we no longer carry runners as payloads
paths := []string{}
appExe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
} else {
appRelative := filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe(), "lib", "ollama")
if _, err := os.Stat(appRelative); err == nil {
paths = append(paths, appRelative)
}
}
rDir := runners.Locate()
if err != nil {
slog.Warn("unable to locate gpu dependency libraries", "error", err)
} else {
paths = append(paths, filepath.Dir(rDir))
}
return paths
}
func GetSystemInfo() SystemInfo {

View File

@@ -15,6 +15,7 @@ import (
"syscall"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
const (
@@ -27,6 +28,7 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}
@@ -49,6 +51,7 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}
@@ -62,9 +65,9 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
// No-op on darwin
return nil
return "", ""
}
func GetSystemInfo() SystemInfo {

View File

@@ -27,14 +27,12 @@
#endif
#ifndef LOG
#define LOG(verbose, ...) \
do { \
if (verbose) { \
fprintf(stderr, __VA_ARGS__); \
} \
} while (0)
#endif
#ifdef __cplusplus
extern "C" {

View File

@@ -1,7 +1,6 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_cudart.h"
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
@@ -59,7 +58,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
@@ -69,15 +68,18 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
}
int version = 0;
cudartDriverVersion_t driverVersion;
driverVersion.major = 0;
driverVersion.minor = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cudaDriverGetVersion)(&version);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
} else {
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", resp->ch.driver_major, resp->ch.driver_minor);
driverVersion.major = version / 1000;
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
}
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
@@ -166,9 +168,9 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
}
@@ -178,4 +180,4 @@ void cudart_release(cudart_handle_t h) {
h.handle = NULL;
}
#endif // __APPLE__
#endif // __APPLE__

View File

@@ -29,6 +29,11 @@ typedef struct cudartMemory_st {
size_t used;
} cudartMemory_t;
typedef struct cudartDriverVersion {
int major;
int minor;
} cudartDriverVersion_t;
typedef struct cudaUUID {
unsigned char bytes[16];
} cudaUUID_t;
@@ -118,8 +123,6 @@ typedef struct cudaDeviceProp {
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
cudartReturn_t (*cudaSetDevice)(int device);
cudartReturn_t (*cudaDeviceSynchronize)(void);
cudartReturn_t (*cudaDeviceReset)(void);

View File

@@ -1,7 +1,6 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
@@ -194,8 +193,8 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
@@ -248,4 +247,4 @@ void nvcuda_release(nvcuda_handle_t h) {
h.handle = NULL;
}
#endif // __APPLE__
#endif // __APPLE__

View File

@@ -111,7 +111,6 @@ func GetCPUDetails() ([]CPU, error) {
if err != nil {
return nil, err
}
defer file.Close()
return linuxCPUDetails(file)
}
@@ -169,11 +168,13 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for id, s := range socketByID {
s.CoreCount = len(coreBySocket[id])
s.ThreadCount = 0
for _, tc := range threadsByCoreBySocket[id] {
s.ThreadCount += tc
}
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
efficiencyCoreCount := 0
for _, threads := range threadsByCoreBySocket[id] {
s.ThreadCount += threads
if threads == 1 {
efficiencyCoreCount++
}

21
discover/gpu_oneapi.go Normal file
View File

@@ -0,0 +1,21 @@
//go:build linux || windows
package discover
import (
"log/slog"
"strings"
)
func oneapiGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "oneapi" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("oneapiGetVisibleDevicesEnv skipping over non-sycl device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "ONEAPI_DEVICE_SELECTOR", "level_zero:" + strings.Join(ids, ",")
}

View File

@@ -1,56 +0,0 @@
package discover
import (
"os"
"path/filepath"
"runtime"
)
// LibPath is a path to lookup dynamic libraries
// in development it's usually 'build/lib/ollama'
// in distribution builds it's 'lib/ollama' on Windows
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {
return ""
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var libPath string
switch runtime.GOOS {
case "windows":
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
case "linux":
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
case "darwin":
libPath = filepath.Dir(exe)
}
cwd, err := os.Getwd()
if err != nil {
return ""
}
paths := []string{
libPath,
// build paths for development
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
filepath.Join(cwd, "build", "lib", "ollama"),
}
for _, p := range paths {
if _, err := os.Stat(p); err == nil {
return p
}
}
return filepath.Dir(exe)
}()

View File

@@ -5,6 +5,7 @@ import (
"log/slog"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type memInfo struct {
@@ -27,8 +28,8 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key=value]
EnvWorkarounds []string `json:"envs,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
@@ -36,10 +37,9 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
filterID int //nolint:unused,nolintlint // AMD Workaround: The numeric ID of the device used to filter out other devices
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`
@@ -107,7 +107,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l {
found := false
requested := info.Library
if info.Variant != "" {
if info.Variant != runners.CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
for i, lib := range libs {
@@ -172,8 +172,7 @@ func (si SystemInfo) GetOptimalThreadCount() int {
// For each GPU, check if it does NOT support flash attention
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "cpu" ||
gpu.Library == "metal" ||
supportsFA := gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"

View File

@@ -2,9 +2,8 @@
### Getting Started
* [Quickstart](../README.md#quickstart)
* [Examples](./examples.md)
* [Examples](../examples)
* [Importing models](./import.md)
* [MacOS Documentation](./macos.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)
* [Docker Documentation](./docker.md)

View File

@@ -19,7 +19,7 @@
### Model names
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
@@ -31,7 +31,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
## Generate a completion
```
```shell
POST /api/generate
```
@@ -43,7 +43,6 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
- `think`: (for thinking models) should the model think before responding?
Advanced parameters (optional):
@@ -174,7 +173,7 @@ curl http://localhost:11434/api/generate -d '{
##### Response
```json5
```json
{
"model": "codellama:code",
"created_at": "2024-07-22T20:47:51.147561Z",
@@ -307,7 +306,7 @@ curl http://localhost:11434/api/generate -d '{
#### Response
```json
```
{
"model": "llava",
"created_at": "2023-11-03T15:36:02.583064Z",
@@ -395,6 +394,9 @@ curl http://localhost:11434/api/generate -d '{
"repeat_penalty": 1.2,
"presence_penalty": 1.5,
"frequency_penalty": 1.0,
"mirostat": 1,
"mirostat_tau": 0.8,
"mirostat_eta": 0.6,
"penalize_newline": true,
"stop": ["\n", "user:"],
"numa": false,
@@ -402,7 +404,10 @@ curl http://localhost:11434/api/generate -d '{
"num_batch": 2,
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
"num_thread": 8
}
}'
@@ -480,7 +485,7 @@ A single JSON object is returned:
## Generate a chat completion
```
```shell
POST /api/chat
```
@@ -490,40 +495,29 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `think`: (for thinking models) should the model think before responding?
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `thinking`: (for thinking models) the model's thinking process
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
- `tool_name` (optional): add the name of the tool that was executed to inform the model of the result
- `tool_calls` (optional): a list of tools the model wants to use
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Tool calling
Tool calling is supported by providing a list of tools in the `tools` parameter. The model will generate a response that includes a list of tool calls. See the [Chat request (Streaming with tools)](#chat-request-streaming-with-tools) example below.
Models can also explain the result of the tool call in the response. See the [Chat request (With history, with tools)](#chat-request-with-history-with-tools) example below.
[See models with tool calling capabilities](https://ollama.com/search?c=tool).
### Structured outputs
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [Chat request (Structured outputs)](#chat-request-structured-outputs) example below.
### Examples
#### Chat request (Streaming)
#### Chat Request (Streaming)
##### Request
@@ -564,10 +558,6 @@ Final response:
{
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"message": {
"role": "assistant",
"content": ""
},
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,
@@ -578,88 +568,6 @@ Final response:
}
```
#### Chat request (Streaming with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in tokyo?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
],
"stream": true
}'
```
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.184789Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
},
}
]
},
"done": false
}
```
Final response:
```json
{
"model":"llama3.2",
"created_at":"2025-07-07T20:22:19.19314Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "stop",
"done": true,
"total_duration": 182242375,
"load_duration": 41295167,
"prompt_eval_count": 169,
"prompt_eval_duration": 24573166,
"eval_count": 15,
"eval_duration": 115959084
}
```
#### Chat request (No streaming)
##### Request
@@ -697,74 +605,6 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Chat request (No streaming, with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in tokyo?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
],
"stream": false
}'
```
##### Response
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:32:53.844124Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
},
}
]
},
"done_reason": "stop",
"done": true,
"total_duration": 3244883583,
"load_duration": 2969184542,
"prompt_eval_count": 169,
"prompt_eval_duration": 141656333,
"eval_count": 18,
"eval_duration": 133293625
}
```
#### Chat request (Structured outputs)
##### Request
@@ -871,87 +711,6 @@ Final response:
}
```
#### Chat request (With history, with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in Toronto?"
},
// the message from the model appended to history
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_temperature",
"arguments": {
"city": "Toronto"
}
},
}
]
},
// the tool call result appended to history
{
"role": "tool",
"content": "11 degrees celsius",
"tool_name": "get_temperature",
}
],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
]
}'
```
##### Response
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:43:37.688511Z",
"message": {
"role": "assistant",
"content": "The current temperature in Toronto is 11°C."
},
"done_reason": "stop",
"done": true,
"total_duration": 890771750,
"load_duration": 707634750,
"prompt_eval_count": 94,
"prompt_eval_duration": 91703208,
"eval_count": 11,
"eval_duration": 90282125
}
```
#### Chat request (with images)
##### Request
@@ -1036,7 +795,7 @@ curl http://localhost:11434/api/chat -d '{
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -1111,7 +870,7 @@ If the messages array is empty, the model will be loaded into memory.
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": []
@@ -1119,7 +878,6 @@ curl http://localhost:11434/api/chat -d '{
```
##### Response
```json
{
"model": "llama3.2",
@@ -1139,7 +897,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [],
@@ -1166,52 +924,51 @@ A single JSON object is returned:
## Create a Model
```
```shell
POST /api/create
```
Create a model from:
* another model;
* a safetensors directory; or
* a GGUF file.
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
### Parameters
- `model`: name of the model to create
- `from`: (optional) name of an existing model to create the new model from
- `files`: (optional) a dictionary of file names to SHA256 digests of blobs to create the model from
- `adapters`: (optional) a dictionary of file names to SHA256 digests of blobs for LORA adapters
- `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation
- `modelfile` (optional): contents of the Modelfile
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `path` (optional): path to the Modelfile
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
#### Quantization types
| Type | Recommended |
| --- | :-: |
| q2_K | |
| q3_K_L | |
| q3_K_M | |
| q3_K_S | |
| q4_0 | |
| q4_1 | |
| q4_K_M | * |
| q4_K_S | |
| q5_0 | |
| q5_1 | |
| q5_K_M | |
| q5_K_S | |
| q6_K | |
| q8_0 | * |
### Examples
#### Create a new model
Create a new model from an existing model.
Create a new model from a `Modelfile`.
##### Request
```shell
curl http://localhost:11434/api/create -d '{
"model": "mario",
"from": "llama3.2",
"system": "You are Mario from Super Mario Bros."
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
}'
```
@@ -1241,8 +998,8 @@ Quantize a non-quantized model.
```shell
curl http://localhost:11434/api/create -d '{
"model": "llama3.2:quantized",
"from": "llama3.2:3b-instruct-fp16",
"model": "llama3.1:quantized",
"modelfile": "FROM llama3.1:8b-instruct-fp16",
"quantize": "q4_K_M"
}'
```
@@ -1251,131 +1008,69 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
{"status":"verifying conversion"}
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
```
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"writing manifest"}
{"status":"success"}
```
#### Create a model from GGUF
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
##### Request
```shell
curl http://localhost:11434/api/create -d '{
"model": "my-gguf-model",
"files": {
"test.gguf": "sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"
}
}'
```
##### Response
A stream of JSON objects is returned:
```json
{"status":"parsing GGUF"}
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"}
{"status":"success"}
```
#### Create a model from a Safetensors directory
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
##### Request
```shell
curl http://localhost:11434/api/create -d '{
"model": "fred",
"files": {
"config.json": "sha256:dd3443e529fb2290423a0c65c2d633e67b419d273f170259e27297219828e389",
"generation_config.json": "sha256:88effbb63300dbbc7390143fbbdd9d9fa50587b37e8bfd16c8c90d4970a74a36",
"special_tokens_map.json": "sha256:b7455f0e8f00539108837bfa586c4fbf424e31f8717819a6798be74bef813d05",
"tokenizer.json": "sha256:bbc1904d35169c542dffbe1f7589a5994ec7426d9e5b609d07bab876f32e97ab",
"tokenizer_config.json": "sha256:24e8a6dc2547164b7002e3125f10b415105644fcf02bf9ad8b674c87b1eaaed6",
"model.safetensors": "sha256:1ff795ff6a07e6a68085d206fb84417da2f083f68391c2843cd2b8ac6df8538f"
}
}'
```
##### Response
A stream of JSON objects is returned:
```shell
{"status":"converting model"}
{"status":"creating new layer sha256:05ca5b813af4a53d2c2922933936e398958855c44ee534858fcfd830940618b6"}
{"status":"using autodetected template llama3-instruct"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"writing manifest"}
{"status":"success"}
```
## Check if a Blob Exists
### Check if a Blob Exists
```shell
HEAD /api/blobs/:digest
```
Ensures that the file blob (Binary Large Object) used with create a model exists on the server. This checks your Ollama server and not ollama.com.
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not ollama.com.
### Query Parameters
#### Query Parameters
- `digest`: the SHA256 digest of the blob
### Examples
#### Examples
#### Request
##### Request
```shell
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
```
#### Response
##### Response
Return 200 OK if the blob exists, 404 Not Found if it does not.
## Push a Blob
### Create a Blob
```
```shell
POST /api/blobs/:digest
```
Push a file to the Ollama server to create a "blob" (Binary Large Object).
Create a blob from a file on the server. Returns the server file path.
### Query Parameters
#### Query Parameters
- `digest`: the expected SHA256 digest of the file
### Examples
#### Examples
#### Request
##### Request
```shell
curl -T model.gguf -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
```
#### Response
##### Response
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
## List Local Models
```
```shell
GET /api/tags
```
@@ -1397,37 +1092,29 @@ A single JSON object will be returned.
{
"models": [
{
"name": "deepseek-r1:latest",
"model": "deepseek-r1:latest",
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
"size": 4683075271,
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
"name": "codellama:13b",
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
"size": 7365960935,
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
"details": {
"parent_model": "",
"format": "gguf",
"family": "qwen2",
"families": [
"qwen2"
],
"parameter_size": "7.6B",
"quantization_level": "Q4_K_M"
"family": "llama",
"families": null,
"parameter_size": "13B",
"quantization_level": "Q4_0"
}
},
{
"name": "llama3.2:latest",
"model": "llama3.2:latest",
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
"size": 2019393189,
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
"name": "llama3:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
"size": 3825819519,
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": [
"llama"
],
"parameter_size": "3.2B",
"quantization_level": "Q4_K_M"
"families": null,
"parameter_size": "7B",
"quantization_level": "Q4_0"
}
}
]
@@ -1436,7 +1123,7 @@ A single JSON object will be returned.
## Show Model Information
```
```shell
POST /api/show
```
@@ -1453,13 +1140,13 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"model": "llava"
"model": "llama3.2"
}'
```
#### Response
```json5
```json
{
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
@@ -1496,17 +1183,13 @@ curl http://localhost:11434/api/show -d '{
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
},
"capabilities": [
"completion",
"vision"
],
}
}
```
## Copy a Model
```
```shell
POST /api/copy
```
@@ -1529,7 +1212,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
## Delete a Model
```
```shell
DELETE /api/delete
```
@@ -1555,7 +1238,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
## Pull a Model
```
```shell
POST /api/pull
```
@@ -1593,7 +1276,7 @@ Then there is a series of downloading responses. Until any of the download is co
```json
{
"status": "pulling digestname",
"status": "downloading digestname",
"digest": "digestname",
"total": 2142590208,
"completed": 241970
@@ -1627,7 +1310,7 @@ if `stream` is set to false, then the response is a single JSON object:
## Push a Model
```
```shell
POST /api/push
```
@@ -1692,7 +1375,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```
```shell
POST /api/embed
```
@@ -1708,7 +1391,6 @@ Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
### Examples
@@ -1761,7 +1443,7 @@ curl http://localhost:11434/api/embed -d '{
```
## List Running Models
```
```shell
GET /api/ps
```
@@ -1808,7 +1490,7 @@ A single JSON object will be returned.
> Note: this endpoint has been superseded by `/api/embed`
```
```shell
POST /api/embeddings
```
@@ -1848,7 +1530,7 @@ curl http://localhost:11434/api/embeddings -d '{
## Version
```
```shell
GET /api/version
```

View File

@@ -1,163 +1,165 @@
# Development
Install prerequisites:
Install required tools:
- [Go](https://go.dev/doc/install)
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
- go version 1.22 or higher
- OS specific C/C++ compiler (see below)
- GNU Make
Then build and run Ollama from the root directory of the repository:
```shell
go run . serve
## Overview
Ollama uses a mix of Go and C/C++ code to interface with GPUs. The C/C++ code is compiled with both CGO and GPU library specific compilers. A set of GNU Makefiles are used to compile the project. GPU Libraries are auto-detected based on the typical environment variables used by the respective libraries, but can be overridden if necessary. The default make target will build the runners and primary Go Ollama application that will run within the repo directory. Throughout the examples below `-j 5` is suggested for 5 parallel jobs to speed up the build. You can adjust the job count based on your CPU Core count to reduce build times. If you want to relocate the built binaries, use the `dist` target and recursively copy the files in `./dist/$OS-$ARCH/` to your desired location. To learn more about the other make targets use `make help`
Once you have built the GPU/CPU runners, you can compile the main application with `go build .`
### MacOS
[Download Go](https://go.dev/dl/)
```bash
make -j 5
```
> [!NOTE]
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
Now you can run `ollama`:
## macOS (Apple Silicon)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
## macOS (Intel)
Install prerequisites:
- [CMake](https://cmake.org/download/) or `brew install cmake`
Then, configure and build the project:
```shell
cmake -B build
cmake --build build
```bash
./ollama
```
Lastly, run Ollama:
#### Xcode 15 warnings
```shell
go run . serve
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the makefile will auto-detect CUDA, however, if your Linux distro
or installation approach uses alternative paths, you can specify the location by
overriding `CUDA_PATH` to the location of the CUDA toolkit. You can customize
a set of target CUDA architectures by setting `CUDA_ARCHITECTURES` (e.g. `CUDA_ARCHITECTURES=50;60;70`)
```
make -j 5
```
## Windows
If both v11 and v12 tookkits are detected, runners for both major versions will be built by default. You can build just v12 with `make cuda_v12`
Install prerequisites:
#### Older Linux CUDA (NVIDIA)
- [CMake](https://cmake.org/download/)
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
- (Optional) AMD GPU support
- [ROCm](https://rocm.docs.amd.com/en/latest/)
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
To support older GPUs with Compute Capability 3.5 or 3.7, you will need to use an older version of the Driver from [Unix Driver Archive](https://www.nvidia.com/en-us/drivers/unix/) (tested with 470) and [CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive) (tested with cuda V11). When you build Ollama, you will need to set two make variable to adjust the minimum compute capability Ollama supports via `make -j 5 CUDA_ARCHITECTURES="35;37;50;52" EXTRA_GOLDFLAGS="\"-X=github.com/ollama/ollama/discover.CudaComputeMajorMin=3\" \"-X=github.com/ollama/ollama/discover.CudaComputeMinorMin=5\""`. To find the Compute Capability of your older GPU, refer to [GPU Compute Capability](https://developer.nvidia.com/cuda-gpus).
Then, configure and build the project:
#### Linux ROCm (AMD)
```shell
cmake -B build
cmake --build build --config Release
_Your operating system distribution may already have packages for AMD ROCm. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `HIP_PATH` to the location of the ROCm
install (typically `/opt/rocm`). You can also customize
the AMD GPU targets by setting HIP_ARCHS (e.g. `HIP_ARCHS=gfx1101;gfx1102`)
```
make -j 5
```
> [!IMPORTANT]
> Building for ROCm requires additional flags:
> ```
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
> cmake --build build --config Release
> ```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Containerized Linux Build
Lastly, run Ollama:
If you have Docker and buildx available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting artifacts are placed in `./dist` and by default the script builds both arm64 and amd64 binaries. If you want to build only amd64, you can build with `PLATFORM=linux/amd64 ./scripts/build_linux.sh`
```shell
go run . serve
### Windows
The following tools are required as a minimal development environment to build CPU inference support.
- Go version 1.22 or higher
- https://go.dev/dl/
- Git
- https://git-scm.com/download/win
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- [MSYS2](https://www.msys2.org/)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
> [!NOTE]
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
```
make -j 5
```
## Windows (ARM)
#### GPU Support
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
## Linux
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
Install prerequisites:
#### Windows CUDA (NVIDIA)
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
- (Optional) AMD GPU support
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
In addition to the common Windows development tools and MSVC described above:
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
#### Windows ROCm (AMD Radeon)
Then, configure and build the project:
In addition to the common Windows development tools and MSVC described above:
```shell
cmake -B build
cmake --build build
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```
Lastly, run Ollama:
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
```shell
go run . serve
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
```
## Docker
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
```shell
docker build .
## Advanced CPU Vector Settings
On x86, running `make` will compile several CPU runners which can run on different CPU families. At runtime, Ollama will auto-detect the best variation to load. If GPU libraries are present at build time, Ollama also compiles GPU runners with the `AVX` CPU vector feature enabled. This provides a good performance balance when loading large models that split across GPU and CPU with broad compatibility. Some users may prefer no vector extensions (e.g. older Xeon/Celeron processors, or hypervisors that mask the vector features) while other users may prefer turning on many more vector extensions to further improve performance for split model loads.
To customize the set of CPU vector features enabled for a CPU runner and all GPU runners, use CUSTOM_CPU_FLAGS during the build.
To build without any vector flags:
```
make CUSTOM_CPU_FLAGS=""
```
### ROCm
```shell
docker build --build-arg FLAVOR=rocm .
To build with both AVX and AVX2:
```
make CUSTOM_CPU_FLAGS=avx,avx2
```
## Running tests
To build with AVX512 features turned on:
To run tests, use `go test`:
```shell
go test ./...
```
make CUSTOM_CPU_FLAGS=avx,avx2,avx512,avx512vbmi,avx512vnni,avx512bf16
```
> NOTE: In rare circumstances, you may need to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or
> test failures resulting from your change(s), if any, locally, but CI will
> break.
>
> If you see failures in CI, you can either keep pushing changes to see if the
> CI build passes, or you can enable the "synctest" package locally to see the
> failures before pushing.
>
> To enable the "synctest" package for testing, run the following command:
>
> ```shell
> GOEXPERIMENT=synctest go test ./...
> ```
>
> If you wish to enable synctest for all go commands, you can set the
> `GOEXPERIMENT` environment variable in your shell profile or by using:
>
> ```shell
> go env -w GOEXPERIMENT=synctest
> ```
>
> Which will enable the "synctest" package for all go commands without needing
> to set it for all shell sessions.
>
> The synctest package is not required for production builds.
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
* `./lib/ollama` (Windows)
* `../lib/ollama` (Linux)
* `.` (macOS)
* `build/lib/ollama` (for development)
If the libraries are not found, Ollama will not run with any acceleration libraries.
> [!NOTE]
> If you are experimenting with different flags, make sure to do a `make clean` between each change to ensure everything is rebuilt with the new compiler flags

View File

@@ -2,7 +2,7 @@
### CPU only
```shell
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -11,46 +11,42 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
#### Install with Apt
1. Configure the repository
```shell
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```shell
sudo apt-get install -y nvidia-container-toolkit
```
```bash
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```shell
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```shell
sudo yum install -y nvidia-container-toolkit
```
```bash
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```shell
```
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```shell
```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -61,7 +57,7 @@ docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ol
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```shell
```
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
@@ -69,7 +65,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```shell
```
docker exec -it ollama ollama run llama3.2
```

View File

@@ -20,17 +20,11 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 4096 tokens for most models. The `gpt-oss` model has a default context window size of 8192 tokens.
This can be overridden in Settings in the Windows and macOS App, or with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
```
By default, Ollama uses a context window size of 2048 tokens.
To change this when using `ollama run`, use `/set parameter`:
```shell
```
/set parameter num_ctx 4096
```
@@ -46,23 +40,16 @@ curl http://localhost:11434/api/generate -d '{
}'
```
Setting the context length higher may cause the model to not be able to fit onto the GPU which make the model run more slowly.
## How can I tell if my model was loaded onto the GPU?
Use the `ollama ps` command to see what models are currently loaded into memory.
```shell
ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR CONTEXT UNTIL
> gpt-oss:20b 05afbac4bad6 16 GB 100% GPU 8192 4 minutes from now
> ```
The `Processor` column will show which memory the model was loaded in to:
* `100% GPU` means the model was loaded entirely into the GPU
* `100% CPU` means the model was loaded entirely in system memory
@@ -79,7 +66,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
launchctl setenv OLLAMA_HOST "0.0.0.0"
```
2. Restart Ollama application.
@@ -94,14 +81,14 @@ If Ollama is run as a systemd service, environment variables should be set using
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="OLLAMA_HOST=0.0.0.0"
```
3. Save and exit.
4. Reload `systemd` and restart Ollama:
```shell
```bash
systemctl daemon-reload
systemctl restart ollama
```
@@ -150,11 +137,9 @@ docker build -t ollama-with-ca .
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
```
## Does Ollama send my prompts and responses back to ollama.com?
## Does Ollama send my prompts and answers back to ollama.com?
If you're running a model locally, your prompts and responses will always stay on your machine. Ollama Turbo in the App allows you to run your queries on Ollama's servers if you don't have a powerful enough GPU. Web search lets a model query the web, giving you more accurate and up-to-date information. Both Turbo and web search require sending your prompts and responses to Ollama.com. This data is neither logged nor stored.
If you don't want to see the Turbo and web search options in the app, you can disable them in Settings by turning on Airplane mode. In Airplane mode, all models will run locally, and your prompts and responses will stay on your machine.
No. Ollama runs locally, and conversation data does not leave your machine.
## How can I expose Ollama on my network?
@@ -197,13 +182,6 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
```
# Allow all Chrome, Firefox, and Safari extensions
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
```
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## Where are models stored?
@@ -243,19 +221,16 @@ properties.
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
To preload the mistral model using the generate endpoint, use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
```
To use the chat completions endpoint, use:
```shell
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
```
To preload a model using the CLI, use the command:
```shell
ollama run llama3.2 ""
```
@@ -275,13 +250,11 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
* '0' which will unload the model immediately after generating a response
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
```
@@ -296,7 +269,7 @@ If too many requests are sent to the server, it will respond with a 503 error in
## How does Ollama handle concurrent requests?
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it can be configured to allow parallel request processing.
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it is configured to allow parallel request processing.
If there is insufficient available memory to load a new model request while one or more models are already loaded, all new requests will be queued until the new model can be loaded. As prior models become idle, one or more will be unloaded to make room for the new model. Queued requests will be processed in order. When using GPU inference new models must be able to completely fit in VRAM to allow concurrent model loads.
@@ -305,7 +278,7 @@ Parallel request processing for a given model results in increasing the context
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 * the number of GPUs or 3 for CPU inference.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default is 1, and will handle 1 request per model at a time.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
@@ -337,16 +310,3 @@ The currently available K/V cache quantization types are:
How much the cache quantization impacts the model's response quality will depend on the model and the task. Models that have a high GQA count (e.g. Qwen2) may see a larger impact on precision from quantization than models with a low GQA count.
You may need to experiment with different quantization types to find the best balance between memory usage and quality.
## How can I stop Ollama from starting when I login to my computer
Ollama for Windows and macOS register as a login item during installation. You can disable this if you prefer not to have Ollama automatically start. Ollama will respect this setting across upgrades, unless you uninstall the application.
**Windows**
- Remove `%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\Ollama.lnk`
**MacOS Monterey (v12)**
- Open `Settings` -> `Users & Groups` -> `Login Items` and find the `Ollama` entry, then click the `-` (minus) to remove
**MacOS Ventura (v13) and later**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@@ -1,15 +1,13 @@
# GPU
## Nvidia
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
Ollama supports Nvidia GPUs with compute capability 5.0+.
Check your compute compatibility to see if your card is supported:
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 12.0 | GeForce RTX 50xx | `RTX 5060` `RTX 5060 Ti` `RTX 5070` `RTX 5070 Ti` `RTX 5080` `RTX 5090` |
| | NVIDIA Professioal | `RTX PRO 4000 Blackwell` `RTX PRO 4500 Blackwell` `RTX PRO 5000 Blackwell` `RTX PRO 6000 Blackwell` |
| 9.0 | NVIDIA | `H200` `H100` |
| 9.0 | NVIDIA | `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
@@ -40,7 +38,7 @@ Numeric IDs may be used, however ordering may vary, so UUIDs are more reliable.
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
### Linux Suspend Resume
### Laptop Suspend Resume
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this

View File

@@ -20,13 +20,13 @@ Make sure that you use the same base model in the `FROM` command as you used to
Now run `ollama create` from the directory where the `Modelfile` was created:
```shell
```bash
ollama create my-model
```
Lastly, test the model:
```shell
```bash
ollama run my-model
```
@@ -53,8 +53,6 @@ FROM /path/to/safetensors/directory
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
If you do not create the Modelfile, ollama will act as if there was a Modelfile with the command `FROM .`.
Now run the `ollama create` command from the directory where you created the `Modelfile`:
```shell
@@ -134,12 +132,22 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com

View File

@@ -11,13 +11,12 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
> [!NOTE]
> If you are upgrading from a prior version, you **MUST** remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
Download and extract the package:
```shell
curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
sudo rm -rf /usr/lib/ollama
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```
@@ -35,11 +34,7 @@ ollama -v
### AMD GPU install
If you have an AMD GPU, **also** download and extract the additional ROCm package:
> [!IMPORTANT]
> The ROCm tgz contains only AMD dependent libraries. You must extract **both** `ollama-linux-amd64.tgz` and `ollama-linux-amd64-rocm.tgz` into the same location.
If you have an AMD GPU, also download and extract the additional ROCm package:
```shell
curl -L https://ollama.com/download/ollama-linux-amd64-rocm.tgz -o ollama-linux-amd64-rocm.tgz
@@ -80,7 +75,7 @@ RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=multi-user.target
WantedBy=default.target
```
Then start the service:
@@ -117,14 +112,14 @@ sudo systemctl status ollama
> While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
> of your Radeon GPU.
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
## Customizing
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
```shell
```
sudo systemctl edit ollama
```
@@ -157,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
```
## Viewing logs
@@ -191,9 +186,3 @@ sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama
```
Remove installed libraries:
```shell
sudo rm -rf /usr/local/lib/ollama
```

View File

@@ -1,42 +0,0 @@
# Ollama for macOS
## System Requirements
* MacOS Monterey (v12) or newer
* Apple M series (CPU and GPU support) or x86 (CPU only)
## Filesystem Requirements
The preferred method of installation is to mount the `ollama.dmg` and drag-and-drop the Ollama application to the system-wide `Applications` folder. Upon startup, the Ollama app will verify the `ollama` CLI is present in your PATH, and if not detected, will prompt for permission to create a link in `/usr/local/bin`
Once you've installed Ollama, you'll need additional space for storing the Large Language models, which can be tens to hundreds of GB in size. If your home directory doesn't have enough space, you can change where the binaries are installed, and where the models are stored.
### Changing Install Location
To install the Ollama application somewhere other than `Applications`, place the Ollama application in the desired location, and ensure the CLI `Ollama.app/Contents/Resources/ollama` or a sym-link to the CLI can be found in your path. Upon first start decline the "Move to Applications?" request.
## Troubleshooting
Ollama on MacOS stores files in a few different locations.
- `~/.ollama` contains models and configuration
- `~/.ollama/logs` contains logs
- *app.log* contains most recent logs from the GUI application
- *server.log* contains the most recent server logs
- `<install location>/Ollama.app/Contents/Resources/ollama` the CLI binary
## Uninstall
To fully remove Ollama from your system, remove the following files and folders:
```
sudo rm -rf /Applications/Ollama.app
sudo rm /usr/local/bin/ollama
rm -rf "~/Library/Application Support/Ollama"
rm -rf "~/Library/Saved Application State/com.electron.ollama.savedState"
rm -rf ~/Library/Caches/com.electron.ollama/
rm -rf ~/Library/Caches/ollama
rm -rf ~/Library/WebKit/com.electron.ollama
rm -rf ~/.ollama
```

View File

@@ -28,7 +28,7 @@ A model file is the blueprint to create and share models with Ollama.
The format of the `Modelfile`:
```
```modelfile
# comment
INSTRUCTION arguments
```
@@ -49,7 +49,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```
```modelfile
FROM llama3.2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -67,32 +67,28 @@ To use this:
3. `ollama run choose-a-model-name`
4. Start using the model!
More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```shell
ollama show --modelfile llama3.2
```
```bash
> ollama show --modelfile llama3.2
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3.2:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
> **Output**:
>
> ```
> # Modelfile generated by "ollama show"
> # To build a new Modelfile based on this one, replace the FROM line with:
> # FROM llama3.2:latest
> FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
> TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
>
> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
>
> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
>
> {{ .Response }}<|eot_id|>"""
> PARAMETER stop "<|start_header_id|>"
> PARAMETER stop "<|end_header_id|>"
> PARAMETER stop "<|eot_id|>"
> PARAMETER stop "<|reserved_special_token"
> ```
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|reserved_special_token"
```
## Instructions
@@ -100,13 +96,13 @@ ollama show --modelfile llama3.2
The `FROM` instruction defines the base model to use when creating a model.
```
```modelfile
FROM <model name>:<tag>
```
#### Build from existing model
```
```modelfile
FROM llama3.2
```
@@ -117,7 +113,7 @@ Additional models can be found at:
#### Build from a Safetensors model
```
```modelfile
FROM <model directory>
```
@@ -131,7 +127,7 @@ Currently supported model architectures:
#### Build from a GGUF file
```
```modelfile
FROM ./ollama-model.gguf
```
@@ -142,7 +138,7 @@ The GGUF file location should be specified as an absolute path or relative to th
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
```
```modelfile
PARAMETER <parameter> <parametervalue>
```
@@ -150,12 +146,16 @@ PARAMETER <parameter> <parametervalue>
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 4096) | int | num_ctx 4096 |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: -1, infinite generation) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
@@ -186,7 +186,7 @@ TEMPLATE """{{ if .System }}<|im_start|>system
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```
```modelfile
SYSTEM """<system message>"""
```
@@ -196,7 +196,7 @@ The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply
#### Safetensor adapter
```
```modelfile
ADAPTER <path to safetensor adapter>
```
@@ -207,7 +207,7 @@ Currently supported Safetensor adapters:
#### GGUF adapter
```
```modelfile
ADAPTER ./ollama-lora.gguf
```
@@ -215,7 +215,7 @@ ADAPTER ./ollama-lora.gguf
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```
```modelfile
LICENSE """
<license text>
"""
@@ -225,7 +225,7 @@ LICENSE """
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way.
```
```modelfile
MESSAGE <role> <message>
```
@@ -240,7 +240,7 @@ MESSAGE <role> <message>
#### Example conversation
```
```modelfile
MESSAGE user Is Toronto in Canada?
MESSAGE assistant yes
MESSAGE user Is Sacramento in Canada?

View File

@@ -1,7 +1,6 @@
# OpenAI compatibility
> [!NOTE]
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
@@ -60,10 +59,8 @@ embeddings = client.embeddings.create(
input=["why is the sky blue?", "why is the grass green?"],
)
```
#### Structured outputs
```python
```py
from pydantic import BaseModel
from openai import OpenAI
@@ -72,7 +69,7 @@ client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
# Define the schema for the response
class FriendInfo(BaseModel):
name: str
age: int
age: int
is_available: bool
class FriendList(BaseModel):
@@ -147,7 +144,7 @@ const embedding = await openai.embeddings.create({
### `curl`
```shell
``` shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
@@ -322,7 +319,7 @@ ollama pull llama3.2
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```shell
```
ollama cp llama3.2 gpt-3.5-turbo
```
@@ -346,7 +343,7 @@ curl http://localhost:11434/v1/chat/completions \
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```
```modelfile
FROM <some model>
PARAMETER num_ctx <context size>
```

View File

@@ -12,7 +12,7 @@ A basic Go template consists of three main parts:
Here's an example of a simple chat template:
```go
```gotmpl
{{- range .Messages }}
{{ .Role }}: {{ .Content }}
{{- end }}
@@ -162,6 +162,6 @@ CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://o
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
```go
```gotmpl
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
```

View File

@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama --no-pager --follow --pager-end
journalctl -u ollama --no-pager
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
@@ -17,18 +17,17 @@ When you run Ollama in a **container**, the logs go to stdout/stderr in the cont
```shell
docker logs <container-name>
```
(Use `docker ps` to find the container name)
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
When you run Ollama on **Windows**, there are a few different locations. You can view them in the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
```powershell
$env:OLLAMA_DEBUG="1"
& "ollama app.exe"
@@ -38,25 +37,24 @@ Join the [Discord](https://discord.gg/ollama) for help interpreting the logs.
## LLM libraries
Ollama includes multiple LLM libraries compiled for different GPUs and CPU vector features. Ollama tries to pick the best one based on the capabilities of your system. If this autodetection has problems, or you run into other problems (e.g. crashes in your GPU) you can workaround this by forcing a specific LLM library. `cpu_avx2` will perform the best, followed by `cpu_avx` and the slowest but most compatible is `cpu`. Rosetta emulation under MacOS will work with the `cpu` library.
Ollama includes multiple LLM libraries compiled for different GPUs and CPU vector features. Ollama tries to pick the best one based on the capabilities of your system. If this autodetection has problems, or you run into other problems (e.g. crashes in your GPU) you can workaround this by forcing a specific LLM library. `cpu_avx2` will perform the best, followed by `cpu_avx` an the slowest but most compatible is `cpu`. Rosetta emulation under MacOS will work with the `cpu` library.
In the server log, you will see a message that looks something like this (varies from release to release):
```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v12 rocm_v5]
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
```
**Experimental LLM Library Override**
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
```shell
```
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
```
You can see what features your CPU has with the following.
```shell
```
cat /proc/cpuinfo| grep flags | head -1
```
@@ -64,13 +62,13 @@ cat /proc/cpuinfo| grep flags | head -1
If you run into problems on Linux and want to install an older version, or you'd like to try out a pre-release before it's officially released, you can tell the install script which version to install.
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
```
## Linux docker
## Linux tmp noexec
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
## NVIDIA GPU Discovery
@@ -92,15 +90,14 @@ If none of those resolve the problem, gather additional information and file an
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
You may get more details for initialization failures by enabling debug prints in the uvm driver. You should only use this temporarily while troubleshooting
- `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm uvm_debug_prints=1`
## AMD GPU Discovery
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems

View File

@@ -1,107 +0,0 @@
# Turbo
>  Turbo is preview
Ollamas [Turbo](https://ollama.com/turbo) is a new way to run open-source models with acceleration from datacenter-grade hardware.
Currently, the following models are available in Turbo:
- `gpt-oss:20b`
- `gpt-oss:120b`
## Get started
### Ollama for macOS & Windows
Download Ollama
- Select a model such as `gpt-oss:20b` or `gpt-oss:120b`
- Click on **Turbo**. Youll be prompted to create an account or sign in
### Ollamas CLI
- [Sign up](https://ollama.com/signup) for an Ollama account
- Add your Ollama key [to ollama.com](https://ollama.com/settings/keys).
On macOS and Linux:
```shell
cat ~/.ollama/id_ed25519.pub
```
On Windows:
```
type "%USERPROFILE%\.ollama\id_ed25519.pub"
```
- Then run a model setting `OLLAMA_HOST` to `ollama.com`:
```shell
OLLAMA_HOST=ollama.com ollama run gpt-oss:120b
```
### Ollamas Python library
- Download Ollama's [Python library](https://github.com/ollama/ollama-python)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```python
from ollama import Client
client = Client(
host="https://ollama.com",
headers={'Authorization': '<api key>'}
)
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
### Ollamas JavaScript library
- Download Ollama's [JavaScript library](https://github.com/ollama/ollama-js)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```typescript
import { Ollama } from 'ollama';
const ollama = new Ollama({
host: 'https://ollama.com',
headers: {
Authorization: "Bearer <api key>"
}
});
const response = await ollama.chat({
model: 'gpt-oss:120b',
messages: [{ role: 'user', content: 'Explain quantum computing' }],
stream: true
});
for await (const part of response) {
process.stdout.write(part.message.content)
}
```
### Community integrations
Turbo mode is also compatible with several community integrations.
#### Open WebUI
- Go to **settings** → **Admin settings** → **Connections**
- Under **Ollama API,** click **+**
- For the **URL** put `https://ollama.com`
- For the **API key,** create an API key on https://ollama.com/settings/keys and add it.
- Click **Save**
Now, if you navigate to the model selector, Turbo models should be available under **External**.

View File

@@ -30,10 +30,23 @@ To install the Ollama application in a location different than your home directo
OllamaSetup.exe /DIR="d:\some\location"
```
### Changing Model Location
To change where Ollama stores the downloaded models instead of using your home directory, set the environment variable `OLLAMA_MODELS` in your user account.
1. Start the Settings (Windows 11) or Control Panel (Windows 10) application and search for _environment variables_.
2. Click on _Edit environment variables for your account_.
3. Edit or create a new variable for your user account for `OLLAMA_MODELS` where you want the models stored
4. Click OK/Apply to save.
If Ollama is already running, Quit the tray application and relaunch it from the Start menu, or a new terminal started after you saved the environment variables.
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
@@ -41,13 +54,14 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<Ctrl>+R` and type in:
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains most resent logs from the GUI application
- *server.log* contains the most recent server logs
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Uninstall
@@ -66,11 +80,9 @@ help you keep up to date.
If you'd like to install or integrate Ollama as a service, a standalone
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
same directory. Both zip files are necessary for a complete AMD installation.
This allows for embedding Ollama in existing applications, or running it as a
system service via `ollama serve` with tools such as [NSSM](https://nssm.cc/).
and GPU library dependencies for Nvidia and AMD. This allows for embedding
Ollama in existing applications, or running it as a system service via `ollama
serve` with tools such as [NSSM](https://nssm.cc/).
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old directories first.

View File

@@ -53,8 +53,8 @@ func Host() *url.URL {
}
}
// AllowedOrigins returns a list of allowed origins. AllowedOrigins can be configured via the OLLAMA_ORIGINS environment variable.
func AllowedOrigins() (origins []string) {
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
func Origins() (origins []string) {
if s := Var("OLLAMA_ORIGINS"); s != "" {
origins = strings.Split(s, ",")
}
@@ -73,7 +73,6 @@ func AllowedOrigins() (origins []string) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
)
return origins
@@ -134,17 +133,6 @@ func LoadTimeout() (loadTimeout time.Duration) {
return loadTimeout
}
func Remotes() []string {
var r []string
raw := strings.TrimSpace(Var("OLLAMA_REMOTES"))
if raw == "" {
r = []string{"ollama.com"}
} else {
r = strings.Split(raw, ",")
}
return r
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
@@ -160,22 +148,9 @@ func Bool(k string) func() bool {
}
}
// LogLevel returns the log level for the application.
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
func LogLevel() slog.Level {
level := slog.LevelInfo
if s := Var("OLLAMA_DEBUG"); s != "" {
if b, _ := strconv.ParseBool(s); b {
level = slog.LevelDebug
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
level = slog.Level(i * -4)
}
}
return level
}
var (
// Debug enabled additional debug information.
Debug = Bool("OLLAMA_DEBUG")
// FlashAttention enables the experimental flash attention feature.
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
// KvCacheType is the quantization type for the K/V cache.
@@ -190,12 +165,6 @@ var (
IntelGPU = Bool("OLLAMA_INTEL_GPU")
// MultiUserCache optimizes prompt caching for multi-user scenarios
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
// Enable the new Ollama engine
NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
)
func String(s string) func() string {
@@ -230,11 +199,13 @@ func Uint(key string, defaultValue uint) func() uint {
var (
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 1)
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
func Uint64(key string, defaultValue uint64) func() uint64 {
@@ -262,7 +233,7 @@ type EnvVar struct {
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
@@ -276,12 +247,9 @@ func AsMap() map[string]EnvVar {
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
@@ -320,3 +288,12 @@ func Values() map[string]string {
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}
// On windows, we keep the binary at the top directory, but
// other platforms use a "bin" directory, so this returns ".."
func LibRelativeToExe() string {
if runtime.GOOS == "windows" {
return "."
}
return ".."
}

View File

@@ -1,13 +1,11 @@
package envconfig
import (
"log/slog"
"math"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/logutil"
)
func TestHost(t *testing.T) {
@@ -71,7 +69,6 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
@@ -91,7 +88,6 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
@@ -112,7 +108,6 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
@@ -133,14 +128,13 @@ func TestOrigins(t *testing.T) {
"file://*",
"tauri://*",
"vscode-webview://*",
"vscode-file://*",
}},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
t.Setenv("OLLAMA_ORIGINS", tt.value)
if diff := cmp.Diff(AllowedOrigins(), tt.expect); diff != "" {
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
}
})
@@ -278,50 +272,3 @@ func TestVar(t *testing.T) {
})
}
}
func TestContextLength(t *testing.T) {
cases := map[string]uint{
"": 4096,
"2048": 2048,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_CONTEXT_LENGTH", k)
if i := ContextLength(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}
func TestLogLevel(t *testing.T) {
cases := map[string]slog.Level{
// Default to INFO
"": slog.LevelInfo,
"false": slog.LevelInfo,
"f": slog.LevelInfo,
"0": slog.LevelInfo,
// True values enable Debug
"true": slog.LevelDebug,
"t": slog.LevelDebug,
// Positive values increase verbosity
"1": slog.LevelDebug,
"2": logutil.LevelTrace,
// Negative values decrease verbosity
"-1": slog.LevelWarn,
"-2": slog.LevelError,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_DEBUG", k)
if i := LogLevel(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}

View File

@@ -40,6 +40,8 @@ func HumanBytes(b int64) string {
}
switch {
case value >= 100:
return fmt.Sprintf("%d %s", int(value), unit)
case value >= 10:
return fmt.Sprintf("%d %s", int(value), unit)
case value != math.Trunc(value):

View File

@@ -1,91 +0,0 @@
package format
import (
"testing"
)
func TestHumanBytes(t *testing.T) {
type testCase struct {
input int64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{999, "999 B"},
// Test kilobytes (KB)
{1000, "1 KB"},
{1500, "1.5 KB"},
{999999, "999 KB"},
// Test megabytes (MB)
{1000000, "1 MB"},
{1500000, "1.5 MB"},
{999999999, "999 MB"},
// Test gigabytes (GB)
{1000000000, "1 GB"},
{1500000000, "1.5 GB"},
{999999999999, "999 GB"},
// Test terabytes (TB)
{1000000000000, "1 TB"},
{1500000000000, "1.5 TB"},
{1999999999999, "2.0 TB"},
// Test fractional values
{1234, "1.2 KB"},
{1234567, "1.2 MB"},
{1234567890, "1.2 GB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}
func TestHumanBytes2(t *testing.T) {
type testCase struct {
input uint64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{1023, "1023 B"},
// Test kibibytes (KiB)
{1024, "1.0 KiB"},
{1536, "1.5 KiB"},
{1048575, "1024.0 KiB"},
// Test mebibytes (MiB)
{1048576, "1.0 MiB"},
{1572864, "1.5 MiB"},
{1073741823, "1024.0 MiB"},
// Test gibibytes (GiB)
{1073741824, "1.0 GiB"},
{1610612736, "1.5 GiB"},
{2147483648, "2.0 GiB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes2(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}

View File

@@ -12,9 +12,6 @@ func TestHumanNumber(t *testing.T) {
testCases := []testCase{
{0, "0"},
{999, "999"},
{1000, "1K"},
{1001, "1K"},
{1000000, "1M"},
{125000000, "125M"},
{500500000, "500.50M"},

Some files were not shown because too many files have changed in this diff Show More